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Abstract

An axiomatic approach to physics is proposed for obtaining classical gauge theories from
a common set of physical requirements based on standard features of special relativistic field
theories such as gauge invariance, conformal invariance and being in four dimensions. This
approach involves the use of Noether’s first theorem to directly obtain a unique, complete
set of equations from the symmetries of the action. However, implementation of this proce-
dure is obstructed by issues of ambiguity and non-uniqueness associated with the conserved
tensors in the majority of special relativistic field theories. In the introductory chapter, we
outline the three major problems which are considered in this thesis. Each of these three
problems are addressed separately in the three central chapters of the thesis, which consist
of eight integrated articles. These three problems are (i) the failure of the canonical Noether
energy-momentum tensor to obtain known physical conservation laws, and the ad-hoc “im-
provement” of the energy-momentum tensors occurring in the literature, (ii) the ambiguities
and non-uniqueness associated with multiple different methods for derivation of the energy-
momentum tensor, and (iii) the procedure required for converting a set of axioms to a set of
Lagrangian densities. The concluding chapter summarizes our major results, such as proper
variational “Noetherian” symmetries for several completely gauge invariant models using the
Bessel-Hagen method, a formal disproof of the equivalence of the Noether and Hilbert energy-
momentum tensors in Minkowski spacetime, a proof that there are infinitely many solutions
for energy-momentum tensors in linearized gravity obtained from the “improvement” method,
and a derivation of the curvature tensors of higher spin gauge theories without referring to the
symmetry properties of the Riemann curvature tensor. Future research that could follow from
our results is discussed.

Keywords: Noether’s first theorem, Bessel-Hagen method, energy-momentum tensor, gauge
theory, electrodynamics, Gauss-Bonnet gravity, spin-2, higher spin gauge theories
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Summary for Lay Audience

Physics is a science which focuses on quantifying observed natural phenomena. To do this
for a classical system, physicists use equations that can be solved, subject to initial conditions
corresponding to the dynamics of a particular observed phenomena; these equations are known
as equations of motion. For the fundamental interactions of electromagnetism and gravity, the
accepted equations of motion describing the dynamics of these theories are Maxwell’s equa-
tions and Einstein’s field equations, respectively. These equations have not been replaced or
changed in over 100 years (although some modifications have been proposed). Other equations
may be needed to complete a theory, such as in electrodynamics where conservation of energy
and the force law are described by Poynting’s theorem and the Lorentz force law. Using what
is known as the action, the equations of motion of the theory can be straightforwardly obtained
using the Euler-Lagrange equation; this equation ensures that this action has a minimum value.
For conservation laws however, this is not as straightforward — multiple methods which con-
tradict each other exist for obtaining them. In addition, some of these methods fail to obtain all
known physical laws in a straightforward manner. These issues are the focus of the first two
chapters of this thesis. The basis for our approach is Noether’s first theorem, a fundamental
result that shows that symmetries present in a physical system results in there being “con-
served” quantities (quantities whose value remains constant as the system evolves). In Chapter
1 we clarify a straightforward methodology for obtaining physical conservation laws using the
Bessel-Hagen approach to Noether’s first theorem, and then in Chapter 2 we clarify the status
of the other methods that contradict this approach. This use of Noether’s first theorem renders
the complete set of physical equations, for example in electrodynamics, as implicit information
contained in the Lagrangian. For a set of physical theories, only the set of Lagrangians are re-
quired. In Chapter 3 we ask if all of these Lagrangians can be obtained from a common set of
axioms, so that even the set of Lagrangians are implicit information to the imposed physical re-
quirements. We show that such an approach can be used to obtain electrodynamics, linearized
Gauss-Bonnet gravity, and other “higher-spin” gauge theories found in the physics literature.
Future research that could follow from our results is discussed.
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Epigraph

“The steady progress of physics requires for its theoretical formulation a math-

ematics that gets continually more advanced. This is only natural and to be ex-

pected. What, however, was not expected by the scientific workers of the last cen-

tury was the particular form that the line of advancement of the mathematics would

take, namely, it was expected that the mathematics would get more and more com-

plicated, but would rest on a permanent basis of axioms and definitions, while

actually the modern physical developments have required a mathematics that con-

tinually shifts its foundations and gets more abstract. Non-euclidean geometry and

non-commutative algebra, which were at one time considered to be purely fictions

of the mind and pastimes for logical thinkers, have now been found to be very nec-

essary for the description of general facts of the physical world. It seems likely that

this process of increasing abstraction will continue in the future and that advance

in physics is to be associated with a continual modification and generalisation of

the axioms at the base of the mathematics rather than with a logical development

of any one mathematical scheme on a fixed foundation.

There are at present fundamental problems in theoretical physics awaiting solu-

tion, e.g., the relativistic formulation of quantum mechanics and the nature of

atomic nuclei (to be followed by more difficult ones such as the problem of life), the

solution of which problems will presumably require a more drastic revision of our

fundamental concepts than any that have gone before. Quite likely these changes

will be so great that it will be beyond the power of human intelligence to get the

necessary new ideas by direct attempts to formulate the experimental data in math-

ematical terms. The theoretical worker in the future will therefore have to proceed

in an indirect way. The most powerful method of advance that can be suggested at

present is to employ all the resources of pure mathematics in attempts to perfect

and generalise the mathematical formulation that forms the existing basis of theo-

retical physics, and after each success in this direction, to try to interpret the new

mathematical features in terms of physical entities (by a process like Eddington’s

Principle of Identification).”

Paul Dirac, 1931 [64]
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Dedication

Dedicated to physics, asking questions, and the freedom to do both.
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• Rνβ = ηµαRµναβ = 1
2 (∂β∂αhνα + ∂ν∂αhβα − �hνβ − ∂ν∂βh) — Linearized Ricci tensor

• R = ηνβRνβ = ∂µ∂νhµν − �h — Linearized Ricci scalar

• Rρ
βαγ = ∂αΓ

ρ
γβ − ∂γΓ

ρ
αβ + ΓλγβΓ

ρ
αλ − ΓλαβΓ

ρ
γλ — Riemann tensor

• Rµβαγ = 1
2 (∂α∂βgµγ + ∂γ∂µgαβ − ∂α∂µgγβ − ∂γ∂βgµα) + gρλ(ΓλµγΓ

ρ
αβ −ΓλµαΓ

ρ
γβ) — Covariant

Riemann tensor

• Rµβαγ = −Rβµαγ , Rµβαγ = −Rµβγα — Antisymmetry of each pair in covariant Riemann
and linearized Riemann tensors

• Rµβαγ = Rαγµβ — Symmetry of pair interchange in covariant Riemann and linearized
Riemann tensors

• (∇γ∇α−∇α∇γ)vβ = Rρ
βαγvρ — Riemann tensor from non-commutivity of covariant deriva-

tives

• Rµαβγ + Rµγαβ + Rµβγα = 0 — First Bianchi identity

• Γλµα = 1
2 (−∂λhµα + ∂αhλµ + ∂µhλα) — linearized Christoffel symbol

• Γαρσ = 1
2 (∂σgαρ + ∂ρgασ − ∂αgρσ) — Christoffel symbol of the first kind

• Γλνβ = 1
2gµλ(−∂µgνβ + ∂βgµν + ∂νgµβ) — Christoffel symbol of the second kind

• Γ̄αρσ = ∂xγ
∂x̄α

∂xβ
∂x̄ρ

∂xλ
∂x̄σΓγβλ + gγβ ∂xγ

∂x̄α ∂̄σ
∂xβ
∂x̄ρ — Transformation law for Christoffel symbol of the

first kind

• Γ̄
µ
ρσ = ∂x̄µ

∂xξ
∂xβ
∂x̄ρ

∂xλ
∂x̄σΓ

ξ
βλ + ∂x̄µ

∂xξ ∂̄σ
∂xξ
∂x̄ρ — Transformation law for Christoffel symbol of the

second kind

xiii



• ∂σgαρ = Γαρσ + Γρασ — Derivative of metric tensor

• ∇σgαρ = 0 — Covariant derivative of metric tensor

• δxα = aα + ωαβxβ + S xα + 2ξνxαxν − ξαxνxν — Conformal transformations

• h′µν = hµν + ∂µξν + ∂νξµ — Spin-2 gauge transformation (linearized diffeomorphism)

• ∆
γρ
να = 1

2 (δγνδ
ρ
α + δ

γ
αδ

ρ
ν) — Symmetric variation

• T µν =


−U −S x/c −S y/c −S z/c

−S x/c σxx σxy σxz

−S y/c σyx σyy σyz

−S z/c σzx σzy σzz

 — Energy-momentum tensor of electrodynam-

ics

• σi j =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 — Maxwell stress tensor

• ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 — Minkowski metric

• gµν =


g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

 — Metric tensor

• δνµ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 — Kronecker delta

• ∂x̄α
∂xµ = Λα

µ =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 — Lorentz boost in x direction
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• Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 — Covariant field strength tensor of electrodynamics

• Fρ
ν =


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 — Mixed field strength tensor of electrodynamics

• Fρσ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 — Contravariant field strength tensor of electro-

dynamics

• Fµν =


0 Bx By Bz

−Bx 0 Ez/c −Ey/c

−By −Ez/c 0 Ex/c

−Bz Ey/c −Ex/c 0

 — Covariant dual field strength tensor of electro-

dynamics

• F ρ
ν =


0 Bx By Bz

Bx 0 −Ez/c Ey/c

By Ez/c 0 −Ex/c

Bz −Ey/c Ex/c 0

 — Mixed dual field strength tensor of electrody-

namics

• F ρσ =


0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0

 — Contravariant dual field strength tensor of elec-

trodynamics
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Chapter 1

Introduction

1.1 Electrodynamic theory

1.1.1 Maxwell’s equations

Over the past centuries since Isaac Newton’s ”Philosophiæ Naturalis Principia Mathematica”
[158], physics has been vastly successful in quantifying the dynamics of observed phenomena.
Equations of motion that model the most fundamental interactions have been some of the major
focuses of theoretical physics during this period. The prototypical example of such a model is
Maxwell’s equations, which unified the theories of electricity and magnetism in 1861 [145].
Maxwell originally presented these equations as 8 separate equations, which correspond to the
8 equations found by expanding the more common form presented by Heaviside in 1894 [102]
(in the vector notation introduced by Gibbs [90]),

~∇ · ~E =
ρ

ε0
, ~∇ × ~B =

1
c2

∂~E
∂t

+ µ0 ~J, (1.1)

~∇ · ~B = 0, ~∇ × ~E = −
∂~B
∂t
, (1.2)

where the four nonhomogenous equations (1.1) are the Gauss-Ampere laws, and the four ho-
mogenous equations (1.2) are the Gauss-Faraday laws. The four nonhomogenous equations
(1.1) are sourced by charge density ρ and current density ~J =< Jx, Jy, Jz >.

In 1909 [150], Minkowski formulated the 4D metric spacetime of special relativity now
known as the Minkowski metric ηµν, where ds2 = ηµνdxµdxν = c2dt2 − dx2 − dy2 − dz2 is
the invariant interval of special relativity, a special case of the general line element ds2 =

gµνdxµdxν. Here he further compacted Maxwell’s equations into the divergence of what we
now call the field strength Fµν and dual field strength F µν tensors,

1
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∂ρFρσ = µ0Jσ, (1.3)

∂ρF
ρσ = 0. (1.4)

See List of Symbols for the components of the field strength and dual field strength tensors
— the components of these tensors are the electric and magnetic fields. The four Gauss-
Ampere equations (the nonhomogeneous Maxwell equations) are compactly expressed in (1.3)
using the field strength tensor, with each component of the 4-vector ∂µFµν corresponding to
one of these four equations. The four Gauss-Faraday equations (the homogenous Maxwell
equations) are compactly expressed in (1.4) using the dual field strength tensor, with each
component of the 4-vector ∂µF µν corresponding to one of these four equations. The more
common presentation of covariant electrodynamics is to write all 8 equations in terms of just
the field strength tensor Fµν,

∂ρFρσ = µ0Jσ, (1.5)

∂σF
σρ =

1
6
εαβσρ(∂σFαβ + ∂βFσα + ∂αFβσ) = 0. (1.6)

This presentation dates back to Einstein [69] which is possible due to the relationships Fµν =
1
2εµνρσFρσ. More commonly the Gauss-Faraday law (1.6) is presented simply as the Bianchi
identity ∂σFαβ + ∂βFσα + ∂αFβσ = 0, in the brackets of (1.6). We discuss the dual formulation
at length in Section 3 of [9].

1.1.2 Lorentz force and conservation laws

The theory of electricity and magnetism, more commonly referred to as classical electrody-
namics, consists of the complete set of equations that describe observed electrodynamic phe-
nomena. Maxwell’s equations, the equations of motion for the theory, are just one part of this
complete set. The Lorentz force law defines the force electromagnetic fields exert on charged
particles,

~F = q(~E + ~v × ~B). (1.7)

The component form of this expression can be traced back to Maxwell [145] but was named
after Lorentz for his presentation in [136]. Einstein derived this in his original paper on special
relativity using the Lorentz transformations [68]. We note that (1.7) can be obtained from the
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classical Lagrangian for a charged particle in an electromagnetic field using the Euler-Lagrange
equation. In covariant electrodynamics this law can also be obtained from the compactly ex-
pressed force density, in terms of the field strength tensor,

f ν = Fν
αJα, (1.8)

where Jα is the four-current (source of the nonhomogeneous Maxwell equations). Specifically
the Lorentz force density is the spatial components of this force density f i = JρF i

ρ = ρ~E+ ~J×~B.
There are also several conservation laws, such as Poynting’s theorem,

−
∂U
∂t

= ~∇ · ~S + ~J · ~E, (1.9)

where ~S = 1
µ0
~E× ~B is the Poynting vector and U = 1

2 (E2 +B2) is the energy density of the fields.
This law and all conservation laws of electrodynamics have a compact covariant form. In the
case of Poynting’s theorem the law is expressed as the divergence of the energy-momentum
tensor T µν,

T µν =
1
µ0

[FµρFν
ρ −

1
4
ηµνFρσFρσ]. (1.10)

This energy-momentum tensor describes the flow of energy and momentum of the electric and
magnetic fields. Its components include the energy density of fields U, the Poynting vector ~S
and the Maxwell stress tensor σ ji, first published in [146]. See List of Symbols for details.

From the divergence of this we have the on-shell conservation of energy and momentum
laws for electrodynamics theory,

∂µT µν =
1
µ0

[(∂µFµρ)Fν
ρ +

1
2

Fσρ(∂ρFσν + ∂σFνρ + ∂νFρσ)] = 0, (1.11)

where by on-shell we mean that using the complete set of Maxwell’s equations (all 8) and
setting them equal to zero, then ∂µT µν = 0. If instead we replace ∂µFµρ = Jρ with the four
current, as we will soon see, we recover the Lorentz force density.

Specifically, Poynting’s theorem (1.9) is recovered from the time component ∂µT µ1 = 0.
Poynting’s theorem is just one of fifteen conservation laws of the electromagnetic fields. Four
are included in ∂µT µν, the three spatial components being the conservation of the Maxwell
stress tensor,

∂µT µi = −
1
c2

∂~S
∂t

+ ∂ jσ
ji = 0. (1.12)

The remaining eleven conserved tensors can be expressed in terms of the field strength
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tensor arranged as the energy-momentum tensor (1.10). Six are compactly expressed in terms
of the divergence of the angular momentum tensor Mραβ [112],

Mραβ = xαT ρβ − xβT ρα, (1.13)

where ∂ρMραβ has 6 independent components (due to the antisymmetry in [αβ]) represent-
ing the 6 angular momentum conservation laws of the electromagnetic fields. This tensor is
conserved on-shell using the symmetry property of the energy-momentum tensor ∂ρMραβ =

δαρT ρβ − δ
β
ρT ρα = 0. Four laws associated to the conformal tensor Cρα [26],

Cρα = T ρβ(2xβxα − δαβ xλxλ), (1.14)

where ∂ρCρα has 4 independent components associated to the 4 conformal conservation laws.
This tensor is conserved on-shell as a consequence of the traceless energy-momentum tensor
∂ρCρα = 2T β

β xα + 2T ρβ(xβδαρ − δ
α
β xρ) = 0. The final (fifteenth) law is associated to the dilatation

tensor Dρ [26],

Dρ = T ρβxβ, (1.15)

where ∂ρDρ has one component associated to the dilatation conservation law, which is also
conserved on-shell as a consequence of the traceless energy-momentum tensor ∂ρDρ = T ρ

ρ = 0.
Altogether we have Maxwell’s equations, the Lorentz force law, and the 15 conservation

laws of electrodynamic theory. The Lorentz force law can be derived from the divergence
of the energy-momentum tensor using the nonhomogenous equations of motion (four current
on-shell condition),

f ν = ∂µT µν = Fν
αJα. (1.16)

Since the Lorentz force density is the spatial components of this force density it is therefore
the spatial components of the divergence of the energy-momentum tensor after using the non-
homogenous on-shell condition f i = ∂µT µi = JρF i

ρ = ρ~E + ~J × ~B. Therefore, the equations
electrodynamic theory can be compactly obtained from Maxwell’s equations and the conserva-
tion laws alone. These equations, which are elegantly and compactly related by Noether’s first
theorem, are the focus of Section 1.3.3.

1.1.3 Potential formulation

To finish our summary of electrodynamics we turn to the potential formulation. Recall the
electric and magnetic fields can be expressed in terms of potentials,
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~E = −~∇φ −
∂~A
∂t
, (1.17)

~B = ~∇ × ~A, (1.18)

where ~A is the magnetic vector potential ~A =< Ax, Ay, Az > and φ is the electric scalar potential.
Together these potentials are expressed as the four potential Aµ =< 1

cφ, Ax, Ay, Az >. The field
strength tensor we introduced in the previous sections can be compactly expressed using the
four potential as,

Fρσ = ∂ρAσ − ∂σAρ, (1.19)

where Fρσ is antisymmetric in [ρσ] thus Fρσ = −Fσρ. The complete set of equations for
electrodynamic theory can be compactly expressed in terms of this field strength tensor. An
invariance property of this F is therefore shared by the complete set of equations. The in-
variance property at the heart of gauge theory, gauge invariance, is central to the motivations
and arguments found throughout contemporary physics, this thesis included. In the case of
electrodynamics, Fρσ is invariant under the gauge transformation,

Aµ → Aµ + ∂µχ, (1.20)

where χ is the scalar gauge parameter. Thus the complete set of equations defining electro-
dynamics theory are also gauge invariant under (1.20). Gauge invariance is a property that
allows for a freedom in potential of a gauge theory that can be exploited for practical purposes
such as solving the wave equation in electrodynamics, where we expand the nonhomogenous
Maxwell’s equations in terms of the field strength tensor,

∂ρ∂
ρAσ − ∂σ∂ρAρ = µ0Jσ, (1.21)

and use the Lorenz gauge fixing to eliminate the second term,

∂ρAρ =
1
c2

∂φ

∂t
+ ~∇ · ~A = 0, (1.22)

leaving only the wave equation �Aσ = µ0Jσ. In gauge theory these potentials (often referred
to simply as fields) are the dependent variables of the Lagrangian density used to write down
the action of a given field theory. We will focus on analytical mechanics and Noether’s first
theorem in the following section. For now, we will simply state the Lagrangian density of
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electrodynamics,

L = −
1

4µ0
FµνFµν. (1.23)

Substituting this into the Euler-Lagrange equation yields the nonhomogeneous half of Maxwell’s
equations (see [9] for discussion of the other half analytically). This Lagrangian, built from
Fµν, is also exactly gauge invariant.

1.2 Complete gauge invariance

The Lagrangian density, equations of motion and conservation laws of electrodynamics are all
independently and exactly gauge invariant. This is a special property of a field theory which
we refer to as complete gauge invariance throughout the thesis, as described in [14].

Complete gauge invariance is a desired property if one is to use gauge fixing/ impose a
gauge transformation on one of the equations of a theory. This way gauge fixing, for example,
the equation of motion will not change the Lagrangian density, energy-momentum tensor, etc.
The property of complete gauge invariance is not one shared by all field theories which are
considered to be gauge invariant. The best example is spin-2 theory [74, 147], where the spin-
2 equation of motion (linearized Einstein’s field equations),

Eµν =
1
2

[−ηµν�h + �hµν + ∂µ∂νh − ∂λ∂νhµλ − ∂λ∂µhνλ + ηµν∂α∂βhαβ], (1.24)

is invariant under the spin-2 (linearized diffeomorphisms) gauge transformation,

hµν → hµν + ∂µξν + ∂νξµ. (1.25)

However, the spin-2 (Fierz-Pauli) action,

LFP =
1
4

[∂αhββ∂
αhγγ − ∂αhβγ∂αhβγ + 2∂αhβγ∂γhβα − 2∂αhββ∂

γhγα], (1.26)

is not exactly invariant under this transformation, it is only invariant up to a boundary term
[14]. Common practice is to consider any action which is invariant up to a boundary term as
a gauge invariant theory; this is because by using Stokes’ theorem one discards any boundary
terms and these boundary terms do not impact the Euler-Lagrange equations of motion. The
common view of a gauge invariant theory is therefore one which has a gauge invariant equation
of motion. This view is problematic if we are to consider complete sets of equations for a given
model.

In spin-2, the energy-momentum tensor is problematic, discussed at length in [8]. For
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starters, there are numerous published expressions in the literature for T µν of spin-2 [28], none
of which are gauge invariant [140], thus it is not clear which should be considered the fun-
damental and unique expression to define the conservation laws of the theory. Magnano and
Sokolowski [140] go so far as to say:

“Applying a physically undeniable condition that the energy–momentum tensor

should have the same gauge invariance as the field equations, we also conclude

that this approach to gravity does not furnish a physically acceptable notion of

gravitational energy density.”

Others claim that in spin-2 Fierz-Pauli theory, an energy-momentum tensor is required for
certain calculations [163], for which there is still no consensus on which to choose. Regard-
less of interpretation, the fact remains that the numerous energy-momentum tensors for spin-2
Fierz-Pauli theory are all gauge dependent (see [8] for discussion of these expressions). There-
fore, whichever we choose, values of energy-momentum and conservation laws of the field
depend on the choice of gauge. Common practice in the literature is to solve the spin-2 equa-
tion of motion by selecting the de Donder gauge ∂µhµν = 0 [47], similar to using the Lorenz
gauge to solve for wave equation in electrodynamics [112]. However, if we do this in spin-2
we change our Lagrangian density and conservation laws, since they are not gauge invariant.
The Lagrangian case one can argue to neglect the boundary term, but the energy-momentum
tensor has no such freedom. This fundamental difference with electrodynamics (outlined in the
figure below),

Expression Symbol Electrodynamics Spin-2
Lagrangian L X X

Equation of Motion EA X X

Energy-momentum tensor T µν X X

Angular momentum tensor Mλµν X X

Figure 1.1: A comparison of the gauge invariance of different equations in electrodynamic and
spin-2 theory. A Xindicates gauge invariance, an X indicates gauge dependence. Complete
gauge invariance requires a Xfor each quantity of the theory.

is particularly troubling in the context of Noether’s first theorem, as we will see in the next
section. The lack of a gauge invariant energy-momentum tensor in spin-2 causes problems
with uniqueness, Noether’s first theorem, gauge fixing and physical interpretation, to name
a few. The convention of calling electrodynamics and spin-2 “gauge invariant” ignores un-
avoidable differences in the two theories; the convention to call a theory gauge invariant just
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because the equation of motion is exactly invariant is a weaker definition of gauge invariance
than we consider in this thesis. For this reason, we refer to complete gauge invariance as in
[14] to emphasize the stronger form of the definition of gauge invariance found in classical
electrodynamic theory.

1.3 Noether’s first theorem

1.3.1 Analytical mechanics

The result in the literature most central to this thesis is Noether’s first theorem [159, 124, 87],
and as we argue, the most fundamental result in mathematical physics. Most have heard of
Noether’s first theorem (commonly referred to as just Noether’s theorem) as something which
relates symmetries to conservation laws. In this section we will give the technical reason behind
these general statements. To begin, we turn to the 1788 results of Lagrange in Mécanique
Analytique [128]. Starting from the action functional (for example in electrodynamics),

S [Aµ(xα)] =

∫ ∫ ∫ ∫
RX

Ldx1dx2dx3dx4, (1.27)

one can derive the Euler-Lagrange equation of motion by using integration by parts to isolate
the part proportional to the dependent variable δAµ. Going forward we will abbreviate these
integrals with (

∫
RX

=
∫
· · ·

∫
RX

), (dX = dx1dx2 . . . dxn), where Rx represents the boundary of the
integrals (region of integration). The remaining piece (under a total derivative) is the so-called
boundary term (converted to a boundary integral using Stokes’ theorem),

δS =

∫
RX

[(
∂L

∂Aν

− ∂ρ
∂L

∂(∂ρAν)

)
δAν + ∂ρ

(
∂L

∂(∂ρAν)
δAν

)]
dX. (1.28)

The condition to minimize the action after neglecting the boundary term is simply the
Euler-Lagrange equation,

∂L

∂Aν

− ∂ρ
∂L

∂(∂ρAν)
= 0. (1.29)

This equation of motion is just one equation that is part of a complete theory such as electro-
dynamics, as discussed in the previous section. Therefore, from the Lagrange perspective the
analytical approach is insufficient in deriving equations such as the conservation laws of the
theory. This gap is where Noether’s first theorem comes in so powerfully. To some degree the
boundary term in the variation of the action we so readily discard is what she showed plays the
role of conservation laws of the theory; but it is not so trivial.
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1.3.2 Noether’s first theorem

Noether placed a very specific condition on the difference in the action in transformed depen-
dent and independent variables, such that the action remains invariant under the simultaneous
variations of the independent variables (e.g. coordinates) and dependent variables (e.g. fields)
of the action,

∆S = S [A∗µ(x∗α)] − S [Aµ(xα)]. (1.30)

The basic idea is that for the variation we will consider the linear part of this change to
determine δS by Taylor expanding each of the primed variables about the non-primed variables
and keeping linear in ε. Expanding each and keeping linear terms we are left with the variation
[87],

δS =

∫
RX

[
∂L

∂xβ
δxβ +

∂L

∂Aν

∂βAνδxβ +
∂L

∂Aν

¯δAν

+
∂L

∂(∂ρAν)
∂ρ ¯δAν +

∂L

∂(∂ρAν)
[∂ρ∂βAν]δxβ +L∂βδxβ]dX, (1.31)

where the bar variations have an essential distinction from the non-bar variations. The bar
variations are the difference in transformed and non-transformed fields in the non-transformed
coordinates ¯δAν = A∗ν(xα) − Aν(xα). The non-bar variations are the difference in transformed
fields in transformed coordinates with the non-transformed fields in the non-transformed coor-
diantes δAν = A∗ν(x∗α) − Aν(xα). These two definitions are related by,

¯δAν = δAν − ∂
βAνδxβ. (1.32)

From the variation (1.31) we proceed as in the case of the Lagrange approach, combining
terms proportional to δAµ and the rest under a total divergence. Only this time we keep the
total divergence yielding,

δS =

∫
RX

[
(
∂L

∂Aν

− ∂ρ
∂L

∂(∂ρAν)

)
¯δAν + ∂ρ

(
∂L

∂(∂ρAν)
¯δAν + ηρβLδxβ

)
]dX. (1.33)

This is the identity derived from Noether’s first theorem in the case of electrodynamics. It is
an identity that relates the Euler-Lagrange equation of motion to the conservation laws of the
theory.

We note that this derivation is fairly non-trivial and highly recommend following the book
of Gelfand and Fomin [87] and Noether’s paper [159] if one wishes to derive it for themselves.
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In the physics literature, famous books such as Peskin and Shroeder [165] in their equation
2.11, present short-cut approaches based on obtaining a known result that do not follow the
proper mathematical derivation found in e.g. Noether [159] or Gelfand and Fomin [87]. This
approach is common in many physics textbooks [114, 197, 182] and articles [33, 46, 111, 161]
that wish to apply Noether’s first theorem. These approaches fail to obtain the crucial Equa-
tion (1.32) which is required for proper application of Noether’s first theorem, and misses the
final term in (1.33). They then have a limited set of transformations that lead to the canoni-
cal Noether energy-momentum tensor, which is not the physical energy-momentum tensor for
most theories. In essence these methods rely on the Lagrange style action condition [165]
without following the condition imposed by Noether (1.30), which is why terms are missing
compared to the Noether approach. These approaches have a long history which likely stem
from a late translation of Noether’s paper into English [160]. Another potential root of this
problem has been asserted the use of this so-called ”Noether” result is done without ever actu-
ally reading her paper, as noted by Kastrup in 1984 [116]:

“I suspect -perhaps unfairly so- that even in recent years only a few of those au-

thors who quote Noether’s work or refer to her theorem had a chance to see or

study the original publication.”

Lanczos put this more bluntly in his article “Emmy Noether and calculus of variations” as
[130]:

“Every theoretical physicist is familiar with the expression ”Noether’s theorem”

or ”Noether’s principle,” although none of them actually reads Emmy Noether’s

original paper.”

In the words of leading Noether historian and mathematican Yvette Kosmann-Schwarzbach
[125] “Therefore, caveat lector! It is better to read the original than to rely on second-hand

accounts.”. This issue — with ”proper” vs. ”improper” derivations of Noether’s first theo-
rem, is not one which we explore in this thesis. We note however that throughout Kosmann-
Schwarzbach’s work she continually makes note of the past omission of Noether in the physics
community, statements such as “These remarks in fact suggest that, even though the subject of

Noether’s article had been central to Wigner’s preoccupations since the 1920s, he had never

read the original paper” [124] can be found throughout her book.

Chapter 2 is heavily dedicated to a related problem however, the improvement of the canon-
ical Noether energy-momentum tensor to obtain desired physical results (See Section 1.5.1 for
our discussion of this problem) — however it may very well be that this problem originates
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from incomplete derivations of Noether’s first theorem found throughout the physics litera-
ture. We note that there are physics texts, such as [39, 183, 137], that have more of a proper
Noether’s theorem and variational symmetry derivation — however such presentation is less
common in the literature. No source is as clear or detailed in this derivation as Gelfand and
Fomin [87].

1.3.3 Noether’s first theorem and electrodynamics

In the case of electrodynamics, we can obtain the equations of motion, all 15 conservation
laws, and the Lorentz force from this identity. In other words, the complete set of equations for
the theory are obtained from one compact identity,

δS =

∫
RX

[
(
∂ρFρν

)
¯δAν + ∂ρ

(
T ρβaβ + Mραβωαβ + Cραξα + DρS

)
]dX, (1.34)

where the parameters aβ, ωαβ, ξα, S are the 15 parameters associated to the conformal group,
presented in (2.20). The conserved tensors are exactly those presented in Section 1.1.2. These
fundamental equations to the theory once seemingly disconnected results that must be pieced
together to complete the set of equations of the theory are elegantly intertwined by Noether’s
first theorem. This gives the possibility for a concrete procedure for deriving the complete set
of equations of a theory provided the Lagrangian density is known; it is hard to imagine a more
powerful statement in mathematical physics.

1.3.4 The Bessel-Hagen method

A contemporary of Noether, Erich Bessel-Hagen, solved this problem in 1921 by consider-
ing the complete set of variational symmetries of electrodynamics (coordinate and gauge) to
derive all 15 physical conservation laws [26]. This paper was known in the mathematics lit-
erature for other reasons (non-exact symmetries and Noether’s theorem), but has been almost
complete ignored in the physics literature. This led to physicists believing that the canonical
Noether expression must be ad-hoc improved using, for example, the superpotential method,
and Belinfante procedure [23]. One possible explanation is that proper application using the
Bessel-Hagen method was not translated into English until 2006 [108]. Proper application of
Noether’s first theorem, its converse, the superpotentials and improvement problem, and the
Bessel-Hagen method applied to several examples are some of the major topics of Chapter 2,
so we will not go into more details here.

We will now briefly summarize the Bessel-Hagen application of Noether’s first theorem to
electrodynamics. Bessel-Hagen showed by considering both coordinate and gauge symmetries
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of the action, the proper variational symmetry of the fields δĀµ is,

¯δAα = −Fν
αδxν. (1.35)

Substituting this ¯δAα into (1.33) we obtain the following identity,

δS =

∫
RX

[
(
∂L

∂Aν

− ∂ρ
∂L

∂(∂ρAν)

)
¯δAν + ∂ρ

(
T ρβδxβ

)
]dX. (1.36)

We now require coordinate symmetries of the action δxµ. In 1909-1910, Bateman [17, 18]
determined that electrodynamics was invariant under the 15 parameter conformal group. These
15 parameters include the 10 parameter Poincare group (6 of which form the Lorentz group)
associated to the energy-momentum and angular momentum in the Noether picture. The 5
remaining parameters are associated to the conformal and dilatation tensors.

In [174] a self-contained derivation of the 15 parameter conformal symmetries of electro-
dynamics is presented. More commonly the conformal Killing’s equation is solved for the
Minkowski metric isometries to determine these δxµ as,

δxα = aα + ωαβxβ + S xα + 2ξνxαxν − ξαxνxν, (1.37)

where aµ is associated to the 4 parameter Poincare translation, and ωαβ is associated to the 6
parameter Lorentz group. The remaining 5 parameters S and ξν are associated to the remainder
of the 15 parameter conformal group. Substituting these δxµ into (1.36) yields the complete
set, which is exactly equation (1.34) for electrodynamics if we factor out the parameters in
the conformal transformations. We have all 15 conservation laws of electrodynamics directly
derived from Noether’s first theorem. From ∂µT µν we can use on-shell conditions to obtain
the Lorentz force law. Therefore, Noether’s first theorem gives us a concrete procedure for
deriving the complete set of equations of electrodynamic theory given only the Lagrangian
density of the theory.

1.3.5 The canonical Noether energy-momentum tensor

For these reasons Noether’s first theorem receives great praise in the literature and scientific
community as “one of the most amazing and useful theorems in physics” [101]. However,
closer examination shows that conventional presentation of the “canonical Noether energy-
momentum tensor” T ρβ

C is not working to derive the physical conservation laws based on the
physical T ρβ in most cases such as electrodynamics [76]. In the case of electrodynamics that
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canonical Noether tensor is,

T ρβ
C = −

∂L

∂(∂ρAν)
∂βAν + ηρβL = Fρν∂βAν −

1
4
ηρβFµνFµν, (1.38)

which is not symmetric, not gauge invariant, and not tracefree. Although we note that the
canonical “Noether” expression has nothing to do with Noether’s results, this was named after
her due to the ability to derive it from her theorem. The origin of this problem is applying only
the 4-parameter Poincare translation to Noether’s first theorem instead of the complete set of
variational symmetries of the action. We discuss this canonical tensor at length in Chapter 2.

1.3.6 Noether’s first theorem overview

For the reasons given in the previous section, given Noether’s first theorem and the Lagrangian
density, all subsequent equations of motion and conservation laws are implicit information to
the Lagrangian density:

Figure 1.2: A simple schematic describing the application of Noether’s theorem to derive both
equations of motion and conservation laws from a single Lagrangian density.

It is for this reason that the Lagrangian density (action) represents the full set of equations
and that Noether’s first theorem is the key to unlocking this set. For example in the case of
electrodynamics we have:
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Figure 1.3: A simple schematic describing the application of Noether’s theorem to derive both
equations of motion and conservation laws from a single Lagrangian density in the case of
electrodynamic theory.

The motivations, goals, and outcomes of this thesis center around Noether’s first theorem.
It is only by use of Noether’s first theorem that we can define the axiomatic approaches we take
in this thesis.

1.4 An Axiomatic Approach to Field Theory

Our thesis is guided by our goal to realize an axiomatic approach to physics which we will
define in this section. Before doing so we wish to be specific about what is meant by an
axiomatic approach to physics, because the term ”axiom” takes on different meanings in dif-
ferent disciplines, so we do not wish to conflate them. The axiomatic approach to physics is
loosely defined as writing down a set of rules (physical requirements) that uniquely specify
some physical law(s) — following some procedure defined by these axioms one can recover
some physical theory or theories. We take this definition and when we refer to “axiom” we
synonymously are referring to “physical requirements”.

To a mathematician/ logicist, an axiom is a mathematical statement (relationship) that is
absolutely true within a system of logic. Even for this strict definition there is debate as to
whether or not such an axiom has any fundamentally significant meaning [138]. Therefore
physics, an experimental science, cannot hold such a strict definition of an axiom as would
be considered in the mathematics community. To these communities, what we are proposing
would be postulates or rules (physical requirements) based on a large body of evidence rather
than some required absolute truth. However, the nature of our approach (whether misnamed
or otherwise) is known within the physics community as the axiomatic approach to physics,
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therefore we will continue with our terminology regardless of any objections that may exist
outside of the field.

1.4.1 Past axiomatic approaches to physics

In the 1950s-1960s the terminology axiomatic approach to physics was popularized. The pop-
ularizing of this terminology came through quantum field theory where the axiomatic approach
to quantum field theory, initiated by Wightman and the Garding-Wightman axioms [193]. Fur-
thermore, the Haag-Kastler axioms [99] amongst others continued this approach of axiomati-
cally formulating quantum field theory. A major motivation of these works was different than
ours, they were motivating by isolating a set of minimum axioms to help with understanding
some consistency issues in quantum field theory. Groups such as Gergely Székely’s (see [185])
have considered axiomatization of relativity theory. The works on axiomatization of theories,
as we will discuss, are completed using quite different approaches than we take in this thesis.
However, the premise taken by these pioneers is similar to that which we are taking. First,
important desired properties of quantum field theories are identified and given the status of a
fundamental axiom. Second, these axioms must be translated into recovering the mathematical
model describing the physical phenomena.

Authors have recently taken the axiomatic approach to physics to areas such as quantum
mechanics [143] where axioms (physical requirements) are listed which uniquely specify quan-
tum mechanics as a single model out of a universal set of all possible probabilistic models. This
approach is similar, but has a key distinction, to our own. Indeed, we consider the universal set
of all possible classical field theories within our domain and hope to recover physical model(s)
as the intersection of the subsets of the axiomatic conditions. While in [143] the goal is in-
deed to determine the model at the intersection of the subsets, their methods recover just a
single physical model. This is similar to the axiomatic approaches to quantum field theory that
prescribe axioms to recover a single model:
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Figure 1.4: Conventional axiomatic approaches in physics, defining a set of physical require-
ments such that one unique physical model (theory) can be obtained from these axioms.

In field theories such as electrodynamics similar one-to-one considerations can be found
on the arXiv [98]. The primary criticism with these approaches is that they have a one to one
correspondence between a set of axioms and a set of physical equations. Therefore it is not
clear whether the axioms provide any additional value in such cases, or if the content of the
theory has been re-expressed in other terms. Basically this is a ”circular” criticism of axiomatic
approaches that have one-to-one correspondence between axioms and the theory:

Figure 1.5: Criticism that one-to-one axiomatic approaches are circular (axioms just re-write
the content of the theory in other terms).

In this thesis we wish to avoid such possible criticisms of our axiomatic approach by strictly
requiring one-to-many correspondence from the axioms to a set of physical theories which
follow from a common set of axioms. However, we note that we do not personally criticize
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such approaches in the past: formulating a set of axioms corresponding to specific field theories
can been very insightful into making physical requirements of a theory more apparent and
even lead into new insight not realized by the mathematical description of the theory [58].
Regardless, we take an altogether different approach than the standard literature and the goals,
problems addressed and results of this thesis for the most part differ from the scope of the
standard literature on axiomatic approaches to physics.

1.4.2 An axiomatic approach to field theory

We now turn to our axiomatic approach to field theory. Our goal is to consider axioms (some
procedure based on physical requirements which will constrain possible physical models)
which can be used to obtain numerous models from a common set of axioms:

Figure 1.6: One of the proposed goals of the thesis, to define a procedure which yields multiple
distinct physical models from a common set of axioms.

Given electrodynamics and Noether’s first theorem we have an idealistic view of what a
physical field theory can be. If we have the set of Lagrangian densities for our fundamental
field theories, we can apply Noether’s first theorem to derive the complete set of equations for
each theory:
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Figure 1.7: The complete set of physical equations can be considered implicit information to
the Lagrangian density if Noether’s first theorem is concretely working.

This idealistic view suggests that the complete sets of equations are implicit information to
the set of Lagrangian densities. What we wish to push further is the possibility to write down
some set of axioms such that the set of Lagrangian densities can be obtained from a procedure
based on a common set of axioms:

Figure 1.8: The idea is that some procedure, based on a common set of axioms, will yield
multiple different Lagrangian densities which correspond to known physical models. This
would render the set of Lagrangian densities implicit information to the set of axioms.

This idealistic view would render the set of Lagrangian densities implicit information to the
set of axioms, allowing for the axioms to contain all necessary information for obtaining the
complete sets of equations for the theories associated to the fundamental Lagrangian densities.
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In some sense our idealistic view is in line with Dirac’s view on the future of theoretical physics
[64], which we share in its entirety in the epigraph of this thesis:

“The theoretical worker in the future will therefore have to proceed in an indirect

way. The most powerful method of advance that can be suggested at present is to

employ all the resources of pure mathematics in attempts to perfect and generalise

the mathematical formulation that forms the existing basis of theoretical physics,

and after each success in this direction, to try to interpret the new mathematical

features in terms of physical entities (by a process like Eddington’s Principle of

Identification).”

We share this view of Dirac, and only differ on the point that in this thesis we do not propose
new mathematical features in terms of physical entities, rather we wish recover existing well
established physical models from our procedure. There is the possibility however, that our
approach can yield unforeseen models, that may some day be linked to a physical theory,
completing the view of Dirac. One of the main goals of this thesis is to see how far our
idealistic view can be realized, with its implementation of obtaining Lagrangian densities from
procedure based on physical requirements being the focus of Chapter 4 [14, 9, 11].

1.5 Problems preventing implementation of our axiomatic
approach

This idealistic view has some problems which, at present day, prevent it from being applicable
in all branches of physics. For example, general relativity is invariant under an infinite group
of transformations which make application of Noether’s first theorem problematic; the finite
set of global conservation laws in the case of electrodynamics are due to the universality of
Minkowski spacetime. For this reason, our focus in this thesis is on special relativistic field
theory. As we will see, even for special relativistic field theory there are several roadblocks
preventing the realization of the ideal view. Throughout all 3 chapters of the thesis, we provide
solutions to these existing problems. The problems and motivation to solve them will form
the remainder of this introduction. Note that application of general relativity to Noether’s
second theorem is possible (infinite groups of transformations), and using this identity one can
derive diffeomorphism invariance of the theory [119]. General relativity is the topic of the
final section of Noether’s paper, however most of our discussion of GR will be through the
linearized version of the theory (spin-2) which is a special relativistic field theory.

Noether’s second theorem, while not the focus of this thesis, can be applied in the spe-
cial relativistic gauge theories we consider to derive the gauge symmetries we require in the
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Bessel-Hagen approach. For this reason, if one hopes to derive the coordinate and field (gauge)
symmetries of a given theory, Killing’s equation and Noether’s second theorem can be used for
systematically obtaining each, respectively. We will now turn to problems with the proposed
axiomatic approach in the literature which we propose solutions to in this thesis. Each of the
three body chapters of the thesis correspond to the three following problems, respectively.

1.5.1 Problem 1: Noether’s first theorem and the improvement problem

The first problem is that the aforementioned canonical Noether energy-momentum tensor de-
rived from Noether’s first theorem using the 4-parameter Poincare translation does not corre-
spond to the accepted physical energy-momentum tensor in most standard field theories [76].
The physical energy-momentum tensor, as defined by Blashcke et al. [29] is the unique, on-
shell conserved, symmetries, gauge invariant and trace-free energy-momentum tensor associ-
ated to a particular field theory. This definition is motivated by theories such as electrody-
namics and Yang-Mills theory who energy-momentum tensor simultaneously has all of these
properties.

Since the canonical Noether tensor does not correspond to this physical energy-momentum
tensor, the impression is given that one of physics most celebrated results, Noether’s first the-
orem, is in some sense not working. To fix this problem, various ad-hoc “improvements” have
been proposed throughout the years that add terms to the canonical expression out of nowhere
to obtain the desired physical expression. Convention is to name these ad-hoc additions “im-
provements”, since they “improve” the canonical Noether energy-momentum tensor. However,
the improvements have nothing to do with Noether’s theorems, and even the canonical tensor
itself was not introduced by Noether. As noted by Forger and Romer in a leading review on
energy-momentum tensors [76]:

“There is a long history of attempts to cure these diseases and arrive at the physi-

cally correct energy-momentum tensor Tµν by adding judiciously chosen “improve-

ment” terms to Θµν [T µν
C in our notation] (p. 307),”

they then go on to discuss the flaw of the improvement methods,

“However, all these methods of defining improved energy-momentum tensors are

largely “ad hoc” prescriptions focused on special models of field theory, often

geared to the needs of quantum field theory and ungeometric in spirit.”

Similar statements regarding the frustration this places on those who wish to study Noether’s
theorem was stated by Munoz [155],
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“Few things are more frustrating to students than to be led through a long, formal

argument only to be told at the end that the result obtained is incorrect and must

somehow be fixed by an auxiliary procedure. This is particularly harmful if the

formal argument involved turns out to be one of the mathematical cornerstones

of modern physics . . . the students will be left with the paradoxical feeling that a

supposedly very general theorem produces unacceptable answers when applied to

certain specific situations,”

he also discusses the common impression this leaves on one who studies Noether’s first theorem
applied to field theories,

“they walk away with the impression that Noether’s theorem somehow fails when

spacetime symmetries are involved.”

The solution to, and history of this problem is the focus of Chapter 2 so we will not go
into more detail here: the Bessel-Hagen methodology fixes the issue for all completely gauge
invariant special relativistic field theories we considered. For our purpose with the axiomatic
approach, and more broadly gauge theory in general, this is an essential step in realizing the
idealistic goals. For the complete set of equations in a given theory to be considered implicit in-
formation to the Lagrangian density, the procedure which realizes this information (Noether’s
first theorem) must be able to obtain the complete set of equations without any ad-hoc ma-
nipulations required. The Bessel-Hagen method outlined in Chapter 2 provides exactly this
procedure; Noether’s first theorem is working just fine to derive complete sets of equations
without the need for improvements. We extend this method to several theories beyond elec-
trodynamics: Yang-Mills theory, linearized Gauss-Bonnet gravity, Kalb-Ramond and totally
antisymmetric fields. Only the Yang-Mills variational symmetry was “known”,

δ̄Aa
µ = −Fa

µνδxν, (1.39)

but it was conjected by Jackiw in [110], without deriving it or connecting it to Bessel-Hagen
in any way. The variational symmetry associated to linearized Gauss-Bonnet gravity,

δh̄ρσ = −2Γνρσδxν, (1.40)

is one of our main results [14], showing that for a gravitational model the field symmetries are
proportional to the Christoffel symbol, analogous to the proportional to field strength results in
the other theories we consider.

Our results in Chapter 2 are strong but are only for completely gauge invariant theories. In
the case of theories with only a gauge invariant equation of motion such as spin-2, we have
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not yet applied these methods, however this application is the subject of future work. Spin-2 is
discussed through the thesis and is the focus of [8]. We did not apply it in this thesis because
there are several existing barriers to its application. First it requires the non-exact symmetry
method of Bessel-Hagen, which is more complicated than the exact symmetries we considered.
The main barrier is the non-uniqueness of the energy-momentum tensor; several expressions
exist in the published literature [28], none of which are gauge invariant [140], therefore it is
not clear which should be used to write down conservation laws for the theory.

The spin-2 non-uniqueness problem is central to the Padmanabhan-Deser debate [163],
where a unique spin-2 energy-momentum tensor is required to complete a supposed derivation
of general relativity from spin-2 theory. Padmanabhan showed that the conventional choice
does not in fact work to derive Einstein’s field equations or the Einstein-Hilbert action; only yet
another expression can possibly obtain Einstein’s field equations, and not the Einstein-Hilbert
action. Therefore, conclusions of the fundamental spin-2 to GR results depend on which T µν

is selected, and perhaps none of them work to recover the full set of Einstein’s field equations
and the Einstein-Hilbert action.

Others argue that energy-momentum tensors in spin-2 are not physical to begin with [65],
but we will not get into this philosophical debate at this time. Regardless, calculations requiring
a unique T µν, and conservation laws of the theory, simply have no sense until a unique T µν can
be determined and agreed upon. See [8] in Chapter 3 for our extensive contribution in this
direction.

1.5.2 Problem 2: Multiple definitions of the energy-momentum tensor

Another main problem with realizing the idealistic view is that multiple methods for deriv-
ing energy-momentum tensors exist in the literature [75, 29, 23, 45]. Most notably, they in-
clude the canonical Noether method, the Hilbert (metric) method, the Fock method [75], the
Bessel-Hagen (proper) Noether method [26] discussed in Chapter 2, and various improvement
methods such as [23, 45]. This practice is contrary to deriving the equation of motion for a
particular theory, where the Euler-Lagrange equation is uniquely used as the procedure to do
so. The focus of Chapter 3 is to clarify the relationship amongst these different definitions
and move towards a unique definition that can end ambiguity problems and provide a concrete
procedure for realizing the ideal goals.

Significant work in this direction has been published regarding the relationship between
two of these definitions: the Hilbert (metric) and canonical-Noether energy-momentum tensors
[176, 133, 95, 170]. These articles in various ways come to the same conclusion, that the
Hilbert (metric) tensor, and the Belinfante improved canonical-Noether tensor are proportional
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to each other (and equivalent on-shell); [170] gives a proof in the case of first order vector field
theories. In [8] we prove that this association is off-shell not unique in the spin-2 case, in other
words, that there are infinitely many off-shell relations, only one of which is the Hilbert tensor.
The Hilbert (metric) energy-momentum tensor is familiarly known as the source of Einstein’s
field equations. This definition, involves variations of a curved space Lagrangian with respect
to the metric tensor,

Tγρ =
2
√
−g

δL

δgγρ
. (1.41)

A slight variation of this tensor is used to derive the energy-momentum tensor for a special
relativistic field theory, known as the Hilbert (metric) energy-momentum tensor in Minkowski
spacetime [29]. The Hilbert energy-momentum tensor in Minkowski spacetime is derived by
writing the action in ‘curved space’ by replacing all ordinary derivatives with covariant deriva-
tives ∂ → ∇, replacing all Minkowski metrics with general metrics η → g, and introducing
the Jacobian term

√
−g. The curved space Lagrangian is then varied with respect to the metric

tensor and “returned” to Minkowski spacetime according to,

T γρ
H =

2
√
−g

δL

δgγρ

∣∣∣∣∣∣
g=η

. (1.42)

In many trivial cases such as electrodynamics this yields the unique physical energy-momentum
tensor of the theory [29]. This has been one of the root causes for the conventional wisdom
that the various methods are in some sense generally equivalent. One of our main contribu-
tions in this thesis is a formal disproof of this notion in [13] “Noether and Hilbert (metric)
energy-momentum tensors are not, in general, equivalent”, published in Nuclear Physics B.
In this article we prove that the Noether energy-momentum tensor derived directly from the
Bessel-Hagen method (the physical energy-momentum tensor) is not always the same as the
Hilbert (metric) energy-momentum tensor in Minkowski spacetime,

T γρ
H , T γρ

N . (1.43)

The counterexample we used for this disproof is the linearized Gauss-Bonnet gravity model
[14, 9], because it has a well-established unique energy-momentum tensor [156], and has an
action with second order derivatives of a second rank tensor potential. The problem with past
claims of equivalence were that only simple actions with first order derivatives of first rank
tensor (vector) potentials were considered. In more nontrivial cases we show in [13] that the
covariant derivatives of higher rank potentials create additional terms which diverge the result
from the Noether method. See [13] for our extensive discussion on this topic.
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The Noether/ improvement and Hilbert methods are, as noted by Blashcke et al., “con-

ceptually and mathematically quite different”, so while our result questions the conventional
wisdom, it is not really a surprise. The published literature in this direction [176, 133, 95, 170]
focused on the question of relating the canonical Noether and Hilbert energy-momentum ten-
sors, whereas in [13] we focus on the physical energy-momentum tensor obtained directly
from Noether’s first theorem without the need for any ad-hoc improvement terms. The general
idea of the studies [176, 133, 95, 170] is to compare the canonical Noether, plus improve-
ment terms, to the Hilbert tensor. The general conclusion agreed upon by these authors is that
the Belinfante improvement (symmetrization) procedure is proportional to the Hilbert tensor
in Minkowski spacetime. For example, in the case of electrodynamics the relationship to the
Hilbert tensor is well established,

T µν
H = T µν

C + ∂α(FαµAν) − AνEµ, (1.44)

where the superpotential and on-shell terms are the “improvements” that relate the Hilbert ex-
pression to the canonical Noether expression. The first two terms are the Belinfante result
T µν

B = T µν
C + ∂α(FαµAν), where b[αµ]ν = FαµAν is the Belinfante superpotential. We have inde-

pendently confirmed these results for a vector field as in [170] (not included in the thesis) and
for spin-2 Fierz-Pauli theory in [8],

T ρσ
H = T ρσ

C + ∂γΨ
[ργ]σ
b − 2hσβ Eρβ, (1.45)

where the Belinfante superpotential for spin-2 Fierz-Pauli theory is,

Ψ
[ργ]σ
b =

1
2
ηρσhγα∂αhββ −

1
2
ηγσhρα∂αhββ +

1
2

hγσ∂ρhββ −
1
2

hρσ∂γhββ

+ hρλ∂λhγσ − hγλ∂λhρσ + hσβ∂γhρβ − hσβ∂ρhγβ. (1.46)

See [15] for more discussion of the Belinfante method. The Hilbert and Belinfante tensors
are merely proportional to one another, differing by terms proportional to the equations of mo-
tion in addition to the superpotential term. For this reason, the Belinfante improved tensor is
on-shell equivalent to Hilbert (removing terms proportional to the equations of motion). This
is a much weaker and less desirable trait than proper application of the Bessel-Hagen method,
where the physical energy-momentum tensor is directly obtained off-shell with no improve-
ments needed; there are numerous reasons for the superiority of this method, as discussed
throughout Chapter 2.

The questions still remains as to the status of the many non Bessel-Hagen methods (i.e.
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canonical Noether, Hilbert, Fock, Belinfante, and other improvement methods). In simple
examples they coincide, but is this by coincidence? Or does some meaningful relationship
exist? We explore this question for the simplest model, the Klein-Gordon scalar field, in [10].
Instead of considering the trivial Lagrangian that allows these various methods to coincide, we
consider the general system of Lagrangian which yield the Klein-Gordon equation of motion,
with free coefficients on each term. Solving for the coefficients we prove several results about
the relationship between the different definitions for T µν, such as the divergence of results of
the methods for certain solutions, and the existence of an off-shell traceless expression.

This existence of an off-shell traceless expression is notably stronger than the on-shell trace-
less “new improved” energy-momentum tensor [45] which “improves” the canonical Noether
tensor to an on-shell traceless expression (traceless being a necessary property in e.g. con-
formal field theory). What we emphasize form this contribution is that the many different
“energy-momentum” tensor definitions are motivated by them coinciding in trivial examples,
not by general proofs of equivalence, and that even for scalar fields the relationships can be
broken down. Calling numerous mathematically distinct procedures by the same symbol “T µν”
and name “energy-momentum tensor” we argue is a problematic practice and should be re-
placed by a unique and clear methodology; we argue in favour of the Bessel-Hagen approach
to Noether’s first theorem. Our final contribution to Chapter 3 is the study on the canonical
Noether energy-momentum tensor for spin-2 Fierz-Pauli theory. Due to the conventional wis-
dom that one can add improvements to the canonical tensor in the form of the divergence of a
superpotential and on-shell terms, all of the non-unique spin-2 energy-momentum tensors can
be recovered from improving the canonical Noether expression. In the case of the Landau-
Lifshitz tensor for example,

T µν
LL = T µν

C + ∂αΨ
[µα]ν
LL + hEµν − 2hνβE

µβ, (1.47)

where the superpotential required for this model is,

Ψ
[µα]ν
LL =

1
2

[ηµνh∂αh − ηναh∂µh + ηναh∂βhµβ − ηµνh∂βhαβ + h∂µhνα − h∂αhµν]

+ hνα∂µh − hµν∂αh + hµν∂βhαβ − hνα∂λhµλ + hνβ∂
αhµβ − hνβ∂

µhβα. (1.48)

These relationships give the impression that all of these expressions have some meaning-
ful connection to the Noether methodology (although recall the “canonical Noether energy-
momentum tensor” was not one of Noether’s results, despite being derived from her theorem).

The problem with allowing these ad-hoc “improvements” is that for the ambiguity prob-
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lems, such as the aforementioned Padmanabhan-Deser debate [163], no logical progress can be
made in the energy-momentum laws of the theory — if everything can be ad-hoc “improved”
to come from the same canonical Noether expression, then contradictory calculations and con-
servation laws are also justified. Of the 10-20 published expressions for spin-2 [8], all are
conserved on-shell, and obtainable by improving the canonical T µν

C . To explore the general
case for spin-2 theory, in [8] we write down the most general (Fock) energy-momentum tensor,

T ρσ = b1∂αhρσ∂βhαβ + b2∂αhρσ∂αh + b3∂αhρα∂βhσβ + b4∂αhρβ∂
αhσβ + b5∂αhρβ∂βhσα

+ b6∂
ρh∂σh + b7∂

ρhαβ∂σhαβ + b8i∂
ρhσα∂αh + b8ii∂

σhρα∂αh + b9i∂
ρh∂αhσα + b9ii∂

σh∂αhρα

+ b10i∂
ρhσα∂βhαβ + b10ii∂

σhρα∂βhαβ + b11i∂
ρhαβ∂αhσβ + b11ii∂

σhαβ∂αhρβ

+ c1η
ρσ∂αh∂αh + c2η

ρσ∂αhβλ∂αhβλ + c3η
ρσ∂αhαβ∂λhλβ + c4η

ρσ∂αhλβ∂λhαβ + c5η
ρσ∂αhαβ∂βh

+ d1hρσ∂α∂αh + d2hρσ∂α∂βhαβ + d3h∂α∂αhρσ + d4hαβ∂α∂βhρσ + d5ih
ρα∂β∂βhσα + d5iih

σα∂β∂βhρα

+ d6ih
ρα∂α∂βhσβ + d6iih

σα∂α∂βhρβ + d7h∂ρ∂σh + d8hαβ∂ρ∂σhαβ

+ d9ih
ρα∂σ∂αh + d9iih

σα∂ρ∂αh + d10ih
ρα∂σ∂βhαβ + d10iih

σα∂ρ∂βhαβ

+ d11ih∂
ρ∂αhσα + d11iih∂

σ∂αhρα + d12ihαβ∂
ρ∂αhσβ + d12iihαβ∂

σ∂αhρβ

+ a1η
ρσhαβ∂α∂βh + a2η

ρσh∂α∂βhαβ + a3η
ρσhαβ∂α∂λhλβ + a4η

ρσh∂α∂αh + a5η
ρσhαβ∂λ∂λhαβ.

(1.49)

We then write this most general system as the most general improved canonical Noether tensor
plus improvement terms,

T ρσ = T ρσ
C +∂αΨ

[ρα]σ+ζ1hEρσ+ζ2hραEσα+ζ3hρσE+ζ4hσαEρα+ζ5η
ρσhE+ζ6η

ρσhαβEαβ. (1.50)

From here we solved the linear system of coefficients for a symmetric, conserved result. There
are infinitely many solutions, of which the published expressions are all solutions to this sys-
tem. In other words, the connection to the canonical Noether tensor from improvements is
nothing special; we can do this for infinitely many symmetric, conserved T µν we write down.
Just because we can add terms to a result from Noether’s first theorem, does not mean the result
should be in any way considered a result of Noether’s methods. With respect to Noether’s first
theorem, these ”improvements” are ad-hoc manipulations that band-aid the non-uniqueness
problem and have prevented any meaningful progress in this direction. With no gauge invari-
ant energy-momentum tensor [140], it is not clear how to solve the non-uniqueness problem.
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Furthermore, it has been argued that none of these have been used for experimental or obser-
vation purposes [65], although we will stay away from this debate in this thesis.

Our main result in [8] is that there are infinitely many Belinfante improved tensors, and
only one of which is the Hilbert Tensor. This is contrary to the conventional wisdom that
this Belinfante improvement is uniquely associated to the Hilbert tensor. This result shows
that even in the most supported improvement procedure, unique association to the canonical
Noether tensor is not guaranteed; only through human selection of particular improvement
terms can we recover the desired result. Extensive discussion of this result we leave to [8].

1.5.3 Problem 3: Deriving Lagrangian densities from a set of axioms

In Chapter 2 we address the first problem, which is required to obtain complete sets of equa-
tions from a Lagrangian density by following a concrete procedure. In Chapter 2 we address
the non-uniqueness of methodology in energy-momentum derivation. But these problems fail
to address the most important question: how can we convert a set of axioms into a set of
Lagrangian densities which cover our fundamental theories?

This question is the focus of Chapter 4; in Chapter 4, we define a procedure from deriving
Lagrangian densities from general linear combinations of scalars of N order of derivatives of
an M rank tensor potential [14, 11]. For example, in the case of electrodynamics we have,

L = a∂µAν∂
µAν + b∂µAµ∂νAν + c∂µAν∂

νAµ. (1.51)

We can then impose axioms and solve for the resulting free coefficients such that the La-
grangian densities, and subsequent set of equations, satisfy the conditions defined by the ax-
ioms. In the case of N = M = 1, requiring complete gauge invariance under the gauge trans-
formation (1.20), the unique solutions is the electrodynamic Lagrangian density with a free
coefficient. The free coefficient is fixed in Noether’s first theorem and electrodynamic theory
is recovered from the axioms [14]. Note that in the case of electrodynamics the negative sign
on the Lagrangian is fixed by demanding positive energy in the Hamiltonian; if the sign on the
Lagrangian was positive there would be no lower bound on the energy of the system.

We then considered the most general scalar for N = 1, M = 2 as in the case of spin-2
Fierz-Pauli theory,

L = A∂µhµν∂
νhγγ + B∂µhµν∂γh

νγ + C∂µhνν∂
µhγγ + D∂µhνγ∂µhνγ + E∂µhνγ∂νhµγ, (1.52)

and solving the system of free coefficients for a complete gauge invariant solution. Of course,
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there is no solution to this linear system based on proofs of no gauge invariant T µν and known
non-exact gauge invariance of the Fierz-Pauli action. We verified these results and determined
the general Fierz-Pauli Lagrangian which is invariant up to a boundary term. We then consid-
ered the general expression for an N = M = 2 Lagrangian, with higher order derivatives, and
solved for invariance under the spin-2 gauge transformation. Remarkably, there was a solution,
in the form of the contracted linearized Riemann tensors,

L = ãRµναβRµναβ + b̃RµνRµν + c̃R2, (1.53)

where each R is the linearized form of the Riemannian tensor after gµν → etaµν +λhµν. Solving
for these free coefficients to have a complete gauge invariant model, there is a unique solution
in the form of linearized Gauss-Bonnet gravity,

L =
1
4

(RµναβRµναβ − 4RµνRµν + R2). (1.54)

Perhaps the most significant result here was the aforementioned Noetherian variation δh̄ρσ =

−2Γνρσδxν proportional to the linearized Christoffel symbol. In short, a connection between
electrodynamics and linearized Gauss-Bonnet gravity was established as the unique solution to
the procedure for N = M = 1 and N = M = 2 for a common set of axioms; the first realization
of our idealistic goals. Gauss-Bonnet gravity in the physics literature dates back to the result of
Lanczos [129]. See [9] for a historical overview of the development of Gauss-Bonnet gravity.

In [9] we took this study one step further to the dual formulations of the theories and showed
that both can be expressed in analogous dual formulations. In this formulation the linearized
Gauss-Bonnet gravity model does not simply have no equation of motion (as is often implied
by its characterization as a topological theory), rather its equation of motion is the Bianchi
identity analogous to the homogeneous half of Maxwell’s equations,

∂λRµναβ + ∂µRνλαβ + ∂νRλµαβ = 0. (1.55)

Generalizing the dual formulations to the curvature tensors of higher spin gauge theories yields
the models known as the Maxwell-like higher spin gauge theories, which we discuss in both
[9] and [11].

The third paper in this chapter [11] continues along this line by applying the procedure to
the N = M = n case. Solving for complete gauge invariance under the spin-n gauge transfor-
mations, one continues to yield contractions of curvature tensors at each n. This gives a clear
procedure for deriving the curvature tensors of higher spin gauge theories that were previously
postulated based on symmetry properties of the Riemann tensor. In all, Chapter 4 provides nec-
essary steps towards realizing the ability to determine a complete set of Lagrangian densities
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from a common set of axioms. In our case this set is all contractions of the electrodynamics
field strength tensor, linearized Riemannian tensors, and curvature tensors of higher spin gauge
theories.

1.6 Thesis overview

The three problems we have introduced are addressed in the three body chapters of the thesis,
respectively. In the second chapter we address the possibility of a concrete procedure for ob-
taining the complete set of equations for a field theory such that this set of equations is implicit
information to the Lagrangian density. The Bessel-Hagen approach to Noether’s first theorem
provides exactly this procedure [15] and we detail application of this method for several gauge
invariant Lagrangian densities [12]. In the third chapter we address the non-uniqueness and
improvement of the energy-momentum tensor in the literature. We provide a proof that the
Noether and Hilbert definitions are not, in general, equivalent [13], we prove several results
for the relationship of the numerous distinct definitions that exist for T µν in the case of a scalar
field [10], and show that there are infinitely many spin-2 energy-momentum tensors that can be
connected to the canonical Noether tensor via ad-hoc improvements [8]. Finally, in the fourth
chapter we develop a method for obtaining a set of Lagrangian densities form the common set
of axioms [14, 9, 11]. Schematically these chapters address the following aspects of the ideal
view:

Figure 1.9: Each of the body chapters corresponds to a specific step of the axiomatic approach,
corresponding to the 3 problems we have introduced, respectively.
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At the start of each chapter we will briefly introduce the papers and topics included in the
chapter. In the conclusions section we will summarize what we feel are the most significant
results from the thesis, discuss their impact on existing results, discuss existing gaps in our
methodology, and possible research that can stem from this thesis.



Chapter 2

Noether’s first theorem and the
Bessel-Hagen method

This chapter focuses on addressing the problem outlined in Section 1.5.1 of the Introduction:
the need for concrete procedure for deriving complete sets of equations for a given physical
theory in order to have an axiomatic approach to field theory. We show that the Bessel-Hagen
approach to Noether’s first theorem provides this concrete procedure for all complete gauge
invariant field theories we consider. This chapter consists of two papers. The first paper [15] in
Section 2.1 details problems with the conventional application of Noether’s first theorem which
does not obtain physical equations unless missing “improvement” terms are added ad-hoc, and
we propose the converse of Noether’s first theorem as a method for settling ambiguities in the
various Noether methodology. This paper is to appear in the collected papers volume “The

Physics and Philosophy of Noether’s Theorems” published by Cambridge University Press.
The second paper [12] in Section 2.2 focuses on the Bessel-Hagen approach to Noether’s first
theorem and successfully apply it to several models. This chapter provides concrete and clear
methodology for obtaining complete sets of physical equations from a Lagrangian density,
contrary to the conventional presentation of ad-hoc “improvement” (e.g. Belinfante) of the
canonical Noether energy-momentum tensor. The papers in this chapter were each produced
with two co-authors; for duties breakdown see the Co-Authorship Statement.

31
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2.1 Converse of Noether’s first theorem and the
energy-momentum tensor ambiguity problem

Dedicated to the late Bessel-Hagen, who when alive had his habilitation thesis

thrown into the sea, and even now must feel as if his work was lying somewhere on

the seabed.

Abstract Noether’s theorems are widely praised as being one of the most beautiful and
useful results in all of physics. However, if one reads the majority of standard texts and liter-
ature on the application of Noether’s first theorem to field theory, one immediately finds that
the “canonical Noether energy-momentum tensor” derived from the 4-parameter translation of
the Poincaré group does not correspond to what’s widely accepted as the “physical” energy-
momentum tensor for foundational theories such as electrodynamics. This gives the impression
that Noether’s first theorem is in some sense not working. In recognition of this issue, common
practice is to “improve” the “canonical Noether energy-momentum tensor” by adding suitable
ad-hoc “improvement” terms that will convert the canonical expression into the desired result.
On the other hand, a less common but distinct method developed by Bessel-Hagen, and later
independently by other authors, considers gauge symmetries as well when applying Noether’s
first theorem; this allows for uniquely obtaining the accepted physical energy-momentum ten-
sor in cases such as e.g. electrodynamics — without the need for any ad-hoc ”improvement”
terms. Given these two distinct methods to obtain an energy-momentum tensor, the question
arises as to whether one of these methods corresponds to a preferable application of Noether’s
first theorem. Using the converse of Noether’s first theorem, we show that the Bessel-Hagen
type transformations are uniquely selected in the case of electrodynamics — and thus the con-
verse of Noether’s first theorem powerfully dissolves the methodological ambiguity at hand.
We then go on to discuss further ambiguity issues with respect to energy-momentum tensors
in spin-2 theory that can be addressed via Noether’s converse. Finally, we put the search for
proper Noether energy-momentum tensors into context with recent claims that Noether’s theo-
rem and its converse make statements on equivalence classes of symmetries and conservation
laws.

2.1.1 Introduction

Physicists have long exploited symmetries to simplify problems. In Lagrangian mechanics,
cyclic coordinates (that is, generalized coordinates qi such that ∂L/∂qi = 0 for the Lagrangian
L) signal the presence of a symmetry, and the Euler-Lagrange equations imply that the associ-
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ated conjugate momenta pi are conserved.1 It is hard to understate the practical importance of
finding conserved quantities, thereby reducing the number of variables and making it much eas-
ier to find solutions. Noether’s celebrated (1918) paper significantly clarified the mathematical
structure underlying these earlier results.2 The rich line of work stemming from her seminal
contribution has elucidated three intertwined aspects of physical theories: laws, symmetries,
and conservation principles.

Conventional wisdom now holds that Noether’s theorem and its converse universally link
a certain kind of continuous symmetry (such as Poincaré translation) to a certain kind of con-
served current (such as the energy-momentum tensor).3 Although based on a kernel of truth,
this conventional wisdom reflects an overly simplified picture of the mathematical physics.
As a starting point for the discussion below, consider the following specific claim often taken
to follow from the Noether machinery: a subset of the variational symmetries of the action,
namely spatial and temporal translations, are associated with energy-momentum conservation.
Here we encounter an immediate difficulty: applying Noether’s first theorem in the context
of field theory (as described in §2.1.3), the 4-parameter translation subgroup of the Poincaré
group yields what is called the “canonical Noether energy-momentum tensor” (T µν

C ). For most
classical field theories, the canonical tensor lacks features required for a physically sensible
energy-momentum tensor, and differs from known physical energy-momentum tensors estab-
lished in other ways.4 Such results raise two related challenges to the conventional wisdom:
do the quantities that actually follow from applying Noether’s theorem have a clear physical
interpretation, and does Noether’s theorem need to be supplemented in order to derive phys-
ically meaningful conserved quantities? Particularly striking is the existence of inequivalent
definitions of the energy-momentum tensor, a central physical quantity in any classical field
theory.5

Typical textbook presentations leave the impression that Noether’s theorem fails to yield
the correct energy-momentum tensor. They mention the unappealing features of T µν

C , and then
immediately propose a fix. Such fixes amount to variations on a theme going back to [23], who
added the divergence of a so-called superpotential to T µν

C such that a new “Belinfante” energy-
momentum tensor T µν

B = T µν
C + ∂αb[µα]ν recovers the correct answer for electrodynamics6 if an

1See [44] for a pedagogical presentation.
2noether1918, translated into English by [124].
3The metaphysical work of [132], for instance, rests on this. Note that the ”energy-momentum tensor” is

sometimes referred to as ”stress-energy tensor”.
4We will focus on energy-momentum tensors in the ensuing discussion, but similar issues arise for other

conserved currents, such as angular momentum tensors.
5The inequivalent definitions mentioned here are twofold: (i) there are multiple definitions for deriving an

energy-momentum tensor (see [29], [13]), (ii) within certain specific theories there exist multiple inequivalent
expressions (such as linearized gravity, see ([28], [8]).

6In the following article, when we refer to electrodynamics, it is implied that we refer to sourceless electrody-
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on-shell condition is imposed (discussed in more detail below in §2.1.4). This does not follow
directly from Noether’s theorem itself, suggesting that some form of “improvement” is needed
to find physically meaningful conserved quantities.7 But any such improvement approach has
the unsavoury air of devising a series of poorly justified steps to arrive at an answer found in
the back of the book. What happens when we do not already know, or have independent ways
of finding, the correct form for the energy-momentum tensor?

Thankfully there is another approach, albeit much less common in the literature: we can use
the Poincaré translation symmetry and gauge symmetries of the action together in Noether’s
first theorem. As we will see below, in the case of electrodynamics this leads directly to the
correct energy-momentum tensor. This was Bessel-Hagen’s neglected contribution, inspired
in part by Noether herself [26]. By contrast with the “improvement” approach, we will argue
that this approach exploits all of the relevant variational symmetries of the action in apply-
ing Noether’s theorem. We will argue for the superiority of this approach based on using the
converse of Noether’s first theorem, which correctly identifies the proper variational symme-
tries (those derived using Method II in §2.1.4) of the Lagrangian from the accepted form of
the energy-momentum tensor. The derivation of the canonical stress-energy tensor fails to use
the full power of the mathematical machinery that Noether has given us by considering only
a restricted subset of the variational symmetries. Thus, at least in the context of Lagrangian
field theories in flat spacetime, the conventional wisdom of a universal linkage between sym-
metries and conservation laws can be refined to that of a linkage between a specific variational
symmetry — to be introduced below — and the set of physical conservation laws for the theory.

This line of argument does not address Lagrangian field theories in curved spacetime,
which lack the global symmetries needed to obtain the energy-momentum tensor via Noether’s
theorem. Physicists then typically use Hilbert’s definition of the energy-momentum tensor
T γρ

H = 2
√
−g

δL
δgγρ

, which is sometimes referred to as the metric energy-momentum tensor. The
Hilbert energy-momentum tensor is by definition symmetric, thereby avoiding one of the ma-
jor flaws of the canonical Noether tensor. From this expression, the Hilbert energy-momentum
tensor in Minkowski spacetime is defined as the curved spacetime Hilbert energy-momentum
tensor with all metric tensors gµν replaced by the Minkowski metric ηµν. [29] outlines the
distinction between the curved spacetime and Minkowski spacetime definitions of the Hilbert
tensor.8 In any case, our discussion will focus on the status of the energy-momentum ten-

namics.
7There are a number of proposals regarding how to “improve” the energy-momentum tensor in the literature;

see forger2004,blaschke2016 for recent surveys.
8The Hilbert energy-momentum tensor in Minkowski spacetime (T γρ

H,η = 2
√
−g

δL
δgγρ

∣∣∣
g=η

) is not, in general, equiv-
alent to energy-momentum tensors derived via Noether’s theorem from the 4-parameter Poincare translation, see
[13].
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sor and associated conservation laws in flat (Minkowski) spacetime — we will consider only
energy-momentum tensors which are derived from Noether’s first theorem in this article.

The plan for the paper is as follows. This section concludes with a tribute to Bessel-Hagen.
We then briefly introduce the energy-momentum tensor, and review properties required for it
to be regarded as physically reasonable. In the next two sections, we use classical electrody-
namics as a simple case to introduce Noether’s first theorem and its subtleties. Section 2.1.3
introduces Noether’s first theorem. Section 2.1.4 considers the two approaches described above
for defining Noether currents, focusing on the energy-momentum tensor: Method I uses trans-
lation symmetries to yield the canonical energy-momentum tensor, which requires “improve-
ment” terms to yield the correct energy-momentum tensor; Method II, by contrast, considers
a broader class of variational symmetries and leads directly to the correct energy-momentum
tensor. We then argue in favour of the second method based on the converse of Noether’s the-
orem. Section 2.1.5 considers how this line of argument applies to a variety of other cases,
including in particular the challenge of defining an energy-momentum tensor for the gravita-
tional field in linearised gravity. Section 2.1.6 brings out one of the themes running through
the discussion, namely the challenge of tracking the physical significance of these structural
properties of field theories. There are several steps in the early sections where it is tempting to
describe both symmetries and conserved currents only up to an equivalence class. We aim to
identify clearly the limitations of this move, and develop our position by contrast with recent
philosophical discussions about how symmetries relate to the representational capacities of our
theories (considering, in particular, Brown’s contribution in this volume). Finally we discuss
the outlook and conclusions of our work in section 2.1.7.

An ode to Bessel-Hagen

Alongside these systematic aims, we want to use the occasion to clarify the contribution of
Erich Bessel-Hagen (1898 - 1946) to the Noether machinery. On the one hand, Bessel-Hagen
seems to be often wrongly treated as the sole originator of the generalisation of Noether’s
theorem to invariance under symmetry transformations up to divergence.9 Yet, as [124] (see
her section 4.2) notes, Bessel-Hagen himself acknowledges his debt to Noether herself (to a
certain degree, at least):

Zuerst gebe ich die beiden E. Noetherschen Sätze an, und zwar in einer etwas
allgemeineren Fassung als sie in der zitierten Note stehen. Ich verdanke diese
einer mündlichen Mitteilung von Fräulein Emmy Noether selbst. ([26], p. 260)10

9Also in the philosophy literature, see for instance, [37].
10I first present the two Noetherian propositions, albeit in a slightly more general fashion than they can be
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On the other hand, Bessel-Hagen does not seem to be widely known for his central contribution
in that very same paper, namely the introduction of what we call Method II: the application
of Noether’s first theorem in light of gauge symmetries when deriving the complete set of
conformal conservation laws for classical electrodynamics. Bessel-Hagen’s work has been
independently reproduced — by, among others, [70, 153]; the reception of his paper in the
English speaking world, however, suffered from the fact that a translation first appeared in
2006 [108], arguably much too late. Even though the method has resurfaced in some textbooks
as well [39, 177], it remains relatively unknown in the wider physics literature.

We note that application of the Bessel-Hagen method to a wider class of special relativistic
field theories is the topic of an upcoming article [12]. In the present article, the focus on lies on
energy-momentum tensors and classical electrodynamics in contrast with the more common
canonical Noether approach. A central goal of this article is to use the converse of Noether’s
first theorem to solve this methodological ambiguity, which as we will see, uniquely specifies
the variational symmetries first derived in [26].

2.1.2 Energy-Momentum Tensors

Einstein took the general formulation of conservation laws in terms of the energy-momentum
tensor to be “the most important new advance in the theory of relativity” (as of 1912). The
energy-momentum tensor has a central role in the new conception of mechanics and field the-
ory, as Einstein went on to emphasize:11

To every kind of material process we want to study, we have to assign a symmetric
tensor Tµν [...] The problem to be solved always consists in finding out how Tµν is
to be formed from the variables characterizing the processes under consideration.
If several processes can be isolated in the energy-momentum balance that take
place in the same region, we have to assign to each individual process its own
stress-energy tensor (T 1

µν, and etc.) and set Tµν equal to the sum of these individual
tensors. (CPAE Vol. 4, Doc. 1, [p. 63])

Strikingly, Einstein treats all “material processes,” whether they involve electromagnetic fields
or matter as described by continuum mechanics, as on a par: the fundamental dynamical quan-
tity in each case is the energy-momentum tensor. How then are we to find an appropriate Tµν

for various processes we aim to describe?

found in the cited note. I owe these propositions to an oral communication by Miss Emmy Noether herself. (Own
translation)

11See [113] for an insightful discussion of the importance of the energy-momentum tensor in the transition to
relativistic mechanics.
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Before turning to that question, recall that the energy-momentum tensor (also known as the
stress-energy tensor) encodes information regarding energy-momentum densities and fluxes for
different kinds of “material processes.” In relativistic mechanics this is all captured in a single
rank-two tensor, T µν: the T 00 component represents energy density, the T 0i and T i0 components
represent energy and momentum flux, respectively, and the T i j components represent stresses
(where i, j = 1, 2, 3).

As an illustration, the energy-momentum tensor for electromagnetism provides a compact
summary of familiar facts about the electromagnetic field. Minkowski formulated electromag-
netism in terms of the field strength tensor Fµν = ∂µAν − ∂νAµ, where Aµ is the vector potential.
The energy-momentum tensor takes the following form:12

T µν = FµαFν
α −

1
4
ηµνFαβFαβ. (2.1)

The invariance of the field tensor under gauge transformations (A′µ = Aµ + ∂µφ, for a scalar φ)
implies gauge invariance of T µν. More generally, we require gauge invariance of T µν because
the energy-momentum tensor represents observable quantities directly. In this case, we have
constructed the energy-momentum tensor based on what we already know about the relevant
field. Historically, von Laue extended this constructive approach, writing down appropriate
energy-momentum tensors for extended stressed bodies, relativistic fluids, and other cases,
based on prior knowledge about energy and momentum in each case.

To what extent can we determine the form of T µν for a new classical field ψ (whether
scalar, vector, tensor,...) based on general principles, or on specific features of ψ’s dynamics?
There are two main types of constraints a tensor would be expected to satisfy to be plausibly
interpreted as representing energy-momentum of the field. The first set of constraints stem from
the idea that all matter fields “carry positive energy-momentum.” More formally, for arbitrary
regions of spacetime R, T µν vanishes on R iff the field ψ vanishes.13 Further constraints can be
imposed to capture the idea that the energy-momentum is positive, and that energy-momentum
flows respect the causal structure of relativistic spacetime. One fundamental requirement of
this kind is that the energy density (the T 00 component) is bounded from below, so that the

12The energy density of electromagnetic fields is given by U = 1
2 (ε0E2 + 1

µ0
B2), the Poynting vector ~S = 1

µ0
~E× ~B

represents energy flux, and the Maxwell stress tensor σi j represents stress and momentum fluxes. We can express

the energy-momentum tensor in terms of these quantities as follows: T µν =


−U −S x/c −S y/c −S z/c
−S x/c σxx σxy σxz

−S y/c σyx σyy σyz

−S z/c σzx σzy σzz

.
13Here we are setting aside fields with negative energy density, for which T µν could vanish through a cancella-

tion of positive and negative energy densities. This condition has to be formulated with greater care for quantum
fields, which necessarily admit negative expectation values for the energy density at spacetime points, but versions
of this condition have been proposed for open regions.
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field cannot serve as an infinite energy source. Gravity is sensitive to the absolute value of
the energy, so that it is meaningful to differentiate positive and negative energies for fields
coupled to gravity. Further constraints can then be imposed: the weak energy condition, for
example, requires that the energy density (the T 00 component) is non-negative, as measured
by all observers. The dominant energy condition holds if, in addition, momentum fluxes stay
within the light cone. There is a long list of other energy conditions that have been used to
prove results such as the singularity theorems.14

A second set of constraints, and the main focus of the ensuing discussion, regards sym-
metries and conserved quantities. We will take the satisfaction of an appropriate conservation
principle as a defining feature of energy-momentum.15 Given an appropriate T µν, the on-shell
conservation principle can be succinctly stated: ∂µT µν = kν. (For a free field, kν = 0, otherwise
kν represents an external force density.16) In classical mechanics, the conservation of energy
and momentum stem from space-time translation symmetries, so it is plausible to begin by
constructing a tensor combining the conserved currents associated with these symmetries. The
variational symmetries of an action S consist of the transformations that leave S invariant, and
Noether’s first theorem associates a conserved quantity with each element of the finite group of
transformations. In electrodynamics these symmetry constraints, the variational symmetries of
the action for coordinates (conformal symmetries) and fields (gauge symmetries), are what is
required to obtain the known conservation laws, which we detail in §2.1.4; the 15 conservation
laws are associated to the (finite) 15 parameter conformal group of transformations.

Other properties of the energy-momentum tensor follow from symmetries of the field the-
ory for specific types of fields. For classical field theories with conformal symmetry, for ex-
ample, the energy-momentum tensor will be trace-free so that the conformal Cρα and dilatation
Dρ tensors are conserved.17

We take these two types of constraints as requirements that a rank two tensor must satisfy
to be a plausible candidate for an “energy-momentum tensor” of particular importance in con-
sidering energy-momentum tensors proposed for a new field ψ rather than constructed based on
prior knowledge. Perusing the physics literature suggests that these two types of constraints do
not suffice to determine a unique choice: there are several proposed, apparently inequivalent,
candidates for the “energy-momentum tensor for ψ” (for a variety of different fields). Our over-
all aim below is to argue against this view. Several of the candidate energy-momentum tensors

14See [55] for a comprehensive review of energy conditions and their status.
15This leaves open the possibility that there are fields, such as the gravitational field in general relativity, that

lack an energy-momentum tensor in this sense.
16In the case of electrodynamics sourced by Jα this is the force density f ν = ∂µT µν = Fν

αJα which includes the
Lorentz force density in the spatial components ( f i = ∂µT µi = JρF i

ρ = ρ~E + ~J × ~B).
17In the case of electrodynamics, this statement is directly related to that the associated quantum particles are

massless (see [85], p. 563).
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are unworthy of the name. Take, for example, the question of whether we should require that
the energy-momentum is symmetric under exchange of indices (T µν = T νµ). Failure of this
to hold in a mechanical system would lead to torque and the possibility of unlimited angular
acceleration.18 Similar problems arise in field theories. Just as in the case of mechanics, a
non symmetric energy-momentum tensor would entail failure of angular momentum conserva-
tion. We therefore restrict our attention to symmetric rank-two tensors; this already eliminates
many candidates discussed in the literature. We will further argue that we need to take into
account more than just spacetime translations in building the energy-momentum tensor out of
conserved currents, as we will illustrate next by considering the case of electromagnetism in
more detail.

2.1.3 Noether’s first theorem for classical electrodynamics

Noether’s first theorem, applied to a particular Lagrangian density, yields a relationship be-
tween the Euler-Lagrange equation of motion and Noether current of the theory of the form
EAδφA + ∂µJµ = 0, where EA is the Euler-Lagrange equation for the rank-A field and Jµ is the
Noether current. For the Lagrangian density of electrodynamics L = −1

4 FµνFµν, this takes the
form [87]: (

∂L

∂Aν

− ∂ρ
∂L

∂(∂ρAν)

)
¯δAν + ∂ρ

(
ηρβLδxβ +

∂L

∂(∂ρAν)
¯δAν

)
= 0, (2.2)

where

¯δAν = −∂βAνδxβ + δAν (2.3)

is the complete set of symmetry transformations that are linked to Noether’s first theorem.19

The two methods we will discuss diverge with regard to the general form of the transfor-
mations ¯δAν. Consider first the difference between ¯δAν and δAν: the non-bar transformation of
fields is the difference in transformed fields as a function of their respective coordinates,

δAν = A′ν(x′) − Aν(x). (2.4)

By contrast, the bar transformations of fields is the difference in transformed fields as a function

18An angular momentum tensor Mρµν = xµT ρν − xνT ρµ has is conserved iff T µν is symmetric. The angular
momentum relative to a given event chosen as an origin can be obtained by integrating Mρµν; see Chapter 5 of
[151] for further discussion of this point, and regarding the general properties of energy-momentum tensors.

19Equation (2.2) corresponds to Equation 12 in Noether’s paper [124] for the specific Lagrangian of classical
electrodynamics, and Equation (2.3) corresponds to Equation 9 in Noether’s paper. Our xβ (coordinates) cor-
respond to her independent variables xn and our Aν (fields) correspond to her functions of these independent
variables ui.
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of the same (non-transformed) coordinates,

¯δAν = A′ν(x) − Aν(x), (2.5)

where the bar notation is adopted from Noether’s paper for this particular transformation in her
Equation 9. The following subsections treat the three types of transformations ( ¯δAν) relevant
to Noether’s first theorem in our discussions: (1) the two terms which correspond to the Lie
derivative of the fields (canonical and contragredient transformations) and (2) the term which
corresponds to gauge symmetries of the action.

Transformations associated to the Lie derivative

In this subsection, we describe two of the contributions to the transformations of fields ¯δAν

arising from infinitesimal change of coordinates δxν. These two transformations follow directly
from the Lie derivative of the four potential Aν with respect to the infinitesimal change in
coordinates δx,

£
δx Aν = −δxβ∂βAν − Aβ∂νδxβ = δCAν + δT Aν. (2.6)

The Lie derivative represents the coordinate invariant change of a tensor field along the flow of
a vector field, which is in this case the infinitesimal change in coordinates δx.

We have denoted the two terms in this expression as δCAν and δT Aν, respectively. The
first term, δCAν = −δxβ∂βAν, is exactly what is found in the first term of (2.3). This term
alone is used to derive the canonical Noether energy-momentum tensor when δxβ = aβ is the
4-parameter Poincaré translation, thus we will refer to this as the canonical transformations.
The second term, δT Aν = −Aβ∂νδxβ, we will refer to as contragredient transformations as
Bessel-Hagen did in his article; they are associated to the transformation properties of a tensor.
This contribution is zero for δxβ = aβ, and thus does not factor into energy-momentum tensor
discussion. However, for any non-constant δxβ this contribution is nonzero and essential for
deriving the associated conserved tensors, such as the angular momentum tensor resulting from
the remaining parameters of the Poincaré group.

Canonical transformations and the canonical Noether energy-momentum tensor

If we restrict ourselves to canonical transformations, −∂βAνδxβ with δAν = 0, and no gauge
symmetries, we have only

¯δAν = δCAν = −∂βAνδxβ (2.7)
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to substitute into Noether’s first theorem (2.2). We will use δCAν to indicate these canonical
transformations. We then obtain:(

∂L

∂Aν

− ∂ρ
∂L

∂(∂ρAν)

)
¯δAν + ∂ρ

(
[ηρβL −

∂L

∂(∂ρAν)
∂βAν]δxβ

)
= 0 (2.8)

The square brackets contain what is known as the “canonical Noether energy-momentum ten-
sor” T ρβ

C for a Lagrangian density of the form ∂A∂A such asL = −1
4 FµνFµν of electrodynamics.

In the case of the 4-parameter Poincaré translation δxβ = aβ, we can factor out the constant aβ
from the divergence yielding Eν ¯δAν + aβ∂ρT

ρβ
C = 0, where

T ρβ
C = ηρβL −

∂L

∂(∂ρAν)
∂βAν (2.9)

and Eν is the Euler-Lagrange equation of motion (in this case, the non-homogeneous Maxwell’s
equations).

However, substituting the Lagrangian density for electrodynamics L = −1
4 FµνFµν, where

Fαβ = ∂αAβ − ∂βAα and ∂L
∂(∂ρAν)

= −Fρν, yields

T ρβ
C = Fρν∂βAν −

1
4
ηρβFµνFµν, (2.10)

the canonical Noether energy-momentum tensor for classical electrodynamics. By contrast,
the accepted energy-momentum tensor T µν for the theory is given by (2.1) above.

This specific case illustrates two distinct problems for the canonical energy-momentum
tensor that hold more broadly. First, the result simply does not match with an independently
motivated expression for the energy-momentum tensor, based on an understanding of energy
and momentum densities and fluxes for the relevant field. Second, the canonical tensor lacks
essential properties: in general it is neither symmetric, nor gauge invariant, nor trace-free.
There are special cases where some of these properties hold. For example, a symmetric tensor
follows from (2.9) for a Klein-Gordon scalar field; yet even then, there are alternative tensors
which improve on the canonical expression by being trace-free [45]. In some of these cases,
it may not be obvious whether the canonical tensor or some other candidate tensor is to be
preferred. We do not claim to have a way to resolve this debate across the board; rather, there
are several clear cases (like electromagnetism) where the canonical energy-momentum tensor
fails to have the right form.

Contragredient transformations

The non-bar transformation of fields δAν (second term in (2.3)) is referred to by Bessel-
Hagen as being associated to the “contragredient” transformations of the fields, which in cur-



42 Chapter 2. Noether’s first theorem and the Bessel-Hagen method

rent treatments follow simply from the definition of a contravariant tensor (in this case vector):

A′ν(x′) =
∂x′ν

∂xµ
Aµ(x) (2.11)

Inserting this into the contravariant form of (2.4) we have for δAν,

δAν =
∂x′ν

∂xµ
Aµ(x) − Aν(x). (2.12)

If we consider the transformation of coordinates,

x′ν = xν + δxν (2.13)

In particular, then, ∂x′ν
∂xµ = δνµ + ∂µ(δxν). Substituting (2.13) into (2.12) we have δAν = Aµ∂µδxν.

To determine the covariant form of this expression, we can consider the identity AµAµ = A′µA′µ
as a function of their respective coordinates, and solve for the transformation δT Aν, which is
exactly the contragredient transformation presented by Bessel-Hagen in his equation 18,

δT Aν = −Aµ∂νδxµ (2.14)

where δT Aν indicates that this is the transformation based on the definition of a tensor T . Note
that we require the covariant form of this transformation due to our presentation of the Noether
identity in (2.2).

For higher rank tensors this contribution can easily become quite complicated. However,
in the case of energy-momentum tensor derivation, when we have the 4-parameter Poincaré
translation δxµ = aµ — regardless of Method I or Method II — δT Aν = 0 since aµ is a constant.
For this reason, since most of the discussions of conservation laws focus solely on the energy-
momentum tensor at the expense of other conserved quantities such as angular momentum, this
contribution usually drops out of the picture. (Yet we need the contragredient transformations
for the derivation of conservation laws linked to non-constant coordinate symmetries δxµ.)

Gauge (field) symmetries of the action

There is also the possibility of gauge (field) symmetries of the action, often overlooked from the
perspective of Noether’s first theorem because they are thought to be relevant only to Noether’s
second theorem. The Bessel-Hagen et al. approach uses these symmetries as well to derive the
known conservation laws of electrodynamics directly from Noether’s first theorem. Mixing the
complete set of coordinate and field symmetries is essential to obtaining the accepted energy-
momentum tensor of electrodynamics from Noether’s first theorem. To highlight this point we
briefly touch on Noether’s second theorem, again with a focus on electrodynamics.
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The basic idea behind Noether’s second theorem is that field (gauge) symmetries that leave
the action invariant (in her case, the “infinite continuous group” of transformations of the func-
tions u) can be integrated by parts to remove the derivatives on the field transformations; ne-
glecting boundary terms (instead of keeping them as in the case of the Noether current in the
first theorem) results in an identity in terms of the Euler-Lagrange equation. 20

In the case of electrodynamics, discarding boundary terms (all terms under a total diver-
gence) leaves the standard Euler-Lagrange equation, Maxwell’s ∂ρFρν, as,

∂ρFρν ¯δAν = 0 (2.15)

Now taking the gauge transformation A′ν = Aν + ∂νφ (where φ is a scalar), we have,

¯δAν = δgAν = ∂νφ (2.16)

where we denote δgAν to emphasize the transformation associated to the gauge symmetry of
the action. From (2.15) and (2.16) we therefore have ∂ρFρν∂νφ = 0. Integrating by parts and
discarding the resulting boundary term we are left with the well known identity for Noether’s
second theorem in electrodynamics,

∂ρ∂νFρνφ = 0 (2.17)

and thus ∂ρ∂νFρν = 0. It is the incorporation of this transformation (2.16) that is then also essen-
tial for directly deriving the complete set of conservation laws from Noether’s first theorem,
including the accepted energy-momentum tensor (2.1). By use of the converse of Noether’s
second theorem we have a concrete methodology for obtaining the variational gauge symme-
try ¯δAν that is required for application of Method II — similar to the application of Killing’s
equation for obtaining the coordinate symmetries required by Noether’s first theorem.

Summary

In summary, Noether’s first theorem can be used to obtain a relationship between the Euler-
Lagrange equation and conservation laws for field theories such as electrodynamics (2.2). The
Noether current depends on the coordinate symmetry transformation δxβ and field symme-
try transformations ¯δAν; i.e. any symmetry transformation of the action must be introduced
through these contributions in order to derive corresponding on-shell conserved currents. We

20See Equation 16 in [159] and associated discussion for statements on Noether’s second theorem. Notably, the
converse also holds, namely that the existence of such identity implies invariance of the action under an infinite
continuous group.
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distinguished three main types of transformations of fields, which can be simultaneously ap-
plied to (2.2) in the form,

¯δAν = δCAν + δT Aν + δgAν (2.18)

where we have the canonical transformations (2.7), contragredient transformations (2.14) and
gauge transformations (2.16). In the case of electrodynamics, this gives

¯δAν = −∂µAνδxµ − Aµ∂νδxµ + ∂νφ (2.19)

These transformations are the complete set required to derive conservation laws in stan-
dard field theories such as electrodynamics. Bessel-Hagen derived all 15 conservation laws
of electrodynamics which are associated to the 15 parameter conformal group of infinitesimal
coordinate transformations,

δxα = aα + ωαβxβ + S xα + 2ξνxαxν − ξαxνxν (2.20)

In the case of the four-parameter Poincaré translation δxβ = aβ, the coordinate symmetry
associated to energy-momentum tensor derivation, we have δT Aν = 0 leaving only two contri-
butions to the transformation of fields ¯δAν.21

Notably, the presence of mixed coordinate and field transformations should be no surprise
to anyone who has actually read Noether’s paper, as she explicitly admits that her first theorem
holds for a combination of the symmetries:

In the case of a “mixed group,” if one assumes similarly that ∆x and ∆u are linear
in the ε and the p(x), one sees that, by setting the p(x) and the ε successively equal
to zero, divergence relations ... as well as identities .. are satisfied. (translated
from [159], p. 243)22

where the equation 13 she refers to is identity associated to her first theorem that we consider
in this article. It is exactly this freedom that Bessel-Hagen, in fact in consultation with Noether

21The term ωαβxβ, associated to the angular momentum tensor Mραβ = xαT ρβ− xβT ρα, consists of the remaining
6 parameters in the Poincaré group through the antisymmetric parameter ωαβ. Terms S xα and 2ξνxαxν − ξαxνxν

correspond to the dilatation tensor Dρ and conformal tensor Cρα. Direct substitution of the various terms in (2.20)
into (2.19) give the ¯δAν which can be directly substituted into (2.2) to derive known physical conservation laws
in e.g. electrodynamics. Transformations (2.20) can be found by solving the conformal Killing’s equation. See
[174] for a self-contained derivation of the conformal invariance of electrodynamics.

22“Setzt man entsprechend einer ,gemischten Gruppe’ ∆x und ∆u linear in den ε und den p(x) an, so sieht man,
indem man einmal die p(x), einmal die ε Null setzt, daß sowohl Divergenzrelationen ..., wie Abhängigkeiten ...
bestehen.”
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herself, used to apply the first theorem successfully to electrodynamics; this is the topic of the
section on Method II.

In the section on Method I, we will discuss the case when δgAν = 0, i.e. when we only
use the canonical transformations, yielding the canonical Noether energy-momentum tensor
T µν

C . Since this is not the correct energy-momentum tensor T µν of electrodynamics, various
ad-hoc “improvements” have been considered in the literature that add terms to T µν

C in order
to obtain the desired result. In the section on Method II, we will discuss the less common
method in the literature, which does not make restrictions on ¯δAν and keeps the most general
(2.18). In this case, the well known T µν of electrodynamics is directly derived with no ad-hoc
“improvements” needed.

2.1.4 A Tale of Two Methods

Method I: Canonical Tensor plus ‘Improvements’

In this section, we consider the most common method in the literature for deriving the gener-
ally accepted energy-momentum tensor ‘from’ Noether’s first theorem. As emphasized above,
the canonical Noether tensor T µν

C obtained on this approach (2.10) differs from the accepted
energy-momentum tensor (2.1). Hence Noether’s theorem apparently fails to properly identify
the conserved quantities associated with symmetries even in the most familiar case. On our
view, this “canonical” result reflects a basic mistake: it does not take into account all of the
relevant variational symmetries needed to build an energy-momentum tensor. We will see how
to employ Noether’s theorem more effectively to do so through what we call Method II in the
next section (§2.1.4).

Usually the the canonical energy-momentum tensor is “improved” by adding specific terms
(see, e.g., [29]), such as the divergence of a superpotential and terms proportional to the equa-
tions of motion. We give an example of this for electrodynamics in this section. One could
put the task — a bit provocatively — as follows: Given that T ρβ

C is not the result we wanted
(or expected), what terms can we add to get the correct answer? Of course this is an ad-hoc
approach to fixing the problem, but if it is the best available method we have to obtain the
accepted T ρβ, one might just bite the bullet.23

The required “improvement” term in the case of electrodynamics is simply the difference
between (2.1) and the canonical expression (2.10),

T ρβ − T ρβ
C = −Fρν∂νAβ. (2.21)

23It is worth noting that proponents of Method I are usually unaware of the Bessel-Hagen et. al approach.
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All of the various improvements for electrodynamics in the literature ultimately need to give us
this term on the right hand side, at minimum after imposing on-shell conditions ([76, 29]). The
challenge is how to get the correct tensor, by starting from the canonical expression, and adding
“improvement” terms through a well-defined procedure. We will briefly discuss the Belinfante
improvement procedure since it is by far the most commonly adopted in the literature.24

But before doing so, it is worth discussing the general idea of improvement by superpo-
tentials and terms proportional to the equations of motion; together these form the bulk of
possible “improvement” terms. Superpotentials have the form Ψ[ρα]σ, the divergence of which
∂αΨ

[ρα]σ can be added to an energy-momentum tensor without affecting on-shell conserva-
tion. This is because indices [ρα] are anti-symmetric; the divergence of the divergence of a
superpotential ∂ρ∂αΨ[ρα]σ is identically zero off-shell. Adding a superpotential to a Noether
energy-momentum tensor for a specific Lagrangian does not spoil conservation (the super-
potential is conserved as a mathematical identity on its own), yet doing so may lead to an
energy-momentum tensor with the required properties. Terms that vanish on-shell, i.e. terms
proportional to the equations of motion, can also be added while preserving on-shell equiva-
lence; in practice terms of this type often must also be added to obtain the accepted form of the
energy-momentum tensor.

For electrodynamics, the difference between the accepted and canonical energy-momentum
tensors is given by (2.21) above. Writing the extra term as the divergence of a superpotential,
we have −Fρν∂νAβ = ∂α[−FραAβ]+Aβ∂νFρν, where Ψ[ρα]σ = −FραAβ, and Maxwell’s equations
Eρ = ∂νFνρ. Thus, we have,

T ρβ = T ρβ
C + ∂αΨ

[ρα]β − AβEρ (2.22)

The Belinfante improvement procedure yields exactly the same superpotential; the divergence
of this superpotential as well as a term proportional to the equation of motion can be used to
recover the accepted energy-momentum tensor in cases such as electrodynamics. Therefore
just by knowing (2.1) we know the form of the required (so-called) “improvement” terms. The
Belinfante procedure provides a derivation of this superpotential which we will detail in the
following subsection.

The Belinfante symmetrization procedure

24[23] is commonly cited as the origin of the the Belinfante improvement procedure, which is sometimes
referred to as the Belinfante symmetrization procedure. While it is true that he proposed the ad-hoc addition of
the divergence of a ”superpotential” required to ”improve” the canonical Noether tensor for electrodynamics, we
note that the more broad ad-hoc ”improvement” of energy-momentum tensors in the literature is, perhaps, unfairly
associated to his name and outside the scope of his motivations.



2.1. Converse ofNoether’s first theorem and the energy-momentum tensor ambiguity problem 47

Turning an arbitrary tensor into a symmetric tensor is in principle straightforward: decom-
pose the tensor into a symmetric and antisymmetric part, and then add a new contribution to
cancel out the antisymmetric part (in this case, from a superpotential). But more interestingly,
arguably, [23]25 showed that a suitable superpotential of this kind can be derived — and he
argued that it is related to the spin angular-momentum of the model based on common terms.26

We wish to add the divergence of the Belinfante superpotential ∂αb[ρα]σ to the canonical ex-
pression (2.10) to form the Belinfante tensor T ρσ

B ,27

T ρσ
B = T ρσ

C + ∂αb[ρα]σ (2.23)

where the superpotential b[ργ]σ is defined by a combination of the spin angular momentum
tensor S ρ[σγ] of the form ([23]):

b[ργ]σ =
1
2

(−S ρ[σγ] + S γ[σρ] + S σ[γρ]). (2.24)

In electrodynamics this contribution is defined as S γ[αβ] = ∂L
∂∂γAµ [ηαµAβ − ηβµAα]. Therefore we

have,

S γ[αβ] = −Fγµ[δαµAβ − δβµAα]. (2.25)

Inserting (3.105) into the Belinfante superpotential (3.104) we have b[ργ]σ = −FργAσ. But this
is the same superpotential found from (2.22)! Thus for the Belinfante procedure applied to
electrodynamics we have,

T µν
B = T µν

C + ∂α(FαµAν). (2.26)

This differs from the accepted energy-momentum tensor (2.1), according to (2.22), by on-shell
terms28.

25Through the help of an uncited Dr. Polansky, see [23].
26Since the ”total” angular momentum tensor Mραβ = xαT ρβ − xβT ρα is based on the symmetric energy-

momentum tensor T µν, decomposing it into parts (e.g. ”spin” angular momentum), one straightforwardly can
obtain what terms are missing in the canonical Noether tensor T µν

C from the symmetric T µν in terms of the corre-
sponding part of the angular momentum: hence the common name of ”symmetrization” procedure, and associa-
tion to spin angular momentum.

27We note that the Belinfante tensor T ρσ
B is sometimes referred to as the Belinfante-Rosenfeld tensor, since

[175] independently came to some of these results and published them shortly after [22] first presented them.
However, Rosenfeld concedes this point in his article stating that repetition of these results from his point of view
may still have some utility.

28On-shell equivalence of the Belinfante and Hilbert tensors is a well established result [76, 170]. The Hilbert
tensor in Minkowski spacetime is the accepted energy-momentum tensor in cases such as electrodynamics (but
not in general, see [13]), thus for electrodynamics the Belinfante-Hilbert relationship can be used to obtain the
Belinfante superpotential and associated on-shell terms in (2.26) which are required to correctly improve the
canonical Noether tensor.
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Therefore the accepted energy-momentum tensor (2.1) is related to the Belinfante tensor
(2.26) as follows:

T µν = T µν
B − AνEµ. (2.27)

The Belinfante prescription alone does not yield the correct expression without adding this
additional term (−AνEµ) proportional to the equations of motion; equivalence to T µν

B alone can
only be established after imposing the on-shell condition Eµ = 0. Note that requiring such an
on-shell condition for just formulating the energy-momentum tensor is a severe restriction; in
contrast, the Noether energy-momentum tensor directly obtained in Method II can be defined
without any on-shell condition — only conservation requires imposition of the equations of
motion.

So we see that, when interested in symmetric energy-momentum tensors, the Belinfante
symmetrization procedure does provide an on-shell procedural fix in e.g. the case of electrody-
namics. But it is just a symmetrization procedure; it is not clear how it would, for instance, help
to obtain the physical (i.e. also tracefree and gauge-invariant and not just symmetric) energy-
momentum tensor in general.29 The overemphasis on energy-momentum tensor is a limitation
of Method I, geared entirely towards just one of the conserved tensors of special relativistic
field theory. Method II treats all conserved currents on the same ground; there is no privileging
of e.g. energy-momentum, angular momentum, conformal or dilatation tensors relative to one
another — all conserved currents follow directly and uniquely from Noether’s first theorem.

If we take the most charitable possible view of Method I, that the ad-hoc “improvements”
are entirely physically justified and a necessary correction after applying Noether’s first theo-
rem, one unavoidable fact remains: the ”improvement” procedure still requires on-shell condi-
tions to equate the accepted T µν to the improved tensor. In Method II, no on-shell conditions
are required to obtain the complete set of conservation laws.

Method II: Including Gauge Symmetries

There is another method for deriving the energy-momentum tensor, such that we directly obtain
it from Noether’s first theorem without requiring any ad-hoc “improvements”. Instead of using
the restrictive condition of Method I where we only consider the canonical transformations
(2.7), we instead use the most general picture of all possible field transformations such as
outlined in (2.18). Considering the transformations of the action

¯δAα = −Fν
αδxν, (2.28)

29[29] provide an improvement procedure based on requiring gauge invariance instead of just symmetry.
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Bessel-Hagen [26] (as well as [70, 153], among others) derived all 15 accepted conserva-
tion laws of electrodynamics directly from Noether’s first theorem using (2.28), (2.2) and the
sourcefree Lagrangian density L = −1

4 FµνFµν. In other words, (2.28) are what we call proper
transformations.

Eν ¯δAν + ∂ρ

(
[FρνFβ

ν −
1
4
ηρβFµνFµν]δxβ

)
= 0 (2.29)

where Eν is the Euler-Lagrange equation. Immediately Noether’s first theorem leads to the
physical energy-momentum tensor (2.1) in square brackets.30 More precisely, for the case of
the 4-parameter Poincaré translation, δxβ = aβ is a constant that can be pulled out of the total
divergence leaving the elegant identity,

Eν ¯δAν + aβ∂ρT ρβ = 0 (2.30)

Immediately we have a compact identity relating the Euler-Lagrange equation Eν and energy-
momentum tensor T ρβ of electrodynamic theory. The Lorentz force law, Poynting’s theorem
are all compactly derived alongside Maxwell’s equations. This compact identity makes it easy
to appreciate the celebrated elegance of Noether’s theorems.

Deriving the proper transformations from the Bessel-Hagen method

How can one obtain the proper transformations (2.28) that lead to the physical conser-
vation laws? The various authors [26, 70, 153, 155, 186] that independently came to this
conclusion used slightly different rationales, largely to do with requiring gauge invariance of
the Noether current or requiring gauge invariance of the transformations themselves. We will
follow the Bessel-Hagen approach because he was first to present this result, and took advice
from Noether herself on his paper. More explicit application of the Bessel-Hagen method to
electrodynamics can be found in [12]. Starting from the general transformations of fields (2.19)
in the case of electrodynamics we have,

¯δAν = −∂βAνδxβ − Aµ∂νδxµ + ∂νφ (2.31)

The question Bessel-Hagen asked is how to derive the parameter φ such that we have the
unique gauge invariant energy-momentum tensor of (sourcefree) electrodynamics. To do this
we substitute ¯δAν into the Noether current (2.2) and solve for φ to obtain a current which is

30Using (2.29) the 15 conformal conservation laws of electrodynamics are immediately obtained by inserting
δxβ from (2.20): four from the divergence of the energy-momentum tensor T ρβ = FρνFβ

ν −
1
4η

ρβFµνFµν, six from
the divergence of the angular momentum tensor Mρµν = xµT ρν − xνT ρµ, one from the divergence of the dilatation
tensor Dρ = T ρβxβ and four from the divergence of the conformal tensor Cρα = T ρβ(2xβxα − δαβ xλxλ)



50 Chapter 2. Noether’s first theorem and the Bessel-Hagen method

gauge invariant. The φ must depend on both the vector potential Aα (in order to obtain a gauge
invariant current) and the infinitesimal transformations of coordinates δxα (in order to factor
out the 4 parameter Poincare translation from the current and obtain the energy-momentum
tensor). Bessel-Hagen solved for φ, obtaining for the gauge parameter Aµδxµ, which is the
most trivial scalar combination of the required components. Inserting this φ into (2.31) and
differentiating the third term we have,

¯δAν = −δxβ∂βAν − Aµ∂νδxµ + δxβ∂νAβ + Aµ∂νδxµ (2.32)

Remarkably the second and last terms on the right hand side cancel (those associated to the con-
tragredient transformations) and we are left with exactly ¯δAν = −Fβ

νδxβ as in (2.28)! Therefore
the proper transformations that directly yield the physical conservation laws can be thought of
as a mixing of the various symmetries of the action, as opposed to an independent application
of symmetries as in the case of the canonical Noether energy-momentum tensor or Noether’s
second theorem.

We note that the selection of the gauge parameter, while aided by knowledge of the unique
gauge invariant energy-momentum tensor in the case of electrodynamics, can be obtained from
the Noether current. For this reason the method applies more generally to models where the
energy-momentum tensor is not already known. The more general application of Bessel-Hagen
to exactly gauge invariant actions in this way is the subject of [12], in which the Bessel-
Hagen method has successfully been applied to several field theories such as Yang-Mills, Kalb-
Ramond, third rank antisymmetric fields, and linearized Gauss-Bonnet gravity.

The proper form of the transformation was noticed for Yang-Mills theory by [110], without
deriving this from a procedure such as Method II. While the vast majority of textbooks give the
canonical picture alone, e.g. [39, 177] have noticed the proper transformations and avoided the
restrictive canonical presentation. One of our goals in the following is to settle this ambiguity
in favor of the proper transformations through appeal to the converse of Noether’s first theorem.

Proper transformation as gauge-invariant transformations

We now know that the appropriate choice of δĀα = δCAα + δgAα in the Noether identity for
classical electrodynamics directly leads to the accepted energy-momentum tensor, and that the
proper transformation can be chosen by solving for a δgAα that makes the current invariant. We
will explore how to justify the specific choice of δgAα a posteriori via the converse of Noether’s
first theorem in the next section, i.e. by starting from the accepted energy-momentum tensor.

Before doing so, we want to explore how to motivate the choice of δgAα other than by solv-
ing the Noether identity for δgAα while requiring that the energy-momentum is gauge-invariant.
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To this end, we will consider [70], who argued that gauge invariance of the transformation
¯δAα is the property one can use to determine the proper transformation ¯δAα = −Fν

αδxν as in
(2.28). eriksen1980 starts from the gauge condition in the case of sourcefree electrodynam-
ics, δgAα = ∂χ with χ = χ(A). The parameter χ is taken to be a arbitrary gauge parameter
we must solve for based on the condition that δgAα must be gauge invariant. By combining
the δT Aα (contragredient) and δgAα (gauge) transformations, the authors find an equation for χ
which does not uniquely determine χ; however they choose the “simple” solution that leaves
δgAα as a whole gauge invariant, which is identically χ = δxνAν, exactly what was found by
Bessel-Hagen!

One could now note how intuitive the requirement of a gauge-invariant transformation is:
as long as all expressions in the assumptions of the Noether theorem are gauge-invariant, the re-
sulting energy-momentum tensor should come out as gauge-invariant too. However, there exist
cases where the proper transformations that are used to derive the unique energy-momentum
tensor for a theory are not themselves gauge invariant, as we will discuss in Section 2.1.5. This
indicates limits in the scope of application of eriksen1980’s method. We note that the Bessel-
Hagen method works more broadly because it treats both the cases where the transformations
themselves are gauge invariant, as well as cases where they are not.

Converse of Noether’s first theorem as a test for Noetherian currents

We now use the converse of Noether’s first theorem relative to the Lagrangian density of elec-
trodynamics and the accepted energy-momentum tensor (2.1) in order to arrive at the relevant
variational symmetry linked to this T µν. As we will see, the converse can generally be used
to decide whether an energy-momentum tensor can be directly derived from Noether’s first
theorem — and thus from Method II.

We can derive the form of the transformations ¯δAν using the converse of Noether’s first
theorem based on the accepted energy momentum tensor, (2.1), as follows: We start with

Eν ¯δAν + aν∂µT µν = 0 (2.33)

and Noether’s first theorem (2.2). Since the 4-parameter Poincaré translation δxβ = aβ is asso-
ciated to the energy-momentum tensor it follows that ¯δAν = Uβ

νaβ, namely the transformation
of fields must be proportional to the 4-parameter aβ. Therefore, we must solve for Uβ

ν ,

Eν ¯δAν + aβ∂ρ

(
−FρνUβ

ν −
1
4
ηρβFµνFµν

)
= 0 (2.34)
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Subtracting the two equations (2.33) and (2.34) we have,

aβ∂ρ

(
−FρνUβ

ν −
1
4
ηρβFµνFµν

)
= aβ∂ρ

(
FρνFβ

ν −
1
4
ηρβFµνFµν

)
(2.35)

We have Uβ
ν = −Fβ

ν, and thereby recover the proper transformations for the Poincaré transla-
tion δĀν = −Fβ

νaβ. More generally we can solve for δxν from the Noether identity and again we
have the requirement ¯δAα = −Fν

αδxν. Thus, if we consider the converse of Noether’s first the-
orem on the accepted T µν (2.1), the canonical transformation (2.7) associated to the canonical
Noether energy-momentum tensor (2.10) never appears in isolation! In other words, in the case
of electrodynamics, the converse of Noether’s first theorem confirms Method II as the method
directly associated to Noether’s first theorem. At the same time, we can now realise from the
vantage point of the converse Noether theorem that Method I simply uses the wrong symmetry
to begin with. The failure to recognise the properly adapted symmetry transformations leads to
the need to introduce — and justify, if possible — ad hoc “improvements”.

The lesson from electrodynamics generalises: Given a proposed energy-momentum tensor,
we learn through Noether’s converse which (if any) symmetries are linked to it; if there are none
linked to it, then the energy-momentum tensor cannot be derived directly from Noether’s first
theorem.31 So, in cases like electrodynamics for which the canonical energy momentum tensor
lacks essential properties, we find that the improvements can be avoided by using Noether’s
first theorem properly (that is, by exploiting the complete set of variational symmetries of the
action) — and thus that there is nothing wrong with the Noether method to begin with. In cases
where the converse does not give symmetries linked to an energy-momentum tensor, we at least
learn that this energy-momentum tensor cannot be derived from Noether’s first theorem.

We should acknowledge that the approach we are advocating is not as straightforward in
case we do not already know the appropriate energy-momentum tensor for the relevant fields.
We have criticized the improvement approach because it apparently relies on knowing the
proper form of the energy-momentum tensor in order to find the appropriate improvement
terms; yet we also need to know the proper form of the energy-momentum tensor to apply
the converse. Although our exposition of Method II was based on a case where we do know
the energy-momentum tensor, we claim more generally that it gives a clearer account of the
relationship between symmetries and conserved currents. This can lead to a kind of reflective
equilibrium in assessing candidates for energy-momentum tensors and the associated symme-
tries. We will turn to just such a case in the next section, namely linearized spin-2 fields where
numerous energy-momentum tensors have been proposed.

31This raises the question whether such an object earns the title of energy-momentum tensor in the first place.
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2.1.5 Applications beyond electrodynamics

Up to this point we have used electrodynamics to explicate Method II — but it has much
broader scope than this. As a matter of fact, a recent series of papers has shown how Method
II applies to several classical, relativistic field theories, such as:

• (Source-free) Yang Mills [12], with the Lagrangian LY M = −1
4 Fa

µνF
µν
a . Applying Method

II with the “mixed” variational symmetry δ̄Aa
µ = −Fa

µνδxν (with δxν = aν) leads to the
energy-momentum tensor T µν = Fµλ

a Faν
λ −

1
4η

µνFa
λρF

λρ
a .32 The energy-momentum tensor

is invariant under the gauge transformation δgĀaµ = ∂µθa + CabcAb
µθ

c.

• Linearized Gauss-Bonnet gravity [14, 9], with the LagrangianL = 1
4 (RµναβRµναβ−4RµνRµν+

R2).33 The variational symmetry δh̄ρσ = −2Γνρσδxν (with δxν = aν) leads to the generally
accepted energy-momentum tensor,34 which is gauge-invariant under the spin-2 gauge
transformation δgh̄µν = ∂µξν + ∂νξµ.

Just as with electrodynamics, applying the mixed variational symmetry in each of these cases
leads directly to the accepted energy-momentum tensor. bakerthesisBHpaper discusses several
other cases as well.

What can then be said about the scope of the method? For a given gauge invariant La-
grangian density, an exact variational symmetry can be found such that the Noether current
associated to the Poincaré translation will be the physical energy-momentum tensor. Notably,
it is not a necessary criterion that the total symmetry transformation is gauge-invariant: Recall-
ing 2.1.4, the decisive symmetry transformation in electrodynamics (as given by the standard
Lagrangian) is gauge-invariant, but the symmetry transformation is not always itself gauge in-
variant (e.g. linearized Gauss-Bonnet gravity). This means that the proper variational symme-
tries can not always be systematically obtained from requiring gauge-invariance of the proper
transformation, which showcases the restrictions of the procedure presented in section 2.1.4. In
other words, as an exactly gauge invariant symmetry transformation will only be sufficient but
not necessary for obtaining a gauge-invariant conserved current; Method II à la Bessel-Hagen
has a much wider scope than the method of [70].

Put the other way around, problems arise for Method II when: (1) we have a model that does
not have an exactly gauge invariant action, so that solving for the right gauge-transformation
becomes extremely laborious if not impossible, or (2) when the energy-momentum tensor is

32The field strength tensor is given by Faµν = ∂µAav −∂νAaµ +CabcAb
µAc

ν where Cabc is the totally antisymmetric
structure constant.

33Appearing in the Lagrangian are the linearized Riemannian tensor, defined as Rµναβ = 1
2 (∂µ∂βhνα + ∂ν∂αhµβ −

∂µ∂αhνβ − ∂ν∂βhµα), and contractions of it.
34Explicitly, Tων = −RωρλσRν

ρλσ + 2RρσRωρνσ + 2RωλRν
λ − RRνω + 1

4η
ων(RµλαβRµλαβ − 4RµνRµν + R2)
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questionable but the BH not applicable because there is just no gauge symmetry to begin with.
We will outline now how in both cases at least the Noetherian nature of the energy-momentum
tensor can be checked upon application of Noether’s converse.

With respect to (2), an interesting application of Noether’s converse is to reveal the im-
proved Callan-Coleman-Jackiw (CCJ) traceless energy-momentum tensor of the Klein-Gordon
theory (see [45]) as non-Noetherian relative to the standard Lagrangian.35 However, an energy-
momentum tensor that is non-Noetherian relative to some Lagrangian may be Noetherian to the
same Lagrangian up to a divergence term; this is exactly the case of the CCJ-energy-momentum
tensor (see [127]).

Turning to (1), an appealing possible application of Noether’s converse regards the case of
the spin-2 Fierz-Pauli action where the gauge symmetry of the equation of motion (linearized
diffeomorphisms) is not an exact symmetry of the action; the action is only invariant up to a
boundary term (see [14]). Furthermore, there is no gauge-invariant energy-momentum tensor
for spin-2 gravity (see [140]) to begin with, so we cannot use gauge invariance to help pick
out a unique expression.36 If an action is not exactly invariant such as in the case of spin-2,
generalizations of Noether’s theorem to symmetries up to boundary terms (i.e. the non-exact
symmetries method in [26]) must be applied; the application of these methods to spin-2 Fierz-
Pauli theory is the subject of future work.

To elaborate a bit on the issue: For linearized gravity (massless spin-2 gravity), there are
numerous proposals for T µν (see [28] for an overview). This ambiguity cannot be avoided
in, for example, attempts to derive general relativity from a spin-2 field theory that proceed
by taking the spin-2 field hµν to be self-coupled. Which T µν should be added to the action to
represent this self-coupling? Here authors disagree on whether the Einstein field equations can
be derived from spin-2 Fierz-Pauli theory, to a large degree based on their choice of which
T µν to select (if they even grant that it is physically well-defined despite its inevitable gauge-
dependent nature). (See [163] for a criticism, and [16] for a defense, of conventional wisdom
on this issue.)

Linearised (massless) spin-2 gravity is given by the (massless) Fierz-Pauli Lagrangian den-
sity

LFP =
1
4

(
∂αhββ∂

αhγγ − ∂αhβγ∂αhβγ + 2∂αhβγ∂γhβα − 2∂αhββ∂
γhγα

)
with canonical Noether energy-momentum tensor T µν

C = ηµνL − ∂L
∂(∂µhαβ)∂

νhαβ — the linearized

35We call an energy-momentum tensor Noetherian relative to L if it is directly derivable from a variational
symmetry of L via Noether’s first theorem.

36Arguably, this jeopardises the application of BH method which is centrally about achieving a gauge-invariant
current.
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Einstein energy-momentum tensor gives exactly this canonical expression ([184]). Strikingly,
this tensor is neither gauge-invariant nor symmetric nor traceless. As we know from [140],
there is no energy-momentum tensor for spin-2 Fierz-Pauli theory that is gauge-invariant. Can-
didates for such “improved” energy-momentum tensors for linearized gravity usually presented
include, for example, the linearized Hilbert and Landau-Lifshitz expressions — both of which
can be obtained by adding the appropriate divergence of superpotential and terms proportional
to the equations of motion to T µν

C (see [8]). Strong adherents to Method I might then suggest
that since any such energy-momentum tensor (conserved on-shell using the spin-2 Fierz-Pauli
equation of motion) follows from the addition of improvement terms, that all such linearized
gravity energy-momentum tensors are in some sense connected to Noether’s first theorem. In
[8] it is shown that there are infinitely many such ”improved” energy-momentum tensors for
linearized gravity.

A much more straightforward approach for spin-2 linearized gravity then is to apply the
converse of Noether’s first theorem to the various expressions in the literature as we did for
electrodynamics in the previous section. This would concretely determine which (if any) can
yield δXβ and ¯δhµν symmetry transformations to prove a direct and meaningful connection to
Noether’s first theorem. Concretely, one would have to use the Noether identity

(
∂L

∂hµν
− ∂ρ

∂L

∂(∂ρhµν)

)
δh̄µν + ∂ρ

(
ηρβLδXβ +

∂L

∂(∂ρhµν)
δh̄µν

)
= 0 (2.36)

for each energy-momentum tensor and solve for δh̄µν in the same way we solved for the vari-
ational symmetries of electrodynamics in Section 2.1.4, where ¯δhµν = −∂βhµνδXβ + δhµν. As
in the case of electrodynamics, the term proportional to the Lagrangian density (ηρβL) must
have a Lagrangian density L which yields the spin-2 equation of motion in the Euler-Lagrange
equation — otherwise the energy-momentum tensor in question will not be associated to spin-2
Fierz-Pauli theory in the context of Noether’s first theorem, regardless of the transformations
we consider. Regardless of the outcome of this calculation we will have a strong statement
about the energy-momentum tensors for spin-2 theory in the literature: either that Noether
transformations can select a preferred expression, confirm numerous expressions can be ob-
tained from the Noether approach, or show that there is problems with applying Noether’s
first theorem to this model as a whole. If transformations can uniquely be solved for by the
converse of Noether’s first theorem, then we can say that a given expression can be directly
derived. If there is no solution, then a given expression cannot be claimed to be associated to
Noether’s first theorem for a particular Lagrangian density. Whether or not the various pub-
lished expressions can be directly obtained, regardless of outcome, will provide clear insight
into the relationship between the linearized gravity energy-momentum tensors in the literature
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and Noether’s first theorem. We note there are debates as to whether or not such programs are
even related to GR (see, for instance, [173, 65]), but regardless this is an active topic that leads
to considerable confusion in both the physics and philosophy literature. This application of the
converse of Noether’s first theorem to spin-2 is the subject of future work.

2.1.6 Equivalence classes

Mathematics often draws finer distinctions than physics requires. Physicists typically treat a
unique definition of a fundamental quantity as necessary for understanding its physical signif-
icance, and this can conflict with the embarrassment of riches resulting from mathematicians’
drive to generalize. A natural response is to regard some range of mathematically distinguished
possibilities as falling within an equivalence class, such that physical interpretations need not
draw distinctions among its members. Recent philosophical discussions (see [36] in this vol-
ume) have argued that Noether’s theorem should be read as relating an equivalence class of
symmetries to an equivalence class of conservation laws. This suggests that the search for a
unique energy-momentum tensor we have been pursuing is misguided or unnecessary — we
should be satisfied with an equivalence class of energy-momentum tensors. In this section we
aim to adjudicate these questions regarding uniqueness and the appropriate criteria of equiva-
lence, or (perhaps more accurately) at least to survey some of the considerations that bear on
them.

There are two rather obvious notions of equivalence related to the results above then: First,
in the Noether identity (including vector field theories (2.2) such as electrodynamics), the ‘in-
side’ of the divergence on the right-hand side is only determined up to a term that disappears
identically when hit by a divergence. In other words, whatever is inside the divergence term,
it is only characterised by the Noether identity up to the divergence of a superpotential and
terms proportional to the equations of motion. This means that Noether’s theorem can be said
to only link a variational symmetry to an equivalence class of conservation laws in the sense
that two conservation laws are equivalent iff they differ by these superpotential terms (call this
superpotential equivalence).37 Secondly, going beyond mere formal considerations, a straight-
forward empiricist is naturally inclined to only take the divergences of the energy-momentum
tensor to be relevant: as you can only measure out solutions — i.e. what arises on-shell —,
all empirical data according to the straightforward empiricist is in the solutions; alternatively,
this data can be seen as codified into the dynamical equations and the space of possible initial
conditions (provided the problem is well-posed). On such a view, then, it is just consequential
to define two energy-momentum tensors to be equivalent iff they differ by superpotential terms

37Cf. [36].
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and terms proportional to the equations of motion (call this empiricist equivalence).38

So far so good. But the evaluative question simply is: should we indeed treat the symme-
tries as determining only an equivalence class of energy-momentum tensors in the superpoten-
tial or even the empiricist sense? In electrodynamics, the empiricist equivalence class would
consist of tensors generated from the canonical tensor (2.9) by adding a general linear system
of superpotentials and terms proportional to the equations of motion:

T µν = FµαFν
α −

1
4
ηµνFαβFαβ + C1∂αΨ

[µα]ν + C2AνEµ + C3AµEν + C4η
µνAαEα (2.37)

where Ψ[ρα]σ is the most general rank-three tensor defined in terms of the potential and deriva-
tives of the potential, with the required symmetry properties. We recover the standard expres-
sion by setting Cn = 0 (for all n). But even allowing Cn to take arbitrary values, (2.37) will still
satisfy the Noether identity (2.2). In the case of spin-2, any of the published energy-momentum
tensors can be obtained from the canonical Noether tensor by adding superpotential terms and
on-shell contributions [8], leading to a collection of infinitely many energy-momentum tensors
in an equivalence class.

A positive answer to the evaluative question would contrast sharply with the common prac-
tice in physics of taking (2.1) as the “correct” expression. One possibility is that physicists
simply choose one element of the equivalence class by convention or as a matter of conve-
nience. (If the elements of the equivalence class truly “represent the same physical situation,”
it would be a mistake to demand physical justification of the choice.) But this is not the position
one finds; instead, there are various claims to have established the uniquely correct physical
expression for the energy-momentum tensor for various classical field theories [95, 76].

We can offer a more insightful explanation as to why this evaluative question should indeed
be answered in the negative by the practitioner than a mere conventionalist stance. First, simply
note that what we dubbed the empiricist equivalence builds on a heavily local sense of what
is empirically relevant: off-shell differences may not be empirically relevant classically but
they do for instance become empirically relevant upon quantisation (think of the Feynman path
integral picture). Furthermore, in the specific context of energy-momentum tensor, one might
gesture at that gravity does care about the absolute value of matter energy-momentum and that
we should thus do so then even outside of gravitational theories.

But much more importantly, and independently of empirical matters, it is simply a fact that

38To be clear: all of the thus equivalent energy-momentum tensors can be determined empirically (The com-
ponents of the energy-momentum tensors are functions of field values; so as long as one can measure out field
values — which is beyond doubt for classical field theories — the energy-momentum tensors can be measured
out.) But none of the thus equivalent energy-momentum tensors can be preferred on empirical grounds according
to the local empiricist.
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physical practice centrally relies on the adherence to non-empirical theoretical virtues — in-
cluding the imposition of guiding principles in order to comply with these virtues.39 From a
methodological point of view not only is it thus straightforward to reject the previously intro-
duced notion of empiricist equivalence — even the purely formally implied equivalence up to
superpotential in light of the Noether identity has to be dismissed as too coarse-grained. (In
practice, accepted physical conservation laws of standard field theories such as electrodynam-
ics and Yang-Mills theory are derived without requiring any notion of equivalence class. What
purpose does considering the equivalence class that satisfies the Noether identity serve if the
complete set of equations for the theory have already been uniquely obtained?)

The detailed argument runs as follows: a central methodological guiding principle in phys-
ical theory construction is that theoretical objects should contain as much information about
the theoretical context at play as possible (informativeness principle).40 This guiding principle
can be seen as grounded in different virtues: most obviously, it manages to maximise the in-
formation content of the theory in its own right. It may also be seen as realising — possibly as
a by-product but this is not clear — other virtues such as the already hinted at connectability
to successor theories. In any case, given this principle, it is out of question to consider two
energy-momentum tensors as equivalent tout court just because they are dynamically equiva-
lent (in the sense that they are equal on-shell). More than that: it is also ruled out now to declare
energy-momentum tensors equivalent when only differing by rather trivial (since arbitrary) su-
perpotential and on-shell terms as they change the components of the energy-momentum tensor
itself.

So, if we are committed to the informativeness principle — as we take practitioners to be —
Noether’s theorem only seems to link specific symmetries to specific conservation laws — and
not to a whole class of conservation laws. It should be clear by now then that our points in the
previous sections about the relation between symmetries and conservation laws (say relative
to Method 1 and Method 2) are exactly methodological points under the assumption of the
informativeness principle.

2.1.7 Conclusions

Noether’s first theorem is one of the most celebrated results in physics. Yet, standard textbook
and literature presentation gives the picture that this method fails to derive standard physical
conservation laws: the canonical Noether energy-momentum tensor, which is derived using a
restricted condition placed on Noether’s first theorem, does not give the known physical energy-

39For a metaphysical reading of off-shell conservation expressions, see [135].
40What we call informativeness principle, might also be re-cast as a principle of theoretical parsimony in the

sense that the available structure should be maximally informative so that no surplus structure has to be added.
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momentum tensor in foundational models such as electrodynamics and Yang-Mills theory. All
of this creates the impression that Noether’s first theorem, despite frequent praise in the scien-
tific community, is in some sense not working in practice for our most significant theories. We
hope that our presentation of the Bessel-Hagen method (Method II) has let the reader regain
confidence in the power of Noether’s first theorem when applied to exactly gauge-invariant
field theories: using the complete set of (mixed) symmetries of the action (both gauge and
coordinate symmetries), one obtains transformations that directly yield the known physical
energy-momentum tensor of electrodynamics and theories with a gauge-invariant Lagrangian
density more generally. No “improvement” of the energy-momentum tensor is needed to sup-
plement (nor actually advised for by) the Noether machinery.

In showcasing the proper application of Noether’s theorem in the context of exactly gauge-
invariant theories, we have, moreover, learned that the conventional wisdom that a specific
variational symmetry (namely the canonical variational symmetry) is linked to a specific con-
servation law by the Noether machinery after all remains true within the bulk of classical field
theory in practice. As we had already said in the introduction, one is free to question the link-
age by more theoretical counterexamples — but this is a question for another day. Yet another
interesting insight was gained along the way: contra common characterisations in the litera-
ture, Noether’s first theorem is not solely concerned with what we called canonical variational
symmetries exclusively but rather the complete set of symmetries of the action (this includes
gauge symmetries which are sometimes portrayed as being only associated to Noether’s second
theorem). We have used the converse of Noether’s first theorem as a method for emphasizing
this fact, as the canonical variational symmetries do not follow from the converse theorem for
the majority of accepted physical energy-momentum tensors in the literature.

Finally, there is a sense in which our overall message in favour of Method II could be
made even more strongly: Throughout the article, we had tacitly accepted the common theme
in the literature to pay special attention to the energy-momentum tensor over and above other
conserved currents in special relativistic field theory. This is important to note as it is quite
possible that many of the non-uniqueness and ambiguity problems associated to tensor conser-
vation laws are a result of limiting oneself to the case of energy-momentum tensor specifically,
and that the large variety of methods for energy-momentum construction compared to the other
tensors is rather an issue that may not be solved by treating the energy-momentum tensor as
a privileged standalone object. From the point of view of Noether’s first theorem and Method
II, none of the standard conserved tensors (energy-momentum, angular momentum, conformal
and dilatation) are privileged compared to each other. Thus, if we agreed to consider only
methodology which links all of the conserved tensors of a theory to variational symmetries
simultaneously, Noether’s first theorem in the sense of Method II may give a much needed
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uniqueness in methodology akin to the Euler-Lagrange equation for an equation of motion.
Such a view, if adopted, has promise to end the various ambiguity and non-uniqueness prob-
lems associated to the energy-momentum tensor once and for all.
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2.2 Contemporary controversy with improving the canoni-
cal Noether energy-momentum tensor solved one hun-
dred years ago by Bessel-Hagen

2.2.1 Method II (the Bessel-Hagen method) Applied to Gauge Theories

In the previous article we discussed the problem with multiple distinct methods of applying
Noether’s first theorem to classical gauge theories, and argued that Method II (the Bessel-
Hagen method) is the proper application of Noether’s first theorem to physical theories based
on various factors (off-shell equivalence, no ad-hoc “improvments” required, the converse of
Noether’s first theorem, etc.). In Bessel-Hagen’s 1921 paper [26], he only performed these cal-
culations for classical electrodynamics. Other similar approaches have considered Yang-Mills
theory [153], but formal application of the Bessel-Hagen method to various gauge theories
beyond electrodynamics have not been considered. In this article we will consider several ap-
plications of the Bessel-Hagen method, which verify its applicability to various completely
gauge invariant actions. We give the complete set of conformal conservation laws associated
to each model we consider, and discuss these results at the end.

This article is unique compared to the others in the PhD thesis, because what is included
in the PhD thesis is small fraction of the article which we have prepared to submit to a journal
in the near future (it is one of the two articles in this thesis that are not currently published).
The reason for this is that this article (in complete form) is a semi-historical, semi-review,
semi-philosophical, semi-mathematical and semi-physical 50+ page paper which covers the
history of Noether’s first theorem and the controversy around improving the canonical Noether
energy-momentum tensor, the Bessel-Hagen method, and associated conflicting results. These
historical, review, and philosophical aspects have been removed from the article included in
the PhD thesis for brevity (the thesis is already over 200 pages without this article included)
and because in the previous article [15] in Section 2.1 there is a lot of overlap which covers the
general introductory material required to understand what we include here. What we include
here is simply the application of Bessel-Hagen method to three models: Kalb-Ramond, Yang-
Mills, and totally antisymmetric fields of third rank. Note that we also used the Bessel-Hagen
method for the linearized Gauss-Bonnet gravity model in [14]. In this article, we follow the
notation of Bessel-Hagen, which differs from the previous article in that we refer to coordinate
transformation δxτ as 4xτ.
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2.2.2 Kalb-Ramond Field

We start our application of the Bessel-Hagen method with the Kalb-Ramond field: a sec-
ond rank totally antisymmetric field model. Historically totally antisymmetric field models
(Abelian generalizations) were introduced by N. Kemmer in 1938 [118] before generalization
of electrodynamics to non-Abelian, non-linear, Yang-Mills theory was even published [196].
The gauge invariance of these models was mentioned first by Ogievetsky and Polubarinov
[162] and only later such models became a popular subject of research; antisymmetric tensor
fields are widely used in string models [115, 54, 157] and as well as in some supersymmetric
models [53, 52, 180].

The action of electrodynamics can be viewed as the first in a series of such (similar) mod-
els with contraction of independently gauge invariant “field strength” tensors, the next one
(which we refer to as Kalb-Ramond theory) being the Abelian gauge theory of a second rank
antisymmetric tensor Aµν = −Aνµ with a vector gauge parameter θν,

Aµν → Aµν + ∂µθν − ∂νθµ, (2.38)

and the third rank field strength,

Fµνρ = ∂µAνρ + ∂ρAµν + ∂νAρµ, (2.39)

which is invariant under transformation (2.38),

δθFµνρ = 0, (2.40)

and totally antisymmetric in its three indices, Fµνρ = −Fνµρ, etc. The Lagrangian density is
analogous to that of electrodynamics:

L
(2) = −

1
6

FµνρFµνρ. (2.41)

The Lagrangian density (2.41) is invariant under transformations (2.38), δθL(2) = 0, as well
as the equation of motion δθEαβ = 0, where Eαβ is the corresponding Euler derivative of (2.41),

δL(2)

δAαβ

= Eαβ = ∂γFγαβ. (2.42)

To have a more complete analogy with electrodynamics, we will also introduce the Bianchi
identity for this model,

∂µFνρσ − ∂σFµνρ + ∂ρFσµν − ∂νFρσµ = 0. (2.43)
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Already in [118], the Lagrangian (2.41) as well as the energy-momentum tensor,

Tµν = FµβγF βγ
ν −

1
6
ηµνFαβγFαβγ, (2.44)

were given, although without discussion of gauge invariance, perhaps because the gauge rev-
olution had not started yet, and the energy-momentum tensor was given without derivation
[188] — likely just by analogy with the known energy-momentum tensor of electrodynamics.
As in the case of the electrodynamic theory, the energy-momentum tensor (2.44) has a unique
property: it is gauge invariant. The lack of discussion or derivation of this energy-momentum
tensor is understandable, as in many cases, papers were not dedicated to conservation laws and
their derivations, or because application of the Noether theorem to classical field theories was
not a subject of heavy investigation in those years. Why such models are completely miss-
ing in recent review papers dedicated to Noether’s theorems and conservation laws is unclear
and remains to be mystery to us, especially because “canonical” conserved currents for this
model can be found in literature, e.g., [117] where the “canonical” energy-momentum tensor
and angular momentum were given by,

TC
µν = FµβγAβγ

,ν −
1
6
ηµνFαβγFαβγ, (2.45)

MC
αµν = xµTαν − xνTαµ + FαµσA σ

ν − FανσA σ
µ , (2.46)

where TC
µν, as in the case of electrodynamic theory, is neither gauge invariant nor symmetric,

unlike the original ones in [118]. In later publications the gauge invariant energy-momentum
tensor (2.44) of [118] can be found, e.g. in [188] but with no discussion, derivation or compar-
ison with a ”canonical” one, published earlier [117].

The model (2.41) exhibits a very strong similarity with electrodynamic theory: gauge in-
variance, a Lagrangian density quadratic in “field strength” tensor, and exact gauge invariance
of all equations of this model. This observation allows to simplify our analysis considerably.
Identical to our calculation for electrodynamics in [15] we have the bar field variations propor-
tional to field strength as δ̄Aµν,

δ̄Aµν = −Fµντ4xτ. (2.47)

We will also detail the Bessel-Hagen calculations for Yang-Mills theory later the article. We
can now use this form of the bar field variations in the Noether identity, as we did in Section 2.1
[15]. To simplify calculations we will use the compact form of the Noether identity [159, 160],
which is the Noether identity if not separated into the familiar Euler-Lagrange equation and
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Noether current,

δ̄L + ∂µ (L4xµ) = 0. (2.48)

Using the Noether identity (2.48) for the group of coordinate 4xτ and field (2.47) transfor-
mations, we have the Noether identity for the Kalb-Ramond fields,

∂
(
−1

6 FµντFµντ
)

∂
(
∂ρAσλ

) ∂ρ
(
δ̄Aσλ

)
+ ∂ρ

(
−

1
6

FµντFµντ4xρ
)

= 0, (2.49)

Fρσλ∂ρ (Fσλτ4xτ) −
1
6
∂ρ

(
FµντFµντ4xρ

)
= 0.

Using the Bianchi identity the Noether identity (2.49) can be simplified to,

FρσλFσλτ∂ρ4xτ −
1
6

FµντFµντ∂ρ4xρ = 0. (2.50)

Until now we have worked with a general coordinate transformation 4xρ. Recalling the 15
parameter conformal transformations from [15],

4xα = aα + ωαβxβ + S xα + 2ξνxαxν − ξαxνxν, (2.51)

we will now check that the Noether identity is satisfied for each of these parameters. For
translation, 4xρ = aρ, ∂ρ4xτ = 0, and (2.50) is immediately satisfied. For rotation, 4xρ =

ωρλxλ, and for the Noether identity (2.50) we have,

FρσλFσλτ∂ρ
(
ωτλxλ

)
−

1
6

FµντFµντ∂ρ (ωρσxσ) = FσλρFσλτω
τ
ρ −

1
6

FµντFµντωρ
ρ = 0,

where both terms are zero: the second term due to the trace of antisymmetric ωρλ, and the
first one is contraction of symmetric (FρσλFσλτ) and antisymmetric (ωτρ) parts. For dilatation,
4xµ = S xµ, and for the Noether identity (2.50) we have,

FρσλFσλτS δτρ −
1
6

FµντFµντδρρS = FτσλFσλτS −
1
6

FµντFµντDS .

This will work only be satisfied in D = 6 (6 dimensions). Similarly for conformal transfor-
mations, 4xτ = 2ξνxνxτ − ξτxνxν, for the Noether identity (2.50) we have,

2FτσλFσλτ (ξνxν) −
1
6

2DFµντFµντ (ξνxν) = 0.

Conformal transfomrations also satisfy the identity only in D = 6. In all dimensions, we
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have the Poincare group satisfying the identity (10 parameters in D = 4, or D(D+1)
2 , in general)

and conservation of energy-momentum and angular momentum tensors. In D = 6, as is the case
for electrodynamics in D = 4, we have conformal group invariance (with 15 parameters in D =

4, or (D+1)(D+2)
2 , in general). Note that, like in electrodynamics, for “canonical” transformations

in D = 6 we also have conformal invariance despite the fact that the energy-momentum tensor
is neither symmetric nor gauge invariant.

To obtain conservation laws, we have to extract Euler derivatives (rewrite the Noether iden-
tity in terms of the Euler-Lagrange equation — Lagrange expressions in Noether’s terminol-
ogy) in (2.49), that leads to,

Eσλδ̄Aσλ = ∂ρ
[(
−F σλ

ρ Fσλτ +
1
6
ηρτFµναFµνα

)
4xτ

]
= ∂ρ

[
Tρτ4xτ

]
, (2.52)

where we immediately have the (correct) symmetric, gauge invariant energy-momentum
tensor for Kalb-Ramond theory for the 4-parameter Poincare translation 4xτ = aτ,

Tρτ = −F σλ
ρ Fσλτ +

1
6
ηρτFµναFµνα, (2.53)

which is identical to the one postulated in [118]. No improvement terms or on-shell con-
ditions are required; it is directly derived from Noether’s first theorem. From (2.52), using the
remaining expressions for 4xτ from (2.51), we derive the remaining conservation laws for the
angular momentum tensor,

Mρτν = Tρτxν − Tρνxτ, (2.54)

dilatation tensor,

Dρ = Tρτxτ, (2.55)

and conformal tensor,

Cρν = Tρτ2xνxτ − Tρνxµxµ. (2.56)

Note again that the last two (dilatation and conformal tensors) are only valid for this theory
in D = 6.

2.2.3 Totally Antisymmetric Fields (Third Rank)

The third rank generalization for totally antisymmetric fields was also already given in Kem-
mer’s paper [118] (see also [157], [5]). In four dimensions, we can not go further because a
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field strength totally antisymmetric in five indices vanishes identically, i.e., this is the last pos-
sible in D = 4. In higher dimensions we could consider higher ranks but this is outside of the
focus of this thesis. The Lagrangian density for the totally antisymmetric fields of highest rank
in D = 4 is,

L
(3) = −

1
8

FµνρσFµνρσ, (2.57)

where the totally antisymmetric field strength tensor is,

Fµνρσ = ∂µAνρσ − ∂σAµνρ + ∂ρAσµν − ∂νAρσµ, (2.58)

with totally antisymmetric potential Aµνρ = −Aνµρ = ... etc. The gauge transformation is,

Aµνρ → Aµνρ + ∂µθνρ + ∂ρθµν + ∂νθρµ, (2.59)

where the gauge parameter θµν is a second rank antisymmetric tensor θµν = −θνµ. The field
strength (2.58), Lagrangian density (2.57), and Euler-Lagrange equation,

Eαβσ =
δL(3)

δAαβσ

= ∂γFγαβσ, (2.60)

are all independently and exactly gauge invariant (as is the case in electrodynamics and Kalb-
Ramond), thus we have δθFµνρσ = 0, δθL = 0 and δθEαβσ = 0. The Bianchi identity for this
model is,

∂µFνρσγ + ∂γFµνρσ + ∂σFγµνρ + ∂ρFσγµν + ∂νFρσγµ = 0. (2.61)

Again for the bar field transformations we have use the gauge freedom of the theory trans-
formations which are proportional to the field strength tensor,

δ̄Aµνρ = Fµνρτ4xτ. (2.62)

identical to the electrodynamics calculations in [15]. Using this transformation to check the
Noether identity (2.48) we are left with,

−Fρσλγ∂ρ
(
Fσλγτ4xτ

)
+ ∂ρ

(
−

1
8

FµνλσFµνλσ4xρ
)

= 0.

Performing exactly the same calculations as in the case of electrodynamics and Kalb-
Ramond we have gauge invariant conservation laws for the translation and rotation as well
as for full conformal group in a specific dimension (D = 8 in the case of this model). These are
identical to (2.53) for energy-momentum, (2.54) for angular momentum, (2.55) for dilatation
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and (2.56) for conformal (instead with the field strength tensor in (2.58)).

2.2.4 Yang-Mills theory

We will now consider the prototypical non-Abelian gauge theory, Yang-Mills theory [196], to
show that the Bessel-Hagen method is not restricted to the Abelian gauge theories we have
considered so far. The Lagrangian density of the Yang-Mills action is,

LY M = −
1
4

Fa
µνF

µν
a , (2.63)

where Faµν is the field strength tensor,

Faµν = ∂µAav − ∂νAaµ + CabcAb
µAc

ν. (2.64)

Here Cabc is the totally antisymmetric structure constant (Cabc = −Cbac, etc.). Greek indices
µ, ν, ... refer to space-time (µ = 0, 1, 2, 3), whereas Latin indices are internal, e.g., Fa

µν is a
covariant second rank antisymmetric tensor. Index a (a = 1, 2, 3) in Aa

v and Fa
µν counts fields

and their field strengths (we follow convention of Weinberg [191]). The gauge transformation
of Aa

µ is,

δθAaµ = ∂µθa + CabcAb
µθ

c ≡ Dµθa, (2.65)

which is the gauge transformation of Yang-Mills theory (θa are arbitrary real functions of space-
time coordinates, Dµ is a so-called“covariant derivative”). The Euler-Lagrange equation (equa-
tions of motion) for the theory is,

Eµ
a =

δLY M

δAa
µ

=
∂LY M

∂Aa
µ

− ∂ν
∂LY M

∂
(
∂νAa

µ

) = CabcAb
νF

cνµ + ∂νFνµ
a = DνFνµ

a . (2.66)

Neither the field strength nor Lagrange expressions for the Yang-Mills theory are exactly
gauge invariant (they are proportional to themselves δθFaµν = CabcFb

µνθ
c and δθE

µ
a = CabcEbµθc).

However, because of these relations and antisymmetry of the structure constant, the Lagrangian
density is exactly gauge invariant,

δθFa
µνF

µν
a = Fµν

a δθFaµν = CabcFµν
a Fb

µνθ
c = 0, δθLY M = 0,

and also quadratic in field strength that makes it very similar with the other theories we con-
sidered, despite of non-linearity of the Yang-Mills Lagrangian (2.64) and equations of motion
(2.66). The exactly gauge invariant Lagrangian density allows for straightforward application
of the Bessel-Hagen method — for application of Noether’s first theorem, invariance of an
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action is a nessesary condition as well as its invariance under gauge transformations that was
used in the Bessel-Hagen derivation, i.e., we have both these conditions in Yang-Mills theory.
From the treatment of previous models it is clear that the use of the Bianchi identities can
considerably simplify calculations. For the Yang-Mills field strength we have the identity,

DµFa
νλ + DλFa

µν + DνFa
λµ = 0, (2.67)

As in the previous cases the bar transformation of fields is identically,

δ̄Aa
µ = Fa

µν4xν, (2.68)

which we will calculate in detail at the end of this section. In fact, transformation (2.68) in the
case of the Yang-Mills theory is not new and was considered by Jackiw [110], although his pre-
sentation was very ad-hoc and connection to Noether’s first theorem was not explicitly demon-
strated or even discussed, but as the origin of such modification, the author referred to previ-
ous investigations of (extended) supersymmetric models; this so-called ”the gauge-covariant
translation”[60], naturally arises in the composition law for two infinitesimal sypersymmetry
transformations that involve infinitesimal space-time (coordinate) transformations. Note that
(2.68) here is not just a translation, and 4xν are all infinitesimal transformations of conformal
group. The authors of [60] noticed that the Noether procedure for a covariant translation leads
to a gauge-invariant expression for the energy-momentum tensor, but following the convention
in the literature, turned in their discussion back to the ”canonical” energy-momentum tensor
and corresponding Belinfante improvement.

The short ad-hoc presentation of [110] is probably the reason that this article, as well as the
proper transformations for Yang-Mills (2.68), are usually not even mentioned in review papers
on conservation laws; even in the recent review [29], where an almost complete list of works
dedicated to direct application of Noether’s theorem was given (see [37-40,50] of [29]), the
paper of Jackiw (as well as Bessel-Hagen) are missing.

The most basic Noether identity for Yang-Mills includes self interaction terms thus we
have,

∂ (LY M)

∂
(
Aaµ

) (
δ̄Aaµ

)
+
∂ (LY M)

∂
(
∂µAaλ

)∂µ (δ̄Aaλ

)
+ ∂µ (LY M4xµ) = 0. (2.69)

Extracting the Euler derivatives (2.66) and rearranging (2.69) becomes,

Eµ
a δ̄Aa

µ + ∂µ

 ∂LY M

∂
(
∂µAa

λ

) δ̄Aa
λ +LY M4xµ

 = 0. (2.70)
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Using (2.63), (2.66), and (2.68) on (2.70) we have,

(
∂ρFρµ

a + CabcAb
ρF

cρµ
)

Fa
µν4xν + ∂µ

(
−FaµλFa

λν4xν −
1
4

Fa
λνF

λν
a 4xµ

)
= 0. (2.71)

Substituting each of the conformal transformations (2.51) into (2.71) we find that the iden-
tity is satisfied for all Poincare group parameters for all dimensions, and for the full 15 param-
eter conformal from in D = 4. Gauge invariance is explicit by rearranging (2.71),

Eµ
a Fa

µν4xν = ∂µ

((
FaµλFa

λν +
1
4
ηµνFa

λρF
λρ
a

)
4xν

)
. (2.72)

The Lagrangian density is gauge invariant as well as the first term of (2.72)

δθ
(
FaµλFa

λν

)
= δθ

(
Faµλ

)
Fa
λν + FaµλδθFa

λν = Cabc

(
FbµλFa

λν + FaµλFb
λν

)
θc = 0

This form is completely similar to electrodynamics, i.e. there is a gauge invariant, sym-
metric and traceless energy-momentum tensor T µν from the 4-parameter Poincare translation
4xν = aν,

T µν = FaµλFa ν
λ +

1
4
ηµνFa

λρF
λρ
a . (2.73)

In D = 4, all Noether currents immediately follow for the specific values for 4xν (of the
15-parameter conformal group), similar with Abelian models where e.g. (2.54) was the angular
momentum tensor, (2.55) was the dilatation tensor and (2.56) was the conformal tensor, each
being in gauge invariant form built from the Yang-Mills field strength tensor (2.64).

If we were to simply use the conformal transformations, the Noether identity is satisfied; we
have the 15-parameters group of transformations and all currents, despite of the non-symmetric,
non-traceless, and non-gauge invariant energy-momentum tensor that follows. All of the ex-
pressions due to Noether’s first theorem. The words of Bessel-Hagen are perfectly applied to
the canonical expressions for currents, that they “...are very long and complicated. But the

main lack of the relations is that they contain the components of the four-potential explicitly,

and not only via the combinations having physical significance”, or simply, as Jackiw wrote
[110], because “...the form of conformal currents is rather inelegant”. It would be difficult to
disagree with such a characterization.

Application of the Bessel-Hagen method to Yang-Mills theory

Using the Bessel-Hagen method we can determine gauge parameters that, together with canon-
ical transformations, lead to transformation (2.68). This was completed for electrodynamics in
[15]. For completeness, we briefly describe application of the Bessel-Hagen procedure to the
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Yang-Mills action. As in the case of the Maxwell theory, we can consider gauge transforma-
tions as a special case of Noether’s theorem with only transformation of a potential, which is a
gauge transformation with unspecified scalar functions,

∆Aaµ = δθAaµ = ∂µθa + CabcAb
µθ

c. (2.74)

In such a case, with only transformations of fields, Noether’s identity (2.70) becomes,

Eaν∆Aν
a = ∂µ

− ∂LY M

∂
(
∂µAaν

)∆Aν
a

 . (2.75)

The superposition of two (gauge and canonical identities) gives,

Eaµδ̄Aaµ = ∂µ
(
−Faµρδ̄Aaµ − ηνµLY M4xν

)
, (2.76)

where,

δ̄Aaµ = −∂ρ (4xτ) Aτ
a + ∂ρθa + CabcAb

ρθ
c − ∂τAaρ4xτ. (2.77)

For any value of gauge parameters θa we will have Noether’s identity and conservation laws
with different Noether’s currents; any scalar constructed from 4xτ and potentials will satisfy
the identity. Of course, the simplest scalar is θa = Aτ

a4xτ, but any other will also satisfy the
identity, e.g., θa = ∂µAτ

a∂µ4xτ or θa = Aρ
bAb

ρA
τ
a4xτ, etc. Using the Bessel-Hagen method to

determine a gauge invariant energy-momentum tensor (Noether current) we can set,

−∂ρ (4xτ) Aτ
a + ∂ρθa + CabcAb

ρθ
c − ∂τAaρ4xτ = Faρτ4xτ (2.78)

and solve for θa,

θa = Aτ
a4xτ, (2.79)

that together with canonical transformations (2.77) gives our (2.68). Among many mathe-
matically correct conservation laws that can be found using Noether’s approach for the Yang-
Mills theory, there is one that has physically important property of being gauge invariant and
corresponds to one (among many) very specific transformations that preserves invariance of
the Yang-Mills Lagrangian density. The same can be said for all of the models treated in this
article.
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2.2.5 Conclusions

The contemporary controversy surrounding the need to improve the “canonical” Noether energy-
momentum tensor is one which was solved by a contemporary of Noether, Erich Bessel-Hagen,
with her participation, in 1921. Decades later, with no English translation of this article and
other possible historical reasons outlined in this thesis, Bessel-Hagen’s work on deriving phys-
ical conservation laws from Noether’s first theorem was largely forgotten. A problem arose as
the next generation attempted to apply Noether’s methods to problems in relativistic field the-
ory; the resulting “canonical” Noether energy-momentum tensor was not what was expected
for known theories. Countless improvements were proposed to provide a temporary ad-hoc
fix to the problem and which could allow one to obtain well known energy-momentum ex-
pressions. In this article show that Bessel-Hagen’s procedure can be applied to several models
found in the literature beyond electrodynamics. Despite existence of a few later rediscoveries
of his result (e.g. [70, 153, 155, 186]), the Bessel-Hagen approach, in our opinion, remains
to be superior, in its clarity and generality, demonstration of direct application of the original
Noether formulation: providing a very uniform derivation for all conservation laws (not just
an energy-momentum tensor as it is often discussed); explicitly connecting both finite (co-
ordinates) and infinite (gauge) continuous symmetry groups and demonstrating that all steps
of derivation are just special cases of the original and very general Noether results. We also
pointed out that to choose conservation laws from a variety of possible mathematically correct
conservation laws, additional (physical) arguments should be involved (e.g. gauge invariance)
that for the considered in this paper examples allow one to determine unique expressions.

We would like to emphasize that the controversy surrounding the “improvement” of Noether’s
first theorem that has existed throughout the literature for some time had absolutely noth-
ing to do with Noether or any deficiency in her theorems; she made no attempt to apply
her theorems to specific models in her article, and any controversy that existed was created
externally to her analytic approach. The “canonical Noether” energy-momentum tensor ap-
pears nowhere in her article and she made no such contribution; the naming of the “canonical
Noether” energy-momentum tensor should more appropriately be referred to as the “canoni-
cal” energy-momentum tensor to avoid implying that Noether was in some way responsible for
this problematic non-physical expression.

There is a much more important question, which is directly related to the Noether and
Bessel-Hagen papers, the question about current treatment of conservation laws in physics, and
in particular, the question about equivalence of different approaches accepted and used in the
physics literature and Noether’s results. There are numerous different methods for deriving an
energy-momentum tensor which raises many ambiguity and non-uniqueness questions. These
questions will be the focus of the next chapter (Chapter 3) of this thesis.
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It would be more appropriate to rightfully use Noether’s name as ”Noetherian currents”
with a very specific meaning that should be clearly stated and easily understood: currents that
follow from Noether’ first theorem. There are standard terms (in Mathematics) with Noether’s
name attached, e.g., ”(non)-Noetherian rings” which is related to the main area of her research
(Algebra). In physics, we have a different situation: all relativistic classical field theory mod-
els have actions (variational problems), and in this sense they are all subjects of the Noether
theorems. This is not enough because of the existence of the variety of methods (for e.g.
energy-momentum tensor derivation) that do not have direct (if any) connection to the Noether
variational problem. Although in some simple cases they give the same results with Noether’s
first theorem, there is no general proof of their equivalence. Moreover, there are strong indica-
tions that there is no equivalence, as we discuss in Chapter 3 [13]. Currents obtained by such
methods can be defined as Noetherian or non-Noetherian if they satisfy the Noether identity
for some choice of variational symmetries or if such symmetries cannot be found.

In our opinion, if we have some currents which are non-Noetherian, they should be rejected,
and before we use any alternative method, its equivalence with Noether’s theorems must be
proven in general (proofs for some very restricted cases is not enough to justify the frequent
general claims in the literature). However, if an opposite view prevails and physicists continue
to use (and accept) different results obtained by different methods that produce non-Noetherian
currents, then Noether’s theorems should not be called a “fundamental, great, important, major,
etc.” result by those who are using methods that contradict her methodology. The acceptance
of non-Noetherian currents for relativistic field theories and statements about importance of
Noether’s results are simply not compatible.



Chapter 3

Towards uniqueness of the
energy-momentum tensor

This chapter focuses on the problem outlined in Section 1.5.2 of the Introduction; the ambi-
guity in multiple contradictory methods for deriving the conservation laws (and in particular,
energy-momentum tensors) in Minkowski spacetime. Several methods exist, and due to the
coinciding results for simple models, they are all asserted to be ”energy-momentum” tensors.
This chapter includes 3 articles which address this problem [13, 10, 8]. The first article [13] in
Section 3.1 disproves the notion of general equivalence of the two most common methods for
deriving an energy-momentum tensor: the Noether and Hilbert methods, which was published
in Nuclear Physics B. The second article [10] in Section 3.2 explores the more general class
of energy-momentum tensors for the general linear system of Klein-Gordon Lagrangian den-
sities, proving several results related to the relationship of these expressions, which shows that
divergence of the definitions is possible even for the case of a scalar field theory. Finally [8]
in Section 3.3 the non-uniqueness problem of energy-momentum tensors in linearized gravity
is address and several results are presented, most notably that there are infinitely many expres-
sions that can be obtained from the conventional superpotential “improvement” method of the
canonical Noether energy-momentum tensor. This article has been published in the journal
Classical and Quantum Gravity. Together these articles highlight the problem of having nu-
merous distinct mathematical definitions for something which is supposedly the same physical
energy-momentum tensor T µν. Only the first article [13] in Section 3.1 is co-authored, and
details of the contributions are left to the Co-Authorship Statement.

73
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3.1 Noether and Hilbert (metric) energy-momentum tensors
are not, in general, equivalent

Abstract Multiple methods for deriving the energy-momentum tensor for a physical theory
exist in the literature. The most common methods are to use Noether’s first theorem with the
4-parameter Poincaré translation, or to write the action in a curved spacetime and perform
variation with respect to the metric tensor, then return to a Minkowski spacetime. These are
referred to as the Noether and Hilbert (metric/ curved space/ variational) energy-momentum
tensors, respectively. In electrodynamics and other simple models, these two methods yield the
same result. Due to this fact, it is often asserted that these methods are generally equivalent for
any theory considered, and that this gives physicists a freedom in using either method to derive
an energy-momentum tensor depending on the problem at hand. This ambiguity in selecting
one of these two different methods has gained attention in the literature, but the only attempted
proofs of general equivalence of the two methods are for at most first order derivatives of first
rank (vector) field theories. For spin-2, the ideal candidate to check this equivalence for a
more complicated model, there exist many energy-momentum tensors in the literature, none
of which are gauge invariant, so it is not clear which expression one hopes to obtain from
the Noether and Hilbert approaches unlike in the case of e.g. electrodynamics. It has been
shown, however, that the linearized Gauss-Bonnet gravity model (second order derivatives,
second rank tensor potential) has an energy-momentum tensor that is unique, gauge invariant,
symmetric, conserved, and trace-free when derived from Noether’s first theorem (all the same
properties of the physical energy-momentum tensor of electrodynamics). This makes it the
ideal candidate to check if the Noether and Hilbert methods coincide for a more complicated
model. It is proven here using this model as a counterexample, by direct calculation, that the
Noether and Hilbert energy-momentum tensors are not, in general, equivalent.

3.1.1 Motivation

The energy-momentum tensor of a physical field theory is an expression of fundamental signif-
icance to a physical model. In electrodynamics, for example, it compactly expresses familiar
conservation laws and the Lorentz force law upon differentiation. However, the procedure to
derive an energy-momentum tensor from a Lagrangian density is not unique. Several meth-
ods for deriving this expression can be found in the literature. We will focus on the two most
common procedures for deriving an energy-momentum tensor in Minkowski spacetime, the
Noether and Hilbert methods [29]. Methods such as the Fock method [75, 28] will not be dis-
cussed in this article, as they don’t involve a procedure to derive the energy-momentum tensor
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from a Lagrangian density.

For a recent summary of the Noether and Hilbert methods, we will refer the reader to the
paper by Blaschke, Gieres, Reboud and Schweda ‘The energy-momentum tensor(s) in classi-
cal gauge theories’ published in Nuclear Physics B in 2016 [29]. We will refer to the paper as
BGRS [29] due to the frequent reference to their paper our article. The BGRS paper has an
extensive summary of the literature, so we suggest turning to BGRS [29] and the references
therein if the reader is unfamiliar with these topics. It is well known that for a vector field (elec-
trodynamics) and for a scalar field (Klein-Gordon), the Noether and Hilbert methods coincide
with the same energy-momentum tensor. In BGRS [29] the authors address this question for
Yang-Mills and spinor fields and conclude again that these are equivalent from both Noether
and Hilbert approaches, yet again those are models with at most first order derivatives of a
vector potential in the action. Any attempted proof of equivalence of the Noether and Hilbert
methods has been limited to simple models with at most first order derivatives of a vector
potential in the action [32, 176, 76, 133, 170]. Unfortunately none of these authors consid-
ered a more complicated model to test the equivalence, as it only takes one counterexample to
disprove the notion of general equivalence; this is what will be provided in the present article.

In this article we will focus on the very specific question: for more complicated models
in Minkowski spacetime, do the Noether and Hilbert methods yield an equivalent result? In
other words, do actions with higher order derivatives and higher ranks of tensor potential, such
as the linearized higher derivative gravity models, yield the same energy-momentum tensor by
following the Noether and Hilbert procedures. The ideal candidate to explore this question,
spin-2, is problematic because it has been proven that there exists no gauge invariant energy-
momentum tensor for that model [140], and there is no generally accepted unique energy-
momentum tensor for the theory, as many exist in the literature [163, 28]. This issue has
come to the forefront recently regarding the necessity to have a well defined energy-momentum
tensor for the spin-2 field to self couple in the standard spin-2 to general relativity derivations
[163, 41, 63, 28]. Therefore it is not clear which expression one hopes to obtain from both
the Noether and Hilbert method for spin-2 as in the case of electrodynamics where a single,
accepted physical tensor exists.

A more complicated ideal candidate does exist, in the form of the linearized higher deriva-
tive gravity models, that is the models built from the contracted linearized Riemann tensor
RµναβRµναβ, Ricci tensor RµνRµν and Ricci scalar R2. These relativistic models in Minkowski
spacetime have second order derivatives of a second rank symmetric tensor potential hµν in
the action (terms of the form ∂∂h∂∂h). In particular, we will consider the energy-momentum
tensor for the linearized Gauss-Bonnet gravity model, which has been well known to string
theorists and other researchers for some time [156]. This expression has been shown to be
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derived from Noether’s first theorem [14], and it is unique, gauge invariant, symmetric, con-
served, and trace-free; all the properties of a physical energy-momentum tensor as defined by
BGRS [29]. It is these properties of electrodynamics that allows the equivalence between the
Noether and Hilbert methods to be accurately concluded. Using this example of the linearized
higher derivative gravity models, and in particular the linearized Gauss-Bonnet gravity model,
we give a proof by counterexample that the Noether and Hilbert energy-momentum tensors
are not, in general, equivalent. We then outline why this result will hold for higher order of
derivative/ higher rank of tensor potential models more generally. If several methods exist,
and they do not generally yield the same result, it is an issue of fundamental significance as to
which method is truly allowing one to derive physical results for any general action, and which
happen to coincide for actions of simple physical models.

3.1.2 The Noether and Hilbert methods for deriving energy-momentum
tensors in Minkowski spacetime

From Noether’s theorem the energy-momentum tensor for electrodynamics was directly de-
rived by Bessel-Hagen in 1921 [26], without the need for improvements, by considering the
gauge symmetry of the action. Several other authors came to a similar conclusion later [39,
153, 70, 155], apparently unaware of Bessel-Hagen’s paper, which was only recently translated
into English [108]. If the action is exactly gauge invariant, this procedure derives the physi-
cal energy-momentum tensor for the theory without the need to add any ad-hoc improvement
terms to obtain a gauge invariant expression. In BGRS [29], the authors outline this procedure
in section 2.2.2, but without referring to Bessel-Hagen, only to [153, 70, 155]. We will refer to
this as the Bessel-Hagen method because he was the first to present this procedure, and in our
opinion, in the clearest and most direct way based on Noether’s original work.

It is important to briefly mention the ‘improvement’ of energy-momentum tensors derived
from Noether’s theorem in the literature, due to its widespread use. Various improvements
exist and are well summarized in BGRS [29]. Conventional wisdom states that one can improve
Noether’s energy-momentum tensor when the result one obtains from Noether’s first theorem is
not the physically accepted expression for the energy-momentum tensor. This involves adding
terms which do not follow from Noether’s theorem in order to obtain the desired result. Since
the Bessel-Hagen method derives the correct, physical expressions directly from Noether’s
theorem without the need to add any terms, it is not really an ‘improvement’ (no ad-hoc terms
need to be added), rather it is the correct derivation intended by Noether, who is cited as giving
Bessel-Hagen the ideas for his paper. We note that the most common improvement found in
the literature is the Belinfante method [23], designed to build a symmetric energy-momentum
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tensor from the non-physical ‘canonical Noether’ energy-momentum tensor. This improvement
does not guarantee gauge invariance of the energy-momentum tensor, a deficiency addressed
by a new improvement procedure of BGRS [29].

This sentiment was summarized in BGRS [29], namely the importance of a gauge invariant
energy-momentum tensor for theories considered physical, and the deficiencies of the Belin-
fante method [23]: ‘If one considers gauge field theories in Minkowski space as we do in

the present article, then the EMT [energy-momentum tensor] necessarily has to be gauge in-

variant due to its physical interpretation. However, Belinfante’s improvement procedure does

not yield a priori a gauge invariant EMT when applied to gauge theories, and in addition it

does not work in the straightforward manner for the physically interesting case where matter

fields are minimally coupled to a gauge field.’ In the cases of electrodynamics and linearized
Gauss-Bonnet gravity, the accepted physical, unique, gauge invariant, symmetric, conserved,
and trace-free expressions are obtained from the Bessel-Hagen method, so there is no need to
add improvement terms to the Noether result for these models.

Noether’s first theorem is used to derive conservation laws by considering the action S =∫
Ldx to be invariant under simultaneous variation of the coordinates δxν and fields δΦA (where
L(ΦA, ∂µΦA, ∂µ∂νΦA, . . . ) is the Lagrangian density, A represents any rank of tensor potential
ΦA and ∂µ = ∂

∂xµ is abbreviated notation for a derivative). From Noether’s first theorem we have
the relationship between the Euler-Lagrange equation and some total derivative [159, 124, 88],

(
∂L

∂ΦA
− ∂µ

∂L

∂(∂µΦA)
+ ∂µ∂ω

∂L

∂(∂µ∂ωΦA)
+ . . .

)
δΦA

+ ∂µ

(
ηµνLδxν +

∂L

∂(∂µΦA)
δΦA +

∂L

∂(∂µ∂ωΦA)
∂ωδΦA −

[
∂ω

∂L

∂(∂µ∂ωΦA)

]
δΦA + ...

)
= 0 . (3.1)

Using Equation (4.20) and the Bessel-Hagen method we can derive the standard energy-
momentum tensor T µν

N = FµαFν
α −

1
4η

µνFαβFαβ for electrodynamics (with the field strength
Fαβ = ∂αAβ − ∂βAα) from Noether’s theorem by use of the 4-parameter Poincaré translation
and gauge invariance of the action, where subscript N will be used to identify any physical
expression derived from Noether’s theorem.

The other most common procedure for deriving an energy-momentum tensor in Minkowski
spacetime is the Hilbert method, sometimes referred to as the metric energy-momentum tensor,
curved space energy-momentum tensor, and even variational energy-momentum tensor. A
good summary of this method is found in BGRS [29], Section 3 ‘Einstein-Hilbert EMT in
Minkowski space’. The authors refer to this tensor as the metric energy-momentum tensor in
their article. The Hilbert energy-momentum tensor is derived by writing the action in ‘curved
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space’ by replacing all ordinary derivatives with covariant derivatives ∂ → ∇, replacing the
Minkowski metric with the general metric tensor η→ g, and inserting the Jacobian term

√
−g.

After expressing the action in this form, the variation with respect to the general metric tensor
is performed,

δL

δgγρ
=

∂L

∂gγρ
− ∂ω

∂L

∂(∂ωgγρ)
+ ∂ξ∂ω

∂L

∂(∂ξ∂ωgγρ)
+ . . . . (3.2)

Once the variational derivative is found from this procedure, it is then ‘returned to flat
space’ by replacing the metric tensors with the Minkowski metric, yielding an energy-momentum
tensor of the form,

T γρ
H =

2
√
−g

δL

δgγρ

∣∣∣∣∣∣
g=η

. (3.3)

Note that this definition is given in equation (3.18) in BGRS [29], where we take the +

instead of − expression here so that the signs match the derivation for electrodynamics in the
following section (both signs can be found throughout the literature depending on convention).
The subscript H will indicate what is derived from the Hilbert method. Remarkably, for elec-
trodynamics, these two expressions coincide T γρ

N = T γρ
H . Due to this coincidence, and the fact

that electrodynamics has a unique physical energy-momentum tensor accepted in the litera-
ture, it is tempting to assert general statements about their equivalence. Other simple models
amplify these sentiments, leading to the belief that the results of these methods are in some
sense generally equivalent. However, they have only been reconciled for simple scalar or vec-
tor fields and first order derivatives in actions. Higher order of derivative, higher rank of tensor
potential models, such as those presented in this article, have not previously been considered
to verify the general equivalence of the Noether and Hilbert methods.

In BGRS [29], the authors remark about the Noether tensor T γρ
N (including improvements)

vs. the Hilbert tensor T γρ
H by stating ‘This definition of the EMT in Minkowski space is concep-

tually and mathematically quite different from the one of T µν
imp[ψ] which we presented in section

2 and which follows from Noether’s theorem (eventually supplemented by an improvement

procedure to render the canonical expression of the EMT symmetric in its indices or gauge

invariant, or both symmetric and traceless).’ They go on to consider at most first order, vector
models as is common in the literature ‘In the following, we will show that the two definitions

for the EMT’s of YM-theories in Minkowski space, [...]which results from the coupling to grav-

ity, and the improved EMT [...]which follows from Noether’s first theorem supplemented by the

“gauge improvement” procedure, coincide with each other.’. We note that the Bessel-Hagen
method can be used to derive the physical energy-momentum tensor for electrodynamics and
Yang-Mills theory directly from Noether’s theorem without the need for any improvements.
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This is why a higher derivative model, such as a linearized higher derivative gravity model, is
so important to consider. To explore the question of general equivalence between the Noether
and Hilbert methods, we must check if they coincide beyond simple physical models that we
already know.

3.1.3 Equivalence of the Noether and Hilbert expressions for classical
electrodynamics

Before comparing the Noether T γρ
N and Hilbert T γρ

H for the linearized Gauss-Bonnet model, it
is best to recap the equivalence T γρ

N = T γρ
H for electrodynamics, to show how to perform these

derivations for a simple model before moving on to the higher order case. The physical energy-
momentum tensor for electrodynamics, which was known before the publication of Noether’s
theorems, was first derived by Bessel-Hagen in 1921 [26]. Using equation (4.20), he derived
this expression directly from the standard electromagnetic Lagrangian density L = −1

4 FαβFαβ

for the field strength tensor Fαβ = ∂αAβ − ∂βAα. For a theory with a Lagrangian built from
terms quadratic in first order derivatives of a vector potential, Equation (4.20) simplifies to,(

∂γ
∂L

∂(∂γAν)

)
δAν = ∂γ

(
ηγνLδxν +

∂L

∂(∂γAν)
δAν

)
, (3.4)

where the equation of motion (left hand side) forms an identity with the conservation
law (right hand side). For a conformally invariant theory such as electrodynamics the 15
parameter conformal group of transformations that will leave the action invariant is δxα =

aα +ωαβxβ + S xα + 2ξνxαxν − ξαxνxν. The first term, the 4 parameter translation of the Poincaré
group, is the ‘symmetry’ that corresponds to energy-momentum tensors derived from Noether’s
theorem. The transformation of fields δAν that leave the action invariant are defined generally
for Noether’s first theorem as δAν = δA′ν − ∂

βAνδxβ [159, 124, 26, 88]. The first term, δA′ν,
is related to field transformations that leave the action invariant (ie the spin-1 gauge trans-
formation); this was neither discussed nor specified by Noether and could be anything (i.e.,
gauge symmetries) that preserves invariance of the action. Bessel-Hagen showed that using
gauge invariance of the action to define δA′ν that the transformation of the potential is exactly
δAν = Fνρδxρ. Inserting this, δxρ = aρ and ∂L

∂(∂γAν)
= −Fγν into Equation (3.4) we have,

(
−∂γFγν

)
δAν = aρ∂γ

(
FγνFρ

ν −
1
4
ηγρFαβFαβ

)
. (3.5)

Therefore the energy-momentum tensor for electrodynamic theory T γρ
N = FγνFρ

ν−
1
4η

γρFαβFαβ

is derived directly from Noether’s first theorem.

The Hilbert energy-momentum tensor for electrodynamics is derived by equation (3.49) af-
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ter expressing the standard Lagrangian in curved space form, namely replacing the Minkowski
metrics with the metric tensor, replacing all ordinary derivatives with covariant derivatives
∂ → ∇, replacing all Minkowski metrics with general metrics η → g, and inserting the Ja-
cobian

√
−g. Starting by re-writing the field strength tensor in terms of covariant derivatives

F∇µν = ∇µAν − ∇νAµ = ∂µAν − ΓαµνAα − ∂νAµ + ΓανµAα = Fµν, we see that the Γ part exactly
cancels itself, recovering the original field strength tensor. It should be noticed that for higher
derivative models of higher rank potentials, many extra Γ parts remain without cancellation,
creating many more terms in the final energy-momentum tensor. This is likely part of the rea-
son why for simple models the two methods T γρ

N = T γρ
H coincide. Therefore for the curved

space Lagrangian density we have,

L = −
1
4
√
−ggαµgβνFαβFµν. (3.6)

This simplifies the Euler derivative to just including derivatives of the metric, leaving for the
Hilbert energy-momentum tensor T γρ

H = 2
√
−g

∂L
∂gγρ
|g=η. Taking the derivative with respect to the

metric, we use ∂
√
−g

∂gγρ
= 1

2gγρ
√
−g and ∂gλν

∂gβγ
= −1

2 (gβλgγν + gγλgβν). Performing this differentiation
we have ∂L

∂gγρ
= 1

2

√
−gFαβFµν(gνβgρµgγα − 1

4gγρgβνgαµ). Therefore T γρ
H = 2

√
−g

∂L
∂gγρ
|g=η = FγνFρ

ν −

1
4η

γρFαβFαβ which exactly coincides with what is derived from the Noether method, T γρ
N = T γρ

H .

The fact that the two derivations yield the same result is of fundamental interest since
the two methods are mathematically quite different, as the authors of BGRS [29] noted. The
problem is, these two expressions are only ever calculated for simple models with first order
derivatives of at most a vector potential in the action. Both attempts at a general proof [76, 170]
also rely on these simple models. We will now consider the linearized Gauss-Bonnet model
which has a physical, unique, symmetric, gauge invariant, conserved and trace-free energy-
momentum tensor derived using Noether’s first theorem, as in the case of electrodynamics. As
we will see, this greatly complicates the Hilbert expression due to second order derivatives and
second rank tensor potential of the model, yielding a proof by counterexample that the Noether
and Hilbert energy-momentum tensors are not generally equivalent.

3.1.4 Non-Equivalence of the Noether and Hilbert expressions for Lin-
earized Gauss-Bonnet gravity

We will now consider the linearized Gauss-Bonnet gravity model (a relativistic model in Minkowski
spacetime) that has a well known energy-momentum tensor derived from the Noether method.
Here we will derive the Hilbert (metric) energy-momentum tensor in Minkowski spacetime as
outlined by BGRS [29], and compare to the Noether result to see if they are truly equivalent
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for this more complicated model. The Lagrangian density for this model is

L =
1
4

(RµναβRµναβ − 4RµνRµν + R2), (3.7)

where the scalars are built from contraction of the linearized Riemann tensor Rµναβ, Ricci
tensor Rµν and Ricci scalar R:

Rµναβ =
1
2

(∂µ∂βhνα + ∂ν∂αhµβ − ∂µ∂αhνβ − ∂ν∂βhµα), (3.8)

Rνβ = ηµαRµναβ =
1
2

(∂β∂αhνα + ∂ν∂αhβα − �hνβ − ∂ν∂βh), (3.9)

R = ηνβRνβ = ∂µ∂νhµν − �h. (3.10)

Each of these R’s will indicate these linearized expressions unless otherwise noted. The
energy-momentum tensor for Gauss-Bonnet gravity has been well known to string theorists
and other researchers for some time [156],

Tων
N = −RωρλσRν

ρλσ + 2RρσRωρνσ + 2RωλRν
λ −RRων +

1
4
ηων(RµλαβRµλαβ − 4RµγRµγ + R2). (3.11)

This energy-momentum tensor is derived from Noether’s first theorem, equation (4.20), for
the linearized Gauss-Bonnet gravity model [14]. It is the unique, symmetric, gauge invariant,
conserved and trace-free expression for the model, all properties of a physical energy momen-
tum tensor as defined by BGRS [29]. This allows for an accurate comparison to be made
between the Noether and Hilbert energy-momentum tensors, as in the case of electrodynamics.
Since a uniquely defined Noether energy-momentum tensor can be derived from an action with
second order derivatives and a second rank tensor potential, of the form ∂∂h∂∂h, this model is
the ideal candidate to test equivalency with energy-momentum tensor derived from the Hilbert
method. We will perform this derivation with free coefficients,

L = ARµναβRµναβ + BRνβRνβ + CR2, (3.12)

in case the reader is interested in the Hilbert energy-momentum tensor for other linearized
modified gravity models. Expanding the Lagrangian in Equation (3.12) in terms of Equations
(3.8), (3.9) and (3.10) we have,
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L = A(∂µ∂νhαβ∂µ∂νhαβ − 2∂µ∂νhαβ∂µ∂αhνβ + ∂µ∂νhαβ∂α∂βhµν)

+
1
4

B(∂µ∂µhαβ∂ν∂νhαβ + 2∂µ∂νhαα∂β∂
βhµν − 4∂µ∂νhνβ∂α∂

αhµβ

+ ∂µ∂νhαα∂
µ∂νhββ − 4∂µ∂νhαα∂

µ∂βhνβ + 2∂µ∂νhνβ∂µ∂αhαβ + 2∂µ∂νhνβ∂
β∂αhµα)

+ C(∂µ∂µhνν∂α∂
αhββ − 2∂µ∂νhµν∂α∂αhββ + ∂µ∂νhµν∂α∂βhαβ). (3.13)

This is the expanded form of the Lagrangian density which we are using to compare
the Noether and Hilbert methods. In other words, we are considering a relativistic model
in Minkowski spacetime with terms ∂∂h∂∂h in the Lagrangian density. The Hilbert (met-
ric) energy-momentum tensor in Minkowski spacetime has been considered for many mod-
els before, for example the spin-2 Fierz-Pauli Lagrangian density [74] (see also [28, 163]),
LFP = 1

4 [∂αhββ∂
αhγγ − ∂αhβγ∂αhβγ + 2∂αhβγ∂γhβα − 2∂αhββ∂

γhγα]. In [74] Fierz and Pauli devel-
oped this action without reference to general metric spacetimes, it is a purely relativistic field
theory in Minkowski spacetime. The spin-2 Hilbert energy-momentum tensor was calculated
by [28] in their Equation 30. It should be emphasized that hµν is a symmetric second rank ten-
sor field of a special relativistic (Poincaré invariant) field theory in Minkowski spacetime; these
hµν have no explicit or implicit dependence on the metric gµν. The same goes for the linearized
Gauss-Bonnet gravity model. For the purpose of our disproof, this is just a relativistic model in
Minkowski spacetime with derivatives of a second rank symmetric tensor potential hµν in the
action (the ∂∂h∂∂h in Equation (3.13)). We use this model because it is sufficiently nontrivial
to show that applying both the Noether and Hilbert methods to a common Lagrangian density
can yield different results. These results hold more generally for other such nontrival models
(higher order derivatives, higher rank of tensor potential), as outlined by the Reasons 1-3 in
Section 5. We will now calculate the Hilbert (metric) energy-momentum tensor for this model.

Expressing the Lagrangian in terms of the metric and covariant derivatives

In order to derive the Hilbert energy-momentum tensor, we must replace in Equation (3.13)
all ordinary derivatives with covariant derivatives ∂ → ∇, replacing all Minkowski metrics
with general metrics η → g, and inserting the Jacobian term

√
−g to this action. In order for

brevity, we will write Equation (3.13) compactly as Equation (3.12), thus the Lagrangian takes
the form,

L = A
√
−ggaµgbνgcαgdβR∇abcdR∇µναβ + B

√
−ggνbgβdR∇νβR

∇
bd + C

√
−gR∇R∇, (3.14)
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where a superscript ∇ indicates that in the expressions from Equations (3.8), (3.9) and
(3.10), the linearized Rµναβ, Rνβ and R have their ordinary derivatives are replaced by covariant
derivatives,

R∇µναβ =
1
2

(∇µ∇αhνβ + ∇ν∇βhµα − ∇µ∇βhνα − ∇ν∇αhµβ). (3.15)

Note that both Latin and Greek indices represent 4 dimensions (a, b, · · · = 1, 2, 3, 4 and
α, β, · · · = 1, 2, 3, 4). For the Ricci tensor, since it is defined in terms of the Riemann tensor
Rνβ = ηµαRµναβ, we can express the covariant form in terms of the covariant Riemann tensor
R∇νβ = gµαR∇µναβ. Similarly, the Ricci scalar can be expressed as R∇ = gνβgµαR∇µναβ. This allows
the Lagrangian to be expressed entirely in terms of the metric and R∇µναβ of Equation (3.15),

L =
√
−g(Agaµgbνgcαgdβ + Bgacgµαgνbgβd + Cgνβgµαgbdgac)R∇µναβR

∇
abcd. (3.16)

Since we require the Euler derivative for the Hilbert energy-momentum tensor T γρ
H =

2
√
−g

δL
δgγρ

∣∣∣∣∣∣
g=η

, it is necessary to write R∇µναβ in terms of the metric and its derivatives. Therefore

we require the second covariant derivatives of the tensor potential hνβ,

∇µ(∇αhνβ) = ∂µ(∂αhνβ − Γλανhλβ − Γλαβhνλ) − Γλµα(∂λhνβ − Γ
ρ
λνhρβ − Γ

ρ
λβhνρ)

− Γλµν(∂αhλβ − Γ
ρ
αλhρβ − Γ

ρ
αβhλρ) − Γλµβ(∂αhνλ − Γρανhρλ − Γ

ρ
αλhνρ), (3.17)

where Γλνβ = 1
2gµλ(−∂µgνβ + ∂βgµν + ∂νgµβ) is the Christoffel symbol of the second kind.

Since this term appears four times in R∇µναβ, we are left with,

R∇µναβ =
1
2

[∂µ(∂αhνβ − Γλανhλβ − Γλαβhνλ) − Γλµα(∂λhνβ − Γ
ρ
λνhρβ − Γ

ρ
λβhνρ)

− Γλµν(∂αhλβ − Γ
ρ
αλhρβ − Γ

ρ
αβhλρ) − Γλµβ(∂αhνλ − Γρανhρλ − Γ

ρ
αλhνρ) + ∂ν(∂βhµα − Γλβµhλα − Γλβαhµλ)

− Γλνβ(∂λhµα − Γ
ρ
λµhρα − Γ

ρ
λαhµρ) − Γλνµ(∂βhλα − Γ

ρ
βλhρα − Γ

ρ
βαhλρ) − Γλνα(∂βhµλ − Γ

ρ
βµhρλ − Γ

ρ
βλhµρ)

− ∂µ(∂βhνα − Γλβνhλα − Γλβαhνλ) + Γλµβ(∂λhνα − Γ
ρ
λνhρα − Γ

ρ
λαhνρ) + Γλµν(∂βhλα − Γ

ρ
βλhρα − Γ

ρ
βαhλρ)

+ Γλµα(∂βhνλ − Γ
ρ
βνhρλ − Γ

ρ
βλhνρ) − ∂ν(∂αhµβ − Γλαµhλβ − Γλαβhµλ) + Γλνα(∂λhµβ − Γ

ρ
λµhρβ − Γ

ρ
λβhµρ)

+ Γλνµ(∂αhλβ − Γ
ρ
αλhρβ − Γ

ρ
αβhλρ) + Γλνβ(∂αhµλ − Γραµhρλ − Γ

ρ
αλhµρ)]. (3.18)

Expanding this expression is a bit tedious. Many terms cancel, and combine. Familiar terms
here, the Riemann tensor R̄ρ

σµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + Γ

ρ
µλΓ

λ
νσ − Γ

ρ
νλΓ

λ
µσ and linearized Christoffel

symbol Γ̄λµα = 1
2 (−∂λhµα+∂αhλµ+∂µhλα), allow for Equation (3.18) to be expressed much more
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compactly as,

R∇µναβ = Rµναβ −
1
2

R̄λ
αµνhλβ +

1
2

R̄λ
βµνhλα

− 2ΓλναΓ̄λµβ − 2ΓλµβΓ̄λνα + 2ΓλµαΓ̄λνβ + 2ΓλνβΓ̄λµα + ΓλµβΓ
ρ
ανhρλ − ΓλµαΓ

ρ
βνhρλ. (3.19)

We now make an important note that can save the reader many pages of calculations. The
Hilbert energy-momentum tensor requires us to replace the metric tensor with the Minkowski
metric after variation g→ η. Therefore any derivatives of the metric that remain after variation
will be zero upon differentiation. Some terms in the Lagrangian, namely those of the form
ΓΓ (not Γ̄ , because these are the linearized expressions) will all vanish upon g → η. Due to
this fact we will neglect such terms from R∇µναβ, as they will not contribute to the final result.
For clarity this will be labelled RH∇

µναβ for the terms which contribute to the Hilbert energy-
momentum tensor,

RH∇
µναβ = Rµναβ−

1
2

(∂µΓλνα−∂νΓ
λ
µα)hλβ+

1
2

(∂µΓλνβ−∂νΓ
λ
µβ)hλα−2ΓλναΓ̄λµβ−2ΓλµβΓ̄λνα+2ΓλµαΓ̄λνβ+2ΓλνβΓ̄λµα.

(3.20)

This expression can be further ’simplified’ by noting that the RH∇
µναβ is multiplied by RH∇

abcd.
The vast majority of terms in this expansion will have a ΓΓ contribution. Therefore keeping
only those which will be nonzero after variation for RH∇

µναβR
H∇
abcd, we are left with the Lagrangian,

L =
√
−g(Agaµgbνgcαgdβ + Bgacgµαgνbgβd + Cgνβgµαgbdgac)(RµναβRabcd

− 2ΓλναRabcdΓ̄λµβ − 2ΓλµβRabcdΓ̄λνα + 2ΓλµαRabcdΓ̄λνβ + 2ΓλνβRabcdΓ̄λµα

− 2Γ
γ
bcRµναβΓ̄γad − 2Γ

γ
adRµναβΓ̄γbc + 2ΓγacRµναβΓ̄γbd + 2Γ

γ
bdRµναβΓ̄γac

−
1
2
∂µΓ

λ
ναRabcdhλβ +

1
2
∂νΓ

λ
µαRabcdhλβ +

1
2
∂µΓ

λ
νβRabcdhλα −

1
2
∂νΓ

λ
µβRabcdhλα

−
1
2
∂aΓ

γ
bcRµναβhγd +

1
2
∂bΓ

γ
acRµναβhγd +

1
2
∂aΓ

γ
bdRµναβhγc −

1
2
∂bΓ

γ
adRµναβhγc). (3.21)

The Lagrangian terms are sorted as follows. The first line is terms which will be nonzero
after differentiation ∂L

∂gγρ
and g → η, the second and third lines will be nonzero after ∂ω ∂L

∂(∂ωgγρ)

and g→ η, the fourth and fifth lines will be nonzero after ∂ξ∂ω ∂L
∂(∂ξ∂ωgγρ) and g→ η.
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Taking the Euler derivative of the Lagrangian

Recall that we require the Euler derivative δL
δgγρ

= ∂L
∂gγρ
− ∂ω

∂L
∂(∂ωgγρ) + ∂ξ∂ω

∂L
∂(∂ξ∂ωgγρ) in order to

derive the Hilbert energy-momentum tensor. Performing the differentiation of the relevant
parts, first with respect to the metric, the nonzero terms after g→ η are,

∂L

∂gγρ
=
∂
√
−g

∂gγρ
[Agµagνbgαcgβd + Bgνbgβdgµαgac + Cgµαgνβgacgbd](RµναβRabcd)

+
√
−g[A

∂gµa

∂gγρ
gνbgαcgβd + Agµa ∂gνb

∂gγρ
gαcgβd + Agµagνb

∂gαc

∂gγρ
gβd + Agµagνbgαc∂gβd

∂gγρ

+ B
∂gνb

∂gγρ
gβdgµαgac + Bgνb

∂gβd

∂gγρ
gµαgac + Bgνbgβd ∂gµα

∂gγρ
gac + Bgνbgβdgµα

∂gac

∂gγρ

+ C
∂gµα

∂gγρ
gνβgacgbd + Cgµα

∂gνβ

∂gγρ
gacgbd + Cgµαgνβ

∂gac

∂gγρ
gbd + Cgµαgνβgac∂gbd

∂gγρ
](RµναβRabcd).

(3.22)

Inserting ∂
√
−g

∂gγρ
and ∂gλν

∂gβγ
, and expanding all brackets, we are left with the following expres-

sion,

∂L

∂gγρ
= −

1
2
√
−g(−Agγρgµagνbgαcgβd + Agγµgρagνbgαcgβd + Agρµgγagνbgαcgβd

+ Agγbgρνgµagαcgβd + Agρbgγνgµagαcgβd + Agγcgραgµagνbgβd + Agρcgγαgµagνbgβd

+ Agγdgρβgµagνbgαc + Agρdgγβgµagνbgαc − Bgγρgνbgβdgµαgac + Bgγbgρνgβdgµαgac

+ Bgρbgγνgβdgµαgac + Bgγdgρβgνbgµαgac + Bgρdgγβgνbgµαgac + Bgγµgραgνbgβdgac

+ Bgρµgγαgνbgβdgac + Bgγcgρagνbgβdgµα + Bgρcgγagνbgβdgµα −Cgγρgµαgνβgacgbd

+ Cgγµgραgνβgacgbd + Cgρµgγαgνβgacgbd + Cgγβgρνgµαgacgbd + Cgρβgγνgµαgacgbd

+ Cgγcgρagµαgνβgbd + Cgρcgγagµαgνβgbd + Cgγdgρbgµαgνβgac + Cgρdgγbgµαgνβgac)(RµναβRabcd).
(3.23)

To write this expression more compactly we express the terms proportional to A as ḡγρµaνbαcβd
A =

−gγρgµagνbgαcgβd + gγµgρagνbgαcgβd + gρµgγagνbgαcgβd + gγbgρνgµagαcgβd + gρbgγνgµagαcgβd +

gγcgραgµagνbgβd + gρcgγαgµagνbgβd + gγdgρβgµagνbgαc + gρdgγβgµagνbgαc,

we express the terms proportional to B as ḡγρνbβdµαac
B = −gγρgνbgβdgµαgac +gγbgρνgβdgµαgac +

gρbgγνgβdgµαgac+gγdgρβgνbgµαgac+gρdgγβgνbgµαgac+gγµgραgνbgβdgac+gρµgγαgνbgβdgac+gγcgρagνbgβdgµα+

gρcgγagνbgβdgµα
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and we express the terms proportional to C as ḡγρµανβacbd
C = −gγρgµαgνβgacgbd+gγµgραgνβgacgbd+

gρµgγαgνβgacgbd+gγβgρνgµαgacgbd+gρβgγνgµαgacgbd+gγcgρagµαgνβgbd+gρcgγagµαgνβgbd+gγdgρbgµαgνβgac+

gρdgγbgµαgνβgac.

Therefore the derivative of the Lagrangian with respect to the metric is expressed compactly
as,

∂L

∂gγρ
= −

1
2
√
−g(Aḡγρµaνbαcβd

A + Bḡγρνbβdµαac
B + Cḡγρµανβacbd

C )(RµναβRabcd). (3.24)

Next we will differentiate the Lagrangian in Equation (3.21) with respect to derivatives of
the metric. Only the second and third lines of the Lagrangian in Equation (3.21) will be nonzero
after ∂L

∂(∂ωgγρ) , as only terms with a non-linearized Christoffel symbol Γλνα = 1
2gmλ(−∂mgνα +

∂αgmν + ∂νgmα) have linear in ∂g contributions. These terms will be differentiating as ∂∂mgνα
∂(∂ωgγρ) =

δωm∆
γρ
να where ∆

γρ
να = 1

2 (δγνδ
ρ
α + δ

γ
αδ

ρ
ν). Differentiating the Chrisoffel symbol therefore yields,

∂Γλνα

∂(∂ωgγρ)
=

1
2

gmλ(−δωm∆γρ
να + δωα∆γρ

mν + δων ∆γρ
mα) =

1
2

gmλ∆̄ωγρ
mνα, (3.25)

where above to abbreviate we call the combination of the Kronecker deltas in brackets
∆̄
ωγρ
mνα = −δωm∆

γρ
να+δωα∆

γρ
mν+δων ∆

γρ
mα. Using this compact notiation the derivative of the Lagrangian

with respect to derivatives of the metric is,

∂L

∂(∂ωgγρ)
=
√
−g(Agaµgbνgcαgdβ + Bgacgµαgνbgβd + Cgνβgµαgbdgac)(

− gmλ∆̄ωγρ
mναRabcdΓ̄λµβ − gmλ∆̄

ωγρ
mµβRabcdΓ̄λνα + gmλ∆̄ωγρ

mµαRabcdΓ̄λνβ + gmλ∆̄
ωγρ
mνβRabcdΓ̄λµα

− gmλ∆̄
ωγρ
mbcRµναβΓ̄λad − gmλ∆̄

ωγρ
madRµναβΓ̄λbc + gmλ∆̄ωγρ

macRµναβΓ̄λbd + gmλ∆̄
ωγρ
mbdRµναβΓ̄λac). (3.26)

Since we require ∂ω ∂L
∂(∂ωgγρ) we must differentiate the above expression with by ∂ω. This

process is in general quite messy, but since any ∂g will be zero upon g→ η, only the linearized
Riemann tensor and linearized Christoffel symbol will, differentiated, give rise to nonzero con-
tributions,

∂ω
∂L

∂(∂ωgγρ)
= 2
√
−g(Agaµgbνgcαgdβ + Bgacgµαgνbgβd + Cgνβgµαgbdgac)(

−gmλ∆̄ωγρ
mνα∂ω[RabcdΓ̄λµβ]−gmλ∆̄

ωγρ
mµβ∂ω[RabcdΓ̄λνα]+gmλ∆̄ωγρ

mµα∂ω[RabcdΓ̄λνβ]+gmλ∆̄
ωγρ
mνβ∂ω[RabcdΓ̄λµα]),

(3.27)

where the final two lines in Equation (3.26) were combined by interchange abcd ↔ µναβ.
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Finally for the terms proportional to ∂∂g in the fourth and fifth lines of the Lagrangian in
Equation (3.21), we require the differentiated Christoffel symbol ∂aΓ

λ
bc = 1

2∂agmλ(−∂mgbc +

∂cgmb + ∂bgmc) + 1
2gmλ∂a(−∂mgbc + ∂cgmb + ∂bgmc). The first term will be zero upon g → η so

we can neglect it, leaving ∂aΓ
λ
bc = 1

2gmλ(−∂a∂mgbc + ∂a∂cgmb + ∂a∂bgmc). Differentiating each
term will yields ∂∂a∂mgbc

∂(∂ξ∂ωgγρ) = ∆
ξω
am∆

γρ
bc . Therefore differentiating of the derivative of the Christoffel

symbol gives,

∂∂aΓ
λ
bc

∂(∂ξ∂ωgγρ)
=

1
2

gmλ(−∆ξω
am∆

γρ
bc + ∆ξω

ac ∆
γρ
mb + ∆

ξω
ab ∆γρ

mc) =
1
2

gmλ∆̂
ξωγρ
ambc. (3.28)

The above expression in brackets was abbreviated with ∆̂
ξωγρ
ambc = −∆

ξω
am∆

γρ
bc +∆

ξω
ac ∆

γρ
mb+∆

ξω
ab ∆

γρ
mc.

Using this compact notation the derivative of the Lagrangian with respect to two derivatives of
the metric is,

∂L

∂(∂ξ∂ωgγρ)
=

1
4
√
−g(Agaµgbνgcαgdβ + Bgacgµαgνbgβd + Cgνβgµαgbdgac)(

− gmλ∆̂ξωγρ
µmναRabcdhλβ + gmλ∆̂ξωγρ

νmµαRabcdhλβ + gmλ∆̂
ξωγρ
µmνβRabcdhλα − gmλ∆̂

ξωγρ
νmµβRabcdhλα

− gmλ∆̂
ξωγρ
ambcRµναβhλd + gmλ∆̂

ξωγρ
bmacRµναβhλd + gmλ∆̂

ξωγρ
ambdRµναβhλc − gmλ∆̂

ξωγρ
bmadRµναβhλc). (3.29)

Since we require ∂ξ∂ω ∂L
∂(∂ξ∂ωgγρ) we must differentiate the above expression by ∂ξ∂ω. Again

this process is in general quite messy, but since any ∂g will be zero upon g → η, only the lin-
earized Riemann tensor and the potential hλα, differentiated, give rise to nonzero contributions,

∂ξ∂ω
∂L

∂(∂ξ∂ωgγρ)
=

1
2
√
−g(Agaµgbνgcαgdβ + Bgacgµαgνbgβd + Cgνβgµαgbdgac)(

− gmλ∆̂
ξωγρ
ambc∂ξ∂ω[Rµναβhλd] + gmλ∆̂

ξωγρ
bmac∂ξ∂ω[Rµναβhλd]

+ gmλ∆̂
ξωγρ
ambd∂ξ∂ω[Rµναβhλc] − gmλ∆̂

ξωγρ
bmad∂ξ∂ω[Rµναβhλc]), (3.30)

where the bottom two lines in ∂L
∂(∂ξ∂ωgγρ) were combined by interchange abcd ↔ µναβ.

Therefore for the total Euler derivative we have, combining equations (3.24), (3.27) and (3.30),
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δL

δgγρ
= −

1
2
√
−g

(
(Aḡγρµaνbαcβd

A + Bḡγρνbβdµαac
B + Cḡγρµανβacbd

C )(RµναβRabcd)

+ 4(Agaµgbνgcαgdβ + Bgacgµαgνbgβd + Cgνβgµαgbdgac)(−gmλ∆̄
ωγρ
mbc∂ω[RµναβΓ̄λad]

− gmλ∆̄
ωγρ
mad∂ω[RµναβΓ̄λbc] + gmλ∆̄ωγρ

mac∂ω[RµναβΓ̄λbd] + gmλ∆̄
ωγρ
mbd∂ω[RµναβΓ̄λac])

− (Agaµgbνgcαgdβ + Bgacgµαgνbgβd + Cgνβgµαgbdgac)(−gmλ∆̂
ξωγρ
ambc∂ξ∂ω[Rµναβhλd]

+ gmλ∆̂
ξωγρ
bmac∂ξ∂ω[Rµναβhλd] + gmλ∆̂

ξωγρ
ambd∂ξ∂ω[Rµναβhλc] − gmλ∆̂

ξωγρ
bmad∂ξ∂ω[Rµναβhλc])

)
. (3.31)

The Hilbert energy-momentum tensor

We can now turn our attention to the Hilbert energy-momentum tensor T γρ
H in Equation (3.49).

Since we have calculated the Euler derivative in the previous section, evaluating this expression
for g→ η yields,

T γρ
H = −(Aη̄γρµaνbαcβd

A + Bη̄γρνbβdµαac
B + Cη̄γρµανβacbd

C )(RµναβRabcd)

− 4(Aηaµηbνηcαηdβ + Bηacηµαηνbηβd + Cηνβηµαηbdηac)(−ηmλ∆̄
ωγρ
mbc∂ω[RµναβΓ̄λad]

− ηmλ∆̄
ωγρ
mad∂ω[RµναβΓ̄λbc] + ηmλ∆̄ωγρ

mac∂ω[RµναβΓ̄λbd] + ηmλ∆̄
ωγρ
mbd∂ω[RµναβΓ̄λac])

+ (Aηaµηbνηcαηdβ + Bηacηµαηνbηβd + Cηνβηµαηbdηac)(−ηmλ∆̂
ξωγρ
ambc∂ξ∂ω[Rµναβhλd]

+ ηmλ∆̂
ξωγρ
bmac∂ξ∂ω[Rµναβhλd] + ηmλ∆̂

ξωγρ
ambd∂ξ∂ω[Rµναβhλc] − ηmλ∆̂

ξωγρ
bmad∂ξ∂ω[Rµναβhλc]), (3.32)

where the ḡγρµaνbαcβd
A → η̄

γρµaνbαcβd
A is the same form with the metric tensor replaced by the

Minkowski metric. If we contract all visible Minkowski tensors and the η̄γρµaνbαcβd
A , then we

obtain,

T γρ
H = −A(−ηγρRabcdRabcd+8RγbcdRρ

bcd)−B(−ηγρRbdRbd+4RγdRρ
d+4RγbρdRbd)−C(−ηγρR2+8RγρR)

− 16A∆̄ωγρ
mac∂ω[RabcdΓ̄m

bd] − 8C(−∆̄
ωγρ
mad∂ω[RΓ̄mda] + ηad∆̄

ωγρ
mad∂ω[RΓ̄mb

b])

− 4B(−∆̄
ωγρ
mba∂ω[RbdΓ̄ma

d] − ∆̄
ωγρ
mad∂ω[RbdΓ̄m a

b ] + ηac∆̄ωγρ
mac∂ω[RbdΓ̄m

bd] + ∆̄
ωγρ
mbd∂ω[RbdΓ̄mc

c])

+ 4A∆̂
ξωγρ
ambd∂ξ∂ω[Rabcdhm

c] + 2C(−ηac∆̂
ξωγρ
ambc∂ξ∂ω[Rhmb] + ηac∆̂

ξωγρ
bmac∂ξ∂ω[Rhmb])

+B(−ηac∆̂
ξωγρ
ambc∂ξ∂ω[Rbdhm

d]+ηac∆̂
ξωγρ
bmac∂ξ∂ω[Rbdhm

d]+∆̂
ξωγρ
ambd∂ξ∂ω[Rbdhma]−∆̂

ξωγρ
bmad∂ξ∂ω[Rbdhma]).

(3.33)

Next we will contract all of the ∆̄
ωγρ
mba and ∆̂

ξωγρ
ambd,
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T γρ
H = −A(−ηγρRabcdRabcd+8RγbcdRρ

bcd)−B(−ηγρRbdRbd+4RγdRρ
d+4RγbρdRbd)−C(−ηγρR2+8RγρR)

+ 16A∂ω[RγbρdΓ̄ωbd − RρbωdΓ̄
γ
bd − RγbωdΓ̄

ρ
bd]

+ 4B∂ω[−RρdΓ̄
ωγ

d + ηγρRbdΓ̄ωbd + RγρΓ̄ωb
b − RγdΓ̄

ωρ
d + RωdΓ̄

γρ
d − η

ωρRbdΓ̄
γ
bd]

+ 4B∂ω[−RρωΓ̄
γb

b + RωdΓ̄
ργ

d − η
ωγRbdΓ̄

ρ
bd − RγωΓ̄

ρb
b + RρdΓ̄

γω
d + RγdΓ̄

ρω
d]

+ 8C∂ω[−RΓ̄ωργ + ηγρRΓ̄ωb
b + RΓ̄γωρ − ηωρRΓ̄

γb
b + RΓ̄ρωγ − ηωγRΓ̄

ρb
b]

+ 2A∂a∂ω[−Raγρdhωd − Raργdhωd + Raρωdhγd + Raγωdhρd + Raωρdhγd + Raωγdhρd]

+ B∂a∂ω[ηγρRadhωd − η
ρωRadhγd − η

γωRadhρd + Raωhγρ + Rγρhωa − Rρωhγa − Rγωhρa]

+
1
2

B∂a∂ω[−ηaρRγdhωd − η
aγRρdhωd + ηaωRρdhγd + ηaωRγdhρd + ηaρRωdhγd + ηaγRωdhρd]

+ 2C∂a∂ω[ηaωRhγρ + ηγρRhωa − ηρωRhγa − ηγωRhρa]. (3.34)

Separating the part proportional to ηγρ,

T γρ
H = ηγρ

(
ARabcdRabcd + C(R2 + 8∂ω[RΓ̄ωb

b] + 2∂a∂ω[Rhωa])

+ B(RbdRbd + 4∂ω[RbdΓ̄ωbd] + ∂a∂ω[Radhωd])
)

− 8ARγbcdRρ
bcd − B(4RγdRρ

d + 4RγbρdRbd) − 8CRγρR

+ 16A∂ω[RγbρdΓ̄ωbd − RρbωdΓ̄
γ
bd − RγbωdΓ̄

ρ
bd]

+ 4B∂ω[−RρdΓ̄
ωγ

d + RγρΓ̄ωb
b − RγdΓ̄

ωρ
d + RωdΓ̄

γρ
d − η

ωρRbdΓ̄
γ
bd]

+ 4B∂ω[−RρωΓ̄
γb

b + RωdΓ̄
ργ

d − η
ωγRbdΓ̄

ρ
bd − RγωΓ̄

ρb
b + RρdΓ̄

γω
d + RγdΓ̄

ρω
d]

+ 8C∂ω[−RΓ̄ωργ + RΓ̄γωρ − ηωρRΓ̄
γb

b + RΓ̄ρωγ − ηωγRΓ̄
ρb

b]

+ 2A∂a∂ω[−Raγρdhωd − Raργdhωd + Raρωdhγd + Raγωdhρd + Raωρdhγd + Raωγdhρd]

+ B∂a∂ω[−ηρωRadhγd − η
γωRadhρd + Raωhγρ + Rγρhωa − Rρωhγa − Rγωhρa]

+
1
2

B∂a∂ω[−ηaρRγdhωd − η
aγRρdhωd + ηaωRρdhγd + ηaωRγdhρd + ηaρRωdhγd + ηaγRωdhρd]

+ 2C∂a∂ω[ηaωRhγρ − ηρωRhγa − ηγωRhρa]. (3.35)
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It should be obvious at this point that there is no way we can reconcile this Hilbert energy-
momentum tensor with what is uniquely derived from Noether’s theorem for the linearized
Gauss-Bonnet model, Tων

N in Equation (4.27), if we fix coefficients A = 1
4 , B = −1 and C = 1

4

above. There is also a difference in corresponding coefficients between the terms the two share
in common (ηγρ[ARabcdRabcd+BRbdRbd+CR2]−8ARγbcdRρ

bcd−B(4RγdRρ
d+4RγbρdRbd)−8CRγρR),

meaning even this part is not equivalent. To prove that this does not equal to the Noether
energy-momentum tensor (Tων

N , T γρ
H ) we simply can compare the part proportional to ηγρ. The

rest we will abbreviate as T γρ
HNMP to represent the Hilbert non-Minkowski part. This allows us

to write the Hilbert energy-momentum tensor in compact form,

T γρ
H = ηγρ

(
ARabcdRabcd + C(R2 + 8∂ω[RΓ̄ωb

b] + 2∂a∂ω[Rhωa])

+ B(RbdRbd + 4∂ω[RbdΓ̄ωbd] + ∂a∂ω[Radhωd])
)

+ T
γρ
HNMP. (3.36)

Comparing the Noether and Hilbert energy-momentum tensors for linearized Gauss-
Bonnet gravity

We will now fix coefficients of the Hilbert expression for the specific counter-example of lin-
earized Gauss-Bonnet gravity. Setting A = 1

4 , B = −1 and C = 1
4 yields,

T γρ
H =

1
4
ηγρ

(
RabcdRabcd − 4RbdRbd + R2

+ 8∂ω[RΓ̄ωb
b] + 2∂a∂ω[Rhωa] − 16∂ω[RbdΓ̄ωbd] − 4∂a∂ω[Radhωd]

)
+ T

γρ
HNMP. (3.37)

Writing the Noether energy-momentum tensor in terms of the non-Minkowski part abbre-
viated as T γρ

NNMP = −RωρλσRν
ρλσ + 2RρσRωρνσ + 2RωλRν

λ − RRων,

Tων
N =

1
4
ηων(RµλαβRµλαβ − 4RµγRµγ + R2) + T

γρ
NNMP. (3.38)

Subtracting the expressions for the Hilbert and Noether energy-momentum tensors given
above yields,

T γρ
H −Tων

N =
1
4
ηγρ

(
8∂ω[RΓ̄ωb

b]+2∂a∂ω[Rhωa]−16∂ω[RbdΓ̄ωbd]−4∂a∂ω[Radhωd]
)
+T

γρ
HNMP−T

γρ
NNMP.

(3.39)
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It is obvious T γρ
HNMP − T

γρ
NNMP , 0. But to prove it for the ηγρ part we will expand the

derivatives,

T γρ
H − Tων

N =
1
4
ηγρ

(
(ηbdR − 2Rbd)(−4∂ω∂ωhbd + 10∂ω∂dhωb)

+ (ηbd∂ωR − 2∂ωRbd)(−4∂ωhbd + 10∂dhωb)
)

+ T
γρ
HNMP − T

γρ
NNMP. (3.40)

None of the remaining terms cancel. Therefore we have proven that Tων
N , T γρ

H in the case
of linearized Gauss-Bonnet gravity. This completes the disproof by counterexample of the
notion that the Hilbert and Noether energy-momentum tensors are, in general, equivalent.

3.1.5 Why the Noether and Hilbert energy-momentum tensors are not,
in general, equivalent

We have now disproved by counterexample the conjecture that the Noether and Hilbert energy-
momentum tensors are, in general, equivalent. This notion is often asserted based on the fact
that for simple models such as electrodynamics, with first order derivatives of a vector poten-
tial in the Lagrangian, the two methods indeed yield the same result. Any proofs of equiv-
alence have relied on assuming first order derivatives of first rank (vector) models [76, 170],
as discussed in the Motivation section. Therefore we considered a model with second order
derivatives of a second rank tensor potential in the Lagrangian (linearized higher order grav-
ity models), and in particular the linearized Gauss-Bonnet gravity model which has a unique
and well established energy-momentum tensor. In this case, the Noether and Hilbert energy-
momentum tensors are not equivalent.

In this section we will conclude by explaining the three major reasons these two methods
(which are very different mathematically) diverge from one another for higher order models
and higher rank tensor potentials.

Reason 1: The Noether energy-momentum tensor Tων
N has terms proportional to ηγω which

are exactly the Lagrangian density ηγωL as seen in equation (4.20). This piece is always ex-
actly proportional to the Lagrangian, which follows directly from application of Noether’s first
theorem. The Hilbert method, for models such as the linearized gravity models defined in
equation (3.14), produces terms proportional to ηγω beyond what is present in the Lagrangian.
In such cases, the Noether and Hilbert methods yield different results.

Reason 2: The covariant derivatives of higher rank tensor potentials do not cancel as in the
case of simple models like the scalar field (Klein-Gordon) and vector field (electrodynamics).
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For the covariant derivative of a scalar we have only ∇µφ = ∂µφ, therefore we get no part
with Christoffel symbols in the curved space Lagrangian. In electrodynamics, again we have
F∇µν = ∇µAν − ∇νAµ = ∂µAν − ΓαµνAα − ∂νAµ + ΓανµAα = Fµν, where the Γαµν contributions exactly
cancel due to the antisymmetry of the field strength tensor, thus there is again no Christoffel
part to the curved space Lagrangian. For models where the Christoffel symbols do not cancel,
such as the linearized higher derivative gravity models given in equation (3.14) and considered
in this paper, there are many lingering contributions from Christoffel symbols that simply add
many terms which do not follow from Noether’s method.

Reason 3: The proportional to Minkowski piece (ηγωL) derived from Noether’s theorem
in Equation (4.20) is recovered from the Hilbert method by differentiating the

√
−g part of

the curved space action. The remaining terms are built by contracting the expression with the
metric. In electrodynamics this scalar is built from 2 metrics, for the linearized gravity model
we consider there will be 4 metrics, and so on. The higher the rank of tensors one builds
a Lagrangian from, the more metric contractions the curved space Lagrangian will have, but
there will always be only one

√
−g contribution. Therefore the relative contribution of the

ηγω piece to the non ηγω piece in the Hilbert expression differs as we increase the order of
derivatives and rank of fields, yet the ηγωL piece from Noether has the same relationship to
the non ηγω part regardless of the rank of tensor or order of derivatives. In simple cases such
as a first order scalar field (Klein-Gordon), and first order vector field (electrodynamics) the
proportion of these two contributions in the Hilbert method is identical to the Noether method.
What this means is that even if we ignore problematic Christoffel terms from Reason 3, the
Hilbert energy-momentum tensor would still not coincide with the Noether energy-momentum
tensor.

These reasons provide some intuitive insight into why the Noether and Hilbert energy-
momentum tensors are not in general giving the same result, without need to consider the
details of the more technical disproof provided in this article. The obvious question that now
arises is, if we have two methods for deriving energy-momentum tensors from a Lagrangian
density of a model in Minkowski spacetime, and they are not generally giving equivalent re-
sults, which one should be considered like the fundamental method for deriving physical ex-
pressions? In the case of equations of motion derived from a Lagrangian density, the Euler-
Lagrange equation has no such ‘different’ method to ‘ compete’ with. The connection of the
Noether method to the Euler-Lagrange equation, coupled with its connection to symmetry and
to the derivation of the unique and well accepted expression for linearized Gauss-Bonnet grav-
ity used in the disproof by counterexample in this article, seem to speak for itself. Any more
general, philosophical thoughts related to this decision will be left to the reader.
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3.2 Energy-momentum tensor variants of canonical Noether,
Hilbert, Belinfante, Fock and ‘new improved’ for the
general Lagrangian density of Klein-Gordon theory

Abstract In the literature, multiple methods for deriving the energy-momentum tensor of a
physical field theory exist. Recent research proved that the physical energy-momentum tensor
derived directly from Noether’s first theorem is not generally equivalent to the Hilbert (metric)
energy-momentum tensor in Minkowski spacetime. Some of the more common expressions
include the canonical-Noether, Hilbert, Belinfante and Fock energy-momentum tensors. While
these methods are mathematically distinct, it is often asserted that they are in some sense
generally equivalent; this sentiment is due to the equivalence of multiple methods for particular
models such as conventional Klein-Gordon and electrodynamics. In this letter, we consider the
most general Lagrangian density leading to the Klein-Gordon equation of motion. We show for
different choices of free coefficients in this most general Lagrangian density, vastly different
conclusions regarding the 5 standard energy-momentum tensor definitions of a scalar field
can be made. Using this general Lagrangian density we prove several new results regarding
the relationship between the various energy-momentum tensor definitions, such as that the
Hilbert and Belinfante expressions cannot in general be related even on-shell, and that an off-
shell traceless energy-momentum tensor exists for Klein-Gordon theory. This reinforces the
recent results in the literature, and suggests while in simple cases these definitions can all
coincide, that this is merely a coincidence and not a general feature of the various mathematical
approaches. Due to this fact we argue that a unique energy-momentum tensor definition should
be adopted to avoid ambiguities caused by these contradictions. In light of this letter and other
recent results, we argue in favour of the Noether approach.

3.2.1 Motivation

The energy-momentum tensor of a physical field theory is an object of fundamental signifi-
cance. In electrodynamics, for example, the energy-momentum tensor compactly expresses
the familiar Lorentz force law and Poynting’s theorem. Deriving the equation of motion for a
physical theory is straightforward; the Euler-Lagrange equation is unique for a particular the-
ory. The energy-momentum tensor on the other hand is not so straightforward - there exists
many different methods for deriving an energy-momentum tensor for a given model. Recent
research has proven the two most common methods, namely Noether’s first theorem and the
Hilbert (metric) method, do not generally yield the same expression for special relativistic field
theories in Minkowski spacetime [13]. We note that this result corresponds to the physical
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energy-momentum tensor [29] (symmetric, gauge invariant, conserved and trace-free) derived
directly from Noether’s first theorem using the Bessel-Hagen method [26] described in section
2.2.2. of [29]. This result does not correspond to the so-called canonical Noether energy-
momentum tensor tensor which is trivially not equivalent to the symmetric Hilbert expression
(except for the Klein-Gordon scalar field theory); the canonical Noether tensor is what follows
from Noether’s first theorem considering only the 4-parameter Poincare translation. Since
many definitions for the energy-momentum tensor exist, and they do not generally coincide, it
is a question of fundamental significance as to which consistently derived the unique physical
energy-momentum tensor for a given theory.

Four of the common energy-momentum tensors in Minkowski spacetime are the (i) canon-
ical Noether, (ii) Hilbert, (iii) Belinfante and (iv) Fock expressions [29, 75]. For electrody-
namics, (ii)-(iv) are identical, which contributed to the impression that these very different
mathematical approaches are in some sense generally equivalent. Attempted proofs of the
equivalence between (ii) and (iii) have a long history [95, 76, 170], with the best attempts con-
cluding that the two expressions can differ by combinations of the equations of motion [170].
The exception to this rule is for scalar fields, where the conventional Klein-Gordon model
has equivalence for all (i)-(iv) [168]. This is because the spin angular momentum for a scalar
field is identically zero, thus (i) and (iii) are identical. The conventional Klein-Gordon (KG)
model [121, 93] (although supposedly first developed by Schrodinger [191]) has a well known
Lagrangian density LKG, equation of motion EKG, and energy-momentum tensor T γρ

KG,

LKG = −
1
2
∂µφ∂

µφ, (3.41)

EKG = �φ, (3.42)

T γρ
KG = −

1
2
ηγρ∂µφ∂

µφ + ∂γφ∂ρφ. (3.43)

The question remains however, for the most general scalar field model (with free coeffi-
cients in the Lagrangian density given in (3.44)), are there particular Lagrangians that differ-
entiate the various methods (i)-(iv)? For example, does a particular scalar field model exist
such that (ii) and (iii) cannot be reconciled, since for scalar field model the Belinfante im-
provement has identically zero spin connections? Given the fundamental significance of an
energy-momentum tensor for a physical theory, cases where (i)-(iv) cannot be reconciled in
some way are of high importance; if there are several energy-momentum tensors for a given
model, one must be selected to write down the set of fundamental conservation laws (as in the
case of electrodynamics). In this letter we will consider a general linear combination of the
scalar field Lagrangian density (3.44) that yields the Klein-Gordon equation (3.45) in order to
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elucidate that even for a simple scalar field theory, different choices of the parameters A and B

can lead to vastly different equivalence/ non-equivalence of the various energy-momentum ten-
sors. To explore these questions we will consider the most general Klein-Gordon Lagrangian
density,

L = A∂µφ∂µφ + Bφ∂µ∂µφ, (3.44)

whose Euler derivative E = δL
δφ

= ∂L
∂φ
− ∂α

∂L
∂(∂αφ) + ∂α∂β

∂L
∂(∂α∂βφ) is the ordinary Klein-Gordon

equation of motion,

E = (2B − 2A)�φ, (3.45)

and apply methods (i)-(iv) to this Lagrangian density. Focusing on the general scalar model
allows for simple calculations/ comparisons of the various methods (i)-(iv), whose results we
summarize in section 4. The general Lagrangian density (3.44) allows one to explore the
system of linear coefficients that result from each of the energy-momentum tensors (given
in section 2) in order to see for what solutions the results can be reconciled, and for what
solutions the results obtain known results in the literature. In this sense (3.44) and (3.45) are
a toy model which we use to elucidate problems with having a variety of energy-momentum
tensor definitions.

In addition we will consider a fifth expression, ‘a new improved energy-momentum tensor’
of Callan-Coleman-Jackiw [45]. Since (3.43) is not traceless (on or off-shell), the authors
[45] proposed an ad-hoc improvement to obtain an on-shell tracefree expression; we show that
methods (i), (iii) and (iv) can be used to derive the ‘new improved energy-momentum tensor’
directly from (3.44) without any improvements needed. This result was to some extent noted
in the past by Kuzmin and McKeon in [127]. Our notable results are summarized in section 4.

3.2.2 Various energy-momentum tensor definitions

We will now calculate the various energy-momentum tensors for the general Klein-Gordon
Lagrangian (3.44), which must be conserved on-shell up to (3.45).

(i) canonical Noether energy-momentum tensor

From Noether’s first theorem for a scalar field φ Lagrangian (3.44) we can derive Noether’s
differential identity between the equation of motion and conservation law,
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(
∂L

∂φ
− ∂α

∂L

∂(∂αφ)
+ ∂α∂β

∂L

∂(∂α∂βφ)

)
δφ

+ ∂µ

(
ηµνLδxν +

∂L

∂(∂µφ)
δφ +

∂L

∂(∂µ∂ωφ)
∂ωδφ −

[
∂ω

∂L

∂(∂µ∂ωφ)

]
δφ

)
= 0 . (3.46)

This identity relates the equation of motion E (first line above) to the Noether current jµ

(second line above) as Eδφ + ∂µ jµ = 0. The canonical Noether energy-momentum tensor is
defined as the Noether current jµ when the transformation of fields is defined as the 4-parameter
Poincare translation δxν = aν and transformation of fields δφ = −(∂νφ)δxν. Substituting these
into (3.46) and factoring out the constant aν from jµ we are left with the canonical Noether
energy-momentum tensor T µν

C ,

T µν
C = ηµνL −

∂L

∂(∂µφ)
∂νφ −

∂L

∂(∂µ∂ωφ)
∂ω∂

νφ +

[
∂ω

∂L

∂(∂µ∂ωφ)

]
∂νφ. (3.47)

Inserting (3.44) into (3.47) we obtain,

T µν
C = ηµν(A∂αφ∂αφ + Bφ∂α∂αφ) + (B − 2A)∂µφ∂νφ − Bφ∂µ∂νφ. (3.48)

This is the most general canonical Noether energy-momentum tensor for Klein-Gordon
theory. In section 3 we will compare this expression to the other energy-momentum tensor
definitions for various solutions A and B.

(ii) Hilbert (metric) energy-momentum tensor in Minkowski spacetime

The Hilbert (metric) energy-momentum tensor in Minkowski spacetime [29] is defined as,

T γρ
H =

2
√
−g

δLH

δgγρ

∣∣∣∣∣∣
g=η

. (3.49)

This method involves writing a special relativistic Lagrangian in ‘curved space’ by replac-
ing all derivatives with covariant derivatives ∂ → ∇, replacing all Minkowski metrics with the
metric tensor η→ g and introducing the Jacobian term

√
−g. Writing (3.44) in ‘curved space’

we have,

LH =
√
−ggµν(A∇µφ∇νφ + Bφ∇µ∇νφ). (3.50)

For a scalar field the ‘curved space’ Lagrangian LH is simplified because the covari-
ant derivative of a scalar is trivially ∇µφ = ∂µφ. Therefore we are left with a single co-



3.2. Energy-momentum tensor variants of Klein-Gordon theory 97

variant derivative in the second term LH =
√
−ggµν(A∂µφ∂νφ + Bφ∇µ∂νφ). This covariant

derivative is ∇µ∂νφ = ∂µ∂νφ − Γλµν∂λφ, where the Christoffel symbol of the second kind is
Γλνα = 1

2gmλ(−∂mgνα + ∂αgmν + ∂νgmα). Thus we have for (3.50),

LH =
√
−ggµν(A∂µφ∂νφ + Bφ∂µ∂νφ − BφΓλµν∂λφ). (3.51)

We now require the Euler derivative δL
δgγρ

= ∂L
∂gγρ
− ∂ω

∂L
∂(∂ωgγρ) for (3.49). For this we will need

∂
√
−g

∂gγρ
= 1

2gγρ
√
−g and ∂gµν

∂gγρ
= −1

2 (gγµgρν + gρµgγν). Calculating the required derivatives,

∂L

∂gγρ
=

1
2
√
−g(A∂µφ∂νφ + Bφ∂µ∂νφ)[gµνgγρ − gγµgρν − gρµgγν], (3.52)

∂L

∂(∂ωgγρ)
= −

1
2

B(−gωλgγρ + gγλgρω + gρλgωγ)
√
−gφ∂λφ, (3.53)

and inserting into (3.49) and returning to Minkowski space we have,

T γρ
H = (A∂µφ∂νφ + Bφ∂µ∂νφ)[ηµνηγρ − ηγµηρν − ηρµηγν]

+ B(−ηωληγρ + ηγληρω + ηρληωγ)∂ωφ∂λφ + B(−ηωληγρ + ηγληρω + ηρληωγ)φ∂ω∂λφ. (3.54)

Contracting all Minkowski metrics and collecting like terms we are left with the Hilbert
(metric) energy-momentum tensor in Minkowski spacetime,

T γρ
H = (A − B)ηγρ∂µφ∂µφ + (2B − 2A)∂γφ∂ρφ. (3.55)

We note that this expression is conserved for all A, B since ∂γT
γρ
H = (2A − 2B)[∂γφ∂ρ∂γφ −

∂γφ∂
γ∂ρφ] = 0. This is the most general Hilbert energy-momentum tensor for Klein-Gordon

theory. In section 3 we will compare this expression to the other energy-momentum tensor
definitions for various solutions A and B.

(iii) Belinfante energy-momentum tensor

The Belinfante energy-momentum tensor is defined as the canonical Noether energy-momentum
tensor plus a specific improvement term [23]. This ‘symmetrization procedure’ is designed to
add a specific divergence of a superpotential ∂αb[µα]ν that will eliminate the antisymmetric part
of T µν

C ,

T µν
B = T µν

C + ∂αb[µα]ν, (3.56)
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since T µν
C is not automatically symmetric. However, in the case of the general scalar field

Lagrangian (3.44), we automatically have a symmetric canonical Noether energy-momentum
tensor in (3.48); hence the Belinfante symmetrization improvement has no sense in this case.
This is well justified because the Belinfante superpotential is based on the spin connection
S ρ[σγ] of the model,

b[ργ]σ =
1
2

(−S ρ[σγ] + S γ[σρ] + S σ[γρ]), (3.57)

where b[ργ]σ is antisymmetric in [ργ] so that conservation ∂ρ∂γb[ργ]σ = 0 is independent
and does not affect the already conserved canonical Noether tensor. We note that in [23],
Belinfante refers to an uncited ‘Dr. Podolansky’ who suggested this result to him. The spin
connection S ρ[σγ] for a scalar field theory is identically zero (it has no such contribution), thus
the superpotential b[ργ]σ = 0 and we have the expected result for a scalar field that [168],

T µν
B = T µν

C . (3.58)

This relationship is important to emphasize because many claims of the relationship be-
tween the Belinfante and Hilbert energy-momentum tensors exist [95, 76, 170]. However in
the case of scalar field theory we can directly compare the canonical Noether result to the
Hilbert result without the need for ad-hoc improvement; the Belinfante tensor is simply the
canonical Noether tensor in this case. The need for ad-hoc improvement of energy-momentum
tensors is often criticized, as discussed by Forger and Römer [76]: There is a long history of

attempts to cure these diseases and arrive at the physically correct energy-momentum tensor

Tµν by adding judiciously chosen “improvement” terms to T µν
C . They go on to say: However,

all these methods of defining improved energy-momentum tensors are largely “ad hoc” pre-

scriptions focussed on special models of field theory, often geared to the needs of quantum field

theory and ungeometric in spirit. Studying the various definitions for a scalar field theory al-
lows us to largely avoid these ad-hoc manipulations and focus on possible results of the direct
and unique calculations.

(iv) Fock energy-momentum tensor

The Fock energy-momentum tensor [75] is defined as the most general linear combination of
second rank symmetric terms for a given theory, which is solved for possible on-shell conserved
expressions. This gives the most general picture of possible conserved symmetric energy-
momentum tensors, irrespective of the various other methods. For (3.44) we have,

T γρ
F = ηγρ(C∂αφ∂αφ + Dφ∂α∂αφ) + E∂γφ∂ρφ + Fφ∂γ∂ρφ. (3.59)
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Taking the divergence of this expression,

∂γT
γρ
F = (2C + E + F)∂αφ∂α∂ρφ + (D + E)∂ρφ∂α∂αφ + (D + F)φ∂α∂α∂ρφ. (3.60)

We have the condition 2C + E + F = 0 which must hold in (3.59) for it to be conserved
on-shell. This is the most general Fock energy-momentum tensor for Klein-Gordon theory. In
section 3 we will compare this expression to the other energy-momentum tensor definitions for
various solutions C, D, E and F.

(v) ‘A new improved energy-momentum tensor’ by Callan-Coleman-Jackiw

The conventional Klein-Gordon energy-momentum tensor (3.43) is not traceless. The trace-
lessness of the energy-momentum tensor is an essential characteristic of a physical field theory
[29]. This was noted by Callan-Coleman-Jackiw in 1970 [45], who proposed ‘A new improved
energy-momentum tensor’ that improved the canonical Noether tensor T µν

C of ordinary Klein-
Gordon theory; when A = −1

2 and B = 0 in (3.44). They presented,

T µν
CCJ = −

1
2
ηµν∂αφ∂

αφ + ∂µφ∂νφ −
1
6

(∂µ∂ν − ηµν∂α∂α)φ2, (3.61)

where the first two terms are T µν
C for A = −1

2 and B = 0, and the final two terms are
their ‘new improvement’. This improvement was defined with a very specific purpose; to have
an on-shell tracelessness of the energy-momentum tensor. This expression can be expanded
straightforwardly for easier comparison to the results in the previous sections,

T µν
CCJ = −

1
6
ηµν∂αφ∂

αφ +
1
3
ηµνφ∂α∂

αφ +
2
3
∂µφ∂νφ −

1
3
φ∂µ∂νφ. (3.62)

This ‘new improved energy-momentum tensor’ is the ad-hoc improved energy-momentum
tensor derived in [45]. In section 3 we will compare it to the other energy-momentum tensor
definitions.

3.2.3 Solving the free coefficients for desired properties of the energy-
momentum tensors

Now that we have definitions (i)-(iv) in terms of free coefficients, and a fifth definition (v), we
can consider solutions that will reconcile or differentiate the different methods.
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Recovering the conventional Klein-Gordon energy-momentum tensor from definitions
(i)-(iv)

We start by noting the trival result, that for conventional Klein-Gordon theory, where (3.44)
has B = 0,

L = A∂µφ∂µφ. (3.63)

Methods (i)-(iii) are identical for any choice of the free parameter A,

T γρ
C = T γρ

H = T γρ
B = A(ηγρ∂µφ∂µφ − 2∂γφ∂ρφ). (3.64)

This is the conventional energy-momentum tensor for Klein-Gordon theory [168], typically
presented with A = ±1

2 . In addition the Fock method T γρ
F in (3.59) trivially recovers this energy-

momentum tensor for C = A, D = 0, E = −2A and F = 0, as it satisfies 2C + E + F = 0. Thus,
as is well known, methods (i)-(iv) can all be reconciled for the standard B = 0 Lagrangian.

Deriving ‘a new improved energy-momentum tensor’ directly from Noether’s first theo-
rem

The result (3.62) in [45] implies that ad-hoc improvements are needed to obtain (3.62) from
Noether’s theorem. The improvement of energy-momentum tensors is of course undesirable
as discussed by Forger and Römer [76]. It is far superior for an energy-momentum tensor
to follow directly from a well defined method such as Noether’s first theorem or the Hilbert
(metric) energy-momentum tensor without any manipulations required. This is exactly the
case for a particular choice of A and B in the general Lagrangian (3.44). For the solution
A = −1

6 and B = 1
3 we have the result,

T µν
C = T µν

B = T µν
CCJ = −

1
6
ηµν∂αφ∂

αφ +
1
3
ηµνφ∂α∂

αφ +
2
3
∂µφ∂νφ −

1
3
φ∂µ∂νφ. (3.65)

To some extent this result was realized by Kuzmin and McKeon [127] via the additional
surface term considered for the conventional Klein-Gordon action, that can be added to obtain
T µν

CCJ directly from Noether’s first theorem. In addition the Fock method T γρ
F in (3.59) trivially

recovers this energy-momentum tensor for C = −1
6 , D = 1

3 , E = 2
3 and F = −1

3 , as it satisfies
2C + E + F = 0. The Hilbert energy-momentum tensor (3.55) can of course not recover this for
any solution A and B. Note that A = −1

6 and B = 1
3 yields T γρ

H = −1
2η

γρ∂µφ∂
µφ + ∂γφ∂ρφ which

is simply the conventional (3.64) for A = −1
2 and B = 0. Therefore methods (i) and (iii)-(v)

can be reconciled as the ‘new improved energy-momentum tensor’.
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On-shell tracelessness conditions of the various energy-momentum tensors (i)-(iv)

The ‘new improved energy-momentum tensor’ in (3.62) is on-shell traceless by construction.
The conventional energy-momentum tensor for Klein-Gordon theory (3.64) is not. We can
ask the question for the general tensors (i)-(iii) be solved for tracelessness in a more general
manner. From (3.48) we have,

ηγρT
γρ
C = (2A + B)∂αφ∂αφ + 3Bφ∂α∂αφ, (3.66)

thus on-shell 3Bφ∂α∂αφ = 0 and we have the condition 2A+B = 0 for on-shell tracelessness.
Recall to derive T µν

CCJ we required A = −1
6 and B = 1

3 , which indeed satisfies this on-shell
condition. Thus for all B = −2A both of the (equivalent) (i) canonical Noether T γρ

C and (iii)
Belinfante T γρ

B energy-momentum tensors are,

T µν
C = T γρ

B = A[ηµν(∂αφ∂αφ − 2φ∂α∂αφ) − 4∂µφ∂νφ + 2φ∂µ∂νφ], (3.67)

where we have an on-shell traceless result for all A (and of course T µν
CCJ in (3.62) is recov-

ered for A = −1
6 ). For (ii) the Hilbert (metric) energy-momentum tensor in (3.55) on the other

hand,

ηγρT
γρ
H = (2A − 2B)∂µφ∂µφ. (3.68)

We have tracelessness only for A = B. But (3.55) is identically zero (T γρ
H = 0) for all

A = B. Therefore there exists no non-trivial tracefree Hilbert energy-momentum tensor for
(3.44). Finally for the Fock energy-momentum tensor (3.59) we have,

ηγρT
γρ
F = (4C + E)∂αφ∂αφ + (4D + F)φ∂α∂αφ, (3.69)

thus on-shell (4D + F)φ∂α∂αφ = 0 and we have the condition 4C + E = 0 for on-shell
tracelessness. Recall to derive T µν

CCJ we required C = −1
6 and E = 2

3 , which indeed satisfies
this on-shell condition. Thus for all E = −4C we have an on-shell traceless (iv) Fock energy-
momentum tensor in (3.59),

T γρ
F = ηγρ(C∂αφ∂αφ + Dφ∂α∂αφ) − 4C∂γφ∂ρφ + Fφ∂γ∂ρφ, (3.70)

which is tracefree on-shell for all C, D and F. Note that it recovers T µν
CCJ in (3.62) for

C = −1
6 , D = 1

3 and F = −1
3 .
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Off-shell tracelessness conditions for (iv) the Fock energy-momentum tensor

The previous subsection explored the many possible on-shell tracelessness conditions for the
various energy-momentum tensors (i)-(v). The downside of these results is that the on-shell
condition must be imposed in order to obtain tracelessness. In classical electrodynamics, for
example, T µν is tracefree off-shell, a stronger and more desirable result for the tracelessness of
the physical expression.

We do note a result unique to the Fock energy-momentum tensor traceless conditions in
(3.69); it is possible to construct an off-shell tracefree energy-momentum tensor for the scalar
field as in the case of electrodynamics. For this expression, it is not necessary to use the on-
shell condition: the energy-momentum tensor can be made traceless off-shell by fixing the
coefficients as 4C + E = 0 and 4D + F = 0, yielding,

T γρ
F = ηγρ(C∂αφ∂αφ + Dφ∂α∂αφ) − 4C∂γφ∂ρφ − 4Dφ∂γ∂ρφ, (3.71)

which is tracefree off-shell for all C, D. However this can be further simplified by the
required conservation condition 2C + E + F = 0, which for E = −4C and F = −4D yields the
condition C = −2D. Imposing the conservation condition,

T γρ
F = D[ηγρ(−2∂αφ∂αφ + φ∂α∂

αφ) + 8∂γφ∂ρφ − 4φ∂γ∂ρφ], (3.72)

we have an off-shell tracefree, conserved, symmetric energy-momentum tensor as in the
case of electrodynamic theory.

The (ii) Hilbert (metric) energy-momentum tensor can have less terms than the (i) canon-
ical Noether energy-momentum tensor

The conventional view is that the canonical Noether energy-momentum tensor T µν
C must be

improved (by adding additional terms) to obtain the physical energy-momentum tensor [29],
typically by the addition of the Belinfante term in (3.103) [95, 76, 170]. The Hilbert energy-
momentum tensor T µν

H for electrodynamics gives this physical expression immediately. The
canonical Noether tensor is generally viewed to have less terms than the Hilbert energy-momentum
tensor, which leads to the conventional wisdom that terms must be supplemented ad-hoc to T µν

C

to reconcile it with T µν
H . In addition it is often claimed that the Belinfante term is at least part

of this reconciliation [95, 76, 170]. Here we give a counterexample to this general view.

In the case of (3.44), the canonical Noether energy-momentum tensor (3.48) has more
terms than the Hilbert energy-momentum tensor (3.55). Based on the conventional wisdom we
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should be adding terms to (3.48) to obtain (3.55). Instead (3.48) has the additional terms,

T µν
C − T µν

H = B[ηµν∂αφ∂αφ + ηµνφ∂α∂
αφ − ∂µφ∂νφ − φ∂µ∂νφ]. (3.73)

Note that the additional terms in T µν
C all depend on B, which explains why in the conven-

tional Klein-Gordon theory for B = 0 these results all reconcile, as shown in (3.64).

The (ii) Hilbert (metric) energy-momentum tensor and the (iii) Belinfante energy-momentum
tensor are not equivalent, even on-shell

The previous results attempt to claim that the (ii) Hilbert (metric) energy-momentum tensor and
the (iii) Belinfante energy-momentum tensor are in some sense generally equivalent, at least
using on-shell conditions [95, 76, 170]. For these scalar models the (iii) Belinfante energy-
momentum tensor is equivalent to (i) the canonical Noether energy-momentum tensor, thus
from (3.58) and (3.73) we have,

T µν
B − T µν

H = B[ηµν∂αφ∂αφ + ηµνφ∂α∂
αφ − ∂µφ∂νφ − φ∂µ∂νφ]. (3.74)

Even if we use the on-shell condition we have the result T µν
B − T µν

H , 0. Therefore we have
proven by counterexample that (ii) and (iii) need not be related, even using on-shell conditions.

3.2.4 Summary of results

We now summarize the main results of the previous section, where the 5 energy-momentum
tensors we refer to are (i) canonical Noether, (ii) Hilbert (metric), (iii) Belinfante, (iv) Fock
and (v) ‘new improved’ of Callan-Coleman-Jackiw [45].

• From (3.44) the general energy-momentum tensors (i)-(iii) are identical to the conven-
tional Klein-Gordon energy-momentum tensor (3.64) when B = 0, for all A. This ex-
pression can be recovered from (iv), but is not equivalent to (v) for any A.

• Energy-momentum tensor (v) can be derived directly from Noether’s first theorem for
(i) and (iii) in (3.65) without the need for ad-hoc improvement terms. To some extent
this result was realized in the past in [127], by considering a surface term added to the
conventional Klein-Gordon Lagrangian. We note (v) was also obtained from (iv).

• On-shell tracelessness of (i) and (iii) was obtained in (3.67) for a general parameter A.
There exists no non-trivial (ii) which is traceless on-shell or off-shell. A more general
on-shell traceless energy-momentum tensor (3.70) was found for (iv).
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• Off-shell tracelessness is not possible for (i)-(iii) and (v). However we obtained for (iv)
the energy-momentum tensor (3.72) which is traceless off-shell, conserved and sym-
metric; all properties of the unique physical energy-momentum tensors common in i.e.
electrodynamics.

• Contrary to conventional wisdom, there exists for (3.44) for all B , 0 an energy-
momentum tensor (i) that has more terms than (ii); the common view in the literature
is that one must ad-hoc add terms to (i) in order to reconcile with (ii) since (i) is usually
lacking terms found in (ii).

• Contrary to conventional wisdom that (ii) and (iii) are on-shell equivalent in general, for
(3.44) these two tensors cannot be reconciled, not even on-shell.

3.2.5 Discussion

We have shown that from the most general possible Klein-Gordon Lagrangian density with
free coefficients (3.44) and applying various methods of energy-momentum tensor derivation,
five common definitions for scalar field theory (i) canonical Noether, (ii) Hilbert (metric), (iii)
Belinfante, (iv) Fock and (v) new improved of Callan-Coleman-Jackiw can vary drastically
based on the choice of the free coefficients. The method of using a general Lagrangian density
with free coefficients was applied in [14] to derive unique gauge invariant energy-momentum
tensors from Noether’s first theorem. Considering a general Lagrangian density with free co-
efficients is a powerful method for answering questions about generality and uniqueness of
equations in a particular theory.

The energy-momentum tensors (i)-(iv) for the standard Klein-Gordon Lagrangian (3.41)
are well known to be equivalent [168] which is one of the reasons for the conventional wisdom
of calling the mathematically distinct methods by the same name (energy-momentum tensor)
and symbol (T µν). However recent research proved that this equivalence does not generally
hold for the physical energy-momentum tensors derived from Noether’s first theorem and the
Hilbert (metric) method in Minkowski spacetime [13]. This motivated us to consider the most
general Lagrangian with free coefficients as in [14], and apply the various methods that exist
in the literature. The fact that many of the energy-momentum tensors depend explicitly on
the Lagrangian density requires a unique Lagrangian density for each given conservation law,
contrary to the Euler-Lagrange equation where numerous different Lagrangains can yield the
same result; this allowed us to explore the contradictions in different energy-momentum tensor
definitions based on all possible (3.44) that give the same Klein-Gordon equation of motion
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(3.45). As our summarized results in section 4 indicate, equivalence of (i)-(v) for a scalar field
varies drastically based on the particular choice of free coefficients. Most notably we show
that: (a) contrary to popular belief, there exists a Hilbert energy-momentum tensor with less
terms than the Belinfante tensor that cannot be reconciled on-shell, (b) the ‘new improved
energy-momentum tensor’ of Callan-Coleman-Jackiw can be derived directly from Noether’s
first theorem without any ad-hoc improvements needed, (c) from (iv) an off-shell trace-free
energy-momentum tensor is possible and (d) no trace-free (on or off-shell) energy-momentum
tensor can be obtained from the Hilbert method.

The wide variety of conclusions that can be made for such a simple model as the general La-
grangian density (3.44) for Klein-Gordon scalar field theory emphasizes the ambiguity problem
in having multiple different mathematical definitions for something that is supposedly the same
physical entity called an ‘energy-momentum tensor’. This leads to several problems when writ-
ing down unique expressions for a given theory, such as conservation and force laws, where in
electrodynamics i.e. Poynting’s theorem and the Lorentz force law are uniquely defined by the
uniquely accepted physical energy-momentum tensor for the theory. In cases such as spin-2,
ambiguity problems arise from various distinct definitions of the energy-momentum tensor that
alter fundamental calculations based on which T µν is selected, such as the controversy around
the spin-2 self coupling hµνT µν in attempted spin-2 to general relativity derivations [163]. Sort-
ing out these ambiguities is one major reason why from the various energy-momentum tensors
that exist in the literature, we as physicists should determine which is generally applicable to
physical energy-momentum tensors (such as the universal application of the Euler-Lagrange
equation of motion for a given model), and which methods happen to yield the same energy-
momentum tensor by coincidence for simple models. Based on the inherent connection to the
Euler-Lagrange equation and symmetries of the action, as emphasized by [13], we argue that it
is the results of Noether’s first theorem when the physical energy-momentum tensor [29] can
be uniquely derived without any ad-hoc improvements [26] that should be considered as the
unique and universal definition for energy-momentum derivation. However, arguments for the
other methods should of course be taken into consideration as this is a foundationally important
scientific problem at the heart of theoretical physics.
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3.3 Canonical Noether and the energy-momentum non-uniqueness
problem in linearized gravity

Abstract Recent research has highlighted the non-uniqueness problem of energy-momentum
tensors in linearized gravity; many different tensors are published in the literature, yet for par-
ticular calculations a unique expression is required. It has been shown that (A) none of these
spin-2 energy-momentum tensors are gauge invariant and (B) the Noether and Hilbert energy-
momentum tensors are not, in general, equivalent; therefore uniqueness criteria is difficult to
specify. Conventional wisdom states that the various published spin-2 energy-momentum ten-
sors can be derived from the canonical Noether energy-momentum tensor by adding ad-hoc
“improvement” terms (the divergence of a superpotential and terms proportional to the equa-
tions of motion), that these superpotentials are in some way unique or physically significant,
and that this implies some meaningful connection to the Noether procedure. To explore this
question of uniqueness, we consider the most general possible spin-2 energy-momentum tensor
with free coefficients using the Fock method. We express this most general energy-momentum
tensor as the canonical Noether tensor, supplemented by the divergence of a general super-
potential plus all possible terms proportional to the equations of motion. We then derive
systems of equations which we solve in order to prove several key results for spin-2 Fierz-
Pauli theory, most notably that there are infinitely many conserved energy-momentum tensors
derivable from the “improvement” method, and there are infinitely many conserved symmet-
ric energy-momentum tensors that follow from specifying the Belinfante superpotential alone.
This disproves several recent claims that the Belinfante tensor is uniquely associated to the
Hilbert tensor in spin-2 Fierz-Pauli theory. We give two new energy-momentum tensors of this
form. Most importantly, since there are infinitely many spin-2 energy-momentum tensors of
this form, no meaningful or unique connection to Noether’s first theorem can be claimed by
application of the canonical Noether “improvement” method.

3.3.1 Motivation

The energy-momentum tensor is a fundamental object for a physical field theory. In electro-
dynamics, the Lorentz force law and Poynting’s theorem are both expressed by the divergence
of the uniquely accepted physical energy-momentum tensor T µν. Several energy-momentum
tensors that represent the linearized gravitational field exist in the literature. This causes an
ambiguity in which the choice of energy-momentum tensor will impact the results of a given
calculation and the conservation laws for the model as a whole. Selecting a unique T µν is
problematic because Magnano and Sokolowski [140] showed that one cannot obtain a gauge
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invariant energy-momentum tensor for spin-2 Fierz-Pauli theory; an essential characteristic of
the uniquely defined physical energy-momentum tensors for e.g. electrodynamics and Yang-
Mills theory. As noted by Magnano and Sokolowski [140]:

“A gravitational energy–momentum tensor is highly desirable for a number of

reasons. For instance, it is emphasized in [6] that such a genuinely local tensor is

required for a detailed description of cosmological perturbations in the early uni-

verse. . . . Furthermore, the metric stress tensor derived in [6] has a number of nice

properties and according to the authors, their T µν is the correct energy–momentum

tensor for the gravitational field. . . . Applying a physically undeniable condition

that the energy–momentum tensor should have the same gauge invariance as the

field equations, we also conclude that this approach to gravity does not furnish a

physically acceptable notion of gravitational energy density.”

The claim in [6] that the Hilbert (metric) energy-momentum tensor (3.79) is the correct physical
expression seems to contradict the Hulse-Taylor 1993 Nobel prize in physics [107, 187], who
used the equations Peters and Mathews developed [166] from the linearized Landau-Lifshitz
energy-momentum pseudotensor (3.82) to model energy loss due to gravitational radiation of
a binary pulsar system [131]; this observationally supported model uses a T µν which does not
correspond to the Hilbert (metric) energy-momentum tensor. There exist many other energy-
momentum pseudotensors for the gravitational field in general relativity (i.e. Weinberg [190],
Papapetrou [164], Möller [152], Bergmann-Thomson [25], etc.) that can be linearized about
the Minkowski background, further complicating the question as to which is physically sig-
nificant in linearized gravity. Different energy-momentum tensors will be claimed to be the
physical expression for spin-2 Fierz-Pauli theory in different publications, hence the need to
address the non-uniqueness problem of energy-momentum tensors in linearized gravity. This
was emphasized recently by Bičák and Schmidt [28], and to some degree our paper builds on
their results.

Recent research has also proved that the Noether and Hilbert (metric) energy-momentum
tensors are not, in general, equivalent [13]; that is, the physical energy-momentum tensor de-
rived directly from Noether’s first theorem [29] (symmetric, gauge invariant, conserved and
trace-free) is not always equivalent to the Hilbert tensor in Minkowski spacetime for the same
Lagrangian density. This further complicates the possibility of uniquely expressing an energy-
momentum tensor for a physical theory. It is frequently asserted throughout the literature, how-
ever, that the canonical Noether energy-momentum tensor T µν

C (a non-symmetric, non-gauge
invariant expression) derived using only the 4-parameter Poincaré translation, is the starting
point for the derivation of various energy-momentum tensors found by the ad-hoc addition of
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the divergence of superpotentials, and terms proportional to the equations of motion; these ad-
hoc additions are often referred to as “improvements”. This is true in spin-2 Fierz-Pauli theory,
where different expressions for T µν are claimed to have a connection to Noether’s first theo-
rem due to these ad-hoc “improvements” of the canonical Noether energy-momentum tensor.
A good summary of some of these connections can be found in [184]. We will briefly re-
view the most common expressions (Hilbert and Landau-Lifshitz energy-momentum tensors)
to highlight this point. We start from the differential identity following from Noether’s theorem
[88, 124, 159],

(
∂L

∂ΦA
− ∂µ

∂L

∂(∂µΦA)
+ ∂µ∂ω

∂L

∂(∂µ∂ωΦA)
+ . . .

)
δΦA

+ ∂µ

(
ηµνLδxν +

∂L

∂(∂µΦA)
δΦA +

∂L

∂(∂µ∂ωΦA)
∂ωδΦA −

[
∂ω

∂L

∂(∂µ∂ωΦA)

]
δΦA + ...

)
= 0 , (3.75)

which is derived by asserting invariance of the action S [ΦA(xα)] under infinitesimal changes in
δxν and δΦA. One can use the associated action symmetries of coordinates δxν and fields δΦA to
derive on-shell conserved ‘Noether currents’ Jµ. The symmetries associated with the canonical
Noether energy-momentum tensor are well known; they are the change in coordinates δxν = aν
(the 4-parameter translation of the 10 parameter Poincaré group), and transformation of fields
δΦA = −(∂νΦA)δxν. We begin with the spin-2 Fierz-Pauli Lagrangian density [74],

LFP =
1
4

[∂αhββ∂
αhγγ − ∂αhβγ∂αhβγ + 2∂αhβγ∂γhβα − 2∂αhββ∂

γhγα], (3.76)

and the resulting spin-2 equation of motion Eµν can be obtained from linearization of the Ein-
stein tensor of general relativity. Equivalently, Eµν follows from substitution of Equation (3.76)
into the Euler-Lagrange expression in Equation (4.20),

Eµν =
1
2

[−ηµν�h + �hµν + ∂µ∂νh − ∂λ∂νhµλ − ∂λ∂µhνλ + ηµν∂α∂βhαβ]. (3.77)

To derive the canonical Noether energy-momentum tensor for a second rank hµν, from
Equation (4.20) with transformation of coordinates δxν = aν (the 4-parameter translation),
and the transformation of fields δΦA = −(∂νΦA)δxν, we have the canonical Noether energy-
momentum tensor for a second rank hµν, namely T µν

C = ηµνL− ∂L
∂(∂µhαβ)∂

νhαβ− ∂L
∂(∂µ∂ωhαβ)∂ω∂

νhαβ +(
∂ω

∂L
∂(∂µ∂ωhαβ)

)
∂νhαβ+ . . . . For spin-2 Fierz-Pauli theory, we have a Lagrangian density in Equa-

tion (3.76) with terms of the form ∂h∂h, thus the canonical Noether energy-momentum tensor
reduces to T ρσ

C = ηρσLFP −
∂LFP
∂(∂ρhµν)

∂σhµν, thus we obtain using Equation (3.76) the canonical
Noether energy-momentum tensor for spin-2 Fierz-Pauli theory,
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T ρσ
C = ηρσLFP −

1
2

[∂ρhζζ∂
σhµµ − ∂

ρhµν∂σhµν − ∂νh
ζ
ζ∂

σhρν − ∂
ζhρζ∂

σhµµ + 2∂µhνρ∂σhµν]. (3.78)

On-shell conservation of the canonical Noether energy-momentum tensor is guaranteed by
Noether’s first theorem, which we can verify as ∂ρT

ρσ
C = Eλγ∂σhλγ.

Using the Fierz-Pauli Lagrangian density in Equation (3.76) we will now derive the Hilbert
energy-momentum tensor. The Hilbert energy-momentum tensor for a classical gauge theory
in Minkowski space is defined in as T γρ

H = 2
√
−g

δL
δgγρ

∣∣∣∣
g=η

. The Hilbert energy-momentum ten-
sor is derived from a Lagrangian density by replacing all ordinary derivatives with covariant
derivatives ∂ → ∇, replacing the Minkowski metric with the general metric tensor η → g,
and inserting the Jacobian term

√
−g. For spin-2 Fierz-Pauli theory we obtain the well known

Hilbert energy-momentum tensor [168],

T ρσ
H =

1
4
ηρσ[∂αhββ∂

αhγγ−∂αhβγ∂αhβγ+2∂αhβγ∂γhβα+2hζµ∂ζ∂µh
β
β]−∂

ρhβα∂αhβσ−∂αhρβ∂
σhβα+∂αhρβ∂

αhσβ

+∂ζhρλ∂λhσζ−∂ζhρσ∂λhλζ−
1
2
∂ζhρσ∂ζhλλ−

1
2
∂ρhββ∂

σhαα+
1
2
∂ρhβα∂σhβα+

1
2
∂σhββ∂

αhρα+
1
2
∂ρhββ∂

αhσα

+hρλ∂ζ∂λhσζ+hσλ∂ζ∂λhρζ−hρσ∂ζ∂λhλζ−hλζ∂ζ∂λhρσ+
1
2

hρσ∂ζ∂ζhλλ−
1
2

hρµ∂σ∂µh
β
β−

1
2

hσµ∂ρ∂µh
β
β,

(3.79)

which is conserved on-shell up to ∂ρT
ρσ
H = −2EαβΓ̄σαβ, where Γ̄σαβ = 1

2 (∂αhσβ +∂βhσα−∂
σhβα) is the

linearized Christoffel symbol of the second kind. Extracting (3.78) from (3.79) we can write
the Hilbert tensor (3.79) as the canonical tensor (3.78) plus the divergence of a superpotential,
and terms proportional to the equations of motion,

T ρσ
H = T ρσ

C + ∂γΨ
[ργ]σ
H − 2hσβ Eρβ. (3.80)

The Hilbert superpotential Ψ
[ργ]σ
H = −Ψ

[γρ]σ
H found by rearranging (3.79) is,

Ψ
[ργ]σ
H =

1
2
ηρσhγα∂αhββ −

1
2
ηγσhρα∂αhββ +

1
2

hγσ∂ρhββ −
1
2

hρσ∂γhββ

+ hρλ∂λhγσ − hγλ∂λhρσ + hσβ∂γhρβ − hσβ∂ρhγβ. (3.81)

A superpotential Ψ[ργ]σ must be antisymmetric in two indices ([ργ]) because adding the
divergence of a superpotential ∂γΨ[ργ]σ to the canonical Noether expression must not affect the
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on-shell conservation (∂ρ∂γΨ[ργ]σ = 0). This result was probably first noticed by Belinfante
[23]. The Belinfante superpotential b[ργ]σ for spin-2 theory is exactly what is derived from
the Hilbert superpotential Ψ

[ργ]σ
H , a result we will explore in detail; see for example (3.108).

The relationship between the Belinfante superpotential, canonical Noether energy-momentum
tensor and Hilbert energy-momentum tensor is well established [175, 95, 6, 32, 176, 76, 134,
133, 171]: the Hilbert energy-momentum tensor can be obtained by adding both the divergence
of the Belinfante superpotential and specific terms proportional to the equations of motion to
the canonical Noether energy-momentum tensor, which is consistent with the relationship in
(3.80).

We will now introduce the linearized Landau-Lifshitz energy-momentum tensor [28],

T µν
LL =

3
4
ηµν∂αh∂αh − ηµν∂αh∂βhαβ +

1
2
ηµν∂λhαγ∂γhλα −

1
4
ηµν∂αhλσ∂αhλσ − ∂µh∂νh

−
3
2
∂αhµν∂αh + ∂αhµν∂βhαβ − ∂αhµα∂βhνβ +

1
2
∂µhλσ∂νhλσ + ∂λhµα∂λhνα

+ (∂αhµα∂νh + ∂αhνα∂µh) +
1
2

(∂µhνγ∂γh + ∂νhµγ∂γh) − (∂µhβγ∂γhνβ + ∂νhβγ∂γhµβ). (3.82)

This energy-momentum tensor can also be expressed in terms of (3.78) and terms proportional
to the equations of motion (3.77) as [184],

T µν
LL = T µν

C + ∂αΨ
[µα]ν
LL + hEµν − 2hνβE

µβ, (3.83)

where the Landau-Lifshitz superpotential is,

Ψ
[µα]ν
LL =

1
2

[ηµνh∂αh − ηναh∂µh + ηναh∂βhµβ − ηµνh∂βhαβ + h∂µhνα − h∂αhµν]

+ hνα∂µh − hµν∂αh + hµν∂βhαβ − hνα∂λhµλ + hνβ∂
αhµβ − hνβ∂

µhβα. (3.84)

Both the Hilbert T ρσ
H and Landau-Lifshitz T µν

LL energy-momentum tensors can be obtained
by starting from the canonical Noether energy-momentum tensor of spin-2 Fierz-Pauli theory
T ρσ

C , then ad-hoc adding the divergence of a superpotential, and terms proportional to the equa-
tions of motion (3.77). This is frequently used to assert that these results can in some way be de-
rived from Noether’s first theorem. For example, in the Padmanabhan-Deser debate, [163, 41,
63, 40, 16], Padmanabhan asserted [163] that for self coupling of the spin-2 energy-momentum
tensor, one can add infinitely many different superpotentials to the canonical Noether tensor,
thus Noether’s procedure cannot be used to determine the energy-momentum tensor. Subse-
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quent authors [63, 16], asserted that Noether’s theorem can be used by adding the Belinfante
superpotential and additional terms proportional to the equations of motion to the canonical
Noether tensor to obtain T ρσ

H in (3.79). But this ad-hoc addition of terms can also be used
to obtain other published expressions, such as the Landau-Lifshitz in T µν

LL (3.82). Since known
energy-momentum tensors can be obtained by adding the ad-hoc correction terms to the canon-
ical Noether tensor, this “improvement” process is portrayed as a meaningful connection of any
such energy-momentum tensor to Noether’s first theorem. However, some honest discussion of
these ad-hoc “improvements” can be found in the literature, such as statements made by Forger
and Römer [76]:

“There is a long history of attempts to cure these diseases and arrive at the phys-

ically correct energy-momentum tensor T µν by adding judiciously chosen “im-

provement” terms to [ T µν
C ]”. They go on to say: “However, all these methods of

defining improved energy-momentum tensors are largely “ad hoc” prescriptions

focussed on special models of field theory, often geared to the needs of quantum

field theory and ungeometric in spirit”.

We point out that Bessel-Hagen (a contemporary and colleague of Noether) first showed how
to derive the physical energy-momentum tensor directly from Noether’s first theorem without
the need for any such ad-hoc “improvements” in 1921 [26]. This result was determined inde-
pendently by later authors ([70, 39, 153], to name a few) and summarized in [29]. Furthermore,
it has recently been shown that the Noether and Hilbert energy-momentum tensor are not, in
general, equivalent [13], which further emphasizes the need for the investigation into the re-
lationship between tensors which are derived directly from Noether’s first theorem, and those
which can only be obtained after adding the divergence of a superpotential and terms propor-
tional to the equations of motion for a particular theory. This will be a subject that we address
in this article.

Bičák and Schmidt explored the non-uniqueness of the energy-momentum tensors in lin-
earized gravity in a recent article [28] (Bičák has long be interested in this question [27]). They
used the Fock method for deriving an energy-momentum tensor [75, 109], which considers
general expressions of terms with free coefficients for T ρσ. In particular, Bičák and Schmidt
consider all possible terms of the form ∂h∂h; we will denote their Fock energy-momentum
tensor as T ρσ

BS ,
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T ρσ
BS = b1∂αhρσ∂βhαβ + b2∂αhρσ∂αh + b3∂αhρα∂βhσβ + b4∂αhρβ∂

αhσβ + b5∂αhρβ∂βhσα

+ b6∂
ρh∂σh + b7∂

ρhαβ∂σhαβ + b8i∂
ρhσα∂αh + b8ii∂

σhρα∂αh + b9i∂
ρh∂αhσα + b9ii∂

σh∂αhρα

+ b10i∂
ρhσα∂βhαβ + b10ii∂

σhρα∂βhαβ + b11i∂
ρhαβ∂αhσβ + b11ii∂

σhαβ∂αhρβ

+ c1η
ρσ∂αh∂αh + c2η

ρσ∂αhβλ∂αhβλ + c3η
ρσ∂αhαβ∂λhλβ + c4η

ρσ∂αhλβ∂λhαβ + c5η
ρσ∂αhαβ∂βh.

(3.85)

This Fock energy-momentum tensor appears in Equation 8 of their article [28]. In (3.85) we
separate terms proportional to the Minkowski metric ηρσ with coefficients cn. The authors use
this to prove some very interesting results which we have also verified, such as the uniqueness
of the Landau-Liftshitz tensor as the conserved and symmetric expression that follows from
(3.85). The problem is that (3.85) is not the most general expression, because many conserved
energy-momentum tensors have terms of the form h∂∂h, such as the Hilbert tensor (3.79). The
appearance of such terms (h∂∂h) greatly complicates the resulting linear system of coefficients.
To accommodate these additional terms we will take a similar approach to [28], but instead
we consider the most general possible Fock energy-momentum tensor for spin-2 Fierz-Pauli
theory. This will be used to complete several proofs regarding the energy-momentum tensors
in linearized gravity. In particular, we will consider the most general system which can be
obtained by adding the divergence of a superpotential and terms proportion to the equations
of motion to the canonical Noether energy-momentum tensor T µν

C . Using this expression we
will prove that there are infinitely many conserved tensors that can be obtained by the ad-hoc
addition of these terms to T µν

C , and that there are infinitely many symmetric conserved energy-
momentum tensors following from the Belinfante improvement procedure alone. We argue
that these results show that no meaningful connection to Noether’s first theorem exists from the
superpotential approach; if a tensor is not directly derived from Noether’s first theorem, then it
simply is not derived from Noether’s first theorem, and no amount of ad-hoc “improvements”
can change this fact.

3.3.2 The most general Fock energy-momentum tensor for linearized grav-
ity

Since Bičák and Schmidt in [28] consider (3.85), which is not the most general energy-momentum
tensor for linearized gravity, as it does not include e.g. the Hilbert energy-momentum tensor in
(3.79). We will begin our proofs with the most general expression that also includes terms of
the form h∂∂h,
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T ρσ = b1∂αhρσ∂βhαβ + b2∂αhρσ∂αh + b3∂αhρα∂βhσβ + b4∂αhρβ∂
αhσβ + b5∂αhρβ∂βhσα

+ b6∂
ρh∂σh + b7∂

ρhαβ∂σhαβ + b8i∂
ρhσα∂αh + b8ii∂

σhρα∂αh + b9i∂
ρh∂αhσα + b9ii∂

σh∂αhρα

+ b10i∂
ρhσα∂βhαβ + b10ii∂

σhρα∂βhαβ + b11i∂
ρhαβ∂αhσβ + b11ii∂

σhαβ∂αhρβ

+ c1η
ρσ∂αh∂αh + c2η

ρσ∂αhβλ∂αhβλ + c3η
ρσ∂αhαβ∂λhλβ + c4η

ρσ∂αhλβ∂λhαβ + c5η
ρσ∂αhαβ∂βh

+ d1hρσ∂α∂αh + d2hρσ∂α∂βhαβ + d3h∂α∂αhρσ + d4hαβ∂α∂βhρσ + d5ih
ρα∂β∂βhσα + d5iih

σα∂β∂βhρα

+ d6ih
ρα∂α∂βhσβ + d6iih

σα∂α∂βhρβ + d7h∂ρ∂σh + d8hαβ∂ρ∂σhαβ

+ d9ih
ρα∂σ∂αh + d9iih

σα∂ρ∂αh + d10ih
ρα∂σ∂βhαβ + d10iih

σα∂ρ∂βhαβ

+ d11ih∂
ρ∂αhσα + d11iih∂

σ∂αhρα + d12ihαβ∂
ρ∂αhσβ + d12iihαβ∂

σ∂αhρβ

+ a1η
ρσhαβ∂α∂βh + a2η

ρσh∂α∂βhαβ + a3η
ρσhαβ∂α∂λhλβ + a4η

ρσh∂α∂αh + a5η
ρσhαβ∂λ∂λhαβ,

(3.86)

where we separate terms h∂∂h that are proportional to the Minkowski metric ηρσ with coeffi-
cients an. The general idea of the Fock method is to take the divergence ∂ρT ρσ and solve for
the free coefficients in front of each term such that the resulting energy-momentum tensor is
conserved on-shell. These coefficients can be solved to impose various other properties, such
as symmetry or tracelessness. Terms which must have an identical coefficient for a symmetric
expression with subscripts (i) and (ii). For example, terms b8i and b8ii form a symmetric pair
when b8i = b8ii . Terms bn correspond to terms ∂h∂h that are not proportional to Minkowski
ηρσ, and terms dn correspond to terms h∂∂h that are not proportional to Minkowski ηρσ. The
four sets of free coefficients make the proofs and linear systems of equations easier to follow.

The general idea of the Fock method, to take the divergence ∂ρT ρσ of (3.86) and solve for
coefficients that allow for a conserved expression up to Eµν in (3.77). This will also include
terms proportional to the trace of the equation of motion (3.77) which we obtain from E =

ηµνEµν,

E = ∂α∂βhαβ − �h. (3.87)

We wish to explore the most general expression (3.86), and its relationship to the canonical
Noether energy-momentum tensor (3.78), supplemented by the most general possible super-
potential and terms proportional to the equations of motion. There are six possible terms
proportional to the equations of motion hEρσ, hραEσα, hρσE, hσαEρα, ηρσhE and ηρσhαβEαβ,
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each of which will be general up to a coefficient ζn. Therefore what we will solve for is the
most general possible case where one supplements the canonical Noether energy-momentum
tensor of spin-2 Fierz-Pauli theory (3.78) by the divergence of a superpotential and terms
proportional to the equations of motion (i.e. we will obtain solutions of the form T ρσ =

T ρσ
C + ∂αΨ

[ρα]σ + ζ1hEρσ + ζ2hραEσα + ζ3hρσE + ζ4hσαEρα + ζ5η
ρσhE + ζ6η

ρσhαβEαβ). To do
this, we must re-express (3.86) in terms of the 28 possible terms from the ζn expressions, and
all possible superpotential terms. This process is non-trivial, so we will now explain how one
must re-express these terms.

In total there are 43 terms in (3.86). Using the identity A∂B = ∂(AB) − B∂A based on the
product rule for each of the quadratic terms bn and cn, we can express all terms of the form
∂h∂h as h∂∂h (terms presented in the equations of motion) plus terms under a total divergence
of the form ∂[h∂h] (which contribute to the superpotential). For example we can re-write
the b1 term in (3.86) as b1∂αhρσ∂βhαβ = b1∂α[hρσ∂βhαβ] − b1hρσ∂α∂βhαβ. No terms can be
neglected as in the case of boundary terms in the action when deriving the equations of motion;
total divergences in this derivation contribute to the superpotential. We give the result of this
process in (3.88), below. Terms of the form h∂∂h will factor into combinations of the equations
of motion in (3.77) and (3.87). The total divergence term will result in the divergence of
the superpotential term of the form ∂αΨ

[ρα]σ. As discussed earlier, the superpotential Ψ[ρα]σ

must be antisymmetric in [ρα] so that the total expression for T ρσ is conserved on-shell via
∂ρ∂αΨ

[ρα]σ = 0 (since T ρσ
C is independently conserved on-shell due to Noether’s first theorem,

and all of the terms proportional to the equations of motion trivially do not impact on-shell
conservation).

The complicated part is that some bn and cn terms can be combined using the identity
A∂B = ∂(AB) − B∂A in two different ways. In addition there are terms an and dn that the
identity A∂B = ∂(AB) − B∂A can be applied to twice, contributing two pieces to the su-
perpotential and a different piece to the equations of motion. All of these possibilities must
be accounted for in the most general linear system: one cannot simply split these possibil-
ities by a numerical coefficient such as 1

2 , because the relative contribution can be uneven,
such as in the case of the b2 term in T µν

LL (3.82), −3
2∂αhµν∂αh. In general, we will split such

terms in the form bn = Bn + B̄n. For example term b2 = B2 + B̄2 must be split. This is be-
cause it can make contributions B2∂αhρσ∂αh = B2∂α[hρσ∂αh] − B2hρσ∂α∂αh and contribution
B̄2∂αhρσ∂αh = B̄2∂α[h∂αhρσ] − B̄2h∂α∂αhρσ. For this reason terms b2 can contribute multiple
different terms to the superpotential of a particular energy-momentum tensor, as seen in the
general result (3.88), and as emphasized by the Landau-Lifshitz example. The exact splitting
of each coefficient can be nontrivial and must be solved for as part of the general system of
linear equations (which we summarize in Appendix A).
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However, the majority of the terms in (3.86) cannot be split, because they will either not
contribute to one of the 6 possible equations of motion (e.g. terms such as hαβ∂α∂βhρσ), or they
will produce a term symmetric in (ρα) in the total divergence which cannot be incorporated into
the superpotential Ψ[ρα]σ (e.g. terms with a ∂ρ total derivative). The third possibility is both
applications of the identity A∂B = ∂(AB) − B∂A yield the same result, thus they recombine
and no splitting is necessary. Taking this all into account, there are 9 terms which must be
split due to multiple possible contributions in the most general system. They are a1, a2, b2,
b4, c5, d1, d3, d5i and d5ii . Each of these 9 coefficients is split in the form an = An + Ān,
bn = Bn + B̄n , cn = Cn + C̄n and dn = Dn + D̄n. Using these conditions on (3.86) and the identity
A∂B = ∂(AB) − B∂A accordingly we are left with the general energy-momentum tensor:
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T ρσ = (b7 − d8)∂σhαβ∂ρhαβ + c4η
ρσ∂αhλβ∂λhαβ + (b10i − d12i)∂α[ηραhσβ∂ωhωβ]

+ ∂α[(B2 + D̄1 − D̄3)hρσ∂αh + b9ih
σα∂ρh + (B̄2 − D̄1 + D̄3)h∂αhρσ + b8ih∂

ρhσα

+ (b1 − d4)hρσ∂βhαβ + b3hσα∂βhρβ + d4hαβ∂βhρσ + b5hρβ∂βhσα

+ d12ih
α
β∂

ρhσβ + (B4 + D̄5i − D̄5ii)h
ρ
β∂

αhσβ + d12iih
α
β∂

σhρβ + b11iih
ρ
β∂

σhαβ

+ (B̄4 − D̄5i + D̄5ii)h
σ
β∂

αhρβ + b11ih
σ
β∂

ρhαβ + b6η
σαh∂ρh + c1η

ρσh∂αh

+ d8η
σαhωβ∂ρhωβ + c2η

ρσhβλ∂αhβλ + b8iiη
σαhρω∂ωh + (C5 + Ā1 − Ā2)ηρσhαβ∂βh

+ (C̄5 − Ā1 + Ā2)ηρσh∂ωhωα + b9iiη
σαh∂ωhρω + (b10ii − d12ii)η

σαhρω∂βhωβ + c3η
ρσhαβ∂λhλβ]

+ h[(d7 − b6)∂ρ∂σh + (D3 − B̄2 + D̄1)∂α∂αhρσ + (d11i − b8i)∂
ρ∂αhσα

+ (d11ii − b9ii)∂
σ∂αhρα + M̄3η

ρσ∂α∂βhαβ + M̄4η
ρσ∂α∂

αh]

+ hρα[(d10i + d12ii − b10ii − b11ii)∂
σ∂βhαβ + (d9i − b8ii)∂

σ∂αh + (d6i − b5)∂α∂βhσβ

+ (D5i + D̄5ii − B4)∂β∂βhσα + M̄1η
σα∂ω∂βhωβ + M̄2η

σα∂ω∂
ωh]

+ hρσ[M1∂α∂βhαβ + M2∂α∂
αh]

+ ηρσh[M3∂α∂βhαβ + M4∂α∂
αh]

+ hσα[(d10ii + d12i − b10i − b11i)∂
ρ∂βhαβ + (d9ii − b9i)∂

ρ∂αh + (d6ii − b3)∂α∂βhρβ

+ (D5ii + D̄5i − B̄4)∂β∂βhρα + M̂1η
ρα∂ω∂βhωβ + M̂2η

ρα∂ω∂
ωh]

+ ηρσhαβ[(a5 − c2)∂λ∂λhαβ + (A1 −C5 + Ā2)∂α∂βh +
1
2

(a3 − c3)∂ω∂αhωβ

+
1
2

(a3 − c3)∂ω∂βhωα + M̂3η
αβ∂ω∂γhωγ + M̂4η

αβ∂ω∂
ωh]. (3.88)

The Mn coefficients are required because after separating terms, an additional splitting is re-
quired for terms proportional to the Minkowski metric ηρσ that can each be separated in 3
possible ways across the equations of motion. They were separated according to:
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d2 + d4 − b1 = M1 + M̄1 + M̂1 (3.89)

D1 − B2 + D̄3 = M2 + M̄2 + M̂2 (3.90)

A2 − C̄5 + Ā1 = M3 + M̄3 + M̂3 (3.91)

a4 − c1 = M4 + M̄4 + M̂4 (3.92)

Solving the linear system of equations for the coefficients in (3.88) and imposing the condi-
tions on T ρσ gives insight into the most general energy-momentum tensor for spin-2 written in
terms of the canonical Noether T ρσ

C plus the divergence of a superpotential and terms propor-
tional to the equations of motion. The bottom 6 groups of terms in (3.88) are the six possible
terms proportional to the equations of motion. The total divergence on the second line of (3.88)
is sorted according to pairs which will form the most general possible superpotential Ψ[ρα]σ for
linearized gravity according to the most general Fock expression in (3.86).

We note the 3 terms, separated at the top of the (3.88) expression, cannot be fit into either
the most general superpotential or terms proportional to the equations of motion. The first two
terms (b7 − d8)∂σhαβ∂ρhαβ and c4η

ρσ∂αhλβ∂λhαβ are found in the canonical energy-momentum
tensor (3.78) which, in part, explains why ad-hoc addition of the divergence of a superpotential
and terms proportional to the equations of motion can seemingly be used to obtain any pub-
lished energy-momentum tensor. The final term (b10i − d12i)∂α[ηραhσβ∂ωhωβ] is symmetric in
(ρα) in the total divergence thus cannot be combined to the superpotential, and it cannot be
combined into any of the equations of motion. This will produce an independent equation in
our general linear system.

In addition the manifestly symmetric form follows from the symmetry conditions:

bn = bni = bnii (3.93)

dn = dni = dnii (3.94)

We will return to these symmetry conditions later in the article.

3.3.3 The most general canonical Noether energy-momentum tensor sup-
plemented by ad-hoc “improvements”

We will now ask the general question, namely, what is the most general possible superpotential,
and terms proportional to the equations of motion, that can be added ad-hoc to the canonical
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Noether energy-momentum tensor (3.78) in order to obtain a general system of on-shell con-
served energy-momentum tensors in linearized gravity. In order to not impact the flow of the
text, we present the system of linear equations of the coefficients resulting from this process
in Appendix A. Any spin-2 energy-momentum tensor that can be obtained by “improving”
the canonical Noether tensor (3.78) can be determined by solving this system of linear equa-
tions; the exact superpotential and terms proportional to the equations of motion (3.77) trivially
follow.

The aforementioned first 3 terms in (3.88) are independent conditions that must be solved.
The first two, as appearing in (3.78), must be related to the coefficients of the spin-2 Fierz-Pauli
canonical energy-momentum tensor (which appears the same in both (3.79) and (3.82) as well).
The third term must be independently satisfied. Therefore to obtain the canonical T ρσ

C (3.78) in
(3.88) we minimally require the conditions in equations (3.136) to (3.138) in Appendix A.

The remaining terms in (3.78) must be extracted from the general system of coefficients.
Since (3.78) has coefficients from (3.86) that are c1 = 1

4 , c2 = −1
4 , c4 = 1

2 , c5 = −1
2 , b6 = −1

2 ,
b7 = 1

2 , b8ii = 1
2 , b9ii = 1

2 , and b11ii = −1, and we have already solved for c4 and b7, we only
need to extract the remaining coefficients. Thus we need to shift the coefficients in (3.88) by
c1 → c1 −

1
4 , c2 → c2 + 1

4 , c5 → c5 + 1
2 , b6 → b6 + 1

2 , b8ii → b8ii −
1
2 , b9ii → b9ii −

1
2 , and

b11ii → b11ii + 1 to exactly obtain (3.78) in (3.88). This modifies the c5 splitting condition, thus
we now have the splitting conditions from (3.139) to (3.147).

These coefficient shifts (obtained by extracting the canonical Noether energy-momentum
tensor) modify the general superpotential in (3.88) to,

Ψ[ρα]σ = (B2 + D̄1 − D̄3)hρσ∂αh + b9ih
σα∂ρh + (B̄2 − D̄1 + D̄3)h∂αhρσ + b8ih∂

ρhσα

+ (b1 − d4)hρσ∂βhαβ + b3hσα∂βhρβ + d4hαβ∂βhρσ + b5hρβ∂βhσα

+ d12ih
α
β∂

ρhσβ + (B4 + D̄5i − D̄5ii)h
ρ
β∂

αhσβ + d12iih
α
β∂

σhρβ + (b11ii + 1)hρβ∂
σhαβ

+ (B̄4 − D̄5i + D̄5ii)h
σ
β∂

αhρβ + b11ih
σ
β∂

ρhαβ + (b6 +
1
2

)ησαh∂ρh + (c1 −
1
4

)ηρσh∂αh

+ d8η
σαhωβ∂ρhωβ + (c2 +

1
4

)ηρσhβλ∂αhβλ + (b8ii −
1
2

)ησαhρω∂ωh + (C5 + Ā1 − Ā2)ηρσhαβ∂βh

+ (C̄5 − Ā1 + Ā2)ηρσh∂ωhωα + (b9ii −
1
2

)ησαh∂ωhρω + (b10ii − d12ii)η
σαhρω∂βhωβ + c3η

ρσhαβ∂λhλβ.

(3.95)

We note that antisymmetric pairs are sorted throughout this expression. Using the superpo-
tential condition ∂ρ∂αΨ[ρα]σ = 0 we therefore straightforwardly obtain the conditions for the
antisymmetric superpotential in equations (3.148) to (3.159).
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Imposing conditions (3.136) to (3.138), (3.139) to (3.147) and (3.148) to (3.159) from
Appendix A on (3.88) and writing the equation of motion coefficients in terms of ζn we obtain
the desired compact result,

T ρσ = T ρσ
C +∂αΨ

[ρα]σ+ζ1hEρσ+ζ2hραEσα+ζ3hρσE+ζ4hσαEρα+ζ5η
ρσhE+ζ6η

ρσhαβEαβ, (3.96)

where the equations of motion have slightly modified coefficients when compared to those
in (3.88) due to the coefficient shifts above. The resulting system of linear equations for the
equations of motion ζn are given in Appendix A as (3.160) to (3.187). The M coefficients
in (3.89) to (3.92) have also been modified from the canonical Noether coefficients, given in
Appendix A as (3.188) to (3.191).

Therefore we now have the most general “improvement” of the canonical Noether tensor
in (3.96), with all possible superpotentials (3.95) and all possible terms proportional to the
equations of motion that can be added. These were directly derived from (3.86), therefore
we have a direct connection between any linearized gravity energy-momentum tensor, and all
which can be obtained by ad-hoc improving the canonical Noether expression in (3.78). By
solving the system of linear equations in Appendix A, one finds solutions which satisfy both
criteria, that the conserved energy-momentum tensor in (3.86) will be derivable from (3.78)
supplemented by the divergence of a superpotential and terms proportional to the equations
of motion in (3.77) and (3.87), as given in (3.96). This leads us to our first result: there are
infinitely many solutions to the linear system in Appendix A. In other words, there are infinitely
many divergences of superpotentials and terms proportional to the equations of motion that can
be added to the canonical Noether energy-momentum tensor (3.78) in order to obtain on-shell
conserved tensors for linearized gravity. If in addition we use the symmetry conditions in (3.93)
and (3.94) we find that there are infinitely many T ρσ which are both symmetric and conserved.
The “improvements” used to obtain e.g. the Hilbert and Landau-Liftshitz energy-momentum
tensors in (3.80) and (3.83) from T ρσ

C are not special or unique; they are just two of infinitely
many possibly solutions. This suggests claims of a meaningful connection of a given T ρσ to
Noether’s first theorem using the ad-hoc “improvement” method should not be made.

To recap, we will summarize the equations in Appendix A that give the conditions neces-
sary for linearized gravity energy-momentum tensors of the form (3.96). Equations (3.136) to
(3.138) give the conditions necessary for the most general linearized gravity energy-momentum
tensor (3.86) to be expressed as the canonical Noether energy-momentum tensor improved by
the divergence of a superpotential and terms proportional to the equations of motion. Equa-
tions (3.139) to (3.147) are the conditions for coefficient splitting modified by the canonical
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Noether tensor. Equations (3.148) to (3.159) are the conditions required to have a superpoten-
tial antisymmetric in [ρα]. Equations (3.160) to (3.187) are the conditions for each of the 6 ζn

equations of motion, and (3.188) to (3.191) are the conditions on the Mn terms within. Finally
if we wish to derive symmetric expressions we can use the symmetry conditions (3.93) and
(3.94) from earlier in the article.

3.3.4 Verifying the general system for the Hilbert and Landau-Lifshitz
energy-momentum tensors

We will now use our motivating examples (Hilbert and Landau-Lifshitz energy-momentum
tensors) to apply the general results.

Hilbert coefficients and solution

For the Hilbert coefficients in (3.79), from (3.86) we have c1 = 1
4 , c2 = −1

4 , c4 = 1
2 , a1 = 1

2 ,
b11i = −1, b11ii = −1, b4 = 1, b5 = 1, b1 = −1, b2 = −1

2 , b6 = −1
2 , b7 = 1

2 , b9ii = 1
2 , b9i = 1

2 ,
d6i = 1, d6ii = 1, d2 = −1, d4 = −1, d1 = 1

2 , d9i = −1
2 , and d9ii = −1

2 . These satisfy the symmetry
conditions (3.93) and (3.94).

This is a solution to the linear system in Appendix A, with ζ4 = −2, and all other ζn =

0. These coefficients fix the general superpotential in (3.95) to yield Ψ[ρα]σ = 1
2hρσ∂αh −

1
2hσα∂ρh − hαβ∂βhρσ + hρβ∂βhσα + hσβ∂

αhρβ − hσβ∂
ρhαβ − 1

2η
σαhρω∂ωh + 1

2η
ρσhαβ∂βh. This is

exactly the well known Hilbert superpotential in (3.81). Substituting these solutions back into
(3.96) we immediately obtain the well-known result for the Hilbert energy-momentum tensor
(3.80). Therefore the general system of equations in Appendix A recovers the Hilbert result.

Landau-Lifshitz coefficients and solution

For the Landau-Lifshitz coefficients in (3.82), from (3.86) we have c1 = 3
4 , c2 = −1

4 , c4 = 1
2 ,

c5 = −1, b6 = −1, b2 = −3
2 , b1 = 1, b3 = −1, b7 = 1

2 , b4 = 1, b9ii = 1, b9i = 1, b8i = 1
2 , b8ii = 1

2 ,
b11i = −1, and b11ii = −1. These satisfy the symmetry conditions (3.93) and (3.94).

This is a solution to the linear system in Appendix A, with ζ1 = 1, ζ4 = −2, and all other
ζn = 0. These coefficients fix the general superpotential in (3.95) to yield Ψ[ρα]σ = −hρσ∂αh +

hσα∂ρh− 1
2h∂αhρσ+ 1

2h∂ρhσα+hρσ∂βhαβ−hσα∂βhρβ+hσβ∂
αhρβ−hσβ∂

ρhαβ− 1
2η

σαh∂ρh+ 1
2η

ρσh∂αh−
1
2η

ρσh∂ωhωα + 1
2η

σαh∂ωhρω. This is exactly the well known Landau-Lifshitz superpotential
(3.84). Substituting these solutions back into (3.96) we immediately obtain the well known
result for the Landau-Lifshitz energy-momentum tensor in (3.83). Therefore the general system
of equations in Appendix A recovers the Landau-Lifshitz result.
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3.3.5 Two new energy-momentum tensors derivable from ad-hoc improv-
ing the canonical Noether energy-momentum tensor

We now derive two new energy-momentum tensors1 that can be obtained from improving the
canonical Noether tensor by solving the system of equations in Appendix A, just like the
Hilbert (3.79) and Landau-Lifshitz (3.82) expressions.

Elizabeth energy-momentum tensor

For the Elizabeth energy-momentum tensor T ρσ
E , we will use the symmetry conditions (3.93)

and (3.94). We find a symmetric solution to the linear system in Appendix A to be c1 = 1
4 ,

c2 = −1
4 , c4 = 1

2 , b1 = 1, b2 = −1
2 , b3 = −1, b4 = 1, b6 = −1

2 , b7 = 1
2 , b9 = 1

2 , b11 = −1, a1 = 1
2 ,

a2 = −1
2 , a4 = 1

2 , d1 = 1
2 , d9 = −1

2 . This yields from (3.86) the energy-momentum tensor,

T ρσ
E = ∂αhρσ∂βhαβ −

1
2
∂αhρσ∂αh − ∂αhρα∂βhσβ + ∂αhρβ∂

αhσβ

−
1
2
∂ρh∂σh +

1
2
∂ρhαβ∂σhαβ +

1
2
∂ρh∂αhσα +

1
2
∂σh∂αhρα − ∂ρhαβ∂αhσβ − ∂σhαβ∂αhρβ

+
1
4
ηρσ∂αh∂αh −

1
4
ηρσ∂αhβλ∂αhβλ +

1
2
ηρσ∂αhλβ∂λhαβ

+
1
2

hρσ∂α∂αh −
1
2

hρα∂σ∂αh −
1
2

hσα∂ρ∂αh +
1
2
ηρσhαβ∂α∂βh −

1
2
ηρσh∂α∂βhαβ +

1
2
ηρσh∂α∂αh.

(3.97)

This fixes ζ4 = −2 and ζ5 = −1
2 in (3.96), with the remaining ζn = 0. From (3.95) we obtain the

superpotential,

Ψ
[ρα]σ
E = −

1
2

hρσ∂αh +
1
2

hσα∂ρh + hρσ∂βhαβ − hσα∂βhρβ

+ hσβ∂
αhρβ − hσβ∂

ρhαβ −
1
2
ησαhρω∂ωh +

1
2
ηρσhαβ∂βh. (3.98)

Thus (3.97) can be derived from the canonical Noether energy-momentum tensor (3.78) by
adding ad-hoc ∂αΨ

[ρα]σ
E and −2hσαEρα − 1

2η
ρσhE,

T ρσ
E = T ρσ

C + ∂αΨ
[ρα]σ
E − 2hσαEρα −

1
2
ηρσhE. (3.99)

1We will call the new expressions the Audrey and Elizabeth energy-momentum tensors, named after our
Grandmothers.
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Similarly, we can obtain infinitely many conserved, symmetric energy-momentum tensors
for linearized gravity from the canonical Noether energy-momentum tensor (two of which are
the Hilbert (3.79) and Landau-Lifshitz (3.82) expressions).

Audrey energy-momentum tensor

For the Audrey energy-momentum tensor T ρσ
A , we will use the conditions an = 0 and bn = 0.

Using these conditions we will prove that no symmetric expressions exist without these terms.
However, a conserved expression can be derived by improving the canonical Noether energy-
momentum tensor (3.78). We find a solution to the coefficients in Appendix A with an = 0 and
bn = 0 to be c1 = −1

4 , c2 = 1
4 , c3 = −1, c4 = 1

2 , c5 = 1
2 , d8 = −1

2 . d12ii = −1, d7 = 1
2 , d11ii = −1

2 ,
d9i = −1

2 and d10i = 2. This yields from (3.86) the energy-momentum tensor,

T ρσ
A = −

1
4
ηρσ∂αh∂αh +

1
4
ηρσ∂αhβλ∂αhβλ − ηρσ∂αhαβ∂λhλβ +

1
2
ηρσ∂αhλβ∂λhαβ +

1
2
ηρσ∂αhαβ∂βh

+
1
2

h∂ρ∂σh −
1
2

hαβ∂ρ∂σhαβ −
1
2

hρα∂σ∂αh −
1
2

h∂σ∂αhρα − hαβ∂σ∂αhρβ + 2hρα∂σ∂βhαβ. (3.100)

This fixes ζ6 = −1 in (3.96), with the remaining ζn = 0. From (3.95) we obtain the superpoten-
tial,

Ψ
[ρα]σ
A = −hαβ∂

σhρβ + hρβ∂
σhαβ +

1
2
ησαh∂ρh −

1
2
ηρσh∂αh −

1
2
ησαhωβ∂ρhωβ +

1
2
ηρσhβλ∂αhβλ

−
1
2
ησαhρω∂ωh +

1
2
ηρσhαβ∂βh +

1
2
ηρσh∂ωhωα −

1
2
ησαh∂ωhρω + ησαhρω∂βhωβ − ηρσhαβ∂λhλβ.

(3.101)

Thus (3.100) can be derived from the canonical Noether energy-momentum tensor (3.78) by
adding ad-hoc ∂αΨ

[ρα]σ
A and −ηρσhαβEαβ,

T ρσ
A = T ρσ

C + ∂αΨ
[ρα]σ
A − ηρσhαβEαβ. (3.102)

We cannot have a symmetric expression here because an = 0 and bn = 0 fixes d12i = 0 and
d12ii = −1 which breaks the symmetry conditions (3.93) and (3.94). Both conditions must hold
in order to have a symmetric energy-momentum tensor in (3.86).



3.3. CanonicalNoether and the energy-momentum non-uniqueness problem in linearized gravity 123

3.3.6 There exist infinitely many symmetric, conserved energy-momentum
tensors from the Belinfante superpotential alone

We now present, perhaps our most significant result, that the Belinfante superpotential is as-
sociated with infinitely many symmetric and conserved linearized gravity energy-momentum
tensors. This is an important result because despite the various possible superpotentials one can
add (such as Ψ

[ρα]σ
LL or those found in [28]), the Belinfante superpotential is the most commonly

published expression. Our result is contrary to popular belief in the recent literature that the
Hilbert energy-momentum tensor uniquely specifies the Belinfante energy-momentum tensor
[63, 16]. This point is central to the recent Padmanabhan-Deser debate [163, 63], in which the
authors have argued about whether or not general relativity can be derived from spin-2 using
a T µν resulting from Noether’s theorem. Deser claimed that ad-hoc improving the canonical
Noether tensor (3.78) with the Belinfante superpotential uniquely gives the Hilbert energy-
momentum tensor (3.79), thus he argued one does not have to use Noether’s theorem at all to
have a result from Noether’s theorem, they can simply use the Hilbert approach. Such claims
of general equivalence of the Noether and Hilbert methods for deriving an energy-momentum
tensor has since been disproved in [13]. Deser’s assertions come from results that have a long
history [175, 95, 6, 32, 176, 76, 134, 133, 171] of investigating the relationship between the
Belinfante and Hilbert energy-momentum tensors. The general conclusion in the literature is
that one can add the divergence of the Belinfante superpotential and terms proportional to the
equation of motion to reconcile the Belinfante and Hilbert definitions (this was confirmed by
our results). But this does not prove uniqueness! Indeed the Belinfante superpotential coin-
cides with what we found for Hilbert in (3.81). However, as we will prove, this result is not
unique because there are infinitely many symmetric and conserved expressions associated to
this particular superpotential alone; infinitely many combinations of the equations of motion
in (3.96) are solutions to the system of equations in Appendix A when the Belinfante super-
potential is fixed. Therefore one cannot make the claim that the Hilbert energy-momentum
tensor is uniquely specified by ad-hoc adding the divergence of Belinfante superpotential and
terms proportional to the equations of motion. In other words, no significant connection exists
between Noether’s first theorem and the Hilbert energy-momentum tensor in spin-2 linearized
gravity, as supported by the recent disproof in [13].

The Belinfante superpotential for spin-2 Fierz-Pauli theory

We will start by recapping the Belinfante superpotential derivation and showing that it matches
the superpotential obtained from the Hilbert energy-momentum tensor in (3.79). The Belin-
fante improvement procedure consists of adding the divergence of a superpotential b[µα]ν to the
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canonical Noether energy-momentum tensor. By adding this “improvement” term (∂αb[µα]ν)
one obtains the Belinfante energy-momentum tensor [23],

T ρσ
B = T ρσ

C + ∂αb[ρα]σ. (3.103)

The superpotential b[ργ]σ is specifically a combination of the canonical spin angular mo-
mentum tensors S ρ[σγ] [23],

b[ργ]σ =
1
2

(−S ρ[σγ] + S γ[σρ] + S σ[γρ]), (3.104)

a result Belinfante attributes to a Dr. Podolansky (without reference) in his article. The S ρ[σγ]

are sometimes referred to as the spin contributions. The Belinfante prescription for gravity
models has been worked out in [7]. The spin angular momentum connection for a second rank
hµν is given by [134],

S σ[ργ] =
∂L

∂∂σhµν
[ηρµhγν − ηγµhρν + ηρνhγµ − ηγνhρµ]. (3.105)

Thus we require the derivative of the Fierz-Pauli Lagrangian density ∂LFP
∂(∂σhµν) in (3.76). Substi-

tuting ∂LFP
∂(∂σhµν) into (3.105), we have for the Belinfante superpotential in (3.104),

b[ργ]σ = −
1
2

[ηγαhσρ−ηραhγσ]∂αhζζ−
1
2

[ησγhρν−ησρhγν]∂νh
ζ
ζ−[ηραhγν−ηγαhρν]∂νhσα−hσν[∂ρhγν−∂

γhρν],

(3.106)

which is exactly what we found for the Hilbert energy-momentum tensor in (3.81). Thus we
have the well known result,

b[ργ]σ = Ψ
[ργ]σ
H . (3.107)

However, the Belinfante superpotential is not enough by itself to specify the Hilbert tensor
(3.80),

T ρσ
H = T ρσ

C + ∂γb[ργ]σ − 2hσβ Eρβ. (3.108)

We also need the very specific −2hσβ Eρβ piece to reconcile the two results; this does not prove
uniqueness of T ρσ

H for the Belinfante superpotential. Fixing coefficients in (3.86) such that the
only solutions in Appendix A are those with the specific Belinfante superpotential in (3.106),
we will see that the Belinfante superpotential alone yields infinitely many possible results, of
which one happens to be the Hilbert expression.
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There are infinitely many solutions following from the ad-hoc addition of the divergence
of the Belinfante superpotential

We now prove our main result, that there are infinitely solutions even when fixing the Belinfante
superpotential. If we fix (3.96) with the Belinfante superpotential (3.106) we have,

T ρσ = T ρσ
C +∂αb[ρα]σ+ζ1hEρσ+ζ2hραEσα+ζ3hρσE+ζ4hσαEρα+ζ5η

ρσhE+ζ6η
ρσhαβEαβ. (3.109)

Therefore if we improve the canonical Noether expression with the divergence of the Belinfante
superpotential, we in theory can have the six addition equation of motion pieces. However
fixing the Belinfante superpotential coefficients in highly restrictive on the linear system in
Appendix A. In particular the superpotential conditions in (3.148) to (3.159) are much more
restricted as now:

B2 + D̄1 − D̄3 = −
1
2

(3.110)

b9i =
1
2

(3.111)

B̄2 − D̄1 + D̄3 = 0 (3.112)

b8i = 0 (3.113)

b1 − d4 = 0 (3.114)

b3 = 0 (3.115)

d4 = −1 (3.116)

b5 = 1 (3.117)

d12i = 0 (3.118)

B4 + D̄5i − D̄5ii = 0 (3.119)

d12ii = 0 (3.120)

b11ii + 1 = 0 (3.121)

B̄4 − D̄5i + D̄5ii = 1 (3.122)

b11i = −1 (3.123)

b6 +
1
2

= 0 (3.124)

c1 −
1
4

= 0 (3.125)

d8 = 0 (3.126)

c2 +
1
4

= 0 (3.127)

b8ii −
1
2

= −
1
2

(3.128)

C5 + Ā1 − Ā2 =
1
2

(3.129)

C̄5 − Ā1 + Ā2 = 0 (3.130)

b9ii −
1
2

= 0 (3.131)

b10ii − d12ii = 0 (3.132)

c3 = 0 (3.133)

Using Appendix A with these superpotential conditions, and the symmetry conditions in
(3.93) and (3.94), we find a solution with 3 free parameters ζ1, ζ3 and ζ5. The other ζn are
ζ2 = 0, ζ4 = −2 and ζ6 = 0. This solution is a2 = 1

2ζ1 + ζ5, a4 = −1
2ζ1 − ζ5 b1 = −1, b2 = −1

2 ,
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b4 = 1, b5 = 1, b6 = −1
2 , b7 = 1

2 , b9i = 1
2 , b9ii = 1

2 , b11i = −1, b11ii = −1, c1 = 1
4 , c2 = −1

4 ,
c4 = 1

2 d1 = 1
2 − ζ3, d2 = −1 + ζ3, d3 = 1

2ζ1, d4 = −1, d6i = 1, d6ii = 1, d7 = 1
2ζ1, d9i = −1

2 ,
d9ii = −1

2 , d11i = −1
2 , d11ii = −1

2 . Using (3.86) we have infinitely many conserved and symmetric
energy-momentum tensors T ρσ

IB ,

T ρσ
IB = −∂αhρσ∂βhαβ −

1
2
∂αhρσ∂αh + ∂αhρβ∂

αhσβ + ∂αhρβ∂βhσα

−
1
2
∂ρh∂σh +

1
2
∂ρhαβ∂σhαβ +

1
2
∂ρh∂αhσα +

1
2
∂σh∂αhρα

− ∂ρhαβ∂αhσβ − ∂σhαβ∂αhρβ +
1
4
ηρσ∂αh∂αh −

1
4
ηρσ∂αhβλ∂αhβλ +

1
2
ηρσ∂αhλβ∂λhαβ

+ (
1
2
− ζ3)hρσ∂α∂αh + (−1 + ζ3)hρσ∂α∂βhαβ +

1
2
ζ1h∂α∂αhρσ − hαβ∂α∂βhρσ

+ hρα∂α∂βhσβ + hσα∂α∂βhρβ +
1
2
ζ1h∂ρ∂σh−

1
2

hρα∂σ∂αh−
1
2

hσα∂ρ∂αh−
1
2

h∂ρ∂αhσα −
1
2

h∂σ∂αhρα

+ (
1
2
ζ1 + ζ5)ηρσh∂α∂βhαβ + (−

1
2
ζ1 − ζ5)ηρσh∂α∂αh, (3.134)

where the subscript IB denotes the ‘infinite Belinfante’ expressions, since using (3.96) we
have infinitely many symmetric, conserved spin-2 energy-momentum tensor that can be de-
rived from ad-hoc addition of the Belinfante superpotential to the canonical Noether energy-
momentum tensor,

T ρσ
IB = T ρσ

C + ∂αb[ρα]σ + ζ1hEρσ + ζ3hρσE − 2hσαEρα + ζ5η
ρσhE. (3.135)

Therefore we have proven that adding the “improvement” terms associated to the Belinfante
superpotential does not specify a unique result; no meaningful connection to Noether’s first
theorem can be claimed by specifying Belinfante “improvements”. Note that we solved for
particular free coefficients such that we trivially recover the Hilbert energy-momentum tensor
(3.79) when the free coefficients ζ1, ζ3 and ζ5 are set to zero.

3.3.7 Summary and Discussion

In this article, we considered the most general possible linearized gravity energy-momentum
tensor using a procedure developed by Fock [75, 109] and recently applied in a more restricted
case to the non-uniqueness problem in linearized gravity by Bičák and Schmidt [28]. Using this
general expression we derived the most general possible superpotential and terms proportional
to the equations of motion (3.88) and used this expression to derive the most general possible
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“improvements” (3.96) of the canonical Noether energy-momentum tensor of spin-2 Fierz-
Pauli theory (3.78). In Appendix A we gave the most general linear system of equations that
represents all such solutions to (3.96). In addition conditions (3.93) and (3.94) can be imposed
to guarantee symmetry (T µν = T νµ) of the solution.

Solving this general system in (3.96) and Appendix A we have proven several results re-
lated to the ad-hoc “improvement” of energy-momentum tensors in linearized gravity. The
addition of a superpotential and terms proportional to the equations of motion to the canonical
Noether energy-momentum tensor is often presented as a method for obtaining various energy-
momentum tensors from Noether’s first theorem, such as the Hilbert (3.79) and Landau-Lifshitz
(3.82) expressions in linearized gravity. We have shown that these ad-hoc “improvements” do
not provide a unique and/or meaningful connection to Noether’s first theorem. To highlight
this point we derived two new energy-momentum tensors, the Audrey (3.100) and Elizabeth
(3.97) energy-momentum tensors. The Elizabeth energy-momentum tensor gives a symmet-
ric expression connected to the canonical Noether tensor in the same way as the Hilbert and
Landau-Lifshitz energy-momentum tensors. The Audrey energy-momentum tensor gives a
non-symmetric expression, and proves that no symmetric expression can be built when condi-
tions an = 0 and bn = 0 are imposed on (3.86). Finally we prove that there are infinitely many
symmetric and conserved energy-momentum tensors associated to the Belinfante superpoten-
tial, one of which is the Hilbert energy-momentum tensors. This is contrary to the conventional
wisdom that this association, given in (3.108), is unique for linearized gravity.

Our results show that there is no unique or meaningful connection between the canonical
Noether energy-momentum tensor and any expression obtained after ad-hoc adding the diver-
gence of superpotentials and terms proportional to the equations of motion (i.e. any expressions
not derived directly from Noether’s first theorem). There are infinitely many such results of
this form, and infinitely many even if we restrict our attention to the Belinfante superpotential
alone. Selecting a unique energy-momentum tensor for linearized gravity is of course difficult
because none are invariant under the spin-2 gauge transformation (linearized diffeomorphisms)
as shown by Magnano and Sokolowski [140]. What is for certain, however, is that outside of
the canonical Noether expression, any connection to Noether’s first theorem of the various
energy-momentum tensors in the literature should be revisited. This is especially true given
the recent proof that the Noether and Hilbert energy-momentum tensors are not, in general,
equivalent [13]. The question still remains as to what is the physical significance of the many
published spin-2 gravitational energy-momentum tensors in the literature, as well as in general
relativity [190, 164, 152, 25], and gravity theories as a whole [169, 123, 154, 178]. Many of
the linearized gravity energy-momentum tensors were highlighted by Bičák and Schmidt [28],
a study which in part stemmed from continued research in linearized gravity by Butcher et al.
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in the recent literature [41, 40, 42, 43]. In electrodynamics, fundamental equations such as the
Lorentz force law and Poynting’s theorem are expressed through the uniquely defined physical
energy-momentum tensor. In spin-2 Fierz-Pauli theory, writing down analogous laws requires
a unique energy-momentum tensor, for which there is still no consensus on which to choose.
In addition, the self coupling problem of hµνT µν in the Padmanabhan-Deser debate [163, 63]
requires a specific expression which the authors could not agree on, further emphasizing the
need for a uniquely defined expression. The linearized Landau-Lifshitz energy-momentum
pseudotensor has been used to model observations in one (the Hulse-Taylor) binary pulsar sys-
tem [107, 187, 166, 131]. Others make claims in support of other expressions, such as the
Hilbert (metric) energy-momentum tensor in Minkowski spacetime to be the truly physical
energy-momentum tensor. For these numerous other linearized gravity energy-momentum ten-
sors in the physics literature, however, experimental or observational verification cannot easily
be found.

Due to Magnano and Sokolowski’s no-go result [140], one can consider energy-momentum
tensors in higher derivative gravity in order to obtain a spin-2 gauge invariant expression (in-
variant under linearized diffeomorphisms), such as the variants of the Bel-Robinson tensor
[3, 92], or the linearized Gauss-Bonnet gravity energy-momentum tensor [167, 14, 9], which
are both invariant under the spin-2 gauge transformation (linearized diffeomorphisms). How-
ever, since these models require higher derivative actions, they are not connected to spin-2
Fierz-Pauli theory via standard Lagrangian based energy-momentum derivations such as the
Noether method or the Hilbert (metric) method. We note that additional insight about lin-
earized gravity can be found through the Hamiltonian approach [97, 51, 179, 189]. Research
on gravitational waves from the linearized gravity equations has continued in recent decades
[144]; interests that have only been increasing since the LIGO results in 2016 [1]. In elec-
trodynamics, the radiation equations are developed from the unique energy-momentum ten-
sor of the theory, emphasizing the need to sort out the non-uniqueness problem in linearized
gravity. Various energy-momentum tensors have been proposed to model gravitational radia-
tion, such as the Bel-Robinson tensor [62, 94], yet only the linearized Landau-Lifshitz energy-
momentum pseudotensor has the observational evidence associated to the Hulse-Taylor binary
[107, 187, 166, 131]. Sorting out which of the many published expressions correspond to
physical phenomena is a fundamental problem which can give great insight into the theoreti-
cal framework of gravitational energy. With many published gravitational energy-momentum
tensors in the literature, it is not clear which (if any, see philosophical debates on this topic
[105, 173]) to use to write down a unique set of physical conservation laws for linearized grav-
ity. We hope that our results will help further progress in this direction, and to clarify the
relationship of the many published expressions to the canonical Noether energy-momentum
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tensor.

3.3.8 Appendix A - General energy-momentum tensor system of linear
equations

The following Appendix includes the system of linear equations corresponding to the most
general energy-momentum tensor for linearized gravity (3.86) under the condition that the most
general expression can be derived from the canonical Noether tensor supplemented by the ad-
hoc addition of the divergence of a superpotential and terms proportional to the equations of
motion given in (3.96). In addition to the equations given in this Appendix, (3.93) and (3.94)
can be imposed to derive a symmetric energy-momentum tensor.

Canonical Noether conditions

b7 − d8 =
1
2

(3.136)

c4 =
1
2

(3.137)

b10i − d12i = 0 (3.138)

Coefficient splitting conditions

a1 = A1 + Ā1 (3.139)

a2 = A2 + Ā2 (3.140)

b2 = B2 + B̄2 (3.141)

b4 = B4 + B̄4 (3.142)

(c5 +
1
2

) = C5 + C̄5 (3.143)

d1 = D1 + D̄1 (3.144)

d3 = D3 + D̄3 (3.145)

d5i = D5i + D̄5i (3.146)

d5ii = D5ii + D̄5ii (3.147)
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Superpotential conditions

B2 + D̄1 − D̄3 + b9i = 0 (3.148)

B̄2 − D̄1 + D̄3 + b8i = 0 (3.149)

b1 − d4 + b3 = 0 = 0 (3.150)

C5 + Ā1 − Ā2 + (b8ii −
1
2

) = 0 (3.151)

C̄5 − Ā1 + Ā2 + (b9ii −
1
2

) = 0 (3.152)

c3 + b10ii − d12ii = 0 (3.153)

d4 + b5 = 0 (3.154)

d12i + B4 + D̄5i − D̄5ii = 0 (3.155)

d12ii + (b11ii + 1) = 0 (3.156)

B̄4 − D̄5i + D̄5ii + b11i = 0 (3.157)

(c1 −
1
4

) + (b6 +
1
2

) = 0 (3.158)

(c2 +
1
4

) + d8 = 0 (3.159)

Linear system of equations for the equations of motion

−
1
2
ζ1 = M̄4 (3.160)

1
2
ζ1 = D3 − B̄2 + D̄1 (3.161)

1
2
ζ1 = d7 − (b6 +

1
2

) (3.162)

−
1
2
ζ1 = d11i − b8i (3.163)

−
1
2
ζ1 = d11ii − (b9ii −

1
2

) (3.164)

1
2
ζ1 = M̄3 (3.165)

−
1
2
ζ2 = M̄2 (3.166)

1
2
ζ2 = D5i + D̄5ii − B4 (3.167)

1
2
ζ2 = d9i − (b8ii −

1
2

) (3.168)

−
1
2
ζ2 = d10i + d12ii − b10ii − (b11ii + 1) (3.169)

−
1
2
ζ2 = d6i − b5 (3.170)

1
2
ζ2 = M̄1 (3.171)

ζ3 = M1 (3.172)

−ζ3 = M2 (3.173)

ζ5 = M3 (3.174)

−ζ5 = M4 (3.175)
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−
1
2
ζ4 = M̂2 (3.176)

1
2
ζ4 = D5ii + D̄5i − B̄4 (3.177)

1
2
ζ4 = d9ii − b9i (3.178)

−
1
2
ζ4 = d10ii + d12i − b10i − b11i (3.179)

−
1
2
ζ4 = d6ii − b3 (3.180)

1
2
ζ4 = M̂1 (3.181)

−
1
2
ζ6 = M̂4 (3.182)

1
2
ζ6 = a5 − (c2 +

1
4

) (3.183)

1
2
ζ6 = A1 −C5 + Ā2 (3.184)

−
1
2
ζ6 =

1
2

(a3 − c3) (3.185)

−
1
2
ζ6 =

1
2

(a3 − c3) (3.186)

1
2
ζ6 = M̂3 (3.187)

d2 + d4 − b1 = M1 + M̄1 + M̂1 (3.188)

D1 − B2 + D̄3 = M2 + M̄2 + M̂2 (3.189)

A2 − C̄5 + Ā1 = M3 + M̄3 + M̂3 (3.190)

a4 − (c1 −
1
4

) = M4 + M̄4 + M̂4 (3.191)



Chapter 4

Deriving Lagrangian densities
from physical requirements

This chapter focuses on the problems outlined in Section 1.5.3 of the introduction; in order
to realize the axiomatic approach to field theory proposed in this thesis, a concrete procedure
for converting axioms into a set of Lagrangian densities is required. In the first article of
this chapter, [14] in Section 4.1, we develop one possible method for a concrete procedure by
considering the most general scalars of a particular type (order of derivatives, rank of tensor
potential) with free coefficients, and solving for the coefficients such that the axioms are sat-
isfied. Doing this for the N = M = n case under the condition that each is invariant under
the spin-n gauge transformations, electrodynamics is the unique result for N = M = 1, and
linearized Gauss-Bonnet gravity is the unique result for N = M = 2. This article is published
in the International Journal of Modern Physics D. This connection is further explored in the
section article [9] in Section 4.2 where the complete dual formulation is analogously developed
and generalized to the Maxwell-like higher spin gauge theories. This article is also published in
the International Journal of Modern Physics D. Finally the more general N = M ≥ 3 cases are
explored which yield unqiuely the contractions of the curvature tensors of higher spin gauge
theories for each spin-n. This article is published in the Canadian Journal of Physics. The
procedure implemented in this chapter provides a first step towards realizing a method which
can obtain complete sets of physical Lagrangian densities from a common set of axioms. Two
of the three papers in this chapter feature a single co-author, their contribution to each paper is
summarized in the Co-Authorship Statement.
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4.1 A connection between linearized Gauss-Bonnet gravity
and classical electrodynamics

Abstract A connection between linearized Gauss-Bonnet gravity and classical electrodynam-
ics is found by developing a procedure which can be used to derive completely gauge invariant
models. The procedure involves building the most general Lagrangian for a particular order of
derivatives (N) and rank of tensor potential (M), then solving such that the model is completely
gauge invariant (the Lagrangian density, equation of motion and energy-momentum tensor are
all gauge invariant). In the case of N = 1 order of derivatives and M = 1 rank of tensor po-
tential, electrodynamics is uniquely derived from the procedure. In the case of N = 2 order
of derivatives and M = 2 rank of symmetric tensor potential, linearized Gauss-Bonnet grav-
ity is uniquely derived from the procedure. The natural outcome of the models for classical
electrodynamics and linearized Gauss-Bonnet gravity from a common set of rules provides an
interesting connection between two well explored physical models.

4.1.1 Motivation

Gauge invariance is a common characteristic among field theories of fundamental interactions.
Electrodynamics has a unique property with respect to gauge invariance that will be called com-

plete gauge invariance in this article. Complete gauge invariance occurs when the Lagrangian
density, equation of motion and energy-momentum tensor are all gauge invariant [39]. Com-
plete gauge invariance of the model is possible only when the Lagrangian density is exactly
gauge invariant. Consider the Noether identity for a general potential ΦA [159, 124, 7],

(
∂L

∂ΦA
− ∂µ

∂L

∂(∂µΦA)
+ ∂µ∂ω

∂L

∂(∂µ∂ωΦA)
+ . . .

)
δΦA

+ ∂µ

(
ηµνLδxν +

∂L

∂(∂µΦA)
δΦA +

∂L

∂(∂µ∂ωΦA)
∂ωδΦA −

[
∂ω

∂L

∂(∂µ∂ωΦA)

]
δΦA + ...

)
= 0 . (4.1)

This identity is the result of invariance of the action under simultaneous change of coordi-
nates and fields. For a given coordinate change δxν and corresponding change of fields δΦA of
the Lagrangian density, a conservation law will follow from the particular form of δΦA, such
as in the case of Lorentz translation the energy-momentum tensor is derived. All conservation
laws follow from the expression under the total divergence. The conservation law depends
explicitly on the Lagrangian density which restricts gauge invariant energy-momentum ten-
sors to those which have explicitly gauge invariant Lagrangian densities. In electrodynamics,
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L = −1
4 FαβFαβ is exactly gauge invariant, so this is not a problem.

The equation of motion for the spin-2 model [74] is gauge invariant under the trans-
formation h′µν = hµν + ∂µξν + ∂νξµ. For spin-2, the Fierz-Pauli Lagrangian density (L =
1
4 [∂αhββ∂

αhγγ − ∂αhβγ∂αhβγ + 2∂αhβγ∂γhβα − 2∂αhββ∂
γhγα]) is not exactly invariant under a gauge

transformation [140, 163], even after a change of variables [147]. It is only gauge invariant up
to the surface term δgL = ∂µ[hνγ∂ν∂γξµ − 1

2hµν∂ν∂γξγ + 1
2h∂µ∂γξγ − 1

2h�ξµ]. This is why the
energy-momentum tensor is not gauge invariant [140, 61]. Often this fact is overlooked due to
the common priority that only an equation of motion must be found which is gauge invariant. It
will be shown in this article why for spin-2 there exists no exactly gauge invariant Lagrangian
or gauge invariant conservation law; the canonical energy-momentum tensor depends explicitly
on the Lagrangian density [7, 140].

It is clear that exact invariance of the action is a special property, as indicated by electro-
dynamic theory. The motivation for the current work is as follows: develop a procedure such
that an explicitly gauge invariant Lagrangian can be derived. From this procedure, models can
be constructed that are invariant under a desired gauge transformation. The power of this pro-
cedure is highlighted by a result that was not foreseen by the development of the procedure;
the model constructed from a general Lagrangian density which is quadratic in second order
derivatives of a symmetric second rank tensor potential (i.e. ∂α∂βhµν∂α∂βhµν), and invariant
under the spin-2 gauge transformation, is uniquely the linearized Gauss-Bonnet gravity model.
The Gauss-Bonnet gravity model is a frequent topic in the physics literature [198, 71, 48, 192];
a connection between linearized Gauss-Bonnet gravity and classical electrodynamics can give
some additional insight into the significance of the Gauss-Bonnet model.

4.1.2 A Procedure For Gauge Invariant Lagrangian Formulation

To derive a completely gauge invariant model, a procedure was developed that would yield
an exactly gauge invariant Lagrangian, equation of motion and energy-momentum tensor. We
restrict our attention to Poincaré invariant field theories. The procedure involves defining a
linear combination of all possible contractions of terms quadratic in derivatives of fields (i.e.
for a model built using a vector potential quadratic in first order derivatives, such as ∂µAν∂

µAν).
Once the general Lagrangian is constructed, a gauge transformation is applied, and a linear sys-
tem of equations is obtained. This leads to specific coefficients that will yield a gauge invariant
Lagrangian. From here, we obtain a gauge invariant equation of motion, and Noether’s theo-
rem is used to derive an energy-momentum tensor [159, 124]. The procedure can be applied
for any order N of derivatives/ rank M of tensor potential.

For a model built using a vector potential which is quadratic in first order derivatives (N =
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1, M = 1 i.e. ∂µAν∂
µAν), this procedure yields exactly the electrodynamic Lagrangian as the

unique gauge invariant combination. For spin-2 (N = 1, M = 2 i.e. ∂µhνγ∂µhνγ), this procedure
yields only L = 0. It is possible to modify this procedure to consider Lagrangian densities
which are invariant up to some surface term (such as the Fierz-Pauli action), but this does not
concern completely gauge invariant models. While spin-2 does not have an explicitly gauge
invariant action, a symmetric second rank potential hνγ does in fact belong to a completely
gauge invariant model for N = 2, M = 2, which requires higher order derivatives in the general
Lagrangian (N = 2, M = 2 i.e. ∂µ∂νhαβ∂µ∂νhαβ). The procedure for N = 2, M = 2 derives a
unique completely gauge invariant model, which is exactly the linearized Gauss-Bonnet model
for gravity.

Derivation for N = 1, M = 1 (classical electrodynamics)

For a model with N = 1 and M = 1 (i.e. vector field theory), the Lagrangian is a scalar which is
quadratic in first order field derivatives (i.e. ∂µAν∂

µAν). To consider all possible combinations,
first write all possible contractions of two indices. From here, write all possible contractions
of the next two indices. Since there are only two contracting pairs of indices, this procedure is
extremely simple, yielding a linear combination of only 3 possible terms,

L = a∂µAν∂
µAν + b∂µAµ∂νAν + c∂µAν∂

νAµ, (4.2)

where a, b, c are arbitrary coefficients. Imposing a gauge transformation A′µ = Aµ + ∂µφ

yields a Lagrangian density which can be organized by the original terms (L), and transforma-
tion terms (δgL), in the form L′ = L + δgL,

L′ = L + 2(a + c)∂µAν∂
µ∂νφ + 2b∂µAµ∂ν∂

νφ, (4.3)

whereL is given in (4.2). A system of equations is derived such that if all of the δgL cancel,
an exactly gauge invariant Lagrangian density will be obtained. In other words, we must solve
for δgL = 0. In order to satisfy this condition, we require a + c = 0 and b = 0, thus c = −a.
The resulting Lagrangian density can be factored to L = 1

2a(∂µAν − ∂νAµ)(∂µAν − ∂νAµ).

What we find is that the Lagrangian density is exactly the form of classical electrody-
namics. The arbitary coefficient a allows for the standard coefficient of the electrodynamic
Lagrangian density, a = −1

2 yields L = −1
4 FµνFµν. The choice of the standard coefficient is

fixed by equation of motion (Maxwell’s equations) and the energy-momentum tensor T µν =

FµαFν
α −

1
4η

µνFαβFαβ. The electromagnetic energy-momentum tensor and all other conser-
vation laws related to conformal invariance of Maxwell’s equations were first derived from
Noether’s theorem by Bessel-Hagen [26]. This also can be derived from the canonical Noether
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energy-momentum tensor after implementing the Belinfante improvement [23]. The procedure
therefore can be used to derive a completely gauge invariant model with no free coefficients, in
the case of N = 1 and M = 1, classical electrodynamics.

Derivation for N = 1, M = 2 (spin-2)

For a model with N = 1 and M = 2 (i.e. tensor field theory based on symmetric hνγ), the La-
grangian is a scalar which is quadratic in first order field derivatives (i.e. ∂µhνγ∂µhνγ). Avoiding
redundant contractions yields [97],

L = A∂µhµν∂
νhγγ + B∂µhµν∂γh

νγ + C∂µhνν∂
µhγγ + D∂µhνγ∂µhνγ + E∂µhνγ∂νhµγ, (4.4)

where A, B,C,D, E are arbitrary coefficients. Imposing a spin-2 gauge transformation h′µν =

hµν+∂µξν+∂νξµ yieldsL′ = L+δgL, with δgLwhich must vanish in order for a gauge invariant
expression to be derived. For clarity, common terms are combined and the D’Alembertian
operator (� = ∂µ∂

µ) is introduced. The resulting Lagrangian density is,

L′ = L + A∂νh�ξν + 2B∂γhνγ�ξν + (A + 4C)∂µh∂µ∂γξγ

+ (2A + 2B)∂µhµν∂ν∂γξγ + (4D + 2E)∂µhνγ∂µ∂νξγ + 2E∂µhνγ∂ν∂γξµ, (4.5)

This equation leads to the homogenous linear system which has either a trivial solution, or
a non-trivial solution with free parameter(s). The trivial gauge invariant Lagrangian L = 0, is
the only gauge invariant expression. This is the expected result because spin-2 is well known
to have an action which is gauge invariant only up to a surface term [61, 140]. We can find
this surface term by using integration by parts, leaving us with a total divergence and some
remaining terms,

L′ = L + ∂µ[Ah�ξµ + 2Bhνµ�ξν + (A + 4C)h∂µ∂γξγ

+ (2A + 2B)hµν∂ν∂γξγ + (4D + 2E)hνγ∂µ∂νξγ + 2Ehνγ∂ν∂γξµ]

− (2A + 4C)h�∂γξγ − (2A + 2B + 2E)hµν∂µ∂ν∂γξγ − (2B + 4D + 2E)hνγ�∂νξγ. (4.6)

We solve for the coefficients such that the terms not under the total divergence are identi-
cally zero. Solving this system of linear equations we have C = −1

2 A, D = 1
2 A and E = −A−B.

For any choice of the free coefficient we have a Lagrangian density which yields the spin-2
equation of motion. If we solve such that the coefficients match up with the conventional co-
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efficient 1
2 of the spin-2 equation of motion, we must take A = −1

2 , thus we are left with the
solution A = −1

2 , B = B, C = 1
4 , D = −1

4 and E = 1
2 −B with only one free parameter B. We are

left with a one parameter family of Lagrangian densities which is invariant up to the surface
term,

L′ = L + ∂µ[hνγ∂ν∂γξµ − hµν∂ν∂γξγ +
1
2

h∂µ∂γξγ −
1
2

h�ξµ

+ 2B(hµν∂ν∂γξγ + hνµ�ξν − hνγ∂µ∂νξγ − hνγ∂ν∂γξµ)]. (4.7)

The coefficients used to ensure the Lagrangian is invariant up to a surface term from (4.4),

L =
1
4

[−2∂µhµν∂
νhγγ + 4B∂µhµν∂γh

νγ + ∂µhνν∂
µhγγ − ∂µhνγ∂

µhνγ + (2 + 4B)∂µhνγ∂νhµγ]. (4.8)

We note that for particular value of the free parameter B = 0, the Fierz-Pauli Lagrangian is
recovered identically. Having a Lagrangian which is explicitly gauge invariant is likely related
to the ability to construct a field strength tensor, as will be emphasized during the construction
of the gauge invariant model in the following section. Absence of a gauge invariant Lagrangian
seems to imply an inability to construct a quadratic combination of independently gauge in-
variant field strength tensors. The notion of the field strength tensor in a physical model has
be alluded to as a physics necessity in the past [58, 131, 195]; the current work can give some
more insight into these observations.

Derivation for N = 2, M = 2 (linearized Gauss-Bonnet)

For a model with N = 2 and M = 2, the Lagrangian is a scalar which is quadratic in second
order field derivatives (i.e. ∂µ∂νhαβ∂µ∂νhαβ). This can be built from the Lagrangian of the form
L = Mµναβρλσγ∂µ∂νhαβ∂ρ∂λhσγ, where Mµναβρλσγ is all possible permutations of indices of four
Minkowski tensors (i.e. ηµρηνληασηβγ). Avoiding terms which are redundant after contraction
yields,

L = C1∂µ∂
µhνν∂α∂

αhββ + C2∂µ∂
µhαβ∂ν∂νhαβ + C3∂µ∂νhµν∂α∂αhββ

+ C4∂µ∂νhαα∂β∂
βhµν + C5∂µ∂νhνβ∂α∂

αhµβ + C6∂µ∂νhαα∂
µ∂νhββ + C7∂µ∂νhαα∂

µ∂βhνβ

+ C8∂µ∂νhµν∂α∂βhαβ + C9∂µ∂νhνβ∂µ∂αhαβ + C10∂µ∂νhνβ∂
β∂αhµα

+ C11∂µ∂νhαβ∂µ∂νhαβ + C12∂µ∂νhαβ∂µ∂αhνβ + C13∂µ∂νhαβ∂α∂βhµν. (4.9)
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A spin-2 gauge transformation h′µν = hµν + ∂µξν + ∂νξµ is then applied. The δgL consists of
10 unique terms which result in a system of 10 linear equations. These equations decouple into
3 independent systems which we will call i), ii) and iii), each of which are solvable with one
free parameter. Not a single coefficient Cn is zero in the case of a nontrivial gauge invariant
Lagrangian (δgL = 0). Each of the independent system of linear equations can be solved, i)
C12 = −2C11, C13 = C11, ii) C4 = 2C2, C5 = −4C2, C6 = C2, C7 = −4C2, C9 = 2C2, C10 =

2C2 and iii) C3 = −2C1, C8 = C1. These solutions yield the following independently gauge
invariant combinations,

L = C11(∂µ∂νhαβ∂µ∂νhαβ − 2∂µ∂νhαβ∂µ∂αhνβ + ∂µ∂νhαβ∂α∂βhµν)

+ C2(∂µ∂µhαβ∂ν∂νhαβ + 2∂µ∂νhαα∂β∂
βhµν − 4∂µ∂νhνβ∂α∂

αhµβ

+ ∂µ∂νhαα∂
µ∂νhββ − 4∂µ∂νhαα∂

µ∂βhνβ + 2∂µ∂νhνβ∂µ∂αhαβ + 2∂µ∂νhνβ∂
β∂αhµα)

+ C1(∂µ∂µhνν∂α∂
αhββ − 2∂µ∂νhµν∂α∂αhββ + ∂µ∂νhµν∂α∂βhαβ). (4.10)

The 3 combinations can be factored into contractions of a fourth rank, second rank, and
zeroth rank tensor. The motivation is to have each term expressed as the contraction of two
field strength tensors. The result of this,

L =
1
4

C11(∂µ∂αhνβ + ∂ν∂βhµα − ∂µ∂βhνα − ∂ν∂αhµβ)(∂ν∂βhµα + ∂µ∂αhνβ − ∂ν∂αhµβ − ∂µ∂βhνα)

+ C2(�hµν + ∂µ∂νh − ∂µ∂αhαν − ∂ν∂αhαµ)(�hµν + ∂µ∂νh − ∂µ∂αhνα − ∂
ν∂αhµα)

+ C1(�h − ∂µ∂νhµν)(�h − ∂α∂βhαβ), (4.11)

shows 3 expressions which are familiar to Riemannian geometry. They are the linearized
terms of the Riemann tensor Rµναβ = 1

2 (∂µ∂βhνα+∂ν∂αhµβ−∂µ∂αhνβ−∂ν∂βhµα), and Ricci tensor
Rνβ = ηµαRµναβ = 1

2 (∂β∂αhνα+∂ν∂αhβα−�hνβ−∂ν∂βh), and Ricci scalar R = ηνβRνβ = ∂µ∂νhµν−�h.
Using these linearized Riemann/Ricci tensors, and rewriting the free coefficients as ã, b̃ and c̃

we have,

L = ãRµναβRµναβ + b̃RµνRµν + c̃R2, (4.12)

which allows for an infinite number of possible models to be developed. The goal of this
work is specific, to find unique combinations which lead to completely gauge invariant models.
This condition will now be used to specify possible Lagrangian densities, by use of Noether’s



4.1. A connection between linearizedGauss-Bonnet gravity and classical electrodynamics 139

theorem. Referring again to (4.20) we have the conservation law for N = 2,M = 2,

∂ω

[
ηωνLδxν +

∂L

∂(∂ω∂λhρσ)
∂λδhρσ −

(
∂λ

∂L

∂(∂ω∂λhρσ)

)
δhρσ

]
= 0. (4.13)

The first term is gauge invariant because the Lagrangian density is explicitly gauge invari-
ant. The second term can possibly be gauge invariant depending on transformation of the fields
∂λδhρσ since there will be second order derivatives of hρσ. From (4.12) we calculate,

∂L

∂(∂ω∂λhρσ)
= 2ã[Rρωλσ + Rλρσω]

+ b̃[−ηωλRρσ − ηρσRωλ +
1
2

(ηλσRρω + ηλρRσω + ηωσRρλ + ηωρRσλ)]

+ 2c̃R[−ηωληρσ +
1
2

(ηωρηλσ + ηωσηλρ)]. (4.14)

Two identities can be used in the following calculations which are equivalent to the Bianchi
identities: ∂ωRλρωσ = ∂λRρσ − ∂ρRλσ and ∂ρR = 2∂ωRωρ. These identities allow for all of the
tensors to be expressed as derivatives of the Ricci tensor. Using (4.14), we have for the second
term in (4.68),

∂L

∂(∂ω∂λhρσ)
∂λδhρσ = 2ãRωρλσ(∂σδhλρ − ∂λδhσρ) + b̃Rρσ(∂ρδhωσ − ∂

ωδhρσ)

+ b̃Rωλ(∂ρδhρλ − ∂λδh) + 2c̃R(∂ρδhρω − ∂ωδh). (4.15)

If we simply use the canonical transformation δhρσ = −∂βhρσδxβ we will not have a gauge
invariant expression, as in the case of the canonical Noether energy-momentum tensor in elec-
trodynamics. Since we have an explicitly gauge invariant Lagrangian density, the Bessel-
Hagen method [26, 110] can be used to derive transformations of the hρσ which leaves the
second term in the conservation law gauge invariant. This procedure involves solving for the
field transformations such that coordinate invariance and gauge invariance is simultaneously
preserved. The field transformation δhρσ = −∂βhρσδxβ + ∂ρξσ + ∂σξρ with the most general
vector ξσ = Ãhσβδxβ + B̃hησνδxν must be substituted into (4.15) and solved for the parame-
ters which preserve gauge invariance. We have a unique gauge invariant solution for Ã = 1,
B̃ = 0. Remarkably the solution is that this transformation is exactly δhρσ = −2Γνρσδxν, where
Γνρσ = 1

2 (∂νhρσ − ∂ρhνσ − ∂σhνρ) is the linearized Christoffel symbol. For the second term in the
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conservation law we now have,

∂L

∂(∂ω∂λhρσ)
∂λδhρσ = (−4ãRωρλσRν

ρλσ − 2b̃RρσRωρνσ − 2b̃RωλRν
λ − 4c̃RRνω)δxν. (4.16)

The expression in brackets is manifestly gauge invariant without restriction of the free
parameters ã, b̃, c̃. We now consider the third term in (4.68) with the transformation δhρσ =

−2Γνρσδxν,

(
∂λ

∂L

∂(∂ω∂λhρσ)

)
δhρσ =

1
2

(
4c̃ + b̃

) [
2∂ωRηρσ − ∂σRηρω − ∂ρησω

]
Γνρσδxν

+
(
4ã + b̃

)
[2∂ωRρσ − ∂σRρω − ∂ρRσω] Γνρσδxν. (4.17)

The energy-momentum tensor can only be made gauge invariant with respect to the trans-
formation h′µν = hµν + ∂µξν + ∂νξµ if (4.17) vanishes because second order derivatives of the
potential are required for an expression invariant under this transformation [140]. The only way
for (4.17) to vanish is therefore to fix the free coefficients of the Lagrangian density. There is
a solution such that (4.17) is identically zero (leaving the energy-momentum tensor in lowest
integer), ã = 1

4 , b̃ = −1, c̃ = 1
4 ,

L =
1
4

(RµναβRµναβ − 4RµνRµν + R2), (4.18)

which is the linearized form of the Gauss-Bonnet Lagrangian! It was first discovered by
Cornelius Lanczos in 1938 [129], and has subsequently been a point of interest in many ar-
eas of both physics and mathematics [71, 48, 192, 96, 100, 142]. From Noether’s theorem a
symmetric, conserved and gauge invariant energy-momentum tensor is derived,

Tων = −RωρλσRν
ρλσ + 2RρσRωρνσ + 2RωλRν

λ −RRνω +
1
4
ηων(RµλαβRµλαβ − 4RµνRµν + R2). (4.19)

The Belinfante procedure for higher order gravity can also be used to obtain this energy-
momentum tensor [23, 7], as well as the Fock method for deriving an energy-momentum tensor
which is symmetric and conserved on shell [75, 28]. From both methods the resulting energy-
momentum tensor is exactly what we have in (4.27).

Just like in classical electrodynamics the procedure for N = 2,M = 2 allows for the deriva-
tion of a completely gauge invariant model, where the energy-momentum tensor is symmetric,
conserved and gauge invariant. The energy-momentum tensor presented in (4.27) is a well



4.1. A connection between linearizedGauss-Bonnet gravity and classical electrodynamics 141

known expression to string theorists for several decades [172, 34, 156]. The fact that it fol-
lows from a procedure originally developed for deriving completely gauge invariant models in
relativistic field theories (such as electrodynamics) was a completely unforeseen result. The
connection between electrodynamics and Gauss-Bonnet gravity models, as well as the meaning
of this connection, is worth further investigation.

4.1.3 Conclusions

A procedure was developed for building completely gauge invariant models by imposing gauge
invariance and Noether’s theorem to general scalar Lagrangian densities. The electrodynamic
Lagrangian density is shown to that follows from this procedure for N = 1 and M = 1, which
leads directly to the completely gauge invariant theory. For spin-2 (N = 1, M = 2), this pro-
cedure yields no nontrivial results, which is expected because the spin-2 Lagrangian density is
only invariant up to a surface term. A model with M = 2 rank of potential (second rank sym-
metric potential hµν) and N = 2 order of derivatives was derived from the procedure, yielding 3
possible contractions: linearized Riemann tensors, Ricci tensors, and Ricci scalars. It is found
that for a specific combination of these terms, a completely gauge invariant model can be con-
structed analogous to electrodynamics; a model which is exactly the linearized Gauss-Bonnet
gravity model.

If a Lagrangian density is built from a tensor potential of rank M and order of deriva-
tives N = M, the procedure can be used to derive a completely gauge invariant model; the
Lagrangian density, equation of motion and energy-momentum tensor are all gauge invariant.
This was highlighted by the fact that for N = M = 1 the procedure yields classical electro-
dynamics, and for N = M = 2 with a totally symmetric tensor potential the procedure yields
linearized Gauss-Bonnet gravity. We note that this pattern continues for totally symmetric ten-
sor potentials when N = M > 2 and is the subject of future work. In cases where N , M

it is possible to derive completely gauge invariant models if N > M, or for totally antisym-
metric tensor potentials of any rank M when N = 1 (keeping in mind the rank M of totally
antisymmetric potentials is restricted by the dimension D of a theory as M < D).

A major characteristic highlighted by the developed procedure is the importance of a La-
grangian that is exactly gauge invariant in physical field theories; not simply invariant up to
some surface term. This is explicit, but rarely discussed, in the from of the canonical energy-
momentum tensor. The first term in (4.68) must be independently gauge invariant, otherwise
the only possible gauge invariant energy momentum tensor will be T λγ = 0. Electrodynamics
(N = 1, M = 1) is a completely gauge invariant field theory built from a unique gauge in-
variant Lagrangian density. The gauge invariant Lagrangian for the N = 2 and M = 2 model
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presented in this article not only has this attribute, but it is directly related to the building
blocks of general relativity through linearized Riemann tensors that were derived. Uniqueness
found in the gauge invariant Lagrangian density expressions suggests that it is not enough to
consider only the gauge invariance of the equation of motion. Complete gauge invariance of
these models emphasizes the need for both exactly gauge invariant Lagrangians and conserva-
tion laws. Gauge invariant Lagrangian densities produced by this procedure imply existence of
gauge invariant field strength tensors that can be used to build the corresponding model. The
connection between Gauss-Bonnet gravity and classical electrodynamics is the primary point
of interest presented in this article and will be the subject of future work.
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4.2 A connection between linearized Gauss-Bonnet gravity
and classical electrodynamics II: Complete dual formu-
lation

Abstract In a recent publication a procedure was developed which can be used to derive com-
pletely gauge invariant models from general Lagrangian densities with N order of derivatives
and M rank of tensor potential. This procedure was then used to show that unique models
follow for each order, namely classical electrodynamics for N = M = 1 and linearized Gauss-
Bonnet gravity for N = M = 2. In this article, the nature of the connection between these
two well explored physical models is further investigated by means of an additional common
property; a complete dual formulation. First we give a review of Gauss-Bonnet gravity and
the dual formulation of classical electrodynamics. The dual formulation of linearized Gauss-
Bonnet gravity is then developed. It is shown that the dual formulation of linearized Gauss-
Bonnet gravity is analogous to the homogenous half of Maxwell’s theory; both have equations
of motion corresponding to the (second) Bianchi identity, built from the dual form of their re-
spective field strength tensors. In order to have a dually symmetric counterpart analogous to
the non-homogenous half of Maxwell’s theory, the first invariant derived from the procedure
in N = M = 2 can be introduced. The complete gauge invariance of a model with respect to
Noether’s first theorem, and not just the equation of motion, is a necessary condition for this
dual formulation. We show that this result can be generalized to the higher spin gauge theories,
where the spin-n curvature tensors for all N = M = n are the field strength tensors for each
n. These completely gauge invariant models correspond to the Maxwell-like higher spin gauge
theories whose equations of motion have been well explored in the literature.

4.2.1 Motivation

In [14], a procedure for deriving completely gauge invariant models from general linear com-
binations of derivatives of order N and rank of potential M was developed. Complete gauge
invariance occurs for a model when the Lagrangian density, equation of motion and energy-
momentum tensor are all independently and exactly gauge invariant. The procedure involves
solving for the free coefficients in the linear combination with respect to Noether’s (first) the-
orem [159, 124] such that the model is completely gauge invariant under a particular gauge
transformation. In the case of N = M = 1 under a spin-1 gauge transformation, electro-
dynamics is uniquely derived from the procedure. In the case of N = M = 2, under a spin-2
gauge transformation (sometimes referred to as linearized diffeomorphisms), linearized Gauss-
Bonnet gravity is uniquely derived.
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The connection of these models to a common procedure raised an obvious question, what
is the reason for this connection, and why Gauss-Bonnet gravity of the many metric theories
of gravity that exist in the literature. The present article attempts to answer both questions
through the Gauss-Bonnet theorem, and the additional non-trivial property shared by these
two models, complete dual formulation of the Lagrangian, equation of motion and energy-
momentum tensor. Once again these models will be derived from the Noether identity from
Noether’s first theorem, given below for a general potential ΦA [14],

(
∂L

∂ΦA
− ∂µ

∂L

∂(∂µΦA)
+ ∂µ∂ω

∂L

∂(∂µ∂ωΦA)
+ . . .

)
δΦA

+ ∂µ

(
ηµνLδxν +

∂L

∂(∂µΦA)
δΦA +

∂L

∂(∂µ∂ωΦA)
∂ωδΦA −

[
∂ω

∂L

∂(∂µ∂ωΦA)

]
δΦA + ...

)
= 0 . (4.20)

The article will be structured as follows. In Section 4.2.2 an overview of Gauss-Bonnet
gravity is given, with its connection to the Gauss-Bonnet theorem, and how it is derived from
the Euler class e(Ω) in the integrand of the Gauss-Bonnet theorem. Next the dual linearized
Riemann tensor is introduced and connected to the original results of Lanczos that first noted
these connections between the dual Riemann tensors, their scalars, and what is now known
as the Gauss-Bonnet Lagrangian. In Section 4.2.3 an overview of the dual formulation of
electrodynamics is presented, and how every component of the theory with respect to Noether’s
theorem (the Lagrangian density, equation of motion and energy-momentum tensor) can be
expressed explicitly in dual form.

Section 4.2.4 is dedicated to converting the linearized Gauss-Bonnet gravity model from
[14] into dual form with respect to Noether’s first theorem. It is shown that this model has the
same general dual formulation as the homogenous half of Maxwell’s theory; the equation of
motion is the second Bianchi identity built from the dual linearized Riemann tensor tensor. In
Section 4.2.5 possible invariants derived from the procedure in [14] are discussed that can give
complete dual formulation analogous to the complete dual formulation of electrodynamics. In-
deed the invariant RµναβRµναβ yields this with respect to the Lagrangian and equation of motion,
but complications arise with the third term in the energy-momentum tensor from Noether’s
first theorem. This is because, as shown in [14], only for very particular Lagrangian densities
can this be made gauge invariant and symmetric, namely the Gauss-Bonnet combination. Two
possible remedies to this problem are given and possible ramifications are discussed.

In Section 4.2.6 the internal dual formulations of the respective electodynamics and lin-
earized gravity models are presented. Section 4.2.7 gives the general forms for the analogous
expressions between the two models which are generalized for any independently gauge invari-
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ant spin-n field strength tensor. These models are the Maxwell-like higher spin gauge theories
for the spin-n curvature tensors [82, 79, 21]. The complete dual and gauge invariance of these
models with respect to Noether’s theorem provides more compelling evidence for the require-
ment of complete invariance properties of physical theories with respect to all components: the
Lagrangian density, equation of motion and energy-momentum tensor of the model.

4.2.2 Gauss-Bonnet gravity and the dual Riemann tensors

We begin by providing details regarding the origin of Gauss-Bonnet gravity, its relation to the
Gauss-Bonnet theorem, and how the common Lagrangian in the literature is obtained from the
Euler class in the integrand of the theorem. This is necessary because the required calculations
for our article are scattered throughout the literature, if at all. The book by Eguchi, Gilkey
and Hanson [67] will be taken as the primary reference for details here, however even this
reference is missing considerable detail and explanation. The Gauss-Bonnet theorem got its
name by the work of Gauss in 1827 (Gauss’s theorem egregrium) [86] and Bonnet in 1848
[31], although neither of these presentations are what we refer to as the Gauss-Bonnet theorem
in the present day (they were earlier developments of the theorem). The modern day version
was first presented by Dyck in 1890 [66] for the specific case of R3, and finally to n dimensions
by Hopf in 1926 [106], with the proof of the general formula for Riemannian manifolds being
completed by Chern [49].

It was Allendoerfer [4] who first showed that the integrand for a Riemannian manifold of
dimension d is the general expression of which the special case d = 4 is what we will derive
below (the Gauss-Bonnet Lagrangian). This was recognized for d = 4 indirectly by Lanczos
[129] a couple years earlier, but from motivations discussed later in this section. A more
detailed account of this history was given by [194]. The modern form of the Gauss-Bonnet
theorem is sometimes referred to as the generalized Gauss-Bonnet theorem or Chern-Gauss-
Bonnet theorem to make a distinction between the more advanced (modern) version compared
to the work of Gauss and Bonnet. The modern form of the theorem states,

χ(M) =

∫
M̄

e(Ω), (4.21)

where χ is the Euler characteristic of manifold M̄ and e(Ω) is the Euler class. The Euler
class can be expressed in terms of the Pfaffian of the curvature form P f (Ω),

e(Ω) =
1

(2π)d/2 P f (Ω). (4.22)

The Pfaffian of the curvature form for a Riemannian manifold in 4 dimensions (4D) is the
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d = 4 case. The expression for the Euler class of the curvature form in this case was first given
by Allendoerfer [4], but in more explicit notation by Eguchi, Gilkey and Hanson [67]. The
Pfaffian is given by,

P f (Ω) =
1
8
εabcdΩab ∧Ωcd, (4.23)

where the curvature 2-form for the Riemannian manifold is given in terms of the Riemann
tensor, Ωµν = 1

2Rµν
ρσdxρ ∧ dxσ. The Euler class therefore reads,

e(Ω) =
1
4

1
32π2 εµναβR

µν
ρσRαβ

λγdxρ ∧ dxσ ∧ dxλ ∧ dxγ. (4.24)

Expanding out this summation yields,

e(Ω) =
1

32π2 [8(R12
34R34

12 + R14
23R23

14 + R13
24R24

13 − R12
13R34

24 + R12
14R34

23 + R12
23R34

14

− R12
24R34

13 + R13
12R42

34 + R13
14R42

23 + R13
23R42

14 + R13
34R42

12 + R14
12R23

34 − R14
13R23

24

− R14
24R23

13 + R14
34R23

12 + R12
12R34

34 + R13
13R24

24 + R14
14R23

23)]dx1 ∧ dx2 ∧ dx3 ∧ dx4. (4.25)

What is in square brackets above is identically [8(. . . )] = RµναβRµναβ − 4RµνRµν + R2. Addi-
tionally, using the relationship d4x = dx1 ∧ dx2 ∧ dx3 ∧ dx4 = 1

24εµναβdxµ ∧ dxν ∧ dxα ∧ dxβ,
the Euler class for the Riemannian manifold in 4D is,

e(Ω) =
1

32π2 (RµναβRµναβ − 4RµνRµν + R2)d4x. (4.26)

Therefore the Gauss-Bonnet theorem for this case reads χ(M) = 1
32π2

∫
M̄

(RµναβRµναβ −

4RµνRµν + R2)d4x. It is this integrand of the Gauss-Bonnet theorem in 4D that is precisely
the Lagrangian density for the Gauss-Bonnet gravity model.

This contribution was first introduced to the physics community by Cornelius Lanczos
in 1938 [129], although happened across by very different means. Lanczos was considering
various invariants that can be obtained from the Riemannian tensors, as presented in his paper
I1 = RµνRµν, I2 = R2 and I3 = RµναβRµναβ. Of course these are the 3 invariants found above in the
Gauss-Bonnet theorem, and the 3 invariants derived in [14] asL = ãRµναβRµναβ+ b̃RµνRµν+ c̃R2,
where ã = 1

4 , b̃ = −1 and c̃ = 1
4 for linearized Gauss-Bonnet gravity (Equation (4.43)).

What Lanczos noticed is that if we consider a Lagrangian density formed from the com-
bination I3 − 4I1 + I2, it will make no contribution to the equation of motion. This result is
now more appropriately understood as the nature of topological invariants, which can be ex-
pressed as a total derivative in the action. This result, however, as emphasized in [14], does
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not mean that the action will not contribute to the energy-momentum tensor of the model. In
addition, as we show in Section 4.2.4, the equation of motion (while zero) is in fact the sec-
ond Bianchi identity analogous to the homogenous half of Maxwell’s equations. The precise
form of the energy-momentum tensor is a well known expression to string theorists for several
decades [172, 198, 34, 156], as derived for linearized Gauss-Bonnet gravity from Noether’s
first theorem in [14],

Tων = −RωρλσRν
ρλσ + 2RρσRωρνσ + 2RωλRν

λ −RRων +
1
4
ηων(RµλαβRµλαβ − 4RµγRµγ + R2). (4.27)

Gauss-Bonnet gravity is an extensively published model in the literature, interests which
have only been increasing in recent years [48, 50, 96, 142, 24, 91]. This past year [91] has
attracted significant attention in the literature by claiming the the Gauss-Bonnet model can
be used to predict ‘new’ gravitational dynamics solving which can explain several still unex-
plained phenomena. We note that many authors have been writing to support, criticize and
further this result [73].

Lanczos did consider two additional invariants built from dual tensors [129],

Rαβµν =
1
2

Rρσ
µνερσαβ, (4.28)

Rµναβ =
1
4

Rρσλγερσµνεαβλγ, (4.29)

which he called ‘simply’ dual Rαβµν and ‘doubly’ dual Rαβµν, respectively. The two invari-
ants he considered were each of these contracted with the Riemann tensor, K1 = RαβµνRαβµν

and K2 = RαβµνRαβµν. From this he showed that the invariant K2 can be used to express the
combination which makes no contribution to the equation of motion K2 = I3 − 4I1 + I2. This
will be the starting point for Section 4.2.4 where the linearized Gauss-Bonnet model will be
completely rewritten into an explicit dual formulation, as in the case of dual electrodynamics.
In order to do this, Section 4.2.3 will first present the complete electrodynamics model in dual
form.

4.2.3 Dual electrodynamics

Dual electrodynamic scalars

The dual formulation of electrodynamics has an interesting history. Heaviside first noticed
the dual invariance of the complete 8 Maxwell equations when he first wrote them in vector
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form [102]. Maxwell’s equations were presented from the both the field strength tensor Fµν

(the 4 non-homogenous equations in Equation (4.36)) and dual tensor F µν (the 4 homogenous
equations in Equation (4.40)) by Minkowski in [150]. Later the complete 8 Maxwell equa-
tions were reformulated into a single field strength tensor Fµν by Einstein [69]. The appeal
here was that a single field strength tensor Fµν could be defined from which all of Maxwell’s
equations could be presented. The downside was that explicit dual invariance of the model
was hidden as a consequence, and that the homogenous half of Maxwell’s equations were
presented simply as a property of the field strength tensor (from the second Bianchi identity
∂σFαβ + ∂βFσα + ∂αFβσ = 0), rather than following in the Euler-Lagrange equation from a
fundamental Lagrangian density.

Since this time, the Lagrangian density considered to be fundamental to electrodynamics
is L = −1

4 FαβFαβ as derived from the procedure in [1], where Fαβ = ∂αAβ − ∂βAα. This
Lagrangian density yields the non-homogenous half of Maxwell’s equations in Equation (4.36)
from the Euler-Lagrange equation. Considering the dual tensor of electrodynamics Fµν =
1
2εµνρσFρσ, it is possible build in principle 3 invariants, M1 = FαβFαβ, M2 = FµνF

µν and
M3 = FµνF

µν. It is well known that the first two can be expressed in terms of one another
as M1 = −M2. The common objection to M3 is that it should not be included in the action
because it can change sign under an odd numbered parity transformation, since it is formed
from the inner product of polar vector ~E and axial vector ~B. This sign change however, does
not effect the equation of motion. Since Lagrangians which are not exactly gauge invariant
but admit gauge invariant equations of motion (such as the spin-2 Fierz-Pauli action invariant
up to a surface term [14, 163, 140, 61]) are well accepted in the literature, a change of sign is
also a negligible problem if it does not affect the physical model. We will not focus on this
philosophical question in this article.

Note that the authors of a highly cited paper on dual electrodynamics [46, 30] propose a new
Lagrangian of the form M1 + M2 where the dual field strength is redefined as Fµν = ∂µCν−∂νCµ

in terms of a second 4-potential Cµ. This has been proposed by numerous other authors
throughout the years without gaining much traction. From this perspective the basic idea is
that variation with respect to both Aµ and Cµ of the Lagrangian M1 + M2 will yield all 8 of
Maxwell’s equations, the 4 non-homogenous equations from variation with respect to Aµ and
the 4 homogenous equations from variation with respect to Cµ. This differs from the procedure
in [14] and that general view that electrodynamics is built from a single potential Aµ, so the
presentation in [46, 30] will not be considered here. If the general Lagrangian density in [14]
is built using both potentials in separate terms, with the gauge transformation C′µ = Cµ + ∂µφ,
then their presentation can also be derived. Their thesis, however, that electrodynamics should
be conventionally expressed in dual invariant form to (i) obtain all of Maxwell’s equation from
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the variational approach (since L = −1
4 FαβFαβ only yields the non-homogenous equations),

and (ii) allow for a more symmetric presentation of all conservation laws, is hard to argue. The
following presentation of the dual formulation is perhaps superior given the complete deriva-
tion of Maxwell’s theory from M1,M2,M3 without the need to introduce any non-canonical
potential vectors [89, 84, 126].

Generalized Kronecker delta

In order to perform many of the calculations involving 4D dual expressions for classical elec-
trodynamics and the linearized gravity models discussed in this article, it is necessary to review
the generalized Kronecker delta in 4D for a Minkowski spacetime. The generalized Kronecker
delta is defined as the determinant of the Kronecker deltas of the permuted indices as follows,

δαβλγρσµν =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


δαρ δ
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ρ
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γ
σ

δαµ δ
β
µ δλµ δ

γ
µ

δαν δ
β
ν δλν δ

γ
ν



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.30)

The product of two Levi-Civita symbols is defined in terms of the generalized Kronecker
delta, however in the case of Minkowski spacetime this relationship has a sign change, since
raising the indices in one of the symbols will produce an overall sign change. Therefore for 4D
Minkowski spacetime follows the relationship ερσµνεαβλγ = −δ

αβλγ
ρσµν. Computing the determinant

above is straightforward and yields,

ερσµνε
αβλγ = −δαβλγρσµν =

− δαρδ
β
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γ
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β
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γ
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λ
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γ
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λ
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γ
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λ
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β
ν − δ

α
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λ
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γ
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β
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λ
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γ
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α
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λ
ρδ

β
σδ

γ
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α
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σδ

α
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γ
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− δβρδ
λ
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γ
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λ
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γ
µδ

α
ν − δ
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γ
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γ
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σδ
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µδ
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ν

− δγρδ
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σδ
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µδ
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σδ
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ν − δ

γ
ρδ

λ
σδ
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σδ

λ
µδ

β
ν + δγρδ
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σδ
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ν . (4.31)

If two of these indices are contracted the above expression simplifies to,

ερσµνε
αβλν = −δαβλνρσµν = δλρδ

β
σδ

α
µ − δ

β
ρδ

λ
σδ

α
µ − δ

λ
ρδ

α
σδ

β
µ + δαρδ

λ
σδ

β
µ + δβρδ

α
σδ

λ
µ − δ

α
ρδ

β
σδ

λ
µ. (4.32)
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If an additional two indices are contracted we are left with,

ερσµνε
αβµν = −δαβµνρσµν = −2(δαρδ

β
σ − δ

β
ρδ

α
σ). (4.33)

These expressions will be used to form identities between the dual and non-dual expres-
sions. For example, the aforementioned relationship M1 = FµνFµν = −M2 = −FµνF

µν can be
readily computed with Fµν = 1

2εµνρσFρσ as,

−FµνF
µν = −

1
4
ερσµνε

αβµνFαβFρσ =
1
2

(δαρδ
β
σ − δ

β
ρδ

α
σ)FαβFρσ = FµνFµν. (4.34)

These generalized Kronecker deltas will be referred to throughout the article.

Dualizing the non-homogenous half of electrodynamics

The conventional Lagrangian for electrodynamic theory LMNH = −1
4 FµνFµν yields only half of

Maxwell’s equations in the Euler-Lagrange equation, namely the 4 non-homogenous equations
known as the Gauss-Ampere laws in Equation (4.36). Note that reference to anything associ-
ated to the non-homogenous half of Maxwell’s equations from here forward will be denoted
with subscript MNH = Maxwell’s non-homogenous for clarity. This Lagrangian is, of course,
perfectly sound at deriving half of the theory from Noether’s theorem, as shown in [14]. This
non-homogenous equation of motion is dual to the equation of motion that represents the 4
homogenous equations, derived in Section 4.2.3.

Recall from Equation (4.34) the relationship FµνFµν = −FµνF
µν. Since LMNH = −1

4 FµνFµν

doesn’t need to be changed, it can be expressed equivalently as LMNH = 1
4FµνF

µν or LMNH =
1
8 (FµνF µν − FµνFµν). All of these options change sign under Fµν ↔ Fµν, however the third is
preferred since it is explicitly in dual form. Therefore the dual Lagrangian density is defined
as the third option,

LMNH =
1
8

(FµνF µν − FµνFµν). (4.35)

The equations of motion that follows from substitution of this Lagrangian density into the
Euler-Lagrange equation in Equation (4.20) are the 4 equations known as the non-homogenous
half of Maxwell’s equations (Gauss-Ampere laws). These equations are sourced by the 4-
current Jµ that is coupled in to the conventional Lagrangian LMNH via AµJµ, hence the name
non-homogenous. As in [14] we are only concerned with the free fields derived from the
procedure, thus we will focus on the equations of motion Eρ

MNH that follows from LMNH in
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Equation (4.35) substituted into the Euler-Lagrange equation (Equation (4.20)),

Eρ
MNH = ∂σFσρ. (4.36)

Dual formulation of Maxwell’s equations require the complete 8 equations, therefore the
homogenous 4 are required, which are presented in Section 4.2.3. Finally, consider the energy-
momentum tensor T µν

MNH = FµαFν
α −

1
4η

µνFαβFαβ derived from Noether’s first theorem using
Equations (4.20) and (4.35). This can be elegantly dualized by deriving an identity relating the
two terms above to the dual expression F µαF ν

α via equation (4.33) ,

F µαF ν
α =

1
4
ηνωερβµαεξσωαFρβFξσ =

1
4
ηνω(−δρβµαξσωα)FρβFξσ = −

1
2
ηµνFαβFαβ + FµαFν

α. (4.37)

From this expression the term proportional to Minkowski can be re-expressed as−1
4η

µνFαβFαβ =
1
2F

µαF ν
α −

1
2 FµαFν

α. Therefore the result for the dualized energy-momentum tensor is,

T µν
MNH =

1
2

[FµαFν
α + F µαF ν

α]. (4.38)

This equation is the dual form of the conventional energy-momentum tensor in electrody-
namic theory and it is symmetric, conserved, gauge invariant, and has the additional explicit
property of dual invariance under interchange Fµν ↔ Fµν.

Dualizing the homogenous half of electrodynamics

In order to have the dual symmetry with the non-homogenous half of Maxwell’s equations,
the dual equation of motion is required, namely the 4 homogenous equations known as the
Gauss-Faraday laws (Equation (4.40)) [150]. The only remaining invariant, M3 = FµνF

µν,
gives precisely this equation of motion in the Euler-Lagrange equation. This completes the
dual symmetry of the equations of motion. Reference to anything associated to the homoge-
nous half of Maxwell’s equations from here forward will be denoted with subscript MH =

Maxwell’s homogenous for clarity. The current section presents the dual form of the La-
grangian density LMH, equation of motion Eρ

MH, and energy-momentum tensor T µν
MH. Starting

with the Lagrangian for the homogenous half of Maxwell’s equations,

LMH = −
1
4

FµνF
µν. (4.39)

Inserting this expression into the Euler-Lagrange equation in Equation (4.20), ∂LMH
∂Aρ
−

∂σ
∂LMH
∂(∂σAρ) = ∂σF

σρ. Therefore Maxwell’s homogenous equations are indeed the dual to the
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non-homogenous,

Eρ
MH = ∂σF

σρ. (4.40)

Note that using the definiton of the dual field strength tensor Fµν = 1
2εµνρσFρσ, this equation

can be re-expressed in terms of the Bianchi identity via Eρ
MH = 1

2ε
αβσρ∂σFαβ = 1

6ε
αβσρ(∂σFαβ +

∂βFσα + ∂αFβσ). Therefore an alternate form of the homogenous equations are in terms of the
Bianchi identity as follows,

Eρ
MH =

1
6
εαβσρ(∂σFαβ + ∂βFσα + ∂αFβσ) = 0. (4.41)

Commonly in the literature the homogenous equations are expressed as ∂σFαβ + ∂βFσα +

∂αFβσ = 0, due to the Bianchi identity representing the homogenous half of Maxwell’s equa-
tions, this was the aforementioned idea of Einstein [69]. The problem with this approach is
that it cares not if half of Maxwell’s theory is derived by the Euler-Lagrange equation; instead
half of the theory is simply stated separately as a property of the field strength tensor. The dual
formulation solves this problem elegantly.

Finally, an energy-momentum tensor can be derived from Noether’s first theorem using
Equations (4.20) and (4.39),

T µν
MH = F µαFν

α −
1
4
ηµνF αβFαβ, (4.42)

which is also dually invariant under interchange Fµν ↔ Fµν.

4.2.4 Dual linearized Gauss-Bonnet gravity

Dualizing the Lagrangian density

Now that the complete theory of electrodynamics has been expressed explicitly in the dual
formulation, the completely gauge invariant linearized Gauss-Bonnet gravity model derived in
[1] can be dualized. Recall that the Lagrangian was of the form

LLGB =
1
4

(RµναβRµναβ − 4RµνRµν + R2), (4.43)

where reference to anything associated to the linearized Gauss-Bonnet gravity model from
here forward will have subscript LGB = linearized Gauss-Bonnet for clarity. The scalars here
are built from the linearized Riemann tensor Rµναβ, linearized Ricci tensor Rνβ, and linearized
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Ricci scalar R, respectively,

Rµναβ =
1
2

(∂µ∂βhνα + ∂ν∂αhµβ − ∂µ∂αhνβ − ∂ν∂βhµα), (4.44)

Rνβ = ηµαRµναβ =
1
2

(∂β∂αhνα + ∂ν∂αhβα − �hνβ − ∂ν∂βh), (4.45)

R = ηνβRνβ = ∂µ∂νhµν − �h. (4.46)

In the current section we will derive the dual form of the Lagrangian density LLGB, equa-
tion of motion Eρσ

LGB, and energy-momentum tensor T µν
LGB. In order to dualize this Lagrangian,

identities can be derived for the ‘doubly’ dual linearized Riemann tensor Rµναβ, as well as the
corresponding Ricci tensors and Ricci scalars. For brevity the ‘doubly’ dual Riemann tensor
Rµναβ in Equation (4.29) will be referred to as the dual Riemann tensor; this is the dual tensor
which we use in our article. From here the dual Ricci tensor Rµν and dual Ricci scalar R by
contracting indices of the dual Riemann tensor,

Rµν = Rµανβη
αβ =

1
4

Rρσ
λγερσµβε

λγαβηνα, (4.47)

R = Rµνη
µν =

1
4

Rρσ
λγερσαβε

λγαβ. (4.48)

We note that there is also the ‘simply’ dual Rαβµν in Equation (4.28) that dualizes only one
of the antisymmetric pairs of the Riemann tensor. Scalars from this expression, such as the
Lanczos K1 = RαβµνRαβµν, are redundant to what can be found with Rµναβ. Furthermore, the
Ricci tensor and Ricci scalar duals from Rαβµν are identically zero (Rµν = 0, R = 0), due to the
first Bianchi identity.

Using the dual Riemann expressions in Equations (4.29), (4.47) and (4.48) the following
identities can be derived by using the generalized Kronecker delta in Equations (4.32) and
(4.33) on the combinations RµναβRµναβ, RµνRµν and R2,

RµναβR
µναβ =

1
16

R ωτ
αβ εαβµνεωτλγR

ρσ
θφερσµνε

θφλγ =
1

16
R ωτ
αβ Rρσ

θφ(−δ
αβµν
ρσµν)(−δ

θφλγ
ωτλγ) = RµναβRµναβ,

(4.49)

RµνR
µν =

1
16

Rρσ
θγερσµβε

θγαβηαλR ξχ
ωτ ε

ωτµφεξχδφη
δλ =

1
16

Rρσ
θγR

ξχ
ωτ (−δωτφµρσβµ)(−δ

θγβδ
ξχφδ) = RµνRµν,

(4.50)
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R2 =
1

16
Rρσ

λγερσαβε
λγαβRµν

ωτεµνθφε
ωτθφ =

1
16

Rρσ
λγR

µν
ωτ(−δ

λγαβ
ρσαβ)(−δ

ωτθφ
µνθφ ). = R2 (4.51)

Similar to electrodynamics, each of the dual scalars can be expressed in terms of their corre-
sponding original non-dual scalars. An equivalent Lagrangian for the linearized Gauss-Bonnet
model L = 1

4 (RµναβRµναβ − 4RµνRµν + R2) can therefore be expressed as L = 1
4 (RµναβRµναβ −

4RµνRµν + R2). Writing this in dually symmetric form, similar to LMNH, the resulting La-
grangian density is,

LLGB =
1
8

(RµναβRµναβ − 4RµνRµν + R2 + RµναβRµναβ − 4RµνRµν + R2). (4.52)

This presentation would suggest analogy to the MNH equations. The above expression is
invariant under interchange Rµναβ ↔ Rµναβ, Rµν ↔ Rµν and R ↔ R. However, recalling the
invariant presented by Lanczos K2 = RαβµνRαβµν, who noticed the relationship K2 ∝ I3−4I1 + I2,
indeed deriving the identity for K2 yields,

RµναβRµναβ =
1
4

Rρσ
λγR

µν
αβ (−δαβλγρσµν) = −RµναβRµναβ + 4RµνRµν − R2. (4.53)

Using this identity the Lagrangian LLGB can also be expressed as,

LLGB = −
1
4
RµναβRµναβ. (4.54)

This presentation seems to indicate an analogy with the MH equations. While the La-
grangian LLGB can be expressed in dual form analogous to both halves of Maxwell’s theory,
this discrepancy will be clearly avoided for the equation of motion Eρσ

LGB in the following sec-
tions, which corresponds to the second Bianchi identity as in the MH case. First the dualization
of the energy-momentum tensor will be performed.

Dualizing the energy-momentum tensor

The energy-momentum tensor for the linearized Gauss-Bonnet gravity model, a well known
expression given in Equation (4.27), was derived from Noether’s theorem in [14]. To dualize
this expression, a series of identities can be derived relating the terms in the energy-momentum
tensor to the corresponding dual terms, as in the case of Equation (4.37). For the four terms in
Equation (4.27) not proportional to Minkowski (−RωρλσRν

ρλσ+2RρσRωρνσ+2RωλRν
λ−RRων), the

identities between dual and non-dual are, from Equations (4.29), (4.47) and (4.48) and using
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Equations (4.32) and (4.33),

RωρλσRνρλσ =
1

16
ηνγR µξ

αβ R θφ
χδ (−δχδλσµξλσ)(−δαβωρθφγρ ) = −RωρλσRν

ρλσ +
1
2
ηωνRµγαβRµγαβ, (4.55)

RρσR
ωρνσ =

1
16
ηνγRµγ

βδR
χξ

θφ (−δθφωρµγαρ)(−δ
βδασ
χξλσ) = RρσRωρνσ − RωρλσRν

ρλσ +
1
4
ηωνRµγαβRµγαβ,

(4.56)

RωλRνλ =
1

16
ηγλR ρσ

µτ R χξ
θφ (−δµτωαρσγα)(−δθφνβχξλβ) = RωλRν

λ − RRων +
1
4
ηωνR2, (4.57)

RRων =
1
16
ηνγRµτ

ρσR χξ
θφ (−δρσαβµταβ )(−δθφωλχξγλ ) = −RRων +

1
2
ηωνR2. (4.58)

Combining these 4 terms in the manner they appear in the energy-momentum tensor yields
an interesting identity,

−RωρλσRνρλσ + 2RρσRωρνσ + 2RωλRνλ − RR
ων = −RωρλσRν

ρλσ + 2RρσRωρνσ + 2RωλRν
λ − RRων,

(4.59)

as the particular coefficients of the energy-momentum tensor cancel all of the second
and third terms in Equations (4.55) - (4.58). Since the term proportional to Minkowski can
also be re-expressed RµναβRµναβ − 4RµνRµν + R2 = RµναβRµναβ − 4RµνRµν + R2 as shown in
Section 4.2.4, the energy-momentum tensor in Equation (4.27) can be expressed as Tων

LGB =

−RωρλσRνρλσ + 2RρσRωρνσ + 2RωλRνλ − RR
ων + 1

4η
ων(RµγαβRµγαβ − 4RµγRµγ + R2). The goal

of this section is to write the energy-momentum tensor in dually invariant form, thus a third
equivalent representation based on the dual and non-dual is,

Tων
LGB = −

1
2

RωρλσRν
ρλσ+RρσRωρνσ+RωλRν

λ−
1
2

RRων−
1
2
RωρλσRνρλσ+RρσR

ωρνσ+RωλRνλ−
1
2
RRων

+
1
8
ηων(RµγαβRµγαβ − 4RµγRµγ + R2) +

1
8
ηων(RµγαβRµγαβ − 4RµγRµγ + R2). (4.60)

This presentation of the energy-momentum tensor is explicitly invariant under interchange
Rµναβ ↔ Rµναβ, Rµν ↔ Rµν and R↔ R. This form, similar to the first LLGB derived in Equation
(4.52), is analogous to what is found for Tων

MNH in the MNH half of electrodynamics. Another
dually invariant and equivalent expression can be considered by deriving an identity between
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the dual and non-dual tensors RωαβλRν
αβλ,

RωαβλRν
αβλ =

1
4
ηθνR ρσ

αβ R µφ
θγ (−δαβωγρσµφ) = −RωρλσRν

ρλσ + 2RρσRωρνσ + 2RωλRν
λ − RRων. (4.61)

This is exactly the non-Minkowski part of Equation (4.27)! In addition, the Minkowski part
in Equation (4.27) can be re-expressed using RµναβRµναβ = −RµναβRµναβ + 4RµνRµν − R2 from
Equation (4.53), yielding a compact expression for the energy-momentum tensor of Gauss-
Bonnet gravity in dual form,

Tων
LGB = RωαβλRν

αβλ −
1
4
ηωνRµγαβRµγαβ. (4.62)

In this presentation the energy-momentum tensor, similar to the second LLGB derived in
Equation (4.54), is analogous to what is found for Tων

MH in the MH half of electrodynamics.
Both the Lagrangian LLGB and energy-momentum tensor Tων

LGB can be expressed in dual form
analogous to both halves on Maxwell’s equations. It appears however that the homogenous
half MH is truly analogous given compactness of these Equations (4.54) and (4.62), and the
second Bianchi identity equation of motion. This will be evidenced by the equation of motion
Eρσ

LGB in dual form, which is the topic of the following section.

Dualizing the equation of motion

Conventional wisdom states that the ‘In D = 4 the Gauss-Bonnet invariant is a total derivative,

and hence does not contribute to the gravitational dynamics’ [91], and more specifically to
the equation of motion, ‘In the four-dimensional spacetime, the Gauss-Bonnet term does not

contribute to the field equations since it becomes a total derivative’ [139]. This sentiment
implies that there is simply nothing in the equation of motion following from the Gauss-Bonnet
Lagrangian. A closer analysis shows that this is not the case. Differentiating the Gauss-Bonnet
Lagrangian,

∂LLGB

∂(∂ω∂λhρσ)
=

1
8

Rµναβ[ελσµνεωραβ + ελρµνεωσαβ]. (4.63)

Substituting this into the Euler-Lagrange equation in Equation (4.20), using the ∂ω∂λ and
Rµναβ symmetries, and reintroducing the dual Rωρλσ in Equation (4.29),

Eρσ
LGB = ∂ω∂λ

∂LLGB

∂(∂ω∂λhρσ)
=

1
4
∂ω∂λRµναβε

λµνσεωαβρ = ∂ω∂λR
ωρλσ. (4.64)

The equation of motion for linearized Gauss-Bonnet gravity is based on the second or-
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der divergence of the dual Riemann tensor, analogous to how equation (4.40) is the diver-
gence of the dual tensor for the homogenous half of electrodynamics. Similarly, using the
Levi-Civita symbol, this can be re-expressed as the second Bianchi identity via ∂λRµναβε

λµνσ =
1
3ε

λµνσ(∂λRµναβ + ∂µRνλαβ + ∂νRλµαβ) = 0. Therefore the equation of motion for the linearized
Gauss-Bonnet model can be expressed as the second Bianchi identity as,

Eρσ
LGB =

1
12
ελµνσεωαβρ∂ω(∂λRµναβ + ∂µRνλαβ + ∂νRλµαβ) = 0. (4.65)

The linearized Gauss-Bonnet model can therefore be completely expressed in analogous
dually invariant form to the homogenous half of electrodynamics (MH) in Section 4.2.3. The
equation of motion for both of these models is the second Bianchi identity. This raises a point,
perhaps of fundamental significance; if the Bianchi identity which represents half of Maxwell’s
equations is considered a fundamental equation of motion to electrodynamics, should the sec-
ond Bianchi identity of the Riemann tensor be thought of as part of the fundamental set of
equations for the Gauss-Bonnet theories of gravity, or more generally, metric theories of grav-
ity? Such views have been considered in the literature in the past [122], but are not often
included in the set of fundamental equations of motion as in the case of classical electrody-
namics.

4.2.5 Completing the dual linearized gravity model

The linearized Gauss-Bonnet gravity model has been expressed in dual form, with LLGB and
T µν

LGB independently dual invariant analogous to the homogenous half of electrodynamics (MH)
in Section 4.2.3. This analogy was further emphasized by the second Bianchi identity being
the equation of motion for the model. One major issue arises here, however, in the fact that
the equation of motion itself does not have a dual counterpart which can be found under in-
terchange of the Riemann tensor Rµναβ ↔ Rµναβ. This is a major issue for three reasons:
(i) in order to introduce a dual equation of motion, another internally dual invariant must
be introduced to the Lagrangian as in the MNH case, (ii) the possible Lagrangian densities
(L = ãRµναβRµναβ + b̃RµνRµν + c̃R2) are constrained by the procedure in [14], and (iii) the pro-
cedure in [14] showed that the Gauss-Bonnet energy-momentum tensor was the unique gauge
invariant, symmetric and trace-free expression derived from Noether’s theorem for these pos-
sible Lagrangian densities.

Problems (i) and (ii) can be easily remedied by noticing the dual equation of motion to
Eρσ

LGB is trivially of the form ∂ω∂λRωρλσ, which follows from one of the constrained invariants
RµναβRµναβ, contraction of the linearized Riemann tensors. The model built from this scalar
alone will now be explored. Reference to anything associated to the dual form of model derived
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from the linearized Riemann-Riemann scalar from here forward will have subscript LRR =

linearized Riemann-Riemann for clarity. Therefore the current section explores the dual form
of the Lagrangian density LLRR, equation of motion Eρσ

LRR, and energy-momentum tensor T µν
LRR.

Problem (iii) is significantly less trivial and will be discussed in detail.

Dualizing the Lagrangian and equation of motion

In order to have the equation of motion dual to Eρσ
LGB, a Lagrangian of the form RµναβRµναβ

will be considered, namely LLRR = −1
4RµναβRµναβ. From Equation (4.49), the dualization is

trivial, since RµναβRµναβ = RµναβR
µναβ. Therefore it can equivalently be expressed as LLRR =

−1
4RµναβR

µναβ, and in dually symmetric form as,

LLRR = −
1
8

(RµναβRµναβ + RµναβR
µναβ). (4.66)

This dual Lagrangian is strikingly similar to that of the non-homogenous (MNH) half of
electrodynamics. Differentiating this expression yields ∂LLRR

∂(∂ω∂λhρσ) = 1
2 [Rωρλσ + Rλρωσ]. The

Euler-Lagrange equation of motion from Equation (4.20) is therefore,

Eρσ
LRR = ∂ω∂λ

∂LLRR

∂(∂ω∂λhρσ)
= ∂ω∂λRωρλσ, (4.67)

which is indeed the expression dual to Eρσ
LGB. The LRR model therefore has an internally

dual symmetric Lagrangian, and an equation of motion dual to that of linearized Gauss-Bonnet
gravity; both which are analogous to the non-homogenous half of electrodynamics. Problem
(iii) is now to derive the energy-momentum tensor, which is not trivially gauge invariant as
T µν

LGB is in [14].

Dualizing the energy-momentum tensor

In [1] the linearized Gauss-Bonnet gravity model was the unique model derived from the pro-
cedure for N = M = 2 and had a gauge invariant energy-momentum tensor. To understand
why this is, we must consider the conserved current from Noether’s first theorem in Equation
(4.20) for a Lagrangian density of the form ∂∂h∂∂h,

∂ω

[
∂L

∂(∂ω∂λhρσ)
∂λδhρσ + ηωνLδxν −

(
∂λ

∂L

∂(∂ω∂λhρσ)

)
δhρσ

]
= 0. (4.68)

The third term above is responsible for the lack of gauge invariance in the model, since the
transformation δhρσ = −2Γνρσδxν [14, 26, 110], where Γνρσ = 1

2 (∂νhρσ − ∂ρhνσ − ∂σhνρ), is not
gauge invariant. This is in essence the same reason for the no-go result that spin-2 linearized
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gravity cannot have a gauge invariant energy-momentum tensor [14, 163, 140, 61, 63], at least
second order derivatives are needed. Only for the linearized Gauss-Bonnet Lagrangian den-
sity does the particular combination of invariants kill this term, resulting in a gauge invariant
expression. The first term is gauge invariant because of ∂λδhρσ yielding the linearized Rie-
mann tensor via Rν

ρσλ = ∂λΓ
ν
ρσ − ∂σΓνρλ which is independently gauge invariant. To show this

explicitly, deriving the energy-momentum tensor from LLRR in Equation (4.68),

Tων
LRR = RωρλσRν

ρλσ −
1
4
ηωνRµγαβRµγαβ − 2∂λRωρλσΓνρσ. (4.69)

This expression is not dually symmetric, not gauge invariant and not trace-free. It is merely
conserved on-shell via Eρσ

LRR. This feature is expected since it is related to the main result of
[14], however it greatly hampers the development of a complete dual formulation. There are
only two possible remedies to this problem. One is to integrate by parts the third term in the
energy-momentum tensor Tων

LRR, since one term will combine with the first time in Tων
LRR and the

other term will be a second order term of the form ∂ω∂λ(RωρλσΓνρσ). What remains under ∂ω
is 2RωρλσRν

ρλσ −
1
4η

ωνRµγαβRµγαβ which is indeed gauge invariant and symmetric, but is neither
trace-free nor conserved. Additionally the second order term does not trivially vanish because
the symmetries ωλ and ρσ are unable to yield the first Bianchi identity.

The second, and more reasonable solution, is to integrate by parts the equation of motion.
This is possible because Noether’s first theorem is used to derive a complete identity given in
Equation (4.20), it is not simply a method of deriving equations of motion and conservation
laws separately. For LRR this yields −2Eρσ

LRRΓνρσ + ∂ωTων
LRR = 0, which expands to,

2∂ω∂λRωρλσΓνρσ + ∂ω(RωρλσRν
ρλσ −

1
4
ηωνRµγαβRµγαβ − 2∂λRωρλσΓνρσ) = 0. (4.70)

Integration by parts of the first term (equation of motion) via 2∂ω∂λRωρλσΓνρσ = 2∂ω[∂λRωρλσΓνρσ]−
2∂λRωρλσ∂ωΓνρσ exactly kills the third term in the energy-momentum expression. What is left
in place of the equation of motion is −2∂λRωρλσ∂ωΓνρσ = −(∂λRωρλσ)Rν

ρωσ, therefore we have
the relationship between this expression and the total divergence from Noether’s first theorem
as,

(∂λRωρλσ)Rν
ρωσ = ∂ω(RωρλσRν

ρλσ −
1
4
ηωνRµγαβRµγαβ). (4.71)

What is left in the divergence, is a precisely gauge invariant, symmetric and trace-free
energy-momentum tensor! This expression is conserved on-shell via the equation Ēρλσ

DRR =

∂λRωρλσ. This equation of motion can be expressed in dual form with the Gauss-Bonnet equa-
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tion of motion, since the Gauss-Bonnet equation of motion is the second Bianchi identity
which requires only one derivative of the dual Riemann tensor ∂λRωρλσ, therefore not impact-
ing the Lagrangian LLGB or energy-momentum tensor Tων

LGB derived in [14]. Furthermore, this
energy-momentum tensor can be expressed in dually symmetric form analogous to the non-
homogenous half of electrodynamics.

Since this presentation differs from that to this point (limiting the equation of motion to a
single divergence of the field strength tensors), the dual form of the Riemann-Riemann model
will now be referred to with subscript DRR for clarity. The associated Gauss-Bonnet model will
be referred to with subscript DGB for clarity. Their equations of motion are a single divergence
of the dual and non-dual Riemann tensor, forming a dually invariant pair of equations of motion
Ēρλσ

DRR = ∂λRωρλσ and Ēρλσ
DGB = ∂λR

ωρλσ, where the bar represents that the single divergence
equation of motion follows from integration by parts of the Euler-Lagrange equation necessary
for a gauge invariant, conserved, symmetric and trace-free energy-momentum tensor. These
equations of motion correspond to the Maxwell-like higher spin gauge theories for N = M =

2, models that have been well explored in the literature [82, 79, 21]. The dually invariant
Lagrangian densities remain unchanged LDRR = −1

8 (RµναβRµναβ + RµναβR
µναβ) and LDGB =

−1
4RµναβR

µναβ. The energy-momentum tensor Tων
DRR = RωρλσRν

ρλσ −
1
4η

ωνRµγαβRµγαβ can also be
expressed in dually symmetric form by re-writing the term proportional to Minkowski via the
identity in Equation (4.55) (−1

4η
ωνRµγαβRµγαβ = −1

2RωρλσRν
ρλσ −

1
2R

ωρλσRνρλσ), which yields,

Tων
DRR =

1
2

(RωρλσRν
ρλσ − R

ωρλσRνρλσ), (4.72)

which is analogous to the MNH energy-momentum tensor T µν
MNH in Equation (4.38). There-

fore the linearized gravity model can be expressed completely in dual invariant form by consid-
ering the equation of motion dual to the linearized Gauss-Bonnet equation of motion, namely
the second Bianchi identity; thus the linearized gravity model from LDGB and LDRR is anal-
ogous to the complete theory of electrodynamics. The equations of motion consisting of a
single derivative of the linearized Riemann and dual Riemann tensors is a consequence of
the requirement that the models be completely gauge invariant under the spin-2 gauge trans-
formation (linearized diffeomorphisms), as well as have energy-momentum tensors that are
conserved, symmetric and trace-free. The N = M = 1 and N = M = 2 dual formulations will
be summarized in the following section.

4.2.6 Complete dual models for N = M = 1 and N = M = 2

The two models derived in [14], namely electrodynamics and the linearized Gauss-Bonnet
model have been expressed in dual form. This involved considering the general Lagrangian
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density L = ãRµναβRµναβ + b̃RµνRµν + c̃R2 derived in [14] for N = M = 2, of which RµναβRµναβ

(DRR) is required to have an equation of motion dual to the second Bianchi identity, which was
derived from the Euler-Lagrange equation of the linearized Gauss-Bonnet model (DGB). The
electrodynamics model derived from N = M = 1, consisting of the complete set of Maxwell’s
equations in the Euler-Lagrange equation, was expressed in terms of the conventional La-
grangian which corresponds to the non-homogenous set of Maxwell’s equations (MNH), and
the Lagrangian which corresponds to the homogenous set of Maxwell’s equation (MH). A
summary of the models for (MH), (MNH), (DGB) and (DRR) is presented below,

Equation Model N = M = 1 Model N = M = 2

Non-Homogenous EA Eρ
MNH = ∂σFσρ Ēρλσ

DRR = ∂λRωρλσ

Homogenous EA (I) Eρ
MH = ∂σF

σρ Ēρλσ
DGB = ∂λR

ωρλσ

Homogenous EA (II) ∂σFαβ + ∂βFσα + ∂αFβσ = 0 ∂ωRµναβ + ∂µRνωαβ + ∂νRωµαβ = 0

Non-Homogenous L LMNH = −1
8 (FµνFµν − FµνF

µν) LDRR = −1
8 (RµναβRµναβ + RµναβR

µναβ)

Homogenous L LMH = −1
4FµνF

µν LDGB = −1
4RµναβR

µναβ

Non-Homogenous Tων Tων
MNH = 1

2 [FωαFν
α + F ωαF ν

α] Tων
DRR = 1

2 [RωρλσRν
ρλσ − R

ωρλσRνρλσ]

Homogenous Tων Tων
MH = F ωαFν

α −
1
4η

ωνF αβFαβ Tων
DGB = RωαβλRν

αβλ −
1
4η

ωνRµγαβRµγαβ

where EA represents a general Euler-Lagrange equation of motion. Note that the sign
change in the Lagrangian and energy-momentum tensor from N = M = 1 to N = M = 2 is a re-
sult of the Minkowski metric causing negative generalized Kronecker deltas, of which FµνF µν

terms have one and RµναβRµναβ terms have two such contributions. The homogenous equations
of motion have been expressed both (I) in terms of the dual field strength tensor and (II) in terms
of the expanded form (second Bianchi identity). From the summary above, every Lagrangian,
equation of motion and energy-momentum tensor is completely and independently invariant
under the gauge transformations A′µ = Aµ+∂µφ and h′µν = hµν+∂µξν+∂νξµ, thus complete gauge
invariance derived in [14] is maintained. Each Lagrangian density and energy-momentum ten-
sor can be expressed in independently dual invariant form. Each model has a pair of dually
invariant equations of motion, namely Maxwell’s equations Eρ

MH ↔ Eρ
MNH for N = M = 1 and

the linearized gravity model Ēρλσ
DRR ↔ Ēρλσ

DRR for N = M = 2. The two homogenous halves of
the models (MH and DBG) have common form between Lagranians LMH , LDGB, equations
of motion Eρ

MH , Ēρλσ
DGB, and energy-momentum tensors Tων

MH , Tων
DGB. Similarly, the two non-

homogenous halves of the models (MNH and DRR) have common form between Lagrangians
LMNH , LDRR, equations of motion Eρ

MNH , Ēρλσ
DRR, and energy-momentum tensors Tων

MNH , Tων
DRR.

Due to the common form of the two models we can generalize the complete gauge invariant
dual formulations to an arbitrary field strength tensor S for N = M = n, with equations of
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motion corresponding to the Maxwell-like higher spin gauge theories [82, 79, 21], which will
be presented in the following section.

4.2.7 Generalization to Maxwell-like higher spin gauge theories

Gauge invariant curvature (field strength) tensors have long been generalized to all spin-n mod-
els, representing the case N = M = n. The models for N = M = 1 and N = M = 2 are built
using the spin-1 (Maxwell field strength Fωα) and spin-2 (linearized Riemann Rµναβ) curvature
tensors. For example, in the spin-3 and spin-4 cases, respectively, we have the field strength
(curvature) tensors [56, 181],

S [τν][κm][χγ] = ∂χ∂τ∂κφγmν + ∂τ∂m∂γφκχν + ∂κ∂ν∂γφχτm + ∂χ∂m∂νφκτγ

− ∂γ∂m∂νφχτκ − ∂χ∂τ∂mφκνγ − ∂κ∂χ∂νφτmγ − ∂τ∂κ∂γφχmν, (4.73)

S [ab][γχ][mκ][ντ] = ∂a∂γ∂m∂νφbχκτ + ∂a∂γ∂κ∂τφbχmν + ∂a∂m∂χ∂τφbκγν + ∂a∂ν∂χ∂κφbτγm

+ ∂γ∂m∂b∂τφχκaν + ∂γ∂ν∂b∂κφχτam + ∂m∂ν∂b∂χφκτaγ + ∂b∂χ∂κ∂τφaγmν

− ∂a∂γ∂m∂τφbχκν − ∂a∂γ∂ν∂κφbχτm − ∂a∂m∂ν∂χφbκτγ − ∂γ∂m∂ν∂bφχκτa

− ∂a∂χ∂κ∂τφbγmν − ∂γ∂b∂κ∂τφχamν − ∂m∂b∂χ∂τφκaγν − ∂ν∂b∂χ∂κφτaγm. (4.74)

These tensors are generalizations of the linearized Riemann tensors with n pairs of antisym-
metric indices that are symmetric under interchange, with totally symmetric φ for all n. They
are exactly invariant under the spin-n gauge transformations [181]. For spin-3 and spin-4,
respectively, these gauge transformations are,

φ′abρ = φabρ + ∂aλbρ + ∂bλaρ + ∂ρλab, (4.75)

φ′bχκτ = φbχκτ + ∂bλχκτ + ∂χλbκτ + ∂κλbχτ + ∂τλbχκ, (4.76)

where the gauge parameters λ are totally symmetric for all n. The general form of the equations
of motion in the previous section are a single divergence of a curvature tensor; models that have
been well worked out in the literature for the spin-n curvature tensors, known as the Maxwell-
like higher spin gauge theories [82, 79, 21]. The analogy comes from the single divergence
of the spin-1 curvature tensor in the case of electromagnetic theory. The dual formulation of
these higher spin models has already been explored to some degree [19, 104]. In addition,
scalars built from the contraction of these higher spin curvature tensors have been considered
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as exactly gauge invariant Lagrangian densities [78]. Using the curvature tensors of higher
spin gauge theories we therefore can build completely dual and gauge invariant models in the
analogous form of the N = M = 1 and N = M = 2 cases summarized in Section 4.2.6. The
general form for the homogenous H and non-homogenous NH equations can be expressed
using a general spin-n field strength tensor S and its dual S, suppressing contracted indices, as,

Equation Model N = M = n

Non-Homogenous EA EA
NH = ∂S A

Homogenous EA EA
H = ∂SA

Non-Homogenous L LNH = −1
8 (S S ± SS)

Homogenous L LH = −1
4SS

Non-Homogenous Tων T ab
NH = 1

2 [S ωS ν ∓ SωSν]

Homogenous Tων T ab
H = SωS ν − 1

4η
ωνSS

where the ± and ∓ refer to odd n models (top sign) and even n models (bottom sign) due
to the generalized Kronecker delta in Minkowski spacetime. It is worth noting that the four
invariants for N = M = 1 and N = M = 2 are associated to (omitting indices) the wedge
product between the differential forms representing the field strength tensor of electrodynamics
F and its dual ?F, and the differential forms representing the Riemann tensor R and its dual
?R. Roughly speaking these correspond to the 4 invariants as LMH ∝ F ∧ F, LMNH ∝ F ∧ ?F,
LDGB ∝ R ∧ R and LDRR ∝ R ∧ ?R. In general the conjecture can be made that the higher spin
models for N = M = n will consider of invariants of field strength S , its dual S, and differential
form S, the presumed general form of the homogenous H and non-homogenous NH invariants
will be LH ∝ S ∧ S and LNH ∝ S ∧ ?S.

If we are to consider the combined action LH + LNH = −1
4SS − 1

8 (S S ± SS) for a general
model, there are two possible generalizations that can be noted. First is the possibility to have a
linear combination of the field strength and dual factored LH +LNH ≈ ±

1
8 (S +S)(S +S), with

signs depending on the particular S . The second is that, in the case of electrodynamics where
we know the specific fields in each component, this generalization produces LMH + LMNH ≈

1
2 B2 − 1

2 E2 + ~B · ~E. These two definitions are strikingly similar to the law of cosines where
c2 = (~a − ~b) · (~a − ~b) = a2 + b2 − 2~a · ~b. This similarly, if any meaningful relationship exists,
has not been determined.

4.2.8 Conclusions

In [14], a procedure was developed for building completely gauge invariant models by im-
posing gauge invariance and using Noether’s first theorem for general Lagrangian densities
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of N order of derivatives and M rank of tensor potential. For N = M = 1 electrodynamics
was uniquely derived, and for N = M = 2 linearized Gauss-Bonnet gravity was uniquely de-
rived. Both of these models have the property of complete gauge invariance of the Lagrangian,
equation of motion and energy-momentum tensor. The energy momentum tensors are gauge
invariant, symmetric, trace-free and conserved.

In order to further investigate this relationship, electrodynamics and linearized Gauss-
Bonnet gravity were expressed in their respective dual formulations. The Gauss-Bonnet model,
conventionally claimed to have simply no equation of motion, in fact has the second Bianchi
identity as its equation of motion, analogous to the homogenous half of Maxwell’s equations
in electrodynamics. In order to introduce the equation of motion dual to this expression, the
linearized Riemann-Riemann Lagrangian was introduced, whose dual formulation was analo-
gous to the non-homogenous half of electrodynamics. In this presentation, the electrodynamics
and linearized gravity models have internal dual symmetries in their Lagrangians and energy-
momentum tensors, and have equations of motion that are dual between the homogenous and
non-homogenous halves of the models. The energy-momentum tensors are all gauge invari-
ant, symmetric, trace-free and conserved, with the additional property of dual invariance being
explicit in this formulation.

The dual formulation shared by these two models allows for their homogenous and non-
homogenous halves to be expressed in a more general framework. The equations of motion
of this general framework correspond to the Maxwell-like higher spin gauge theories built
from the spin-n curvature tensors. These models are completely gauge invariant in the same
manner as the electrodynamics and linearized Gauss-Bonnet gravity cases. In addition they
are dually invariant analogous to the results in this article. Obtaining physical models which
have some uniqueness criteria that separate themselves from other possible equations has been
one of the focuses of theoretical physics in recent decades. Electrodynamics, perhaps the most
successful model in physics, has a plethora of such properties: complete gauge invariance,
conformal invariance, dual invariance, a trace-free and symmetric energy-momentum tensor,
just to name a few. What we have shown is that these uniqueness properties can be generalized
to the higher spin (Maxwell-like) gauge theories, where the linearized Gauss-Bonnet gravity
model is the N = M = 2 analogue to the homogenous half of Maxwell’s equations. Recent
research has brought great renewed interest in the Gauss-Bonnet gravity model [91], as it has
been claimed to provide ‘new’ dynamical predictions that explain astronomical observations to
a higher degree of accuracy. Due to this, the N = M = 2 model can be applied to some of these
observations to see if it too can better explain some observed phenomena; this application is
the subject of future work.
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4.3 Curvature tensors of higher-spin gauge theories derived
from general Lagrangian densities

Abstract Curvature tensors of higher-spin gauge theories have been known for some time. In
the past, they were postulated using a generalization of the symmetry properties of the Riemann
tensor (curl on each index of a totally symmetric rank-n field for each spin-n). For this reason
they are sometimes referred to as the generalized ’Riemann’ tensors. In this article, a method
for deriving these curvature tensors from first principles is presented; the derivation is com-
pleted without any a priori knowledge of the existence of the Riemann tensors or the curvature
tensors of higher-spin gauge theories. To perform this derivation, a recently developed proce-
dure for deriving exactly gauge invariant Lagrangian densities from quadratic combinations of
N order of derivatives and M rank of tensor potential is applied to the N = M = n case under
the spin-n gauge transformations. This procedure uniquely yields the Lagrangian for classical
electrodynamics in the N = M = 1 case and the Lagrangian for higher derivative gravity (‘Rie-
mann’ and ‘Ricci’ squared terms) in the N = M = 2 case. It is proven here by direct calculation
for the N = M = 3 case that the unique solution to this procedure is the spin-3 curvature tensor
and its contractions. The spin-4 curvature tensor is also uniquely derived for the N = M = 4
case. In other words, it is proven here that, for the most general linear combination of scalars
built from N derivatives and M rank of tensor potential, up to N = M = 4, there exists a unique
solution to the resulting system of linear equations as the contracted spin-n curvature tensors.
Conjectures regarding the solutions to the higher spin-n N = M = n are discussed.

4.3.1 Motivation

Higher-spin gauge theories describing free massless fields are well established in the literature.
These theories have gauge transformations and curvature tensors that have been generalized
for any spin-n model considered [83, 72, 61, 56, 181]. In the past the curvature tensors were
postulated based on symmetry properties of the Riemann tensors (by taking the curl on each
index of a totally symmetric rank-n field for each spin-n [56]). Here we present a method
to derive these curvature tensors from first principles; they are derived by direct calculation
without any knowledge of the existence of the Riemann tensors or curvature tensors of higher-
spin gauge theories.

The higher-spin curvature tensors, sometimes referred to as the generalized ‘Riemann’ cur-
vature tensors for their generalization as n pairs of antisymmetric indices for each spin-n model
analogous to the Riemann tensor in the n = 2 case, are independently gauge invariant under
the spin-n gauge transformations. They are of particular interest in the Maxwell-like higher
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spin models that consider equations built from the divergence of these curvature tensors, which
are analogous to Maxwell’s equation in the spin-1 case. The Maxwell-like higher spin models
have been primarily worked out in a series of papers by Francia et al. [79, 80, 21, 81]. The cur-
vature tensors also allow for the generalization of the dual formulation of higher spin models
used commonly for models built with the n = 1 field strength tensor Fµν and n = 2 Riemann
tensor Rµναβ [103, 57]. Generalization of the curvature tensors can be found in [181, 20]. In the
past these generalizations have been developed by extrapolating from the symmetries of lower
spin-n models, rather than by derivation from some general principles. The latter approach is
what we will develop in this article: for each spin-n model, we will independently and uniquely
derive the curvature tensors and their contractions (the ’Ricci’ forms of the curvature tensors)
from a general linear system of scalars, without any a priori knowledge of their existence. No
knowledge of the curvature tensors or required symmetries is necessary for this procedure;
only the form of the spin-n gauge transformations given in equations (4.77) to (4.80) is needed
to perform this derivation.

Recent research developed a procedure for deriving completely gauge invariant Lagrangians
by considering general linear systems of scalars under a particular gauge transformation [14].
The general Lagrangian density is expressed in terms of free coefficients which are solved for
such that the resulting Lagrangian density is exactly gauge invariant (not only invariant up to a
surface term). The scalars are built from quadratic combinations of N order of derivatives of M

rank of tensor potentials. When this procedure is applied to the N = M = 1 case and the spin-1
gauge transformation A′µ = Aµ + ∂µξ is used, the Lagrangian L = CFµνFµν is uniquely derived.
When it is applied to the N = M = 2 case and a spin-2 gauge transformation (linearized dif-
feomorphism) h′µν = hµν + ∂µξν + ∂νξµ is used, the Lagrangian L = ãRµναβRµναβ + b̃RµνRµν + c̃R2

is uniquely derived.

The natural question that arose was what would occur if this procedure were applied to the
N = M = n case. Since the N = M = 1 case yields the scalar FµνFµν, built from the field
strength tensor of electrodynamics, and the N = M = 2 yields the scalars RµναβRµναβ, RµνRµν

and R2, built from the linearized Riemann tensor and its contractions, it was conjectured that
to derive an exactly gauge invariant Lagrangian from this procedure, it would be necessary
to have contraction of independently gauge invariant ‘field strength’ (curvature) tensors. The
validity of this conjecture is further investigated in this article.

To explore the extension to N = M = n, we started with N = M = 3 under the spin-3 gauge
transformation φ′abρ = φabρ + ∂aλbρ + ∂bλaρ + ∂ρλab, where λbρ is a symmetric gauge parameter.
As in [14], we will only consider totally symmetric fields φ in this article, however in principle
this procedure should work for any field symmetries, such as antisymmetric field models [148].
In this article we will show that, as it did for spin-1 and spin-2 in [14], the procedure yields a
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solution of several scalar invariants, which turn out to be the contracted spin-3 curvature tensor,
Kτνκmχγ [20] (sometimes referred to as the ‘Riemann’ tensor generalization), and its ‘Ricci’
tensors, Kτνκm and Kτν. In other words the higher spin curvature tensors can be derived from
this procedure without a priori knowledge of their existence. Extending this to N = M = 4
again yields the contraction of the independently gauge invariant curvature tensor Kabγχmκντ,
namely the spin-4 generalization of the ‘Riemann’ curvature tensor. For N = M = 5 and
greater, the calculations became too difficult for us to do by hand (since each had thousands of
scalar terms in the general expression), so, instead, conjectures about the nature of the spin-n
Lagrangians, based on the cases n = 1, 2, 3, 4, are made at the end of the article. We note that
higher spin models [149, 141] and the Lagrangian formulation for higher spin models is well
researched from various points of view [59, 77, 38], but primarily these consider conventional
(second order) spin-n equations of motion. Here, when we consider N = M = n models,
we have terms in the Lagrangian that are quadratic combinations of n order of derivatives and
n rank of tensor potential. These types of higher spin Lagrangians are less developed in the
literature [78]. For our purposes, we use these Lagrangians to derive the curvature tensors of
higher-spin gauge theories without any a priori knowledge of their existence.

We acknowledge that there are several issues related to the unitary and renormalizability of
higher derivative theories, that continue to be worked out in the literature [2, 35]. At no point do
we consider the higher derivative Lagrangian densities we write down for higher N = M = n

cases to avoid or solve these problems: our motivation is purely to give a derivation of the
well known curvature tensors of higher spin gauge theories without a priori knowledge of
their existence, or of existence of the Riemannian tensors. We do this because previously
they have been merely postulated using a generalization of the symmetry properties of the
Riemann tensor (curl on each index of a totally symmetric rank-n field for each spin-n). Our
method more naturally and independently obtains them alongside the Riemannian tensors and
electrodynamics field strength tensor, since these tensors are the natural outcomes for the N =

M = 2 and N = M = 1 derivations, respectively. The models associated to the Lagrangian
densities we use to derive the higher spin curvature tensors have no, to our knowledge, new
predictive insight of physical phenomena.

The article will be structured as follows. First, we will detail the procedure for deriving
completely gauge invariant models by considering the spin-1 case and discuss generalizations
of the gauge transformations to spin-n. Next, we will start from the general Lagrangian for the
N = M = 3 case and, under the spin-3 gauge transformation, show how this yields precisely the
contractions of the ‘Riemann’ and ‘Ricci’ curvature tensors of spin-3. This process will then
be repeated for spin-4. Finally, we will provide conjectures about the behaviour of Lagrangians
derived from the procedure for N = M = n, giving some indication of how these Lagrangians
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will be built for the spin-n case.

4.3.2 Derivation of the curvature tensors of higher-spin gauge theories

In [14], a procedure for deriving exactly gauge invariant Lagrangians is outlined in detail for
the case N = M = 1 and N = M = 2. This procedure involves writing down the most general
scalars for each case and solving for free coefficients such that the resulting Lagrangian density
is exactly invariant under the gauge transformation being considered. For the N = M = 1 case,
for which the most general scalar is the sum of all possible scalars of the form ∂A∂A, when the
spin-1 gauge transformation A′µ = Aµ+∂µξ is applied, the resulting Lagrangian isL = CFµνFµν.
For the N = M = 2 case, for which the most general scalar is the sum of all possible scalars of
the form ∂∂h∂∂h, when the spin-2 gauge transformation h′µν = hµν + ∂µξν + ∂νξµ is applied, the
resulting Lagrangian decouples into three independently gauge invariant scalars that turn out to
be the linearized ’Riemann’ and ‘Ricci’ tensors; L = ãRµναβRµναβ+ b̃RµνRµν+ c̃R2. The obvious
next step is to generalize the procedure for the N = M = n case. This generalization, as we
will show, can be used to derive the curvature tensors of higher-spin gauge thoeries without
any a priori knowledge of their existence. Since the generalization of the scalars is fixed by the
procedure, the only required input is the gauge transformation which we require the models to
be invariant under. For this, we require the spin-n gauge transformations that are adopted in
the literature [181, 20]. These generalizations are of the form

A′µ = Aµ + ∂µξ (4.77)

h′µν = hµν + ∂µξν + ∂νξµ (4.78)

φ′abρ = φabρ + ∂aλbρ + ∂bλaρ + ∂ρλab (4.79)

φ′bχκτ = φbχκτ + ∂bλχκτ + ∂χλbκτ + ∂κλbχτ + ∂τλbχκ (4.80)

where the potentials, φ, and the gauge parameters, λ, are completely symmetric in all in-
dices; this generalization continues to all n. We now have everything we need to apply the
procedure for the N = M = n case.
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Scalars built from contracted spin-n curvature tensors for N = M = 3

For the N = M = 3 case, the most general Lagrangian density is the sum of all possible
unique scalars of the form ∂∂∂φ∂∂∂φ. This set of unique scalars is obtained by considering
all the possible summation patterns that could occur in a scalar of the form ∂∂∂φ∂∂∂φ. First,
recognize that each scalar is the contraction of two terms, ∂∂∂φ and ∂∂∂φ. Let us call these
terms A and B. We can then group the possible scalars into four categories: scalars in which
A and B each have 6 free indices (i.e. all the summation occurs between A and B, not within
either), scalars in which A and B each have 4 free indices (i.e. summation occurs between A

and B as well as within each), scalars in which A and B each have 2 free indices, and scalars
in which A and B each have no free indices. Now, within each category, we consider all the
possible ways the indices can sum. It is possible that an index on a derivative in A sums with
an index on another derivative in A, with an index on φ in A, with an index on a derivative in
B, or with an index on φ in B. Since φ is symmetric, these are the only unique possibilities.
Likewise, it is possible that an index on φ in A sums with another index on φ in A, with an
index on a derivative in A, with an index on φ in B, or with an index on a derivative in B.

Using these possibilities, we form all possible combinations of index sums within the con-
traction such that the resulting A and B terms have the given number of free indices. By writing
out a term for each possible summation pattern within each category, we obtain a comprehen-
sive set of all the unique scalars of the form ∂∂∂φ∂∂∂φ. This set leads to the most general
Lagrangian density

L = C1∂χ∂τ∂κφγmν∂
χ∂τ∂κφγmν + C2∂χ∂τ∂κφγmν∂

χ∂τ∂γφκmν + C3∂χ∂τ∂κφγmν∂
χ∂m∂νφκτγ

+ C4∂χ∂τ∂κφγmν∂
γ∂m∂νφχτκ + C5∂χ∂τ∂κφ

χmν∂γ∂
κ∂τφγmν + C6∂χ∂τ∂κφ

χmν∂m∂ν∂γφ
γκτ

+ C7∂χ∂τ∂κφ
χmν∂κ∂m∂γφ

γτ
ν + C8∂χ∂τ∂κφ

χmν∂γ∂
γ∂κφτmν + C9∂χ∂τ∂κφ

χmν∂γ∂
γ∂νφ

κτ
m

+ C10∂χ∂τ∂κφ
χmν∂τ∂κ∂mφ

γ
γν + C11∂χ∂τ∂κφ

χmν∂τ∂m∂νφ
γκ
γ + C12∂χ∂

χ∂κφ
τγm∂ν∂

ν∂κφτγm

+ C13∂χ∂
χ∂κφ

τγm∂ν∂
ν∂γφ

κ
τm + C14∂χ∂

χ∂κφ
τγm∂τ∂γ∂mφ

νκ
ν + C15∂χ∂

χ∂κφ
τγm∂κ∂γ∂mφ

ν
ντ

+ C16∂χ∂κ∂τφ
γν
γ ∂

χ∂κ∂τφm
mν + C17∂χ∂κ∂τφ

γν
γ ∂ν∂

χ∂κφmτ
m + C18∂χ∂τ∂κφ

χτ
γ ∂m∂ν∂

κφmνγ

+ C19∂χ∂τ∂κφ
χτγ∂m∂ν∂γφ

mνκ + C20∂χ∂
χ∂τφ

τκ
γ ∂ν∂

ν∂mφ
mγ
κ + C21∂χ∂

χ∂τφ
τκγ∂κ∂γ∂νφ

mν
m

+ C22∂χ∂
χ∂τφ

τκγ∂κ∂m∂νφ
mν
γ + C23∂χ∂

χ∂τφ
τκγ∂κ∂ν∂

νφm
mγ + C24∂χ∂τ∂κφ

γκ
γ ∂

χ∂τ∂νφ
mν
m

+ C25∂χ∂τ∂κφ
γκ
γ ∂

χ∂m∂νφ
mντ + C26∂χ∂τ∂κφ

γκ
γ ∂ν∂

ν∂χφmτ
m + C27∂χ∂

χ∂τφ
γκ
γ ∂

τ∂m∂νφ
mν
κ

+ C28∂χ∂
χ∂τφ

γκ
γ ∂κ∂m∂νφ

mντ + C29∂χ∂
χ∂τφ

γκ
γ ∂ν∂

ν∂τφm
mκ + C30∂χ∂

χ∂τφ
γκ
γ ∂ν∂

ν∂κφ
mτ
m

+ C31∂χ∂τ∂κφ
χτκ∂m∂ν∂γφ

mνγ + C32∂χ∂τ∂κφ
χτκ�∂νφγγν + C33�∂τφ

χτ
χ �∂

νφγγν, (4.81)
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where � = ∂α∂
α. Note that, in the scalars multiplied by constants C1 through C4, A and B

have 6 free indices, in the scalars multiplied by constants C5 through C17, A and B have 4 free
indices, in the scalars multiplied by constants C18 through C30, A and B have 2 free indices,
and in the scalars multiplied by constants C31 through C33, A and B have 0 free indices. This
sorting is intentional: we will see that, as in the case of N = M = 2, these linear systems will
decouple into factored curvature tensors of the ‘Riemann’ and ‘Ricci’ types. For clarity, we
will treat these 4 types separately, as the L6, L4, L2 and L0 parts, respectively, of the general
scalar, where the subscript refers to the number of free indices on A and B in the scalars of
the given part. We can do this because the linear system of scalars identically decouples, with
independent solutions for each of these four parts (there is no mixing between these four types
of terms in the linear system of equations). Thus, for the above expression, we have L = L6 +

L4+L2+L0. Next we need to apply the gauge transformation φ′abρ = φabρ+∂aλbρ+∂bλaρ+∂ρλab

to the general scalar and solve for the free coefficients such that the remaining expression is
exactly gauge invariant. Solving the L6 system of linear equations for spin-3 Applying this

transformation to L6 and combining like terms yields

L6 = C1∂χ∂τ∂κφγmν∂
χ∂τ∂κφγmν + C2∂χ∂τ∂κφγmν∂

χ∂τ∂γφκmν + C3∂χ∂τ∂κφγmν∂
χ∂m∂νφκτγ

+ C4∂χ∂τ∂κφγmν∂
γ∂m∂νφχτκ +

(
6C1 + 2C2

)
∂χ∂τ∂κ∂γλmν∂

χ∂τ∂κφγmν

+
(
3C1 + C2

)
∂χ∂τ∂κ∂γλmν∂

χ∂τ∂κ∂γλmν +
(
6C1 + 6C2 + 4C3

)
∂χ∂τ∂κ∂γλmν∂

χ∂τ∂κ∂mλγν

+
(
4C2 + 4C3

)
∂χ∂τ∂κφγmν∂

χ∂τ∂γ∂mλκν +
(
2C2 + 5C3 + 9C4

)
∂χ∂τ∂κ∂mλγm∂

χ∂τ∂γ∂mλκν

+
(
2C3 + 6C4

)
∂χ∂τ∂κφγmν∂

χ∂m∂ν∂γλκτ. (4.82)

The linear system of coefficients in front of the gauge parameter terms has the solution C1 =

−C4, C2 = 3C4, C3 = −3C4 and C4 = C4 = Ã. Using this solution, the terms that depend on the
gauge parameter all cancel and we are left with a gauge invariant expression. Remarkably, the
remaining terms exactly factor into two independent 6 index tensors:

L6 = Ã
(
∂χ∂τ∂κφγmν + ∂γ∂τ∂mφχκν + ∂γ∂ν∂κφχmτ + ∂χ∂ν∂mφγκτ

− ∂γ∂ν∂mφχκτ − ∂χ∂τ∂mφγκν − ∂χ∂ν∂κφγmτ − ∂γ∂τ∂κφχmν
)

×
(
∂χ∂τ∂κφγmν + ∂τ∂m∂γφκχν + ∂κ∂ν∂γφχτm + ∂χ∂m∂νφκτγ

− ∂γ∂m∂νφχτκ − ∂χ∂τ∂mφκνγ − ∂κ∂χ∂νφτmγ − ∂τ∂κ∂γφχmν). (4.83)

This is exactly the contraction of the spin-3 ‘Riemann’ curvature tensor, Kτνκmχγ, in equation
(4.100)! Therefore we have derived the spin-3 ’Riemann’ curvature tensors by direct calcula-
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tion. The contribution L6 has a unique gauge invariant solution, which is the contraction of the
spin-3 curvature tensor: L6 = C4KτνκmχγKτνκmχγ.

Solving the L4 system of linear equations for spin-3

Applying φ′abρ = φabρ + ∂aλbρ + ∂bλaρ + ∂ρλab to L4 and combining like terms yields

L4 = C5
(
∂χ∂τ∂κφ

χmν∂γ∂
κ∂τφγmν

)
+ C6

(
∂χ∂τ∂κφ
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)
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)
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τγm∂τ∂γ∂mφ
νκ
ν

)
+ C15

(
∂κ�φ

τγm∂κ∂γ∂mφ
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)
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γ ∂

χ∂κ∂τφm
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)
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+
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)

+
(
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γ
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)
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(4.84)

which has the solution C5 = −2C17, C6 = 2C17, C7 = 0, C8 = 4C17, C9 = −4C17, C10 =

4C17, C11 = −4C17, C12 = −C17, C13 = C17, C14 = 2C17, C15 = −2C17, C16 = −C17 and
C17 = C17 = B̃. Using this solution, the terms that depend on the gauge parameter all cancel
and we are left with a gauge invariant expression. Remarkably, the remaining terms exactly
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factor into two independent 4 index tensors:

L4 = B̃
(
∂ν�φτκm + ∂m∂ν∂τφγκγ + ∂χ∂

τ∂κφχmν + ∂χ∂
m∂κφχτν

− ∂κ�φτνm − ∂m∂κ∂τφγνγ − ∂χ∂
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×
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γ
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χφχτκ − ∂τ∂ν∂
χφχmκ

)
. (4.85)

But this is exactly the contraction of the first spin-3 ‘Ricci’ curvature tensor, Kνκτm! Therefore,
L4 has a unique gauge invariant solution, which is the contraction of the first spin-3 ‘Ricci’
curvature tensor: L4 = B̃4KνκτmKνκτm. Solving the L2 system of linear equations for spin-3

Applying φ′abρ = φabρ + ∂aλbρ + ∂bλaρ + ∂ρλab to L2 and combining like terms yields:
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L2 = C18
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which has the solution C18 = C18 = C̃, C19 = −C̃, C20 = 0, C21 = 0, C22 = 0, C23 = 0,
C24 = 0, C25 = 0, C26 = 0, C27 = −2C̃, C28 = 2C̃, C29 = C̃, and C30 = −C̃. Using this
solution, the terms that depend on the gauge parameter all cancel and we are left with a gauge
invariant expression. Remarkably, the remaining terms exactly factor into two independent 2
index tensors:

L2 = C̃
(
∂m∂ν∂

κφmνγ − ∂m∂ν∂
γφmνκ + ∂γ�φmκ
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×
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κ − �∂κφ

χ
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χ
χκ

)
. (4.87)
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But this is exactly the contraction of the second spin-3 ‘Ricci’ curvature tensor, Kκγ! There-
fore, L2 has a unique gauge invariant solution, which is the contraction of the second spin-3
‘Ricci’ curvature tensor: L2 = C̃KκγKκγ.

Solving the L0 system of linear equations for spin-3

Applying φ′abρ = φabρ + ∂aλbρ + ∂bλaρ + ∂ρλab to L0 and combining like terms yields
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νφγγν
)

+
(
6C31 + 2C32

)(
∂χ∂τ∂κφ

χτκ∂m∂ν�λ
νm)

+ C32
(
∂χ∂τ∂κφ

χτκ��λγγ
)

+
(
3C32 + 4C33

)(
�∂τφ

χτ
χ �∂

ν∂γλνγ
)

+ 2C33
(
�∂τφ

χτ
χ ��λ

γ
γ

)
+

(
9C31 + 6C32 + 4C33

)(
∂τ∂κ�λ

τκ∂m∂ν�λ
νm)

+
(
3C32 + 4C33

)(
�∂τ∂

χλτχ��λ
γ
γ

)
+ C33

(
��λχχ��λ

γ
γ

)
, (4.88)

which has the solution C31 = C32 = C33 = 0. Thus,L0 = 0. This result is easily understood,
since spin-n models for n = odd will have a scalar curvature tensor equal to zero, as in the case
of electrodynamics, where F = ηµνFµν = 0. Therefore, combining all parts, the Lagrangian
density for the spin-3 case is

L = ÃKτνκmχγKτνκmχγ + B̃KτνκχKτνκχ + C̃KνχKνχ. (4.89)

Scalars built from contracted spin-n curvature tensors for N = M = 4

For the N = M = 4 case, the most general Lagrangian density is the sum of all possible unique
scalars of the form ∂∂∂∂φ∂∂∂∂φ. This set of unique scalars is obtained by considering all the
possible summation patterns that could occur in a scalar of the form ∂∂∂∂φ∂∂∂∂φ. This is done
using exactly the same method as for the N = M = 3 case, except that, for N = M = 4,
there are more possible summation patterns since there are 4 derivatives and 4 indices on φ.
Again we consider each scalar as a contraction of two terms which we call A and B and we
group the possible scalars into categories based on the free indices of A and B. In this case, it
is possible for A and B to have 8, 6, 4, 2 or 0 free indices, so we have 5 categories. Next, as
before, within each category, we consider all the possible contractions. By writing out a term
for each possible summation pattern within each category, we obtain a comprehensive set of
all the unique scalars of the form ∂∂∂∂φ∂∂∂∂φ.

Again, the system of linear equations which is solved to find the values of the constant
coefficients of L will decouple into independent linear systems based on the number of free
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indices (8, 6, 4, 2 or 0) on the A and B terms in the scalars the coefficients multiply. There-
fore, we will again treat the most general Lagrangian density as the sum of the five types of
Lagrangian densities; the most general Lagrangian density for the spin-4 case will then be of
the form L = L8 + L6 + L4 + L2 + L0. For brevity (and because performing this calculation
entirely by hand is a bit crazy), we will only directly solve for L8, since we know from the
N = M = 2 and N = M = 3 cases that the remaining terms are built from contractions of the
‘Riemann’ curvature tensor. The most general representation of L8 is

L8 = D1∂a∂γ∂m∂νφbχκτ∂
a∂γ∂m∂νφbχκτ + D2∂a∂γ∂m∂νφbχκτ∂

a∂γ∂m∂τφbχκν

+ D3∂a∂γ∂m∂νφbχκτ∂
a∂γ∂κ∂τφbχmν + D4∂a∂γ∂m∂νφbχκτ∂

a∂χ∂κ∂τφbγmν

+ D5∂a∂γ∂m∂νφbχκτ∂
b∂χ∂κ∂τφaγmν. (4.90)

Next, we need to apply the gauge transformation φ′bχκτ = φbχκτ + ∂bλχκτ + ∂χλbκτ + ∂κλbχτ +

∂τλbχκ to the general scalar and solve for the free coefficients such that the remaining expression
is exactly gauge invariant. Applying this transformation to L8 and combining like terms yields

L8 = D1
(
∂a∂γ∂m∂νφbχκτ∂

a∂γ∂m∂νφbχκτ) + D2
(
∂a∂γ∂m∂νφbχκτ∂

a∂γ∂m∂τφbχκν)
+ D3

(
∂a∂γ∂m∂νφbχκτ∂

a∂γ∂κ∂τφbχmν) + D4
(
∂a∂γ∂m∂νφbχκτ∂

a∂χ∂κ∂τφbγmν)
+ D5

(
∂a∂γ∂m∂νφbχκτ∂

b∂χ∂κ∂τφaγmν) +
(
8D1 + 2D2

)(
∂a∂γ∂m∂νφbχκτ∂

a∂γ∂m∂ν∂bλχκτ
)

+
(
8D5 + 2D4

)(
∂a∂γ∂m∂νφbχκτ∂

b∂χ∂κ∂τ∂aλγmν) +
(
6D4 + 4D3

)(
∂a∂γ∂m∂νφbχκτ∂

a∂γ∂κ∂τ∂bλχmν)
+
(
4D3+6D2

)(
∂a∂γ∂m∂νφbχκτ∂

a∂γ∂m∂τ∂bλχκν
)
+
(
2D3+16D5+7D4

)(
∂a∂γ∂m∂ν∂bλχκτ∂

a∂γ∂κ∂τ∂χλbmν)
+

(
9D4 + 10D3 + 6D2

)(
∂a∂γ∂m∂ν∂χλbκτ∂

a∂χ∂κ∂τ∂γλbmν)
+
(
12D1+9D2+4D3

)(
∂a∂γ∂m∂ν∂bλχκτ∂

a∂γ∂m∂ν∂χλbκτ)+(
4D1+D2

)(
∂a∂γ∂m∂ν∂τλbχκ∂

a∂γ∂m∂τ∂νλbχκ).
(4.91)

The linear system of coefficients has the solution D1 = D1 = D̃, D2 = −4D̃, D3 = 6D̃,
D4 = −4D̃ and D5 = D̃. Using this solution, the terms that depend on the gauge parameter
all cancel and we are left with a gauge invariant expression. Remarkably, the remaining terms
exactly factor into two independent 8 index tensors:
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L8 = D̃
(
∂a∂γ∂m∂νφbχκτ + ∂a∂γ∂κ∂τφbχmν + ∂a∂m∂χ∂τφbκγν + ∂a∂ν∂χ∂κφbτγm

+ ∂γ∂m∂b∂τφχκaν + ∂γ∂ν∂b∂κφχτam + ∂m∂ν∂b∂χφκτaγ + ∂b∂χ∂κ∂τφaγmν

− ∂a∂γ∂m∂τφbχκν − ∂a∂γ∂ν∂κφbχτm − ∂a∂m∂ν∂χφbκτγ − ∂γ∂m∂ν∂bφχκτa

− ∂a∂χ∂κ∂τφbγmν − ∂γ∂b∂κ∂τφχamν − ∂m∂b∂χ∂τφκaγν − ∂ν∂b∂χ∂κφτaγm
)

×
(
∂a∂γ∂m∂νφbχκτ + ∂a∂γ∂κ∂τφbχmν + ∂a∂χ∂m∂τφbγκν + ∂a∂χ∂κ∂νφbγmτ

+ ∂b∂γ∂m∂τφaχκν + ∂b∂γ∂κ∂νφaχmτ + ∂b∂χ∂m∂νφaγκτ + ∂b∂χ∂κ∂τφaγmν

− ∂a∂γ∂m∂τφbχκν − ∂a∂γ∂κ∂νφbχmτ − ∂a∂χ∂m∂νφbγκτ − ∂b∂γ∂m∂νφaχκτ

− ∂a∂χ∂κ∂τφbγmν − ∂b∂γ∂κ∂τφaχmν − ∂b∂χ∂m∂τφaγκν − ∂b∂χ∂κ∂νφaγmτ

)
. (4.92)

But this is exactly the contraction of the spin-4 ‘Riemann’ curvature tensor, Kabγχmκντ, in
equation (4.101)! Therefore we have derived the spin-4 ’Riemann’ curvature tensor by direct
calculation. The contributionL8 has a unique gauge invariant solution, which is the contraction
of the spin-4 ‘Riemann’ curvature tensor: L8 = D̃KabγχmκντKabγχmκντ.

In order to determine the possible form of the remaining spin-4 scalars, we will contract
the curvature tensor in equation (4.101); these contractions are known so we include them only
for completeness. First, to find the rank 6 ‘Ricci’ curvature tensor, we contract ηabKaγbχmκντ to
yield

Kγχmκντ = ∂m∂ν�φγχκτ + ∂κ∂τ�φγχmν + ∂a∂
m∂χ∂τφγκaν + ∂a∂

ν∂χ∂κφγτam

+ ∂a∂
m∂γ∂τφχκaν + ∂a∂

ν∂γ∂κφχτam + ∂m∂ν∂γ∂χφaκτ
a + ∂γ∂χ∂κ∂τφamν

a

− ∂m∂τ�φγχκν − ∂ν∂κ�φγχτm − ∂a∂
m∂ν∂χφγκτa − ∂a∂

m∂ν∂γφχκτa

− ∂a∂
χ∂κ∂τφγamν − ∂a∂

γ∂κ∂τφχamν − ∂m∂γ∂χ∂τφaκν
a − ∂

ν∂γ∂χ∂κφaτm
a . (4.93)

This expression has the symmetries Kγχmκντ = Kχγmκντ = Kγχντmκ = −Kγχκmντ = −Kγχmκτν.
There are three possible rank 4 contractions for the second ‘Ricci’ curvature, although two
are redundant (not independent). The first (4.94) is found by contracting one of the indices in
the symmetric pair and one in one of the antisymmetric pairs ηκmKmχκγντ. The second (4.95)
is found by contracting one of the indices from each of the antisymmetric pairs ηmκKχγmνκτ.
The third that is equivalent to the first (4.94) is found by contracting both the indices of the
symmetric pair ηκmKκmχγντ. The rank 4 tensors are:
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Kχγντ = 2∂χ∂ν�φκγτκ + 2∂γ∂τ�φκχνκ + 2∂κ∂a∂
χ∂τφκγaν + 2∂κ∂a∂

ν∂γφκτaχ

− 2∂χ∂τ�φκγνκ − 2∂ν∂γ�φκτχκ − 2∂κ∂a∂
χ∂νφκγτa − 2∂κ∂a∂

γ∂τφκaχν, (4.94)

K̂χγντ = ��φχγντ + ∂ν∂τ�φκχγκ + ∂κ∂a∂
γ∂τφχνaκ + ∂a∂κ∂

γ∂νφχτaκ

+ ∂a∂κ∂
χ∂τφγνaκ + ∂a∂κ∂

χ∂νφγτaκ + ∂χ∂γ�φaντ
a + ∂χ∂γ∂ν∂τφaκ

aκ

− ∂κ∂
τ�φχγνκ − ∂κ∂

ν�φχγτκ − ∂a∂
γ�φχντa − ∂a∂

χ�φγντa

− ∂a∂
γ∂ν∂τφκχa

κ − ∂a∂
χ∂ν∂τφκγa

κ − ∂κ∂
χ∂γ∂τφaνκ

a − ∂κ∂
χ∂γ∂νφaτκ

a , (4.95)

where Kχγντ in (4.94) has symmetries and anti-symmetries K̄χγντ = Kντχγ = −Kγχντ =

−Kχγτν and K̂χγντ in (4.95) has symmetries K̂χγντ = K̂γχντ = K̂χγτν = K̂ντχγ. Contracting either
of ηχγK̂χγντ (4.95) or ηγχK̄χνγτ (4.94) yields the same, unique, rank 2 tensor,

Kντ = 2��φγντγ + 2∂ν∂τ�φκγκγ + 2∂κ∂a∂γ∂
τφγνaκ + 2∂a∂κ∂γ∂

νφγτaκ

− 2∂κ∂τ�φγνκγ − 2∂κ∂ν�φγτκγ − 2∂a∂γ�φ
γντa − 2∂a∂γ∂

ν∂τφκγa
κ , (4.96)

with symmetry Kντ = Kτν. As in the case of the standard (spin-2 curvature) Riemann
tensor, we can derive a nonzero scalar curvature from this by contracting ητνKντ, which yields

K = 2��φaτ
aτ + 2∂κ∂a∂γ∂τφ

κτaγ − 4∂κ∂a�φ
τκa
τ . (4.97)

Therefore, in the case of spin-4, we have a Lagrangian of the form L = L8 + L6 +

L4 + L2 + L0, where the L4 contribution has two different possible contractions. The most
general Lagrangian possible for spin-4 is then L = D̃KabγχmκντKabγχmκντ + ẼKγχmκντKγχmκντ +

Σ jF̃ jKχγντKχγντ + G̃KντKντ + H̃K2, where Σ jF̃ jKχγντKχγντ represents all possible scalars built
from the rank 4 curvature tensors. The 2 different curvature tensors Kχγντ and K̂χγντ present an
ambiguity problem not observed in the lower spin-n models. We investigated this ambiguity
by considering the most general scalar for rank 4 curvature tensors. The scalars built from each
of these 2 curvature tensors are indeed solutions to the resulting linear system. Therefore we
will not attempt to select one of these expressions as being superior to the others. This result
shows that the curvature scalars for higher spin models can have more than one combination at
each rank of curvature tensor.
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Scalars built from contracted spin-n curvature tensors for N = M = n

We have shown by direct calculation that the curvature tensors of higher-spin gauge theories
[181, 20] can be derived from the procedure in [14] without any a priori knowledge of their
existence:

F[µν] = ∂µAν − ∂νAµ, (4.98)

R[µν][αβ] = ∂µ∂βhνα + ∂ν∂αhµβ − ∂µ∂αhνβ − ∂ν∂βhµα, (4.99)

K[τν][κm][χγ] = ∂χ∂τ∂κφγmν + ∂τ∂m∂γφκχν + ∂κ∂ν∂γφχτm + ∂χ∂m∂νφκτγ

− ∂γ∂m∂νφχτκ − ∂χ∂τ∂mφκνγ − ∂κ∂χ∂νφτmγ − ∂τ∂κ∂γφχmν, (4.100)

K[ab][γχ][mκ][ντ] = ∂a∂γ∂m∂νφbχκτ + ∂a∂γ∂κ∂τφbχmν + ∂a∂m∂χ∂τφbκγν + ∂a∂ν∂χ∂κφbτγm

+ ∂γ∂m∂b∂τφχκaν + ∂γ∂ν∂b∂κφχτam + ∂m∂ν∂b∂χφκτaγ + ∂b∂χ∂κ∂τφaγmν

− ∂a∂γ∂m∂τφbχκν − ∂a∂γ∂ν∂κφbχτm − ∂a∂m∂ν∂χφbκτγ − ∂γ∂m∂ν∂bφχκτa

− ∂a∂χ∂κ∂τφbγmν − ∂γ∂b∂κ∂τφχamν − ∂m∂b∂χ∂τφκaγν − ∂ν∂b∂χ∂κφτaγm, (4.101)

where the curvatures K have n pairs of antisymmetric indices for each spin-n that are sym-
metric under interchange, and the tensor potentials φ are all totally symmetric. Note that equa-
tions (4.98) and (4.99), the electrodynamic field strength and linearized Riemann tensor, were
derived using this procedure in [14].

Since we cannot compute the Lagrangian densities built from curvature tensors of all spin-
n models from the N = M = n procedure, we can at best give some conjectures as to the
expected form of these Lagrangian densities, based on the n = 1 through n = 4 cases. What
we know is that the procedure is well defined for all n for which the gauge transformations are
generalized by equations (4.77) to (4.80). Since n corresponds to the number of derivatives
and the number of indices on the tensor potential, we can generalize L at each n using the
notation ∂µn = ∂µ . . . ∂α, which is a product of n partial derivatives, and φνn = φν...β, which is a
completely symmetric tensor potential with n indices. Then the general L will be the sum of
all possible i unique scalars of the form (∂µnφνn)

2, which we write as L = ΣiCi(∂µnφνn)
2. For

this generalization, we can make the following two conjectures: (i) Under a spin-n gauge
transformation, a higher-spin Lagrangian density of the form L = ΣiCi(∂µnφνn)

2 will have
a unique gauge invariant solution that decouples into contractions of the spin-n ’Riemann’
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curvature tensor and its ‘Ricci’ tensors and scalar. This decoupling will be of the form L =

L2n + · · · + L4 + L2 + L0, where L2n is the contracted curvature tensors for the spin-n theory.
Each of these curvature tensors will have n pairs of antisymmetric indices and the pairs will
all be symmetric with one another. (ii) For n = odd, the term L0 = 0, leaving no ‘Ricci’
scalar in such models, as seen in electrodynamics and spin-3. We emphasize that in order to
have an exactly gauge invariant Lagrangian—built from quadratic combinations of derivatives
of potentials—for a higher spin model, one uniquely requires the contraction of independently
gauge invariant ‘field strength’ tensors, known as the curvature tensors of higher spin gauge
theories.

4.3.3 Conclusions

The curvature tensors of higher-spin gauge theories have been derived from first principles;
that is, without any a priori knowledge of their existence. Using a procedure that considers
the most general linear combination of scalars built from quadratic combinations of N order of
derivatives and M rank of tensor potential, we explored the general case of N = M = n, under
the spin-n gauge transformations. It had been shown in [14] that the N = M = 1 case uniquely
determines the contraction of the field strength tensor of electrodynamicsL = CFµνFµν and the
N = M = 2 case uniquely determines the contraction of the linearized ‘Riemann’ and ‘Ricci’
tensors L = ãRµναβRµναβ + b̃RµνRµν + c̃R2. In this article we first considered the N = M = 3
case, under the spin-3 gauge transformation. As expected, based on the previous result, this
system of linear equations decoupled into unique solutions that correspond to the contraction
of the well-known curvature tensor for spin-3 and its ‘Ricci’ forms L = ÃKτνκmχγKτνκmχγ +

B̃KτνκχKτνκχ + C̃KνχKνχ. This is a notable result for two reasons: (i) these curvature tensors
were uniquely derived without any knowledge of their existence influencing the procedure
and (ii) it provides a method for explicitly deducing these expressions, which are typically
just generalized from lower rank models using inductive arguments and known symmetries
(by taking the curl on each index of a totally symmetric rank-n field for each spin-n [56]).
The same process was then considered for the N = M = 4 case, for the highest rank only,
and, again, contraction of the spin-4 curvature tensor L8 = D̃KabγχmκντKabγχmκντ was uniquely
determined. By considering contractions of this tensor, we wrote down the possible form of
the most general Lagrangian for the N = M = 4 case. Finally, we provided some conjectures
regarding the N = M = n case.

What is interesting to note is that in [14] it was shown that, since the N = M = n La-
grangians are exactly gauge invariant, one can use the Bessel-Hagen result from Noether’s first
theorem [26, 159] to derive gauge invariant energy-momentum tensors by fixing the remaining
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free coefficients in the Lagrangians. For the N = M = 1 case, this procedure results in the
coefficients being fixed such that the Lagrangian obtained is the Lagrangian of classical elec-
trodynamics while, for the N = M = 2 case, it results in the coefficients being fixed such that
the Lagrangian obtained is that of the linearized Gauss-Bonnet gravity model. In this article,
we obtained the result that, for higher spin models N = M ≥ 3, if one imposes the require-
ment of having exactly gauge invariant Lagrangians (not merely invariant up to a surface term)
built from quadratic combinations, then one again uniquely obtains the contraction of indepen-
dently gauge invariant curvature tensors as a direct result of this requirement. In the past, such
Lagrangians have been postulated in the physics literature but never derived [78]. We again
acknowledge that the higher derivative models N = M ≥ 3 have problems with unitary and
renormalizability [2], and have no obvious predicative utility (building the models associated
to these Lagrangian densities is not the purpose of our article, our purpose is to derive the the
curvature tensors of higher spin gauge theories without a priori knowledge of their existence).
However, having more complicated exactly gauge invariant actions can provide useful toy mod-
els to answer questions about the generalization of the Noether and Bessel-Hagen methods to
more complicated theories, such as the recent use of both the N = M = 1 case (electrodynam-
ics) and the N = M = 2 case (linearized Gauss-Bonnet gravity) in disproving the notion of
general equivalence between the Noether and Hilbert energy-momentum tensors [13]. In addi-
tion the Noether identities can be used to generalize beyond the free field consideration [120].
Whether applying the Noether/Bessel-Hagen method to N = M ≥ 3 Lagrangians will uniquely
fix the free coefficients of these Lagrangians such that gauge invariant energy-momentum ten-
sors are derived, as for N = M = 1 and N = M = 2, is the subject of future work.



Chapter 5

Conclusions

We will now summarize the 8 results that we feel are our most significant contributions to the
literature from each paper (we will list the main contribution from each of our papers).

Summary of Most Significant Results

1. Application of the converse of Noether’s first theorem to solve energy-momentum ambi-
guity problems in the literature [15]

2. Deriving several completely gauge invariant theories directly from Noether’s first theo-
rem using the Bessel-Hagen method [12]

3. Proving that the Noether and Hilbert energy-momentum tensors are not, in general,
equivalent [13]

4. Proving that even for a simple scalar field model, the various energy-momentum tensors
in Minkowski spacetime can diverge [10]

5. Proving that there are infinitely many spin-2 energy-momentum tensors obtainable from
the ad-hoc ”improvement” of the canonical Noether energy-momentum tensor, even
when the Belinfante superpotential is fixed [8]

6. Developing a procedure that yields classical electrodynamics and linearized Gauss-Bonnet
gravity as the N = M = 1 and N = M = 2 cases, with the variational symmetries of hµν
being proportional to the linearized Christoffel symbol [14]

7. Developing the complete dual formulation of the N = M = n case which generalizes to
the Maxwell-like higher spin gauge theories [9]

181
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8. Deriving the curvature tensors of higher spin gauge theories without relying on symmetry
properties of the Riemann tensor [11]

Through these and other results in this thesis, we have outlined a concrete methodology
for deriving complete sets of equations for multiple theories from a common set of axioms.
By imposing axioms on a general Lagrangian density one can uniquely fix free coefficients to
satisfy the axioms with respect to Noether’s first theorem. The primary axioms we focused on
are gauge invariance, 4D Minkowski spacetime, N = M = n for spin-n gauge transformations,
and conformal invariance. For a detailed outline of the motivations, and problems addressed in
this thesis please see Chapter 1: Introduction. The 8 papers integrated into the body chapters,
Chapter 2 [15, 12], Chapter 3 [13, 10, 8] and Chapter 4 [14, 9, 11] address the 3 problems
discussed in Section 1.5 of the Introduction, respectively.

This study suggests discarding the notion that numerous distinct energy-momentum tensor
should be named and symbolized (T µν) as the same symbolized the same. A unique method-
ology is required for the derivation of physical conservation laws as in the case of the Euler-
Lagrange equation. The Bessel-Hagen approach to Noether’s first theorem provides exactly
this methodology. We have shown other conflicting definitions such as the canonical Noether,
Fock, Hilbert and Belinfante energy-momentum tensors diverge in certain cases and can at
best be said to coincide with the physical energy-momentum tensor for some simple scalar and
vector models.

What we have shown is that if one wants a unique, concrete procedure for deriving com-
plete sets of equations for physical field theories, existing ambiguous and ad-hoc definitions
of conservation laws are simply unacceptable. Only by agreeing on unique procedures for
general application to physical theories can we move on to unambiguous and rational discus-
sions about the current and future status physical field theories. In this thesis we argue that the
Bessel-Hagen approach to Noether’s first theorem combined with our axiomatic approach is an
appropriate step in this direction.

The impact of our work on the theoretical physics literature will likely, most significantly,
be the several proofs we have provided on the status of the various energy-momentum tensor
definitions; these proofs are found throughout the articles in Chapter 3 [13, 10, 8]. In the past
authors would calculate one of these energy-momentum tensors and assume broad equivalence
to the others, such as in the aforementioned Padmanabhan-Deser debate, One can no longer be
so carefree in these approaches. The debates and ambiguity issues in the past can for the most
part be traced back to the absence of results which we have provided in Chapter 2.

The conventional definition of an energy-momentum tensor, the conserved current associ-
ated to the 4-parameter translation of the 10-parameter Poincare group, is clearly defined in the
case of special relativistic field theory, where the Poincare group transformations are isometries



183

of Minkowski spacetime. Beyond Minkowski spacetime serious discussion must take place as
to whether or not conserved quantities which are not associated to the Poincare translation
should also be given this name and symbol. Most notably this discussion should take place in
the context of general relativity, where the source to Einstein’s field equations are also named
”energy-momentum tensor” and symbolized ”T µν”. This Hilbert definition, as we have shown,
conflicts with the Noether/ Poincare definition in the general setting [13].

A distinction must be made between between these conserved quantities which may lead to
new insight that was hidden by the blind assumption that they are generally equivalent quan-
tities. Such distinction, combined with our proposed application of the converse of Noether’s
first theorem in [15], may allow physicists to finally solve problems such as the non-uniqueness
problem of energy-momentum tensors in linearized gravity.

The future goals of this line of work are numerous, so we will conclude the thesis by over-
viewing some of these proposed directions. The most obvious extension is to generalize the
axiomatic approach in Chapter 4 to include Lagrangian densities in quantum field theory. This
would require more general types of terms to be included in the general Lagrangian density
with free coefficients and additional axioms to fix them. This process is more straightforward
than attempting to extend these methods to general metric spacetimes where there are not finite
global spacetime symmetries to apply to Noether’s first theorem.

It is possible that diffeomorphism invariance can be used to fix the field equations similar to
the case of linearized Gauss-Bonnet graviy and the spin-2 (linearized diffeomorphism) gauge
transformation [14]. However, this is a non-exact symmetry as in the case of spin-2 Fierz-Pauli
theory. The application of our methods to actions with non-exact gauge symmetries (another
area of Bessel-Hagen’s work) is one of our next focuses as we hope this can be applied to spin-
2 to derive a unique energy-momentum tensor for linearized gravity with respect to Noether’s
first theorem.

Finally, one of our ultimate goals, as should be for any physicist, is to have the models we
have developed tested by some sort of observation of experiment. The linearized Gauss-Bonnet
gravity model which we discuss frequently throughout the thesis has not been applied in any
serious sense in the literature. Recently however, the full Gauss-Bonnet gravity model has
gained significant traction in the literature with new claims of predicting observed phenomena.
With this renewed interest, and our results in the linearized version of the model, we hope to
apply the linearized version to dynamical problems such as the galactic rotation curve prob-
lem to determine if the model that remarkably appeared out of our axioms has some practical
application in predicting observed phenomena, as its electrodynamics counterpart has done so
well over the past centuries.
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[32] V. Borokhov. Belinfante tensors induced by matter-gravity couplings. Physical Review

D, 65(12):125022, 2002.

[33] A. Borowiec, M. Ferraris, and M. Francaviglia. Lagrangian symmetries of chern-simons
theories. Journal of Physics A: Mathematical and General, 31(44):8823, 1998.

[34] D.G. Boulware and S. Deser. String-generated gravity models. Physical Review Letters,
55(24):2656, 1985.

[35] F.T. Brandt, J. Frenkel, and D.G.C. McKeon. On restricting to one-loop order the radia-
tive effects in quantum gravity. Canadian Journal of Physics, 98(4):344–348, 2020.



BIBLIOGRAPHY 187

[36] H.R. Brown. Do symmetries “explain” conservation laws? the modern converse Noether
theorem vs pragmatism. arXiv preprint arXiv:2010.10909, 2020.

[37] H.R. Brown and P. Holland. Dynamical versus variational symmetries: understanding
Noether’s first theorem. Molecular Physics, 102(11-12):1133–1139, 2004.

[38] I.L. Buchbinder and A. Reshetnyak. General lagrangian formulation for higher spin
fields with arbitrary index symmetry. i. bosonic fields. Nuclear Physics B, 862(1):270–
326, 2012.

[39] M. Burgess. Classical Covariant Fields. Cambridge Monogr. Math. Phys. CUP, 2002.

[40] L.M. Butcher. The Localisation of Gravitational Energy, Momentum, and Spin. PhD
thesis, University of Cambridge, 2012.

[41] L.M. Butcher, M. Hobson, and A. Lasenby. Bootstrapping gravity: A consistent ap-
proach to energy-momentum self-coupling. Physical Review D, 80(8):084014, 2009.

[42] L.M. Butcher, M. Hobson, and A. Lasenby. Localized energetics of linear gravity: The-
oretical development. Physical Review D, 86(8):084013, 2012.

[43] L.M. Butcher, A. Lasenby, and M. Hobson. Localizing the angular momentum of linear
gravity. Physical Review D, 86(8):084012, 2012.

[44] J. Butterfield. On symmetry and conserved quantities in classical mechanics. In Physical

theory and its interpretation, pages 43–100. Springer, 2006.

[45] C.G. Callan Jr, S. Coleman, and R. Jackiw. A new improved energy-momentum tensor.
Annals of Physics, 59(1):42–73, 1970.

[46] R.P. Cameron and S.M. Barnett. Electric–magnetic symmetry and noether’s theorem.
New Journal of Physics, 14(12):123019, 2012.

[47] M. Carmeli. Classical fields: general relativity and gauge theory. World Scientific
Publishing Company, 2001.

[48] C. Charmousis and J.F. Dufaux. General gauss–bonnet brane cosmology. Classical and

Quantum Gravity, 19(18):4671, 2002.

[49] S. Chern. A simple intrinsic proof of the gauss-bonnet formula for closed riemannian
manifolds. Annals of mathematics, pages 747–752, 1944.



188 BIBLIOGRAPHY

[50] C. Cherubini, D. Bini, S. Capozziello, and R. Ruffini. Second order scalar invariants
of the riemann tensor: applications to black hole spacetimes. International Journal of

Modern Physics D, 11(06):827–841, 2002.

[51] F. Chishtie and D.G.C. McKeon. The canonical structure of the first-order einstein–
hilbert action with a flat background. Classical and Quantum Gravity, 30(15):155002,
2013.

[52] E. Cremmer and B. Julia. The so (8) supergravity. Nuclear Physics B, 159(1-2):141–212,
1979.

[53] E. Cremmer, B. Julia, and J. Scherk. Supergravity theory in 11 dimensions. In Su-

pergravities in Diverse Dimensions: Commentary and Reprints (In 2 Volumes), pages
139–142. World Scientific, 1989.

[54] E. Cremmer and J. Scherk. Spontaneous dynamical breaking of gauge symmetry in dual
models. Nuclear Physics B, 72(1):117–124, 1974.

[55] E. Curiel. A primer on energy conditions. In Towards a theory of spacetime theories,
pages 43–104. Springer, 2017.

[56] T. Damour and S. Deser. “geometry” of spin 3 gauge theories. In Annales de l’IHP
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