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Dark matter can capture in neutron stars and heat them to observable luminosities. We study relativistic 
scattering of dark matter on highly degenerate electrons. We develop a Lorentz invariant formalism to 
calculate the capture probability of dark matter that accounts for the relativistic motion of the target 
particles and Pauli exclusion principle. We find that the actual capture probability can be five orders 
of magnitude larger than the one estimated using a nonrelativistic approach. For dark matter masses 
10 eV–10 PeV, neutron star heating complements and can be more sensitive than terrestrial direct 
detection searches. The projected sensitivity regions exhibit characteristic features that demonstrate a 
rich interplay between kinematics and Pauli blocking of the DM–electron system. Our results show that 
old neutron stars could be the most promising target for discovering leptophilic dark matter.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Dark matter (DM) makes up more than 80% of the mass in the 
universe, but its identity remains largely unknown. There has been 
growing interest in signals of DM capture in compact stars [1–25]. 
In particular, neutron stars have super-nuclear densities that make 
them intriguing DM detectors. Incident DM particles are acceler-
ated by the steep gravitational potential and may deposit their 
kinetic energy as heat via scattering with individual stellar con-
stituents [26–35].1 If radio telescopes observe a nearby old pulsar, 
upcoming infrared telescopes may measure the stellar luminosity 
and detect this DM kinetic heating. This search is largely inde-
pendent of the details of DM interactions with Standard Model 
particles and thus sensitive to numerous scenarios of DM that are 
otherwise inaccessible to terrestrial detectors [26–28,35].

The electron–DM portal is a well-motivated scenario that is 
crucial for light DM detection; see [37]. There have been a wide-
ranging suite of experimental efforts in this new direction [38–46]. 
In this Letter, we show that despite making up only ∼ 3 × 10−3 %
of the stellar mass, the electrons in a neutron star are excellent 
targets for capturing DM. Neutron star heating can search for DM 
masses and couplings that greatly exceed the limits set by the 
Earth-based direct detection experiments.

Electrons in the neutron star are ultrarelativistic, highly degen-
erate and are moving in random directions, while DM particles ap-
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proaching a neutron star are quasirelativistic with star escape ve-
locity vesc ∼ 0.6. Because each DM–electron center of momentum 
frame is distinct and highly boosted from the neutron star frame, 
the conventional formalism, developed for nonrelativistic targets, 
is invalid in calculating the capture probability. For the system we 
consider, it is necessary to specify the key scattering ingredients in 
different reference frames. The DM–electron scattering cross sec-
tion is most conveniently expressed in the center of momentum 
frame of each DM–electron pair, while the target Fermi–Dirac dis-
tributions are best defined in the neutron star frame.

We develop a manifestly Lorentz invariant formalism to ex-
press the capture probability per DM particle in the neutron star 
in terms of the kinematic ingredients discussed above. It incor-
porates Pauli blocking and other capture conditions so that one 
may integrate over the phase space available for DM capture. We 
apply this formalism to two benchmark DM scenarios and esti-
mate sensitivities on model parameters from neutron star heating. 
The first assumes a contact operator to model DM–electron inter-
actions. The second contains a light mediator particle with fixed 
in-medium effective masses of 1 keV and 10 MeV, well below the 
Fermi momentum.

We find that the actual electron capture probability can be a 
factor of (pF/me)

2 ∼ 105 larger than the estimate using a non-
relativistic approach. For DM masses between 10 eV–10 PeV, the 
neutron star constraints are stronger than current limits from DM 
direct detection experiments in most of the mass range including 
the light DM regime. In particular, neutron star heating could be 
the most promising method to discover leptophilic DM.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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1. Lorentz-invariant capture

A DM particle is bound to a neutron star if it loses its halo 
kinetic energy Ehalo = mχ v2

h/2 by scattering within the star. For 
Nhit scatters that deposit average energy 〈�E〉, capture occurs 
when Nhit 〈�E〉 > Ehalo. We take the DM velocity in the halo 
to be vh = 220 km/s. The rate of kinetic energy deposition is 
K̇ = (γesc − 1)ṁχ f , where γesc = (1 − v2

esc)
−1/2, ṁχ ∼ 1025 GeV/s 

is the mass capture rate, and f is the optical depth of DM in 
the star such that the probability for a transiting DM particle to 
capture is given by 1 − e− f ; as we will be concerned with the 
optically thin limit, we treat f as the capture probability. This 
process equilibrates on galactic timescales and the deposited en-
ergy is radiated as heat. The resulting blackbody temperature is 
T� ≈ 1600 f 1/4 K [26,27]. For f = 1 this is O(10) higher than that 
of a 109 year-old neutron star that is not heated by DM [47,48], 
unless the neutron star undergoes rotochemical heating that de-
pends on the initial period and nuclear modelling [31]. The key 
step to accurately study DM signals from neutron star heating is to 
calculate the capture probability per DM particle, f .

To develop a formalism for f that is manifestly Lorentz in-
variant, we first consider the frame-invariant number of scattering 
events (dν) constructed in the DM rest frame in which the cross 
section and relative velocity can be properly defined [49]:

dν = (dσ · v · dnT · �t · dnχ · �V )DM, (1)

where dσ is the cross section, v is the relative velocity, dnχ , dnT

are infinitesimal DM and target number densities respectively, �V
denotes interaction volume and �t transit time; all evaluated in 
the DM frame. Since dν and dnχ�V are Lorentz invariant, so is 
their ratio df = dν/(�V dnχ ) = (dσ · v · dnT · �t)DM, the infinites-
imal scattering probability. So we can write f in terms of the 
corresponding variables in the neutron star frame df = (dσ · v ·
dnT · �t)NS. For a given target 4-momentum pμ = (E p, �p)NS and 
DM 4-momentum kμ = (Ek, �k)NS in the neutron star frame, there 
exists a relation, (dσ · v)NS = (dσ)DM(vMøl)NS, where (vMøl)NS =√

(p · k)2 − m2
Tm2

χ/(E p Ek)NS is the Møller velocity in the neutron 
star frame. From this and using the fact that the cross section is in-
variant under boost along the collision axis, i.e., (dσ)DM = (dσ)CM, 
where “CM” denotes the center of momentum frame, we obtain an 
expression for df ,

df =
(

dσ

d�

)
CM

d�CM(vMøldnT�t)NS, (2)

where d�CM = d cosψ dα, for CM polar and azimuthal angles ψ
and α. Note that the last term in parentheses is Lorentz invariant. 
For what follows, we will suppress subscript “NS” when referenc-
ing a variable in the neutron star frame, except in a few instances 
to avoid confusion.

2. Pauli blocking and phase space

To evaluate f in Eq. (2), we need to perform the phase-
space integral over d�CM dnT. However, not all parts of the phase 
space are allowed to interact due to the Pauli exclusion princi-
ple, which requires the target particle to be knocked out of its 
Fermi sea in order to interact. Making use of the Lorentz invari-
ance of f , we analyze the Pauli blocking condition in the neu-
tron star frame, where the Fermi surface is spherical. The condi-
tion can be expressed in the form of the Heaviside step function 
�(�E + E p − E F ), where E F is the Fermi energy and �E is the 
energy transferred to the target in the collision; both of them are 
in the neutron star frame. Note that �E is related to the momen-
tum transfer in the CM frame (�qCM) as �E = �βCM · �qCM/

√
1 − β2

CM, 

where �βCM = (�p + �k)/(E p + Ek) is the boost from the neutron star 
to the CM frame. Finally, we must satisfy the capture condition, 
Nhit 〈�E〉 > Ehalo. This is done by summing over Nhit in a conser-
vative way to ensure at least Ehalo is transferred to the neutron star 
during transit of a DM particle through it. This accounts for the 
case when many scatters with smaller �E are more efficient than 
a single scatter with large �E . Putting these together, we have

f =
∑

Nhit ∈Z

〈nT〉�t

Nhit

∫
d�NS

pF∫
0

d|p̄| |p̄|2
V F

vMøl

×
∫

d�CM

(
dσ

d�

)
CM

�
(
�E + E p − EF

)

× �

(
Ehalo

Nhit − 1
− �E

)
�

(
�E − Ehalo

Nhit

)
, (3)

where 〈nT〉 is the average number density of the target species 
in the neutron star core, V F = 4π p3

F/3 is the Fermi volume, 
and dnT = |�p|2d|�p| d�NS/V F. We take 〈nT〉 = 3M�YT/4πmn R3

� , 
where YT is the target’s volume-averaged number per nucleon, 
M� is the mass of the neutron star and R� its radius. For the 
constituents {e−, μ−, p+, n}, we take their corresponding YT =
{0.06, 0.02, 0.07, 0.93} and Fermi momentum pF = {146, 50, 160,

373} in MeV as calculated in [33] using the unified equation of 
state (EoS) BSk24 of the Brussels-Montreal model [50]. We take 
M� = 1.5 M	 and R� = 12.6 km to be consistent with the calcula-
tion of Y and pF in [33].

As an approximation, we take the volume-averaged values for 
〈nT〉, YT and pF over the core. We have estimated the max-
imum deviation in our projected cut-off bounds possible due 
to radial variations of those quantities and different choices of 
EoS [29,33,50]. These deviations may at most lead to an O(1)

change in our projected sensitivities for neutrons and electrons. 
Detailed discussion of these variations is deferred to the section 
on uncertainties in the end. As we will also show later, projected 
bounds due to electrons in neutron star could be several orders of 
magnitude stronger than DM direct detection limits, thus a small 
O(1) change does not affect our main results.

We recover the usual form of f from Eq. (3) for nonrelativis-
tic targets. As pF → 0, the differential cross section becomes in-
dependent of pμ and vMøl → vesc, also the Pauli blocking step 
function → 1. These imply 

∫ |�p|2 d|�p| d�NS / V F → 1. Assuming 
that a single scatter deposits at least Ehalo, Eq. (3) gives f =∫

d�CM (dσ/d�)CM /(〈nT〉 vesc�t)−1, a well-known result, where 
the denominator is the geometric cross section.

3. DM model with a heavy mediator

We apply our framework to estimate sensitivities from neu-
tron star heating for representative DM models and compare them 
with limits from DM direct detection experiments. We assume 
the DM candidate is a Dirac fermion (χ ) that couples to Stan-
dard Model fermions (ξ ) through an effective vectorial operator, 
(χ̄γμχ)(ξ̄γ μξ)/�2. We explore spin-0 DM and other interactions 
structures in a companion paper [55]. The sensitivity of the pro-
posed search is an upper limit on �.

Fig. 1 (left) shows our projected sensitivities to the cutoff 
scale � vs the DM mass mχ , obtained numerically, for the target 
fermions ξ = e−, μ−, p+ and n. The upper boundaries correspond 
to f = 1, or signal temperature T� = 1600 K. Stronger sensitivities 
could be obtained for f < 1, corresponding to smaller T� .
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Fig. 1. Projected sensitivities from neutron star heating for vectorial interactions of Dirac DM with Standard Model fermions (solid), together with Earth-based direct detection 
constraints (dashed) [38,42–44,51–54]. Left: A heavy mediator scenario characterized by a cutoff scale � for capture by various neutron star constituents. The dotted line 
shows a non-relativistic calculation that underestimates (overestimates) the sensitivity above (below) the electron Fermi energy (electron mass). Right: A light mediator 
scenario for the capture by electrons and protons, with sensitivities displayed for the product of the mediator’s couplings to DM and Standard Model fermions. The direct 
detection constraints here assume the mediator mass to be massless or 10 MeV; the massive mediator lines are recast using the experimental bounds corresponding to the 
form factor FDM = 1 [38,43,51,52]. In both panels, the colored regions correspond to f = 1 (T� = 1600 K) as estimated from Eq. (3). Projected sensitivities are stronger if we 
take lower f , i.e. lower T� , corresponding to longer observation times.
The plot demonstrates three distinct regimes: (i) For mχ �
1 PeV, the sensitivities decrease as the DM mass increases further. 
In this region, DM becomes so massive that multiple scatterings 
(Nhit > 1) are required for successful capture, suppressing the cap-
ture probability, as indicated in Eq. (3). (ii) For pF � mχ � 1 PeV, 
there are plateaus insensitive to the DM mass. In this mass range, 
the momentum transfer is typically larger than the Fermi mo-
mentum and Pauli blocking is unimportant. In addition, the cross 
section is almost independent of the DM mass. Thus the projected 
upper limits on � are nearly constant over mχ . The electron cap-
ture sensitivity to � is more than a factor 10 stronger than the one 
estimated with a nonrelativistic treatment [33]. (iii) For light DM, 
mχ � pF, the sensitivities decrease for all targets, due to a com-
bined effect of Pauli blocking and suppression of the cross section, 
as we will discuss later. In this regime, the nonrelativistic treat-
ment of the electrons overestimates the capture probability.

For comparison, we show constraints from DM direct direc-
tion experiments based on both electron [38,43,51,52] and nu-
clear recoils [42,44,53,54]. Remarkably, for light DM with mχ ∼
10 MeV–10 GeV, the neutron star bound on � can be a factor of 
100 stronger than electron recoil limits. Furthermore, neutron star 
heating may probe a broader DM mass range not covered by di-
rect detection for electron recoils, as well as nuclear recoils [27]. If 
DM couples to both electrons and nucleons equally, the limit on �
will be mainly set by DM–neutron/proton scatterings. On the other 
hand, for leptophilic DM, capture by electrons is the strongest 
mode of neutron star heating for mχ > pF. We have checked that 
this is true even after taking into account loop-induced interac-
tions of leptophilic DM with nucleons, in contrast to earlier results 
using the nonrelativistic approach [33].

To further understand the scaling features in Fig. 1 (left), we 
explore the scattering kinematics in more detail. The scattering 
cross section scales as (dσ/d�)CM ∝ m2

χ E2
p/(s�4), where E p is 

the target energy in the neutron star frame and s is the Man-
delstam variable. In the nonrelativistic limit, E p ≈ mT and s ≈
(mχ + mT)

2, and (dσ/d�)CM reduces to the well-known form 
(mχmT)

2/(mχ + mT)
2�4. The DM energy and momentum in the 
neutron star frame are Ek = γesc mχ and |�k| = vescγescmχ respec-
tively, where γesc = 1.24 and vesc = 0.6. For the electrons, these 
are E p ≈ pF and |�p| = pF respectively, as the electron Fermi mo-
mentum 146 MeV is much larger than its mass 0.51 MeV, i.e., 
electrons in the neutron star core are ultrarelativistic.

Consider the heavy DM mass region, where mχ � pF and Pauli 
blocking is unimportant. For the DM–electron system, s = (Ek +
E p)2 − (�k + �p)2 ≈ E2

k − k2 = m2
χ . Thus, the scattering cross section 

scales as (dσ/d�)CM ∝ p2
F/�

4. Compared to the nonrelativistic ap-
proach in the neutron star frame, where (dσ/d�)CM ∝ m2

e/�
4, the 

actual cross section is a factor of (pF/me)
2 ∼ 105 larger. Thus, the 

actual neutron star sensitivity on � is more than one order of 
magnitude stronger than estimated previously with nonrelativis-
tic approach [33], as indicated in Fig. 1 (left). For the other targets, 
(pF/mT)

2 < 1, the nonrelativistic approximation is valid.
For light DM mχ 
 pF, the reach shown in Fig. 1 (left) scales 

as � ∝ m3/4
χ for all targets, which can be understood as follows. 

For the nonrelativistic targets n, p+ and μ− , DM energy loss has 
a weak dependence on the scattering angle, and the Pauli blocking 
factor scales as mχ . Moreover, the cross section ∝ m2

χ/�4. Thus, 
the capture probability f ∝ m3

χ/�4. For the ultrarelativistic elec-

trons, s = (Ek + E p)2 − (�k + �p)2 ≈ 2(Ek E p −�k · �p) ∝ mχ pF, resulting 
in (dσ/d�)CM ∝ mχ pF/�

4. Since the energy loss only occurs for 
CM frame forward scatterings in this case, there is an additional 
suppression in the phase space ∝ mχ , which is not present for the 
nonrelativistic targets. Thus the Pauli blocking factor scales as m2

χ , 
and we again have f ∝ m3

χ/�4 for the electron target. Note the 
nonrelativistic approach for electrons overestimates the sensitivity 
for mχ < me , because it does not take into account the fact that 
it is much harder to transfer energy to an ultrarelativistic electron 
than one at rest.

4. DM model with a light mediator

We consider a DM model with a light vector mediator and cor-
responding scattering cross section
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(
dσ

d�

)
CM

∝ g2
χ g2

Tm2
χ E2

p

s(m2
eff + |�q|2CM)2

, (4)

where gχ , gT are the mediator’s couplings to DM and the target 
respectively, meff is the in-medium effective mediator mass. This 
effective mass is simply the mediator mass meff = mmed, when 
mmed is larger than the inverse of the Debye length that we es-
timate as [56–62]

λ−1
D ∼ e

√
ne

Teff
∼ e

√
ne

pF
≈ 10 MeV, (5)

where Teff is the effective temperature for Thomas–Fermi screen-
ing; Teff ≈ pF. In deriving potential constraints from neutron stars, 
we take meff = λ−1

D ≈ 10 MeV. For reference, we also show the 
reach for meff = 1 keV.

Fig. 1 (right) shows our sensitivities to gχ gT for electron and 
proton targets. We compare to direct detection limits for DM with 
massless and 10 MeV mediators. For mediators in this range, we 
estimate that the neutron star heating reach is represented by the 
meff = 10 MeV curves. For leptophilic mediators with a mass of 
10 MeV, the neutron star reach for gχ gT is orders of magnitudes 
stronger with respect to current bounds from terrestrial direct de-
tection probes for the entire range of accessible DM masses. For 
the limit of massless mediators, the neutron star kinetic heating 
reach for meff = 10 MeV is stronger than Earth-based detectors 
for DM masses lighter than 1 MeV and heavier than 100 GeV. If 
DM couples to e− and p+ equally, the combined bounds on gχ gT

would be at most stronger by a factor of 
√

2.
As shown in Fig. 1 (right), the projected reach changes slope 

when mχ ≈ meff for both electron and proton targets. For mχ 

meff 
 pF, as seen from Eq. (4), f ∝ g2

χ g2
Tm3

χ/m4
eff and the reach on 

gχ gT ∝ m−3/2
χ . This is similar to the heavy-mediator model in the 

region of mχ 
 pF. While for mχ > meff, one finds plateaus where 
the reach is constant with respect to mχ , and they extend towards 
a lower DM mass range, compared to the heavy-mediator model. 
As mχ drops below pF, Pauli blocking suppresses the scattering 
phase space and reduces the capture probability. However, for the 
light-mediator model, the scattering cross section is enhanced by 
a small momentum transfer. These two competing effects reach a 
balance, resulting in the plateaus shown in Fig. 1 (right).

To see this, observe that in Eq. (4), the momentum trans-
fer |�q|CM below meff can not significantly enhance the differential 
cross section. Consider the expression for |�q|2CM = 2|k̄|2CM(1 −cos ψ), 
where ψ is the scattering angle in the CM frame. Let |�q|CM ∼ meff

for ψ = ψ0. Neglecting sub-dominant contributions to Eq. (3) from 
the region ψ > ψ0, the phase-space integral is 

∫ 1
cosψ0

d cosψ ′ ∼
m2

eff/|�k|2CM. The allowed phase space is also suppressed in the mag-
nitude of |�p| as |�q|CM/pF ∼ meff/pF. Putting these factors together 
with Eq. (4), we have

f ∝ g2
χ g2

Tm2
χ E2

p

sm4
eff

· m2
eff

|�k|2CM

· meff

pF
∝ g2

χ g2
T

pFmeff
, (6)

where we use s|k̄|2CM ∝ m2
χ E2

p . Thus, f is not sensitive to mχ in 
this region. As we increase mχ , the cross section is suppressed 
by a high momentum transfer, and multiple scatterings become 
relevant; both effects lead to a small capture probability, resulting 
in weak reaches.

We note that for mχ > meff it is possible for incident DM to 
emit a mediator via bremsstrahlung and slow down, however the 
rate for this is expected to be negligible given the small gχ cou-
plings to which we are sensitive (Fig. 1) and the phase space sup-
pression with respect to the scattering cross section.
5. Uncertainties

In this section, we estimate the maximum deviation possible in 
our results for the projected reach of �, due to the radial variation 
of baryon density, BSk functional, M� , and R� . The exact calculation 
of these effects is beyond the scope of this paper and is deferred to 
future work. We also note that the BSk functionals from [50] used 
in this paper only take into account the four target species consid-
ered above as neutron star constituents, and neglect the possible 
presence of any exotic phases of matter.

From Eq. (3), we observe that possible sources of uncertain-
ties in our projected sensitivities are the baryon density, the pF-
dependence of the phase space integral, YT and �t . Given an equa-
tion of state functional, and a (M� , R�) pair predicted by it, the 
baryon density sets the values of YT and pF. The baryon density 
itself varies in the core as a function of distance from the center. 
However, by significantly varying M� and R� , a wide range of av-
erage baryon densities for the core can be obtained. This range is 
greater than the deviation from average baryon density within the 
core for a fixed configuration. This is because typically, the baryon 
number density remains relatively constant for at least half to two 
thirds of the radius.

Hence, to estimate the maximum variation in our results, we 
consider two extreme average densities, allowed amongst all the 
valid M� and R� configurations of BSk22, BSk24, BSk25 and BSk26 
functionals. Consequently, for high mass (2.16 M	) – small radius 
(11 km) configuration, the average core baryon density is about 
0.61 fm−3 and for low mass (0.3 M	) – large radius (13 km) 
configuration, it is about 0.05 fm−3 [33,50]. For the dense con-
figurations, the central baryon number density can go as high 
as 0.95 fm−3. Therefore, we consider the range 0.05 fm−3 to 
0.95 fm−3 of the baryon number density for our uncertainty esti-
mation. The corresponding ranges of values for YT and pF for each 
target species can be obtained from [50]. Thus, we find that the 
baryon density, YT, and pF vary by a factor of < 5 with respect to 
the ones considered in our results.

Substituting all these quantities in Eq. (3) and taking 1/4th
power, we estimate the width of uncertainty bands for the pro-
jected sensitivities on our EFT cutoff. For all species, the upper end 
of the band is a factor of 1.8 times the values in the left panel of 
Fig. 1. The only exception is sensitivity to electron scattering in the 
heavy DM region, where the band extends up to 3 times the reach 
in � shown. The lower end of the band differs according to the 
target species. For neutrons it is at most a factor 1.7 lower than the 
values in Fig. 1, while for electrons it could be a factor of at most 
2.5. If the central density of the neutron star configuration falls 
below that needed for having non-zero muon abundance, then the 
DM capture via muons is not possible. For configurations with suf-
ficiently low densities, i.e., core average density below 0.12 fm−3, 
the muon bounds are significantly weakened.

The neutron and electron bands are well separated in the heavy 
DM region, but overlap in the light DM region. For configurations 
with densities higher than those used in Fig. 1, the electron bound 
in heavy DM region will move closer to the neutron bound. This is 
because higher Fermi momentum helps heavy DM capture by elec-
trons unlike in the case of nucleon targets. For sufficiently high 
densities, electrons maintain their dominance over muons in the 
heavy DM region for the same reason. For light DM, the bands for 
electrons and neutrons overlap, with neutrons generally exhibiting 
slightly stronger bound compared to electrons for any given config-
uration. Muon targets provide higher sensitivity compared to elec-
trons in the light DM region as seen in the left panel of Fig. 1. For 
configurations with sufficiently high baryon density, the electron 
and muon bounds remain comparable. However, for configurations 
with low baryon density, where the abundance of electrons in the 
central region strongly dominates over that of muons, the tables 
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are turned and electrons start dominating in the light DM region 
as well.

We have assumed �t = 2R� . The number of DM particles fol-
lowing the paths with �t > 2R� are an O(1) fraction of the total 
flux through the star. The resultant underestimation of the capture 
efficiency is of course mitigated by the overestimation from shorter 
paths with �t < 2R� by a small O(1) factor. Some target species 
like protons or muons only capture the DM up to a certain radial 
distance inside the core for certain configurations of M� and R� , 
shrinking �t by a small O(1) factor. In the end, the uncertainty 
resulting from these factors in the sensitivity to � is suppressed 
since � ∝ f 1/4. We find that the uncertainty in our reach in �
due to the variation in �t is at most O(10%).

6. Conclusions

We have studied relativistic capture of DM by electrons in a 
neutron star and developed a formalism to calculate the capture 
probability. It is manifestly Lorentz invariant and incorporates rel-
ativistic scattering kinematics, Pauli blocking, and the effect of 
multiple DM–electron scatters during stellar transit. We further ap-
plied the formalism to explore the sensitivities to parameter space 
of two benchmark DM scenarios and compared them with direct 
detection limits. The Lorentz-invariant capture probability can be 
five orders of magnitude larger than the traditional non-relativistic 
approach. This makes neutron star heating one of the most promis-
ing testing grounds for probing leptophilic DM models. In the fu-
ture, we could apply our formalism to other DM models [27,63–65]
and different capture scenarios [15,35,66]. It is also interesting to 
investigate the discovery potential of old neutron stars using up-
coming radio telescopes and infrared surveys, see., e.g. [67–70].
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