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Spectre des systèmes intégrables
quantiques et représentations linéaires

David Hernandez1

La structure des valeurs propres d’un système quantique, c’est-à-dire de son
spectre, est essentielle à sa compréhension. Dans un célèbre article daté de 1971,
Baxter a calculé ces valeurs propres pour le modèle « de la glace ». Il a montré
qu’elles ont une forme remarquable et régulière faisant intervenir des polynômes.
Dans les années 1980-1990, il a été conjecturé que de tels polynômes permettent
de décrire le spectre de nombreux systèmes quantiques plus généraux. Nous al-
lons voir comment, en adoptant le point de vue mathématique de la théorie des
représentations, ces polynômes (de Baxter) apparaissent naturellement. Ce résultat
nous a permis de démontrer en 2013 la conjecture générale.

1. Systèmes intégrables quantiques

Le modèle à 6 sommets est un célèbre modèle de physique statistique intro-
duit par Pauling en 1935, qui permet notamment de décrire le cristal de la glace
(voir [B2]). Il est réalisé sur un réseau dont chaque sommet est relié à 4 autres som-
mets. Un état du système est une orientation des arêtes telle qu’à chaque sommet
arrivent exactement 2 flèches (Figure 1). Les flèches représentent l’orientation des
molécules d’eau du cristal les unes par rapport aux autres. Il y a 6 configurations
possibles à chaque sommet (Figure 2), ce qui justifie l’appellation de ce modèle.

1 Sorbonne Paris Cité, Université Paris Diderot, CNRS Institut de Mathématiques de Jussieu-
Paris Rive Gauche UMR 7586.
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SPECTRE QUANTIQUE 35

Fig. 1. Une orientation d’un réseau (modèle à 6 sommets).

Fig. 2. 6 configurations possibles à chaque sommet.

L’étude du modèle de la glace est fortement liée à celle d’un autre modèle, cette
fois-ci en physique statistique quantique, appelé modèle XXZ de Spin 1/2, dit de
Heisenberg quantique (1928). Il s’agit d’une variante en physique quantique du
modèle d’Ising (1925) (voir [JM]), qui modélise des châınes de spins magnétiques
quantiques ayant deux états classiques, haut ou bas (Figure 3).

Fig. 3. États d’un Spin 1/2 (haut ou bas).

Ces deux modèles, modèle à 6 sommets et modèle XXZ , figurent parmi les plus
étudiés en physiques statistique et quantique. Les structures mathématiques qui
les sous-tendent sont très proches. En dépit de leur formulation assez élémentaire,
ils sont extrêmement riches et leur analyse a une très longue histoire.

En physique statistique (quantique), le comportement du système est contrôlé
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36 D. HERNANDEZ

par la fonction de partition2, qui permet d’obtenir les grandeurs mesurables3 Z.
Cette fonction Z est très difficile à calculer en général. La méthode de la matrice
de transfert est un procédé pour tenter de la déterminer : il s’agit d’écrire Z comme
trace d’un opérateur T (la matrice de transfert) agissant sur l’espace des états W :

Z = TrW (T M).

Ici M est un entier associé à la taille du réseau du modèle. Ainsi, pour trouver Z,
il suffit d’obtenir les valeurs propres λj de T :

Z =
∑

j

λM
j .

Le spectre {λj}j de T est appelé le spectre du système quantique.

Dans un célèbre article séminal de 1971, inspiré notamment par les travaux
de Bethe (1931), Baxter [B1] a complètement résolu ce problème4. Grâce à une
étude très précise il a notamment montré que les valeurs propres λj de T ont une
structure tout à fait remarquable : elles s’expriment sous la forme

(1.1) λj = A(z)
Qj (zq

2)

Qj(z)
+ D(z)

Qj (zq
−2)

Qj (z)
,

où z , q ∈ C∗ sont des paramètres du modèle (respectivement spectral et quan-
tique), A(z) et D(z) sont des fonctions « universelles » (au sens où elles ne
dépendent pas de la valeur propre λj ). La fonction Qj(z) dépend de la valeur
propre, mais c’est un polynôme. La relation (1.1) est la fameuse relation de Baxter
(ou « relation TQ de Baxter »). Les polynômes Qj sont appelés polynômes de
Baxter.

En résultent alors naturellement les questions suivantes :

– y a-t-il une explication pour l’existence de la relation de Baxter ?
– une expression analogue avec des polynômes permet-elle de décrire le spectre

d’autres systèmes quantiques ?

Une conjecture formulée en 1998 par Frenkel-Reshetikhin [FR] affirme que la
deuxième question doit avoir une réponse positive. Comme on ne peut espérer
effectuer en général le calcul détaillé de Baxter qui est connu pour le modèle
XXZ , c’est en répondant à la première question que nous pouvons démontrer cette
conjecture. Pour ce faire, étudions les structures mathématiques, algébriques, sous-
jacentes à la théorie.

2 En physique statistique, la fonction de partition s’exprime comme la somme∑
j exp(−Ej/(kBT )) sur tous les états j du système, où Ej est l’énergie de l’état j , T est la

température du système et kB la constante de Boltzmann. En physique quantique, la somme est
remplacée par une trace TrW (exp(−E/(kBT ))) où E est l’opérateur « hamiltonien » qui agit sur
l’espace W des états quantiques du système.
3 Une grandeur mesurable Q est obtenue comme moyenne pondérée sur les états∑

j exp(−Ej/(kBT))Qj

Z des valeurs Qj sur chaque état j .
4 Baxter a introduit la méthode puissante des « Q-opérateurs » qui lui a également permis de
résoudre le modèle « à 8 sommets », plus complexe. Le modèle à 6 sommets avait aussi été résolu
par d’autres méthodes, notamment dans les travaux de Lieb et Sutherland (1967).
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2. Groupes quantiques et leurs représentations

Les groupes quantiques sont graduellement apparus au cours des années 1970,
en particulier dans les travaux de l’école de Leningrad, comme le cadre naturel
mathématique pour étudier les matrices de transfert. Drinfeld [D1] et Jimbo [J]
ont indépendamment découvert une formulation algébrique uniforme sous forme
d’algèbres de Hopf. Il s’agit d’un des résultats cités pour la médaille Fields de
Drinfeld en 1990.

Pour introduire les groupes quantiques de Drinfeld-Jimbo, considérons d’abord
un objet très classique, une algèbre de Lie (simple) complexe de dimension finie. Il
s’agit d’un espace vectoriel de dimension finie g muni d’un crochet de Lie, c’est-à-
dire d’une application bilinéaire antisymétrique

[, ] : g× g → g

satisfaisant à la formule de Jacobi

[x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0 pour tous x , y , z ∈ g.

L’exemple le plus simple, mais néanmoins non trivial car il correspond au modèle
XXZ , est celui de l’algèbre de Lie g = sl2 : c’est l’espace des matrices complexes
2× 2 de trace nulle, muni du crochet naturel

[M ,N ] = MN − NM

pour lequel il est clairement stable. Pour les générateurs linéaires

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
,

on a par exemple la relation

(2.2) [E ,F ] = H .

Ces algèbres de Lie ont des analogues naturelles de dimension infinie, les algèbres
de lacets

ĝ = g⊗ C[t±1],

avec le crochet de Lie défini par

[x ⊗ f (t), y ⊗ g(t)] = [x , y ]⊗ (fg)(t) pour x , y ∈ g et f (t), g(t) ∈ C[t±1],

ce qui revient à remplacer le corps C par l’anneau des polynômes de Laurent
complexes

C[t±1] =





∑

N6i6M

ai t
i |N ,M ∈ Z, ai ∈ C



 .

Ces algèbres sont des quotients d’algèbres de Kac-Moody affines, qui ont des pro-
priétés algébriques semblables à celles des algèbres de Lie simples de dimension
finie (notamment une présentation analogue à celle de Serre pour g, comme l’ont
montré Kac (1968) et Moody (1969), voir [K]). Elles ont été étudiées intensivement
pour leurs diverses applications en mathématiques et physique mathématique.
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Maintenant, pour étudier les systèmes quantiques qui nous intéressent, ces
algèbres de Lie classiques doivent être quantifiées, c’est-à-dire déformées en te-
nant compte du paramètre quantique

q = exp(h) ∈ C∗,

où h est un analogue de la grandeur de Planck (q sera bien identifié au paramètre
quantique de la relation (1.1)). On retrouve les structures classiques pour h → 0,
donc q → 1. On supposera dans la suite que q n’est pas une racine de l’unité.

Bien qu’une telle quantification des algèbres de Lie g ou ĝ elles-mêmes ne soit pas
connue, Drinfeld et Jimbo ont découvert qu’il existe une quantification naturelle de
leurs algèbres enveloppantes respectives U(g) et U(ĝ) (algèbres universelles définies
à partir des algèbres de Lie, par exemple en remplaçant dans la présentation de
Serre les crochets [x , y ] par des expressions algébriques xy − yx dans l’algèbre).
On obtient alors les groupes quantiques Uq(g), Uq(ĝ) qui dépendent

5 du paramètre
quantique q, voir [CP].

Par exemple dans Uq(sl2) la relation (2.2) devient

[E ,F ] =
ehH − e−hH

q − q−1

qui tend bien vers H quand h tend vers 0.

Le cas des algèbres affines quantiques Uq(ĝ) est particulièrement remarquable
car Drinfeld [D2] a démontré6 qu’elles peuvent non seulement être obtenues comme
quantification de U(ĝ), mais également, par un autre procédé, comme affinisation
du groupe quantique Uq(g). C’est la réalisation de Drinfeld des algèbres affines
quantiques. Ceci peut être énoncé dans le diagramme « commutatif » suivant :

ĝ

Quantification

g

Affinisation

Quantification

Uq(ĝ)

Uq(g)

Affinisation quantique

Ce théorème, qui revient à donner deux présentations isomorphes de Uq(ĝ), est un
analogue quantique du théorème classique de Kac et Moody. Il s’agit d’une bonne
indication de l’importance de ces algèbres d’un point de vue algébrique.

Les algèbres affines quantiques Uq(ĝ) ont en fait une structure beaucoup plus
riche, ce sont des algèbres de Hopf. Elles sont notamment munies d’une comulti-
plication (qui est une opération duale de la multiplication), c’est-à-dire d’un mor-
phisme d’algèbre

(2.3) ∆ : Uq(ĝ) → Uq(ĝ)⊗ Uq(ĝ).

5 Elles peuvent être définies comme des algèbres sur C[[h]].
6 La preuve a été précisée par la suite par Beck puis par Damiani.
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Mais surtout, Uq(ĝ) possède une R-matrice universelle, c’est-à-dire un élément
(canonique) dans le carré tensoriel7

R(z) ∈ (Uq(ĝ)⊗ Uq(ĝ))[[z ]]

qui est notamment une solution de l’équation de Yang-Baxter quantique :

R12(z)R13(zw)R23(w) = R23(w)R13(zw)R12(w).

Les paramètres formels z , w sont appelés paramètres spectraux. Cette équation
est à valeurs dans le cube tensoriel

(Uq(ĝ))
⊗3[[z ,w ]].

Les indices dans les facteurs indiquent l’emplacement des termes de la R-matrice
universelle :

R12(z) = R(z) ⊗ 1 , R23(z) = 1⊗R(z)...

Il s’agit d’une équation hautement non triviale, liée aux mouvements de tresses.
En effet, dans la figure 4 on retrouve l’équation en lisant de bas en haut et en
multipliant par un facteur Rαβ d’indice (α, β) lorsque le brin α croise le brin β.
C’est pour cette raison que la théorie des représentations des groupes quantiques
permet de construire des invariants en topologie de basse dimension (notamment
les polynômes de Jones des nœuds). Il s’agit historiquement, avec la construction
par Lusztig et Kashiwara de bases canoniques de représentations des algèbres de Lie
classiques, d’un des premiers grands succès de la théorie des groupes quantiques.
Nous n’aborderons pas ces sujets ici pour nous concentrer sur les applications aux
systèmes quantiques.

Fig. 4. Équation de Yang-Baxter

Pour décrire des solutions de l’équation de Yang-Baxter quantique, on peut
spécialiser sur des représentations de dimension finie de Uq(ĝ). Une représentation
(linéaire) de Uq(ĝ) est un espace vectoriel V (ici complexe) muni d’un morphisme
d’algèbre

ρV : Uq(ĝ) → End(V ).

Autrement dit, l’algèbre Uq(ĝ) agit sur l’espace V par opérateurs linéaires.
L’étude des représentations est un vaste domaine, central en mathématiques,

appelé théorie des représentations. En arithmétique par exemple, les représentations
de groupes de Galois jouent un rôle crucial. Elles sont également essentielles dans
la formulation même des principes de la physique quantique car ils font intervenir
des représentations de l’algèbre des observables.

7 En fait, dans une légère complétion du carré tensoriel.
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On définit naturellement la somme directe de représentations (V , ρV ) et
(V ′, ρV ′) avec l’application ρV⊕V ′ = ρV + ρV ′ à valeurs dans End(V ⊕ V ′).

Les représentations simples, c’est-à-dire qui n’ont pas de sous-représentation
(sous-espace stable pour l’action de l’algèbre) propre, sont particulièrement impor-
tantes, comme nous allons le voir dans notre étude. Elles constituent les « briques
élémentaires » de la théorie des représentations. Par exemple, toute représentation
de dimension finie de Uq(g) est semi-simple, c’est-à-dire isomorphe à une somme
directe de représentations simples8. Ce n’est pas le cas9 pour l’algèbre affine quan-
tique Uq(ĝ).

Comme Uq(ĝ) est munie d’un coproduit (2.3), pour deux représentations (V , ρV )
et (V ′, ρV ′), le produit tensoriel V ⊗ V ′ est aussi une représentation en utilisant

ρV⊗V ′ = (ρV ⊗ ρV ′) ◦∆ : Uq(ĝ) → End(V ) ⊗ End(V ′) = End(V ⊗ V ′).

Cette action sur un produit tensoriel de représentation sera utile par la suite. Mais
indépendamment on peut faire aussi agir directement la R-matrice universelle sur
un carré tensoriel V ⊗ V pour V une représentation de dimension finie de Uq(ĝ) :
on peut en effet considérer l’image de la R-matrice universelle dans End(V⊗2)(z)

RV ,V (z) = (ρV ⊗ ρV )(R(z)) ∈ End(V )⊗2[[z ]] = End(V⊗2)[[z ]].

On obtient aussi une solution de l’équation de Yang-Baxter quantique, dite R-
matrice, mais dans l’algèbre de dimension finie End(V⊗2)[[z ]].

Par exemple, dans le cas g = sl2, l’algèbre affine quantique Uq(ŝl2) possède une
représentation de dimension 2 dite représentation fondamentale et notée V1. Par le
procédé décrit ci-dessus, elle produit la R-matrice suivante 10 dans End(V⊗2

1 )[[z ]]

avec V⊗2
1 qui est de dimension 4 :




1 0 0 0

0 q−1(z−1)
z−q2

q−2−1
z−q−2 0

0 z(1−q−2)

z−q−2
q−1(1−z)

z−q−2 0

0 0 0 1


 .

C’est la R-matrice associée au modèle XXZ . Mais la théorie des groupes quan-
tiques en produit beaucoup d’autres, selon qu’on change l’algèbre de Lie g ou la
représentation V . Elles correspondent à autant de systèmes quantiques.

La matrice de transfert TV (z) est alors définie en prenant la trace partielle sur
la représentation, c’est-à-dire

(2.4) TV (z) = ((TrV ◦ρV )⊗ id)(R(z)) ∈ Uq(ĝ)[[z ]].

8 Ce résultat démontré par M. Rosso et G. Lusztig est un analogue quantique du théorème
classique de Weyl qui assure que toute représentation de dimension finie de U(g) est semi-simple.
9 Cependant, toute représentation V de dimension finie de Uq(ĝ) admet une filtration de Jordan-
Hölder par des sous-représentations V0 = V ⊃ V1 ⊃ V2 · · · ⊃ VN = {0} avec les Vi/Vi+1

simples.
10 La solution explicite de l’équation de Yang-Baxter donnée ici est la R-matrice « normalisée »,
obtenue en multipliant RV1,V1

(z) par une certaine fonction scalaire de z . On peut constater que

ses coefficients sont des fonctions méromorphes en z . C’est un phénomène général, voir [EFK].
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La représentation V qui sert à construire la matrice de transfert TV (z) est appelée
espace auxiliaire. Comme conséquence de l’équation de Baxter, les matrices de
transfert commutent, c’est-à-dire que pour une autre représentation V ′ on a

TV (z)TV (z ′) = TV (z ′)TV (z) dans Uq(ĝ)[[z , z
′]].

Ainsi, les coefficients TV [N ] des matrices de transfert, définis par

TV (z) =
∑

N>0

zNTV [N ],

engendrent une sous-algèbre commutative de Uq(ĝ).
Donnons-nous une autre représentation de dimension finie W de Uq(ĝ), dite

espace des états. Les coefficients TV [N ] des matrices de transfert agissent donc
sur W en une grande famille commutative d’opérateurs. Ainsi, il fait sens de parler
des valeurs propres des matrices de transfert TV (z) sur W .

Dans le cas particulier du modèle XXZ , on rappelle que g = sl2 et V = V1

est une représentation fondamentale de dimension 2. L’espace des états W est un
produit tensoriel de représentations fondamentales de dimension 2 et l’image de
l’opérateur TV1(z) dans End(W )[[z ]] est bien la matrice de transfert de Baxter.
Les résultats de Baxter donnent donc la structure du spectre de TV1(z) sur W
dans ce cas.

Que dire en général ?

3. La conjecture du spectre quantique

En 1998 [FR], E. Frenkel et N. Reshetikhin ont proposé une nouvelle approche
dans le but de généraliser les formules de Baxter.

À cette fin, ils ont introduit le q-caractère χq(V ) d’une représentation V de
dimension finie de Uq(ĝ). Il s’agit d’un polynôme de Laurent à coefficients entiers
en des indéterminées Yi ,a (1 6 i 6 n, a ∈ C∗)

χq(V ) ∈ Z[Y ±1
i ,a ]16i6n,a∈C∗ .

L’entier n est ici le rang de l’algèbre de Lie g, qui par exemple vaut bien n pour
g = sln+1. La définition du q-caractère de V repose sur une décomposition de V en
sous-espaces de Jordan11 Vm paramétrés par des monôme m en les variables Y±1

i ,a :

V =
⊕

m

Vm.

Le q-caractère encode les dimensions de cette décomposition. Il est défini par

χq(V ) =
∑

m

dim(Vm)m.

Ainsi, les coefficients de χq(V ) sont en fait positifs et leur somme est la dimen-
sion V .

11 Pour une famille commutative d’opérateurs sur W , obtenus à partir de la réalisation de Drinfeld
de Uq(ĝ) et distincts en général des coefficients des matrices de transfert.
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Par exemple, pour g = sl2 et V = V1 la représentation fondamentale de dimen-
sion 2,

(3.5) χq(V ) = Y1,q−1 + Y−1
1,q .

On a donc dans ce cas deux sous-espaces de Jordan de dimension 1 associés aux
monômes respectifs Y1,q−1 et Y−1

1,q :

V = VY
1,q−1 ⊕ V

Y−1
1,q

.

La conjecture du spectre quantique de Frenkel et Reshetikhin [FR] prédit12 que
pour une représentation de dimension finie donnée V , les valeurs propres λj de
TV (z) sur une représentation simple13 W sont obtenues de la manière suivante :
dans le q-caractère χq(V ) de V , on remplace chaque variable formelle Yi ,a par14

Fi (az)q
deg(Qi,j)

Qi ,j(zaq
−1)

Qi ,j(zaq)
,

où Fi (z) est une fonction universelle, au sens où elle ne dépend pas de la valeur
propre λj , et Qi ,j(z) dépend de la valeur propre λj mais est un polynôme. C’est
l’analogue du polynôme de Baxter.

Notons que c’est bien le q-caractère de l’espace auxiliaire V qui est utilisé pour
écrire la formule du spectre de la matrice de transfert sur l’espace des états W .

Dans le cas particulier du modèle XXZ , on obtient à partir de (3.5) la formule

λj = F1(zq
−1)qdeg(Q1,j )

Q1,j(zq
−2)

Q1,j(z)
+ (F1(zq))

−1q−deg(Q1,j )
Q1,j(zq

2)

Q1,j(z)
.

Ainsi, la conjecture est bien compatible avec la formule de Baxter (1.1) en identi-
fiant

A(z) = (D(zq2))−1 = (F1(zq))
−1q−deg(Q1,j ).

On peut détailler par exemple le cas où l’espace des états W ≃ V1 est de dimen-
sion 2. On a alors 2 valeurs propres λ0 et λ1. La fonction universelle est

F1(z) = q1/2exp

(∑

r>0

z r (q−r − qr )

r(qr + q−r )

)
,

et les polynômes de Baxter sont

Q1,0(z) = 1 et Q1,1(z) = 1− z(1 + q + q2).

On obtient donc le spectre

λ0 = F1(zq
−1)

(
1+ q−3 1− z−1

1− z−1q−2

)
,

12 Dans des cas particuliers, une conjecture analogue avait été formulée par N. Reshetikhin [R] ;
V. Bazhanov et N. Reshetikhin [BR] ; et A. Kuniba et J. Suzuki [KS].
13 Plus généralement, W peut être un produit tensoriel de représentations simples.
14 Pour simplifier l’exposition, on supposera dans la suite que g est simplement lacée (c’est le
cas notamment des algèbres de Lie sln+1).
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(3.6)

λ1 = F1(zq
−1)

(
q
1− z(1 + q−1 + q−2)

1− z(1+ q + q2)
+ q−4 (1− z−1)(1− z(q2 + q3 + q4))

(1− z−1q−2)(1− z(1 + q + q2))

)
.

En général la formule peut avoir plus de deux termes. Par exemple, dans le
cas d’une certaine représentation fondamentale V de dimension 3 de Uq(ŝl3), le
q-caractère est

(3.7) χq(V ) = Y1,q−1 + Y−1
1,q Y2,1 + Y−1

2,q2
,

et la formule pour le spectre est

F1(zq
−1)qdeg(Q1,j )

Q1,j(zq
−2)

Q1,j(z)
+

F2(z)q
deg(Q2,j )

F1(zq)q
deg(Q1,j )

Q1,j(zq
2)Q2,j(zq

−1)

Q1,j(z)Q2,j(zq)

+
q−deg(Q2,j )

(F2(zq2))−1

Q2,j(zq
3)

Q2,j(zq)
.

Notons qu’en général les représentations simples V de dimension finie peuvent
avoir une dimension « très grande ». Par exemple, H. Nakajima a obtenu (à l’aide
d’un super-calculateur et en s’appuyant sur [N]) que dans le cas de l’algèbre de Lie
exceptionnelle de type E8, une des représentations fondamentales a un q-caractère
avec 6 899 079 264 monômes qui nécessite un fichier de taille mémoire 180 Go pour
être écrit. Il y a donc autant de termes dans la formule de Baxter correspondante.
Et les représentations fondamentales sont les représentations simples de dimensions
les plus basses.

Il est donc hors de question d’aborder cette conjecture par un calcul explicite en
général. D’ailleurs, même si les représentations simples de dimension finie de Uq(ĝ)
ont été intensivement étudiées ces vingt-cinq dernières années, on ne connâıt pas
en général de formule pour leur q-caractère, ni même en fait pour leur dimension.

Ainsi, il faut de nouvelles structures pour aborder la conjecture du spectre quan-
tique.

Notre démonstration avec E. Frenkel [FH] de la conjecture du spectre quantique
repose ainsi sur de nouveaux ingrédients dont nous donnons un bref aperçu dans
les sections suivantes.

4. Représentations préfondamentales

L’idée générale de la preuve est d’interpréter les Qi eux-mêmes comme des
valeurs propres de nouvelles matrices de transfert, construites non pas à partir de
représentations de dimension finie V , mais de représentations de dimension infinie
dite représentations préfondamentales L+i ,a où 1 6 i 6 n et a ∈ C∗.

Nous avions construit préalablement ces représentations préfondamentales avec
M. Jimbo [HJ] dans un contexte un peu différent. Ce ne sont pas des représentations
de l’algèbre entière Uq(ĝ), mais d’une certaine sous-algèbre, la sous-algèbre de Borel

Uq(b̂) ⊂ Uq(ĝ).

Cela ne pose cependant pas de problème pour construire la matrice de transfert
Ti ,a(z) associée à la représentation préfondamentale Li ,a par la formule (2.4), car
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il est justement connu que la partie « gauche » de la R-matrice universelle (celle
à qui on applique ρLi,a) est dans la sous-algèbre de Borel15 :

Ti ,a(z) = ((TrLi,a ◦ρLi,a)⊗ id)(R(z)) ∈ Uq(ĝ)[[z ]].

Il n’est alors pas difficile de montrer qu’en utilisant un certain automorphisme de
Uq(b̂) on a

Ti ,a(z) = Ti(az) où Ti (z) = Ti ,1(z).
Pour le cas du modèle XXZ , c’est-à-dire pour g = sl2, V. Bazhanov, S. Lukya-

nov, et A. Zamolodchikov avaient déjà construit « à la main » une représentation
préfondamentale (appelée représentation de q-oscillation) et la matrice de transfert
associée (appelée Q-opérateur de Baxter) dans l’article important [BLZ].

Pour obtenir l’existence des représentations préfondamentales en général [HJ],
on ne peut encore une fois pas faire de calculs explicites : le point crucial
est de considérer des systèmes inductifs16 de représentations simples Lk (les
représentations de Kirillov-Reshetikhin) de dimension finie strictement croissante

avec k > 0 et de déterminer en quel sens l’action de la sous-algèbre de Borel Uq(b̂)
« converge » sur la limite inductive L∞, qui elle est de dimension infinie :

L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lk ⊂ Lk+1 ⊂ · · · ⊂ L∞.

Il s’agit ainsi d’une construction asymptotique des représentations préfondamentales.

En utilisant certaines filtrations de la représentation préfondamentale Li ,a, nous
établissons qu’effectivement, à un facteur scalaire universel fi (z) près, la matrice de
transfert associée Ti (z) agit sur l’espace des états W par un opérateur polynômial :

ρW (Ti (z)) ∈ fi (z) × (End(W ))[z ].

Il n’est pas difficile d’écrire une formule explicite pour la fonction universelle scalaire
fi (z) ∈ C[[z ]] (elle ne dépend que de V et de W ). Il est beaucoup plus délicat
d’obtenir des informations sur la partie linéaire polynômiale

(fi (z))
−1ρW (Ti (z)) ∈ (End(W ))[z ].

De même que les matrices de transfert usuelles commutent, on a

Ti (z)Ti (z ′) = Ti (z ′)Ti (z),

et donc on obtient une famille commutative Ti [m] si on écrit

Ti (z) =
∑

m>0

Ti [m]zm.

En utilisant la trigonalisation simultanée, cette commutativité implique que les va-
leurs propres sur W de (Fi (z))

−1Ti (z) elles-mêmes sont également des polynômes.

15 On ne peut cependant pas appliquer la trace à un espace de dimension infinie. On utilise une
graduation naturelle de Li par des espaces de dimension finie (les espaces de poids). Ainsi dans
la suite, les traces, matrices de transfert, etc. sont « tordues » par cette graduation.
16 Les inclusions Lk ⊂ Lk+1, construites à l’aide de produits tensoriels de sous-espaces [H], ne

sont pas compatibles avec l’action de Uq(ĝ) entière mais avec celle d’une sous-algèbre U+
q (b̂)

de Uq(b̂).
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5. Anneau de Grothendieck et relations de Baxter

Il faut enfin démontrer que les valeurs propres de la matrice de transfert TV (z)
s’expriment, comme prévu dans la conjecture, en terme des valeurs propres des
Ti (z) selon le q-caractère de V . Autrement dit, en remplaçant dans χq(V ) chaque
variable Yi ,a par le quotient17

Ti (azq−1)/Ti (azq),
obtient-on la matrice de transfert TV (z) ?

Dans le cas g = ŝl2 et V de dimension du modèle XXZ , un calcul [BLZ] donne
le résultat. On a bien :

TV (z) =
T1(zq−1)

T1(zq)
+

T1(zq3)
T1(zq)

.

En général, nous proposons d’utiliser la catégorie O que nous avons définie avec
M. Jimbo [HJ]. Il s’agit d’une catégorie monöıdale (stable par produits tensoriels)

de représentations de l’algèbre de Borel Uq(b̂), contenant les représentations de
dimension finie ainsi que les représentations préfondamentales. Nous catégorifions
les relations de Baxter généralisées, c’est-à-dire que nous les exprimons en termes
de la catégorie O. Pour ce faire, on peut définir l’anneau de Grothendieck K (O)
de cette catégorie. En tant que groupe, il s’agit du groupe libre engendré par les
classes d’isomorphismes de représentations simples :

K (O) =
⊕

[V ] Classe d’un simple dans O.

Z[V ].

Alors tout objet (non nécessairement simple) de O a une image dans K (O) en
imposant la relation

[V ′′] = [V ] + [V ′]

si on a une suite exacte dans la catégorie

0 → V → V ′′ → V ′ → 0.

On peut alors munir K (O) d’une structure d’anneau par la relation

[V ⊗ V ′] = [V ][V ′]

pour des objets V , V ′ de la catégorie O.
Un des théorèmes principaux de [FH] est qu’en remplaçant dans χq(V ) chaque

variable Yi ,a par le quotient
[Li ,aq−1]

[Li ,aq]
,

en remplaçant χq(V ) par [V ] puis en « chassant » les dénominateurs, on obtient
une relation dans l’anneau de Grothendieck K (O).

Par exemple, dans notre cas favori du modèle XXZ , on obtient

[V ] =
[L1,q−1 ]

[L1,q]
+

[L1,q3 ]

[L1,q]

17 Ce quotient doit en fait être multiplié par une matrice de transfert d’une représentation de
dimension 1 que nous omettons dans la suite pour simplifier l’exposition.

SMF – Gazette – 141, juillet 2014



46 D. HERNANDEZ

qui donne la relation de Baxter catégorifiée dans l’anneau de Grothendieck

[V ][L1,q ] = [V ⊗ L1,q] = [L1,q−1 ] + [L1,q3 ].

En général on obtient des relations avec plus de termes, comme dans l’exemple
pour g = sl3 ci-dessus pour lequel la formule (3.7) donne

[V ⊗ L1,1 ⊗ L2,q] = [L1,q−2 ⊗ L2,q] + [L1,q2 ⊗ L2,q−1 ] + [L2,q3 ⊗ L1,1].

Maintenant, « prendre la matrice de transfert » est additif et multiplicatif, c’est-
à-dire qu’on a un morphisme d’anneau18

T : K (O) → Uq(ĝ)[[z ]] , [V ] 7→ TV (z).
Ainsi, les relations de Baxter généralisées dans l’anneau de Grothendieck K (O)
impliquent les relations voulues entre les matrices de transfert. La conjecture du
spectre quantique est donc démontrée.

Pour conclure, les formules pour les valeurs propres des matrices de transfert
en terme des polynômes Qi ,j impliquent des équations entre les racines de ces
polynômes pour garantir que les pôles apparents se simplifient (par exemple
dans l’équation (3.6), (1 + q + q2)−1 n’est en fait pas un pôle de λ1). Dans le
cas du modèle XXZ ce sont les fameuses équations de l’Ansatz de Bethe. Ces
considérations ont mené N. Reshetikhin [R] à formuler ces équations dans le cas
général (voir aussi [BR, KS, F]). La preuve de la conjecture du spectre quantique
permet de donner une explication et une approche uniforme à ces formules. On a
maintenant une autre conjecture importante et ouverte : l’existence d’une bijection
entre toutes les valeurs propres et les solutions des équations de l’Ansatz de Bethe
(conjecture de complétude).
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encouragé à écrire cet article, à E. Frenkel et M. Jimbo pour notre collaboration et
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