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Spectre des systémes intégrables
guantiques et représentations linéaires

David Hernandez!

La structure des valeurs propres d'un systeme quantique, c’est-a-dire de son
spectre, est essentielle a sa compréhension. Dans un célebre article daté de 1971,
Baxter a calculé ces valeurs propres pour le modele « de la glace ». Il a montré
qu’elles ont une forme remarquable et réguliere faisant intervenir des polyndmes.
Dans les années 1980-1990, il a été conjecturé que de tels polyn6mes permettent
de décrire le spectre de nombreux systemes quantiques plus généraux. Nous al-
lons voir comment, en adoptant le point de vue mathématique de la théorie des
représentations, ces polyndmes (de Baxter) apparaissent naturellement. Ce résultat
nous a permis de démontrer en 2013 la conjecture générale.

1. Systemes intégrables quantiques

Le modele a 6 sommets est un célebre modele de physique statistique intro-
duit par Pauling en 1935, qui permet notamment de décrire le cristal de la glace
(voir [B2]). Il est réalisé sur un réseau dont chaque sommet est relié a 4 autres som-
mets. Un état du systéme est une orientation des arétes telle qu'a chaque sommet
arrivent exactement 2 fleches (Figure 1). Les fleches représentent I'orientation des
molécules d'eau du cristal les unes par rapport aux autres. Il y a 6 configurations
possibles a chaque sommet (Figure 2), ce qui justifie I'appellation de ce modele.

1 Sorbonne Paris Cité, Université Paris Diderot, CNRS Institut de Mathématiques de Jussieu-

Paris Rive Gauche UMR 7586.
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F1a. 1. Une orientation d'un réseau (modele a 6 sommets).
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F1G. 2. 6 configurations possibles a chaque sommet.

L'étude du modele de la glace est fortement liée a celle d'un autre modele, cette
fois-ci en physique statistique quantique, appelé modele XXZ de Spin 1/2, dit de
Heisenberg quantique (1928). Il s'agit d'une variante en physique quantique du
modele d'Ising (1925) (voir [JM]), qui modélise des chaines de spins magnétiques
quantiques ayant deux états classiques, haut ou bas (Figure 3).

FiG. 3. Etats d'un Spin 1/2 (haut ou bas).

Ces deux modeles, modele a 6 sommets et modeéle XXZ, figurent parmi les plus
étudiés en physiques statistique et quantique. Les structures mathématiques qui
les sous-tendent sont tres proches. En dépit de leur formulation assez élémentaire,
ils sont extrémement riches et leur analyse a une trés longue histoire.

En physique statistique (quantique), le comportement du systéme est controlé
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par la fonction de partition?, qui permet d'obtenir les grandeurs mesurables® Z.
Cette fonction Z est tres difficile a calculer en général. La méthode de la matrice
de transfert est un procédé pour tenter de la déterminer : il s’agit d'écrire Z comme
trace d'un opérateur T (la matrice de transfert) agissant sur I'espace des états W :

Z =Trw(TY).

Ici M est un entier associé a la taille du réseau du modele. Ainsi, pour trouver Z,
il suffit d’obtenir les valeurs propres A; de 7 :

Z=>Y A\
J

Le spectre {\;}; de T est appelé le spectre du systeme quantique.

Dans un célebre article séminal de 1971, inspiré notamment par les travaux
de Bethe (1931), Baxter [B1] a complétement résolu ce probleme?*. Grace a une
étude tres précise il a notamment montré que les valeurs propres A; de 7 ont une
structure tout a fait remarquable : elles s’expriment sous la forme

2 -2

(1.1) 5 = A ET) | py lza )

Qj(2) Qj(2)
ol z,q € C* sont des paramétres du modele (respectivement spectral et quan-
tique), A(z) et D(z) sont des fonctions « universelles » (au sens ou elles ne
dépendent pas de la valeur propre )\;). La fonction Qj(z) dépend de la valeur
propre, mais c'est un polyndme. La relation (1.1) est la fameuse relation de Baxter
(ou « relation TQ de Baxter »). Les polyndmes Q; sont appelés polynémes de
Baxter.

En résultent alors naturellement les questions suivantes :

— y a-t-il une explication pour I'existence de la relation de Baxter?
— une expression analogue avec des polynémes permet-elle de décrire le spectre
d'autres systemes quantiques ?

Une conjecture formulée en 1998 par Frenkel-Reshetikhin [FR] affirme que la
deuxieme question doit avoir une réponse positive. Comme on ne peut espérer
effectuer en général le calcul détaillé de Baxter qui est connu pour le modele
XXZ, c'est en répondant a |la premiere question que nous pouvons démontrer cette
conjecture. Pour ce faire, étudions les structures mathématiques, algébriques, sous-
jacentes a la théorie.

2 En physique statistique, la fonction de partition s'exprime comme la somme
>_;exp(—E;/(kgT)) sur tous les états j du systeme, ol Ej est I'énergie de I'état j, T est la
température du systéme et kg la constante de Boltzmann. En physique quantique, la somme est
remplacée par une trace Try (exp(—E/(kg T))) ol E est |'opérateur « hamiltonien » qui agit sur
I'espace W des états quantiques du systeme.

3 Une grandeur mesurable Q est obtenue comme moyenne pondérée sur les états
w des valeurs Q; sur chaque état j.

Baxter a introduit la méthode puissante des « Q-opérateurs » qui lui a également permis de
résoudre le modele « a 8 sommets », plus complexe. Le modéle a 6 sommets avait aussi été résolu
par d’autres méthodes, notamment dans les travaux de Lieb et Sutherland (1967).

4
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2. Groupes quantiques et leurs représentations

Les groupes quantiques sont graduellement apparus au cours des années 1970,
en particulier dans les travaux de I'école de Leningrad, comme le cadre naturel
mathématique pour étudier les matrices de transfert. Drinfeld [D1] et Jimbo [J]
ont indépendamment découvert une formulation algébrique uniforme sous forme
d'algebres de Hopf. Il s'agit d'un des résultats cités pour la médaille Fields de
Drinfeld en 1990.

Pour introduire les groupes quantiques de Drinfeld-Jimbo, considérons d’'abord
un objet trés classique, une algebre de Lie (simple) complexe de dimension finie. |l
s'agit d'un espace vectoriel de dimension finie g muni d’un crochet de Lie, c'est-a-
dire d'une application bilinéaire antisymétrique

[J:g9xg—g
satisfaisant a la formule de Jacobi
[x,ly,z]] + Iy, [z, x]] + [z, [x, y]] = 0 pour tous x,y,z € g.

L'exemple le plus simple, mais néanmoins non trivial car il correspond au modele
XXZ, est celui de I'algébre de Lie g = sk : c'est |'espace des matrices complexes
2 x 2 de trace nulle, muni du crochet naturel

[M,N] = MN — NM

pour lequel il est clairement stable. Pour les générateurs linéaires

@) (Y2

on a par exemple la relation
(2.2) [E,F]=H.
Ces algebres de Lie ont des analogues naturelles de dimension infinie, les algebres
de lacets
§ =g C[t*,

avec le crochet de Lie défini par

[x® f(t),y ® g(t)] = [x,y] ® (fg)(t) pour x,y € g et f(t),g(t) € C[t*],

ce qui revient a remplacer le corps C par I'anneau des polyndmes de Laurent
complexes

Cit*) =4 > atINMeZaeC
N<I<M

Ces algebres sont des quotients d'algebres de Kac-Moody affines, qui ont des pro-
priétés algébriques semblables a celles des algebres de Lie simples de dimension
finie (notamment une présentation analogue a celle de Serre pour g, comme ['ont
montré Kac (1968) et Moody (1969), voir [K]). Elles ont été étudiées intensivement
pour leurs diverses applications en mathématiques et physique mathématique.
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Maintenant, pour étudier les systémes quantiques qui nous intéressent, ces
algebres de Lie classiques doivent étre quantifiées, c'est-a-dire déformées en te-
nant compte du parameétre quantique

g =exp(h) € C,

ol h est un analogue de la grandeur de Planck (g sera bien identifié au parametre
quantique de la relation (1.1)). On retrouve les structures classiques pour h — 0,
donc g — 1. On supposera dans la suite que q n’est pas une racine de I'unité.

Bien qu'une telle quantification des algébres de Lie g ou § elles-mémes ne soit pas
connue, Drinfeld et Jimbo ont découvert qu'il existe une quantification naturelle de
leurs algebres enveloppantes respectives U(g) et U(§) (algebres universelles définies
a partir des algebres de Lie, par exemple en remplagant dans la présentation de
Serre les crochets [x,y] par des expressions algébriques xy — yx dans I'algebre).
On obtient alors les groupes quantiques Uy (g), Uy(§) qui dépendent® du paramétre
quantique g, voir [CP].

Par exemple dans Uy(sh) la relation (2.2) devient

ehH _ o—hH
E,Fl= ————
E.F] qg—qt

qui tend bien vers H quand h tend vers 0.

Le cas des algebres affines quantiques Uy (g) est particulierement remarquable
car Drinfeld [D2] a démontré® qu’elles peuvent non seulement &tre obtenues comme
quantification de 2/(g), mais également, par un autre procédé, comme affinisation
du groupe quantique Uy(g). C'est la réalisation de Drinfeld des algeébres affines
quantiques. Ceci peut étre énoncé dans le diagramme « commutatif » suivant :

N

Affinisation ™ Quantification
v N

s N

g Uq(8)
\\ 1q
N -

Quantification \\\ P Affinisation quantique

Uq(g)

Ce théoreme, qui revient a donner deux présentations isomorphes de Uq(§), est un
analogue quantique du théoreme classique de Kac et Moody. Il s'agit d'une bonne
indication de I'importance de ces algebres d'un point de vue algébrique.

Les algebres affines quantiques U, (§) ont en fait une structure beaucoup plus
riche, ce sont des algebres de Hopf. Elles sont notamment munies d'une comulti-
plication (qui est une opération duale de la multiplication), c’est-a-dire d'un mor-
phisme d'algébre

(2.3) A Uq(8) — Uq(8) @ Ug(d).

5
6

Elles peuvent &tre définies comme des algebres sur C[[h]].
La preuve a été précisée par la suite par Beck puis par Damiani.
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Mais surtout, Uq(§) possede une R-matrice universelle, c'est-a-dire un élément
(canonique) dans le carré tensoriel”

R(z) € (Uqg(§) @ Uq(8))l[2]]
qui est notamment une solution de I'équation de Yang-Baxter quantique :
ng(Z)Rl3(ZW)R23(W) = R23(W)R13(ZW)R12(W).

Les paramétres formels z, w sont appelés parameétres spectraux. Cette équation
est a valeurs dans le cube tensoriel

(Uq(8) (12, w]].

Les indices dans les facteurs indiquent I'emplacement des termes de la R-matrice
universelle :
R12(z) =R(z) @1, Roz(z) =1 @ R(2)...

Il s'agit d'une équation hautement non triviale, liée aux mouvements de tresses.
En effet, dans la figure 4 on retrouve |'équation en lisant de bas en haut et en
multipliant par un facteur R, d'indice (o, 8) lorsque le brin « croise le brin 3.
C'est pour cette raison que la théorie des représentations des groupes quantiques
permet de construire des invariants en topologie de basse dimension (notamment
les polyndmes de Jones des nceuds). Il s’agit historiquement, avec la construction
par Lusztig et Kashiwara de bases canoniques de représentations des algebres de Lie
classiques, d'un des premiers grands succes de la théorie des groupes quantiques.
Nous n'aborderons pas ces sujets ici pour nous concentrer sur les applications aux
systémes quantiques.

Fic. 4. Equation de Yang-Baxter

Pour décrire des solutions de I'équation de Yang-Baxter quantique, on peut
spécialiser sur des représentations de dimension finie de U, (§). Une représentation
(linéaire) de Uq(G) est un espace vectoriel V' (ici complexe) muni d'un morphisme
d'algebre

pv : Uy(8) — End(V).
Autrement dit, I'algebre U, (§) agit sur |'espace V par opérateurs linéaires.

L'étude des représentations est un vaste domaine, central en mathématiques,
appelé théorie des représentations. En arithmétique par exemple, les représentations
de groupes de Galois jouent un rdle crucial. Elles sont également essentielles dans
la formulation méme des principes de la physique quantique car ils font intervenir
des représentations de |'algebre des observables.

7 En fait, dans une légére complétion du carré tensoriel.
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On définit naturellement la somme directe de représentations (V,py) et
(V', py) avec I'application pygy = pv + pyr a valeurs dans End(V & V).

Les représentations simples, c'est-a-dire qui n'ont pas de sous-représentation
(sous-espace stable pour I'action de I'algébre) propre, sont particulierement impor-
tantes, comme nous allons le voir dans notre étude. Elles constituent les « briques
élémentaires » de la théorie des représentations. Par exemple, toute représentation
de dimension finie de Ug(g) est semi-simple, c’est-a-dire isomorphe a une somme
directe de représentations simples®. Ce n’est pas le cas® pour I'algebre affine quan-
tique Uq(g).

Comme Uy(§) est munie d’un coproduit (2.3), pour deux représentations (V, pv)
et (V/, pyr), le produit tensoriel V ® V/ est aussi une représentation en utilisant

pvav = (pv ® pyr) o A : Uy(§) — End(V) @ End(V') = End(V & V).

Cette action sur un produit tensoriel de représentation sera utile par la suite. Mais
indépendamment on peut faire aussi agir directement la R-matrice universelle sur
un carré tensoriel V ® V pour V une représentation de dimension finie de Uy (g) :
on peut en effet considérer I'image de la R-matrice universelle dans End(V®?)(z)

Rv.v(2) = (pv ® pv)(R(2)) € End(V)*?[[z] = End(V*?)][2]].

On obtient aussi une solution de I'équation de Yang-Baxter quantique, dite R-
matrice, mais dans |'algeébre de dimension finie End(V®?)[[z]].

Par exemple, dans le cas g = sh, I'algébre affine quantique Uq(s72) posséde une
représentation de dimension 2 dite représentation fondamentale et notée V;. Par le
procédé décrit ci-dessus, elle produit la R-matrice suivante X dans End(V{*?)[[Z]]
avec V2 qui est de dimension 4 :

1 0 0 0
“1,_ -2

0 LU o
z(1—q 2 11—z

0 (zl_qQ_z) qz_(ql_2) 0

0 0 0 1

C'est la R-matrice associée au modele XXZ. Mais la théorie des groupes quan-
tiques en produit beaucoup d'autres, selon qu'on change I'algebre de Lie g ou la
représentation V. Elles correspondent a autant de systémes quantiques.

La matrice de transfert Ty (z) est alors définie en prenant la trace partielle sur
la représentation, c'est-a-dire

(2.4) Tv(z) = ((Trv opv) ®@id)(R(2)) € Uq(§)[[2]]-

8  Ce résultat démontré par M. Rosso et G. Lusztig est un analogue quantique du théoreéme

classique de Weyl qui assure que toute représentation de dimension finie de U(g) est semi-simple.
9 Cependant, toute représentation V de dimension finie de q(3) admet une filtration de Jordan-
Hélder par des sous-représentations Vo = V O Vi D Vo--- D Viy = {0} avec les V;/Viy
simples.

10 | a solution explicite de I'équation de Yang-Baxter donnée ici est la R-matrice « normalisée »,
obtenue en multipliant Ry, v, (z) par une certaine fonction scalaire de z. On peut constater que
ses coefficients sont des fonctions méromorphes en z. C'est un phénomeéne général, voir [EFK].
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La représentation V qui sert a construire la matrice de transfert Ty (z) est appelée
espace auxiliaire. Comme conséquence de |'équation de Baxter, les matrices de
transfert commutent, c'est-a-dire que pour une autre représentation V'’ on a

Tv(2)Tv(2') = Tv(Z')Tv(z) dans Uq(§)[[z, Z']].

Ainsi, les coefficients Ty [N] des matrices de transfert, définis par

Tv(z) =Y Z"Tyv[N],

N0

engendrent une sous-algebre commutative de U, (§).

Donnons-nous une autre représentation de dimension finie W de Uq(g), dite
espace des états. Les coefficients Ty [N] des matrices de transfert agissent donc
sur W en une grande famille commutative d’opérateurs. Ainsi, il fait sens de parler
des valeurs propres des matrices de transfert 7y (z) sur W.

Dans le cas particulier du modele XXZ, on rappelle que g = sh et V =V
est une représentation fondamentale de dimension 2. L'espace des états W est un
produit tensoriel de représentations fondamentales de dimension 2 et |'image de
I'opérateur Ty, (z) dans End(W)[[z]] est bien la matrice de transfert de Baxter.
Les résultats de Baxter donnent donc la structure du spectre de 7y, (z) sur W
dans ce cas.

Que dire en général ?

3. La conjecture du spectre quantique

En 1998 [FR], E. Frenkel et N. Reshetikhin ont proposé une nouvelle approche
dans le but de généraliser les formules de Baxter.

A cette fin, ils ont introduit le g-caractére x4(V) d'une représentation V de
dimension finie de Uq(g). Il s'agit d'un polynéme de Laurent a coefficients entiers
en des indéterminées Y; , (1 < i< n, ac C*)

Xxq(V) € Z[Yiﬁl]lgign,ae(C*'

L'entier n est ici le rang de I'algebre de Lie g, qui par exemple vaut bien n pour
g = Slht1. La définition du g-caractere de V repose sur une décomposition de V en
sous-espaces de Jordan!! V,,, paramétrés par des mondme m en les variables Y,jta1 :

vz@vm.

Le g-caractére encode les dimensions de cette décomposition. Il est défini par
Xa(V) =Y dim(V,)m.
m
Ainsi, les coefficients de xq(V) sont en fait positifs et leur somme est la dimen-
sion V.

11 Pour une famille commutative d’opérateurs sur W, obtenus 3 partir de la réalisation de Drinfeld
de Uqg(§) et distincts en général des coefficients des matrices de transfert.
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Par exemple, pour g = sh et V = V; la représentation fondamentale de dimen-
sion 2,

(3.5) Xa(V) = Yy g1+ Yoy

On a donc dans ce cas deux sous-espaces de Jordan de dimension 1 associés aux
mondmes respectifs Y; -1 et Yl’q1 :

V = Vyl,q*1 D Vyl_ql.

La conjecture du spectre quantique de Frenkel et Reshetikhin [FR] prédit!? que
pour une représentation de dimension finie donnée V/, les valeurs propres \; de
Tv(z) sur une représentation simple!® W sont obtenues de la manigre suivante :
dans le g-caractere y,(V) de V, on remplace chaque variable formelle Y; , par'*

Fi(az)q®e(@) Qij(zaq)
Qij(zaq)

ol Fi(z) est une fonction universelle, au sens ou elle ne dépend pas de la valeur
propre \;j, et Q;j(z) dépend de la valeur propre A\; mais est un polyndéme. C'est
I'analogue du polyndme de Baxter.

Notons que c'est bien le g-caractere de /'espace auxiliaire V qui est utilisé pour
écrire la formule du spectre de la matrice de transfert sur I'espace des états W.

Dans le cas particulier du modeéle XXZ, on obtient a partir de (3.5) la formule

) Qui(29%)
Quj(2)

Ainsi, la conjecture est bien compatible avec la formule de Baxter (1.1) en identi-
fiant

_ 3 Qu(zq? 1 _
A = Fi(zq 1)qdeg(Q1’f)% + (Fi(zq)) g 8@
5J

A(z) = (D(zg%)) ™! = (F1(zq)) g dee(Qu)),

On peut détailler par exemple le cas ou I'espace des états W ~ V; est de dimen-
sion 2. On a alors 2 valeurs propres \g et A;. La fonction universelle est

(g —q")
Fi(z) = q1/2exp —_— |,
1(2) 2 r(q"+q")

et les polyn6mes de Baxter sont
Quo(z) =1let Qui(2) =1-2z(1+q+q°).

On obtient donc le spectre

-1 51—z
Mo =F(zg7)|1+q T_z1g2)

2 Dans des cas particuliers, une conjecture analogue avait été formulée par N. Reshetikhin [R];
V. Bazhanov et N. Reshetikhin [BR]; et A. Kuniba et J. Suzuki [KS].

13 Plus généralement, W peut étre un produit tensoriel de représentations simples.

14 Pour simplifier I'exposition, on supposera dans la suite que g est simplement lacée (c'est le
cas notamment des algebres de Lie sl,41).
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(3.6)
M = Fi(zq™t) (q

1-z(14+9'+q7?) gt 1= zH1-2(+¢*+q%)
1—z(1+q+d) 1-zlqg2(1-20+q+@))
En général la formule peut avoir plus de deux termes. Par exemple, dans le

cas d'une certaine représentation fondamentale V' de dimension 3 de Uq(s73), le
g-caractere est

(3.7) Xq(V) = Yig1+ Y, Yo + Y2qu2,
et la formule pour le spectre est
Fi(zq~")qies(@L) Qui(zg~2) Fa(2)g*8 @) Q1(29°) Qai(zq ")
Quj(2) Fi(zq)q®e(@))  Qu(2)Q2,(2q)

q*deg(Qz,j) Q2,j(2q3)
(F2(2q%)) 7t Qj(zq)

Notons qu'en général les représentations simples V' de dimension finie peuvent
avoir une dimension « trés grande ». Par exemple, H. Nakajima a obtenu (a I'aide
d'un super-calculateur et en s'appuyant sur [N]) que dans le cas de I'algebre de Lie
exceptionnelle de type Eg, une des représentations fondamentales a un g-caractére
avec 6899 079 264 mondmes qui nécessite un fichier de taille mémoire 180 Go pour
étre écrit. Il y a donc autant de termes dans la formule de Baxter correspondante.
Et les représentations fondamentales sont les représentations simples de dimensions
les plus basses.

Il est donc hors de question d'aborder cette conjecture par un calcul explicite en
général. D'ailleurs, mé&me si les représentations simples de dimension finie de U(g)
ont été intensivement étudiées ces vingt-cing derniéres années, on ne connait pas
en général de formule pour leur g-caractére, ni méme en fait pour leur dimension.

Ainsi, il faut de nouvelles structures pour aborder la conjecture du spectre quan-
tique.

Notre démonstration avec E. Frenkel [FH] de la conjecture du spectre quantique
repose ainsi sur de nouveaux ingrédients dont nous donnons un bref apercu dans
les sections suivantes.

4. Représentations préfondamentales

L'idée générale de la preuve est d'interpréter les Q; eux-mémes comme des
valeurs propres de nouvelles matrices de transfert, construites non pas a partir de
représentations de dimension finie V, mais de représentations de dimension infinie
dite représentations préfondamentales L;’a oul<i<netaeC".

Nous avions construit préalablement ces représentations préfondamentales avec
M. Jimbo [HJ] dans un contexte un peu différent. Ce ne sont pas des représentations

de |'algebre entiére U, (g), mais d'une certaine sous-algebre, la sous-algebre de Borel

~

Ug(b) C Uy (8)-

Cela ne pose cependant pas de probleme pour construire la matrice de transfert
7Ti a(z) associée a la représentation préfondamentale L; , par la formule (2.4), car
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il est justement connu que la partie « gauche » de la R-matrice universelle (celle
3 qui on applique py, ) est dans la sous-algebre de Borel® :

Tia(2) = ((Try; , op1; ) ®id)(R(2)) € Uq(8)[[2]]-

Il n'est alors pas difficile de montrer qu'en utilisant un certain automorphisme de

Uq(b) on a
Tia(z) = Ti(az) ou Ti(z) = Ti1(2).

Pour le cas du modele XXZ, c'est-a-dire pour g = sh, V. Bazhanov, S. Lukya-
nov, et A. Zamolodchikov avaient déja construit « a la main » une représentation
préfondamentale (appelée représentation de g-oscillation) et la matrice de transfert
associée (appelée Q-opérateur de Baxter) dans I'article important [BLZ].

Pour obtenir I'existence des représentations préfondamentales en général [HJ],
on ne peut encore une fois pas faire de calculs explicites : le point crucial
est de considérer des systémes inductifs!® de représentations simples L (les
représentations de Kirillov-Reshetikhin) de dimension finie strictement croissante
avec k > 0 et de déterminer en quel sens I'action de la sous-algebre de Borel Uq([;)
« converge » sur la limite inductive Ly, qui elle est de dimension infinie :

LoCL1CL2C“‘CLkCLk+1C-‘-CLOO.

Il s'agit ainsi d'une construction asymptotique des représentations préfondamentales.

En utilisant certaines filtrations de la représentation préfondamentale L; ,, nous
établissons qu'effectivement, a un facteur scalaire universel f;(z) pres, la matrice de
transfert associée 7;(z) agit sur |'espace des états W par un opérateur polynémial :

pw(Ti(2)) € fi(2) x (End(W))[2].

Il n'est pas difficile d'écrire une formule explicite pour la fonction universelle scalaire
fi(z) € C[[z]] (elle ne dépend que de V et de W). Il est beaucoup plus délicat
d'obtenir des informations sur la partie linéaire polynémiale

(fi(2)) " pw(Ti(2)) € (End(W))[2].
De méme que les matrices de transfert usuelles commutent, on a
Ti(2)Ti(Z') = Ti(Z)Ti(2),
et donc on obtient une famille commutative 7;[m] si on écrit
Ti(z) =) Tilmlz".
m>0

En utilisant la trigonalisation simultanée, cette commutativité implique que les va-
leurs propres sur W de (F;(z))~17:(z) elles-mémes sont également des polyndmes.

15 On ne peut cependant pas appliquer la trace 3 un espace de dimension infinie. On utilise une
graduation naturelle de L; par des espaces de dimension finie (les espaces de poids). Ainsi dans
la suite, les traces, matrices de transfert, etc. sont « tordues » par cette graduation.

16 |es inclusions Ly C Liy1, construites a I'aide de produits tensoriels de sous-espaces [H], ne
sont pas compatibles avec I'action de Uy(§) entiere mais avec celle d'une sous-algebre Z/{j(ﬁ)
de Uy ().
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5. Anneau de Grothendieck et relations de Baxter

Il faut enfin démontrer que les valeurs propres de la matrice de transfert 7y (z)
s'expriment, comme prévu dans la conjecture, en terme des valeurs propres des
Ti(z) selon le g-caractére de V. Autrement dit, en remplagant dans x4(V) chaque
variable Y; , par le quotient!’

Ti(azq™")/Ti(azq),

obtient-on la matrice de transfert Ty (z)?
Dans le cas g = s/, et V de dimension du modele XXZ, un calcul [BLZ] donne
le résultat. On a bien :

Tl Y | Tile)
O = T T )

En général, nous proposons d'utiliser la catégorie O que nous avons définie avec
M. Jimbo [HJ]. Il s'agit d'une catégorie monoidale (stable par produits tensoriels)
de représentations de I'algebre de Borel Uq(ﬁ), contenant les représentations de
dimension finie ainsi que les représentations préfondamentales. Nous catégorifions
les relations de Baxter généralisées, c'est-a-dire que nous les exprimons en termes
de la catégorie O. Pour ce faire, on peut définir I'anneau de Grothendieck K(O)
de cette catégorie. En tant que groupe, il s'agit du groupe libre engendré par les
classes d'isomorphismes de représentations simples :

K(O) = &y Z[V).

[V] Classe d'un simple dans O.

Alors tout objet (non nécessairement simple) de O a une image dans K(O) en
imposant la relation
[V =[VI+ V']
si on a une suite exacte dans la catégorie
0—-V—-V' =V =0
On peut alors munir K(O) d’une structure d’anneau par la relation
Ve V]=[V|V]
pour des objets V, V’ de la catégorie O.
Un des théorémes principaux de [FH] est qu’en remplagant dans x4(V) chaque
variable Y; , par le quotient
[Li,aq—l]
[Lhaq] ’
en remplagant x4(V) par [V] puis en « chassant » les dénominateurs, on obtient

une relation dans |'anneau de Grothendieck K(O).
Par exemple, dans notre cas favori du modele XXZ, on obtient
[V] — [Ll,qfl] + [Ll,q3]
[LLq] [LLq]

17 Ce quotient doit en fait &tre multiplié par une matrice de transfert d’une représentation de
dimension 1 que nous omettons dans la suite pour simplifier |'exposition.
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qui donne la relation de Baxter catégorifiée dans I'anneau de Grothendieck
[VIlL1q] = [V @ Lig] = [Ly g-1] + [Ly g3]-

En général on obtient des relations avec plus de termes, comme dans |I'exemple
pour g = sk ci-dessus pour lequel la formule (3.7) donne

[VeaLi®Llagl =[L g-2® Lag]l +[Ly 2 @ Ly g-1] + [Ly 3 ® L11].

Maintenant, « prendre la matrice de transfert » est additif et multiplicatif, c'est-
a-dire qu'on a un morphisme d'anneau'®

T: K(O) = Ug(®)[[2]]  [V] = Tv(2).

Ainsi, les relations de Baxter généralisées dans |'anneau de Grothendieck K(O)
impliquent les relations voulues entre les matrices de transfert. La conjecture du
spectre quantique est donc démontrée.

Pour conclure, les formules pour les valeurs propres des matrices de transfert
en terme des polyndmes Q;; impliquent des équations entre les racines de ces
polynémes pour garantir que les pdles apparents se simplifient (par exemple
dans I'équation (3.6), (1 + g + g)~! n’est en fait pas un pdle de \;). Dans le
cas du modele XXZ ce sont les fameuses équations de |'Ansatz de Bethe. Ces
considérations ont mené N. Reshetikhin [R] & formuler ces équations dans le cas
général (voir aussi [BR, KS, F]). La preuve de la conjecture du spectre quantique
permet de donner une explication et une approche uniforme a ces formules. On a
maintenant une autre conjecture importante et ouverte : I'existence d'une bijection
entre toutes les valeurs propres et les solutions des équations de |I'Ansatz de Bethe
(conjecture de complétude).
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