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ever, so far, it has only been studied for the mixed-state density matrices corresponding
to subsystems of globally pure states. Here, we consider as a genuine example of a mixed
state the one-dimensional massless Dirac fermions in a system at finite temperature and
size. As subsystems, we consider an arbitrary set of disjoint intervals. The structure of the
corresponding negativity Hamiltonian resembles the one for the entanglement Hamiltonian
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Hamiltonian. We also conjecture an exact expression for the negativity Hamiltonian asso-
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1 Introduction

In the last few decades, the study of entanglement turned out to be an optimal tool to
investigate quantum field theories, quantum gravity models, condensed matter systems and
quantum information theory [1-6]. Several entanglement measures have been studied in
order to better probe the different features of a system. For example, in the context of pure
states, the most important entanglement measures are the von Neumann and the Rényi
entropies. They are defined as follows. Let us assume that our pure system is bipartite
into AU B and that the corresponding Hilbert space, H, factorises as H 4 ® Hp, where H 4
(Hp) is the Hilbert space containing the degrees of freedom of the subsystem A (B). The
reduced density matrix of A is then obtained by tracing over the degrees of freedom of B

pa=Trpp, (1.1)



and the entropies of p4, given by [7]

s =

——logTeph,  S=-Trlpalogpa] = lim 5™, (1.2)

are good entanglement monotones on pure states. Despite the several successful applica-
tions of the entanglement entropy, they do not capture all of the properties of entanglement
between the two subsystems. A more comprehensive measure of entanglement [8] is pro-
vided by the entanglement Hamiltonian K 4, defined as the logarithm of the (appropriately
normalised) reduced density matrix, i.e.

pA = ie*%K*“, Z4=Tre 27Ka (1.3)

ZA

Being it an operator and not a scalar quantity, it is much more difficult to compute the
entanglement Hamiltonian than the entropies, and it is known only for a limited number
of cases. One of them is provided by the Bisognano-Wichmann theorem. This extremely
general result applies to all Lorentz invariant quantum field theories in any dimension
D + 1, and it states that in the ground state, the entanglement Hamiltonian of the half-
space A = {:1: eRPTzl > 0,20 =1t = O} is the generator of the Lorentz boosts preserving
the Rindler wedge [9-12], i.e.

KA:/ dPx ! Tyo(z), (1.4)
z1>0

where Ty is the energy density. This theorem provides a physical explanation of the Unruh
effect [13] in terms of the entanglement of the vacuum.

Although computing K 4 is a challenging task, we mention here that several achieve-
ments have been gained, for example in Gaussian states arising in lattice models of statis-
tical mechanics and in quantum field theories (see e.g. [14-19]).

If we shift our attention to mixed states, the entanglement entropies and Hamiltonian
are not good entanglement measures, since they cannot distinguish between quantum and
classical correlations. As a consequence, a plethora of alternative entanglement quantifiers
have been proposed for dealing with the mixed states, even if in most cases these quantities
are very difficult to compute even for few qubits (see e.g. [20, 21]). A measure of entangle-
ment in mixed states that has attracted a lot of interest is the logarithmic negativity [22—24],
which is defined by doing a partial transpose operation on the reduced density matrix. To
fix the ideas, let us consider a further bipartition of our subsystem A as A = A; U Ay and
let the Hilbert space be factorised as H4 = Ha, @ H a,. Then, if |e}), \e?) are two arbitrary
basis in, respectively, H 4, and H 4,, the partial transposition in, e.g., Ha, acts as

P£1 = Z <€Ilm 6?‘,014|€i1, €l2> |ez'17 €§> <611:> 612| . (1.5)

1,5,k
According to the Peres-Horodecki criterion [25, 26], the presence of negative eigenvalues
in the spectrum of p? is a sufficient, but not necessary, condition for the presence of en-

tanglement between A; and As. In light of this criterion, a quantifier of entanglement in
mixed states is provided by the logarithmic negativity defined as [22-24]

E =logTr ‘p:";l . (1.6)




Since the Peres-Horodecki criterion is only sufficient but not necessary, zero negativity
does not imply the absence of entanglement. Nevertheless, this quantifier presents several
advantages with respect to other entanglement monotones. On the one hand, from the
quantum information point of view, as we have mentioned most measures of mixed state
entanglement are very difficult to compute [20], while the negativity is computationally
more efficient. On the other hand, from the field-theoretical perspective, the path integral
construction of the partial transpose [27-30] makes it possible to calculate the negativity
in field theories using the same conformal field theory (CFT) techniques adopted in the
computation of the entanglement entropies.

In the framework of the mixed state entanglement, in [31] the negativity Hamiltonian
has been introduced as the logarithm of the partially transposed reduced density matrix

Pl = L672’”\[“, Zy=Tre 2™Na, (1.7)
ZA

In particular, in [31, 32] the negativity Hamiltonian of the ground state of the massless
Dirac fermion has been explicitly computed for tripartite configurations, both in the pres-
ence and in the absence of boundaries, but a truly global mixed state has never been
studied. In this work, we fill this gap computing the negativity Hamiltonian of several
disjoint intervals at finite temperature, both on a finite size system and on the infinite
line. This computation requires the knowledge of the entanglement Hamiltonian in the
same geometry. Thus, section 2 of the manuscript is devoted to a summary of the known
results for the entanglement Hamiltonian of the massless Dirac field theory at finite tem-
perature. This will set the stage for section 3, where we will present the main results of this
manuscript: we evaluate the negativity Hamiltonian of the Dirac fermion on the torus, i.e.
at finite temperature on the circle, showing explicit results for a tripartite and a bipartite
geometry. Our analytical findings will be checked in section 4, where the continuum limit
of the entanglement and negativity Hamiltonians is explicitly worked out starting from
exact lattice numerical results. This allows to check our predictions for the underlying
Dirac field theory. In the same section we also propose an alternative definition for the
negativity Hamiltonian corresponding to an Hermitian partial transpose reduced density
matrix. After the discussion in section 5, we conclude the manuscript with two appendices
containing computational details and additional results.

2 Finite temperature entanglement Hamiltonian

In order to derive the expression of the negativity Hamiltonian, we use the construction in-
troduced in [31, 32], where it was argued that the effect of the partial transposition amounts
to exchange the extrema of the transposed interval in the expression of the entanglement
Hamiltonian, taking into account that the fermionic field picks up an imaginary phase if
it belongs to the transposed interval. Therefore, in this section, we present the known
results for the finite temperature entanglement Hamiltonian of the free massless Dirac
fermion in a multi-component region A, underlying the major differences with respect to
the ground state.



2.1 Entanglement Hamiltonian on the torus

Let us consider a free massless Dirac fermion on a circle of circumference L at finite
temperature 1/, i.e., on a torus. In the imaginary time direction we impose anti-periodic
(also called Neveu-Schwarz) boundary conditions, while in the spatial direction we choose
either anti-periodic or periodic (Ramond) ones. Then, in a subsystem A = [a;,b;] U ... U
[an, by] composed of n intervals, the entanglement Hamiltonian is [33, 34, 37

Ka(B,L)=Kg°(8,L)+ K3 (8,L) (2.1)
BIOC :L'kpaﬁa ) bl ~

= [ dzBiec , L) T dz T , ,t=0),

/ Z Bioc(x; 8, L) Too (x + E#(OO / —smh . xkp+k:L)} (@, Zpp, t =0)

where the signs + and — correspond, respectively, to the Ramond and Neveu-Schwarz
sectors, p € {0, .. — 1}, k € Z. The Hamiltonian (2.1) presents a local part, K'9°(3, L),
proportional to the energy density Tpo, defined as (:: denotes normal ordering of the fields)

Too(,t) = 5 | (et — )n(x — 1) — wh(z — )swn(z — 1))

— (0t} (& + r (e + 1) = O] (@ + DO (@+1) |-,

3 (2.2)

with a weight given by the local entanglement temperature fioc(z) = 1/2'(x), where [33,
34, 37]

Z(l‘—aiﬂq)] 2t
T —by)lg) | BL

1
=lo —RM —Q—E i T + cons
_lgl Ha(x ] % (i8/2) x 4 const.

(2.3)

Here, ¢ = )", b; — a; is the total lenght of the subsystem A and the additive constant term
is only a shift which does not depend on x and, therefore, does not affect the expression
for Bioc(x), that we report explicitly

[ 3 [ﬁ' (= ai)la)  D4(F (= b) |q>] . w]‘l

V1(F(x—ai)lg) V1(F (x—b)|q)

/Bloc (!T) =

" 2 17
= LZ;(C(@“ —ai) = ((z — b)) — iﬁC(lﬁ/Q)]

In egs. (2.3) and (2.4), o and ¢ denote respectively Weierstrass’ sigma and zeta functions
and 91 is the Jacobi’s elliptic theta function with nome ¢ = €7, 7 = i3/L (see appendix B
for their definitions). In particular, the expression in the first row of (2.3) is the result
obtained in [33] while the one in the second row follows the conventions of refs. [34, 37].
While it is not obvious that the two alternative expressions coincide, one can show they are
identical by using the properties of Weierstrass functions reported in appendix B. In the rest
of this manuscript we will adopt the conventions of [33] in terms of elliptic theta functions.



Regarding the non-local part Kf}ll(ﬁ,L) of eq. (2.1), even in the case of one interval,
this contains infinite terms proportional to the bi-local operator [18, 35, 36]

T,y 1) = 5 [ (Ve — 0nly — 1) — whly — v — 1)

(2.5)
— (Vi @+ unly + 1) — L+ vz +0)]: -

In particular, the bi-local operator in (2.1) couples one point z with a single other conjugate

point Zyp, given by the non-trivial solutions of the equations [33, 34, 37]

2(x; B, L) — 2(Zpp; B, L) + —— =0, keZ, (2.6)

indexed by the integer k. One can see that for every fixed index k, eq. (2.6) admits
n solutions, indexed by p = 0,...,n — 1, each belonging to a different interval. In the
following, we will use the index p = 0 to denote the solution of eq. (2.6) such that Zyo
belongs to the same interval as . With this convention, we see that for £ = 0 eq. (2.6)
presents the trivial solution y = Zpog = x, which does not contribute to the non-local part
K3(B, L) (see eq. (2.1)).

It is instructive to compare the entanglement Hamiltonian on the torus (2.1) with the
one on the plane, i.e, of n intervals on the infinite line at zero temperature, given by [18, 38]

n—1 ~
K=K+ K3 = [ o foc(a) Too(a) + 3 [ do Procp) iy 3, 1 =0).  (27)
p=1

T — Tp

The local part of eq. (2.7) is in form analogous to the one of eq. (2.1), with entanglement
temperature Bioc(z) = 1/2'(z) equal to the inverse of the derivative of the function

2(z) = log l— ﬁ T ‘“] . (2.8)

1T b

The main qualitative difference of the Hamiltonian (2.1) on the toric space-time with
respect to eq. (2.7) is the structure of the non-local part K%. While in eq. (2.1) the non-
local part contains infinite terms, indexed by the integer k in eq. (2.6), on the plane the
bi-local part K5 only contains n — 1 terms, calculated in the non-trivial solutions of the
equation z(z) = 2(Zp). In particular, for a single interval A = [0,¢] the entanglement
Hamiltonian (2.7) becomes completely local [18, 19, 39-41]

Ki= /Oe dx x(f;a:) Too(), (2.9)

as expected since it is conformally equivalent to the Bisognano-Wichmann result (1.4).
This shows that in general the entanglement Hamiltonian on the torus (2.1) is much more
non-local than the analogous configuration on the plane [33, 34, 37].



2.2 Finite temperature entanglement Hamiltonian on the infinite line

We will now review the known results for the finite temperature entanglement Hamiltonian
on the infinite line, i.e., on an infinite cylinder of circumference £ in the time direction.
In [33, 34, 37], this Hamiltonian was obtained from the result on the torus (2.1) by taking
the limit L — oo.

Using the asymptotic expansion of the elliptic theta function ¥; for ¢ = €77, 7 =
i8/L — 0 (see eq. (B.7) of the appendix) in the expression (2.3) for the function z( L),
we obtain

n_sinh T@=%) o Fr (eir—a) 27l
i B8, L 1 b il
2(z; 8, L) — Og[ Hl Slnhw(xﬂb) Z e | 3L

(2.10)

2l
= z(x; B) — BL Z (2b T — 2a;x — b2 + ) + 5793 z(x; B) + const,
where, using ¢ = >, (b; — a;), the contributions proportional to x cancel and we have
introduced [33, 34, 37]

(2.11)

. m(r—a;)
n smhiﬁ
i=15S

z(x; B) = log {— I —==
. w(z—b;)
lnhT

The local term of eq. (2.1) becomes proportional to the entanglement temperature [33, 34,
37]

n -1

P o ﬂ(x—ai)_co m(x — b;)
Broc(@; B) = Twh) w L;( thiﬁ thiﬁ >] _ (2.12)

In the non-local component K%!(3, L) of eq. (2.1), instead, we can see that in this limit the
denominator sinh(m(xz — Zxp, + kL)/f) diverges for all k # 0 [33, 34, 37]. For this reason,

the only conjugate points that contribute in this limit are the n — 1 non-trivial solutions
of the equation [33, 34, 37]

z2(z; B) = 2(Zp; B) , (2.13)
obtained as the limit of eq. (2.6) with & = 0. This was expected by the fact that the
cylinder can be conformally mapped into the plane, where the entanglement Hamiltonian
is written in eq. (2.7), which only contains n — 1 bi-local terms.

Putting all together, we find that the finite temperature entanglement Hamiltonian for
a multi-component subsystem A = [a1,b1] U ... U [ay,by] on the infinite line is [33, 34, 37]

Ka(B) = K5°(8) + K3 ()
= [ @ el ) Tool +Z/d ProclByiB) ity 3,1~ 0),

smh%m

(2.14)

with entanglement temperature SBioc(Zp;5) given by eq. (2.12). When specialising to a
subsystem A made up of one interval, the entanglement Hamiltonian in eq. (2.14) is purely
local and in agreement with the result of [19, 41], which reads

-1
Ka(B) = /b dwg [cothw(xﬁ_a) + cothﬂ(mﬁ_b) Too(z) . (2.15)



As we mentioned earlier, since the cylinder is conformally equivalent to the plane, an
alternative derivation of the finite temperature entanglement Hamiltonian on the infinite
line in egs. (2.11), (2.14) consists in mapping the expressions (2.7), (2.8) on the plane to the
cylinder. We find it worthwhile to also present this additional derivation as a non-trivial
check of the correctness of eq. (2.14) and because we will adapt a similar trick later in the
manuscript. We first present how to map the entanglement Hamiltonian from the plane to
a generic geometry and we later specialise this procedure to the cylinder. Let us consider a
multi-component subsystem A = [a1,b1]U...U|ay, by,] made up of n intervals in a geometry
conformally isomorphic to the plane. In order to map it to the plane, it is convenient to
switch to imaginary time w = x + it and consider, for simplicity, only the holomorphic
component. Let then {(w) be the transformation from this geometry to the plane, with
the subsystem A being mapped on the real line. On the complex plane, the holomorphic
part of the entanglement Hamiltonian is given by the analytic continuation of eq. (2.7)

£(w)) L T (w), ()
Ka= [, dgafz (€w)) Z T B o R e R

where the function z(w) = z(&(w)) is eq. (2.8) evaluated in &(w), i.e.

2(w) = z(£(w)) = log [— 11 5(“’)_’5(“)] , (2.17)
=1

=L E(w) = &(bi)

with &(a;),&(b;) the extrema of the mapping £(A) of the subsystem A on the plane, and
the conjugate points @, are the solutions of z(w) = z(wp).

We first consider the mapping of the local part. Despite the fact that the holomorphic
stress-energy tensor 7T is not a primary field, its transformation law only involves an addi-
tional function of w proportional to the Schwarzian derivative of £(w). When integrated in
the entanglement Hamiltonian, this simply gives a constant factor which can be reabsorbed
in the overall normalisation and can therefore be neglected. Considering also the Jacobian,
the holomorphic part transforms as

@) _ [y €072 Tw) |
fo € Bty = S €0 Sy oo

= /A dw SEZ; + const = /A dw Bioe(w) T'(w) + const ,

where we see that in the original geometry the entanglement temperature So.(w) is given

(2.18)

by the inverse of the derivative of eq. (2.17) with respect to w.

In order to find the transformation of the bi-local part, it is necessary to understand
how the bi-local operator in eq. (2.5) transforms under conformal mappings. In complex
coordinates, the holomorphic bi-local operator takes the form

(g, ¢) = 5 [ (€0(Q) ~ ¥ (O] (219)

Since the fermions v, are primary fields of conformal dimension (,0), under the con-

2
1/2
formal mapping £(z) they transform as ¥(z) = (%) / ¥(&(z)) (and analogously for the



ay by a2 by £(w) = e%ﬂw

Figure 1. Conformal mapping from the infinite cylinder of circumference 5 described by the
2w

coordinate w to the plane, &, using the transformation &(w) = e # . The segments [a1, b1], [az, bs]

are mapped to the branch cuts on the left figure.

anti-holomorphic part). Replacing this transformation in eq. (2.19) of the bi-local field, we
find that in the original geometry it becomes

T (z,w) = €(2)/2 €' (w) 2 TP (E(2), () - (2.20)

Using the transformation of the bi-local operator in the entanglement Hamiltonian in
eq. (2.16), we obtain for the holomorphic part

oL Tew).6,)
e ) —&(Ty)  Oea(E(y)

By O . 2 1 (5,) 2 T (w0, )

= [ g s &) 1z<wp> (2.21)
wé-/(w 1/2€I( )1/2 Tbl w wp 1/2€I( )1/2 . bl i

= e = Sy Gy ety P T )

Putting together both the local and the bi-local components, we find that the holomorphic
entanglement Hamiltonian in the original geometry takes the form

w)!/? (“713)1/ g ~ bl ~
K= / dw froc(w) T(w) + / dw Bioo(@p) T (w, @), (2.22)
— &(wp)

and an analogous result can be also derived for the anti-holomorphic component. We re-
mark that the expression of K4 in eq. (2.22) for multiple intervals under a generic conformal
mapping to the complex plane is a novel result of this manuscript. In order to use the result
of eq. (2.22) for the finite temperature case, we recall that the cylinder is mapped into the
plane under the transformation &(w) = e%ﬂw, as shown in figure 1. In particular, at the
time ¢ = 0 in which we are interested in, the holomorphic and anti-holomorphic coordinate
w coincides and the holomorphic and anti-holomorphic parts differ only in the operator.
Substituting this mapping in eq. (2.17), we reproduce the expression for z(z; ) at finite
temperature reported in eq. (2.11), which gives the entanglement temperature Sioc(x; 5) in
eq. (2.12). Regarding the bi-local part in eq. (2.21), the weight function becomes

@) Ty Pl
g(w) _ §(u~]p) Bloc(wp) - e%rw B 62[?1% BIOC( ) - gsinhﬂ—(wgwp) ’ ( . )

which is also in agreement with eq. (2.14), as expected. Therefore, we have used an
alternative path to provide the results for the entanglement Hamiltonian of a disjoint set



of intervals on the infinite cylinder. We stress that we find instructive to give this derivation
here because we will use it also to evaluate the thermal twisted negativity Hamiltonian,
which we introduce in the following section.

3 Finite temperature negativity Hamiltonian

In this section, we present the main analytical result of this paper, which is the field-
theoretical prediction for the negativity Hamiltonian on a torus. After recalling the def-
inition of the negativity Hamiltonian for fermionic systems, we review the construction
introduced in [31, 32] for its computation and we then extend it to the finite temperature
case, showing two explicit examples. In particular, we find that in some cases the structure
of the negativity Hamiltonian is more local than the one of the corresponding entanglement
Hamiltonian.

3.1 General definitions

Let us consider a subsystem A = A;UAs. As mentioned in the introduction, the negativity
Hamiltonian N4 in (1.7) is defined as the logarithm of the partially transposed reduced
density matrix p?;l in (1.5), where we perform a transpose operation only in A;. The def-
inition for such operation reported in eq. (1.5) is appropriate for bosonic systems, but it
turns out to be ill-suited for fermions: while the partial transposition of Gaussian bosonic
states is still a Gaussian state, due to the anti-commutation relation, this is not the case
for a fermionic one [42, 43|, and this makes the computation difficult even for Gaussian
states [44-46]. For this reason, in [47-51] a more appropriate definition for fermionic sys-
tems has been introduced and the computational advantage one can gain is so remarkable
that it has been employed in several contexts (see e.g. [52-58]). In order to motivate this
definition, let us remark that, in a bosonic system, the partial transposition is equivalent
to a partial time-reversal or a mirror reflection in phase space [26]. To see that this is
indeed the case, we can consider a bosonic coherent state [o) = ¢’ |0). On this state, the
time-reversal transformation acts simply as the conjugation |a) — |a*) [26], therefore the
relative density matrix goes into its own transpose

@) {al — Ja) (@*| = (la") {a])". (3.1)

For fermionic systems, the two transformations are not equivalent anymore. Under time-
reversal, a fermionic coherent state |¢) = e~ 0, (€] = (0| e~ transforms as [47]

1€) (€] — &) (i€l (3.2)

which is different from the transposed density matrix because of the imaginary factor i. In
light of this, one can define the partially time-reversed reduced density matrix pil, obtained
by acting with eq. (3.2) only in A;. This operation provides the fermionic logarithmic

= log Tr y/ pﬁﬂpljl , (3.3)

although the spectrum of pil is not real in general [48].

negativity £ as
E =logTr ‘pﬁl




An alternative definition for the fermionic partial transpose, called twisted partial
transpose, has been introduced in [48] as

Pt =it (=), (3.4)

where Fy, = > c4, n;j is the number of fermions in the transposed subsystem A;. This
new operator has only real eigenvalues and the logarithmic negativity given by [48]

£ =log Tr|p'f, (3.5)

is a measure of the negativeness of the eigenvalues, exactly as for the bosonic partial
transpose. In this sense, the twisted fermionic partial transpose has a more transparent
interpretation of the fermionic negativity and allows for the measure of mixed-state entan-
glement also from its moments, in full analogy with the bosonic partial transpose [59, 60].

Following the definition of negativity in eq. (3.3), in [31] the fermionic negativity
Hamiltonian A4 has been defined as the logarithm of the partially time-reversed reduced
density matrix pf{‘l, with an appropriate normalisation

6—27TNA

Ry
A
ZA

p (3.6)
In order to compute this operator, in [31] it was introduced a physically motivated proce-
dure to construct the negativity Hamiltonian (3.6) from the knowledge of the entanglement
Hamiltonian, as we will review for the case of the ground state on the infinite line, i.e.,
on the plane. Moreover, in appendix A we also apply the resolvent method to rigorously
justify the construction of this operator.

We can also define the twisted negativity Hamiltonian starting from eq. (3.4) as

(3.7)

but in this section we focus only on eq. (3.6). We will come back to N4 in section 4.
Before ending this section, we review the result for N4 obtained in ref. [31] (and we
refer to the appendix A for more details). Let us consider a multi-component subsystem
A = [a1,b1] U ... U [an,b,] composed of n intervals and, to fix the ideas, let us reverse
only one interval A; = [aj,b;]; this case can be straightforwardly generalised to multiple
reversed intervals. For this configuration, the entanglement Hamiltonian K 4 is given by
egs. (2.7), (2.8) [18, 38]. Under the path-integral construction of [27, 28], the partial trans-
pose has the net effect of applying a spatial reversal in the transposed interval. This can be
understood in terms of CPT symmetry, since the time-reversal operation of egs. (3.1), (3.2)
is equivalent to a parity transformation followed by a charge conjugation. This is imple-
mented by exchanging the extrema a;, b; of the reversed interval in the expression of the
entanglement Hamiltonian [31]. Under this procedure, the function (2.8) becomes

2B(z) =log| - - bj‘ H - a% . (3.8)

~10 -



Moreover, the effect of the partial transposition on the Dirac spinor ¢ = (iR> is simply
L

Y(x) — i(z), ¥i(x) — Wi(x) for © € [aj,b;] [32] (see also [47] and appendix A). In
the following section, we will show how this construction can be applied to compute the
negativity Hamiltonian on the torus.

3.2 Negativity Hamiltonian on the torus

Starting from the result for the entanglement Hamiltonian in egs. (2.1), (2.3), by exchanging
the extrema a;, b; we can obtain the negativity Hamiltonian on the torus. We remind that
in the function z(z;3,L) in eq. (2.3), it appears a term proportional to x and to the
total length ¢ of the subsystem [33, 34, 37]. It is useful to write the subsystem length
¢as ¢ = Y ,(b; — ai), since in order to obtain the correct negativity Hamiltonian it is
necessary to exchange the endpoints of the reversed interval also in this expression. If we
call £1 = 37 c4,(bj — a;j) the total length of the partially reversed subsystem A; (for us,
¢ =bj —aj) and lo = >, 4, (b; — a;) the total length of As, this procedure gives

Ri,. — 1o _ﬁl(%(w_bjﬂq) (T (z — ai) |q) 2re
2" (x; 8, L) = log 01 (0 —ay)|a) i 015 @ =) |a) T (ba—t1) . (3.9

Analogously, eq. (2.6), that determines the position of the conjugate points, becomes

aiB L)~ Ml D)+ T (- 0) =0, ke, (3.10)

where again we have exchanged ¢ with ¢ — ¢1. For {1 # {5, the negativity Hamiltonian on
the torus has a non-local structure analogous to the one of the corresponding entanglement
Hamiltonian in eq. (2.1), containing infinite terms coupling different points

Na(B,L) = NX°(8,L) + N3(8, L)
— [ da B w5, 1) Too o) (3.11)
. @l(ijp)
+ Z :|:1 / dr 6loc xk;paﬁa ) ( l)
(p,k)#(0,0) = Slnh[ (:p — xkp + kL)}

where p € {0,...,n — 1}, k € Z and the function ©1(z) is equal to 1 only for x € A, 0
otherwise

™! (:17 xkp,t = 0)

1, ze€ A,
01(z) = ! (3.12)
0, T §7_£ Al.
In eq. (3.11) we have introduced the “negativity temperature”
1
(eF(z;8,L))"

and, analogously to eq. (2.1), the signs + and — correspond respectively to the Ramond

Ba(w;8,L) = (3.13)

and to the Neveu-Schwarz sectors. On the other hand, when ¢; = {5, the dependence on
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the integer index k in eq. (3.10) cancels out exactly and the solutions gﬁkRp with different

k collapse on each another, giving a striking qualitative difference with respect to the
entanglement Hamiltonian in eq. (2.1). In eq. (3.11), the bi-local terms with different
k and same p are then calculated in the same conjugate point iﬁf, leading to a bi-local
structure with only n — 1 bi-local terms

Na(B,L) = NY<(8,L) + N3'(8, L)
_ / dz B (x: B, L) Too () (3.14)

R
+Z/dxﬁloc p’ﬁ? )M @1(:1:)( )Gl(zgp)Tbl(l‘,i‘ﬁ,t:O),

where we have introduced the (dimensionless) functions gf(z) defined by the infinite series

Tl X (£1)F
B R sinh{% (z+ kL)} '

9% (2 8,L) = (3.15)

In the Ramond sector (+ sign), eq. (3.15) can be resummed to give

z z z—ip z+ig xL

98 8,0) =y (7 ) w1+ 5 ) + 0 (14 270 ) (-FHE) . a=cF,
(3.16)
where 1), denotes the ¢g-digamma function (see appendix B for its definition), while in the

Neveu-Schwarz sector (— sign) it reads

98z 8.L) = [wq( ) %( z>+¢qz<L£z) wq( +1>
(3.17)

_1_%2([/_22_15) _qu<L+2zL 15) _I_qu(W) _qu(_Z;—Liﬁ>].

To summarise, when the length of the reversed intervals is equal to the non-reversed one,

the negativity Hamiltonian recovers a mild non-local structure given by a finite number of
bi-local terms, while such a simplification does not arise in the entanglement Hamiltonian.

In the following we specialise to the case of n intervals lying on an infinite line at finite
temperature (i.e. the space-time is a cylinder), and then we present explicit examples for
the case of two intervals.

3.3 Finite temperature negativity Hamiltonian on the infinite line

The finite temperature negativity Hamiltonian on the infinite line can be obtained either
by directly exchanging the extrema of the reversed interval in the related entanglement
Hamiltonian reported in egs. (2.14), (2.11) or by taking the L — oo limit of the negativity
Hamiltonian in eq. (3.9), similarly to the limit reported in eq. (2.10). By applying the
exchanging procedure to eq. (2.14), we find that the function z(x; ) in eq. (2.11) reduces to

sinh T(-%)

B(x; 8) = log | — =) 11 (3.18)

i; sinh

w(x—b;) |’
B
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and the n — 1 conjugate points ZZ are found to be the non-trivial solutions of zR(w; p) =

D
zR(iﬁ; B). Thus, the finite temperature negativity Hamiltonian on the infinite line is

Na(B) = NE(B) + NR(B) (3.19)
1(z) (_1)©1(F)
—/ dxﬁloc x; 3) Too(z) + Z/dx BIOC acp, i (=) Tbl( Tk t—O)

2h) aa
E]

smh

where the negativity temperature S (z; 3) is given by

Ry L BT b) g e —ay)
Bloc(xaﬁ) - ZR/(J/‘;['}) = . lCOth ,8 J coth IB J
@) (e b 1 (3.20)
+ ; <coth 3 — COo thﬁ) ] ,

and the bi-local terms are calculated in the n — 1 conjugate points obtained as the non-
trivial solutions of zf(x;B3) = zR(a?ﬁ; B). As we also commented for the entanglement
Hamiltonian, the negativity Hamiltonian only contains n — 1 bi-local terms.

3.4 Tripartite geometry

As a first explicit example regarding the negativity Hamiltonian on the torus, we consider
a tripartite geometry made up of two intervals A; = [a1,b1], A = [az,be]. Let us call
f1 = by — ay the length of Ay and £5 = by — as the one of As, and let us reverse the interval
Aj. Then, specialising eq. (3.9) to this configuration we find

V1(F (2 = b1) |q) 91(F (= — a2) |q)

R
zYx; 8,L) =log | — + by —1t1), 3.21
(0,1 = losg D1(E (& —a1) [q) D (F (v — b2) |q) (2 ! (321
while the conjugate point equation in eq. (3.10) becomes
2
P2 B1) — SPGB L) + ;k (lo—01) =0, keZ. (3.22)

We stress again that for ¢; = /s, the non-local structure of the negativity Hamiltonian
drastically simplifies since the solutions of eq. (3.22) do not depend on the index k, leading
to a single bi-local term. We can now also consider some interesting limits of eq. (3.21).

Finite temperature on the infinite line. If the two intervals A; = [a1,b;] and Ag =
[ag, bo] lie on the infinite line, the function zf(x; B) in eq. (3.21) becomes

sinh T@201) gy m(@—az)
R g g
2 (x; B) = log , (3.23
sinhmg“l) sinh”(bfg_x) )
which gives the negativity temperature
Ié] m(x —ap) m(x —by) m(x — az) m(z —by)] "
Bt (2;8) = = | - coth———— + coth————~ + coth———=- — coth———=~
e E E E 3

(3.24)
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There is a single bi-local term, calculated in the conjugate point #%

3 QE%I sinhiﬂ(&ﬂ%l) + (e%ﬁal + e%b) efli=t2) _ (e%ﬁbl + e%r@) esl2=0)
it = o log
T

¢ 5 larthitazthy) (e%ﬂal s + e _ e%@) eFT_2 sinhiﬂ(@gel)
(3.25)
which is the only non-trivial solution of zf(x;8) = 2f(2f; 8). In particular, for ¢; = £y
eq. (3.25) reduces simply to #f* = a; + by — . The weight function of the bi-local operator
reads
Bige(®"; )
g sinh (7 (z — iR))’

BE(x: ) = (3.26)
As a further cross-check of our result, it is interesting to consider the zero-temperature limit
8 — oo of the negativity Hamiltonian. In this regime, we expect to retrieve the result for the
tripartite configuration in the ground state, which was obtained in [31] by directly applying
the exchanging procedure to the result in eqgs. (2.7), (2.8). Indeed, we see that taking the
limit B — oo of zf(x; B) in eq. (3.23), we reproduce the function on the plane found in [31]

(z —b1)(x — a2)
(z —ay)(by — )

Regarding the conjugate points, again we see that they are given by the single non-trivial

2B(x) = log (3.27)

solution of zf(x) = 2(%), with 2%(z) in eq. (3.27), finding the same conjugate point of [31]

_r_ (a1ba —braz)x + (a1 + bz)braz — (b1 + az)a1bs
Tt = , (3.28)
(a1 — bl + bz - CLQ)CC + b1a2 - a1b2

as expected. For this geometry, i.e. two intervals on the plane, we provide a rigorous
derivation of the result in appendix A.

3.5 Bipartite geometry

We now study a bipartite geometry on the torus where A; = [0,¢;] and the rest of the
system is As = [¢1, L]. Notice that, differently from the case studied above, now the union
A = A U Ay of the reversed interval Ay and As is not a proper subset of the circle, but
it covers all the system. Such a geometry can be obtained from the tripartite case of
section 3.4 by choosing a; = 0, by = a2 = ¢1 and by = L. Taking this limits in the function

2f in eq. (3.21), we obtain

- 2
2B(2: 8, L) = log [ (E (@ =) |a) ] + 2me (1 — %1>

01 (Exlg) 01 (E(x— L
Al w(E - 0] " 7 -
= 2log 1(3(1}_ U9 T (1 - %> :
1(Zlg) B L

where we have used the periodicity of the theta function ¥1(z — 7|q) = —v1(z|q), while

eq. (3.22) for the conjugate points becomes

R R(~R 2rk

M 6, 0) = @5, 1) + 5 (L=20) =0, k€. (3.30)
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The corresponding negativity temperature is provided by

B35, 1) = (331)

(z;8,L)"
We again remark that for /; = L/2 the dependence in k drops out from eq. (3.30), and
therefore all the infinite non-local solutions collapse into a single bi-local term with weight

given by
R _ xR
i 8.L) = B (@R 5, 1) ), (3:32)

where g¥ are given in eqs. (3.16) and (3.17), respectively. Let us stress that this represents
an important result of this manuscript, since a bipartite system at finite temperature is a
neat example of mixed state: in this case, the negativity is a genuine entanglement mea-
sure, differently from the entanglement entropy which mixes both quantum and thermal
correlations. Therefore, the result for the negativity Hamiltonian provides the first opera-
torial characterisation of a thermal state. Let us now consider some interesting limits also
for this bipartite geometry.

Finite temperature on the infinite line. Finding the theoretical prediction for the
bipartite negativity Hamiltonian on the infinite line is more subtle than in the tripartite
case of section 3.4 because now A; and Ay cover the full infinite line. The geometry of
interest is A; = [0, 4], A2 = [—00,0] U [¢1,400] and we reverse the interval A;. We can
obtain this geometry from a three interval configuration on the infinite line A; = [0, ¢4],
Ay = [—L/2,0]U[l1, 01+ L/2], taking then the limit L — oo [51]. Specialising the function
2(x; 8) in eq. (3.18) to this geometry and taking the L — oo limit we find (up to z-
independent terms)

| s e g | (BB G
— ™
o8 sinh 7 Sinh% " sinh 5 eft=e) (3.33)

= 2B(x; B) + const.

where now z%(x; 8) reads

sinh 7= | o
R B mr
: =21 + . .34
2w ) 8 sinh%fn B (3.34)

This form differs from the one in eq. (3.23) for the tripartite geometry, since now we find
a term proportional to x. From this result we see that the negativity temperature is

1 B w(x — ) rx]
@) "2 1+ cothT — COthﬁ . (3.35)

Since the geometry is made of three intervals, the equation for the conjugate points ob-

Bl (z;8) =

tained from eq. (3.18), with 2%(x; 8) = 2f(y; B) is a polynomial of third order in y and one
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has the trivial solution ¥ = z and also two non-trivial solutions y = Zf, that in the limit
L — oo read

R ﬂ ]_ 27y 47mlq 274y 274y 4mlq 27 (41 —x) 27
Ti=_—log|-|—4e F +e 7 —|—(e 3 —1) —6e 8 +e P +4e B +4e B =3
2n (£ —x) 2nx
+2 P +265—1> cschQ(m>],

R ﬂ 1 2mly 4mly 2mlq 2wl 4mly 2m (01 —a) 2w
T0=—log|-|—4e B +e B —(e B —1) —6e B +e B +4e B +4e B —3

27 (01 —x) T
2 B 42eF — 1) csch? (7;3) ] . (3.36)

The bi-local inverse temperature corresponding to each conjugate point Z is

fip)
(z — 24))

Bise
smh(

/‘\

BhiEE; B) = (3.37)

S

Another interesting limit we can study is when § — oo, i.e. the zero temperature case, in
which the state becomes pure. From eq. (3.35), the negativity temperature is given by

(x —l)x

TR (3.38)

51{;(:5; OO) =

which is half of the weight function of the entanglement Hamiltonian for one single interval
in the ground state in eq. (2.9). The limit of eq. (3.34) is
z

L
B(z;00) = 2log ’1 — ;1’ , (3.39)

and the two conjugate point in eq. (3.36) are

ff_{’glog Kl — x</tl/2,

4

2;:71@1’ T > 61/2, (3 40)
SR _ 225, r<l/2,

- B log|bzz x> 0)2.

In the limit 3 — oo, the conjugate point #! (#2) diverges as O(B) for z < £1/2 (z > (1/2),
and the bi-local operators calculated in this point do not contribute because the fermionic
field ¢(x) vanish as z — oo [32, 35]. In the other regions, instead, @f and % are joined
together to give the conjugate point % = 2£/(22 — ¢1) in which the fermion does not
vanish. Notice that, as expected, this conjugate point is precisely the only non-trivial so-
R(~R

lution of 2% (x;00) = 27 (#F; 00) with 2%(x;00) in eq. (3.39). We can explicitly compute
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the weight functions of the bi-local operators as

= |z[ (61 —2)
(@ 8) _{g%(gxl_gl)v r<{1/2,
gsmh {%(w - :ﬁf)} ﬁ, x>101/2, G
AGE T < 01/2 '
loc( —aﬁ) _ 4(61—2x)° €T 1 5
gsinh {%(az jR)} ggéb}%ﬂ), x> 0/2.

As we can see, considering only the bi-local weights calculated in the region in which the
conjugate points in eq. (3.40) remain finite, the bipartite negativity Hamiltonian at zero
temperature is

Ny = NEe+ Ne (3.42)

‘oo (z—l)x [0 o e 6 bl zly
- de T () — . do— .
/_oo T g, Lholw) —i (/_oo /0 Tl )Y — 2w (”3 % — £1>

We remark that, although one of the imaginary bi-local operators of the negativity Hamil-

tonian does not vanish, as § — oo the state becomes pure and [p{", (p5)1] = 0 [42, 47].
As a consequence, we find

1 _ T 1 _ loc
PR (T = [pft| = ¢ TNA+NL) = ¢ 2mNRe (3.43)

The local part of the negativity Hamiltonian can be also rewritten as
1
NE© =5 (La, ® Ka, — Ka, ®1n,), (3.44)

where I[4, and [4, denote the identity operators on A; and Ag, respectively, and

L1 { — 0 7 S 7
0 61 —0o0 4 2 61
(3.45)
are the entanglement Hamiltonians of the interval A; = [0,4;] (K 4,) and of its comple-

ment (K4,). This result does not come as a surprise since a bipartite geometry at zero
temperature is a pure state and one recovers that [47]

Tr|pfit| = Tr(pY{?)2. (3.46)

In other words, for a pure state the logarithmic negativity is equal to the Rényi entropy of
order 1/2 defined in eq. (1.2).

4 Numerical analysis

In this section we present exact numerical calculations on the lattice in order to compare
them with our field-theoretical predictions. For Gaussian states, as those we are consider-
ing in this manuscript, it is possible to compute both the entanglement and the negativity
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Hamiltonian from the knowledge of the two-point correlation matrix restricted to the sub-
system A, Cy [15, 17, 61-66]. For lattice fermions at finite temperature on the circle, C'y
is known both for periodic and for anti-periodic boundary conditions [67, 68]. However,
we stress that, as it has been studied in the literature [32, 69-79], comparing the lattice
entanglement and negativity Hamiltonians with the analytical results is highly non-trivial.
Indeed, while the terms of the field-theoretical predictions are localised around certain
points (see, e.g. eq. (2.7)), on the lattice the Hamiltonians are more delocalised, and this
requires taking the continuum limit carefully. In this section, we first review how to re-
cover the lattice entanglement and negativity Hamiltonians and we explain how to take
the continuum limit of the lattice results. We then present numerical lattice computations,
showing their good agreement with our predictions.

4.1 Lattice entanglement and negativity Hamiltonians for free fermions

On a circle of L sites, let us consider the tight-binding Hamiltonian

H=—- Z {cgciﬂ + cZT_HcZ} , (4.1)

i

where the lattice fermions satisfy the canonical anti-commutation relations
B R el =1l = 4.2
{C“Cj} L {Cl’cj} {CZ’C_]} ) ( : )

and we impose either anti-periodic boundary conditions cy 11 = —ecy, cTL 1= —cJ{ or peri-
odic ones cr 1 = c1, cTL = CJ{. We can write down the Hamiltonian (4.1) in the Fourier

modes cg, c;rc and the dispersion relation of the tight-binding model (4.1) reads

2k

H = Ze(k) czck, e(k) =— cos——, (4.3)
k

where the allowed momenta k depend on the boundary conditions, i.e., in the Neveu-
Schwarz sector, the momenta are semi-integer

L 1 11 L 1
=t o o oy, — = N 4.4
S5y — 5 (N9) (@4
while they are integer in the Ramond one
L L
k:—§+17,—17071,,§7 (R) (45)

Notice that, when L is divisible by 4, in the Ramond sector there are two zero-modes corre-
sponding to the momenta k = :l:%. As discussed in [33, 34, 37, 80, 81], their presence is re-
sponsible for a non-local term in the ground state entanglement Hamiltonian. Choosing L =
(2 mod 4) (i.e. divisible by 2 but not by 4), there are no zero-modes in the Ramond sector,
while k = £L/2 correspond to two zero-modes in the Neveu-Schwarz sector. To simplify
the discussion, in the following we will focus on the case in which L is a multiple integer of 4.
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In terms of the energy (k) in eq. (4.3), the two-point correlation matrix takes the
form [51]

[NIES

27rikr/L

L 14 efek)

B 1 % eQﬂ'ikr/L
2

Q

|
Ik
=[]

7L
k=—3+

N} \

Since the finite temperature state of free fermions is Gaussian, we can write its reduced
density matrix in the subsystem A as [62]

1 —27
PA:7A€ 2K _ exp{ Zc hwca} (4.7)

where h; ; plays the role of the matrix kernel of the entanglement Hamiltonian 27K 4. For
Gaussian density matrices, h; ; is related to the two-point correlation matrix restricted to
the subsystem A, C4, via Peschel’s formula [15, 17, 61-64]

1 I4—Cy T4+ FA}
— = h=1 — | =1 P am— 4.8
" o4 54| = tog |14 (19)
where [4 denotes the identity matrix in A and we have introduced the covariance matrix
restricted to A
Fa=14 —2C,. (4.9)

By numerically computing eq. (4.8) using the correlation matrices in eq. (4.6), we obtain
the lattice entanglement Hamiltonian in both the Neveu-Schwarz and Ramond sector.

We stress that, due to the presence of the logarithm, the numerical computation of the
formula (4.8) requires that the eigenvalues of C4 are strictly included in (0,1). For this
reason, the numerical computation must be performed at high precision; in our study we
used both the software Mathematica and the python library mpmath [82], keeping up to
300 digits.

Peschel’s formula (4.8) can be generalised to compute the negativity Hamiltonian,

Lof a

too. As we explained at the beginning of section 3, the partial time-reversal pﬁ
Gaussian density matrix is still Gaussian, and this allows us to express the lattice negativity

Hamiltonian as

1 _
i 75 2mNa = exp{ Zc nwc]} (4.10)

where now the kernel 7;; is non-hermitian. We consider a two-interval configuration

A1 = [a1,b1], A2 = [ag,bs], even though the generalisation to a multi-interval geometry

is straightforward. Following [47], we write the blocks of the covariance matrix (4.9) as
1“541’1) 1‘\54172)

Ty = o poa | (4.11)

where (F(X’O) denotes ¢ € Ay, j € A¢. Under partial time-reversal in, e.g., the interval
?]
Aq, the covariance matrix changes simply because of an imaginary factor for every index
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belonging to the reversed interval [47]

—r{t —ir(?

, (rﬁl)T = . (4.12)
ir@h 2 vy 2

1,1) . (1,2
. —r{tirg?

The kernel of the negativity Hamiltonian 7; ; in eq. (4.10) is then related to the reversed
covariance matrix T in eq. (4.12) in a way analogous to Peschel’s formula (4.8) for the
entanglement Hamiltonian [48§]

T4+
n=Io At g (4.13)
Iy — T

Since we are dealing with Gaussian states, also the relation between the twisted partial

1

transpose pil in eq. (3.4) and pﬁ can be written as

~ Ia+TH

F=ATAp, (4.14)
]IA - FAl

where the matrix Uy = —I4, & 4, is related to the transformation (—1)F 41, Therefore,

the kernel of the twisted negativity Hamiltonian, 7, is given by

_ Ty + 5

=log| —32-Uyx 4.15

1=log| P U (4.15)

As we mentioned, a proper comparison between the field-theoretical prediction and the
lattice results requires a careful limiting procedure. To fix the ideas, we consider a config-
uration in which the field-theoretical entanglement Hamiltonian is local, such as a single
interval on the plane in the ground state reported in eq. (2.9) or at finite temperature in
eq. (2.15). The Hamiltonians in egs. (2.9) and (2.15) are completely local and proportional
to the energy density Tpg. In light of this, one could naively expect that the corresponding
entanglement Hamiltonian on the lattice would only have non-zero contribution on the first
sub-diagonals h; 41, hit1,;. However, as studied for the first time in [69, 70], this is not the
case: on the lattice, higher hopping terms which couple fermions at longer distances are
non-negligible and they must be included in order to recover the continuum limit. In the
next subsection we review how to carry over this limit, showing why more care is needed
for the case on the torus.

4.2 Continuum limit of the entanglement Hamiltonian

The key idea to take the continuum limit is to linearise the fluctuations of the lattice
fermion ¢; around the Fermi points +kr according to [70, 83, 84]

i~ Vs [ Mt (o) + () (4.16)

where s is the lattice spacing (which will be put s = 1 in our numerical calculations) and
we have introduced the continuous coordinate x = i¢s. To lighten the notation, from now

—90 —



on, we redefine the momenta & introduced in eq. (4.3) as k — k = 2k'w/(Ls), such that
krp = m/(2s) and we restore the lattice spacing s. The fields v, 1¢r are respectively the
left- and right-moving components of a massless Dirac fermion, which describes the scaling
limit of the tight-binding model in eq. (4.1).

Let us divide the entanglement Hamiltonian kernel h;; in eq. (4.7) in matrix blocks
(h(g’o)lj such that ¢« € A,,j € A¢. In order to recover the local term of the entangle-

2,

ment Hamiltonian, one needs to consider the diagonal blocks h(®?). Following [70], one
substitutes the linearisation in eq. (4.16) in the expression of the lattice entanglement
Hamiltonian in eq. (4.7), obtaining

W) eleirrtely a] ~sh7 e Bl (@) (s e T (@)vn(atrs)  (417)

+e1kp(21+rs)wz(x)wR(x_i_Ts)_i_efikF(2x+7“5)wz(x)wR((p—krs)—i—h.C.} ,

(0,0)

v.eirs @8 a function of the continuous variable
k)

where we expressed also the matrix element h
x. Since the massless Dirac field-theory presents conformal symmetry, one expects that in
the continuum limit s — 0 the right- and left-moving fermions ¥, ¥, will decouple. From
eq. (4.17) we can understand that the decoupling mechanism is due to the phases: the
terms proportional to the product of left- and right-movers are multiplied by a strongly

+ikp (2z+7s)

oscillating phase e and in the limit s — 0, these phases will average to zero,

leading to the decoupling between v1, and 1 [70]. Dropping the highly oscillating terms

and expanding in powers of s both the fields 1, ¥ and the matrix element hg(C virs We find
) (e + o] »
~s (h<a Dosyne 20 h> 2 cos(krrs) (V] (@) (2) + Vh(@)vr(a)) +
(4.18)

+shTh [cos(kws) r s 0 (V] (2)0r(2) + Wh(2)dn()) +
—isin(kprs)rs (w}é(a:) O (x) — w;rz(a:) 8x¢R(x)) + h.c.} :

We now plug the expansion (4.18) into eq. (4.7) and we promote the sum over the index
i to an integral over x. Integrating by parts the operator in the third row of (4.18), this

term cancels out with the one proportional to the derivative of the matrix element J,h in
the second row. In the second row, we recognise the number operator N (z)

N(z,t) =0l — thone — ) + ) (@ + )o@+ 1), (4.19)
while in the last row the energy density Tyo(z) defined in eq. (2.2). Thus, at leading order

in the lattice spacing, we find that the diagonal blocks of the entanglement Hamiltonian
can be written as [70]

S D [eleiss +clie] ~ [ do S Tl + @ N@]L - 420)
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Figure 2. Local effective temperature of the entanglement Hamiltonian for one single interval of
length ¢ = 50 in a system of size L = 100 at finite temperature § = 400. Due to the presence of
non-local terms, we introduce a cut-off, Rpyax in eq. (4.21) to recover the continuum limit (symbols).
The best agreement with the theoretical prediction in eq. (2.1) is obtained for Ryax = 3.

where we have introduced the weighted sums over the matrix elements [70]

S(z)=—2s Z r sin(kprs) h,(ig?zﬂrg ’ (4.21)
r>1
C%(z) = hg;’a) + 2 Z cos(kprs) hgi’g?H% . (4.22)
r>1

Let us compare eq. (4.20) with the field-theoretical predictions for the entanglement Hamil-
tonian on the plane in eq. (2.7) or at finite temperature in eq. (2.14). Identifying the terms
proportional to the energy density Tpo(z), in [70] it was verified that in the case of a
single interval, the sum S'°°(x) in eq. (4.21) correctly reproduces the prediction for the
local entanglement temperature fio.(z) both in the ground state (eq. (2.9)) and at finite
temperature (eq. (2.15)).

On the other hand, the term proportional to the number operator N(z) in eq. (4.20)
is expected to vanish at half-filling kr = 7. In this case, because of the particle-hole
symmetry, the correlation matrix presents a checkerboard structure, inherited by the lattice
entanglement Hamiltonian, which implies that eq. (4.22) is identically zero.

We are now interested in extending the analysis above to study free fermions
on a torus, i.e. at finite temperature and size. The derivation of [70] reviewed in
eqs. (4.17), (4.18), (4.20) relies on the fact that all the matrix elements in the diagonal
blocks contribute to the local term of the field-theoretical entanglement Hamiltonian (4.20).
However, we have observed that the field-theoretical entanglement Hamiltonian in eq. (2.1)

contains infinite bi-local terms, even in the case of a single interval. This implies that sum-
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Figure 3. Matrix plot of the kernel of the lattice entanglement Hamiltonian for one interval of
length £ = 100 on a torus of length L = 200 and inverse temperature 5 = 500 in the Neveu-Schwarz
sector. We see that besides the local part around the first sub-diagonal, there are bi-local terms cou-
pling different points, localised around the solutions Zj, of eq. (2.6) (red dashed lines) for k = 1,2, 3.

ming over all matrix elements S'°°(z) of eq. (4.21) gives the wrong continuum limit, since
we would be also including contributions that reproduce the bi-local terms of the entangle-
ment Hamiltonian. It is therefore necessary to introduce a maximum cut-off Ry, in the
sum in eq. (4.21), to only include the local contributions. We show this in figure 2 for the
local part of the entanglement Hamiltonian of one interval of length ¢ = 50 on the torus
with L = 100 and 8 = 400. As we vary the cut-off Ry .x, the agreement between the lattice
bi-local weight in eq. (4.21) and the theoretical prediction in eq. (2.1) worsens.

This non-local behaviour is also visible in figure 3, where we report the matrix plot
of the entanglement Hamiltonian kernel h obtained via eq. (4.8) for the case of a fermion
on a torus at temperature § = 500 and system size L = 200 with anti-periodic boundary
conditions. We see that besides the diagonal contributions, the matrix plot presents other
terms located in the position of the conjugate points given by eq. (2.6) for one interval.

In [75], the limit of the entanglement Hamiltonian was carried over also for the bi-local
terms of a multi-interval entanglement Hamiltonian. Using eq. (4.16) and again dropping
the strongly oscillating contributions, we get

P es ~ shD [ D3] (@) v (y) + R U0%] () n(y)
DT () () + e FE DT () ()]
= is sin(kp(j — i)s) h5? [0l (@) () — 0] () ve(y)]

+ 5 cos(kr(j — 1)s) 5™ [0 (@) vay) + vL (@) vr(y)] .

(4.23)

In the second-to-last row we recognise the bi-local operator T"(z,y) defined in eq. (2.5),
while the term in the last row is proportional to a different operator j°'(z,%) = j°!(z,y,0)
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with

| (k@ = ¥Ry — ) + vhly — hva(z — 1))

+ (vl @+ Ovely + 1) + v+ vr@ +1) |1,

N

i@,y t) =
(4.24)

which was already identified in [75].
In order to find the proper continuum limit, we now expand the field in position y
around the conjugate point Z,, keeping only the term at leading order in s, obtaining [75]

S ednlPe; o [ da [SM@) T @, 5y) + €M) P (a 3y)] (4.25)
i

where we have again promoted the sum over the row index ¢ to an integral over z and we
have introduced the sums [75]

SP(z) = Z sin(kp(j —1)s) hg}j’g), (4.26)
JEA2

CPlx) = Y cos(kp(j —i)s) b (4.27)
JEA2

If we now compare the limit of the off-diagonal blocks in eq. (4.25) with the bi-local terms
of the field-theoretical entanglement Hamiltonian (2.1), we see that the sum SP(z) in
eq. (4.26) needs to reproduce the bi-local weight, since they are both proportional to the
bi-local operator T?' (2.5). Analogously to what happens in the local case, we expect that
the sum CP!(z) (4.27) multiplying the new operator jP!(z) (4.24) vanishes, since such an op-
erator does not appear in the field-theoretical entanglement Hamiltonian (2.1). Also in the
off-diagonal blocks, at half-filling kr = 77, the checkerboard structure of the lattice entan-
glement kernel h implies that eq. (4.27) vanishes identically, simplifying the calculations.

4.3 Negativity Hamiltonian

In [32] it was argued that the limiting procedure of the lattice entanglement Hamiltonian
h; ; reviewed in the previous section is almost identical to the one of the lattice negativity
Hamiltonian 7; ; of egs. (4.10), (4.13). Indeed, the limit only depends on the expansion of
the lattice fermion of eq. (4.16), which is identical also for the negativity Hamiltonian. The
only difference is due to the presence of the imaginary factors i®1(®)(—1)©1(Z) in eq. (4.26).

This allows us to extract the negativity temperature from the lattice, in order to check
our predictions of section 3. The weight function of the local term can be read from
eq. (4.21), while the bi-local terms take different signs and imaginary factors in different
intervals. In order to compare the continuum limit of the lattice negativity Hamiltonian,
in the special case of two intervals, eq. (4.26) must be modified as follows

—iy>;sin(kp(j —i)s) 771(71]-’2), x € [a1,b1],

SP(z) = (4.28)
iy sin(kp(j —i)s) 03", z € [an, b].
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Figure 4. Benchmark of the analytical prediction for the negativity Hamiltonian of adjacent blocks
of equal length on the torus for a Dirac fermion. In the left panels, the symbols are obtained from
eq. (4.21) while the dashed lines correspond to eq. (3.13), rescaled by ¢; in order to show the
collapse for different sizes. In the right panel, we perform the same analysis for the bi-local part of
the negativity Hamiltonian in the same geometry. The symbols are obtained from eq. (4.28) while
the dashed line corresponds to the weight function in the bi-local term in eq. (3.16) and (3.17) for
Ramond and Neveu-Schwarz boundary condition, respectively.
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Figure 5. Matrix elements of the negativity Hamiltonian kernel 7 for two adjacent intervals of
equal size, £1 = ¢ = 100, in a system of size L = 300 and (inverse) temperature 5 = 300 with
Neveu-Schwarz boundary conditions. The left panel corresponds to the real local part, while the
right panel is the bi-local contribution. The dashed lines correspond to the only conjugate point
obtained by solving eq. (3.10).

Also for the negativity, at half-filling eqs. (4.22), (4.27) vanish identically. Now we can
study the continuum limit of egs. (4.21) and (4.28) to check the field theory predictions for
the negativity Hamiltonian, eq. (3.11), for two disjoint intervals at finite temperature and
size, in different regimes and both in a tripartite and bipartite geometry.
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Figure 6. Local (left) and bi-local (right) inverse effective temperature of the negativity Hamilto-
nian, rescaled with ¢; as a function of #/¢;. The geometry we consider is A = [1,¢1]U[¢1 +1, {1 +{5]
for different values of the ratio ¢1/¢o = 0.5,1,1.5. Here we fix the system size as L/¢; = 20 and we
rescale the inverse temperature 8 such that 5/¢; = 1/4. The data points are obtained by applying
eq. (4.21) (eq. (4.28)) in the left (right) panel while the dashed curves correspond to the prediction
in eq. (3.24) (eq. (3.26)).

In figure 4 we consider two adjacent intervals of equal length ¢; = {5, for several
values of /1 and system size L and for different values of 3, both with NS and R boundary
conditions. In the left panel we find that the sum S'°° over the higher hoppings is in perfect
agreement with the field-theoretical local effective inverse temperature in eq. (3.21). In the
right panel, we report a similar analysis for the non-local term of the negativity Hamiltonian
for the same geometry: we compare SP' in eq. (4.28) with the field-theoretical weight
function occurring in the bi-local term of the negativity Hamiltonian in eq. (3.14), finding
a good agreement. We stress that this geometry is quite interesting because the infinite
non-local terms of the negativity Hamiltonian collapse on each other and we recover a
bi-local structure, as we discussed in section 3.2. This is also clear by studying the matrix
plot of the kernel of the negativity Hamiltonian in figure 5 for two intervals of equal length,
{1 = ¢, = 100, L = 8 = 300, where the left panel corresponds to the real local part of
eq. (3.14) while the right panel describes the bi-local imaginary contribution. The structure
differs from the one for the entanglement Hamiltonian shown in figure 3 and the dashed
lines corresponds to the position of the single conjugate point.

In figure 6, we consider again two intervals for different ratios of the length f5/¢; =
0.5,1,1.5, with 8/¢; = 1/4. Here the system size is L = 20/, but since L > f, this
amounts to study a thermal tripartite geometry on the infinite line, whose analytical pre-
dictions are reported in eq. (3.19). Indeed, both the left and the right panels confirm
what we find analytically in eqgs. (3.24) and (3.26) for the local and bi-local terms of the
negativity Hamiltonian, respectively.

Before concluding the section, we want to check also the results for a bipartite geometry
found in section 3.5. In the top panels of figure 7, we consider a bipartition of a system of
size L into two intervals of equal length, ¢1 = o = L/2, at inverse temperature § = L. This
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choice is particularly convenient because from eq. (3.30) we can deduce that the infinite non-
local terms are suppressed. Both the local and the bi-local component of the negativity
Hamiltonian are in good agreement with eq. (3.31) and eq. (3.32), respectively. In the
bottom panels, we consider a different geometry, A = [—05/2,0|U[1, £1]U[l1+1,¢1+42/2] =
A1 U Ay U A, with £ = L — ¢1 and we perform a partial transpose operation with respect
to the middle interval Ay = [1,/¢;]. Since now A consists of three intervals, in the limit
L — oo, we have two conjugate points :iﬁ given by eq. (3.36). We can find the continuum
limit by studying

S (@) = (—)%2 ()% 3 sin(hr(i — i)s) 05, (0,0) € {(1,3),(2.3),(3,2)},
JEA;

(=) 2(@)%2 3 sin(kr(G —i)s) 05", (0,Q) € {(1,2),(2,1), (3, 1)},

jEAC

s (4.29)

We observe a good agreement with eq. (3.35) for the local part (left) and eq. (3.37) for the
bi-local weight (right).

4.4 Twisted negativity Hamiltonian

While for the entanglement and negativity Hamiltonians we presented both known and
novel field-theoretical predictions and we could compare them with the continuum limit
of the lattice results, for the twisted negativity Hamiltonian defined in eq. (3.7), there
are no field theory results. To avoid confusion with the notation, we stress that we define

the negativity Hamiltonian related to pil as N4 and the one related to pil as Ny.

1

The advantage of studying sz is that it is an Hermitian operator, so the logarithmic
negativity recovers its original meaning of measure of the negativeness of the eigenvalues.
Although we do not manage to derive its form theoretically, we perform a numerical study
on the lattice using the limiting procedure described in section 4.2. This allows us to
identify which operators appear in the continuum limit of the lattice twisted negativity
Hamiltonian and we can formulate a conjecture for the local weight functions in the case
of two identical intervals on the plane. We comment that this approach allows us to
identify all the operators appearing in N A, contrarily to the analysis done in [31], where

only the nearest neighbour negativity Hamiltonian has been considered.

4.4.1 Twisted negativity Hamiltonian on the plane

Let us first consider the twisted negativity Hamiltonian of the ground state on the infinite
line, i.e, on the plane. The geometry under analysis A = A; U Ay, A1 = [—£,0], A2 = [0, /]
consists of two adjacent intervals of identical length ¢, and we perform a partial transpose
operation on the first one, A;.

As we did for N4, the continuum limit of N, 4 is identical to the one of the entanglement
Hamiltonian described in section 4.2, since it depends only on the expansion of the lattice
fermion in eq. (4.16). However, differently from all the cases considered so far, we have
numerically checked that even at half-filling kp = g, the twisted negativity kernel 7
in eq. (4.15) does not present a checkerboard structure. For this reason, also the terms
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Figure 7. Top panels: local and bi-local weight functions of the negativity Hamiltonian in the left
and right panel, respectively. The geometry we are considering is a bipartition of a system of size
L into two intervals of equal length, ¢; = {5 = L/2, at inverse temperature 5 = L. The dashed line
corresponds to Neveu-Schwarz boundary conditions, while the solid line describes a system with
Ramond boundary conditions. The theoretical prediction are eq. (3.31) (left) and eq. (3.32) (right).
Bottom panels: same analysis as above, for the geometry A = [—£2/2,0]U[1,41]U[¢1 + 1,01+ £2/2],
with £o = L —¢; and As = [1,/;]. Tt corresponds to a bipartite case, where now we fix L > 3, such
that in the left panel we can use our theoretical prediction in eq. (3.35)(left) and eq. (3.37) (right).

proportional to the sums C'°¢(z) in eq. (4.22) and CP!(z) in eq. (4.27) have to be performed.
This is the first difference with respect to ref. [31], where the study of only the nearest
neighbour terms prevented them from finding the operator CP!(z). This also confirms that,
in order to recover the continuum limit correctly, a careful treatment of the long-range
hoppings has to be taken into account. Therefore, besides the energy density Tpo(x) in
eq. (2.2) and the bi-local operator TP (z, y) in eq. (2.5), the continuum limit will contain also
an imaginary local chemical potential term proportional to the number operator N(z) in
eq. (4.19) and a term proportional to the operator jP!(z,y) defined in eq. (4.24). Although
we cannot derive the form of the weight functions of these operators explicitly, we provide a
conjecture that very accurately matches numerical data on the lattice. Indeed, the twisted
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Figure 8. Benchmark of the analytic prediction for the twisted negativity Hamiltonian N. 4 for two
adjacent intervals of equal length on the infinite line. The symbols correspond to the numerical data
obtained using eqs. (4.21) and (4.22) for the top left and right panel, respectively, and eqs. (4.26)
and (4.27) for the bottom left and right. The solid lines are our analytical conjectures in eqs. (4.31)

(top left) and (4.32) (top right) for the local terms and in egs. (4.33) (bottom left) and (4.34)
(bottom right) in the bi-local part.

negativity Hamiltonian reads

N = [ da 62(w) Too(w) + 1 [ do i) N(a)

) (4.30)
+ / dz fo(z) T (2, 8) + i / dz fing () 1?2, %)
where the inverse negativity temperature Bf (z) is given by
B (2) = —— (4.31)
o) = SRy

with zf(z) given in eq. (3.8), i.e. its functional form is the same as for V4. Despite being
localised around the same conjugate point Z% in eq. (3.28) as the negativity Hamiltonian
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Figure 9. Same benchmark of the analytic prediction for the twisted negativity Hamiltonian N. A
as in figure 8 but at finite temperature. The geometry we consider is A = [1,£1]U[¢; + 1, £; + o] for
different values of the ratio ¢ /5 = 0.5,1,1.5. The system size is fixed as L/¢; = 20 and we rescale
the inverse temperature 8 such that 5/¢; = 1/4. The analytical predictions have been obtained by
doing a conformal mapping from the plane to an infinite cylinder of circumference 8 in eq. (4.37).

N4, the other weight functions are different and we report them here

fi(z) = le (1 . ;f) , (4.32)
~ 1 2
Po(@) = —\[1 = 4> (4.33)
1z 2
() = 7 5\1 = - (4.34)

The weight function of the number operator N(z) is the same that was conjectured in [31],

while the weight functions for 7% (z, #%) and j"'(x, Z®) are different and, we stress again,

in order to recover them, it is important to sum over all the elements of the kernel of the
negativity Hamiltonian, as done in eq. (4.26). We also benchmark the analytical predictions

from eq. (4.30) in figure 8. The good agreement between the lattice computations and
eq. (4.30) supports our conjecture.
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Our prediction for equal intervals can be mapped into a geometry with adjacent inter-
vals of different length using a Mobius transformation. For A = Ay U Ag, A1 = [a,b], A2 =
[b, ¢], the Mobius transformation

(z—=b)(c—a)l
(z=b)(a—2b+c)+2(b—a)(c—1b)’

maps A into the subsystem £(A;) = [—¢,0],£(A2) = [0,/], for which eq. (4.30) is valid.
In order to properly apply the transformation, we also need to consider the Jacobians

§(z) =

(4.35)

arising from the transformation of the fields. As discussed in section 2, to understand the
transformations of the fields it is convenient to pass to Euclidean time and consider, for
example, only the holomorphic component. Under this conformal mapping, the operators
appearing in eq. (4.30) transform as

N(z) = €'(2) N(£(2)),
TP (z,w) = €' (2)2 € (w) 2 TP (E(2), E(w)), (4.36)

P (zw) = ()2 € (w)'? 57 (E(2), € (w)),

1/2
where we have used that the fermions 1, 4! transform as ¢(z) = (%) / ¥(&(2)) (and
analogously for the anti-holomorphic part). Therefore, taking into account eq. (4.36) and
the Jacobians of the transformation, we obtain the following expression for the twisted

negativity Hamiltonian of two intervals of arbitrary length on the infinite line

Na = [ da (@) Too(e) +1 [ darji(¢(@) N(@)
(4.37)

+ [ e (o) | S w8 41 [ douate)y| S5 M),
where BE (z) = 1/0,2%(&(x)) with zf given by eq. (3.8). By doing another conformal
mapping &(z) — eF % in eq. (4.37), we can obtain the result for two intervals on the infinite
line at finite temperature, as shown in figure 1. We report a check of our conjecture in
figure 9 for different ratios of the length ¢5/¢; = 0.5,1,1.5, with §/¢; = 1/4 and L =
20/¢1. Beyond the good agreement, we observe that the weight function of the number
operator N(z) drastically changes: the linear behaviour in z found at ' = 0 becomes a
kink interpolating from 7 for z < ¢; to 0 for larger z. To summarise, starting from our
conjecture for the twisted negativity Hamiltonian for two intervals of equal size on the
infinite line, through a series of conformal mappings, we are able to find an expression also
for the finite temperature case, which is a concrete example of a global mixed state.

5 Conclusions

In this manuscript we have continued the analysis initiated in refs. [31, 32] about the
study of the negativity Hamiltonian, i.e. an operatorial characterisation of entanglement in
mixed states. The most relevant novelty introduced here is the study of the entanglement in
thermal states, which represent genuine examples of globally mixed states. Until now, the
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only configurations considered were non complementary subsystems at zero temperature.
Here, we studied the negativity Hamiltonian of free massless Dirac fermions on a torus, for
an arbitrary set of disjoint intervals at generic temperature. The structure of the negativity
Hamiltonian exhibits a pattern similar to the entanglement Hamiltonian found in the same
geometry in refs. [33, 34]: in addition to a local term, each point is non-locally coupled to
an infinite but discrete set of other points. However, contrarily to what happens for the
entanglement Hamiltonian, when the reversed and non-reversed subsystems have the same
length, the bi-local solutions collapse on each other and we find only a finite number of
bi-local terms, which couple each point only to another one in each other interval.

We also analysed in detail the negativity Hamiltonian in a bipartite configuration. If
the state is pure, the relation between the entanglement entropy and the negativity is well-
known [27] and we retrieve it here. If the temperature is different from zero, a bipartite
system is the first non-trivial example in which the negativity becomes essential to proper
detect the quantum correlations. Also in this case, we found an infinite number of bi-
local contributions, which reduce to one single bi-local solution only in the case of infinite
system size. Our analytical findings are supported by exact numerical computations in a
free-fermion chain.

Another main result of this manuscript is the negativity Hamiltonian computed from
the twisted partial transpose, cf. Eq (3.4). Through a careful numerical analysis, we iden-
tified the local and bi-local operators and their weight functions for two intervals on the
infinite line both at zero and finite temperature. It would be interesting to derive ana-
lytically the conjectured formulae for the twisted negativity Hamiltonian, e.g. using the
methods discussed in appendix A.

This study about the negativity Hamiltonian adds an important contribution to the
operatorial characterisation of the mixed state entanglement, but there is still much work
to do. For example, a challenging task is to exploit the mild non-locality of the negativity
Hamiltonian together with the Hamiltonian reconstruction methods already used in [85-87]
to reconstruct the negativity spectrum. Similarly, it is still an open problem to derive the
conformal negativity spectrum [88] from the negativity Hamiltonian, as instead done for
the entanglement spectrum in ref. [89]. Another interesting direction is the study of the
negativity Hamiltonian in higher dimensional systems, following what has been done for
the entanglement Hamiltonian [74]. Finally, it would be also interesting to study whether
one can define a notion of the modular flow [11, 90, 91] for the partial transpose reduced
density matrix and its eventual connections with the negativity Hamiltonian.

Acknowledgments

We thank Filiberto Ares, Pierre-Antoine Bernard, Michele Fossati and Francesco Gentile
for useful discussions. FR and PC acknowledge support from ERC under Consolidator
grant number 771536 (NEMO). SM thanks support from Caltech Institute for Quantum
Information and Matter and the Walter Burke Institute for Theoretical Physics at Caltech.

~32 -



A The resolvent method for the negativity Hamiltonian

In [18], the field-theoretical prediction for the kernel Hy4 of the entanglement Hamiltonian
on the plane in eq. (2.7) was obtained from the knowledge of the resolvent of the Green
function C4 restricted to the subsystem (see also [33, 34, 37, 80, 81, 91]). In this appendix
we show how to generalise the resolvent method of [18] to the negativity Hamiltonian in
the case of multiple intervals on the plane, confirming the validity of the construction of
refs. [31, 32] that we have used in section 3.

For our purposes, we recast the resolvent method in terms of the partially reversed
covariance matrix I’}jl. To fix the ideas, we present the calculation for chiral fermions.
Applying the partial reversal procedure in eq. (4.12) to the Green function we find

T o,9) = =P (00 010, (A1)

where the function ©1(z), defined in eq. (3.12), is equal to 1 only for x € A, 0 otherwise
and P denotes Cauchy’s principal value. Recall from the main text that the kernel of the
negativity Hamiltonian can be related via Peschel’s formula in eq. (4.13) to the reversed
covariance matrix F]}l. To apply eq. (4.13) in the continuum theory, we first consider a
single eigenvalue g of F}jl. For the entanglement Hamiltonian, in [18] it was used the fact
that the spectrum of the Green function is real and contained in [0, 1]. In the case of the
negativity Hamiltonian, we can use the knowledge that the eigenvalues of Fﬁl are contained
in the unit complex disc |g| < 1 [48], as depicted in figure 10. Then, Peschel’s formula for
the single eigenvalue can be rewritten using Cauchy’s theorem as
1 1
log[1 + g] —log[1 — g] _Tmfidz L—g Tty

where the branch cut of the logarithm is taken to go from —oo to —1. Since |g| < 1, the

} log(1+ 2), (A.2)

contour of integration C in eq. (A.2) can always be taken to avoid the branch cut (see
figure 10) and therefore can be deformed continuously to integrate along the branch cut
and on a small circle at infinity. Denoting the upper and lower branches of the complex
logarithm as log™ and log™ respectively, and using the fact that the difference of the two

branches is logt —log™ = 27i we find for every eigenvalue ¢ of F}jl
log[1 + g] — log[1 —g] = —— [ [ ! ! Mlo+(1+ ) —log™(1+2)]
— —g]=— z — z) — z
gll gl —logll —gl =5 = | dz|————||log g

(A.3)

o0 1 1
:f/ dz[ + ]
1 g—z2 g+z

Since this holds for every eigenvalue, it holds also for the operator, leading finally to the
expression for the kernel of the negativity Hamiltonian

1 T4+
NA(x7y) =—1Io [m
A=A

27
where we have introduced the resolvent of the partially reversed covariance matrix of

eq. (A1)

1 = —;ﬁ/loo d¢ [R(Gs2,y) + R(=C2,y)] (A.4)

1 1 i©1(@) ©1(y) -1
R(C;,y) [

Ry )| (A5)

iT T—y
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Figure 10. Representation of the contour of integration in egs. (A.2). The dashed line represents
the contour C around the poles (small black dots), while the wavy line denotes the branch cut of
log(1 + z).

Note that throughout this appendix, 27N 4(z,y) corresponds to the continuum limit of 7
defined in eq. (4.10).

In order to find the explicit form of the resolvent in eq. (A.5), we need to solve a
singular integral equation. By construction, the resolvent (A.5) satisfies

(G, 2) 170 z el(z)
Multiplying both sides by (_)191(3/)
—1)61(v) . :01(2)
CR(¢z,y) i910) 4 (11)77/ dz M = (_)191(1/) Sz —vy), (A7)
T zZ—

we see that eq. (A.7) has the form of a characteristic singular integral equation [92]

b(y) ¢(2)
a(w)ely) + 2P [ az 2L = (). (A.8)
in the unknown function ¢(y) = i®*WR((;2,y), with the identification a = ¢, b(y) =
(—1)91®) and f(y) = (-)i®*® §(x — y). Comparing eq. (A.7) with the analogous one for
the entanglement Hamiltonian in [18], we see that the most important difference is the
presence of the function b(y) = (—1)©1®) in front of the Cauchy kernel, which changes sign
if the interval is reversed. Now, we show that this function is precisely responsible for the
inversion of the extrema a;,b; of the partially reversed intervals in the expression of the
negativity Hamiltonian.
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To solve eq. (A.7), we introduce [92]
a(y) —bly) - (1O ¢ —1]C0NY
aly) +0(y) ¢+ (-1)0W {CJF J ; (A.9)

and the solution of eq. (A.8) will be expressed in terms of the function [92]

w(y) = \/a2(y) — b2(y eXP{’P/d log G(z }

1 (-1 (_.)eﬂ@
1
,0g€+173 dz =y

Yy—a
y—bj

— Zlog

JjeAL

e

is precisely the function in eq. (3.8), obtained by exchanging the extrema a;, b;

Z log‘y_a%

i€ Ao U bz

where 2%

of the reversed intervals in the expression of eq. (2.8). As we can see, the factor (—1)©1(2)
in the second row of eq. (A.10) is responsible for the exchange of the extrema in eq. (3.8).
The general solution of the characteristic singular equation (A.8) is [92]

-
a?(y) — b*(y)

which specialised to our eq. (A.7) gives
O1(y) - i91(2)
RiGiny) = T [ Cola )i - SIS D p [, M= ]

_ 1 oy L w) 1 ei@en)
12 [(5(:1: y) iww(z)P(x—y)l o

N i T [T |

If we compare the resolvent for the negativity Hamiltonian on the plane in eq. (A.7) with

=
S

)= [a(y)f(y) - W P/ dz (Z_f;')ziu(z)} : (A.11)

the one obtained in the context of the entanglement Hamiltonian in [18], we see that the
main differences are the presence of the imaginary factors i1(*)i{®1(%) and the substitution
of the function (2.8) with the one in eq. (3.8) where the extrema of the reversed intervals
are exchanged.

With the knowledge of the resolvent in eq. (A.12), we can finally obtain the kernel of the

negativity Hamiltonian by substituting it in eq. (A.4). Changing variables as s = log o1 +1
we find, formally
. 00 —is[zB(x)—2T(y) S0 _ R
Na(z,y) = —— /+ as L N erentn _ (=) = ")) 01@);01(0)
’ 27 J oo T —y x—y

(A.13)
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In the formal expression of the kernel N4(z,y), the Dirac delta is calculated in the solution
of the equation zf(x) = 2f(y). However, when dealing with the trivial solution y = =
which corresponds to the local part of the kernel, eq. (A.13) is proportional to the product
of distributions ¢ (x —y)/(z —y) with coincident singular support. As discussed in [18], such
an expression is ambiguous and it is necessary to regularise it. Following [18], the product
is the distribution 7" that satisfies the algebraic distributional equation (z—y)T = 6(x —vy),
whose solution is T = —0,0(x — y) + kd(x — y), where & is an arbitrary constant which
is fixed by requiring that the local part of N4 is hermitian [18]. For this reason, we find
it more convenient to explicitly antisymmetrise the kernel in the variables = and y, which
cancels the kd(xz — y) contribution.

We also use the fact that the function z# in eq. (3.8) has the property that it is
monotonically decreasing in the reversed intervals A; and monotonically increasing outside,
which implies for its derivative

(zR(g;))’ G

— (-1)01@ (zR@;)) =G (A.14)

Then, by replacing eq. (A.14) in the term of eq. (A.13) corresponding to the trivial solution
y = x we find

i [<—1>@1<y> o —y) _ (D)™ sy —a)
=y (R @)

NlOC(ZC, ) —_ _ -
e () vy (A15)

2
— 5[ 2280y — ) = Bl (@) 8,00 — )]

which, when plugged in the expression for the negativity Hamiltonian reproduces the local
part

Nige = /A dz /A dy T () N§° (2, 9) ¥ (y)

= [ e ili(@) |5 (0 @)ta) — T @00 @))]

(A.16)

The n — 1 non-trivial solutions y = Z}¥ of the equation 2% (y) = 2#(z) instead give rise
to the bi-local terms. Explicitly anti-symmetrising the expression in the variables x, y gives

Niay) — -t L5 [20=8) @) | ewen
2x-y 5 (zR(i“ﬁ))/‘ (zR(ﬂf))/‘

i . x . 7 ﬁ}(?c(jR) ~ (A17)
=32 [191( ()P BTE 8y - 7))

p=1 P

~R p

R (~R
_ 191(1/)(_1)@1(275)M 5z — ~R)] :
Yy — yp
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leading to the bi-local part of the negativity Hamiltonian

:/ dx/ dwa(x)Nﬁl(x,y)w(y)

| (A.18)
_ Z/d Bloc @1($)( )91(555) [_2 (@ZJT({L‘)¢(1‘§)—¢T(:Z‘1§)¢($))] :

This resolvent procedure could be analogously extended to the case on the cylinder or on
the torus considered in section 3. Therefore, we can formally justify not only the construc-
tion introduced in [31] to compute the negativity Hamiltonian on the plane, but also at
finite temperature or size, proving the correctness of the results found in this manuscript.

B Mathematical identities

We report here the main mathematical tools we have used throughout the manuscript. The
Weierstrass zeta function is defined by [93]

1 1 z

_ — 4+ 2. B.1
(@) +Z<z+A A+A2> B

S

It enters in the class of elliptic functions and it is quasiperiodic, i.e. it satisfies

((z + Pi) = ((x) +2¢(Fi/2), (B.2)

where P;, 1 = 1,2, are the fundamental periods. In the case of interest for us, P, = L
and P, = i. In order to prove the equality in eq. (2.4), we have used the following
representation of the Weierstrass zeta function through Jacobi functions

oy 2em 22((i8/2) w0 (Felq)
((2) = L3 3 +Lz91(%:n|q)' B3

For completeness, we also report here the definition of the Weierstrass sigma function used

in eq. (2.3)
o(@) =[] [(1 4 i) e—i+é<i)2] . (B.A)

Also the equality in eq. (2.3) can be proven by using the following property

L ez (zele) (B.5)

o) =z 3(0]a)

We also define the Jacobi theta functions 6 (z|u) [93]

% 9
01(u|q):: Z (71)k—1/2q(k’+%) 61(2k+1)u’ <B6)

k=—o00

which satisfies the following asymptotic behaviour in the limit 7 — 0

91 (ulg) ~ \/2_17 o—i(m?+4u?) fdnT sin(i) -9 (g) V2 e—ﬁ(ﬁﬂug) sinh<uﬁL) . (BT
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This expansion turns out to be useful to recover eq. (2.10). Finally, we remind here the
definition for the g—digamma function [94] used in egs. (3.16) and (3.17)

nT

— ¢
Wy(x) = —log(1 — q) +logq Dy 7
n=1

1 S q—nm
wq(x)_—log(q—l)—l—logq<x—2—21_q_n>. g>1
n=1

0<g<l1
(B.8)
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