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Abstract 

Taking advantages of the Pechukas-Yukawa formalism, our research explores the dynamic 

behavior of small-scale quantum systems ranging from 2 to 5 qubits with the presence of 

decoherence, specifically investigating the conditions that favor the system's occupation of the 

ground state. Inspired by the fundamental insights of Landau-Zener transitions which show the 

relation between anti-crossings and transitions among adjacent energy levels, our study 

leverages the Pechukas-Yukawa formalism to explore the manipulation of transition 

probabilities within quantum systems. Our research reveals that the transition probabilities 

between adjacent energy levels can be effectively modulated near the vicinity of anti-crossings 

by tuning the external controlling parameter λ. This shows a possibility of precise control of 

the occupation probability distribution of the quantum systems through the external control 

parameter. Through the PY formalism, we provide an explanation for the phenomenon occurred 

in our simulations that components of noise generally reinforce each other and point out the 

possibility that this mutually reinforcing effect can be reduced by changing the composition of 

the noise. In addition, we found a relation between the power spectral density of the expectation 

value of energy of the quantum system and its likelihood of transitioning from its current energy 

level, i.e., the broadening of the power spectral density is always associated with an increased 
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probability of a quantum system escaping from the current energy level, especially when 

initialised in an edge state (the ground or the most excited energy level). Systems initialised in 

edge states have a lower tendency to transit compared to those initialled in intermediate energy 

levels. This observation of the relation between the broadening of the power spectral density 

of expectation value of energy and an increased likelihood for the system to escape from its 

current energy level provides a new research direction about the influence of dynamical 

complexity of the system on its occupation probability distribution.  Moreover, since spectral 

analysis is considered as one of possible indicators of quantum chaotic behaviors, if combined 

with other diagnostic methods, our study can provide some help in future studies on the role of 

quantum chaos on the dynamics of quantum systems. Additionally, our results show that in 

some special cases, the external controlling field λ can drive the quantum system from the 

mixed excited states to the ground state with a high probability (exceeding 90%). And this 

staying in the ground state can be maintained for an extended duration (over 150 periods of λ). 

This is a discovery with promising implications for the design of adiabatic quantum computers. 

 

Statement: Chatgpt has been used to improve the language of this thesis. 
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Chapter 1: Introduction 

1.1 Background of Quantum Computing 

In 1972, the famous statement “More is different” was made by P.W. Anderson1, which sharply 

points out why the world we are living in has so many interesting phenomena, since it is not 

only the simple accumulation of elementary particles, but also the complicated combination of 

the fundamental parts, which is beyond our wildest imagination. 

This statement is especially suitable to describe the contemporary state of scientific research. 

As the number of questions have been asked grows, an exponentially increasing demand of 

greater calculating power emerges. As a result of this, a bottleneck in technological 

development appears due to the lack of capability to solve complicated problems within an 

acceptable time scale by the prevailing method, namely, classical computing. For instance, 

when simulating quantum computers, this lack of capability of classical computers is mainly 

due to the following difficulties: 

(1) Tremendous computer memories are required since tracking the probability density of all 

executable deployments in a large quantum coherent structure is a very time-consuming 

task which could cost thousands of years or even longer through classical computers2.  

(2) Exponential increase of computing power is necessary for simulating the time-dependent 

evolution of a quantum system with a classical processor, which is subject to error and 

becomes unrealistic unless proper approximations are used. However, approximations are 

normally only available for specific problems, and there are many limitations even for these 

specific problems3.  

(3) The exponential growth of computing resources simulating the evolution in the Hilbert 

space makes it the “Mission Impossible” for classical computers. Even the most advanced 

supercomputer in the world is incapable to simulating quantum systems with 50 or more 

qubits efficiently due to this difficulty4.  

Addressing the challenges mentioned previously, traditional computational methods may not 
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offer adequate solutions and a new approach different than classical computation is required. 

Fortunately, quantum computing, an emerging field in modern physics, shows promise as a 

potential avenue for overcoming these issues.  

 

Unlike its classical counterpart, quantum computers, leveraging their intrinsic property of 

quantum superposition, excel naturally at performing quantum simulations, tasks where 

classical computers face significant limitations. This capability stems from the ability of 

quantum bits (qubits) to exist in multiple states simultaneously, unlike classical bits which are 

strictly binary (0 or 1). More specifically, when multiple qubits become entangled, the 

computational power grows exponentially: a system of 𝑁 entangled qubits can simultaneously 

represent 2𝑁 distinct states. This exponential scaling is what gives quantum computers their 

remarkable potential for complex simulations and problem-solving 5 . The exponentially 

growing information required for solving complex problems can therefore be stored and 

manipulated through quantum superpositions of the qubits without occupying large physical 

computing memory6.  

 

This extraordinary concept of quantum computing (Quantum computation, for short QC) was 

originally proposed by Benioff about 4 decades ago, in the early 1980s with the quantum Turing 

machine7. Two years later, in 1982, Feynman demonstrated that classical computers can only 

imitate quantum mechanics, but quantum computers are necessary if people are seeking a way 

to simulate quantum mechanics rather than imitate it8. 

 

However, the capabilities of quantum computing extend far beyond simulating quantum 

mechanics. 

In fact, over the past 4 decades, quantum information theory and quantum computing have 

played important roles as the rising stars in many frontier research directions including but not 

limited to optimizing traffic flow 9 , pharmaceutical designing 10 , the deciphering of 

cryptosystems11 and financial portfolios12. A growing number of scientists recognized that with 
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large-scale quantum computers with practical efficiency and error tolerance, some problems 

which are infeasible for classical computers become solvable 13. 

 

Although Feynman proposed the idea of a quantum computer in 1982 with the aim of 

simulating quantum mechanics, seven years later, in 1989, Deustch proposed an idea of 

designing a universal quantum computer: the gate model (also called the circuit model), which 

has been widely adopted as the “standard” model later by physicists 14 . In 1996, Lloyd 

demonstrated that a quantum coherent structure consisting of well-designed qubits. This 

structure was initially thought to be a universal quantum simulator, meaning it could be 

prepared in a specific way and have unitary quantum gates implemented on it15.  

 

By coding the evolution of the computation through the whole Hilbert space into a sequence 

of unitary operations which constitute the quantum logic gates and eventually form the multi-

level quantum coherent structure, the solution of the questions programmed in a standard model 

(i.e., the gate model) is encoded in a form of entanglement of its eigenstates. These 

entanglements are considered as fragile since it could be affected by decoherence easily16.  

 

To be described as “universal”, a quantum computer is supposed to be capable of solving 

different challengeable problems programmed properly in it (not limited to specialized 

problems only)17. Nevertheless, it was realized later that universal quantum computers are not 

necessarily feasible for realizing quantum simulation18.  

 

Compared to general-purpose simulators, quantum computers specifically designed for 

simulating smaller or less complex quantum systems may hold greater promise. This advantage 

stems from their ability to simulate the evolution of other quantum systems within the 

simulated environment. By leveraging a workable, smaller-scale quantum system as a tool, we 

can explore the behavior of more intricate quantum structures that are currently difficult or 

impossible to examine directly. This approach brings us closer to overcoming the challenges 
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of simulating complex quantum mechanical problems19.  

 

1.2 Adiabatic Quantum Computation: An Alternative Quantum 

Computing Paradigm 

Although the circuit models have the following advantages including a broader range of 

algorithms and established techniques20, they can be easily designed, analyzed, and simulated 

on classical computers21, they are relatively universal and flexible for encoding a wide range 

of problems22, quantum advantage can be established through scaling of large circuits23 and 

the current situation that building circuit-based quantum computers is highly focused by 

commercial applications24. But considering the fragility brought by decoherence whether from 

outside or inside, it is unlikely that a practical quantum computer through the “standard” model 

can be reached in the very near future25. 

 

However, an alternative approach known as adiabatic quantum computing (AQC) arose as a 

promising paradigm, based on following advantages, which present the key for us to reach that 

goal 26 . Compared to the circuit model, precise gate operations can be avoided in AQC, 

therefore,  physically implementing AQC could be easier27 and provides a possibility to avoid 

theoretical limits like those present in circuit models including error correction28 , unitary 

evolution29, Solovay-Kitaev bound, scaling attributes constrained by circuit depth30, limitations 

of architecture of circuits31 and time evolution focus of logic gates32. In addition, the intrinsic 

nature of AQC that the hardware stays in the ground state provides a robust protection against 

decoherence and unitary control errors, which are one of main difficulties in designing the standard 

model 33. 

 

Specifically, some problems are naturally more suitable for AQC algorithms. For examples, the 

traveling salesman can be mapped to finding the ground state of an Ising spin glass Hamiltonian 
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34,  factorizing numbers can be done using fewer qubits through adiabatic quantum algorithm35,  

simulation of quantum systems through AQC36, training Boltzmann machines and deep belief 

networks are benefited by quantum annealing37  and structure prediction of protein folding 

using adiabatic D-Wave implementations has shown promise38. 

 

The origin of adiabatic quantum computation (AQC) originated in 2000 with the purpose of 

solving instances of the satisfiability problem 39. The main theory forming the foundation of 

this approach is the adiabatic theory that is one of the most ancient theories in quantum 

mechanics: 

  

A non-degenerate quantum system remains in the instantaneous eigenstate when its 

Hamiltonian is evolving adiabatically, i.e., slow enough40. 

 

More precisely, a quantum coherent system will change its functional form to adapt to the 

adiabatic evolution if the external governing parameter is changing slowly enough. However, 

this adaptation is limited, the system will fail to adapt if the evolving speed becomes too fast. 

Here we have an interesting coincidence that we can take advantages of, for adiabatic quantum 

computation, we can use the time-independent method by direct diagonalizing the Hamiltonian 

to obtain the eigenvalues (this direct approach would fail if the system is changing too fast, 

however, we don’t have to worry about this under the context of AQC, since the pre-request of 

AQC is slow evolution). This is practically helpful to identify the error size of our simulation 

using Pechukas-Yukawa formalism, the details are presented in Chapter 2.  

                      

In this approach, the evolution of the quantum state is decided by a time-dependent 

Hamiltonian that evolves from its initial Hamiltonian to its final Hamiltonian, where the initial 

Hamiltonian should be easy to prepare such as a tensor product, and the solution of the problem 

should be encoded to the ground state of the final Hamiltonian, which is the output.  

Since in the context of AQC, the system has a high probability of being in the ground state after 



13 

 

 

evolving for a long enough time（but not 100% if within a finite time）, a balance between 

the time requested for calculation and the probability for the system to finally stay in the ground 

state must be considered carefully. To be considered as practically useful, the AQC should have 

a large enough probability to be in the ground state during a slow enough but relatively fast 

evolution from its initial Hamiltonian to its final Hamiltonian.  

 

Specifically, the time required for the adiabatic evolution depends on multiple factors. Though 

the energy gaps between higher excited states also play an important role, especially in complex 

quantum systems involving multiple qubits or intricate interactions. The primary determinant 

of the adiabatic condition is the minimum energy gap between the ground state and the first 

excited state, which is critical because it governs the likelihood of the system undergoing non-

adiabatic transitions during its evolution. How this gap could affect the speed to drop into 

ground state is a critical question for the design of adiabatic quantum computer41. It has been 

shown that if the minimal energy gap between the ground state and the first excited state is at 

least inverse polynomial, then the time demanded by adiabatic computation is polynomial42. 

 

Additionally, the evolution duration is influenced by the external controlling fields, including 

but not limited to the strength, configuration, and manner in which these fields modulate the 

system's dynamics. The design and precise manipulation of external fields are crucial to ensure 

the system remains in its ground state to avoid non-adiabatic transitions, thereby ensuring the 

correctness and efficiency of the computation. We present some examples of this in chapter 3. 

 

In short, we aim to ensure that the Hamiltonian of our AQC, defined as ( 𝐻(𝑠) =

(1 − 𝑠)𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑠𝐻𝑓𝑖𝑛𝑎𝑙  ), where s is a dimensionless parameter varying from 0 to 1 that 

controls the interpolation between the initial Hamiltonian 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and the final Hamiltonian 

𝐻𝑓𝑖𝑛𝑎𝑙 , evolves sufficiently slowly to allow the adiabatic theory to take over control of the 

process. Or 𝐻(𝜆(𝑡)) = 𝐻0 + 𝜆(𝑡)𝑍𝐻𝑏 if we would prefer to focus more on the role of the 

external controlling field, where 𝐻0 denotes the unperturbed part of the Hamiltonian, i.e., the 
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free Hamiltonian, 𝑍𝐻𝑏 represents the perturbed Hamiltonian and λ stands for the adiabatic 

parameter which controls the whole evolution of the AQC. 

 

Another point worth noting is that in 2005, a milestone showed that Adiabatic quantum 

computation is polynomial equivalent to the circuit model which had been considered as the 

standard quantum computation43. Therefore, adiabatic quantum computation was proved to be 

a promising alternative to the conventional circuit model since any quantum algorithm can be 

simulated by AQC in polynomial time, providing a practical approach to bypass the limitations 

of the circuit models44.  

 

 

1.3 The Main Challenges for Developing AQC 

Though adiabatic quantum computing is considered as a promising alternative to the gate 

model, there are several challenges among its theoretical frameworks, hardware, algorithmic 

development, and process verification, which exist as significant obstacles for realizing the 

practical quantum advantage that AQC promises. 

While taking advantage of the adiabatic theorem, AQC is also limited by this theorem, adiabatic 

algorithm must evolve slowly enough to remain in the ground state, leading to long run times 

on current hardware which could be considered as impractical. Therefore, finding an optimal 

balance between evolution time and probability for AQC to stay in its ground state becomes 

important45. 

Also based on the principle of the theoretical framework that the system should be in the ground 

state as much as possible during the evolution process, factors that may cause the system to 

leave the ground state such as noise and decoherence must be considered. The ways in which 

noise and decoherence affect the probability for the system to be in the ground state needs to 

be studied. And effective management of noise and decoherence is critical and challenging for 

hardware design since precise control is required for the system to stay in ground state46. In 
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addition, many optimization problems have complicated energy landscapes with multiple local 

minima. In strictly adiabatic processes, system has chances to get stuck in these local minima, 

especially if the energy barriers between them and the global minimum are high 47 . 

Consequently, diabatic annealing is considered as a more promising approach compared to 

adiabatic quantum annealing due to its capability to bypass the shortages for AQC such as very 

long running time, the inevitable transition caused by noise and decoherence and the risk of 

falling into local minima48.  

 

Besides, there are other challenges raises from the aspect of hardware design such as limited 

connectivity and scaling up system size. Among the many existing physical designs and 

architecture, especially those based on superconducting qubits or trapped ions, the engineering 

and physics layout restrict the interaction between qubits to only adjacent units, which limits 

the way for qubits to interact and to be coupled. This also brings a structural limitation on the 

design of algorithms, the strategies for encoding the problems should accommodate this limited 

connectivity49. Moreover, the issue of limited connectivity can be more serious as system scale 

up. Due to the limitation that qubits can only interact with their nearest neighbors, it will request 

additional steps to deliver quantum information across the qubit arrays if we want to implement 

complex multi-qubit gates that span a larger system, which will lead to more errors and longer 

computation time. Considering this and the complexity of comparing quantum algorithms with 

their classical counterparts, rigorously proving a quantum speedup over classical algorithms 

remains an open challenge50. Therefore, expanding to large numbers of qubits is extremely 

technologically demanding 51 . For AQC there are fewer known techniques for mapping 

problems52  and less intuitive methods to encode and embed the issues53  compared to gate 

model which further reflects the complexity of this algorithm design challenge. 

At last, it is also difficult to verify whether an AQC is running properly due to the hardness of 

validating adiabatic evolution maintained the ground state54. 
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1.4 How Our Research Addresses These Challenges 

Among the above difficulties, our research starts from the three main challenges faced by AQC, 

which are very long evolution time, noise and decoherence as well as exploring optimized 

operation. We focus more on how to improve the performance of AQC by increasing the 

probability for the system to be in the ground state and staying there longer. 

 

We simulated the dynamic evolution of 2 to 5 qubits system in the presence of white noise 

through the Pechukas-Yukawa formalism using an adaptive step length Runge-Kutta 4 

algorithm in MATLAB. We qualitatively studied the regimes for the impact of a time-varying 

external field which controls the evolution of the quantum systems and how phenomena in 

broadened power spectral density of the expectation value of energy of the target system, which 

is one of possible indicators of the occurrence of quantum chaotic behaviors, can affect the 

trending of the probability distribution. Therefore, we can identify which factors determine 

when the system is most likely to quickly fall into the ground state and stay there long enough 

to allow successfully implementation of the adiabatic algorithm. Our research can provide 

insights to help solve the above-mentioned challenges and therefore contribute to the 

development of AQC. 

1.5 What Have We Found 

The Pechukas-Yukawa formalism is both reliable and efficient for simulating the dynamic 

evolution of small quantum coherent structures (2 to 5 qubits) in the presence of decoherence. 

This method is not limited to simulating small quantum systems if some numerical difficulties 

are properly handled (they can be handled, details can be found in chapter 2). Some advantages 

and disadvantages of PY method in simulation are presented.  

 

In chapter 3 we show that by adjusting the parameters of the external field near the vicinity of 

anti-crossings, the flow of probability for the system to go up or down in energy levels can be 
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manipulated. It is worth noting that in our simulations, we found that quantum systems with 

any initial probability distribution, they have their corresponding parameters of the external 

field (amplitude, frequency) to allow the system having the maximum probability of falling to 

the ground state within a certain time. 

 

In addition, the magnitude of the spectral broadening of the power spectral density of the 

expectation value of energy of the system, which is one of possible indicators of whether there 

is an occurrence of quantum chaos during the evolution, is consistent with the degree to which 

the system deviates from the current energy level. Specifically, in the cases where a spectral 

broadening is presented, denoting a possibility of having quantum chaos, the ground state and 

the highest energy level have less escape propensity than the intermediate energy levels. 

Of particular importance for developing AQC is that, in some specific cases, we found that a 

system initially prepared in an excited mixed state can quickly fall to the ground state in a 

relatively short time and maintain a high probability to stay in the ground level for long time. 

Chapter 2: Pechukas-Yukawa Formalism 

2.1 Background of Our Research 

Our research stemmed from a challenging question: How can we verify that a device, purported 

to be a quantum computer, truly functions as one?  

 

How much it is working as a quantum computer (note that a part of it might lose its quantum 

characteristics due to decoherence)? In other words, if we are looking for a workable quantum 

computer, we must find an answer for the following question “how to test the quantumness of 

a quantum computer”55. It cannot be considered as an easy question unless we have a working 

universal quantum computer due to the difficulty of simulating a large quantum coherent 

structure through a classical computer, which is basically raised by the tremendous need of 

computational memory, i.e., to store the information encoded in N qubits, we would need 2𝑁 



18 

 

 

classical bits. The requirement for exponentially increasing computational power significantly 

obstructs this goal.  

To solve this critical problem, a more suitable approach for the simulation of an evolving 

quantum coherent structure is a must since we do not have a working universal quantum 

computer for now. 

 

Finding a classical method to simulate quantum computing is a stopgap measure in the absence 

of a universal quantum computer.  

 

To simplify this question “how to test the quantumness of a quantum computer”, we can 

consider starting with AQC, in which case, due to the principle of AQC, its “quantumness” can 

be equated to the probability that the system stays in the ground state. 

As a result of this, finding a feasible and precise classical method which is not only capable to 

simulate the level dynamics but also the occupation probabilities distribution, is the key to 

measure the “quantumness” of AQC.  

 

Given the fact that there is an established equivalence between adiabatic quantum computing 

and standard quantum computing, addressing the challenge of how to test the 'quantumness' of 

an AQC can be effectively translated into tackling the broader question of assessing the 

quantumness of a QC. This logical equivalence allows us to reframe the question of "how to 

test the quantumness of a QC" into a more specific inquiry within the context of AQC: "What 

is the probability that the AQC is in its ground state during the calculation?" By focusing on 

this particular aspect of AQC, not only is the problem of verifying quantum behavior in a novel 

way approached but also a concrete method for evaluating the quantum characteristics of 

quantum computing systems in general is provided. In another word, this approach leverages 

the principles of AQC to simplify and directly address the complexities involved in testing the 

quantumness of quantum computers. 

 



19 

 

 

The methodology used in our study takes advantages of the Pechukas-Yukawa formalism, 

which was originally introduced by Pechukas56 and further developed by Yukawa57. It utilizes 

the concept of mapping the level dynamics of a quantum coherent system to a one-dimensional 

fictitious gas, i.e., the Pechukas gas and provides a sophisticated approach for analysing the 

dynamics of quantum systems. We apply this methodology to assess the quantum state of small-

scale (2 to 5 qubits) quantum coherent structures and study the regimes how the external 

controlling field could decide the probability distribution of the systems. According to our 

simulation results, this approach shows reliability for simulating small-scale quantum systems 

(details present in Chapter 3) due to its comprehensive nature and effectiveness, which enables 

a direct and insightful analysis of the quantum behaviour of AQC, thereby offering a concrete 

strategy for evaluating the 'quantumness' of quantum computing systems. 

 

Therefore, the behavior of energy levels and corresponding eigenstates as parameters change 

is described by a set of classical equations of motion, i.e., the Pechukas equations (details in 

section 2.2). By applying this transformation, the evolving level dynamics of the quantum 

system can be efficiently simulated through classical computational means. 

 

Our research is based on the Pechukas-Yukawa Formalism to qualitatively investigate the 

behaviors of quantum coherent systems. Taking advantages of the Pechukas-Yukawa 

formalism and the direct diagonalizing method, we efficiently simulated both the level 

dynamics and the occupation probability distribution of small-scale quantum coherent 

structures ranging from 2 to 5 qubits (details are presented in Chapter 4). 

 

Before introducing the details of how the Pechukas-Yukawa (PY) formalism works, let us first 

explain why we choose PY formalism as our main research tool. 

 

In our simulations, though we found that the PY formalism is not as efficient as the direct 

diagonalization method even for small-scale quantum systems, it still has other advantages for 
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studying the behaviours of quantum systems whose Hamiltonians are controlled by an external 

field λ due to its unique theoretical framework.  By mapping the level dynamics of the target 

systems to the dynamics of a 1-dimensional fictitious Pechukas gas, PY formalism enables 

researchers to apply classical physics concepts to intuitively understand the behaviour of 

quantum systems. 

 

We conclude that the PY formalism is applicable to the study quantum systems controlled by 

external perturbations in following aspects: first, by mapping quantum energy levels into the 

motion of classical Pechukas gas particles, it intuitively reveals the energy level evolution 

process, including the crossing and avoiding crossing phenomena, and is particularly suitable 

for studying the gradual changes in energy levels of slowly changing system parameters; 

second, the PY formalism can effectively analyze the changes in parameter-dependent 

Hamiltonians, providing advanced mathematical tools for predicting and controlling the 

behavior of quantum systems; third, although the PY formalism is convenient for adiabatic 

processes, it also has great application potential in non-adiabatic processes, and can describe 

the changes in quantum energy levels and transition probabilities under rapidly changing 

external conditions; fourth, the PY formalism not only describes energy level changes, but also 

studies the evolution of quantum states with time, which is conducive to high-precision control 

in quantum computing, communication and simulation; finally, the PY formalism provides a 

different perturbation theory basis by using matrix elements of the precise instantaneous 

eigenstates of the full Hamiltonian. 

2.2 The Pechukas-Yukawa Model 

The Hamiltonian of an adiabatic quantum computer is presented as the following form below: 

                         𝐻(𝜆(𝑡)) = 𝐻0 + 𝜆(𝑡)𝑍𝐻𝑏           (1) 

where 𝐻0 represents the unperturbed part of the Hamiltonian, i.e., the free Hamiltonian, and 

𝑍𝐻𝑏 represents the perturbation. The adiabatic parameter which controls the whole evolution 
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of the AQC is denoted as λ. 

 

For example, for the 2-qubit system used in our simulation for chapter 4: 

𝐻0 = ∑  

𝑗

 Δ𝑗𝛿𝑗
𝑥 = Δ1𝛿1

𝑥 ⊗ 𝐼 + Δ2𝐼 ⊗ 𝛿2
𝑥

 = Δ1 (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

) + Δ2 (

0 1 0 0
1 0 0 1
0 0 0 1
0 0 1 0

)

 

𝛿𝑥 = (
0 1
1 0

) 

𝛿𝑧 = (
1 0
0 −1

) 

𝑍𝐻𝑏 = 𝜉𝑗(ℎ𝑗𝛿𝑗
𝑧 − Δ𝑗𝛿𝑗

𝑥) + ∑  

𝑗𝑘

  𝐽𝑗𝑘𝛿𝑗
𝑧𝛿𝑘

𝑧

 = ℎ1𝛿1
𝑧 ⊗ 𝐼 + ℎ2𝐼 ⊗ 𝛿2

𝑧 − (Δ1𝛿1
𝑥 ⊗ 𝐼 + Δ2𝐼 ⊗ 𝛿2

𝑥) + 𝐽12𝛿1
𝑧 ⊗ 𝛿2

8

 = ℎ1 (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) + ℎ2 (

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

) − Δ1 (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

) − Δ2 (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) + 𝐽12 (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)

 = (

ℎ1 + ℎ2 + 𝐽12 −Δ2 −Δ1 0
−Δ2 ℎ1 − ℎ2 − 𝐽12 0 −Δ1

−Δ1 0 −ℎ1 + ℎ2 − 𝐽12 −Δ2

0 −Δ1 −Δ2 −ℎ1 − ℎ2 + 𝐽12

)

𝐻0 = (

0 Δ2 Δ1 0
Δ2 0 0 Δ1

Δ1 0 0 Δ2

0 Δ1 Δ2 0

)

𝐻(𝜆) = (

0 Δ2 Δ1 0
Δ2 0 0 Δ1

Δ1 0 0 Δ2

0 Δ1 Δ2 0

) + 𝜆 (

ℎ1 + ℎ2 + 𝐽12 −Δ2 −Δ1 0
−Δ2 ℎ1 − ℎ2 − 𝐽12 0 −Δ1

−Δ1 0 −ℎ1 + ℎ2 − 𝐽2 −Δ2

0 −Δ1 −Δ2 −ℎ1 − ℎ2 + 𝐽12

)

𝑋𝑚 = ⟨𝑚(𝜆)|𝐻(𝜆)|𝑚(𝜆)⟩ = ⟨𝑚|𝐻𝐷|𝑚⟩
𝑉𝑚 = ⟨𝑚(𝜆)|𝑍𝐻𝑏|𝑚(𝜆)⟩

}

 |𝑚(𝜆)⟩ =  Eigenvectors (: , 𝑚, 𝑖)

 ⟨𝑚(𝜆)| = transpose( Eigenvectors (: , 𝑚, 𝑖))

 

 

We use the function in MATLAB to obtain eigenvector and eigenvalue, which is [𝑉, 𝐻𝐷] =

eig(𝐴), where diagonal matrix 𝐻𝐷 represent eigenvalues. Matrix V whose columns are the 

corresponding eigenvectors. So 𝐴 ∗ 𝑉 = 𝑉 ∗ 𝐻𝐷  and  |𝑚(𝜆)⟩  is the mth column of 

Eigenvectors at 𝜆. 

The Pechukas-Yukawa model (abbreviated as the PY model) benefits us mainly by offering a 
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practical approach to map the adiabatic evolution controlled by the adiabatic parameter λ of a 

perturbed quantum coherent structure onto the 1-dimensional fictitious Pechukas gas58.   

This mapping is considered as promising to be numerically cost-effective in addressing one of 

the major challenges in quantum computing study, namely the key question of "how to test the 

quantum properties of quantum coherent structures". The details can be seen in the works of 

Qureshi59. 

The Pechukas equation for the description of the level dynamics of a multi-qubits quantum 

coherent structure has the following form: 

  

   
𝑑

𝑑𝜆
𝑥𝑚 = 𝑣𝑚 ;         

           
𝑑

𝑑𝜆
𝑣𝑚 = 2 ∑

|𝑙𝑚𝑛|2

(𝑥𝑚−𝑥𝑛)3
 ;              

𝑚≠𝑛

 

                                                 
𝑑

𝑑𝜆
𝑙𝑚𝑛 = ∑ (

1

(𝑥𝑚−𝑥𝑘)2 −
1

(𝑥𝑘−𝑥𝑛)2)𝑘≠𝑚,𝑛            (2) 

The eigenvalue of the mth energy level is represented by the position of the fictitious gas 

particles 𝑥𝑚, 

While 𝑣𝑚 and 𝑙𝑚𝑛 denotes the velocity and angular momentum of the Pechukas gas particles.  

In Chapter 4 and 5, we showed that the PY formalism is not only particularly helpful for small-

scale quantum coherent structures (ranging from 2 to 5 qubits) with multi-levels of energy that 

are greatly entangled, but also extraordinarily convenient for qualitatively studying the regime 

of quantum chaotic behaviors. 

2.3 Stochastic Pechukas-Yukawa Formula and Occupation 

Numbers 

For the case of stochastic Pechukas-Yukawa model considering the presence of decoherence, 

i.e., noise, the Hamiltonian of a multi-qubit quantum coherent structure will have the following 

form where an additional part 𝛿ℎ denoting the randomness is included: 

𝐻(𝜆(𝑡)) =  𝐻0 + 𝜆(𝑡)𝑍𝐻𝑏 + 𝛿ℎ(𝜆(𝑡))                      
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(3) 

In Eq. (3), 𝛿ℎ represent the impact of noise to the Hamiltonian of the target quantum system 

and 𝛿ℎ should be a real number so the system can be simplified in our research.  

Thus, the PY method is extended to the generalized Pechukas-Yukawa formalism with an 

additional stochastic term denoting to the total influence of noise (internal and external) to 

simulate the quantum coherent system far from equilibrium in real cases considering the 

presence of decoherence. 

Stochastic Pechukas-equations60: 

𝑥̇𝑚 = 𝑣𝑚 + 𝛿̇ℎ𝑚𝑚,

𝑣̇𝑚 = 2 ∑  𝑚≠𝑛
|𝑙𝑚𝑛|2

(𝑥𝑚−𝑥𝑛)3
+

𝑙𝑚𝑛𝛿̇ℎ𝑛𝑚−𝛿̇ℎ𝑚𝑛𝑙𝑛𝑚

(𝑥𝑚−𝑥𝑛)2
,

𝑙𝑚̇𝑛 = ∑  𝑘≠𝑚,𝑛 𝑙𝑚𝑘𝑙𝑘𝑛 [
1

(𝑥𝑚−𝑥𝑘)2 −
1

(𝑥𝑘−𝑥𝑛)2]

+
(𝑥𝑚−𝑥𝑛)(𝑙𝑚𝑘𝛿̇ℎ𝑘𝑚−𝛿̇ℎ𝑚𝑘𝑙𝑘𝑚)

(𝑥𝑚−𝑥𝑘)(𝑥𝑛−𝑥𝑘)

+𝛿̇ℎ𝑚𝑛(𝑣𝑚 − 𝑣𝑛) +
𝑙𝑚𝑛(𝛿ℎ𝑚𝑚−𝛿ℎ𝑛𝑛)

(𝑥𝑚−𝑥𝑛)
.

              (4) 

It has the same structure as in Eq. (2), nothing else but additional terms to represent the effect 

of decoherence. If the situation is the ideal case without the presence of decoherence, then the 

above equations (4) can be reduced to equations (2). This can be seen as a limiting case when 

the decoherence term tends to zero. 

It should be noted that the stochastic Pechukas equation makes no assumptions about the nature 

of the decoherence, e.g., noise, which makes this method a general one and very convenient 

for the numerical analysis of stochastic quantum systems with various types of perturbations. 

 

Earlier, we introduced the Pechukas-Yukawa equations which express the dynamics of energy 

levels in small scale quantum systems. Nevertheless, more work is needed to link this approach 

to quantum reorganization of targeted quantum coherent systems. In another word, we want 

the occupation probabilities distribution of the quantum systems. 

 

Extension of the Pechukas-Yukawa Formalism is further reached for constructing a shortcut 

between the level dynamics and the quantum states of a coherent quantum system via the 
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occupation numbers which are dominated by the eigenstate expansion coefficients 𝐶𝑛(𝑡) 61, in 

which way the entity of quantum system can be studied further. 

 

To study the evolution of the occupation probabilities in an adiabatically evolving quantum 

system, we expand the system state in terms of the instantaneous eigenstates of the Hamiltonian 

H(t) as follows: 

                                                             |𝜓(𝑡)⟩ = ∑𝑛  𝐶𝑛(𝑡)|𝑛(𝑡)⟩                      

                              (𝐶1) 

For eigenstate coefficients for each fixed instant in time 

𝐶𝑛(𝑡) ∈ ℂ ，related to the occupation number 𝑁𝑛 by the following： 

                                                                      |𝐶𝑛(𝑡)|2 = 𝑁𝑛                                      (𝐶2) 

The evolution of 𝐶𝑛 associated with the eigenvalues of the state is obtained by 

𝐻(𝑡)|𝜓(𝑡)⟩ = 𝑖
𝜕

𝜕𝑡
|𝜓⟩

 = 𝑖
𝜕

𝜕𝑡
∑  𝑛  𝐶𝑛(𝑡)|𝑛(𝑡)⟩ = ∑  𝑛  𝐸𝑛(𝑡)|𝜓(𝑡)⟩

          

(𝐶3) 

Taking the derivative =
𝜕

𝜕𝑥
 using Leibnitz rule, we obtain 

𝑖
𝜕|𝜓⟩

𝜕𝑡
 = 𝑖 ∑  𝑛  𝐶𝑛(𝑡)|𝑛(𝑡)⟩ + 𝐶𝑛(𝑡)|𝑛̇(𝑡)⟩

                           = ∑  𝑛  𝐶𝑛(𝑡)𝐸𝑛(𝑡)|𝑛(𝑡)⟩                            
             

 (𝐶4) 

Applying ⟨𝑚(𝑡)|  on both sides and through linearity we obtain the dyranics of these 

coefficients through time with regards to the eigenvalues of the state  

        𝑖 ∑  

𝑛

𝐶̇𝑛(𝑡)𝛿𝑚𝑛 + ⟨𝑚(𝑡)|𝐶𝑛(𝑡)|𝑛̇(𝑡)⟩ = ∑  

𝑛

𝐶𝑛(𝑡)𝐸𝑛(𝑡)𝛿𝑚𝑛                             (𝐶5) 

Hence by evaluating the 𝛿 distributions and rearranging the expression we have the following： 
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𝑖𝐶̇𝑚(𝑡) − 𝐶𝑚(𝑡)𝐸𝑚 = −𝑖 ∑  𝑛≠𝑚 𝐶𝑛(𝑡)⟨𝑚(𝑡)|
𝜕

𝜕𝜆
|𝑛(𝑡)⟩𝜆̇    

            (𝐶6) 

In determining the evolution of ⟨𝑚(𝑡)|
𝜕

𝜕𝜆
|𝑛(𝑡)⟩ ，we have the following 

𝜕

𝜕𝜆
𝐸𝑛|𝑛(𝑡)⟩ =

𝜕

𝜕𝜆
𝐻(𝑡)|𝑛(𝑡)⟩                   (𝐶7) 

Applying the Leibnitz rule on both sides we obtain 

𝐸𝑛(𝑡) (
𝜕

𝜕𝜆
|𝑛(𝑡)⟩) + |𝑛(𝑡)⟩ (

𝜕

𝜕𝜆
𝐸𝑛(𝑡))

=𝑉(𝑡)|𝑛(𝑡)⟩ + 𝐻(𝑡)
𝜕

𝜕𝜆
|𝑛(𝑡)⟩

                (𝐶8) 

Acting on both sides with ⟨𝑚(𝑡)| and through linearity such that 𝑚 ≠ 𝑛 ，it reads 

𝐸𝑛(𝑡)⟨𝑚(𝑡)|
𝜕

𝜕𝜆
|𝑛(𝑡)⟩ = ⟨𝑚(𝑡)|𝑉(𝑡)|𝑛(𝑡)⟩ + 𝐸𝑚(𝑡)⟨𝑚(𝑡)|

𝜕

𝜕𝜆
|𝑛(𝑡)⟩     (𝐶9) 

Hence  

                      [𝐸𝑛(𝑡) − 𝐸𝑚(𝑡)]⟨𝑚(𝑡)|
𝜕

𝜕𝜆
|𝑛(𝑡)⟩ = ⟨𝑚(𝑡)|𝑉(𝑡)|𝑛(𝑡)⟩            (𝐶10) 

By applying the Pechukas equations to determine  𝑙𝑚𝑛  as described in Eq.(4)， we are able 

to determine the evolution ⟨𝑚(𝑡)|
𝜕

𝜕𝑡
|𝑛(𝑡)⟩ entirely using level dynamics 

(𝑥𝑛 − 𝑥𝑚)⟨𝑚(𝑡)|
𝜕

𝜕𝜆
|𝑛(𝑡)⟩ =

𝑙𝑚𝑛

𝑥𝑚−𝑥𝑛
                         (𝐶11) 

Thus,                                        ⟨𝑚(𝑡) |
𝜕

𝜕𝜆
| 𝑛(𝑡)⟩ = −

𝑙𝑚𝑛

(𝑥𝑚−𝑥𝑛)2
                           (𝐶12) 

          𝑖𝐶̇𝑚(𝑡) − 𝐶𝑚𝑥𝑚 = −𝑖𝜆̇ ∑  𝑛≠𝑚 𝐶𝑛
𝑙𝑚𝑛

(𝑥𝑚−𝑥𝑛)2                    (𝐶13) 

 

    𝑖𝐶̇𝑚(𝑡) − 𝐶𝑚(𝑡)𝐸𝑚 = −𝑖𝜆̇(𝑡) ∑  𝑛≠𝑚 𝐶𝑛(𝑡)⟨𝑚(𝑡)|
𝜕

𝜕𝑡
|𝑛(𝑡)⟩  

            (𝐶14) 
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Use (𝐶12) , (𝐶13) and (𝐶14), we have 

𝑖
𝜕

𝜕𝑐
𝐶 = (𝑋 + 𝑖𝜆̇

𝑙𝑚𝑛

(𝑥𝑚−𝑥𝑛)2)
                       (𝐶15) 

Where  

                           𝐶 = [𝐶1(𝑡) ⋯ 𝐶𝑛(𝑡)]𝑇                              (𝐶16) 

and the X represents the diagonal matrix62: 

    𝑋 = diag (𝑥1 … 𝑥𝑛) ,                     (𝐶17) 

and let  

                              𝑝𝑚𝑛 =
𝑙𝑚𝑛

(𝑥𝑚−𝑥𝑛)2
 and 𝑝𝑚𝑛 = 0 when 𝑚 = 𝑛. And 𝑃 = 𝑝𝑚𝑛 . 

Finally, we have the following differential equation for our simulation for the occupation 

numbers: 

𝑖
∂

∂𝑡
𝐶 = (𝑋 − 𝑖𝜆̇𝑃)𝐶                       (𝐶18) 

On the right-hand side of Eq. ((𝐶18), X is diagonal, and P indicates the skew-Hermitian and 

can be recognized as diagonalizable since 𝑙𝑚𝑛 = −𝑙𝑛𝑚
∗ . 

2.4 Standard Landau-Zener Transition Formula 

When the two adjacent energy levels are approaching each other (forming anti-crossings) as 

the system is driven by the external controlling field, there is a probability for the system to 

transit between these two adjacent energy levels through a process named as Landau-Zener 

(LZ) transition. As a result of this, it is important to study the anti-crossings if we want to know 

the conditions for the LZ transition to occur. And in turn, the LZ model can offer a quantitative 

tool to calculate the possibility for such transition between these adjacent energy levels. 

In practice, anti-crossings and the LZ model are often used together to manipulate the dynamic 

behavior of quantum systems under the control of external perturbation. Understanding anti-

crossings can benefit design strategies to prevent unwanted quantum state transitions. And the 

LZ model can provide an approach of precise manipulation of the transition rate between the 
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adjacent levels of an anti-crossing. 

 

It has been demonstrated63 that the PY method is significantly suitable for the analysis of the 

Landau-Zener transitions, for example, for the case where degeneracies occur, i.e., 𝑥𝑚(𝜆∗) =

𝑥𝑛(𝜆∗), level crossings occur and relative angular momentum tends to 0 for the two adjacent 

levels 𝑙𝑚𝑛(𝜆∗) =0 at avoided crossing at 𝜆∗ , however, it is impossible to draw the same 

conclusion from the converse direction in general. 

 

The main reason for the occurrence of anti-crossings is the presence of non-diagonal (non-local) 

terms in the Hamiltonian of the system, which leads to couplings between system energy levels. 

In some cases, this kind of coupling can lead to anti-crossings and causes transition between 

energy levels. Near the intersection of these energy levels, the energy level difference (spectral 

gap) of the system may be significantly reduced, which has a significant impact on the 

performance of adiabatic quantum calculations, because smaller energy level differences will 

increase the possibility of non-ground state excitation during adiabatic evolution. properties, 

thus affecting the accuracy and speed of calculations64. 

 

The degree of likeness to have the Landau-Zener transition for an adiabatic regime without any 

impact from the external decoherence can be measured by the probability distribution in the 

following form65:  

  𝑃𝐿𝑍 = 𝑒𝑥𝑝(−Δ𝑚𝑖𝑛
2 4𝜋|〈𝑚|𝑍𝐻𝑏|𝑛〉|λ

•

)               (11)  

The time required for finishing such transition for a level(avoided) crossing is denoted by        

𝜏𝐿𝑍 = Δ𝑚𝑖𝑛/λ
•

 , which refers to the time length when the adjacent two levels interacts within 

distance γ , with Δ𝑚𝑖𝑛 , for level crossings the transition finish instantly. 

 

In the case of a level crossing, the transition time 𝜏𝐿𝑍 turns into zero, where a strong repulsion 

arises due to the interaction between the two local levels involved in the anti-crossing, which 

causes the transition time to occur instantly. 
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Due to the assumption of the standard LZ crossing model that the level crossings are 

independent of each other, the interaction of all other levels except the two nearest levels, i.e., 

the crossing between several levels, can be ignored in the statistical scenario, so only the 

adjacent levels involved in the crossings are considered, specifically at the points where these 

crossings occur. 

 

Specifically, the LZ transition model will be especially convenient for the analysis of the 

probability exchange near an anti-crossing if the anti-crossings are isolated to each other 

because this meets the precondition of the LZ model that only the interactions between the 

local two levels are considered.  

Consider a case that two symmetric avoided crossings are taking place very closed to each 

other, i.e., the centers of the anti-crossings are 𝜆∗ and 𝜆∗∗ = 𝜆∗ + 𝛿, with their transition times 

defined as 𝜏𝐿𝑍 = 2𝜉  and 𝜏𝐿𝑍
′ = 2𝜉′  respectively. Recall that the transition time has such a 

form 𝜏𝐿𝑍 = Δ𝑚𝑖𝑛/λ
•

 . For the case that the quantum system is evolving adiabatically, it can be 

inferred that the requirement for these two avoided crossings to be independent from each other, 

should have the relationship (𝜆∗∗ − 𝜉′) > (𝜆∗ + 𝜉) , which enlightens us a property that the 

transition times of these two avoided crossings should have no overlapping though the two 

anti-crossings are locating closely to each other. Thus, to implement the LZ transition model 

we should have such inequality (𝜆∗∗ − 𝜉′) > (𝜆∗ + 𝜉). 

 

In addition, we express the distance between the two local energy levels involved in avoiding 

crossings in the equation. 𝑑(𝜆) = 𝑥𝑚 − 𝑥𝑛 , where we set 𝑥𝑚 > 𝑥𝑛 to make sure the distance 

has positive value, and these two local levels are tagged by m and n, which represents the 𝑚𝑡ℎ 

and 𝑛𝑡ℎenergy level in the objective quantum coherent ensemble. If we find that these two 

adjacent levels are in a super-adjacent neighborhood with each other, they are represented as 

𝛾, accompanied by the local nearest energy gap shown in the equation 𝑑(𝜆∗) = Δ𝑚𝑖𝑛, with 

d
•

(𝜆∗)=0, indicating an avoided crossing. Look further, and we will reach an equation bridging 
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the distance between the nearest local levels together with the minimum energy gap via 

spreading the distance term 𝑑(𝜆) about 𝜆∗, along with 𝛿𝜆 = (𝜆 − 𝜆∗), which is presented in 

the form listed below:  

𝑑(𝜆) = Δ𝑚𝑖𝑛 + 𝛿𝜆2 4𝛽2

Δ𝑚𝑖𝑛
3                         (12) 

The definition of local scope can be demonstrated by the following equation, γ = 𝑑(𝜆∗ + 𝜉), 

combining the minimum energy gap between the two adjacent levels as Δ𝑚𝑖𝑛 = 𝛾 − 𝜉2 4𝛽2

Δ𝑚𝑖𝑛
3  . 

At last we move forward to the requirement for the standard LZ formalism to be suitable with, 

in a way of inequality shown as 𝛿 >
1

2
λ
•

 (γ-
4𝛽2

Δ𝑚𝑖𝑛
3 )+𝜉′ , since the locality constraint γ on the two 

involved energy levels cannot be neglected66. Investigating further is therefore making sense. 

The contribution of noise in the LZ transition model in the PY form is then described in the 

next section. 

2.5 Noise and the Preconditions of combining the LZ model with 

the PY Formalism 

It is well known that quantum coherent structures respond differently to two types of noise, i.e. 

transverse noise and longitudinal noise. While the transverse noise only considers diagonal 

inputs, the longitudinal noise contains non-diagonal elements instead. Such difference is due 

to the different nature of the different noises.  

 

On one hand, longitudinal noise, i.e., pure dephasing refers to the phase loss of a quantum 

system due to interaction with the environment but is not accompanied by energy exchange 

between energy levels. This process causes the off-diagonal elements of the quantum state to 

decay but leaves the diagonal elements of the state (energy level occupation probabilities) 

unchanged. Pure dephasing is an important consideration in quantum information processing 

because it affects the coherence of qubits without directly causing a loss of energy67. 
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The response of quantum coherent structures to environmental noise does not differ simply 

because of the different nature of the noise. In fact, the difference in the impact of longitudinal 

noise and transverse noise on quantum systems is mainly due to the different mechanisms of 

their interaction with quantum systems. 

We will illustrate the impact of longitudinal noise on quantum computing through a simple 

example as shown below. 

Suppose we have a superposition state of a quantum bit (qubit), represented as:  

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ 

Then we apply a phase gate 𝑅𝜙 to adjust the phase of the |1⟩ state without changing the |0⟩ 

state. The action of the phase gate 𝑅𝜙 can be represented as: 

𝑅𝜙|1⟩ = 𝑒𝑖𝜙|1⟩ 

Thus, after applying the phase gate, the quantum state becomes: 

|𝜓′⟩ = 𝛼|0⟩ + 𝛽𝑒𝑖𝜙|1⟩ 

To observe the interference effect, consider passing this quantum state through a specific 

quantum gate again, such as a Hadamard gate H which is defined to act on the basis states as 

follows: 

𝐻|0⟩ =
1

√2
(|0⟩ + |1⟩)

𝐻|1⟩ =
1

√2
(|0⟩ − |1⟩)

 

Applying the Hadamard gate 𝐻 to |𝜓′⟩, we get: 

|𝜓′′⟩ = 𝐻(𝛼|0⟩ + 𝛽𝑒𝑖𝜙|1⟩)

= 𝛼
1

√2
(|0⟩ + |1⟩) + 𝛽𝑒𝑖𝜙

1

√2
(|0⟩ − |1⟩)

=
1

√2
(𝛼 + 𝛽𝑒𝑖𝜙)|0⟩ +

1

√2
(𝛼 − 𝛽𝑒𝑖𝜙)|1⟩

 

Now, we can see that by adjusting the phase ϕ, we can control the probability amplitudes for 

the  

|0⟩ and |1⟩ states. 

Longitudinal noise will change the value of the phase ϕ and therefore influence the probability 
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amplitudes and eventually reduce the performance of quantum computing. 

 

On the other hand, transverse noise mainly causes a loss of coherence, i.e. affects the phase 

relationship between system states, which is achieved through fluctuations in the off-diagonal 

elements of the density matrix. It causes relaxation or excitation processes, leading to a change 

in the population of the quantum states. 

Relaxation is a process of energy exchange between a quantum system and the environment 

around, driving the system to its ground level from an excited level, which is usually 

temperature-dependent since thermal fluctuations in the environment cause energy level 

transitions in quantum systems. 

In the fields of quantum computing and quantum communications, relaxation limits the time 

that qubits can remain in the excited state, which is one of the challenges that must be overcome 

to achieve efficient quantum operations68.  

 

Unlike pure dephasing, relaxation rate depends on the qubit transition frequency Ω, by tuning 

the qubit we can in principle reduce relaxation but not pure dephasing69. 

 

Overall, the impact of these two types of noise is not only based on their different properties, 

but more on the specific mechanism of their interaction with the quantum system, and the way 

they affect the coherence and stability of the quantum system. Longitudinal noise introduces 

decoherence into quantum coherent structures which is one of the major challenges in the 

development of quantum computers. At the same time, the coupling between the quantum 

correlation ensemble and the environment is established through the influence of transverse 

noise70. 

 

Let us have a look in the impact of longitudinal noise under the context of the stochastic PY 

formalism and LZ model. 

Firstly, taking into account the situation of a sole combined source of longitudinal noise 



32 

 

 

denoted as 𝛿ℎ , with the constraint  δ
•

  =𝜖𝜂𝑀, in which η corresponds to a random normal-

distributed procedure, random signals with constant power spectral density indicate equal 

intensity at different frequencies, i.e., white noise . 

In addition, we can use 𝜖  to represent the magnitude of the perturbation to represent the 

diagonal general matrix. Using the Wiener process, we can obtain autocorrelation in the 

following equation:     

⟨𝜂𝑚𝑛(𝜆), 𝜂𝑚𝑛(𝜆′)⟩ = 𝛿(𝜆 − 𝜆′),

⟨𝜖𝜂𝑚𝑛(𝜆), 𝜖𝜂𝑚𝑛(𝜆′)⟩ = 𝜖2𝛿(𝜆 − 𝜆′)
                   (13) 

 

Aware that the correlation time is exactly zero, i.e., 𝜏𝑐 = 0. 

Note that the crossover to be avoided may come from the degradation of the horizontal 

crossover due to the contribution of the disturbance. In order to study the effects of 

perturbations in the PY formalism under the context of LZ transition model, it is necessary to 

use multi-level N-level to two local levels of quantum phase involvement ensembles. If the 

avoidance of intersections is independent, then according to the assumptions of the LZ 

transition model, contributions to the avoidance of interactions at levels other than the two local 

levels can be ignored, i.e., isolated.  

Via the set of the stochastic PY equations, a random geometric Brownian shifting for 𝑙𝑚̇𝑛 

related to the 𝑚𝑡ℎ and the 𝑛𝑡ℎ energy level in an avoided crossing can be accessed71. 

The resulting relative angular momentum 𝑙𝑚𝑛 can be expressed in the following configuration: 

𝑙𝑚𝑛(𝜆) = 𝑙𝑚𝑛(𝜆∗ − 𝜉)𝑒𝑥𝑝(−
𝜎2

2
[𝜆 − (𝜆∗ − 𝜉)] + 𝜎𝑊(𝜆))        (14) 

We should not neglect that the item 𝜎 on the right of Eq. (14) which can then be presented as 

𝜎 =
𝜇𝜖

Δ𝑚𝑖𝑛
 .  

A necessary condition for implementing the LZ transformation model into a random PY form, 

taking into account noise effects, is that the intersections avoided in very close regions must be 

independent of each other, that is, isolated from each other. Perturbation can influence the 

dynamics around an avoided crossing, potentially facilitating or modifying the system's 

transition through such points72. 
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One of the most interesting effects of noise on the development of adiabatic quantum computers 

is its contribution to the nearest energy gap between the ground state and the first excited state, 

which determines the probability of the Landau-Zener transition and the associated transition 

time when it occurs.  

 

By capturing the contribution of noise to the nearest energy gap, the relation between the 

transition time and the effect of perturbation is revealed, so that two adjacent independent 

isolation conditions can be controlled, that is, to avoid crossing.  

In the case where two local level crossings with their minimum energy gaps at two nearby 

location 𝜆∗ and 𝜆∗∗ = 𝜆∗ + 𝛿 , where transition times 𝜏𝐿𝑍 = 2𝜉 and 𝜏𝐿𝑍
′ = 2𝜉′ respectively, 

the anti-crossings are said to be in isolation if there is no overlapping part through the transition 

instant. Specially, when the inequality (𝜆∗∗ − 𝜉′) > (𝜆∗ + 𝜉)  is matched, the LZ 

transformation model can be used to examine the likelihood of the corresponding population 

change. 

If the gap between two energy levels is 𝑑(𝜆) = 𝑥𝑚 − 𝑥𝑛 , and set 𝑥𝑚 > 𝑥𝑛 to guarantee that 

the distance 𝑑(𝜆) to be larger than zero, and tag the two levels having territory on the anti-

crossing as 𝑚𝑡ℎ and 𝑛𝑡ℎ level, then a rendition relates to the closest energy level parting can 

be reach by spreading the gap 𝑑(𝜆)  about 𝜆∗ , along with 𝑓(𝜆) = −
𝛿2

2
[𝜆 − (𝜆∗ − 𝜉)] +

𝛿𝜂[𝜆 − (𝜆∗ − 𝜉)] : 

𝑑(𝜆) = Δ𝑚𝑖𝑛 + 𝛿𝜆2 [
4|𝑙𝑚𝑛(𝜆∗−𝜉)|2

Δ𝑚𝑖𝑛
3 𝑒2𝑓(𝜆∗) + 𝜖𝜇𝜂̇(𝜆∗)]          (15) 

If we take the neighborhood constraint γ  in a relationship in the middle of the gap as γ =

𝑑(𝜆∗ + 𝜉), we will be rewarded with a new relation that reveals the minimum parting range 

between two energy levels local to an avoided crossing in a configuration shown in the 

following style:   

Δ𝑚𝑖𝑛 = 𝛾 − 𝜉2 [
4|𝑙𝑚𝑛(𝜆∗−𝜉)|2

Δ𝑚𝑖𝑛
3 𝑒2𝑓(𝜆∗) + 𝜖𝜇𝜂̇(𝜆∗)]            (16) 

In Eq. (16), the shortest parting range between two adjacent energy levels of a level crossing is 
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always greater than 0, i.e., Δ𝑚𝑖𝑛 ≥ 0, which means they will repel before collision, and the 

correlation between the minimum interlayer distance and the change of the term reflecting the 

noise contribution is shown. 

It is critical to realize that such impacts on the shortest distance between the two adjacent levels 

also have a non-negligible influence on the related transition instant within an identical 

approach. Moreover, it can be obtained from Eq. (15) that if μ happens to be zero, the whole 

equation can then be reduced to the corresponding part that is settled.  

If we also use the transition time boundary constraint, we get another inequality relationship, 

which in the configuration below is controlled by the contribution of the diversity of perturbed 

sources, avoiding traversal73:   

𝜂(𝜆∗) >
1

𝜉𝜖𝜇
[𝛾 − 2𝜆̇(𝛿 − 𝜉′)]

−
𝜉

𝜖𝜇
[

4|𝑙𝑚𝑛(𝜆∗−𝜉)|2

Δ𝑚𝑖𝑛
3 𝑒2𝑓(𝜆∗)]

                  (17) 

Eq. (17) can be used as a criterion to evaluate whether a pair of intersection avoidance points 

are independent of each other and can therefore be regarded as isolated. In other words, we can 

be sure that the LZ model applies to this Eq. (17) satisfied. 

In short, by dealing with local energy levels associated with crossing or horizontal crossing 

avoidance, we can obtain assumptions for implementing the LZ transformation model within 

the framework of a formalistic PY scheme, including noise contribution. Therefore, the LZ 

transition model can be used within the scheme of the PY formalism framework to easily study 

the contribution of environmental decoherence, e.g., noise to the level dynamics. Level 

dynamics describes the evolutionary behaviors of quantum coherent systems. 

 

Quantum systems are more sensitive to noise and decoherence due to the characteristic that the 

superposition and entanglement can be easily disturbed by interactions with the environment. 

This is different to the case in classical systems, which shows more robustness against small 

amount of noise. 

 

The relation between noise and decoherence is inherently close. In quantum systems, "noise" 
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is a term that represents random fluctuations or disturbances that can affect the state of a 

quantum system and can be described as unwanted changes in the system due to its interactions 

with the environment. This noise often arises from interactions between the quantum system 

and its environment - a process known as environmental decoherence. 

 

Environmental noise is the primary cause of decoherence in quantum systems. When a quantum 

system interacts with its environment, the environmental noise can cause the phases of the 

quantum states to drift apart. As the phase relationship between different states is essential for 

maintaining quantum superposition and entanglement, this dephasing process leads to 

decoherence. 

 

The type and intensity of the environmental noise can significantly impact the rate of 

decoherence. For example, white noise can often lead to decoherence that scales linearly with 

time. In contrast, colored noise can lead to different scaling behaviors due to its correlations in 

time. Furthermore, certain types of colored noise, such as low-frequency or "1/f" noise, can be 

particularly detrimental to quantum coherence due to their long correlation times. 

 

Noise can also cause other types of errors in quantum systems, such as bit flip or phase flip 

errors, which can be considered forms of decoherence. These errors can be mitigated using 

quantum error correction techniques, which are designed to protect quantum information 

without directly measuring it (as measurement would also lead to decoherence). 

 

While decoherence is a process by which quantum systems interact with their environment in 

a manner that uncontrollably alters their quantum states, leading to the loss of quantum 

coherence, which is the characteristic ability of qubits to exist in superposition and 

entanglement. This interaction with the environment causes the quantum system to revert to 

classical behaviours, eliminating the quantum properties of the particles involved. Decoherence 

is a significant source of error in quantum computing as it affects the qubits' ability to remain 
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in superposition and maintain entanglement, which are essential for quantum computation. 

 

Further expanding on this definition, decoherence is critical in the quantum-to-classical 

transition, playing a pivotal role in the dynamical description of this process. It is also a major 

obstacle in the development of quantum information processing devices. At a fundamental 

level, decoherence provides a dynamical explanation for the transition of quantum probability 

distributions towards those expected classically, often being regarded as an environment-

induced, dynamical destruction of quantum coherence. 

 

Understanding and mitigating the effects of noise and decoherence is one of the main 

challenges in the development of practical quantum computers. While we can isolate quantum 

systems and engineer them to be as noise resistant as possible, some level of noise and 

consequent decoherence is currently inevitable. Therefore, much of the research in quantum 

computing is focused on developing noise-tolerant quantum algorithms, error correction codes, 

and fault-tolerant quantum computing protocols. 

 

Overall, noise and decoherence are crucial aspects of quantum systems, with the two concepts 

being closely interconnected. Noise, as induced by environmental interactions, leads to 

decoherence, effectively causing quantum systems to lose their unique quantum properties. As 

such, these concepts represent significant hurdles to overcome in the path towards realizing 

practical and scalable quantum computation. 

 

2.6 Comparison with the LZSM Literature 

The two-level system (TLS) is a widely studied model in quantum mechanics, serving as a 

foundation for understanding quantum transitions under external driving fields. The Pechukas-

Yukawa (PY) formalism offers a classical approach to describe the evolution of quantum 

energy levels, while exact diagonalization provides a numerical method to benchmark these 

predictions. In this section we compare the results obtained from the PY model and exact 
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diagonalization for a two-level system with the literature on well-studied systems, particularly 

focusing on works by Nori and Shevchenko74. 

2.6.1 Consistencies with the Literature 

Occupation Probability Distributions: In Chapter 4 we demonstrate periodic oscillations in 

occupation probability distributions under specific external driving conditions. These results 

align with the findings of Nori and Shevchenko, where similar periodic behaviors were 

observed in well-studied two-level systems under resonant and near-resonant conditions. 

Dynamical Complexity Analysis: The use of Power Spectral Density (PSD) to analyze the 

system's dynamical complexity is consistent with the methodologies employed in the literature. 

The appearance of distinct frequency components in the PSD, corresponding to coherent 

quantum dynamics, reflects the spectral features discussed by Shevchenko and Nori. 

Transition Probabilities: Both the thesis and the literature utilize exact diagonalization to 

calculate transition probabilities between quantum states. The agreement in these probabilistic 

outcomes strengthens the analogy between the PY model and established quantum mechanical 

approaches. 

2.6.2 Differences from the Literature 

Approach of the PY Model: Unlike the conventional LZSM approach, which primarily focuses 

on non-adiabatic transitions and Stückelberg interference, the PY model applied in my thesis 

offers a broader classical mapping of the energy level dynamics. This divergence provides an 

alternative perspective on quantum transitions, potentially expanding the applicability of the 

PY model beyond the traditional LZSM framework. 

Quantitative vs. Qualitative Analysis: While Nori and Shevchenko's studies provide detailed 

quantitative comparisons with experimental data, my thesis focuses more on qualitative 

interpretations of dynamical complexity through visual inspection of occupation probability 

distributions and PSD features. Future work could enhance this aspect by adopting more 

quantitative metrics, such as spectral entropy, to solidify the comparison. 

System Parameters and Driving Fields: The external driving conditions used in my thesis differ 

from those in the literature. Specifically, my work explores a broader range of driving 
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amplitudes and frequencies, potentially revealing novel dynamic regimes not thoroughly 

covered in previous studies. 

2.6.3 Conclusion 

The analysis presented here demonstrates both consistencies and novel contributions of my 

research compared to well-established studies by Nori and Shevchenko. By integrating exact 

diagonalization results with the PY model and positioning them within the broader context of 

LZSM literature, this section highlights the unique perspectives offered by the PY formalism 

in understanding two-level quantum systems. 

 

Chapter 3: Using PY Method to study Level 

Dynamics and Occupation Numbers for Small-

scale Quantum Systems 

We simulated the evolution of quantum systems through PY Formalism in small-scale quantum 

systems ranging from 2-5 qubits with the presence of decoherence. 

The reliability and efficiency of the Pechukas-Yukawa (PY) formalism were tested using 

quantum coherent structures ranging from 2 to 5 qubits with or without the presence of 

decoherence. Our simulations show that the PY formalism faithfully captures the dynamics of 

these systems over a range of time scales. Figures 3.1.1 and 3.1.2 illustrate the agreement 

between the PY formalism and exact numerical solutions for 5- and 4-qubit systems, 

respectively. The figures show that the PY method offers a robust and efficient tool for 

simulating these types of quantum systems. 

3.1 Efficacy of Pechukas-Yukawa Formalism 

In this section, we present some numerical results simulated by PY method which demonstrated 

the reliability and efficiency of PY method in simulating the dynamic evolution of quantum 
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coherent structures, specifically for systems ranging from 2 to 5 qubits under the influence of 

decoherence.  

 

In the following two Figures 3.1.1 and 3.1.2 we show the quantum evolution over time of a 5-

qubit and a 4-qubit system under the control of the external perturbation λ in clear visualization.  

While it is predominantly used for smaller quantum systems(2-qubits), our results show 

potential for larger simulations (4 to 5-qubits), granted certain numerical challenges are 

addressed (elaborated in Chapter 2). 

 

3.1.1 Simulation of the Dynamics of Small-scale Systems without 

the Presence of Decoherence 

Firstly, we established the model which is capable to simulate the level dynamics of a small-

scale quantum coherent system with 2 to 5 qubits (i.e., 4 to 32 levels) starting with arbitrary 

initial settings of the Hamiltonian 𝐻(𝜆(𝑡)) = 𝐻0 + 𝜆(𝑡)𝑍𝐻𝑏 in Eq.1 without the presence of 

noise, by taking advantage of the Pechukas-Yukawa formalism with the Landau-Zener 

transition model and the Runge-Kutta method.  
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Fig. 3.1.1: This simulation is conducted entirely in the absence of noise. The left panel shows 

the evolution of energy levels of a 5 qubits system with Hamiltonian of this form: 𝐻(𝜆(𝑡)) =

𝐻0 + 𝜆(𝑡)𝑍𝐻𝑏 in Eq.1, under the control of the perturbative -parameter 𝜆(𝑡) = Acos(ωt) , 

where the energy value of each level is a direct result from diagonalization of the Hamiltonian. 

The middle panel demonstrates the level dynamics of a 5 qubits system with the same initial 

settings as the left one but simulated through the Pechukas-Yukawa formalism with Runge-

Kutta method. Both the directly obtained evolution and the simulated evolution are evolution 

in time from 0 to 4𝜋 without the presence of noise. The right panel is the error of the simulation 

by the Pechukas-Yukawa formalism obtained by comparing the left and middle panels. In this 

case, the highest error during the evolution time from 0 to 4π is with the magnitude of 10-3 

which has the same magnitude of the length of each step (
𝜋

4000
) for this simulation. In addition, 

it is worth noting that the size of error generally increases over time. 

 

The Hamiltonians for the 5-qubit system in Fig. 3.1.1 and Fig. 3.1.5, expressed using tensor 

products of Pauli matrices and identity operators, are defined as follows: 

𝐻(𝜆(𝑡)) = 𝐻0 + 𝜆(𝑡)𝑍𝐻𝑏 
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𝑍𝐻𝑏 = 𝐻𝑓 − 𝐻0 

H₀ = Δ₁(σₓ ⊗ I ⊗ I ⊗ I ⊗ I) 

+ Δ₂(I ⊗ σₓ ⊗ I ⊗ I ⊗ I) 

+ Δ₃(I ⊗ I ⊗ σₓ ⊗ I ⊗ I) 

+ Δ₄(I ⊗ I ⊗ I ⊗ σₓ ⊗ I) 

+ Δ₅(I ⊗ I ⊗ I ⊗ I ⊗ σₓ) 

 

Hf = h₁( 𝜎𝑧 ⊗ I ⊗ I ⊗ I ⊗ I) 

+ h₂(I ⊗ 𝜎𝑧 ⊗ I ⊗ I ⊗ I) 

+ h₃(I ⊗ I ⊗ 𝜎𝑧 ⊗ I ⊗ I) 

+ h₄(I ⊗ I ⊗ I ⊗ 𝜎𝑧 ⊗ I) 

+ h₅(I ⊗ I ⊗ I ⊗ I ⊗ 𝜎𝑧) 

+ J₁₂(𝜎𝑧 ⊗ 𝜎𝑧⊗ I ⊗ I ⊗ I) 

+ J₁₃(𝜎𝑧 ⊗ I ⊗ 𝜎𝑧 ⊗ I ⊗ I) 

+ J₁₄(𝜎𝑧 ⊗ I ⊗ I ⊗ 𝜎𝑧 ⊗ I) 

+ J₁₅(𝜎𝑧 ⊗ I ⊗ I ⊗ I ⊗ 𝜎𝑧) 

+ J₂₃(I ⊗ 𝜎𝑧 ⊗ 𝜎𝑧 ⊗ I ⊗ I) 

+ J₂₄(I ⊗ 𝜎𝑧 ⊗ I ⊗ 𝜎𝑧 ⊗ I) 

+ J₂₅(I ⊗ 𝜎𝑧 ⊗ I ⊗ I ⊗ 𝜎𝑧) 

+ J₃₄(I ⊗ I ⊗ 𝜎𝑧 ⊗ 𝜎𝑧 ⊗ I) 

+ J₃₅(I ⊗ I ⊗ 𝜎𝑧 ⊗ I ⊗ 𝜎𝑧) 

+ J₄₅(I ⊗ I ⊗ I ⊗ 𝜎𝑧 ⊗ 𝜎𝑧) 

 

List 1: Parameter values for the 5-qubit Hamiltonian for Fig. 3.1.1 and Fig. 3.1.5. 

Entry Value Entry Value 

Δ1 0.9844 ℎ1 0.3986 

Δ2 0.8589 ℎ2 0.1339 

Δ3 0.7856 ℎ3 0.0309 
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Δ4 0.5134 ℎ4 0.9391 

Δ5 0.1776 ℎ5 0.3013 

𝐽12 0.2955 𝐽24 0.8422 

𝐽13 0.3329 𝐽25 0.5590 

𝐽14 0.4671 𝐽34 0.8541 

𝐽15 0.6482 𝐽35 0.3479 

𝐽23 0.0252 𝐽45 0.3479 

 

From Fig.3.1.1, we have the simulation errors which are small enough (with the magnitude 10-

3and can be further reduced if we choose more iterations), indicating that the reliability of our 

model for simulation of the level dynamics of a small-scale quantum system with 2 to 5 qubits 

is confirmed preliminarily. However, this simulation method is not restricted to small-scale 

quantum systems. We can see from Fig. 3.1.1 that the error between the simulated result for a 

5 qubits coherent system to the direct result obtained straightforward from the diagonalization 

of its Hamiltonian, is of the magnitude of 10−3, same as the magnitude of the step length of 

iteration (which is 
𝝅

𝟒𝟎𝟎𝟎
 of the magnitude around 10−3).  

By narrowing the step length, the error of simulation can be further reduced to the 

corresponding magnitude of the step length used in the simulation. We demonstrate this by the 

following Fig. 3.1.2, showing the simulated result of a 4 qubits system with step length of the 

magnitude of 10−5. 
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Fig. 3.1.2: The left panel shows the level dynamics of a 4-qubit system under a noiseless 

condition, obtained via direct diagonalization. The middle panel presents the corresponding 

simulation using the Pechukas–Yukawa formalism with identical initial parameters. The right 

panel displays the absolute error between the two results. This simulation is conducted entirely 

in the absence of noise, aiming to demonstrate that the error magnitude can be further reduced 

with smaller integration step sizes. 

 

Figures 3.1.1 and 3.1.2 show the feasibility of our extended model to simulate the evolution of 

the energy levels of a small quantum coherent structure. The maximum simulation error is with 

the magnitude of 10-5 which is two orders of magnitude smaller than the error in Fig. 3.1.1. 

Moreover, the size of error also increases with time, which is a feature also presented in Fig. 

3.1.1. It can be clearly seen from the Fig. 3.1.2 that the magnitude of error is reduced to 10−5 
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which is the same magnitude of the step length (which is 
𝝅

𝟒𝟎𝟎𝟎𝟎
 of the magnitude around 10−5) 

used in this simulation. 

3.1.2 Simulation of the Level Dynamics for 2-5 Qubits Systems with 

Noise 

Secondly, the functionality of the PY model is extended to be capable to simulate the evolving 

energy levels of multi-qubits systems under the influence of noise. The noise we used is a white 

noise generated through Ornstein-Uhlenbeck process, see Fig. 3.1.3. 

 

𝐻(𝜆(𝑡)) =  𝐻0 + 𝜆(𝑡)𝑍𝐻𝑏 + 𝛿ℎ(𝜆(𝑡))                    (3)  

   

𝑥̇𝑚 = 𝑣𝑚 + 𝛿̇ℎ𝑚𝑚 , 

𝑣̇𝑚 = 2 ∑
|𝑙𝑚𝑛|2

(𝑥𝑚−𝑥𝑛)3
𝑚≠𝑛

+
𝑙𝑚𝑛𝛿̇ℎ𝑛𝑚−𝛿̇ℎ𝑚𝑛𝑙𝑛𝑚

(𝑥𝑚−𝑥𝑛)2 , 

𝑙𝑚𝑛
̇ = ∑ 𝑙𝑚𝑘𝑙𝑘𝑛𝑘≠𝑚,𝑛 [

1

(𝑥𝑚−𝑥𝑘)2 −
1

(𝑥𝑘−𝑥𝑛)2]  

+
(𝑥𝑚−𝑥𝑛)(𝑙𝑚𝑘𝛿̇ℎ𝑘𝑚−𝛿̇ℎ𝑚𝑘𝑙𝑘𝑚)

(𝑥𝑚−𝑥𝑘)(𝑥𝑛−𝑥𝑘)
    

+ 𝛿̇ℎ𝑚𝑛(𝑣𝑚 − 𝑣𝑛) +
𝑙𝑚𝑛(𝛿ℎ𝑚𝑚−𝛿ℎ𝑛𝑛)

(𝜆𝑚−𝑥𝑛)
             

(4) 

We used the Hamiltonian of the stochastic Pechukas-Yukawa model in Eq. (3) and the 

stochastic Pechukas equations in Eq. (4), in which a new term for each equation denotes the 

impact of the noise. Note that these new terms about noise does not appear in the simplified 

version of the equations presented in Eq. (2).  

We are going to explain equations (4) step by step for better understanding of the PY formalism. 

Firstly, through 𝑥̇𝑚 = 𝑣𝑚 + 𝛿̇ℎ𝑚𝑚  we can see the eigenvalue dynamics are influenced 

directly by the velocity term and the noise term.  This equation indicates that the derivative of 

noise 𝛿̇ℎ𝑚𝑚   is adding random fluctuations in the derivative of eigenvalues, potentially 
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leading to decoherence or other noise-induced effects. 

Secondly, from 𝑣̇𝑚 = 2 ∑
|𝑙𝑚𝑛|2

(𝑥𝑚−𝑥𝑛)3
𝑚≠𝑛

+
𝑙𝑚𝑛𝛿̇ℎ𝑛𝑚−𝛿̇ℎ𝑚𝑛𝑙𝑛𝑚

(𝑥𝑚−𝑥𝑛)2   we can find that the velocity 

dynamics include terms that describe interactions between different eigenvalues modulated by 

noise. The impact of noise can either be stabilizing or destabilizing, depending on the nature 

of the noise terms and their interactions. 

 

Thirdly, take a closer look at   

𝑙𝑚𝑛
̇ = ∑ 𝑙𝑚𝑘𝑙𝑘𝑛𝑘≠𝑚,𝑛 [

1

(𝑥𝑚−𝑥𝑘)2 −
1

(𝑥𝑘−𝑥𝑛)2]  

+
(𝑥𝑚−𝑥𝑛)(𝑙𝑚𝑘𝛿̇ℎ𝑘𝑚−𝛿̇ℎ𝑚𝑘𝑙𝑘𝑚)

(𝑥𝑚−𝑥𝑘)(𝑥𝑛−𝑥𝑘)
   

+ 𝛿̇ℎ𝑚𝑛(𝑣𝑚 − 𝑣𝑛) +
𝑙𝑚𝑛(𝛿ℎ𝑚𝑚 − 𝛿ℎ𝑛𝑛)

(𝜆𝑚 − 𝑥𝑛)
 

we know that the dynamics of the coupling terms 𝑙𝑚𝑛 are influenced by interactions between 

different eigenvalues and eigenvectors, as well as by noise. This suggests that noise can lead 

to changes in the coupling strengths, potentially affecting the coherence and entanglement 

properties of the system. 

 

In our simulations, we used Ornstein-Uhlenbeck process to generate the noise according to the 

following equation. 

𝛿̇ℎ𝑚𝑛 = θ(μ − δℎ𝑚𝑛)𝑑𝜆 + σ𝑑𝑊𝑡 

Where 𝛿̇ℎ𝑚𝑛 denotes the instantaneous derivative of noise with respect to λ(t), θ denotes the 

reversion speed, μ denotes the mean value of noise, σ denotes the fluctuation rate and the term 

𝑑𝑊𝑡 is a random picked number from a normal distribution set whose mean value is zero while 

variance is 𝑑𝜆. The following Figures 3.1.3 and 3.1.4 show an example of the simulated noise 

used in our study. Fig. 3.1.5 shows the effect of a small white noise on the energy level 

evolution of a 5 qubits system. 
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Fig. 3.1.3: The left panel denotes the noise simulated by Ornstein-Uhlenbeck process, 

whose mean value is 0, mean reversion speed is 10 and the fluctuation rate is 10-5. The 

right panel represents the derivative of the noise shown in the left panel. The magnitude 

of the derivative of noise is 10-5 and the magnitude of noise is 10-4. Lines of different colors 

corresponding to different  𝜹̇𝒉 or 𝜹𝒉 . 

 

Fig. 3.1.4: Here four samples of the derivative of noise are presented in four panels 
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respectively, we can see that the derivatives randomly fluctuate around the mean value 0 

with a fixed reversion speed, which is consistent with our setting of white noise. 

 

Fig. 3.1.5: The left panel shows the evolution of level dynamics of a 5 qubits system obtained 

by direct method without the presence of the noise. While the middle panel demonstrates the 

evolution of the level dynamics with the presence of the white noise (shown in Fig. 3.1.3). In 

the left and middle panels, lines of different colors correspond to different energy levels while 

the horizontal axis represents time and the vertical axis represents the energy level. We can see 

from the middle panel, a significant deviation occurred on the 7th energy level in the latter part 

(around t=2.6） of the simulation. The right panel on shows the difference in the evolution of 

the system with and without the presence of noise. 

3.1.3 The Effect of Noise on Evolution of Level Dynamics and the 

Simulations via PY Method 

As can be seen from Fig.3.1.5, when the gap between adjacent energy levels is large enough, 

adding a small white noise to the system does not have a significant impact on the evolution of 

the energy levels. However, we can see from the middle panel of Fig.3.1.5 (a significant turning 
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point occurs near t=2.6) that the impact of noise increases rapidly when the gap between two 

adjacent energy levels becomes very small (where anti-crossing occurred).  

 

This phenomenon can be well understood from the stochastic Pechukas equations, i.e., Eq. (4): 

𝑥̇𝑚 = 𝑣𝑚 + 𝛿̇ℎ𝑚𝑚,

𝑣̇𝑚 = 2 ∑  𝑚≠𝑛
|𝑙𝑚𝑛|2

(𝑥𝑚−𝑥𝑛)3
+

𝑙𝑚𝑛𝛿̇ℎ𝑛𝑚−𝛿̇ℎ𝑚𝑛𝑙𝑛𝑚

(𝑥𝑚−𝑥𝑛)2
,

𝑙𝑚̇𝑛 = ∑  𝑘≠𝑚,𝑛 𝑙𝑚𝑘𝑙𝑘𝑛 [
1

(𝑥𝑚−𝑥𝑘)2 −
1

(𝑥𝑘−𝑥𝑛)2]

+
(𝑥𝑚−𝑥𝑛)(𝑙𝑚𝑘𝛿̇ℎ𝑘𝑚−𝛿̇ℎ𝑚𝑘𝑙𝑘𝑚)

(𝑥𝑚−𝑥𝑘)(𝑥𝑛−𝑥𝑘)

+𝛿̇ℎ𝑚𝑛(𝑣𝑚 − 𝑣𝑛) +
𝑙𝑚𝑛(𝛿ℎ𝑚𝑚−𝛿ℎ𝑛𝑛)

(𝑥𝑚−𝑥𝑛)
.

              (4) 

 

We can see from Eq. (4) that the derivative of the velocity, 𝑣̇𝑚, which determines the relative 

motion of adjacent energy levels, is determined by terms in the form of fractions 
|𝑙𝑚𝑛|2

(𝑥𝑚−𝑥𝑛)3 and 

𝑙𝑚𝑛𝛿̇ℎ𝑛𝑚−𝛿̇ℎ𝑚𝑛𝑙𝑛𝑚

(𝑥𝑚−𝑥𝑛)2  with denominators consisting of the square and cube of the gap between 

levels such as (𝑥𝑚 − 𝑥𝑛)3 and (𝑥𝑚 − 𝑥𝑛)2. Noting that 𝑙𝑚𝑛 is also affected by the noise term 

according to Eq. (4). When the term (𝑥𝑚 − 𝑥𝑛) which denotes the gap between the two energy 

levels becomes very small, it will cause the denominator to be very close to zero, thereby 

exponentially amplifying the influence of noise on the evolution of the level dynamics. It is 

worth noting that typically only the two adjacent energy levels need to be considered in the 

case when (𝑥𝑚 − 𝑥𝑛 ) is very small, i.e., anti-crossing. Because for the energy difference 

between non-adjacent levels to be very small, at least three energy levels must be very close to 

each other simultaneously, meaning at least two anti-crossings occur together, which is a highly 

improbable event. 

 

In addition, the error growth rates corresponding to the different individual energy levels 

simulated are also different. This can be understood through the denominator term (𝑥𝑚 − 𝑥𝑛)3 

of Eq. (4) as we have discussed above. Because the difference between the sensitivity to noise 

of each individual energy level is determined by the size of their energy gaps.  
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Through the PY method, we can understand this more intuitively that even small noises can 

have a significant impact on the evolution of energy levels of quantum systems when the 

minimum energy gap is small. For example, near an anti-crossing, an error of magnitude 10-1 

caused by noise of magnitude 10-4 is shown in Fig.3.1.5.  

 

Moreover, from the right panel of Fig. 3.1.5 we can see the impact of noise on the system’s 

evolution grows over time in general, although there are some instances that local errors 

decrease.  

 

In our limited number of simulations for small-scale quantum coherent structures, the overall 

effect of various noises is always cumulative as it is shown in Fig.3.1.5. This can be explained 

through the summation term ∑  𝑚≠𝑛
|𝑙𝑚𝑛|2

(𝑥𝑚−𝑥𝑛)3 +
𝑙𝑚𝑛𝛿̇ℎ𝑛𝑚−𝛿̇ℎ𝑚𝑛𝑙𝑛𝑚

(𝑥𝑚−𝑥𝑛)2  in Eq. (4), which shows how 

the impacts of noise between two different energy levels can interact with each other. We 

speculate that the cumulative effect of the impact of noise for each pair of energy levels is 

because we used a normal distribution to model our white noise, so the probability of individual 

noise terms cancelling each other out is relatively low. In addition, from Eq. (4), we can observe 

that the terms representing situations with a narrow energy gap, characterized by a small 

denominator (approaching zero), will have a significantly larger impact compared to other 

terms. This is because the denominator involves the square or cube of the difference between 

two energy levels. 

 

However, this does not imply that the noise terms will necessarily enhance each other. Since 

the number of simulations we performed was not large enough, we could not observe the 

samples in which each individual noise term showed an overall cancelling effect. Instead, we 

can see from the summation terms in Eq. (4), that the impact of each individual noise term has 

the possibility either to superimpose or cancel each other out. This bidirectional potential of 

noise terms—having the capacity both to superimpose and to cancel each other out— is 

particularly critical for the development of quantum computing because if the effects of 
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individual noise terms are necessarily cumulative, it means that as the number of qubits in a 

quantum system increases, the impact of noise will inevitably become stronger, posing a 

significant challenge for large-scale quantum computation. 

 

According to Eq. (4), to achieve a mutual cancellation effect between the two noise terms, it is 

necessary for the magnitudes of these two fractions to be similar and their directions opposite. 

The denominator of these fractions is determined by the cube and square of the energy level 

differences, while the numerator is determined by the difference in the products of the angular 

momentum between different energy levels and the corresponding noise (derivative). When the 

energy level difference is small (indicating an anti-crossing), the denominator has a more 

decisive influence on the magnitude of the fraction relative to the numerator. Therefore, 

typically we only need to consider whether the numerators of the two noise terms are of similar 

magnitude and opposite direction when the corresponding energy gaps are very small and very 

close to each other. 

 

First, the probability of two different anti-crossings having very close energy level differences 

is low. Secondly, even if such a situation arises, the differences in the products of the noise 

derivatives and angular momenta in the numerator for two noise terms also needs to be of 

similar magnitude and opposite direction to achieve mutual cancellation. This is also a low-

probability event in our simulation because the noise we use is generated by the Ornstein-

Uhlenbeck process, which draws random numbers from a normal distribution to produce white 

noise. The probability of these two low-probability events occurring simultaneously is even 

lower. Therefore, in our limited number of simulations, it is reasonable to observe that the noise 

terms exhibit cumulative rather than mutual cancellation effects as demonstrated in the example 

of Fig. 3.1.5. 

 

Furthermore, this also suggests a research direction, which is to reduce the impact of noise on 

the system as much as possible by designing the composition of noise such that each individual 
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noise term has a larger probability of cancelling each other out and lower the probability for 

superimposing. This approach should require an in-depth understanding and application of 

probability theory, as it involves manipulating the statistical properties of noise to increase the 

possibility of mutual cancellation among noise terms.  

 

Since although the Pechukas-Yukawa approach is considered as an approach that is especially 

suitable for AQC, while its utility is not limited to AQC only75 , this research direction is 

meaningful for the broader development of QC. By strategically designing the noise 

distribution and correlations, one can potentially enhance the overall stability and coherence of 

the quantum system undergoing either adiabatic or diabatic evolution. We will talk about this 

potential further in the discussion part. 

 

The above problems bring us some points to pay attention to when using PY method to simulate 

evolution of the quantum systems: 

 

Firstly, when the minimum energy gap is very small, the evolution of the energy levels will be 

very sensitive to errors. This problem exists regardless of whether the noise is considered. 

When the simulated quantum system is small, we can avoid the occurrence of extremely small 

energy gaps by choosing the initial parameters of the Hamiltonian and the external field 

controlling the evolution. Nevertheless, when the number of qubits in the system grows large, 

there will be a non-negligible number of energy levels which are very closed to each other 

(more anti-crossings), which will bring difficulties in numerical simulation through PY method. 

For large scale quantum coherent structure, even in the context of AQC, where the energy gap 

between the ground state and the first excited state should be as large as possible to prevent the 

system from escaping from the ground state, anti-crossings between other excited levels can 

still lead to great challenges to the simulation through PY method. Although we can use 

adaptive step size simulation (more simulation steps near an anti-crossing) to deal with this 

problem to a certain extent, it will increase the required computing resources anyway. As a 
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classical simulation method, the PY method still has its limitations when simulating large-scale 

quantum computers. 

 

Secondly, when noise is considered in the simulation, the cumulative effect of the noise will 

make the originally insignificant simulation error slowly accumulate and become significant 

after long simulation time. But this does not imply that the PY method is not a good method 

for simulating the evolution over a long time. Since the cumulative error is not unique to the 

PY method but is a common issue in all numerical simulation methods over long periods76. 

Therefore, it is not justified to single out the PY method as unsuitable for long-term evolution 

solely based on this cumulative error problem. But this requires us to take some methods such 

as higher-order numerical integration methods (RK4), adaptive time steps and other methods 

to reduce the impact of cumulative errors. 

 

Furthermore, though the adiabatic evolution for AQC takes a long time, from a practical point 

of view, we want the system of AQC to quickly fall to the ground state and its Hamiltonian can 

evolve from the initial one to the final one as soon as possible to speed up the calculation. In 

another word, the evolution time for a practically useful AQC should not be too long, so this 

shortcoming of the simulating does not necessarily prevent us from applying PY method in the 

simulation of AQC. 

3.1.4 Accuracy Required for the Simulation and Limitations of PY 

Method in Simulating Large-scale Quantum Systems 

In the problem of finding a constructive method for a classical computer to simulate a quantum 

coherent system, one important question is how accurate the simulation should be for the 

purpose of studying the level dynamics and the occupation probability distribution of the target 

quantum coherent system. 

In the beginning of our research, we initially assumed that the accuracy of the simulation of 
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the energy evolution of such a system with an error with maximum magnitude of 10-3 would 

be reliable in our study. 

However, by comparing the occupation probability distributions using the simulated data set 

for the evolution of energy levels of 2-5 qubits systems and that using the direct obtained energy 

evolution by diagonalizing the instantaneous Hamiltonian described in Eq. (1) over a certain 

time (8𝜋 in our simulation), we found the outcome of an error which we firstly considered it 

as small (with the magnitude of 10-3) would actually cause an unexpectedly large bias in the 

probability distribution whose error could up to the magnitude of 10-1 by the end of the evolving 

time (which is obviously not acceptable in the analysis of the occupation probability 

distribution of a multi-qubit quantum system)，which is presented in Fig. 3.1.6. 
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Fig. 3.1.6: (a) The left panel presents the occupation probability distribution of all energy levels 

in a 4-qubit system initially prepared in the ground state. These probabilities are calculated 

based on the dataset obtained by directly diagonalizing the instantaneous Hamiltonian.  (b) In 

contrast, the right panel shows the corresponding distribution derived from the simulated level 

dynamics using the Pechukas–Yukawa (PY) method, where the energy level simulation error 

is approximately on the order of 10-3.  

 

Although this level of energy error may appear sufficiently small, it can induce significant 

deviations in the occupation probability distribution—resulting in discrepancies on the order 

of 10−1.  

This amplification arises because even small perturbations in the energy spectrum or eigenstate 

structure can substantially affect the projection of the initial state onto the instantaneous 

eigenbasis. 

Therefore, to ensure the physical reliability of such simulations, it is necessary to improve the 
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accuracy of the level dynamics so that the energy-level error remains well below 10-3. Only 

then can the resulting occupation probabilities be trusted for quantitative analysis. 

 

Some reasons for the amplification of this error have been discussed in the previous section 

3.1.3. 

𝑖𝐶𝑚̇(𝑡) − 𝐶𝑚(𝑡)𝑥𝑚 = 𝑖𝜆̇(𝑡) ∑ 𝐶𝑛(𝑡)
𝑙𝑚𝑛

(𝑥𝑚 − 𝑥𝑛)2

𝑛≠𝑚

 

On one hand, we can see that in the above equation for calculating the probability, there is a 

summation term that will lead to the cumulative effect of the error.  

On the other hand, we can see that there is still a term whose denominator is the square of the 

energy gap (𝑥𝑚 − 𝑥𝑛) on the right side of the equation, which means that when the energy 

gap becomes very small (near the vicinity of an anti-crossing), the error can easily explode.  

 

This shows from another perspective that the PY method may encounter difficulties in 

simulating the occupation probability distribution of large quantum systems, in which more 

anti-crossings and more cumulative error due to summation term, which indicates the objective 

difficulties in simulating large-scale quantum computing using this classical method. 

 

In our simulations of systems with 2 to 5 qubits, if we want the error to be in the order of 10−3 

in the simulation of the probability distribution, then the error in the simulation of the energy 

level evolution should be of the order of 10−5. However, if we want to use the PY method to 

simulate a larger quantum system, to maintain the simulation error of the probability 

distribution at the same magnitude of 10−3, it is likely that we need to control the error in 

simulating level dynamics to be in the magnitude smaller than 10−5 due to the sensitivity to 

the minimum energy gap and cumulative effect of errors from the summation term. 

Unfortunately, as the size of the simulated quantum system gets larger and larger, both of these 

drivers of errors get stronger. This shows that the PY method has its limit in simulating large-

scale quantum coherent structure. When the number of qubits grows large enough, PY method 
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will no longer be capable to simulate the evolution of the probability distribution of the system 

efficiently nor accurately. 

  

To investigate the theoretical foundation of this error growth phenomenon, particularly its 

strong sensitivity to the minimum energy gap, we proceed to a more rigorous numerical 

validation in the following subsection. 

3.1.5 Further Analysis of the Simulation Error in the Pechukas-

Yukawa Formalism 

To deepen our understanding of the limitations of the Pechukas–Yukawa (PY) method outlined 

above, we focus on its numerical accuracy near avoided level crossings (anti-crossings). In 

previous sections, preliminary evidence suggested that the small energy gaps at anti-crossings 

are a primary driver of simulation error. Here, we present a detailed analysis to quantitatively 

validate the correlation between minimal energy gaps and rapid error growth in PY simulations, 

using theoretical arguments and numerical experiments supported by figures (Fig. 3.1.6 and 

Fig. 3.1.7). 

 

As noted in Section 3.1.3, we hypothesize that the dominant source of error in the PY 

simulation (relative to exact diagonalization) arises from tiny energy gaps between adjacent 

levels near anti-crossing points. The rationale comes from the PY equations themselves – for 

instance, in Eq. (2) of Section 2.2, a term in the denominator depends on the difference between 

two energy levels. When the system’s Hamiltonian parameters evolve such that an avoided 

crossing is approached, this denominator approaches zero, greatly amplifying any numerical 

error. In other words, as an energy gap ΔE becomes exceedingly small, even minute integration 

errors are magnified (the system becomes highly sensitive to small perturbations). This 

amplification mechanism implies that even if one uses a very fine time-step in the numerical 

integration, the simulation error can spike near an anti-crossing. Further reducing the time-step 
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would eventually control the error, but at the cost of prohibitive computational effort 

(extremely small steps dramatically increase simulation time and resource usage). We therefore 

expect that the worst error growth in a PY simulation will occur at the moment the system 

passes through its minimum energy gap.  

 

To phrase it as a question: Does the time at which the simulation error grows most rapidly 

coincide with the time at which the instantaneous energy gap is smallest?  Answering this will 

test our hypothesis that anti-crossings fundamentally limit the accuracy of the PY method.  

And to investigate this question, we need a clear measure of “error growth” over time and a 

way to identify when that growth is most pronounced.  

 

To evaluate how simulation error evolves in time and how it correlates with energy gaps, we 

examined three candidate metrics. The first is the error growth rate, defined as the first-order 

time derivative of the simulation error, 
𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑡
. This quantity describes how the error evolves 

(increases or decreases) at each moment in time. However, as an accumulated measure of 

change, it does not directly pinpoint a single “most severe” moment; the error could be growing 

over an extended period, making it hard to identify a unique peak event from this alone. 

 

A second candidate is the derivative of the error growth rate, that is, the second time derivative 

of the simulation error. This quantity reflects how rapidly the behavior of the error is changing 

over time. However, in a multi-level quantum system, this derivative must be computed 

separately for each energy level, since each eigenstate has its own error trajectory. Most of 

these error derivatives are not directly related to the particular transitions or features under 

investigation. As a result, plotting all of them against the system’s minimum energy gap would 

yield a diffuse and inconclusive representation, making it difficult to extract meaningful 

physical correlations. 

 

To overcome this, we adopt a more global measure: the maximum error acceleration across 
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levels. This quantity represents, at each time step, the largest value of the second derivative of 

error among all energy levels. It provides a system-level indicator of dynamic instability and 

effectively captures the onset of rapid error amplification associated with non-adiabatic 

transitions. Accordingly, we select this maximum error acceleration as the principal metric for 

characterizing the moment of strongest simulation error growth in relation to the system’s 

spectral properties. Therefore, we select the Max Error Acceleration Across Levels as the key 

metric, as it directly characterizes the moment when non-adiabatic transitions lead to rapid 

error amplification. 

 

To investigate the relationship between error growth and energy gaps, we numerically compute 

the error growth rate, its rate of change, and their correlation with the minimum energy gap. 

The error growth rate is defined as the first-order time derivative of the simulation error 

ErrorXRK4. Using the central difference method, it is approximated as: 

ErrorRate𝑚(𝑡1) ≈
ErrorXRK4𝑚(𝑡2) − ErrorXRK4𝑚(𝑡1)

Δ𝑡
, 2 ≤ 𝑖 ≤  steps − 1 

For the boundary points, we use forward difference at 𝑡1 and backward difference at 𝑡steps  : 

ErrorRate𝑚(𝑡1) ≈
ErrorXRK4𝑚(𝑡2) − ErrorXRK4𝑚(𝑡1)

Δ𝑡

ErrorRate𝑚(𝑡steps ) ≈
ErrorXRK4𝑚(𝑡steps ) − ErrorXRK4𝑚(𝑡steps − 1)

Δ𝑡

 

 

Then the second-order time derivative of the error, or the rate of change of error growth, is 

obtained as: 

 ErrorRateChange 
𝑚

(𝑡𝑖) =
𝑑

𝑑𝑡
ErrorRate𝑚(𝑡𝑖) ≈

ErrorRate𝑚(𝑡𝑖+1) − ErrorRate𝑚(𝑡𝑖−1)

2Δ𝑡
 

The moment 𝑡𝑚𝑎𝑥 when the error growth changes most rapidly is identified by: 

𝑡max = arg max
𝑡𝑖

  ∣  ErrorRateChange 
𝑚

(𝑡𝑖) ∣ 

To further investigate whether anti-crossings correlate with rapid error growth, we compute the 

energy gap between adjacent levels and track its minimum value over time. The energy gap 

between the 𝑚-th and 𝑛-th energy levels is given by: 
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Δ𝐸𝑚𝑛(𝑡𝑖) = 𝑋𝑚(𝑡𝑖) − 𝑋𝑛(𝑡𝑖), 𝑚 > 𝑛 

And the minimum energy gap at each time step is then computed as: 

MinEnergyGap(𝑡𝑖) = min
𝑚,𝑛

 Δ𝐸𝑚𝑛(𝑡𝑖) 

When MinEnergyGap(𝑡𝑖) is at its minimum, the system is at an anti-crossing, where energy 

levels become nearly degenerate. And a small value of MinEnergyGap(𝑡𝑖) indicates that the 

system is near an anti-crossing, where adjacent energy levels approach each other. 

 

To relate this to error dynamics, we define the maximum change in error growth across all 

energy levels at each time step as: 

 Max Error Acceleration Across Levels (𝑡𝑖) = max
𝑚

  ∣  ErrorRateChange 
𝑚

(𝑡𝑖) ∣ 

Since the minimum energy gap is typically much smaller in magnitude than the values of error 

acceleration, we normalize it using a scaling factor to enable visual comparison. The scaled 

version is computed as: 

         MinEnergyGap_scaled(𝑡𝑖)

= MinEnergyGap(𝑡𝑖) ×
max(Max Error Acceleration Across Levels)

max( MinEnergyGap )

×  scaling_factor  

In our simulation, we chose the scaling factor to be 0.1. This transformation ensures that both 

curves are scaled to a comparable range, facilitating meaningful visual analysis of their 

correlation. 

 

To visualize the relationship between the Max Error Acceleration Across Levels and the 

Minimum Energy Gap, we computed and plotted their values for the same 2-qubit system 

studied in Chapter 4. Since the raw data for the minimum energy gap is significantly smaller 

than that of the error acceleration, direct comparison is not feasible. To address this, we 

magnified a small portion of the time axis to highlight detailed features and applied vertical 

scaling to the minimum energy gap so that its magnitude aligns with that of the maximum error 

growth rate. These adjustments are reflected in Fig. 3.1.7. 
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Fig. 3.1.7 illustrates the relationship between the Max Error Acceleration Across Levels and 

the Minimum Energy Gap in the same 2-qubit system examined in Chapter 4. under the control 

of 𝝀 = 0.8𝑐𝑜𝑠(18𝑡).  

 

From the resulting figure (Fig. 3.1.7), we observe that the blue curve, representing the 

system’s minimum energy gap, reaches its lowest points (anti-crossing) at the same time the 

red curve, denoting the Max Error Acceleration Across Levels, attains its peak. This temporal 

coincidence indicates that the system undergoes an anti-crossing event precisely when the 

simulation error becomes most dynamically unstable. 

 

These two events occur at precisely the same time, providing strong evidence that our 

hypothesis regarding the primary source of error in the PY simulation method is correct. In 
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other words, when an anti-crossing occurs, the energy gap becomes extremely small, leading 

to a rapid increase in error growth. This observation is consistent with the theoretical derivation 

from Eq. (2), reinforcing the conclusion that anti-crossings fundamentally limit the accuracy 

of the PY method for simulating quantum coherent systems. 

 

3.1.6 Memory Requirements of Exact Diagonalization vs. the 

Pechukas–Yukawa Method 

Having discussed the accuracy and numerical limitations of the Pechukas–Yukawa (PY) 

formalism in the context of avoided crossings, we now turn to another essential dimension for 

evaluating the scalability of quantum simulation methods: computational memory efficiency. 

In this section, we compare the memory requirements of the PY model with those of exact 

diagonalization (ED), a standard approach widely used in quantum system analysis. While ED 

offers high numerical precision, it suffers from prohibitive resource demands for large systems. 

In contrast, the PY formalism is significantly more memory-efficient, enabling simulations of 

larger systems and longer evolution times—albeit with some trade-offs in accuracy. 

 

On one hand, the primary memory requirement in exact diagonalization (ED) arises from 

storing the Hamiltonian matrix, which scales with the number of energy levels and the number 

of time steps. Specifically, the matrix size is given by: 

Matrix Size = (Number of Levels, Number of Levels, Time Steps) 

where Number of Levels (𝑵𝒍𝒆𝒗𝒆𝒍𝒔) is the size of the Hilbert space, which for a system of n 

qubits scales as: 

                           𝑵𝒍𝒆𝒗𝒆𝒍𝒔 = 2𝑛 

which means the Hamiltonian matrix has a size of 2𝑛  ×  2𝑛 at each time step while Time 

Steps(T) represents the number of discrete points in time for which the Hamiltonian is 

computed. 
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Thus, the total memory requirement for storing the Hamiltonian is: 

𝑶(𝟐𝟐𝒏𝑻) 

For large n, this leads to an exponential growth in memory usage. For example, in a 10-qubit 

system, the matrix at each time step contains 210  ×  210 = 1024 × 1024 entries. In a 20-qubit 

system, this number grows to approximately 220  ×  220  ≈ 106  ×  106  elements per time 

step, which already requires several terabytes of memory.  

In addition to storage, performing exact diagonalization requires computational operations that 

scale as O (𝑵𝒍𝒆𝒗𝒆𝒍𝒔
𝟑
) = O (𝟐𝟑𝒏), making it infeasible for large n. 

 

On the other hand, the Pechukas-Yukawa (PY) method provides an alternative approach that 

avoids storing the full Hamiltonian at each time step. Instead of storing the full 2𝑛  ×  2𝑛 

Hamiltonian matrix, the PY model only tracks energy levels and couplings. This reduces the 

storage requirement to: 

                          𝑶 (𝟐𝒏𝑻) 

where n is the number of qubits and T is the number of time steps.  

Compared to the 𝑶(𝟐𝟐𝒏𝑻 ) scaling of exact diagonalization, this represents an exponential 

improvement in storage efficiency. 

The trade-off, however, lies in computational cost. The PY formalism requires numerically 

integrating a set of coupled nonlinear differential equations governing the energy levels and 

their interactions. While this integration process can be computationally intensive, especially 

for large number of qubits, it remains tractable given sufficient runtime. In particular, the PY 

method enables the simulation of large quantum systems whose full Hilbert space evolution 

would be computationally infeasible via exact diagonalization. 

 

In short, exact diagonalization is a powerful method but is fundamentally limited by memory 

constraints, restricting it to small systems (typically n ≤ 16 qubits, which requires about 64GB). 

The Pechukas-Yukawa model offers a memory-efficient alternative, allowing simulations of 

much larger quantum systems, albeit at the cost of increased computation time. This trade-off 
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makes the PY model a valuable tool for studying quantum many-body dynamics in regimes 

inaccessible to traditional diagonalization methods. 

 

3.2 Initial States, External Field Parameters and Occupation 

Probability Distributions 

This section mainly introduces how we study the relation between the parameters of the 

external field λ, the initial occupation probability distribution of the system and the maximum 

probability for the system to fall into the ground state with a certain length of time. 

 

In our simulations, it was observed that quantum systems, irrespective of their initial 

occupation probability distributions, possess specific corresponding external field parameters 

(both amplitude and frequency) to allow the systems to fall into the ground state as quickly as 

possible. Adjusting these parameters optimally ensures the system has the highest likelihood 

of transitioning to the ground state within a set period. This pivotal result is depicted in Figures 

3.2.5, 3.2.6 and 3.2.7, which represent systems with variety of initial distributions and their 

subsequent evolution. 

 

3.2.1 Simulations of the Occupation Probability Distribution of 4-

Qubit Systems Prepared in Arbitrary States through the PY 

Method 

In previous chapters, we have shown that the PY method can effectively simulate the energy 

level evolution of 2 to 5 qubit systems, but two of the main problems for the development of 

quantum adiabatic computing are unsolved, that is, “how to make the system fall to the ground 

state as quickly as possible”, and "Maintain it in the ground state as much as possible." For this 
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purpose, further simulations of the evolution of the occupation probability distribution of the 

system are required. 

Therefore, we further extended our model adding the functionality of simulating the evolution 

of the occupation probability distribution of 2 to 5 qubits quantum coherent system. First, we 

show that the PY method is capable to simulate the evolution of level dynamics and the 

evolution of the occupation probability distribution for small-scale quantum coherent structures 

starting from an arbitrary pure state.  

 

Fig. 3.2.1: (1) Left panel: a 4-qubit system fully prepared in ground state. The probability that 

the system is in the ground state is represented in the figure by a blue line that starts from one 

and continues to decrease. This decreasing blue line shows that the system keeps escaping from 

the ground state and being excited to other energy levels during the evolution process. The 

system does not move too far away from the ground state but is mainly concentrated in several 

energy levels near the ground state. (2) Middle panel: same system fully prepared in the 1st 

Excited State. In this panel, we can intuitively see how the occupation probability distribution 

of the system changes between the adjacent energy levels, especially between the 2nd and 3rd 

levels near t=10. (3) Right panel: same system but fully prepared in the highest excited state, 

i.e., the 16th Level. The downward trend of the curve representing the probability of the 16th 

energy level is similar to that of the left panel, and the changes in the probability distribution 

of the system are mainly concentrated in several energy levels adjacent to the initial energy 

level. 
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Fig. 3.2.1 is the cornerstone of this section, showing the simulations of the evolution of the 

occupation probability distribution of 4-qubit systems via the PY method, and the relationship 

between the probability distribution and various parameters can be studied through this. 

In the three examples in Fig. 3.2.1, the three different initial states the system was prepared in: 

the ground state, the 16th energy level and the 2nd energy level, which actually represent two 

types of energy levels (i.e., edge energy levels and intermediate energy levels). 

We can see that the quantum system escapes from its original level faster when it was fully 

prepared in the 2nd energy level (intermediate level) and escapes in a slower speed when it was 

fully prepared in the edge states, i.e., ground level and the highest energy level (edge levels). 

This feature in our simulation is consistent with the finding that the escape probability is higher 

for the middle levels and lower for the edge levels77. 

 

Fig. 3.2.2: This figure shows the evolution of occupation probability distribution for a 4-qubit 

system prepared in a mixed state (50% in ground state, blue line and 50% in the 2nd energy 

level represented by the red line). 
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In Fig. 3.2.1, we show that the PY method can simulate the evolution of the probability 

distribution when the quantum system is originally prepared in one single state. However, in 

actual situations, the systems are often not in a single energy level, so we need to prepare the 

system in an initial state that mixes multiple energy levels. 

In Fig. 3.2.2, we further show an example of a simulated occupation probability distribution of 

a 4-qubit system prepared in a mixed state with 50% ground level and 50% 2nd energy level 

through PY method. Indeed, in our simulations, we found that the PY method is capable to 

simulate the evolution of the occupation probability distribution of small-scale quantum 

coherent structures prepared in arbitrary initial state, which provides the feasibility for the 

further analyzing both qualitatively and quantitatively of the behaviors of a multi-qubits system. 

3.2.2 Optimal Parameters of λ for Maximizing Ground State 

Probability in a 4-Qubit System 

In this part, we will demonstrate how we use the PY method to study a critical problem for 

AQC, namely, how to choose the parameters of the external controlling field λ to maximize the 

probability for the systems to fall into the ground state within a certain period. For efficiency 

and demonstration purposes, we chose 4-qubit systems as the simulation object in this section. 
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Fig. 3.2.3: These heatmaps show the maximum probability of transition to the ground state for 

a 4-qubit system initialized in different excited states. The x-axis represents the amplitude A of 

𝜆(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡) , the y-axis represents the frequency 𝜔  of 𝜆  and the color represents the 

maximum probability for the system to transit to the ground state during the evolution from 

t=0 to t=8π. (1) The left panel illustrates the maximum probability of transitioning to the ground 

state during the evolution from t=0 to t=8π for a 4-qubit system initially prepared in the 9th 

energy level and driven by 𝜆 . (2) The right panel shows the maximum probability of 

transitioning to the ground state for the same system but prepared in the 10th energy level.  

 

In Fig. 3.2.3, we delve deeper into specific parameter sets, highlighting their impact on the 

evolution on the occupation probability distribution. We can see from here that the systems 

prepared in an excited energy level have different chances to fall in the ground while the 

amplitude and frequency of the perturbative parameter 𝜆 is varying. And the highest maximum 

probability for the system to fall into the ground state occurs some chosen parameters 𝜆, (𝜔 =

0.8 𝑎𝑛𝑑 𝐴 = 0.7) for the case presented in the left panel and (𝜔 = 0.5 𝑎𝑛𝑑 𝐴 = 0.8) for the 

case shown in the right. 
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Besides, it is important to note that in all the optimization maps (Fig. 3.2.3–3.2.7), we restrict 

the scan of the parameter space for the external controlling field λ(t) = A cos(ωt) to amplitude 

and frequency values no more than 0.9. This empirical cutoff is not due to any theoretical 

instability around the value 1, but rather a practical limitation imposed by numerical accuracy 

in simulations. 

 

Specifically, as shown in Eq. (1) in section 2.2 that the Hamiltonian of the system evolves with 

respect to λ, while λ is a function of time t through the form λ(t) = A cos(ωt).  

Therefore, when either A or ω increases, the effective step size in λ becomes larger, as λ(t) = 

A cos(ωt) varies more rapidly over time. Since the simulation uses a fixed time step dt, any 

increase in the amplitude A or frequency ω of the driving field λ directly results in a larger 

effective change in λ per step, i.e., a larger dλ. When both A and ω approach 1 in our simulations, 

this step size dλ exceeds the resolution threshold needed to accurately capture the fine structure 

of the evolving energy levels. As discussed in Section 3.1.4, maintaining fidelity in the 

occupation probabilities (e.g.,𝑒𝑟𝑟𝑜𝑟 𝑠𝑖𝑧𝑒 𝑎𝑟𝑜𝑢𝑛𝑑 10−3 ) typically requires the accuracy of 

level dynamics to be within the order of 10−5. If the variation dλ becomes too large to satisfy 

this requirement, the numerical simulation becomes unreliable. While such issues could 

theoretically be mitigated by reducing the time step or adopting more advanced integration 

schemes, such modifications fall beyond the scope of this exploratory study—particularly in 

terms of computational cost. Therefore, to ensure sufficiently high numerical resolution across 

all parameter sets while keeping the simulation tractable, we restricted both A and ω to a 

maximum value of 0.9. 
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Fig. 3.2.4: (1) The left panel: the red circles denote the coordinates (amplitude, frequency) of 

Lambda for a 4-qubit system to have the highest maximum probability to reach its ground state 

within a certain amount of time. The blue triangles denote the coordinates (amplitude, 

frequency) of 𝜆 for the system to have a second highest maximum probability to reach the 

ground state. (2) The right panel: here only the coordinates of 𝜆 for the system to have the 

highest maximum probability are plotted. 

 

We have compiled the 16 sets of data of the evolution of the probability distribution for a 

system prepared in pure state from 1st level to 16th level in Fig. 3.2.4. And a trend is revealed 

that when 𝝀  is in the upper right corner of the amplitude-frequency graph, the highest 

occurrences of maximum probability transitions to the ground state during the evolution are 

found. 

 

Moreover, we can consider the coordinate of the red circle as an optimal set of frequency and 

amplitude for the system initially prepared in a pure state. And we found that if we prepare the 

system in a mixed state composed of two different pure states, each with the same optimal 

frequency and amplitude coordinates for maximum probability of transitioning to the ground 

state within a certain time, then the mixed state will also exhibit the same optimal frequency 

and amplitude coordinates for this maximum probability as those individual pure states. We 

will explain this in detail through Fig. 3.2.5 to Fig. 3.2.7. 



70 

 

 

3.2.3 Shared Optimal Parameters: A Potential Tool for State 

Tracking and Parameter Adjustment in Quantum Systems 

  

Fig. 3.2.5: It can be observed from the above figure, that the system started from pure state 

level 6 (in the left panel) and the system started from pure state level 14 (in the right panel) 

both have the same optimal set in (0.8,0.9). 

 

Fig. 3.2.5 introduces a pivotal concept—the general optimal frequency and amplitude. It shows 

that systems initialized from different pure states, such as level 6 and level 14, can converge to 

the same optimal frequency and amplitude coordinates, specifically (0.8, 0.9). This observation 

suggests that the optimal set of frequency and amplitude is not unique to specific initial states, 

but rather can be common across different pure states, highlighting the universality of these 

optimal parameters. 

 

The investigation of the same set of optimal frequency and amplitude for different initial states 

is demonstrated in Fig. 3.2.6. While Fig. 3.2.5 shows the example that systems prepared in 

different pure states could share the same value of optimal frequency and amplitude, Fig. 3.2.6 
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takes this question and extends it to the cases where systems were prepared in mixed states. 

 

 

Fig. 3.2.6: This figure shows the optimal point of the case where the system was prepared in a 

mix state of 50% in level 6 and 50% in level 14. It ends up with a same optimal point (0.8,0.9) 

of the two cases prepared in pure state: level 6 and level 14 shown in Fig. 3.2.5. 

 

Fig. 3.2.6 serves as a validation of “the shared optimal point” concept. A system prepared in a 

mixed state, with 50% each from level 6 and level 14, also aligns with the same optimal 

coordinate of (0.8,0.9). This consistency across both pure and mixed states suggests a 

potentially universal phenomenon that warrants further investigation. 
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Fig. 3.2.7: Here we change the composition of the distribution of its initial mix state to 
1 

3
 in 

level 6 and 
2

3
 in level 14, and we find the optimal coordination remains the same at (0.8,0.9). 

 

Fig. 3.2.7 shows a change in the composition of the initial mixed state, with 
1 

3
 in level 6 and 

2

3
  in level 14. Despite this alteration in the initial state, the optimal coordinate remains 

consistent, pointing to the coordinate (0.8, 0.9). This observation further solidifies the idea that 

different initial states, whether pure or mixed, can share a common optimal coordinate. 

 

Fig. 3.2.7 illustrates that when we alter the proportions of different energy levels in the initial 

mixed state, specifically, with 
1 

3
 in level 6 and 

2

3
 in level 14, the shared optimal coordinate 

remains unchanged. This consistent optimal coordinate, (0.8, 0.9), indicates that different initial 

states, whether pure or mixed, can indeed share a common set of optimal parameters. 

 

Furthermore, this unique sensitivity to specific external field parameters can serve as a 

powerful tool for tracking the initial state of the system. By observing the parameters under 
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which the system is most likely to transition to the ground state within a given time frame, we 

can infer the composition of the initial state in terms of its energy levels. 

 

From the above results, we can see that 4-qubit systems exhibit a unique sensitivity to specific 

external field parameters according to their initial state compositions. This sensitivity not only 

allows researchers to reverse-investigate the initial state by identifying a system's optimal 

coordinate but also provides guidance on how to adjust the amplitude and frequency parameters 

in the future to enhance the probability of the system transitioning to the ground state within a 

given timeframe. 

 

The finding naturally raises questions about the boundaries and limitations of the “shared 

optimal coordinate” concept. Are there conditions under which this phenomenon breaks down? 

Or is it a universal trait of quantum systems? These questions could form the basis for further 

exploration and research. 

 

If this property is not unique for system for some settings only, then it might provide us a 

convenient tool to obtain information about the initial state of a large-scale quantum coherent 

system by searching whether an optimal set of parameters exists and what initial states it 

indicates. And there exists a potential for manipulation of these parameters, ensuring the 

system's highest likelihood of transitioning to the ground state within a given time frame. 

On the contrary, if this property is not general, we can investigate the boundary conditions for 

it which will also be helpful to understand the behavior of large quantum coherent systems. 
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3.3 Manipulating Quantum Systems Near Anti-Crossings 

In this section, our simulations provided insights into the manipulability of quantum systems, 

specifically near anti-crossings. By modifying the parameters of the external field, we can 

strategically direct the probability flow, causing the system to either ascend or descend in 

energy levels. Figures 3.3.1 to 3.3.3 display the effect of parameter adjustment on the change 

of occupation probability distribution, providing clear visual evidence of our control through λ 

over these systems. 

 

Fig. 3.3.1: (1) The left panel: Here we use a linear perturbative parameter 𝜆 = 0.1𝑡 and plot 

the evolution of the energy levels for a 3-qubit system (2) The right panel: the occupation 

probability distribution of the same system for the left panel started from a mix state with 50% 

in level 8 (blue line) and 50% in level 9 (red line).  

 

We can see the probability exchange shown in the right panel of Fig.3.3.1 occurs in the same 

vale of λ, near 𝜆 = 0.4, where the first anti-crossing occurs, marked on the left graph. This 

figure serves as a reference for studying the impact of changing 𝛌
•

 near the first anti-crossing, 
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which we will discuss in the next two figures. It can be seen from the right panel of Fig.3.3.1 

that the probability change from upper level (red line) to the lower level was around 0.118. 

 

Fig. 3.3.2: (1) The left panel: the level dynamics of a 3-qubit system driven by a linear 

perturbative parameter 𝜆 = 0.1𝑡, but we change 𝛌
•

 from 0.1 to 0.2 near the vicinity of the first 

anti-crossing at 𝜆 = 0.4 . (2) The right panel: the occupation probability distribution of the 

same system for the left panel started from a mix state with 50% in level 8 (blue line) and 50% 

in level 9 (red line).  

 

From the right panel of Fig.3.3.2, we can observe that the probability changed from the upper 

level (red line) to the lower level (blue line) is 0.119, which is slightly higher than 0.118 shown 

in Fig.3.3.1. 
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Fig. 3.3.3: Same settings to Fig.3.3.1, but we decrease 𝛌
•

 from 0.1 to 0.04 near the vicinity of 

the first anti-crossing at 𝜆 = 0.4. And the probability changed from the upper level (right line) 

to the lower level (blue line) decreased to 0.096 from 0.118 (shown in Fig.3.3.1). There is a 

noticeable change in the difference of the probability change after we decrease 𝛌
•

 . 

 

We can conclude a region from Fig.3.3.1 to 3.3.3 that by increasing λ
•

 near the vicinity of an 

anti-crossing, the system favors dropping to the lower level during the Landau-Zener transition 

(the transition probability is described by Eq.(11) ). And by decreasing λ
•

 the system tends to 

excite to the upper level. 

  𝑃𝐿𝑍 = 𝑒𝑥𝑝(−Δ𝑚𝑖𝑛
2 4𝜋|〈𝑚|𝑍𝐻𝑏|𝑛〉|λ

•

)       (11) 

This regime provides us with an approach to manipulate the evolution of the probability 

distribution of a small-scale system which is meaningful in the research of quantum computing, 

especially adiabatic quantum computation if it is not restricted to small-scale quantum system 

only. Since we can increase the probability for the system to fall into the ground state with a 

certain length of time by tuning the external controlling field λ. This is helpful for the 
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preparation of AQC which requires the system to be prepared in its ground state. Moreover, 

when the system is finally in ground state, we can change λ to lower the chance for it to escape 

from the ground state through a Landau-Zener transition. 

However, this method is not restricted to AQC only, since it can also be used as a helpful tool 

to manipulate the probability distribution not only concerns the ground state, but all levels. 

Moreover, by constructing a network of anti-crossings and tuning λ at each anti-crossings, we 

may have a chance to drive the system to the particular occupation probability distribution we 

want, which will be extremely useful in the study of quantum computing. 

In addition, this also provides us a potential research direction to construct patterns with anti-

crossings, since we can control the horizontal distance between anti-crossings by changing λ 

and control the vertical distance by twitching the curves of energy levels also determined by λ.  

This enlightens us an interesting direction: if we can take anti-crossings as nodes and construct 

patterns with them, as the number of anti-crossings grows large enough, new features will 

emerge, which has a potential to be helpful in the development of QC. 

3.4 Summary of Chapter 3 

In this chapter, we investigated the relation between initial occupation probability distributions 

of the quantum systems and their corresponding external field parameters, i.e., amplitude and 

frequency of λ. Through a series of detailed figures and analyses, this chapter demonstrates 

how we can control the transition of a quantum system to its ground state by manipulation of 

the parameters of λ. 

 

In our simulations, we found that every quantum system has an optimal set of amplitude and 

frequency of the external controlling field λ to drive the system to the ground state with a 

maximum probability within a certain simulating time, no matter what initial configurations of 

the occupation probability distribution the system was prepared. In addition, systems prepared 

in different configurations of occupation probability distribution could have the same optimal 

set of amplitude and frequency of λ to allow them to fall into the ground state with a maximum 
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chance within the certain time. This suggests that there may be a universality that applies to all 

quantum systems and is worth further exploration. Furthermore, if we know which set of 

amplitude and frequencies is optimal for which initial probability distribution, we can somehow 

infer the original configuration of the occupation probability of the system based on its current 

optimal set, which can be helpful in detecting whether the system was working properly. 

In short, we show that the potential of the parameters of the external controlling field λ to work 

as a tool to guide, detect and predict behavior of systems through some simulation examples. 

These findings can contribute to further exploration and research in the field of quantum 

computation. 

Chapter 4: Dynamical Complexity and Occupation 

Probability distribution of 2-Qubit System 

Introduction of Chapter 4 

In this chapter, we investigate the regimes that determine the evolution of the occupation 

probability distribution and the relation between it and the broadening of the power spectral 

density (PSD) of the expectation value of the system through the simulations of 2-qubit 

quantum systems under control of the external perturbation λ. 

By applying the Pechukas method to simulate dynamical evolution alongside spectral analysis 

techniques, we build a connection between the degree of dynamical complexity of the system 

and the change of its occupation probability distribution. 

It is worth noting that although the analysis we present in this chapter is about 2-qubit systems 

due to insufficient computing power, the methods and framework design we adopted are not 

limited to 2-qubit systems and can theoretically be extended to larger-scale quantum systems.  

Next, we will introduce the regimes we found, supplemented by numerical simulations and 

analytical discussions to clarify under what conditions certain quantum behaviours emerge and 

how these findings can be used to advance the field of adiabatic quantum computing. 
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The simulations in this chapter are based on the 2-qubit Hamiltonian introduced in Section 2.2. 

The model parameters used in the numerical results are specified below or in the figure captions 

where available. 

List 2: Parameters of Hamiltonian used in the simulations of 2-qubit systems in chapter 4.   

               Parameter Value 

Δ1 0.4 

∆2 0.5 

ℎ1 0.7 

ℎ2 0.2 

𝐽12 0.6 

 

4.1: Foundational Concepts and Tools 

In this section, we present the basic concepts of our research through three sets of figures. 

First, we introduce how we use the periodic external controlling field 𝝀 = 𝐴𝑐𝑜𝑠(𝜔𝑡) by tuning 

its parameters amplitude (A) and frequency (ω) to affect the power spectral density (PSD). 

Here Figures 4.1a and 4.1b serve as the cornerstone of our exploration into PSD by presenting 

the power spectral density for the expectation value of energy of a 2-qubit system under the 

influence of white noise.  

Fig. 4.1a focuses on the impact of amplitude variations, illustrates how varying the amplitude 

of the perturbative parameter λ leads to changes in the spectral density. Fig. 4.1b shifts the lens 

towards frequency variations by looking at a similar setup but focuses on the impact of altering 

the frequency of λ. Together, they lay the groundwork for understanding how these parameters 

can be fine-tuned to influence quantum states and, by extension, AQC. 

 

Second, through the comparison of two sets of Figures (4.2 and 4.3), we show the difference 

in PSD between PSD with distinct peaks (regular systems) and broadened PSD (a symbol of 
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dynamical complexity) and explain the connection between the degree of broadening of the 

PSD of the expectation value of the system and the probability distribution. It is also worth to 

point out that spectral analysis via PSD can provide a kind of basis for determining whether 

quantum chaos occurs, but spectral analysis alone is not enough to make a complete 

determination78. 

 

Fig. 4.2a shows a 'smeared' case in PSD, i.e., a broadened PSD with multi-peaks, indicating a 

dynamical complex behavior occurred in the system. While Fig. 4.2b serves as natural 

extensions of Fig. 4.2a by presenting the corresponding probability of the ground level. 

Together the figures reveal how the broadening of PSD can be related to significant deviations 

in occupation probability distributions, thereby affecting the efficiency and reliability of AQC 

algorithms. 

 

Fig. 4.3a and 4.3b are presented as a comparison of 4.2a and 4.2b. Fig. 4.3a shows a ‘regular’ 

case in PSD, while 4.3b presents its corresponding possibility distribution of the energy levels. 

They show that in a more regular PSD, i.e., less dynamical complexity, the probability of escape 

from the original level in which the system was initially prepared is lower, thereby indicating 

a more stable quantum state. 
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Fig.4.1a: Power spectral density for expectation value of energy of a 2-qubit system with the 

presence of white noise. In this case, by changing the amplitude of the perturbative parameter 

λ, the “signature” cluster between two main peaks in the power spectral density of expectation 

value of energy changes. The dominant peak near ν ≈ 3 corresponds to the driving frequency 

ω = 18, confirming the resonance between system dynamics and the applied modulation. 

 

In Fig. 4.1a, the power spectral density (PSD) of the occupation probability exhibits a dominant 

peak at frequency ν≈3. This matches the expected response to the external driving field λ(t) =

Acos(ωt) , where ω=18. Since the frequency in hertz is given by ν = ω/2π ≈ 2.86 , the 

observed peak confirms that the main oscillation in the system originates from the periodic 

driving field λ. This indicates that the system dynamics are strongly influenced by the external 

driving frequency, consistent with the expected coherent response. 
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Fig.4.1b: Power spectral density for expectation value of energy of a 2-qubit system with the 

presence of white noise. In this case, by changing the frequency of the perturbative parameter 

λ from 18 to 17.5, the broadening of peaks between each two adjacent main peaks in the power 

spectral density of expectation value of energy increases. In both panel, the dominant peak near 

ν ≈ 3 corresponds to the driving frequency ω = 18(left panel) and ω=17.5(right panel), 

confirming the resonance between system dynamics and the applied modulation. It is also 

evident that variations in amplitude do not affect the principal frequency component in the PSD, 

provided the frequency remains constant. 

 

Figures 4.1a and 4.1b serve as an introductory exposition into the realm of Power Spectral 

Density (PSD) in quantum systems. Fig. 4.1a provides a foundational understanding of how 

amplitude variations in the perturbative parameter λ can significantly alter the PSD. As we 

transition to Fig. 4.1b, the focus shifts subtly but importantly to the frequency domain. It is not 

merely a continuation of Fig. 4.1a but serves to highlight the dual role of amplitude and 

frequency in shaping the PSD. The juxtaposition of these two figures lays the groundwork for 
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a nuanced understanding of how these parameters can be manipulated to influence quantum 

states, a theme that has far-reaching implications for adiabatic quantum computing (AQC). 

Because we can further build a relationship between PSD and the evolution of the occupation 

probability distribution of the target quantum coherent system. This analysis also reveals the 

potential effect of quantum chaos on the occupation probability distribution of system energy 

levels which can be explored if more indicators of quantum chaotic behaviors are applied. 

 

 

 

Fig.4.2a: A high degree of broadening in the power spectral density of expectation value of 

energy of a 2-qubit system with the presence of white noise where 𝜆 = 1.1𝑐𝑜𝑠(18𝑡)   The 

spectral components observed are broadly distributed, but the dominant peak still appears near 

ν ≈ 3, corresponding to the driving frequency ω = 18 (since ν = ω/2π ≈ 2.86), confirming the 
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influence of the external field 𝜆. 

 

The corresponding evolution of the probability of the ground state for the same system is shown 

in Fig.4.2b. 

On one hand, in Fig. 4.2a, a significant broadening of PSD of expectation value of energy of 

the system is evident, characterized by the presence of numerous clusters interspersed between 

primary peaks. This feature, indicating a broad spectrum of frequencies within the energy 

signal, indicates a complex behavior of the system, and can serve as one of possible indicators 

for the presence of quantum chaotic behavior. However, it should be considered a necessary 

but not sufficient condition for identifying quantum chaos. 

 

Since each frequency component within this spectrum is associated with a distinct dynamical 

mode of the quantum coherent structure under investigation, the presence of a broad range of 

such frequencies—manifested by a significant broadening of the primary peaks—suggests a 

system characterized by a diverse array of dynamical behaviors, i.e., more complex, indicating 

that the system is demonstrating a dynamical complex behavior. 

 

On the other hand, Fig. 4.3a illustrates a PSD that is narrow and discrete, with energy 

predominantly concentrated at a limited number of frequencies. Such a spectral profile is 

indicative of a system that is more regular and deterministic in nature. 

 

In summary, the Power Spectral Density of the expectation value of energy for the target 

quantum coherent structure serves as a valuable diagnostic tool for intuitively assessing the 

degree of the dynamic complexity of the system. A high degree of broadening of the PSD is an 

indicator that the system is exhibiting dynamical complex behaviors. This can also be 

considered as one of the indicators for possible quantum chaotic behavior for further research. 
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Fig.4.2b: Drastic changing probability of ground state for 2-qubit system. We can see that the 

probability for the system to be in ground state varies greatly when the system exists a 

significant broadening of PSD (many clusters between main peaks in Fig.4.2a).  

 

While it is established that the Power Spectral Density (PSD) is influenced by the amplitude 

and frequency of Lambda when it operates as a periodically oscillating cosine function, this 

knowledge facilitates only an intuitive assessment of the dynamical complexity of the system. 

For these insights to have practical utility in the advancement of Adiabatic Quantum 

Computation (AQC) technology, it is imperative to establish a theoretical link between the 

dynamical complexity and the temporal evolution of the occupation probability distributions 

of the systems. 
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Operating under the foundational principle that successful Adiabatic Quantum Computation 

(AQC) necessitates the system's maintenance of its ground state throughout the evolution 

process, an appropriate vantage point for exploring the interrelationship between the 

dynamical complexity of the quantum coherent structure and the performance of AQC is the 

temporal evolution of the ground state's occupation probability distribution. In addition, 

based on our study, the relationship between quantum chaos and AQC performance can be 

studied in future research by utilizing more indicators to identify quantum chaos behavior. 

 

To this end, Fig. 4.2b illustrates the dynamic alterations in the probability of the system 

residing in its ground state, having been initially prepared in this state prior to undergoing 

evolution governed by the parameter λ.  

 

This is juxtaposed with the observations from Fig. 4.2a, which displays a multi-peaked Power 

Spectral Density (PSD) replete with clusters between the primary frequency peaks—a 

signifier of dynamical complex behavior of the system. One can observe in Fig. 4.2b that the 

probability of the system remaining in the ground state exhibits significant fluctuations. 

 

The question then arises: is there a correlation between the degree of the broadening of PSD 

of the expectation value of energy of the system which indicates the dynamical complexity in 

the system and the variability in the probability of the system occupying its ground state? To 

substantiate this hypothesis, it becomes essential to draw comparisons with scenarios where 

the PSD manifests regular characteristics, which is presented in the following Fig.4.3a and 

Fig.4.3b. 
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Fig.4.3a: A low degree of broadening in the power spectral density for expectation value of 

energy of a 2-qubit system with the presence of noise where 𝜆 = 0.8𝑐𝑜𝑠(18𝑡)  The dominant 

peak near ν ≈ 3 corresponds to the driving frequency ω = 18. 

  

We can see the frequency here is the same as the one in Fig.4.2a, while the amplitude is changed 

to 0.8 from 1.1. The number of clusters between main peaks significantly reduced and became 

more discrete, which indicates a less dynamical complexity of the system. The corresponding 

variation of the probability for the system to be in ground state is more stable which can be 

found in Fig.4.3b. 
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Fig.4.3b: Slowly changing probability of ground state for 2-qubit system. When the power 

spectral density is more discrete (see Fig. 4.3a), the system has less dynamical complexity and 

shows less tendency to leave its original state. 

 

It is noteworthy that in the scenarios depicted in Figures 4.2 and 4.3, the system is initially 

prepared in the ground state .Upon contrasting the cases, it becomes evident that a higher 

degree of dynamical complexity of the system (as seen in Fig. 4.2a) correlates with a more 

substantial deviation from the system's original ground state (as illustrated in Fig. 4.2b in 

comparison to Fig. 4.3b).  

 

As a preliminary inference, one may posit that the presence of dynamical complexity 

negatively impacts the operational efficiency of an adiabatic quantum computer initially 

prepared in its ground state. To be more explicit, the degree of dynamical complexity of the 
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system appears to be directly correlated with the extent of deviation from the ground state. 

Greater dynamical complexity increases the likelihood of the system transitioning away from 

its original states (ground states in the above cases). This observation leads to a speculative 

query: could the degree of dynamical complexity be proportionally related to the extent of 

deviation from the initial state? This line of inquiry warrants further investigation, which will 

be pursued in subsequent discussions. 

Furthermore, although periodic fluctuations are observable from Fig.4.1a to Fig.4.3b, it is 

worth noting that the occupation probability distribution of the system does not necessarily 

demonstrate periodic changes. In other words, the system could evolve away from its initial 

occupation probability distribution and not revert to its original configuration (further details 

are presented in Fig. 4.4a). 

Fig.4.4a: Evolution of the probabilities of each energy level if a 2-qubit system, 𝜆 =

1.25𝑐𝑜𝑠(14.5𝑡). The system shows a non-periodic evolution and escapes from its original state 
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(ground state) rapidly. 

 

Fig.4.4b: A high degree of broadening in the power spectral density for expectation value of 

energy of a 2-qubit system with the presence of noise where 𝜆 = 1.25𝑐𝑜𝑠(14.5𝑡)   Many 

clusters amidst main peaks indicate that the system is demonstrating dynamical complex 

behaviors. From the driving frequency ω = 14.5, we estimate the corresponding frequency in 

hertz as ν = ω / 2π ≈ 2.31. The observed dominant peak near ν ≈ 2.5 supports this estimation, 

indicating a clear resonance with the external modulation. 

 

In Fig. 4.4a, the system is initially prepared in its ground state, as indicated by the blue marker 

originating at a probability of one. And unlike the previous examples, following a period of 

temporal evolution, the system shows non-periodic behaviours and undergoes a substantial 

transition away from its ground state and does not revert to its original configuration.  

 

The corresponding Power Spectral Density (PSD) of the system's expectation value of energy 
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value is delineated in Fig. 4.4b. This spectral profile intimates a quantum coherent structure 

with a propensity for manifesting dynamical complex behaviours. 

The concurrent phenomena of rapid departure from the initial energy level and a broadened 

PSD in Fig. 4.4b—which is indicative of higher degree of dynamical complexity—corroborate 

our preliminary hypothesis. Specifically, we have posited that the extent of complexity of the 

system is proportionally related to the degree of deviation from the initial energy level. 

Accordingly, the PSD serves as a diagnostic tool for gauging the likelihood of the system's 

escape from its original energy state. 

 

To empirically substantiate this hypothesis, we systematically varied the amplitude of λ within 

the range of 0.95 to 1.25, in increments of 0.05, and the frequency from 12.5 to 22.5, in 

increments of 0.5, during simulation. The results were congruent with our conjecture. 

 

As it stands, pending the emergence of counterexamples, there is justified confidence in 

asserting that for a two-qubit system subjected to an external cosine field in the presence of 

white noise and initially prepared entirely in its ground state, the propensity for departing from 

the initial energy level is proportional to the degree of the dynamical complexity of the system. 

 

It is worth noting, however, that the discussion thus far has exclusively focused on a two-qubit 

system initially prepared 100% in its ground state. Given that a two-qubit system possesses 

four discrete energy levels—comprising two edge levels (the first and fourth) and two 

intermediate levels (the second and third)—it becomes imperative to extend our inquiry to 

scenarios where the system is entirely prepared in these other energy states. Such analyses will 

be undertaken in Section II. 

4.2: Further Verification of Our Hypothesis and Interesting Results 

Different Tendencies: Edge vs. Intermediate Levels 

In this section we will discuss the relationship between PSD and the occupation probability 
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distribution of the system energy levels when the two-qubit system is fully prepared in three 

energy levels except the ground state. 

We used a different approach, the PY method, to reach the same conclusion as the previous 

research79, that is, the escape velocity of the intermediate energy level is faster than that of the 

edge energy level. 

 

Moreover, we found that when the system is completely prepared at the edge energy level, it 

follows two different sets of regimes than when it is completely prepared at the intermediate 

energy level.  

Therefore, we will discuss and compare the two cases of edge energy level and intermediate 

energy level respectively. 

First, we will start our exploration from the other edge energy level in the two-qubit system 

except the ground state, that is, the fourth energy level. 
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4.2.1 Systems prepared entirely in edge levels 

 

Fig.4.5a: Probability distribution, λ=1.25cos(18t), start from 100% LVL 4. The probability for 

this 2-qubit system to remain in the original state LVL4 varies a lot in periodic changes.  

 

Recalling our previous findings in Section I, where the system was initiated in its ground state, 

we established a proportionality between the degree of dynamical complexity (quantified by 

the degree of broadening of the PSD of the system's expectation value of energy) and the extent 

of deviation from this initial state.  

 

We extended this observation to hypothesize that the degree of dynamical complexity of the 

system is correlated with the likelihood of the system departing from its initially prepared state. 

Should this hypothesis hold universally and not be confined to systems initiated in the ground 
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state, then one would anticipate a broadening PSD, indicative of higher degree of dynamical 

complexity of systems, in instances where there is significant variation from the original state.  

 

Fig. 4.5a indeed corroborates this, demonstrating marked fluctuations when the system starts 

from a configuration exclusively in the fourth energy level. 

 

Substantiating our hypothesis, Fig. 4.5b reveals a PSD characterized by a significant 

broadening appearance, replete with clusters between the primary frequency peaks, thereby 

indicating that the system undergoes complex behaviors. 

 

Fig.4.5b: Power spectral density of the expectation value of energy for the 2-qubit system 

started from 100% LVL 4 under the control of an external field λ=1.25cos(18t). From the 

driving frequency ω = 18, we estimate the corresponding frequency in hertz as ν = ω / 2π ≈ 
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2.86. The observed dominant peak near ν ≈ 3 supports this estimation, indicating a clear 

resonance with the external modulation. 

 

 

 

Next, we demonstrate a pair of graphs of a ‘regular’ example for comparison:  

While Fig. 4.6a demonstrates a case with a relatively regular PSD for the expectation value of 

energy, i.e., less, and shorter clusters between main peaks of frequencies. Fig. 4.6b presents the 

corresponding evolution of the probability distribution of the energy levels. 

 

 

Fig.4.6a: Power spectral density of the expectation value of energy for the 2-qubit system 

started from 100% prepared in the 4th energy level under the control of an external field 
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λ=1.25cos (18.5t). In this case, the amplitude of λ is fixed, while the frequency is changed from 

18 to 18.5. From the driving frequency ω = 18.5, we estimate the corresponding frequency in 

hertz as ν = ω / 2π ≈ 2.94. The observed dominant peak near ν ≈ 3 supports this estimation, 

indicating a clear resonance with the external modulation. 

 

As illustrated in Fig. 4.6a, the PSD displays less broadening, both interposed between and 

adjacent to the primary frequency peaks, compared to what is observed in Fig. 4.5b. This 

reduction in cluster count and size suggests a less degree of dynamical complexity of the system. 

If our earlier hypothesis—which posited a proportionality between the degree of dynamical 

complexity of the system and the system's likelihood of deviating from its initial state—is 

applicable beyond just the ground state to include both edge energy levels, then a 

correspondingly smaller deviation from the initial state should be observable in Fig. 4.6b 

 

Examination of Fig. 4.6b confirms this prediction, revealing a less pronounced departure from 

the system's initial energy level. This observation not only supports but also broadens the scope 

of our original conjecture. Specifically, we can now extend our hypothesis to state: "When a 

two-qubit system is driven by an external field characterized by 𝜆 = 𝐴𝑐𝑜𝑠(𝜔𝑡) and subjected 

to white noise, and is initially prepared entirely in one of the edge energy levels (as opposed to 

solely the ground state), the system's tendency to deviate from this initial energy level is 

proportionate to the degree of dynamical complexity of the system.” 
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Fig.4.6b: Probability distribution, λ=1.25cos (18.5t), start from 100% in the 4th energy level 

(edged level, and most excited level for 2-qubits system).  

 

Though our simulated results show that the system's tendency to deviate from this initial energy 

level is proportionate to the degree of dynamical complexity of the system measured by the 

degree of the broadening of PSD of expectation value of energy for two-qubit systems which 

are driven by external fields characterized by 𝜆 = 𝐴𝑐𝑜𝑠(𝜔𝑡) and subjected to white noise and 

were initially prepared entirely in one of the edge energy levels, it is still too early to make a 

bigger statement like “the degree of dynamical complexity of the system is proportional to the 

tendency for the system to escape from its original state”.  

 

To dig further, we are going to demonstrate the situations in which the 2-qubit systems are 

prepared entirely in the intermediate levels instead of edge levels through Figures 4.7 to 4.11. 
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4.2.2 Systems prepared entirely at intermediate levels: 

As delineated in Figures 4.7a and 4.7b, we first consider a scenario wherein the two-qubit 

system is initially prepared at one of the intermediate levels (the third energy level).  

 

Fig. 4.7a reveals a rapid departure of the system from its initial energy state.  Surprisingly, 

however, the corresponding Power Spectral Density (PSD) of the system's expectation value 

of energy, as depicted in Fig. 4.7b, manifests as a structured pattern rather than a 'smeared' one. 

This PSD with a lower degree of broadening in PSD also indicates low degree of dynamical 

complexity of the system. 

 

This observation starkly contrasts with previous scenarios where the system was prepared at 

one of the edge energy levels. Consequently, we postulate that when the system is initialized at 

an intermediate energy level, an alternative set of dynamical rules might govern its behavior.  

 

To empirically substantiate this hypothesis, we employed our extended Pechukas-Yukawa 

formalism to simulate systems initialized at intermediate energy levels (either the 2nd or the 

3rd). The amplitude of λ was systematically varied within the range of 0.95 to 1.25, in 

increments of 0.05, and the frequency was adjusted between 12.5 and 22.5, in increments of 

0.5.  

 

Our findings corroborated that, irrespective of the PSD patterns, systems initialized at 

intermediate levels consistently exhibit a rapid divergence from their initial states compared to 

systems initialized at edge levels. 

 

These studies report a relative speed difference in escaping from initial states between edge 

and intermediate energy levels, with systems in intermediate states diverging more rapidly. This 

observed speed differential intuitively makes sense; for intermediate energy levels, 
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probabilities can flow in two possible directions, whereas for edge states, the flow of 

probability is restricted to a single direction.  

Nevertheless, the underlying mechanics of this phenomenon warrant further investigation, a 

topic we shall delve into subsequently in the future.  

 

At this juncture, it would be prudent to refocus our attention on the behaviour of systems 

initially prepared in one of these intermediate energy levels.  

 

Returning our focus to the relevant figures, it is noteworthy that while a direct correlation 

between system’s dynamical complexity (quantified via Power Spectral Density, or PSD) and 

the velocity at which the system departs from its initial energy level remains elusive, an 

alternative method of establishing a link between the system's dynamical complexity and 

occupation probability distribution has come to light. Specifically, this alternative metric can 

be characterized by the gap between the lines that represent the probabilities of the system 

occupying the 1st and 4th energy levels, as delineated in Figures 4.7a and 4.8b. 

 

Upon scrutinizing the simulated data, we observed a noteworthy pattern: as the degree of 

system’s dynamical complexity escalates, the intertwining of the lines representing the 

probabilities of the system residing in the two edge energy levels (namely the first and the 

fourth) becomes increasingly intricate. Conversely, in scenarios with a minimal degree of 

system’s dynamical complexity, the separation between these lines is significantly pronounced. 

 

This refined interpretation offers a nuanced perspective, potentially furnishing us with an 

auxiliary metric for evaluating the degree of dynamical complexity of the system in relation to 

the probability distribution across edge energy levels. 
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Fig.4.7a: Probability distribution, λ=1.24cos (13t), start from 3rd energy level 100% (an 

intermediate level).  

 

In Fig. 4.7a, the rapid efflux of probability from the original state—Level 3 (LVL 3)—is evident, 

eventually coalescing predominantly at the highest excited state, Level 4 (LVL 4). The curves 

corresponding to these states configure into a horizontally oriented 'U' shape, distinguished by 

a conspicuously broad interstice at the midpoint. 

 

According to the heuristic framework we have derived from the simulation data, a larger 

separation between the lines representing the probabilities of the two edge energy states—Level 

1 and Level 4—correlates with a more structured Power Spectral Density (PSD).  

 

Corroborating this observation, Fig. 4.7b exhibits a PSD of the expectation value of energy 
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value that adheres to a regular pattern.  

Consequently, this instance lends credence to our summarily established rules governing the 

relationship between PSD of the expectation energy value and the occupation probably 

distributions. 

 

Fig.4.7b: Power spectral density of the expectation value of energy for the 2-qubit system 

started from 100% LVL 3(middle level) under the control of an external field λ=1.24cos (13t) 

with the presence of white noise. Compare this to its neighbor in the following Fig.4.8a, where 

Lambda=1.24cos (13.5t), we can see this one has significantly less clusters, i.e., less degree of 

dynamical complexity of the system. From the driving frequency ω = 13, we estimate the 

corresponding frequency in hertz as ν = ω / 2π ≈ 2.07. The observed dominant peak near ν ≈ 2 

supports this estimation, indicating a clear resonance with the external modulation. 
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Nevertheless, isolated corroborative instances are insufficient for drawing comprehensive 

conclusions. As such, we intend to furnish additional examples to robustly elucidate the 

interconnections between dynamical complexity and the probabilistic distribution across 

energy levels of the system. 

 

The following examples will intuitively show what kind of occupation probability distribution 

situations will correspond to different degrees of system’s dynamical complexity measured by 

the broadening of PSD, helping us gain a more comprehensive understanding. 

 

Fig.4.8a: Power spectral density of the expectation value of energy for the 2-qubit system 

started from 100% LVL 3(middle level) under the control of an external field λ=1.24cos (13.5t). 

As the frequency changes from 13 to 13.5, the number of clusters increases and we can see 

many peaks higher than 10−2 , which indicates a higher degree of system’s dynamical 
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complexity. From the driving frequency ω = 13.5, we estimate the corresponding frequency in 

hertz as ν = ω / 2π ≈ 2.15. The observed dominant peak near ν ≈ 2 supports this estimation, 

indicating a clear resonance with the external modulation. 

 

Let us engage in a speculative exercise to anticipate the characteristics of Fig. 4.8b, which 

represents the corresponding probability distribution, based on the Power Spectral Density 

(PSD) delineated in Fig. 4.8a. This speculation will be informed by the heuristic framework 

we previously established: 

 

Given that the rate of probability escape from middle energy levels has been empirically 

observed to exceed that from edge levels, one can reasonably surmise that variations in the 

degree of complexity of system are unlikely to substantively affect this escape rate.  

 

Consequently, regardless of the degree of dynamical complexity of system, the probability 

associated with middle levels is expected to asymptotically approach minimal values. This 

leads us to predict a rapid decline in the probability curve corresponding to the original energy 

level, akin to the case illustrated in Fig. 4.7a. 

 

Furthermore, the 'smeared' appearance of the PSD in Fig. 4.8a suggests a higher degree of 

dynamical compexity. According to our heuristic framework, this should correlate with 

increased interlacing between the curves representing the edge energy levels (1st and 4th levels) 

as temporal evolution unfolds. Therefore, we anticipate a smaller separation between these 

probability curves compared to what was observed in Fig. 4.7a. 
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Fig.4.8b: Probability distribution, λ=1.24cos (13.5t), start from 100% LVL 3 (a level in the 

middle) with the presence of white noise. More dynamical complexity shows, see Fig.4.8a. The 

probability transits out from its original state LVL 3 rapidly and eventually concentrates on the 

edged levels, LVL 4 and LVL 1. And it has a trend that the probability will eventually 

concentrate on LVL4. The gap between the purple and blue curves are narrower compared to 

the one with less dynamical complexity of the system in Fig.4.7a. The curves representing the 

probability of the two edge levels are ‘oscillating’. 

 

Upon examination of Fig. 4.8b, it becomes evident that our speculative predictions have been 

borne out, thereby fortifying the empirical rules we have formulated based on the simulated 

data set. 

Continuing with our line of reasoning, let us consider the implications of the heuristic rule we 

have deduced. According to this rule, an increase in the degree of the dynamical complexity 
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during the system's temporal evolution—evidenced by a broadened Power Spectral Density 

(PSD) containing multiple frequencies—should be accompanied by an increasing degree of 

intersection between the probability curves representing the first and fourth energy levels. 

Eventually, these curves may converge to the point of complete overlap. 

 

Fig.4.9a: A high degree of broadening in the power spectral density of the expectation value 

of energy for the 2-qubit system started from 100% LVL 3(middle level) under the control of 

an external field λ=1.24cos (15.5t). Many clusters aside the peaks and we can barely recognize 

the valley between the first few peaks, which denotes a dynamical complex behavior of the 

system. From the driving frequency ω = 15.5, we estimate the corresponding frequency in hertz 

as ν = ω / 2π ≈ 2.47. The observed dominant peak near ν ≈ 2.5 supports this estimation, 

indicating a clear resonance with the external modulation. 

 

Upon comparative analysis of the Power Spectral Density (PSD) plots in Figures 4.9a and 4.8a, 
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it is evident that the PSD in Fig. 4.9a exhibits a higher complexity, manifested as a greater 

frequency spread or 'smeared' appearance. This serves as one of possible indicators for an 

increased degree of dynamical complexity of the system. 

It should be noted that the vertical axis in these PSD figures is logarithmically scaled.  

Consequently, when evaluating the complexity of the PSDs, our focus is directed towards 

quantifying those frequencies that manifest greater intensity. This is operationalized by 

examining both the number of secondary peaks adjacent to the primary peaks and the average 

intensity of the clusters appearing between these primary peaks. 

 

Fig.4.9b: Probability distribution of the 2 qubits system prepared in 100% level 3 driven by 

λ=1.24cos (17t).  

Examination of Fig. 4.9b reveals that the probability curves for the system occupying the edge 

levels (the 1st and 4th levels) are nearly indistinguishable, thus validating our earlier hypothesis. 
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This intertwining of the curves is further corroborated by the complex, 'smeared' appearance 

of the corresponding PSD in Fig. 4.9a, which suggests a higher degree of dynamical complexity 

of the system. 

 

This empirical observation is congruent with our theoretical postulate, reinforcing the notion 

that increasing degree of dynamical complexity of the system is correlated with the proximal 

convergence of the probability curves for the edge energy levels. 

However, this realization precipitates a new challenge: While it appears that the extent of this 

convergence plateaus when the curves overlap fully (yielding an inter-curve distance 

approaching zero), the degree of dynamical complexity of the system is not necessarily 

constrained to a finite upper limit.  

In this context, a question emerges: What will transpire with respect to the system's energy-

level probability distribution should the degree of dynamical complexity of the system continue 

to escalate? 
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Fig.4.10a: Power spectral density of the expectation value of energy for the 2-qubit system 

started from 100% LVL 3(middle level) under the control of an external field λ=1.25cos (17.5t). 

Both amplitude and frequency are changed in this case compared to the λ in Fig.4.9a. From the 

driving frequency ω = 17.5, we estimate the corresponding frequency in hertz as ν = ω / 2π ≈ 

2.79. The observed dominant peak near ν ≈ 3 supports this estimation, indicating a clear 

resonance with the external modulation. 

 

Compared with the PSD in Fig. 4.9a, the PSD in Fig. 4.10a has more side slits next to the main 

peaks and more clusters with higher intensity between the main peaks in frequency, indicating 

a higher degree of dynamical complexity of the system. This is the situation where the degree 

of dynamical complexity continues to escalate as mentioned in the question we raised before. 
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Note that in Fig. 4.9b, the probability curves representing the two edge energy levels have 

almost completely overlapped (the distance between the curves is almost 0), so now when we 

continue to upgrade the degree of dynamical complexity of the system, how will the probability 

curves change?  

 

We will see the answer in the corresponding occupation probability distribution demonstrated 

in Fig.4.10b.  

 

Fig.4.10b: Probability distribution, λ=1.25cos (17.5t), start from 100% LVL 3 (a level in the 

middle) with the presence of white noise. With the presence of a higher degree of dynamical 

complexity of the system, the curves representing the probability of the two edged levels 

(ground and most excited state) are oscillating periodically, while the probabilities of the 

middle levels drop rapidly to a very low percentage. 

 

As we further intensify the degree of dynamical complexity of the system—already high 
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enough that the probability curves for the edge energy levels nearly coincide—another 

surprising behavior manifests: the curves cross one another, creating a cross-oscillation pattern, 

as exemplified in Fig. 4.10b. This cross-oscillation can be understood to some extent as a 

negative distance. 

 

It is noteworthy that, in a departure from previous observations, the probability associated with 

the second energy level (represented by the red curve) unusually exceeds 10% for an extended 

period during the intermediate and latter phases of the system's temporal evolution. This 

probability is also consistently higher than that for the third energy level (represented by the 

yellow curve). 

 

Such behavior indicates that, under conditions of elevated degree of dynamical complexity of 

the system where the edge energy levels exhibit cross-oscillations, the intermediate energy 

level maintains a statistically significant representation. This observation affords a pivotal point 

of entry for future investigations aimed at elucidating the mechanisms governing the 

occupation probability distribution among disparate energy levels. It opens up the prospect of 

integrating such an analysis with Landau-Zener transition models to yield novel insights. 

 

Besides, it is imperative to dispel any presumption that the probability invariably gravitates 

toward the system's highest energy level as time progresses. While this trend has been evident 

in all previously presented examples, it is not a definitive rule. Subsequent discussions will 

introduce an instance where the probability ultimately coalesces around the system's ground 

state. 
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Fig.4.11a: Power spectral density of the expectation value of energy for the 2-qubit system 

started from 100% LVL 3(middle level) under the control of an external field λ=1.24cos (15.5t). 

From the driving frequency ω = 15.5, we estimate the corresponding frequency in hertz as ν = 

ω / 2π ≈ 2.47. The observed dominant peak near ν ≈ 2.5 supports this estimation, indicating a 

clear resonance with the external modulation. 

 

In Fig. 4.11a, Power Spectral Density (PSD) suggests a lower degree of dynamical complexity 

of the system compared to what is shown in Figures 4.8a, 4.9a, and 4.10a. However, it displays 

a relatively higher degree of dynamical complexity of the system than that exhibited in Fig. 

4.7b. 

 

Based on our previously established framework, a reduced degree of dynamical complexity of 
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the system should correlate with a greater separation between the probability curves 

corresponding to the ground and the highest excited states. Consequently, we anticipate that 

the distance between these curves in Fig. 4.11b should be less than what we observe in Fig. 

4.7a, yet greater than those displayed in Figures 4.8b, 4.9b, and 4.10b. 

 

 

Fig.4.11b: Probability distribution of 2-qubit system driven by λ=1.24cos (15.5t). Specifically, 

the blue curve which represents the ground state becomes dominant in the latter stage of 

evolution, which is different than other cases. 

 

In Fig.4.11b we found two interesting features; the first feature is that the probability of the 2nd 

energy level surpasses 10% many times. The second feature is that the probability eventually 

concentrates on the ground state. 
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The first feature cannot be seen in those cases in which the system is initially prepared in the 

3rd level and probability eventually concentrates on the 4th level. However, in the case where 

the ground state cross-oscillates with the highest excited state (see Fig.4.10b), and in the case 

where the system was initially prepared in the 3rd level, but the probability of the ground state 

eventually dominates (see Fig.4.11b), the probability of the second energy level exceeds 10% 

many times. This is because the probability moves from the third energy level to the first energy 

level needs to pass through the second energy level. 

 

The second feature is meaningful for the design of AQC. Recalling that high probability to stay 

in ground state is a critical prerequisite for the successful operation of an adiabatic quantum 

computer. In the above case we can see that by applying an external driving field with particular 

parameters, the system falls into the ground state in a relatively fast speed and remains in the 

ground state with a high probability (around 80% chance).  

 

This is an exciting discovery; it shows that there exist some particular sets of parameters for 

the external field λ that would drive the system to its ground state from an excited state and 

then control the system to remain in the ground state with a considerable probability for a long 

enough time. 

 

However, in the real world, it is unlikely to have a quantum coherent system prepared in a pure 

excited state (considering that the intermediate energy level is easy to escape). Therefore, for 

our research to have practical significance, it is necessary for us to verify the regimes in systems 

prepared not in a pure state, but a mixture of different states. 
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4.3: Systems Prepared in Mixed States 

 

Fig.4.12a: Probability distribution, λ=1.25cos (13.5t), start from a mixture of 50% lvl2 and 50% 

lvl3. 

 

In the forthcoming Fig. 4.12b, a relatively discrete Power Spectral Density (PSD) is evident. 

Owing to the less degree of dynamical complexity during the system's temporal evolution, there 

is a substantial separation between the probability curves for the ground state (indicated by the 

blue line) and the highest excited state (represented by the purple line). Most notably, however, 

the system transitions from a composite of excited states—Level 2 and Level 3—into the 

ground state under the influence of the external field Lambda. This transition is marked by an 

exceptionally high probability of greater than 90% and persists for an extended duration, 

exceeding 150 periods. 
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These findings point to the existence of specific parameter sets for the external field λ capable 

of steering the system from a blend of excited states into the ground state, while subsequently 

maintaining it there with a remarkably high probability—approaching 100%—for an extended 

time frame exceeding 100 periods. 

 

These observations lead to a speculative yet promising hypothesis: For a broad range of 

arbitrary 2-qubit systems, initialized in any ratio of mixed excited states, there likely exists a 

tailored set of parameters for the external driving field that can induce a transition to the ground 

state and sustain it for a significant duration. If this regime were to extend beyond the confines 

of elementary 2-qubit systems to more complex quantum coherent structures, the implications 

for the design and operational efficacy of adiabatic quantum computers could be profound. 
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Fig.4.12b: Power spectral density of the expectation value of energy for the 2-qubit system 

started from 100% LVL 3(middle level) under the control of an external field λ=1.25cos (13.5t), 

start from a mixture of 50% lvl2 and 50% lvl3. A rather discrete one with few clusters and 

peaks taller than 10−2, denoting less degree of dynamical complexity of the system. From the 

driving frequency ω = 13.5, we estimate the corresponding frequency in hertz as ν = ω / 2π ≈ 

2.15. The observed dominant peak near ν ≈ 2 supports this estimation, indicating a clear 

resonance with the external modulation. 
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Fig.4.13a: Probability distribution, λ=1.25cos (22t), start from a mixture of 50% lvl2 and 50% 

lvl3.  

 

As evidenced by the Power Spectral Density (PSD) depicted in Fig. 4.13b, the system under 

consideration exhibits a greater degree of the dynamical complexity of the system compared to 

that displayed in Fig. 4.12b. This is further corroborated by the reduced separation between the 

probability curves representing the ground state and Level 4 (LVL4), as seen in Fig. 4.13a, in 

contrast to their counterparts in Fig. 4.12a. 

 

Figures 4.13a and 4.13b provide a comparative perspective to Figures 4.12a and 4.12b, 

illustrating a scenario where the PSD indicates higher dynamical complexity in the evolution 

of the 2-qubit system. This empirical observation lends further credence to the regime 

delineated in Section II, asserting that a diminished degree of the dynamical complexity of the 
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system correlates with a more substantial separation between the probability curves for the 

edge energy levels. 

 

This empirical evidence underscores the robustness of the established regime: irrespective of 

the system being initialized at an intermediate energy level in a mixed state, it continues to 

adhere to the same governing principles as a system initialized at an intermediate energy level 

in a pure state. 

 

Fig.4.13b: Power spectral density of the expectation value of energy for the 2-qubit system 

started from 100% LVL 3(middle level) under the control of an external field λ=1.25cos(22t), 

start from a mixture of 50% lvl2 and 50% lvl3. Very smeared one with many clusters, denoting 

a rather complex behavior of the system. From the driving frequency ω = 22, we estimate the 

corresponding frequency in hertz as ν = ω / 2π ≈ 3.5. The observed dominant peak near ν ≈ 3.5 
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supports this estimation, indicating a clear resonance with the external modulation. 

 

Based on our comprehensive analysis, we can delineate the following regimes governing the 

behavior of 2-qubit systems: 

 

Probability Flow Concentration: Despite the degree of the dynamical complexity of the system, 

the probabilities associated with the middle energy levels (LVL2 or LVL3) exhibit a higher rate 

of outflow compared to the edge levels. Stated differently, the system demonstrates a tendency 

for probability concentration at the edge energy levels (LVL1 and LVL4). 

 

Dynamical Complexity-Proportional Probability Change: The magnitude of the change in 

probability from its original state for edge levels is directly proportional to the degree of the 

dynamical complexity of the system. Specifically, greater complexity results in larger 

fluctuations in the probability distributions for these edge levels. 

 

Middle-Level Insensitivity to the Degree of the Dynamical Complexity of the System: For 

systems initialized at middle energy levels, the degree of the dynamical complexity of the 

system does not significantly influence the probability change for those levels. Rather, it 

determines the divergence or convergence between the probability curves of the edge levels. 

As the system exhibits a higher degree of the dynamical complexity, the probabilities 

associated with the edge levels tend to converge. 

 

Moreover, while our presented examples have primarily focused on systems initialized at 

middle levels, the final probability distribution does not invariably converge to the highest 

excited level (LVL4). By judiciously manipulating system parameters—specifically frequency 

and amplitude—it is possible to achieve alternate scenarios where the probability distribution 

either centralizes at the ground state (LVL1) or becomes more uniformly distributed between 

both edge states. 
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4.4 Spectral Entropy and Escape Speed 

To further explore the relationship between the speed for the system to escape its initial 

occupation probability state and the dynamical complexity of the system, a quantity to measure 

the dynamical complexity of the system can be helpful. Here we chose spectral entropy as the 

quantity to measure dynamical complicity for the following reasons: 

 

First, spectral entropy quantifies the distribution of power across different frequency 

components, making it a suitable metric for assessing the dynamical complexity of the system. 

Systems with simple, regular dynamics tend to have power concentrated in a few dominant 

frequencies, resulting in lower spectral entropy, whereas systems exhibiting more complex, 

irregular, or chaotic behaviour tend to have broader spectral distributions, leading to higher 

spectral entropy. 

 

Second, spectral entropy is particularly useful in analysing externally driven quantum systems. 

In the presence of periodic driving fields, the response of a quantum system can range from 

regular oscillations to highly complex dynamics, depending on the driving strength and 

frequency. A simple response, such as Rabi oscillations in a two-level system under weak 

driving, manifests as a sharply peaked power spectral density (PSD) and thus low spectral 

entropy. In contrast, strong or off-resonant driving can induce multiple competing frequencies, 

quantum interference effects, and nontrivial transitions, leading to a broader spectral 

distribution and higher spectral entropy. This makes spectral entropy a natural candidate for 

measuring how external driving influences the complexity of the system. 

 

Third, spectral entropy provides a single scalar quantity that encapsulates the dynamical 

complexity of the time evolution of the system, without requiring detailed state-space analysis 

or explicit phase-space reconstructions. This allows for an efficient and intuitive quantification 

of dynamical complexity, making it particularly convenient for analysing quantum systems 
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where direct trajectory visualization is often not feasible. 

 

Finally, the connection between spectral entropy and escape speed provides an insightful 

perspective on the evolution of the system. If a system transitions more rapidly from its initial 

state, it suggests that it is undergoing richer and more complex dynamics, which is supposed 

to be reflected in a higher spectral entropy. Thus, by establishing a correlation between spectral 

entropy and escape speed, we can validate the idea that increased dynamical complexity 

facilitates faster departure from the initial occupation probability state. 

 

To obtain the power spectral density (PSD), which characterizes how power is distributed 

across different frequency components of a signal. The PSD, typically denoted as S(f), which 

is derived from the squared magnitude of the Fourier transform of a time-domain signal. We 

used the pwelch function in MATLAB to gain the power spectral density. 

 

Since entropy is defined for probability distributions, we need to transform the PSD into a valid 

probability distribution by normalizing it. This is done by dividing each PSD component by 

the total power: 

𝑃norm(𝑓𝑖) =
𝑆(𝑓𝑖)

∑ 𝑆(𝑓𝑗)𝑗

 

where 𝑃norm(𝑓𝑖) represents the normalized spectral weight at frequency 𝑓𝑖. This ensures that 

the sum of all probabilities equals 1, making it a proper probability distribution. 

Once we have the normalized probability distribution, the spectral entropy (SE) is computed 

using the Shannon entropy formula: 

𝑆𝐸 = − ∑ 𝑃norm (𝑓𝑖)

𝑖

log 𝑃norm (𝑓𝑖) 

This formula measures the uncertainty or spread of the spectral power distribution.  

If most of the power is concentrated in a small number of frequency components, the entropy 

is low, indicating a simple, predictable system. If the power is spread across many frequency 
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components, the entropy is higher, indicating greater complexity in the system’s dynamics. 

To explore the relationship between spectral entropy and the system’s escape speed from its 

initial occupation probability state, we applied an external field λ of the form λ=Acos(ωt).  

We varied the amplitude A from 1.25 to 1.35 in steps of 0.1 and the frequency ω from 20.5 to 

21.5 in steps of 0.1, generating a total of 20 different cases. For each case, we computed the 

spectral entropy as well as the escape speed of the system from its initial state, where the system 

was initially prepared in the ground state with 100% probability. 

 

The escape speed was defined as the inverse of the time 𝑡1 at which the ground state 

occupation probability first dropped below 25%. While the threshold value of 25% was used 

in this analysis, other nearby thresholds (e.g., 10%, 15%) yield qualitatively similar trends in 

the results. This choice reflects a trade-off between sensitivity to early dynamics and robustness 

against high-frequency fluctuations in the probability signal. And 𝑡1 is the first time when the ground 

state probability drops below 25%. Note that the variation in marker color arises from multiple data points 

occupying the same or nearly identical coordinates in the plot; this overplotting effect can cause certain points to 

appear darker or to exhibit visual artifacts such as color blending or border intensification. 

We then computed escape speed as: 

 Escape Speed =
75%

𝑡1
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We then plotted a scatter plot of spectral entropy (x-axis) versus escape speed (y-axis) and 

fitted a trend line to the data, as shown in Fig. 4.14.  

Fig. 4.14: Scatter plot showing the relationship between Spectral Entropy and Escape Speed. 

The data points represent different simulations of a two-qubit system under an external driving 

field λ=A cos(ωt), where the amplitude A varies from 1.25 to 1.35 in steps of 0.1, and the 

frequency varies from 20.5 to 21.5 in steps of 0.1. Note that the variation in marker color arises 

from multiple data points occupying the same or nearly identical coordinates in the plot; this 

overplotting effect can cause certain points to appear darker or to exhibit visual artifacts such 

as color blending or border intensification. 

 

In Fig. 4.14, a positive correlation is observed, indicating that higher spectral entropy generally 

corresponds to greater escape speed. Some data points (between the horizontal axes 2.6 and 

2.7, there are several data points with large vertical dispersion) in the plot exhibit noticeably 
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different behavior compared to the rest. This is likely because, when scanning the frequency 

and amplitude of the external driving field, we did not use particularly small step sizes in order 

to keep the total simulation time manageable. In most cases this resolution is sufficient, but for 

certain parameter choices—especially when the system has an unusually small energy gap—

this may lead to increased numerical error in estimating the escape speed. Despite these minor 

discrepancies, the overall trend supports the hypothesis that higher dynamical complexity, as 

quantified by spectral entropy, is associated with a faster escape from the initial state. 

Overall, the results indicate a positive correlation between escape speed and spectral entropy: 

higher spectral entropy generally corresponds to a greater escape speed. 
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4.5 Expectation Energy and Spectral Entropy 

In this section, we present two examples (Fig. 4.15 and Fig. 4.16) to illustrate the relationship 

between ⟨E⟩(t), the system's dynamical complexity, and the rate at which the system escapes 

from its initial energy level through comparative analysis. 

Fig. 4.15: Dynamical behavior of a 2-qubit system under the driving field 𝝀 = 𝟏. 𝟏𝐜𝐨𝐬(𝟏𝟖𝒕), 

with initial state fully occupying the ground state (LV1), and spectral entropy SE=2.3706S. (a) 

Evolution of occupation probabilities for the four instantaneous eigenstates (labeled LV1–LV4). 

(b) Power spectral density (PSD) of the expectation energy ⟨E⟩(t), exhibiting a broad frequency 

distribution indicative of high dynamical complexity. (c) Time evolution of the expectation 

energy ⟨E⟩(t), showing significant oscillations over a wide range of amplitude. 
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Fig. 4.16 Dynamical behavior of a 2-qubit system under the driving field 𝜆 = 0.8cos(18𝑡), 

with the initial state fully occupying the ground state (LV1), and spectral entropy SE=2.1407. 

(a) Time evolution of the occupation probabilities for the four instantaneous eigenstates. The 

system remains localized in the ground state, with negligible transitions to excited levels. (b) 

Power spectral density (PSD) of the expectation energy ⟨E⟩(t), exhibiting a narrow-band 

structure dominated by low-frequency components. (c) Time evolution of the expectation 

energy ⟨E⟩(t), showing low-amplitude oscillations around a stable value. These features 

collectively indicate that the system undergoes regular, low-complexity dynamics under this 

driving field. 

 

The two plots, Fig. 4.15c and Fig. 4.16c, present the time evolution of the expectation value of 

energy ⟨E⟩(t) under distinct dynamical conditions. Spectral entropy (SE) serves as a measure 

of signal complexity in the frequency domain, quantifying how dispersed the energy of the 
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signal is across various frequency components. A higher spectral entropy implies a more 

broadened energy distribution across a wide frequency range, whereas a lower spectral entropy 

suggests energy concentration around a few dominant modes. 

 

On one hand, in Fig. 4.15c, where the spectral entropy is relatively high (SE = 2.3706), the 

system exhibits significant variations in ⟨E⟩(t) over time, with noticeable large-scale 

oscillations superimposed with fine-scale fluctuations. Such presence of both slow and rapid 

changes suggests a broad range of frequency components in the signal. In the frequency domain, 

this implies that the energy is distributed across a wider spectrum rather than being 

concentrated at a few dominant frequencies (see Fig. 4.15b). These characteristics indicate a 

system with a higher dynamical complexity, as it contains both low-frequency and high-

frequency components, which is consistent with the numerical simulation result of spectral 

entropy 

 

On the other hand, as shown in Fig. 4.16c, the evolution of the average energy ⟨E⟩(t) remains 

relatively stable and bounded, exhibiting only minor fluctuations. These variations are 

uniformly distributed and remain confined within a narrow range, suggesting a more regular 

and predictable dynamical pattern. In the frequency domain, this behavior implies that most of 

the spectral energy is concentrated in a limited frequency band, with significantly fewer 

contributions from higher-frequency components, which is consistent with the power spectral 

density observed in Fig. 4.16b. This localization in frequency space corresponds to a lower 

spectral entropy value (SE = 2.1407), indicating that the system exhibits more coherent or 

periodic dynamics compared to more dynamical complex cases. 

 

In Fig. 4.15c, the system exhibits higher spectral entropy, which reflects a richer distribution 

of frequency components and corresponds to a more complex or irregular evolution of energy 

levels. By contrast, Fig. 4.16c shows a lower spectral entropy, indicating a more concentrated 

frequency content and a smoother, more predictable energy evolution. This suggests that the 
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dynamics in this case may be more regular and exhibit features characteristic of periodic or 

quasi-periodic behavior.  

 

Taken together, the comparison between Figures 4.15c and 4.16c illustrates how spectral 

entropy serves as a useful indicator of dynamical complexity in the energy expectation 

evolution ⟨E⟩(t). Systems with higher dynamical complexity—reflected by a broader power 

spectral density (PSD) of the expectation energy—tend to exhibit higher spectral entropy. 

Consequently, these systems tend to depart from their initial state (which, in both cases, 

corresponds to the system being 100% prepared in the ground state) at a faster rate. The 

corresponding occupation probability distribution plots over time (Fig. 4.15a and Fig. 4.16a) 

are also consistent with our conclusion. 

4.6 Impact of Noise Strength on the System's Evolution 

Although we have previously explored how noise can influence the evolution of quantum 

systems—particularly through its effects on energy level trajectories and simulation 

accuracy—our analysis has so far focused on isolated instances with fixed noise configurations. 

What remains to be examined is how the strength of the noise systematically alters the behavior 

of the system. Specifically, we have not yet addressed how varying degrees of stochastic 

perturbation reshape the system’s ground state occupancy, its dynamical regularity, and the 

complexity of its energy fluctuations. This section aims to fill that gap by conducting a 

comparative analysis across multiple noise intensities, thereby providing a deeper 

understanding of the noise-induced transitions in dynamical regimes. 

 

We examine how different levels of noise impact the time evolution of the ground state 

probability, the power spectral density (PSD) of expectation energy, and the spectral entropy 

(SE) of the system.  

The key questions we address in this section are threefold. First, we investigate how the 

strength of noise influences the system's ability to escape from the ground state. Second, we 
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examine how effectively spectral entropy (SE) reflects the complexity of the system’s evolution. 

Finally, we consider how power spectral density (PSD) can be used to reveal structural changes 

in the system’s transition dynamics. 

 

To answer these questions, we compare the system’s evolution in the absence of noise (Fig.4.2a 

and Fig.4.2b) with three cases of increasing noise strength (σ = 0.0005, 0.005, and 0.01) 

demonstrated in two figures: Fig. 4.17 and Fig. 4.18. The results demonstrate that higher noise 

strength does not necessarily lead to a faster departure from the ground state; instead, it alters 

the system’s evolution in a more complex manner. 

Fig. 4.17: Time evolution of a two-qubit system under the driving field 𝜆 = 1.1𝑐𝑜𝑠(18𝑡)   

comparing noiseless and noisy cases  (a) Ground state probability evolution without noise, 

serving as a reference case. The corresponding spectral entropy (SE) is 2.3706. (b) Power 

spectral density (PSD) of the expectation energy for the noiseless system, with SE = 2.3706. 

(c) Ground state probability evolution with noise strength σ = 0.0005. A slight deviation from 



130 

 

 

the noiseless case in panel (a) is observed. SE = 2.3873. (d) PSD of the expectation energy 

with σ = 0.0005, exhibiting stronger high-frequency components than in panel (b), indicating 

increased dynamical complexity due to noise. 

 

Fig. 4.18: Time evolution of a two-qubit system under the driving field λ = 1.1cos(18t)，with 

increased noise strengths (σ = 0.005 and σ = 0.01). (a) Ground state probability evolution for 

σ = 0.005. Although the trajectory shows a clear deviation from the noiseless case (cf. Fig. 

4.17a) and the weaker noise case (Fig. 4.17c), the overall periodicity remains visible. Spectral 

entropy (SE) = 2.3917, comparable to the noiseless case. (b) PSD of the expectation energy for 

σ = 0.005. The high-frequency components are noticeably stronger than in Fig. 4.17b, 

indicating more pronounced spectral broadening and increased dynamical complexity. (c) 

Ground state probability evolution for σ = 0.01, with SE = 2.4447—the highest among all four 

cases. The evolution no longer exhibits the periodic structure seen in Fig. 4.17a, but the system 

escapes from the ground state more slowly. (d) PSD of the expectation energy for σ = 0.01. 
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The spectral profile becomes more evenly distributed, with further enhancement in high-

frequency components, suggesting a transition to an even higher dynamical complexity regime. 

 

To investigate how varying noise strengths affect the dynamical evolution of the quantum 

system, we first examine the time-dependent behavior of the ground state occupation 

probability under different levels of perturbation. The corresponding results are presented in 

Figs. 4.17a, 4.17c, 4.18a and 4.18c. In the absence of noise (Fig. 4.17a), the probability of 

occupying the ground state follows a well-defined oscillatory pattern that gradually decays over 

time. Minor fluctuations superimposed on this trajectory originate from the renormalization 

process applied during the computation of occupation probabilities, rather than from any 

external perturbation. When a weak noise is introduced (σ = 0.0005, Fig. 4.17c), the overall 

shape of the evolution remains largely consistent with the noiseless case, though small random 

deviations are observable. As the noise level increases to σ = 0.005 (Fig. 4.18a), the transition 

dynamics become more irregular, and the probability curve begins to deviate substantially from 

the baseline case. However, despite these differences, the primary waveform of the evolution 

can still be traced back to the noiseless case, suggesting that the fundamental transition 

structure remains influenced by the original dynamics. At a stronger noise level (σ = 0.01, Fig. 

4.18c), the deviation becomes more pronounced. However, it is noteworthy that this does not 

translate into a faster departure from the ground state. In some cases, the system remains in the 

ground state for longer periods than in the noiseless scenario. This implies that noise does not 

simply accelerate transitions but rather restructures the transition process in a more intricate 

and non-monotonic manner. 

 

To further characterize these changes, we analysed the power spectral density (PSD) of the 

expectation value of the system’s energy. As shown in Fig. 4.17b (no noise), the spectrum is 

sharply concentrated around a few dominant frequency components, reflecting the orderly and 

coherent evolution of the system. With weak noise (σ = 0.0005, Fig. 4.17d), the PSD begins to 

broaden slightly, indicating the introduction of additional frequency components, although 
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distinct peaks still remain visible. When the noise strength reaches σ = 0.005 (Fig. 4.18b), the 

PSD becomes significantly broadened, suggesting that multiple competing dynamical modes 

are contributing to the energy fluctuations. At the strongest noise level considered (σ = 0.01, 

Fig. 4.18d), the PSD is nearly flat, implying that the energy dynamics are dominated by 

stochastic fluctuations rather than coherent oscillations. These findings illustrate a gradual 

transition from deterministic to noise-dominated behaviour as the strength of perturbation 

increases. However, just as with the ground state occupation probabilities, this spectral 

broadening does not necessarily correspond to faster state transitions. Instead, it reveals the 

increasing complexity of the system’s internal dynamics, decoupled from a simple relation to 

transition rates. 

 

To further characterize these changes, we analysed the power spectral density (PSD) of the 

expectation value of the system’s energy. As shown in Fig. 4.17b (no noise), the spectrum is 

sharply concentrated around a few dominant frequency components, reflecting the orderly and 

coherent evolution of the system. With weak noise (σ = 0.0005, Fig. 4.17d), the PSD begins to 

broaden slightly, indicating the introduction of additional frequency components, although 

distinct peaks still remain visible. When the noise strength reaches σ = 0.005 (Fig. 4.18b), the 

PSD becomes significantly broadened, suggesting that multiple competing dynamical modes 

are contributing to the energy fluctuations. At the strongest noise level considered (σ = 0.01, 

Fig. 4.18d), the PSD shows an even more uniform distribution, implying that the system’s 

energy fluctuations are now dominated by noise rather than discrete resonance frequencies.  

 

These results indicate that stronger noise leads to more widespread frequency distribution in 

the system’s energy transitions, shifting the system from a regime dominated by deterministic 

oscillations to one where stochastic fluctuation plays a major role. However, this does not 

necessarily correlate with a higher transition rate away from the ground state, reinforcing the 

need to analyse transition behaviours beyond simple noise strength considerations. 
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In addition, to quantify the complexity of a system’s frequency distribution, we calculate the 

spectral entropy (SE) associated with each noise condition. The computed SE values are as 

follows: 2.3706 for the noiseless case, 2.3873 for σ = 0.0005, 2.3917 for σ = 0.005, and 2.4447 

for σ = 0.01. As expected, SE increases with noise strength, reflecting a more uniform 

distribution of spectral power across frequencies. Nevertheless, this increase does not correlate 

in a straightforward way with the system’s transition dynamics. For instance, although the 

evolution of the ground state probability changes significantly between σ = 0.0005 and σ = 

0.005, their SE values remain nearly identical. Moreover, while SE rises more noticeably at σ 

= 0.01, the system may still exhibit longer dwell times in the ground state compared to weaker 

noise scenarios.  

 

These observations highlight a limitation of SE as a standalone measure: it SE provides insight 

into the overall spread of power across frequency components but does not always reflect the 

transition speed or specific dynamical pathways of the system. Therefore, SE must be 

interpreted in conjunction with occupation probability trajectories and PSD analysis to provide 

a comprehensive understanding of the system’s behaviour under noise. 

 

These findings collectively highlight that increasing noise strength does not universally 

accelerate transitions away from the ground state. Although strong perturbations such as σ = 

0.01 can significantly alter the system’s dynamical behaviour, the resulting evolution may 

become more complex and even lead to extended residence times in the ground state, as 

observed in Fig. 4.18c. Rather than acting as a simple driver of faster transitions, noise 

restructures the quantum evolution pathway in a more complex way. 

 

From the perspective of spectral analysis, power spectral density (PSD) provides valuable 

insight into this transformation. As noise intensifies, the system undergoes a gradual shift from 

deterministic, resonance-dominated transitions to stochastic behaviour characterized by 

broadly distributed energy fluctuations across frequencies as shown in Fig. 4.18d. 
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Spectral entropy (SE), while useful for capturing the overall spread of frequency components, 

remains a limited indicator of dynamical complexity. It fails to differentiate between cases with 

comparable entropy values but substantially different transition structures. For example, 

although Figs. 4.17c and 4.18a yield nearly identical SE values, their respective ground state 

probability evolutions exhibit significant qualitative differences. This reinforces the need to 

interpret SE in conjunction with more direct dynamical indicators such as the occupation 

probability distribution (OPD) and PSD. 

 

In summary, a comprehensive evaluation of quantum system dynamics under noise requires 

the integration of multiple analytical tools. Relying on a single metric, such as SE, risks 

overlooking critical aspects of the system's behaviour. Instead, by examining OPD, PSD, and 

SE collectively, one gains a richer and more accurate understanding of how noise 

fundamentally reshapes the evolution of quantum systems. 

 

4.7 Summary of Chapter 4 

In this chapter, we conducted a comprehensive analysis of the dynamical evolution and 

occupation probability distributions of a two-qubit quantum system using the Pechukas–

Yukawa (PY) formalism, incorporating spectral tools such as power spectral density (PSD) and 

spectral entropy to explore the system's complexity and sensitivity to external conditions. The 

chapter extended our prior observations by systematically examining systems initialized in 

edge states, intermediate states, and mixed configurations, and by introducing noise of varying 

strengths to simulate environmental decoherence. 

 

The occupation probability evolution exhibits strong dependence on the initial state. Systems 

initialized in intermediate levels (e.g., the second or third excited states) show rapid escape 

from these levels, often redistributing towards edge levels (ground or maximum excited states). 
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In contrast, systems initialized in edge states display significantly slower probability migration, 

consistent with the energy-level repulsion mechanism and the suppressed transition 

probabilities typical near anti-crossings. 

 

Systems initialized in mixed configurations (linear superpositions of different eigenstates) 

reveal distinct dynamical trends. Notably, with carefully tuned external field parameters (λ), 

certain mixed initializations facilitate efficient transitions into and stabilization within the 

ground state. In particular cases, the system can be driven to exceed a 90% occupation in the 

ground state and sustain this for over 150 periods of λ oscillation. This result has critical 

implications for optimizing state preparation in AQC protocols. 

 

We introduced spectral entropy as a quantitative measure of dynamical complexity, showing 

that higher spectral entropy correlates with broadened PSD and enhanced escape tendencies 

from the initially occupied states. This relationship is especially pronounced when the system 

starts in an edge state, where entropy-induced transitions were found to be more tightly linked 

to the likelihood of state change. 

 

By incrementally increasing the strength of white noise, we quantified its influence on both the 

spectral broadening of energy expectation values and the fidelity of occupation probability 

distributions. Our results demonstrate that even weak noise can significantly alter system 

behavior near anti-crossings. Moreover, the noise-enhanced dispersion of occupation 

probabilities is non-uniform across levels: intermediate levels remain most susceptible, while 

edge levels display a relative resilience. This supports our interpretation that the interplay 

between anti-crossing geometry and noise is central to understanding decoherence in adiabatic 

regimes. 

 

A principal contribution of this chapter is the identification of external driving parameters as 

powerful tools for manipulating occupation distributions. The amplitude and frequency of λ 
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can be fine-tuned to either enhance or suppress transitions. In specific regimes, shared optimal 

parameters were identified that maximize ground state probability for various initial 

configurations, suggesting a framework for adaptive control in quantum system operation. 

 

Additionally, across all power spectral density (PSD) analyses conducted in this chapter, the 

dominant spectral peaks consistently appear near the theoretically predicted frequencies ν =

 ω / 2π , derived from the applied driving field. This coherence confirms the presence of 

resonance between the system’s intrinsic dynamics and external modulation, reinforcing the 

validity of the underlying theoretical model. 

 

While the focus of this chapter has been on 2-qubit systems, both the methodological 

framework—based on the Pechukas–Yukawa formalism—and the spectral diagnostic tools are 

directly applicable to larger quantum systems. The principles established here form a 

foundation for future work exploring system stabilization, noise engineering, and quantum 

control in systems of greater complexity. 

Chapter 5: Discussion 

The preceding chapters of this thesis have provided an in-depth analysis of the behavior of 

small-scale (2 to 5 qubits) quantum systems under varying conditions and external controlling 

fields. Through the application of the extended Pechukas-Yukawa formalism and the spectral 

analysis methods, we have elucidated critical dynamics and properties of these systems. While 

the study serves as a steppingstone for understanding the complex behavior of multi-qubit 

systems under the presence of decoherence, it opens avenues for further inquiry and 

technological advancements in the rapidly evolving field of quantum computing. This chapter 

delves into the broader implications, limitations, and future directions of our research findings. 

It offers a comprehensive discussion of the research outcomes, connecting them to wider 

implications in the fields of quantum computing. The chapter begins with a concise overview 

of our main findings.  
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5.1 Summary of Our Main Results 

Regardless of their initial configuration of occupation probability distribution, quantum 

systems will exhibit unique responses to certain external field parameters (amplitude and 

frequency). This property provides us with the possibility of manipulating the external field 

parameters to optimally bring the system to the ground state within a limited time. 

 

There could be a shared optimal frequency and amplitude for the systems with different initial 

occupation probability distribution to fall in the ground state.  Systems with different initial 

states can have the same optimal coordinates in the amplitude-frequency graph. This 

phenomenon was observed consistently across various initial states, both pure and mixed, 

potentially suggesting a universal trait of quantum systems. This consistent feature across 

various initial states offers a potential tool for quantum system analysis. By identifying a 

system's optimal frequency and amplitude for ground state, one might infer its initial state or 

the combination of states, providing invaluable insights into the behavior of large-scale 

quantum coherent systems. In addition, it can also serve as a guideline to increase the 

probability for the AQC to fall into the ground state by tuning the external controlling field. 

Systems initialized at intermediate energy levels demonstrate a tendency for probabilities to 

rapidly move towards edge levels. This trend is evident regardless of the degree of the 

broadening of the PSD of the expectation value of the system, which serves as an assessing 

tool for dynamical complexity of behaviors of the system. 

In contrast, when a system starts from an edge energy level, the rate of escape from its original 

state is directly proportional to the degree of dynamical complexity of the system assessed from 

the PSD perspective involved. This provides us with valuable insights into how dynamical 

complexity of the system modulates the probability distribution of a system. 

 

A novel phenomenon is also observed when the system is prepared at intermediate levels. 

While the speed of probability flow from these levels is inherently faster than those edge levels, 
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irrespective of the degree of dynamical complexity of the system. However, the impact of the 

degree of dynamical complexity becomes significant when it comes to the spacing between 

probability curves of the edge levels. The higher the dynamic complexity of the system, the 

closer these probability curves are to each other, and in extreme cases, even cross-oscillation 

between these probability curves can be observed. The reason for this phenomenon may be that 

the speed at which the system escapes from its edge energy level is proportional to the degree 

of dynamical complexity. Since the escape velocity of the intermediate energy level is greater 

than that of the edge energy level, the probability of the system tends to be enriched to the edge 

energy level. Then when the degree of dynamical complexity is high, the edge energy level 

enriched with probability will also be transformed from the original edge energy level more 

quickly. The system will escape from the edge energy level it used to be in and quickly 

exchange through the intermediate energy level and reach the other edge energy level. As a 

result, the two curves representing the edge energy level probabilities tend to move closer when 

the degree of dynamical complexity increases (also a kind of exchange of probability). 

 

Importantly, our results indicate that external parameters such as frequency and amplitude can 

be tailored to direct the system's probability distribution in a specific manner. This has broader 

implications for the field of adiabatic quantum computing, where controlling such distributions 

could be essential for efficient computation. 

 

Alongside the principal conclusions, other interesting results have also emerged which enrich 

our understanding of quantum systems and offer new avenues for exploration. 

The approach combining Pechukas-Yukawa formalism and spectral analysis extends its 

applicability beyond the current scope of 2-qubit systems. Thus, while the study builds a 

foundational understanding of the interplay between dynamical complexity and occupation 

probability distribution in 2-qubit systems, it also lays the groundwork for scaling these 

findings to more complex quantum systems, i.e., larger-scale quantum systems. 
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In addition, an intriguing observation has been the occasional rise in the probability levels of 

intermediate states (for example, LVL 2) during periods of high dynamical complex behaviors. 

This unusual observation provides a valuable entry point for studying the underlying 

mechanisms that govern probability flow between energy levels. Inspired by the fundamental 

insights of Landau-Zener transitions, which shows the relationship between level crossings and 

probability transitions among adjacent energy levels, a bridge to the deeper reasons 

determining the occupation probability distribution could be provided. 

5.2 Implications 

The implications of these results are multifaceted and hold significant promise for both 

theoretical and practical applications in quantum physics and computation. 

 

The adaptability of our research method to more complex quantum systems indicate its 

potential as a generalized framework for studying systems demonstrating dynamical complex 

behaviors. This broad applicability could significantly impact the efficiency and effectiveness 

of future research endeavors in this domain, indicating methodological robustness. 

 

Though the current study is more descriptive in its conclusions, identifying the underlying 

causes for observed behaviors could be the key to unlocking new quantum algorithms or 

computing techniques. Thus, the results here serve as a steppingstone for more causally focused 

research. Our study's results concerning the control of quantum systems via external field 

parameters are particularly salient for the design of adiabatic quantum computers, which 

provides a viable pathway for tailoring quantum systems and enhancing computational power 

and system stability. 

 

In Chapter 3, we analyzed and discussed why in our simulations, noise always plays a 

cumulative role in the error during the evolution of the system energy level. We analyzed it 

based on the stochastic PY equation and concluded that it is because the composition of the 
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white noise used in our simulation determines. This implies that by designing a better noise 

composition method, we can reduce the cumulative effect of noise on the error during the 

system energy level evolution process. In theory it is even possible that each term of the noise 

cancels each other out rather than adding, which is particularly important for the development 

of quantum computing. 

 

The observed variations in intermediate energy level behavior during high dynamical 

complexity of the system offer a nuanced understanding that could be critical for future 

investigations. By revealing these subtleties, this study lays the groundwork for subsequent 

research that could focus on the precise mechanisms governing these dynamics. 

 

In summary, this study proposes new ideas for improving the performance of quantum 

adiabatic computers through the connection between dynamical complexity and occupation 

probability distribution of the system. 

5.3 Limitations and Future Work 

One of the critical limitations of the current study lies in its focus on drawing descriptive 

relationships between dynamical complexity of the system and its occupation probability 

distribution, without delving deeply into causality. The underlying reasons for these behaviors 

and the specific conditions under which dynamical complex behaviors emerge remain less 

understood. 

 

The current research primarily focuses on 2-qubit systems, employing Pechukas-Yukawa 

formalism and Power Spectral Density (PSD) analysis to study the relationship between 

dynamical complexity and occupation probability distributions. This focus, while insightful, 

leaves room for a broader investigation. For instance, the role of different forms of controlling 

parameters in quantum dynamics remains an unexplored area. Since λ is essential for defining 

the system's Hamiltonian, variations in its form could have profound implications on the 
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observed phenomena, such as the speed at which probabilities transit between energy levels. 

 

Technically, the study has not yet examined the effects of other types of noise besides white 

noise on quantum dynamics. Other kinds of noise could add another layer of complexity in the 

system, potentially making the dynamical complex behavior more intricate or, conversely, 

stabilizing specific energy levels. Moreover, while initial results suggest that the phase of λ has 

negligible impact on PSD, more exhaustive tests are needed for a conclusive understanding. 

 

The investigation is also circumscribed by its computational scope. The extent to which 

classical computers can simulate larger quantum systems remains an open question, with clear 

implications for the generalizability of our results. Artificial Intelligence (AI) might offer 

solutions here, providing algorithms that could make the simulation more efficient or even offer 

predictive insights into system behavior. 

 

Another point worth noting is that the study, while elucidating the relationship between 

dynamical complex behaviors and occupation probability distribution, hasn't delved into the 

underlying causes, particularly for the rapid escape of probability from the intermediate energy 

levels. This gap in understanding opens up a fertile ground for future exploration, perhaps by 

combining the Landau-Zener transition models with energy level diagrams to dissect the 

mechanisms at play. When high levels of dynamic complexity are involved, edge-level 

probabilities display complex oscillatory behaviors, offering an intriguing entry point for future 

studies. 

 

Moreover, differentiating between degrees of dynamic complexity—normal dynamic 

complexity and hyper dynamical complexity, for example, could be critical, especially when 

the probability curves for edge energy levels intersect or display negative distances. Other 

theoretical tools such as Lyapunov exponents could serve as a valuable mathematical tool in 

making these distinctions. 
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Finally, there's an interesting synergy between the results of chapter 3 and 4, which discusses 

the role of frequency and amplitude of the controlling parameter in rapid ground-state 

convergence. Merging these insights could provide a more comprehensive strategy for 

manipulating quantum systems, invaluable for applications like adiabatic quantum computing. 

 

Thus, while this research establishes important initial results and provides a methodological 

framework applicable beyond 2-qubit systems, the path ahead is laden with opportunities for 

more nuanced, multidimensional, and scaled-up explorations. 

 

As discussed in Chapter 4 (e.g., Fig. 4.1), the dominant frequency observed in the system aligns 

with the external driving frequency, suggesting a resonance-driven dynamics. We now explore 

whether these oscillatory behaviors may be identified as Rabi oscillations. 

 

In the time-evolution plots (Fig 4.5a and Fig 4.10b) of the occupation probabilities for certain 

energy levels, particularly in two-qubit systems under periodically varying external fields, we 

observe oscillatory behaviors characterized by relatively stable amplitudes and well-defined 

temporal periodicity. These features persist across different initial states and parameter regimes, 

suggesting a potential underlying mechanism of coherent population transfer. 

 

This pattern qualitatively resembles Rabi oscillations, a well-known quantum phenomenon in 

which a two-level system driven near resonance exhibits sinusoidal transitions between energy 

eigenstates. In particular, the apparent regularity and symmetry of the occupation probability 

oscillations hint at the possibility that a resonant interaction between two energy levels may be 

responsible for the observed dynamics. 

 

However, this interpretation remains tentative at this stage. We have not yet quantitatively 

confirmed whether the frequency of the observed oscillations corresponds to the theoretical 
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Rabi frequency, defined by 

Ω𝑅 =
𝜇𝐸

ℏ
 

nor have we rigorously established whether the system dynamics are dominated by an effective 

two-level subspace during these intervals. The current simulations did not isolate such 

subspaces, and no direct parameter scans were conducted to test resonance conditions. 

 

To address these uncertainties, several directions for future research are proposed. First, one 

can extract the oscillation frequencies from the numerical time series of occupation 

probabilities and compare them with theoretical Rabi frequencies derived from estimated 

dipole moments and driving field amplitudes. Second, a Fourier analysis of the temporal 

evolution may reveal whether the dynamics are governed by a dominant frequency component, 

as expected in ideal Rabi scenarios. Third, by projecting the full Hilbert space onto localized 

two-level subspaces near avoided crossings, one could test whether a two-level approximation 

captures the system's dominant behavior. Finally, by systematically varying the external driving 

parameters—such as field amplitude, frequency, and symmetry—it would be possible to 

identify resonance-enhanced regimes that either confirm or refute the presence of Rabi-type 

dynamics. 

 

It is also worth noting that such oscillatory behaviors are not observed uniformly across all 

simulations. For instance, while Figs. 4.5a and 4.10b exhibit dynamics that closely resemble 

Rabi oscillations, other cases such as Fig. 4.8b show irregular or non-sinusoidal patterns that 

deviate from the expected Rabi profile. This contrast suggests that Rabi-like dynamics may 

only emerge under specific conditions—such as particular initial states, avoided crossing 

structures, or driving parameters—and are not a generic feature of all two-qubit configurations. 

If the oscillations observed in Figs. 4.5a and 4.10b are indeed attributable to Rabi dynamics, 

this contrast provides a compelling motivation to use the Pechukas-Yukawa formalism to 

explore systematically which configurations and parameter regimes permit or suppress such 

behavior. Identifying these conditions could help clarify the necessary ingredients for 
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coherence-preserving resonant transitions in larger systems and build toward a deeper 

understanding of how avoided crossings and driving fields jointly influence coherent 

population transfer. 

 

Should the oscillatory behavior indeed correspond to Rabi oscillations, this would provide 

strong evidence that the Pechukas-Yukawa (PY) formalism is capable of capturing not only 

qualitative aspects of level dynamics, but also coherent, resonance-driven population 

transitions typically studied in two-level systems. 

 

As discussed in Chapter 3, compared to exact diagonalization, the PY method has already 

demonstrated a significant advantage in terms of memory efficiency, allowing simulations of 

larger quantum systems despite increased runtime. If the oscillations observed in our simulation 

for small-scale systems through PY formalism are Rabi oscillations, this raises the possibility 

of using it to systematically investigate whether, and under what conditions, similar coherent 

oscillations could persist in larger and more complex quantum systems. Furthermore, by 

drawing connections with the Landau-Zener-Stückelberg-Majorana (LZSM) framework, it 

may become possible to identify how specific avoided crossings—particularly those involving 

intermediate energy levels—facilitate or inhibit Rabi-like behavior under periodic driving. This 

would offer a concrete mechanism to understand the interplay between level structure and 

coherent control, potentially informing the design of adiabatic or hybrid quantum computing 

schemes that leverage such oscillatory dynamics for state manipulation. In this sense, the 

confirmation of Rabi oscillations would not merely validate a physical phenomenon but also 

position the PY formalism as a scalable tool to explore resonance-enabled quantum control 

across system sizes beyond the reach of conventional methods. 

 

Conversely, if the observed oscillations are shown not to be Rabi oscillations, their persistence 

and structure would still be of significant interest. They may indicate more complex, possibly 

multi-level coherent processes or reflect emergent quantum chaotic behavior under structured 
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driving fields. In this case, the Pechukas-Yukawa formalism would provide a valuable tool for 

exploring non-integrable quantum dynamics from a novel classical-mapping perspective. 

 

Either outcome would yield meaningful insight. A confirmation would reinforce the validity of 

the classical-quantum correspondence embodied in the Pechukas-Yukawa framework, while a 

refutation would open new avenues for investigating the spectral and dynamical complexity of 

multi-level quantum systems under external perturbation. 

5.4 Conclusion 

The journey to understand the dynamic evolution of quantum systems, especially in the 

presence of decoherence, has always been fraught with complexities and critical to the 

development of AQC. Our exploration of the Pechukas-Yukawa (PY) formalism has pointed 

out a pathway to unravelling these intricacies, especially in systems with a scale of 2 to 5 qubits. 

 

Our work affirmed that the PY method stands as a helpful tool of reliability and efficiency for 

modelling small quantum coherent structures. Importantly, while its current application domain 

is within small quantum systems, it is by no means restricted to them. The scalability of the PY 

method, contingent on tackling certain numerical challenges, elucidates a potential to be a not 

only foundational but also convenient tool in quantum simulations of the future.  

 

A central discovery is the adaptability of quantum systems at anti-crossings. By judiciously 

modulating external field parameters like amplitude and frequency, we wield the ability to 

influence the system's probability trajectories across energy levels. This isn’t a mere theoretical 

exposition, it provides a broader application prospect, that is, if we can correctly adjust the 

parameters of the external field, we can maximize the possibility of the system falling into the 

ground state, which will greatly improve the performance of quantum adiabatic calculations 

and therefore could span from quantum computing to avant-garde material science. 
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Additionally, the relationship between initial probability distributions and the ensuing 

dynamical evolution of quantum systems is profound. The capability to predetermine external 

field conditions to maximize the likelihood of a system falling to its ground state is invaluable. 

This not only gives us a deterministic edge over quantum evolutions but also has potential 

applications in quantum annealing and quantum optimization problems. 

 

The observed correlation between the degree of broadening of the PSD of the expectation value 

of the system and deviations of occupation probability distribution presents intriguing 

possibilities for further studies in the domain of dynamical complex behaviours. Further studies 

about quantum chaotic and hyper quantum chaotic phenomena in larger quantum systems could 

be benefited by our research when other indicators of quantum chaos are included. 

 

What is particularly interesting is the different transition trends of the edge and middle energy 

levels in the case of a high degree of dynamical complexity of the system. On the one hand, it 

supports the previous research conclusion that the edge and middle levels have different escape 

rate, from a new angle via dynamic complexity of the system. 

 

In conclusion, while this dissertation has made strides in comprehending and modelling the 

dynamic evolution of quantum systems, it is but a drop in the vast ocean of quantum mechanics. 

Our results have carved out more questions than answers, indicative of the richness and depth 

of the subject. The PY method, with its potential and promise, could be a cornerstone in future 

quantum research, shaping the way we understand, manipulate, and harness the power of the 

quantum realm. 

 

We hope our research can be helpful to further exploration in the development of quantum 

computation and therefore advance our understanding of the universe. 
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Appendix 

Appendix A: Power Spectral Density, the Welch Method and 

Windowed Function 

 

Power Spectral Density 

Power Spectral Density (PSD) serves as a valuable tool for studying quantum chaotic behavior 

because it provides a way to examine the frequency components of a given quantum system 

over time, thereby offering insights into its dynamical characteristics. Here are some key 

reasons why PSD is especially relevant in the context of quantum chaos: 

 

Frequency Domain Information: The PSD represents how the power of a signal is distributed 

across different frequency components. Chaotic systems often exhibit a broad spectrum of 

frequencies, and analyzing the PSD allows us to identify this broadening or the presence of 

specific dominant frequencies, which can be indicative of chaotic or regular behavior. 

 

Signal Complexity: Quantum chaotic systems are inherently complex and can have behavior 

that appears random or disordered. PSD offers a way to quantify this complexity by examining 

the dispersion of the frequency components. In the context of quantum systems, a more uniform 

distribution of power across frequencies may signify chaotic evolution. 

 

Sensitivity to Initial Conditions: One of the hallmarks of chaos is extreme sensitivity to initial 

conditions. The PSD can capture this feature indirectly. If small changes in initial conditions 

lead to vastly different frequency distributions in the PSD, this could be indicative of chaotic 

behavior. 

 

Correlation Analysis: By studying how the PSD varies with different parameters or initial 
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conditions, one can gain insights into the underlying correlations or dependencies within the 

system, helping to identify the boundaries between chaotic and non-chaotic regimes. 

 

Temporal Evolution: Often, quantum chaotic behavior isn't just about what happens at a 

particular instant but how the system evolves over time. The PSD can be calculated for different 

time slices to study how the frequency components evolve, which can be crucial for 

understanding the onset of chaos. 

 

Comparison with Classical Chaos: In many cases, insights from classical chaotic systems have 

been extended to quantum systems. Classical systems often use PSD to study chaos, and there 

is a rich literature on what features to look for in a PSD that indicate chaotic behavior. 

Translating these insights to quantum systems can provide a starting point for a more nuanced 

understanding. 

 

Parameter Sensitivity: Given that quantum chaotic systems are often studied in terms of varying 

external parameters (like external fields or coupling constants), the PSD provides a robust way 

to examine how small changes in these parameters might lead the system into or out of chaotic 

regimes. 

 

By offering these multidimensional insights, PSD serves as an invaluable tool in the study of 

quantum chaotic behavior, contributing both to theoretical understanding and practical 

applications such as adiabatic quantum computing. 

 

Therefore, we realize that spectral analysis is a helpful tool for studying quantum chaos, 

particularly within the framework of the Pechukas-Yukawa formalism and adiabatic quantum 

computation. Spectral analysis offers a comprehensive lens through which to examine the 

eigenvalues and eigenfunctions of quantum systems, thereby shedding light on their chaotic or 

integrable nature. 



149 

 

 

 

In quantum mechanics, one of the most direct ways to characterize a system is through its 

Hamiltonian. The spectrum of this operator, which consists of the system's eigenvalues and 

corresponding eigenstates, captures important features of the system's dynamical behavior. In 

a chaotic regime, we expect the spectral statistics to exhibit universal features, which are often 

characterized by Random Matrix Theory (RMT), which is further introduced in Appendix A. 

RMT can effectively model the statistical distribution of level spacings in the spectrum and 

offers crucial insights into the transition from quantum regularity to chaos. Given that my work 

frequently entails blending theoretical constructs with data-driven analytics, the quantifiable 

nature of spectral statistics is immensely beneficial. 

 

Furthermore, the Pechukas-Yukawa formalism provides a robust foundation for understanding 

chaos in quantum systems. It brings forth an insightful partitioning of the Hamiltonian matrix 

into blocks that represent regular and chaotic components. Spectral analysis enables us to 

isolate and study these submatrices, thereby deepening our understanding of how chaos 

emerges and interacts with regular structures. In the realm of adiabatic quantum computation, 

understanding the spectral properties is pivotal for estimating the adiabatic timescale and 

ensuring effective problem-solving. 

 

Additionally, spectral analysis is computationally tractable, a critical factor given the data-

intensive nature of our work. Computational libraries and packages optimized for spectral 

algorithms align well with my skillset as a data scientist, thereby facilitating a seamless 

integration of mathematical rigor and computational efficiency. This allows us to proceed with 

our research at an accelerated pace, which is crucial at this final stage of my PhD journey where 

time is of the essence for completing my thesis proficiently and promptly. 

 

To sum up, the combination of spectral analysis with the theoretical frameworks I specialize in 

offers an ideal avenue for advancing our understanding of quantum chaos. It allows for a 
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quantitative, computationally efficient, and deeply insightful exploration of complex quantum 

systems, aligning perfectly with both my academic focus and the practical constraints of my 

research timeline. 

 

The Welch method 

The Welch method is a popular technique for estimating the power spectral density (PSD) of a 

signal. Named after its inventor, Peter D. Welch, it's an improvement over the standard 

periodogram spectrum estimating method and is known for its ability to reduce noise in the 

estimated power spectra. 

 

The basic idea behind the Welch method is to divide the time signal into overlapping segments, 

compute periodograms for each segment, and then average these periodograms to produce the 

power spectral density estimate. This process reduces the variance of the estimated power 

spectrum. 

 

Here are the steps involved in the Welch method: 

Segmentation: Divide the entire signal into overlapping segments. The overlap is normally set 

to 50%, but this can be adjusted based on the specific application. 

Windowing: Apply a window function to each segment. This is done to reduce the spectral 

leakage that results from truncating the signal. Common window functions include the 

Hamming window, Hann window, and Blackman window. 

Compute Periodograms: For each windowed segment, compute the periodogram by taking the 

Fourier transform, squaring its magnitude, and normalizing it. 

Average Periodograms: Average the periodograms of each segment to produce the power 

spectral density estimate. 

 

Why we chose the pwelch function in MATLAB to estimate the power spectral density of a 
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signal based on the idea of the Welch method? Because it offers us a relatively good balance 

between computational complexity and spectrum estimation accuracy. Moreover, Welch 

method is also a convenient tool for power spectrum estimation with the presence of noise in 

various fields such as signal processing, telecommunications, and digital communications.  

 

By dividing the signal into overlapping segments and then averaging the periodograms of each 

segment (a measure of the power of a signal at each frequency). The pwelch function has three 

main parameters that can be used to control the accuracy and smoothness of the PSD estimation. 

These parameters include the number of windows, the width of each window, and the type of 

window that is used to weight the segments. 

 

Signal processing for Spectrum analysis: Window function 

In the section of simulation of the power spectral density of the expectation value of energy of 

2-5 qubit systems, we use the PWELCH function (a function to estimate the power spectral 

density) provided by MATLAB. While applying this method, a proper number of windows are 

implied on the range of data. 

 

Because each Fast Fourier Transform is only capable to transform time-domain data of limited 

length, therefore, signal truncation needs to be performed on the time-domain signal. However, 

even though the signal is a periodic signal, if the truncated time length is not an integer multiple 

of the period (period truncation), then there will be leakage in the truncated signal, which will 

bring us the unwanted errors. In order to minimize this leakage error (note that here we say 

reduce, instead of eliminating, it is impossible to fully eliminate such leakage, what we can do 

is to reduce it into an acceptable scale), we need to use a weighting function, also known as the 

window function. 

 

The main purpose of applying window function is to make the time-domain signal seem to 
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better meet the periodic requirements of FFT processing and therefore reduce leakage.  

In spectrum analysis, it is impossible for a computer to store and calculate the entire length of 

the signal (it could be infinite long), therefore, we need to truncate the signal to meet this 

requirement. And when the signal is truncated, it can only be truncated to a certain length, even 

if the original signal is infinitely long. Therefore, it seems that a "window" (more like a "frame" 

to be precise) is used for such truncation. 

 

Here the "window" is a weighting function of unit weight, called "rectangular window". The 

signal outside this "window" is not stored by our computer, only the signal inside the window 

is existing. This is like looking at the outside world through a window. Even though the world 

is very big and exciting, consists of tremendous information, but all the person watching 

through the window can see is the truncated part of the world inside the window. The 

information outside out of the window is lost in some sense. This is the vivid reason why such 

a weighting function is called a window function, an intuitive name indeed. 

 

The window function is a weighting function, and the weighting of different window functions 

is different. There are many different approaches to set the weighting for the window functions. 

Commonly used window functions include rectangular window, Hanning window, flat top 

window, exponential window, etc. Which window function to use depends on the type of signal 

and the purpose of the analysis. In another word, different interception functions (window 

functions) can be chosen for signal interception according to the situations. 

 

The essence of applying window function is to use window function to multiply the original 

time-domain signal (of course, windowing can also be performed in the frequency domain, but 

the time domain is more common, in our case, window function is performed in time domain 

since the original signal is in time domain), so that the multiplied signal seems to better satisfy 

the periodicity requirement of the Fast Fourier transform. For example, if the original signal 

does not meet the periodicity requirements of FFT transformation, and there is leakage after 
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transformation. By applying a window function, the leakage will therefore be reduced to a 

certain extent. To reduce leakage, the window function is manipulated to multiply the original 

periodic signal to obtain a windowed signal as a periodic signal, thus meeting the periodicity 

requirement of FFT transformation. 

 

Different window functions have different spectral characteristics. 

The main differences in the spectral characteristics of various window functions: main lobe 

width (also known as effective noise bandwidth, ENBW), amplitude distortion, maximum side 

lobe height and side lobe attenuation rate and other parameters. 

 

The fundamental thought of windowing is to replace the rectangular window function that 

intercepts signal samples with a smoother window function, that is, to perform specific unequal 

weighting on the truncated time-domain signal, so that the two ends of the truncated time-

domain waveform suddenly change. It needs to be smoothed to suppress the side lobes of the 

spectral window. Because the side lobe has the largest amount of leakage, the smaller the side 

lobe, the smaller the leakage is correspondingly reduced.  

 

The main lobe width mainly affects the signal energy distribution and frequency resolution. 

The actual resolution in frequency is the effective noise bandwidth times the frequency 

resolution. Therefore, the wider the main lobe, the wider the effective noise bandwidth. When 

the frequency resolution is the same, the frequency resolution is poor. For the main lobe with 

a wide window function, it is difficult to distinguish if there is a small peak frequency adjacent 

to it.  

 

The height of the sidelobe and its decay rate affect the degree of energy leakage (spectral 

smearing effect). The higher the sidelobe, the more serious the energy leakage, the slower the 

attenuation, and the more serious the spectrum smearing. Relatively speaking, if the sidelobe 

energy is small and the height tends to zero, so that the signal energy is relatively concentrated 
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on the main lobe, it is closer to the real spectrum. Different window functions have different 

effects on the signal spectrum, mainly because different window functions have different 

leakage and frequency resolution.  

 

For the purpose to obtain higher frequency resolution, the main lobe width of the window 

function spectrum should be as narrow as possible when we increase the length of the window 

function; The sidelobe attenuation of the window should be as large as possible to reduce 

spectral smearing, but in general these two requirements cannot be met simultaneously, a good 

balance is critical for the analyzing signals. The difference between different windows is 

mainly the ratio of the energy concentrated in the main lobe to the energy dispersed in all the 

side lobes. 

 

The principle for choosing the right window depends on the target of the analysis and the type 

of signal being analyzed. Generally, the wider the effective noise band is, the worse the 

frequency resolution obtained for the signal, and the more difficult it is for us to distinguish the 

adjacent frequencies with the same scale of amplitude. The increase in selectivity (i.e., the 

ability to distinguish weak components adjacent to strong component frequencies) is related to 

the decay rate of the sidelobes. In principle, the window with narrower effective noise 

bandwidth has lower sidelobe attenuation rate, so a balanced choice of window is a compromise 

between the two. 

 

In the ideal case, the truncated signal is still a periodic signal, then there is no leakage and no 

need for windowing, which is equivalent to adding a rectangular window. However, in real 

spectrum analysis, the truncated signal is always not a periodic signal therefore, a suitable 

window must be chosen according to the characteristics of the target signal.  

 

If the signal is a random signal or an unknown signal, or has multiple frequency components, 

the test focuses on the frequency point rather than the energy level, Hanning window is suitable 
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for this case. For calibration purposes, where accurate amplitudes are required, a flat top 

window is a good choice. Kaiser window is outstanding in dealing with the case where both 

amplitude accuracy and frequency accuracy are required, Blackman window is good for 

dealing with the situation where two signals with similar frequencies and different amplitudes80. 

 

In our case, since our original signal to be applied by window function is the expectation value 

of energy of 2-5 qubit systems controlled by an external perturbative parameter with the 

presence of decoherence, i.e., noise, which is a kind of random signal, we chose Hanning 

window in our study. 

 

Each window function has an impact on the frequency domain description of the target signal. 

Overall, though adding window functions reduces the accuracy of the peak amplitude of the 

function and therefore makes the resulting damping appear larger than it actually is (these errors 

are completely unwanted), they are more acceptable compared to the severe distortion caused 

by leakage. By applying window function on our original signal, we reduce the leakage to an 

acceptable scale and reduce the error to less than 10%. 

 

Appendix B: Code 

Code Index 

o Calculate occupation number without Renormalization 

o Calculate Occupation number with Renormalization 

o White Noise Generate Function 

o Iteration through Amplitude and Frequency of λ for 2-qubit systems (direct 

method) 

o Simulation of 5-qubit systems through PY method with RK4 
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o Comparison of the probabilities of being at each energy level of Five qubits 

system 

o Power Spectral density of Expectation energy value of 2 qubits system 

o Maximum probability for the 4-qubit systems to fall in the ground state during 

the evolution 

o Simulation of 4-qubit systems through PY method with RK4 

o Simulation of 2-qubit systems through PY method with RK4 

o PY method with Runge-Kutta 4th order method 

o Simulation of 4-qubi system through PY method with Euler method 

  

 

 

Calculate occupation number without Renormalization 

function 

[C1,Density]=occupationnumber(inputx,inputl,inputinitialC,inputlambda,inputNOL,inputstep

s,inputtotaltime) 

totaltime=inputtotaltime; 

x=inputx; 

l=inputl; 

lambda=inputlambda; 

NOL=inputNOL; 

steps=inputsteps; 

dt=totaltime/steps; 
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h=dt; 

Dlambda=diff(lambda)/h; 

C=zeros(NOL,steps); 

C(:,1)=inputinitialC; 

DC=zeros(NOL,steps); 

P=zeros(NOL,NOL,steps); 

 

X=zeros(NOL,NOL,steps); 

 

for i=1:steps 

    X(:,:,i)=diag(x(:,i)); 

end 

 

 

for i=1:steps 

    for m=1:NOL 

        for n=1:NOL 

            if abs(x(m,i)-x(n,i))>0 

               P(m,n,i)=1*((l(m,n,i)/(1*x(m,i)-1*x(n,i)))/(1*x(m,i)-1*x(n,i)))*1*1; 

            else 

%How to deal with the singularity 

                P(m,n,i)=0                             ; 

            end 

        end 

    end 

end 

%  

IC=zeros(NOL,steps); 
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IDC=zeros(NOL,steps); 

IIC=zeros(NOL,steps); 

IIDC=zeros(NOL,steps); 

IIIC=zeros(NOL,steps); 

IIIDC=zeros(NOL,steps); 

 

% count=1; 

for i=1:steps-3 

%     if mod(count,2)==1 

%     for m=1:NOL 

%         for n=1:NOL 

%             DC(:,i)=(-1i.*X(:,:,i)+Dlambda(:,i).*P(:,:,i))*C(:,i); 

%             if abs(DC(:,i)*dt)<abs(C(:,i)) 

%                 C(:,i+1)=DC(:,i)*dt +C(:,i); 

%             else 

%                 C(:,i+1)=C(:,i)+DC(:,i)*dt; 

%             end 

            IC(:,i+1)=C(:,i)+DC(:,i)*dt; 

            IDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1); 

             

            IIC(:,i+1)=C(:,i)+IDC(:,i+1)*dt; 

            IIDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IIC(:,i+1); 

             

            IIIC(:,i+2)=C(:,i)+IIDC(:,i+1)*2*dt; 

            IIIDC(:,i+2)=(-1i.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,i+2))*IIIC(:,i+2); 

             

             

            C(:,i+2)=C(:,i)+1/6*dt*(DC(:,i)+2*IDC(:,i+1)+2*IIDC(:,i+1)+IIIDC(:,i+2)); 
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%     end 

%     count=count+1; 

%         end 

%     end 

end 

% %  

C1=zeros(NOL,steps); 

%  

for i=1:steps-3 

    C1(:,i)=C(:,i); 

end 

 

for i=1:steps/2-1 

    C1(:,2*i)=(C(:,2*i-1)+C(:,2*i+1))/2; 

end 

 

Density=zeros(NOL,NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        for n=1:NOL 

%             if n~=m 

                Density(n,m,i)=conj(C1(m,i))*C1(n,i); 

%             end 

        end 

    end 

end 

 

end 
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Calculate Occupation number with Renormalization 

function [C1,Density]... 

    =OccupationRenormalize(inputx,inputl,inputinitialC... 

                ,inputlambda,inputNOL,inputperiodnumber... 

                ,inputstepsperperiod,inputdt... 

                ,inputrandomX,inputsteps) 

                           

% totaltime=inputtotaltime; 

% If want to accelerate more, then 

dt=inputdt; 

x=inputx; 

l=inputl; 

lambda=inputlambda; 

NOL=inputNOL; 

 

% steps=inputsteps; 

%% 

periodnumber=inputperiodnumber; 

stepsperperiod=inputstepsperperiod; 

 

randomX=inputrandomX; 

 

steps=inputsteps; 

% steps=99998; 

%% 
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h=dt; 

Dlambda=diff(lambda)/h; 

C=zeros(NOL,steps); 

C(:,1)=inputinitialC; 

DC=zeros(NOL,steps); 

P=zeros(NOL,NOL,steps); 

 

X=zeros(NOL,NOL,steps); 

Probability=zeros(NOL,steps); 

Sum=zeros(1,steps); 

 

 

for i=1:steps 

    X(:,:,i)=diag(x(:,i)); 

end 

 

 

for i=1:steps 

    for m=1:NOL 

        for n=1:NOL 

            if abs(abs(x(m,i))-abs(x(n,i)))>0 

               P(m,n,i)=((l(m,n,i)/(x(m,i)-x(n,i)))/(x(m,i)-x(n,i))); 

            else 

%How to deal with the singularity 

                P(m,n,i)=0                             ; 

            end 

        end 
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    end 

end 

%  

IC=zeros(NOL,steps); 

IDC=zeros(NOL,steps); 

IIC=zeros(NOL,steps); 

IIDC=zeros(NOL,steps); 

IIIC=zeros(NOL,steps); 

IIIDC=zeros(NOL,steps); 

 

% count=1; 

 

for j=1:periodnumber 

%     randomX=randi([5,6000],1); 

    if j<periodnumber 

        for i=(j-1)*stepsperperiod+1:(j-1)*stepsperperiod+1+randomX 

             

            DC(:,i)=(-1i.*X(:,:,i)+Dlambda(:,i).*P(:,:,i))*C(:,i); 

 

            IC(:,i+1)=C(:,i)+DC(:,i)*dt; 

            IDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1); 

             

            IIC(:,i+1)=C(:,i)+IDC(:,i+1)*dt; 

            IIDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IIC(:,i+1); 

             

            IIIC(:,i+2)=C(:,i)+IIDC(:,i+1)*2*dt; 

            IIIDC(:,i+2)=(-1i.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,i+2))*IIIC(:,i+2); 
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            C(:,i+2)=C(:,i)+1/6*dt*(DC(:,i)+2*IDC(:,i+1)+2*IIDC(:,i+1)+IIIDC(:,i+2)); 

 

            for m=1:NOL 

                Probability(m,i+1)=C(m,i+1)*conj(C(m,i+1)); 

                if Probability(m,i+1)<Sum(1,i+1) 

                    Sum(1,i+1)=Probability(m,i+1)+Sum(1,i+1); 

                else 

                    Sum(1,i+1)=Sum(1,i+1)+Probability(m,i+1); 

                end 

 

            end 

 

        end 

         

        C(:,(j-1)*stepsperperiod+1+randomX+1) = ... 

            C(:,(j-1)*stepsperperiod+1+randomX+1)... 

            /sqrt(Sum(1,(j-1)*stepsperperiod+1+randomX+1)); 

 

        for i= (j-1)*stepsperperiod+1+randomX+1:j*stepsperperiod 

             

            IC(:,i+1)=C(:,i)+DC(:,i)*dt; 

            IDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1); 

             

            IIC(:,i+1)=C(:,i)+IDC(:,i+1)*dt; 

            IIDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IIC(:,i+1); 

             

            IIIC(:,i+2)=C(:,i)+IIDC(:,i+1)*2*dt; 
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            IIIDC(:,i+2)=(-1i.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,i+2))*IIIC(:,i+2); 

             

             

            C(:,i+2)=C(:,i)+1/6*dt*(DC(:,i)+2*IDC(:,i+1)+2*IIDC(:,i+1)+IIIDC(:,i+2)); 

             

            for m=1:NOL 

                Probability(m,i+1)=C(m,i+1)*conj(C(m,i+1)); 

                 

                if Probability(m,i+1)<Sum(1,i+1) 

                    Sum(1,i+1)=Probability(m,i+1)+Sum(1,i+1); 

                else 

                    Sum(1,i+1)=Sum(1,i+1)+Probability(m,i+1); 

                end 

 

            end 

 

 

        end 

     

    else 

        for i=(j-1)*stepsperperiod+1: (j-1)*stepsperperiod+1+ randomX 

             

            IC(:,i+1)=C(:,i)+DC(:,i)*dt; 

            IDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1); 

             

            IIC(:,i+1)=C(:,i)+IDC(:,i+1)*dt; 

            IIDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IIC(:,i+1); 
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            IIIC(:,i+2)=C(:,i)+IIDC(:,i+1)*2*dt; 

            IIIDC(:,i+2)=(-1i.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,i+2))*IIIC(:,i+2); 

             

             

            C(:,i+2)=C(:,i)+1/6*dt*(DC(:,i)+2*IDC(:,i+1)+2*IIDC(:,i+1)+IIIDC(:,i+2)); 

             

            for m=1:NOL 

                Probability(m,i+1)=C(m,i+1)*conj(C(m,i+1)); 

 

                if Probability(m,i+1)<Sum(1,i+1) 

                    Sum(1,i+1)=Probability(m,i+1)+Sum(1,i+1); 

                else 

                    Sum(1,i+1)=Sum(1,i+1)+Probability(m,i+1); 

                end 

 

            end 

 

        end 

 

        C(:,(j-1)*stepsperperiod+1+ randomX +1)=... 

            C(:,(j-1)*stepsperperiod+1+ randomX +1)... 

            /sqrt(Sum(1,(j-1)*stepsperperiod+1+ randomX +1)); 

 

%the line below, -1 or -2 or -3??? 

        for i= (j-1)*stepsperperiod+1+ randomX +1 : j*stepsperperiod-3 

             

            IC(:,i+1)=C(:,i)+DC(:,i)*dt; 

            IDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1); 
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            IIC(:,i+1)=C(:,i)+IDC(:,i+1)*dt; 

            IIDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IIC(:,i+1); 

             

            IIIC(:,i+2)=C(:,i)+IIDC(:,i+1)*2*dt; 

            IIIDC(:,i+2)=(-1i.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,i+2))*IIIC(:,i+2); 

             

             

            C(:,i+2)=C(:,i)+1/6*dt*(DC(:,i)+2*IDC(:,i+1)+2*IIDC(:,i+1)+IIIDC(:,i+2)); 

             

            for m=1:NOL 

                Probability(m,i+1)=C(m,i+1)*conj(C(m,i+1)); 

                 

                if Probability(m,i+1)<Sum(1,i+1) 

                    Sum(1,i+1)=Probability(m,i+1)+Sum(1,i+1); 

                else 

                    Sum(1,i+1)=Sum(1,i+1)+Probability(m,i+1); 

                end 

 

            end 

 

         

        end 

     

    end 

 

     

end 
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%------------------------------------------------------------------- 

C1=zeros(NOL,steps); 

%  

for i=1:steps-3 

    C1(:,i)=C(:,i); 

end 

 

for i=1:steps/2-1 

    C1(:,2*i)=(C(:,2*i-1)+C(:,2*i+1))/2; 

end 

 

Density=zeros(NOL,NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        for n=1:NOL 

%             if n~=m 

                Density(n,m,i)=conj(C1(m,i))*C1(n,i); 

%             end 

        end 

    end 

end 

 

end 

 

White Noise Generate Function 

function [Dh,DotDh]= Noise2(inputNOL,inputsteps,inputtotaltime) 
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% tic 

 

% NOL=; 

% steps=1000; 

% totaltime=1*pi; 

NOL=inputNOL; 

steps=inputsteps; 

totaltime=inputtotaltime; 

 

t=linspace(0,totaltime,steps); 

% Lambda1=j*cos(p*t); 

dt=totaltime/(steps); 

% h=dt; 

% DLambda=diff(Lambda1)/h; 

% dLambda=DLambda*dt; 

 

 

Dh=zeros(NOL,NOL,steps); 

DotDh=zeros(NOL,NOL,steps); 

 

% c1=50; %mean reversion speed 

c1=10; 

c2=0; %mean value 

% c3=0.005; %fluctuation rate 

c3=0.0005; 

sigma=c3; 

 

pd = makedist('Normal',0,sqrt(dt)); %probability distribution 
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% for m=1:NOL 

%     for n=1:NOL 

% %         Dh(m,n,1)=0.0001*random(pd); 

%           Dh(m,n,1)=0; 

%     end 

% end 

Dh(:,:,1)=0; 

filename='NoiseDh.mat'; 

Export0=matfile(filename,'Writable',true); 

Export0.Dh=Dh; 

for m=1:NOL 

    for n=1:NOL 

        for i=1:steps-1 

 

            mu=c1*(c2-Dh(m,n,i)); 

            dW=random(pd); %dW denotes a random motion 

            DotDh(m,n,i)= mu*dt+sigma*dW; 

%           DotDh(m,n,i)= mu*dLambda(i)+sigma*dW; 

            Dh(m,n,i+1)=Dh(m,n,i)+ DotDh(m,n,i); 

             

        end 

    end 

end 

 

Cup=zeros(1,steps); 

Box=zeros(1,steps); 

for i=1:steps 
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    for m=1:NOL 

        Box(m,i)=Dh(m,m,i); 

        Cup(m,i)=DotDh(m,m,i); 

    end 

end 

 

%toc 

end 

 

Iteration through Amplitude and Frequency of λ for 2-qubit 

systems (direct method) 

%% 

% 1 . Initialization 

randomX=10;  

 

dt=0.001; 

totallength=300; 

steps=round(totallength/dt); 

totaltime=dt*steps; 

t=linspace(0,totaltime,steps); 

%% 

% 2 .Pauli matrix and Identity matrix 

Sigma_x=[0 1; 1 0]; 

Sigma_z=[1 0; 0 -1]; 

I=[1 0;0 1]; 
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numberofqubits=2; 

NOL=2^numberofqubits; 

%% 

% 3 . Parameters, could be set to random numbers or function of time. 

% Delta=zeros(1,numberofqubits); 

% h=zeros(1,numberofqubits); 

% J=zeros(numberofqubits,numberofqubits); 

% for i=1:numberofqubits 

%     Delta(i)=rand(1); 

%     h(i)=rand(1); 

%     for j=1:numberofqubits 

%         if j>i 

%             J(i,j)=rand(1); 

%         end 

%             

%     end 

% end 

%-------------------------------------- 

 

Delta1=0.4; 

Delta2=0.5; 

h1=0.7; 

h2=0.2; 

J_12=0.6; 

%% 

% 4 . Define H0, Hf and ZHb 

% ZHb should be independent of Lambda 

H0=Delta1*kron(Sigma_x,I)+Delta2*kron(I,Sigma_x); 
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Hf=h1*kron(Sigma_z,I)+h2*kron(I,Sigma_z)+J_12*kron(Sigma_z,Sigma_z); 

ZHb=Hf-H0; 

%% 

% 5 . Preallocation for variables 

Hlambda=zeros(NOL,NOL,steps); 

Eigenvectors=zeros(NOL,NOL,steps); 

HD=zeros(NOL,NOL,steps); 

 

X=zeros(NOL,steps); 

V=zeros(NOL,steps); 

x=zeros(NOL,steps); 

v=zeros(NOL,steps); 

l=zeros(NOL,NOL,steps); 

LSquare=zeros(NOL,NOL,steps); 

 

%% 

% [Dh,DotDh]=Noise2(NOL,steps,totaltime); 

% save('NoiseDh.mat','Dh');     

 

 

 

 

 

for j=1.25:0.01:1.25 

     for p=17.5:0.5:17.5 

fprintf('j=%d\n',j) 

fprintf('p=%d\n',p) 
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% dt=0.0003; 

%% 

Amplitude=j ; 

constant=p;    

 

[Dh,DotDh]=Noise2(NOL,steps,totaltime); 

save('NoiseDh.mat','Dh');     

%% 

% plan 1, fixed periodnumber but different steps number depending on 

% frequency. Need to calculate Noise everytime. 

 

% periodnumber=100; 

% periodlength=2*pi/constant; %period length= 2*pi/constant 

% stepsperperiod=round(periodlength/dt); 

% steps=periodnumber*stepsperperiod; 

%% 

% plan 2, fixed steps number, but different period numbers depending on 

% frequency. Can load Noise , save time. 

 

%% 

periodlength=2*pi/constant; 

periodnumber=fix(steps*dt/periodlength); 

stepsperperiod=fix(periodlength/dt); 

 

Lambda=Amplitude*cos(constant*t); 

% Lambda=Amplitude*cos(constant*t+pi); 

 

% tic 
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% [Dh,DotDh]=Noise2(NOL,steps,totaltime,Amplitude,constant); 

% save('NoiseDh.mat','Dh'); 

% % load('NoiseDh.mat'); 

% toc 

%% 

% 6 . Define H(lambda)=H0+lambda*ZHb+Dh. 

for i=1:steps 

%     Hlambda(:,:,i)=H0+Lambda(i)*ZHb;%without noise 

    Hlambda(:,:,i)=H0+Lambda(i)*ZHb+Dh(i); %with noise 

end 

 

% 7 . Get eigenvectors and eigenvalue matrix 

for i=1:steps 

    [Eigenvectors(:,:,i),HD(:,:,i)]=eig(Hlambda(:,:,i)); 

end 

 

% 8 . Get X(m,i) 

for i=1:steps 

    for m=1:NOL 

        X(m,i)=HD(m,m,i); 

    end 

end 

 

% 9 . Get V(m,i) and L(m,n,i) 

for i=1:steps 

    for m=1:NOL 

        V(m,i)=transpose(Eigenvectors(:,m,i))*ZHb*Eigenvectors(:,m,i); 

    end 
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end 

L=zeros(NOL,NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        for n=1:NOL 

            if n~=m 

                L(m,n,i)=(X(m,i)-X(n,i))...  

                        *transpose(Eigenvectors(:,m,i))... 

                        *ZHb*Eigenvectors(:,n,i); 

            end 

        end 

    end 

end 

 

%% 

% filename='DirectData1.mat'; 

% Export0=matfile(filename,'Writable',true); 

% % Export0.XTEST=zeros(NOL,steps*periodnumber); 

% % Export0.XTEST=[]; 

% % Export0.VTEST=[]; 

% % Export0.LTEST=[]; 

% Export0.Time=t; 

% Export0.XTEST=X; 

% Export0.VTEST=V; 

% Export0.LTEST=L; 

%  

% Export0.PERIODNUMBER=periodnumber; 

% Export0.PERIODLENGTH=periodlength; 
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% Export0.STEPS=steps; 

% Export0.STEPSPERPERIOD=stepsperperiod; 

%  

% Export0.CONSTANT=constant; 

% Export0.AMPLITUDE=Amplitude; 

% Export0.RANDOMX=randomX; 

% Export0.DT=dt; 

 

%% 

save(['D:\Dataset\Loopdata1\'... 

                ,'TwoQubits_',num2str(j),'cos(',num2str(p),'t).mat']... 

                           ,'t','X','V','L','periodnumber','periodlength','steps'... 

                            ,'stepsperperiod','constant','Amplitude','randomX','dt','Lam

bda','-v7.3'); 

 

 

beep 

 

 

% % 9.1. get DV(m,i) and DL(m,n,i) 

% DirectDV=zeros(NOL,steps); 

% for i=1:steps-2 

%     for m=1:NOL 

%         DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt); 

%     end 

% end 

%  

% DirectDL=zeros(NOL,NOL,steps); 
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% for i=1:steps-2 

%     for m=1:NOL 

%         for n=1:NOL 

%             DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,i))/(2*dt); 

%         end 

%     end 

% end 

 

 

% xRK4=zeros(NOL,steps); 

% vRK4=zeros(NOL,steps); 

% lRK4=zeros(NOL,NOL,steps); 

% [xRK4,vRK4,lRK4,time]=RK4test3FromLaptop(X(:,:),V(:,:),L(:,:,:),NOL... 

%                         ,steps,DirectDV,DirectDL,totaltime,Lambda... 

%                         ,constant,Amplitude); 

 

 

% [xRK4,vRK4,lRK4,time]=RK4test3FromLaptop(X(:,:),V(:,:),L(:,:,:),NOL... 

%                         ,steps,DirectDV,DirectDL,totaltime,Lambda... 

%                         ,constant,Amplitude); 

%  

% [xRK4,vRK4,lRK4,time]=RK4withNoise(X(:,:),V(:,:),L(:,:,:),NOL,steps...%not using 

Xnoise and etc. becuause there is a sign error of matlab eig() function 

%                             ,DirectDV,DirectDL,totaltime,Lambda,Dh,DotDh,j,p); 

 

 

 

% ErrorXRK4=zeros(NOL,steps); 
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% for i=1:steps 

%     for m=1:NOL 

%         ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,i)); 

%     end 

% end 

 

% ErrorNoAbs=zeros(NOL,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         ErrorNoAbs(m,i)=X(m,i)-xRK4(m,i); 

%     end 

% end 

%  

% ErrorSumLevels=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         if abs(ErrorSumLevels(1,i))<abs(ErrorXRK4(m,i)) 

%             ErrorSumLevels(1,i)=ErrorSumLevels(1,i)+ErrorXRK4(m,i); 

%         else 

%             ErrorSumLevels(1,i)=ErrorXRK4(m,i)+ErrorSumLevels(1,i); 

%         end 

%     end 

% end 

 

% ErrorV=zeros(NOL,steps); 

 

% for i=1:steps 

%     for m=1:NOL 
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%         ErrorV(m,i)=abs(V(m,i)-vRK4(m,i)); 

%          

%     end 

% end 

 

%% 

%%-------------------------------------------------------------------- 

%%--------------------------------------------------------------------- 

% C1=zeros(NOL,steps); 

% C1(4,1)=1; 

% % for m=1:NOL 

% %     C(m,1)=sqrt(1/NOL); 

% % end 

% Probability1=zeros(NOL,steps); 

%  

% % [C1,Density1]=occupationnumber(xRK4,lRK4,C1(:,1),Lambda,NOL,steps,totaltime); 

% 

[C1,Density1]=OccupationRenormalize(xRK4,lRK4,C1(:,1),Lambda,NOL,periodnumber,ste

psperperiod,dt,randomX); 

% % 

[C1,Density1]=OcNoRe(xRK4,lRK4,C1(:,1),Lambda,NOL,periodnumber,stepsperperiod,dt,r

andomX); 

% for i=1:steps 

%     for m=1:NOL 

%         Probability1(m,i)=C1(m,i)*conj(C1(m,i)); 

%     end 

% end 

%  
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% Sum1=zeros(1,i); 

% for i=1:steps 

%     for m=1:NOL 

%       if Probability1(m,i)<Sum1(1,i) 

%             Sum1(1,i)=Probability1(m,i)+Sum1(1,i); 

%       else 

%             Sum1(1,i)=Sum1(1,i)+Probability1(m,i); 

%       end 

%     end 

% end 

%  

 

 

% figure(2*j-1) 

% subplot(1,3,1) 

% plot(t,X) 

% % % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

% % %     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% % % axis([0 1 -4 10]) 

% % xlabel('time'); 

% % ylabel('Energy levels'); 

% % % xlim([0 0.2]) 

% title('Direct Energy Evolution'); 

% %  

% subplot(1,3,2) 

% plot(t,xRK4(:,:)) 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

% %     '20','21','22','23','24','25','26','27','28','29','30','31','32') 
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% % axis([0 1 -4 10]) 

% xlabel('time'); 

% ylabel('Energy levels'); 

% % xlim([0 0.2]) 

% title('PY simulated Energy Evolution') 

%  

%  

% subplot(1,3,3) 

% plot(t,ErrorXRK4(:,:)) 

% % % axis([0 0.1 0 1]) 

% % % xlim([0 0.3]) 

% % xlabel('time'); 

% % ylabel('Error'); 

% title('Error of simulated energy evolution') 

%  

%  

%  

% figure(2*j) 

% subplot(1,2,1) 

% plot(t,Probability1(:,:)) 

% % axis([0 1 0 1]) 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% title('Simulated PD') 

%  

% subplot(1,2,2) 

% plot(t,Sum1); 

% title('Sum of simulated probabilities') 

%  
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%  

%  

 

 

 

%  

% figure(6) 

%  

% subplot(1,4,1) 

% plot(t,Probability3(:,:)) 

% % axis([0 1 0 1]) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% title('Direct PD OCNoRe') 

%  

% subplot(1,4,2) 

% plot(t,Sum3); 

% title('Sum of Direct probabilities OCNoRe') 

%  

%  

% subplot(1,4,3) 

% plot(t,Probability4(:,:)) 

% % axis([0 1 0 1]) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% title('Simulated PD OCNoRe') 

%  

% subplot(1,4,4) 

% plot(t,Sum4); 

% title('Sum of simulated probabilities OCNoRe') 
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%-------------------------------------------------------------------------------- 

%-------------------------------------------------------------------------------- 

% AverageX=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         AverageX(1,i)=Probability1(m,i)*X(m,i)+AverageX(1,i); 

%     end 

% end 

% AverageXRK4=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         AverageXRK4(1,i)=Probability1(m,i)*xRK4(m,i)+AverageXRK4(1,i); 

%     end 

% end 

%  

%  

% AverageM=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         AverageM(1,i)=Probability1(m,i)*m + AverageM(1,i); 

%     end 

% end 

%  

%  

% %Dispersion of Energy value 

% Dispersion=zeros(1,steps); 
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% for i=1:steps 

%     for m=1:NOL 

%         Dispersion(1,i)=Probability1(m,i)*((xRK4(m,i)-AverageX(1,i))^2)... 

%                         +Dispersion(1,i); 

%     end 

% end 

%  

% % Dispersion of energy levels 

% DispersionLVL=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         DispersionLVL(1,i)=Probability1(m,i)*((m-AverageM(1,i))^2)... 

%                             +DispersionLVL(1,i); 

%     end 

% end 

 

 

%  

% figure(j+7) 

% subplot(1,2,1) 

% plot(t,AverageX) 

% title("Expectation Energy direct") 

% % xlim([0 99]) 

%  

% subplot(1,2,2) 

% plot(t,AverageXRK4) 

% title("Expectation Energy simulated") 

%  
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%  

 

 

    end 

end 

Simulation of 5-qubit system through PY method 

clear 

tic 

%Five Spin New 

t1=cputime; 

% 1 .initial set up 

totaltime=2*pi; 

steps=4000; 

dt=totaltime/steps; 

% tt=linspace(0,totaltime,steps); 

% t=cos(tt); 

t=linspace(0,totaltime,steps); 

Lambda=0.3*sin(1*t); 

 

h=dt; 

dLambda=diff(Lambda)/h; 

numberofqubits=5; 

NOL=2^numberofqubits; 

 

%Noise function 

%---------------------------------------- 

[Dh,DotDh]=Noise1(NOL,steps,totaltime); 
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%----------------------------------------- 

 

% 2 . Pauli matrix and Identity matrix 

Sigma_x=[0 1; 1 0]; 

Sigma_z=[1 0;0 -1]; 

I=[1 0; 0 1]; 

 

% 3. Parameters 

%------------------------------------------------ 

%  Particular set 

Delta1=0.9844;%0.5578 

Delta2=0.8589;%0.3134 

Delta3=0.7856;%0.1662    

Delta4=0.5134;%0.6225 

Delta5=0.1776;%0.9879 

 

h1=0.3986; %0.1704 

h2=0.1339; %0.2578 

h3=0.0309; %0.3968 

h4=0.9391; %0.0740 

h5=0.3013; %0.6841 

 

J_12=0.2955;%0.4024 

J_13=0.3329;%0.9828 

J_14=0.4671;%0.4022 

J_15=0.6482;%0.6207 

 

J_23=0.0252;%0.1544 
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J_24=0.8422;%0.3813 

J_25=0.5590;%0.1611 

 

J_34=0.8541;%0.7581 

J_35=0.3479;%0.8711 

 

J_45=0.4460;%0.3508 

%------------------------------------------------------------- 

%  random set 

% Delta1=rand(1); 

% Delta2=rand(1); 

% Delta3=rand(1); 

% Delta4=rand(1); 

% Delta5=rand(1); 

%  

% h1=rand(1); 

% h2=rand(1); 

% h3=rand(1); 

% h4=rand(1); 

% h5=rand(1); 

%  

% J_12=rand(1); 

% J_13=rand(1); 

% J_14=rand(1); 

% J_15=rand(1); 

%  

% J_23=rand(1); 

% J_24=rand(1); 
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% J_25=rand(1); 

%  

% J_34=rand(1); 

% J_35=rand(1); 

%  

% J_45=rand(1); 

 

% 4 . Define H0, Hf and ZHb 

H0=  Delta1*kron(kron(kron(kron(Sigma_x,I),I),I),I)... 

    +Delta2*kron(kron(kron(kron(I,Sigma_x),I),I),I)... 

    +Delta3*kron(kron(kron(kron(I,I),Sigma_x),I),I)... 

    +Delta4*kron(kron(kron(kron(I,I),I),Sigma_x),I)... 

    +Delta5*kron(kron(kron(kron(I,I),I),I),Sigma_x); 

 

Hf =     h1*kron(kron(kron(kron(Sigma_z,I),I),I),I)... 

        +h2*kron(kron(kron(kron(I,Sigma_z),I),I),I)... 

        +h3*kron(kron(kron(kron(I,I),Sigma_z),I),I)... 

        +h4*kron(kron(kron(kron(I,I),I),Sigma_z),I)... 

        +h5*kron(kron(kron(kron(I,I),I),I),Sigma_z)... 

        +J_12*kron(kron(kron(kron(Sigma_z,Sigma_z),I),I),I)... 

        +J_13*kron(kron(kron(kron(Sigma_z,I),Sigma_z),I),I)... 

        +J_14*kron(kron(kron(kron(Sigma_z,I),I),Sigma_z),I)... 

        +J_15*kron(kron(kron(kron(Sigma_z,I),I),I),Sigma_z)... 

        +J_23*kron(kron(kron(kron(I,Sigma_z),Sigma_z),I),I)... 

        +J_24*kron(kron(kron(kron(I,Sigma_z),I),Sigma_z),I)... 

        +J_25*kron(kron(kron(kron(I,Sigma_z),I),I),Sigma_z)... 

        +J_34*kron(kron(kron(kron(I,I),Sigma_z),Sigma_z),I)... 

        +J_35*kron(kron(kron(kron(I,I),Sigma_z),I),Sigma_z)... 
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        +J_45*kron(kron(kron(kron(I,I),I),Sigma_z),Sigma_z); 

         

ZHb= Hf-H0; 

        %ZHb with noise 

         

         

%             ZHbNoise()=Hf-H0-Dh/Lambda(i); 

         

% 5 . Preallocations 

Hlambda=zeros(NOL,NOL,steps); 

Eigenvectors=zeros(NOL,NOL,steps); 

HD=zeros(NOL,NOL,steps); 

    %preallocation for case with noise 

    %------------------------------------- 

    Hnoise=zeros(NOL,NOL,steps); 

    EigenvectorsNoise=zeros(NOL,NOL,steps); 

    HDNoise=zeros(NOL,NOL,steps); 

    Xnoise=zeros(NOL,steps); 

    Vnoise=zeros(NOL,steps); 

    Lnoise=zeros(NOL,NOL,steps); 

    %------------------------------------- 

X=zeros(NOL,steps); 

V=zeros(NOL,steps); 

L=zeros(NOL,NOL,steps); 

x=zeros(NOL,steps); 

v=zeros(NOL,steps); 

l=zeros(NOL,NOL,steps); 
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% 6 . Define H(lambda)=H0+ lambda*ZHb. 

for i= 1:steps 

    Hlambda(:,:,i)= H0+Lambda(i)*ZHb; 

end 

        % 6.1 H(lambda)with noise = H0+lambda*ZHb+Dh 

            for i=1:steps 

               Hnoise=Dh+H0+Lambda(i)...*ZHbNoise; 

                   *ZHb; 

            end 

% 7 . Get eigenvectors and eigenvalue matrix 

for i=1:steps 

    [Eigenvectors(:,:,i),HD(:,:,i)]=eig(Hlambda(:,:,i)); 

    [EigenvectorsNoise(:,:,i),HDNoise(:,:,i)]=eig(Hnoise(:,:,i)); 

end 

       % 7.1 Eigenvectors and eigenvalue matrix with noise 

%           for i=1:steps 

%                 [EigenvectorsNoise(:,:,i),HDNoise(:,:,i)]=eig(Hnoise(:,:,i)); 

%           end 

        

% 8 . get X(m,i). 

for i=1:steps 

    for m=1:NOL 

        X(m,i)=HD(m,m,i); 

    end 

end 

       % 8.1 X(m,i) with noise 

         for m=1:NOL 

             for i=1:steps 
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                 Xnoise(m,i)=HDNoise(m,m,i); 

             end 

         end 

         %attempt to solve the bug that sometimes it is opposite  

%          for m=1:NOL 

%              for i=1:steps 

%                  if Xnoise(m,1)>0 

%                     if Xnoise(m,i)<0 

%                        Xnoise(m,i)=abs(Xnoise(m,i)); 

%                     end 

%                  end 

%                  if Xnoise(m,1)<0 

%                      if Xnoise(m,i)>0 

%                         Xnoise(m,i)=-abs(Xnoise(m,i)); 

%                      end 

%                  end 

%                  if Xnoise(m,1)==0 

%                      Xnoise(m,1)=Xnoise(m,1)+0.001; 

%                  end 

%              end 

%          end 

 

 

% 9 . get V(m,i) and L(m,n,i) 

for i=1:steps 

    for m=1:NOL 

        V(m,i)=transpose(Eigenvectors(:,m,i))*ZHb*Eigenvectors(:,m,i); 

    end 
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end 

for i=1:steps 

    for n=1:NOL 

        for m=1:NOL 

            if n~=m 

                L(m,n,i)=(X(m,i)-X(n,i))... 

                        *transpose(Eigenvectors(:,m,i))... 

                        *ZHb*Eigenvectors(:,n,i); 

            end 

        end 

    end 

end 

        % 9.1 V(m,i) and L(m,n,i) with Noise 

            for i=1:steps 

                for m=1:NOL 

                    Vnoise(m,i)= transpose(EigenvectorsNoise(:,m,i))... 

                                *ZHb... 

                                *EigenvectorsNoise(:,m,i); 

                end 

            end 

            for i=1:steps 

                for n=1:NOL 

                    for m=1:NOL 

                        if n~=m 

                            Lnoise(m,n,i)=(Xnoise(m,i)-Xnoise(n,i))... 

                                          *transpose(EigenvectorsNoise(:,m,i))... 

                                          *ZHb*EigenvectorsNoise(:,n,i); 

                        end 
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                    end 

                end 

            end 

 

% 9.1. get DV(m,i) and DL(m,n,i) 

% DV=zeros(NOL,steps); 

% DL=zeros(NOL,NOL,steps); 

% RHSV=zeros(NOL,NOL,steps); 

% RHSL=zeros(NOL,NOL,steps); 

 

% for i=1:steps 

%     for n=1:NOL 

%         for m=1:NOL 

%             if n~=m 

%                if abs(X(m,i)-X(n,i))>0.00758 

%                     RHSV(m,n,i)=2*(( 10000*L(m,n,i)/(10000*X(m,i)-

10000*X(n,i)) )... 

%                                     *( 10000*conj(L(m,n,i)) /(10000*X(m,i)... 

%                                     -10000*X(n,i)) )... 

%                                     /(10000*X(m,i)-10000*X(n,i)))*10000; 

%                     DV(m,i)=DV(m,i)+ RHSV(m,n,i); 

%                end 

%             end 

%         end 

%     end 

% end 

%  

% for i=1:steps 
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%     for m=1:NOL 

%         for n=1:NOL 

%             for k=1:NOL 

%                 if n~=m 

%                     if k~=n 

%                         if k~=m 

%                             if abs( X(k,i)-X(n,i) )>0.00758 

%                                 if abs( X(k,i)-X(m,i) )>0.00758 

%                                     RHSL(m,n,i)=( (10000*X(k,i)-

10000*X(n,i))... 

%                                              /(10000*X(m,i)-10000*X(k,i))... 

%                                              - (10000*X(m,i)... 

%                                             -10000*X(k,i))/(10000*X(k,i)... 

%                                             -10000*X(n,i))) ... 

%                                             *transpose(Eigenvectors(:,m,i))... 

%                                                 ... 

%                                             *ZHb*Eigenvectors(:,k,i)... 

%                                             *transpose(Eigenvectors(:,k,i))... 

%                                             *ZHb*Eigenvectors(:,n,i); 

%                              

%                                     DL(m,n,i)=DL(m,n,i)+RHSL(m,n,i); 

%                                 end 

%                             end 

%                         end 

%                     end 

%                 end 

%             end 

%         end 
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%     end 

% end 

% % 10 . Use Euler method to check directly obtained Xm and Vm. 

% Xeuler= zeros(NOL,steps); 

% for m=1:NOL 

%     Xeuler(m,1)=X(m,1); 

% end 

% for i=1:steps-1 

%     for m=1:NOL 

%         Xeuler(m,i+1)=Xeuler(m,i)+V(m,i)*dt; 

%     end 

% end 

% % 11 . Set initial xm, vm, lmn for i=1 for Pechukas method 

% for m=1:NOL 

%     x(m,1)=X(m,1); 

%     v(m,1)=V(m,1);    

%  

% end 

% %Testbraket=zeros(NOL,NOL,steps); 

% for m=1:NOL 

%     for n=1:NOL 

%         if n~=m 

%             l(m,n,1)= (x(m,1)-x(n,1))... 

%                        *transpose(Eigenvectors(:,m,1))... 

%                        *ZHb*Eigenvectors(:,n,1); 

%             %Testbraket(m,n,1)= transpose(Eigenvectors(:,m,1))... 

%                        %*ZHb*Eigenvectors(:,n,1); 

%         end 
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%     end 

% end 

 

 

 

% 12 . Euler+Pechukas 

%---------------------------- 

% RHSl=zeros(NOL,NOL,steps); 

% RHSv=zeros(NOL,NOL,steps); 

% Dv=Derivativeofv(x,l,steps,NOL); 

% Dl=Derivativeofl(x,l,steps,NOL); 

%------------------------------- 

 

% Dv=zeros(NOL,steps); 

% Dl=zeros(NOL,NOL,steps); 

 

% TestAnticrossing=zeros(NOL,NOL,steps); 

% TestSquare=zeros(NOL,NOL,steps); 

% TestCube=zeros(NOL,NOL,steps); 

% %TestConj=zeros(NOL,NOL,steps); 

% Test1=zeros(NOL,NOL,steps); 

% Test2=zeros(NOL,NOL,steps); 

% Test3=zeros(NOL,NOL,steps); 

% Test4=zeros(NOL,NOL,steps); 

 

% for i=1:steps-1 

%     for m=1:NOL 

%         for n=1:NOL 
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%              

%             for k=1:NOL 

%                 if n~=m 

%                     if k~=n 

%                         if k~=m 

% %                             if x(m,i)~=x(k,i) 

% %                                 if x(k,i)~=x(n,i) 

%                                    if abs(x(m,i)-x(k,i))>0.00758 

%                                        if abs(x(n,i)-x(k,i))>0.00758 

% %                                             RHSl(m,n,i)=( (10000*x(k,i)-

10000*x(n,i))... 

% %                                                  /(10000*x(m,i)-

10000*x(k,i))... 

% %                                                  - (10000*x(m,i)... 

% %                                                 -

10000*x(k,i))/(10000*x(k,i)... 

% %                                                 -10000*x(n,i)) )... 

% %                                                 

*transpose(Eigenvectors(:,m,i))... 

% %                                                 ... 

% %                                                 *ZHb*Eigenvectors(:,k,i)... 

% %                                                 

*transpose(Eigenvectors(:,k,i))... 

% %                                                 *ZHb*Eigenvectors(:,n,i); 

%                                             

RHSl(m,n,i)=(l(m,k,i)/(10000*x(m,i)-10000*x(k,i)))... 

%                                         *(l(k,n,i)/(10000*x(m,i)-

10000*x(k,i)))... 
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%                                         *10000*10000.... 

%                                         -(l(m,k,i)/(10000*x(k,i)-10000*x(n,i)))... 

%                                         *(l(k,n,i)/(10000*x(k,i)-

10000*x(n,i)))*10000*10000; 

%                                             %This algorithm is better, by 

%                                             %timing 10000*10000 at last. 

%                                             %with less error 

%                                             %(max error of X is 1.4595) 

%                                             if abs(RHSL(m,n,i)-

RHSl(m,n,i))<1000 

%                                                 

Dl(m,n,i)=Dl(m,n,i)+RHSl(m,n,i); 

%                                             else 

%                                                 Dl(m,n,i)=Dl(m,n,i); 

%                                             end 

%                                  

% %                                     

Testbraket(m,n,i)=transpose(Eigenvectors(:,m,i))... 

% %                                         ... 

% %                                         *ZHb*Eigenvectors(:,k,i); 

% %                                        end 

% %                                     end 

%                                        else 

%                                             Dl(m,n,i)=Dl(m,n,i)... 

%                                                          +0; 

%                                        end 

%                                   else 

% %                                     if abs(x(n,i)-x(k,i))>0.00001 
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% %                                         Dl(m,n,i)=Dl(m,n,i)... 

% %                                                         +0; 

% %                                     else 

%                                     Dl(m,n,i)=Dl(m,n,i)+0; 

% %                                     end 

%                                    end 

% %                                 end 

% %                             end 

%                         end 

%                     end 

%                 end 

%             end 

%              

%             if n~=m 

%                 if x(m,i)~=x(n,i) 

%                     %test part------------------------------------- 

%                     %Try add a condition to skip those too small values 

%                     %if (x(m,i)-x(n,i))>1e-23 

%                      

%                     %test part------------------------------------- 

%                     if abs(x(m,i)-x(n,i))>0.00758 

% %                         if abs(L(m,n,i))>0.05 

% %                             if abs(L(m,n,i))<5 

% %                         RHSv(m,n,i)= 2*(( 10000*l(m,n,i)/(10000*x(m,i)-

10000*x(n,i)) )... 

% %                                     *( 10000*conj(l(m,n,i)) /(10000*x(m,i)-

10000*x(n,i)) )... 

% %                                     /(10000*x(m,i)-10000*x(n,i)))*10000; 
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%                           RHSv(m,n,i)=2*(l(m,n,i)/(10000*x(m,i)-10000*x(n,i)))... 

%                                      *(conj(l(m,n,i))/(10000*x(m,i)-

10000*x(n,i)))... 

%                                      /(10000*x(m,i)-

10000*x(n,i))*10000*10000*10000; 

% %                     Test1(m,n,i)=( L(m,n,i)/(X(m,i)-X(n,i)) ); 

% %                     Test2(m,n,i)=( conj(L(m,n,i)) /(X(m,i)-X(n,i)) ); 

% %                     Test3(m,n,i)=(X(m,i)-X(n,i)); 

%                     %Test3(m,n,i)= 

%                     %TestConj(m,n,i)=l(m,n,i)-conj(l(m,n,i)); 

%                     %TestAnticrossing(m,n,i)=X(m,i)-X(n,i); 

%                     %TestSquare(m,n,i)=(X(m,i)-X(n,i))^2; 

%                     %TestCube(m,n,i)=(X(m,i)-X(n,i))^3; 

%                         if abs(RHSV(m,n,i)-RHSv(m,n,i))<1000 

%                             Dv(m,i)=Dv(m,i)+RHSv(m,n,i); 

%                         else 

%                             Dv(m,i)=Dv(m,i); 

%                         end 

% %                     Dv(m,i)=Dv(m,i)... 

% %                                   +2*( l(m,n,i)/(x(m,i)-x(n,i)) )... 

% %                                     *( conj(l(m,n,i)) /(x(m,i)-x(n,i)) )... 

% %                                     /(x(m,i)-x(n,i)); 

%                     %else 

%                     %   Dv(m,i)=Dv(m,i); 

%                     %end 

% %                             end 

%                     end 

% %                     end 
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%                 else 

%                     Dv(m,i)=Dv(m,i); 

%                 end 

%                 l(m,n,i+1)=l(m,n,i)+Dl(m,n,i)*dt; 

%                 %l(m,n,i+1)=L(m,n,i+1); 

%             else 

%                 Dv(m,i)=Dv(m,i); 

%                  

%             end 

%         end 

%         v(m,i+1)=v(m,i)+Dv(m,i)*dt; 

%         %v(m,i+1)=V(m,i+1); 

%         x(m,i+1)=x(m,i)+v(m,i)*dt; 

%      

%     end 

% end 

 

% 12.1 . Set errors for X , V, DV , L, RHSV, RHSL 

 

% Gap=zeros(NOL,NOL,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         for n=1:NOL 

%             if n~=m 

%                 Gap(m,n,i)=abs(X(m,i)-X(n,i)); 

%             end 

%         end 

%     end 
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% end 

% MinimumGap1=min(Gap); 

% MinimumGap2=min(MinimumGap1); 

% MinimumGap3=min(MinimumGap2); 

 

% ErrorX=zeros(NOL,steps); 

% ErrorRelativeX=zeros(NOL,steps); 

% ErrorV=zeros(NOL,steps); 

% ErrorDV=zeros(NOL,steps); 

% ErrorRHSV=zeros(NOL,NOL,steps); 

% ErrorRHSL=zeros(NOL,NOL,steps); 

% ErrorL=zeros(NOL,NOL,steps); 

% % for i=1:steps 

% %     for m=1:NOL 

% %         ErrorX(m,i)=abs(X(m,i)-x(m,i)); 

% %         if MinimumGap3~=0 

% %         ErrorRelativeX(m,i)=abs(ErrorX(m,i)/MinimumGap3); 

% %         %cannot use minimumgap for relative error, since it is 0 always. 

% %         end 

% %     end 

% % end 

%  

% for i=1:steps 

%     for m=1:NOL 

%         ErrorX(m,i)=abs(X(m,i)-x(m,i)); 

%         if X(m,i)~=0 

%         ErrorRelativeX(m,i)=abs(ErrorX(m,i)/X(m,i)); 

%         %cannot use minimumgap for relative error, since it is 0 always. 
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%         end 

%     end 

% end 

% for i=1:steps 

%     for m=1:NOL 

%         ErrorV(m,i)=abs(V(m,i)-v(m,i)); 

%         ErrorDV(m,i)=abs(DV(m,i)-Dv(m,i)); 

%     end 

% end 

% for i=1:steps 

%     for m=1:NOL 

%         for n=1:NOL 

%             ErrorRHSV(m,n,i)=abs(RHSV(m,n,i)-RHSv(m,n,i)); 

%             ErrorRHSL(m,n,i)=abs(RHSL(m,n,i)-RHSl(m,n,i)); 

%             ErrorL(m,n,i)=abs(L(m,n,i)-l(m,n,i)); 

%         end 

%     end 

% end 

DirectDV=zeros(NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt); 

    end 

end 

 

DirectDL=zeros(NOL,NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 
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        for n=1:NOL 

            DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,i))/(2*dt); 

        end 

    end 

end 

 

 

 

 

%  

% xRK4=zeros(NOL,steps); 

% vRK4=zeros(NOL,steps); 

% lRK4=zeros(NOL,NOL,steps); 

%With Noise 

[xRK4,vRK4,lRK4,time]=RK4withNoise(X(:,:),V(:,:),L(:,:,:),NOL,steps... 

                            ,DirectDV,DirectDL,totaltime,Lambda,Dh,DotDh); 

%Without Noise 

[xRK4_1,vRK4_1,lRK4_1,time_1]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps... 

                            ,DirectDV,DirectDL,totaltime,Lambda); 

 

ErrorXRK4=zeros(NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,i)); 

    end 

end 

 

ErrorXRK4_1=zeros(NOL,steps); 
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for i=1:steps 

    for m=1:NOL 

        ErrorXRK4_1(m,i)=abs(X(m,i)-xRK4_1(m,i)); 

    end 

end 

% ErrorV=zeros(NOL,steps); 

%  

% for i=1:steps 

%     for m=1:NOL 

%         ErrorV(m,i)=abs(V(m,i)-vRK4(m,i)); 

%          

%     end 

% end 

 

 

%------------------------------with noise 

C=zeros(NOL,steps); 

C(1,1)=1; 

Probability=zeros(NOL,steps); 

 

[C,Density]=occupationnumber(xRK4,lRK4,C(:,1),Lambda,NOL,steps,totaltime); 

 

for i=1:steps 

    for m=1:NOL 

        Probability(m,i)=C(m,i)*conj(C(m,i)); 

    end 

end 
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Sum=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum(1,i)=Probability(m,i)+Sum(1,i); 

    end 

end 

 

%----------------------------------------without noise  

Probability_1=zeros(NOL,steps); 

C_1=zeros(NOL,steps); 

C_1(10,1)=1; 

[C_1,Density_1]... 

     =occupationnumber(xRK4_1,lRK4_1,C_1(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_1(m,i)=C_1(m,i)*conj(C_1(m,i)); 

    end 

end 

 

Sum_1=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_1(1,i)=Probability_1(m,i)+Sum_1(1,i); 

    end 

end 

 

%--------------------compare probability with and without noise 

DiffWithNoise=0; 
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for i=1:steps 

    for m=1:NOL 

        DiffWithNoise=DiffWithNoise+abs(Probability(m,i)-Probability_1(m,i)); 

    end 

end 

 

 

%figure 

figure(1) 

subplot(1,3,1) 

plot(t,X) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

axis([0 1 -4 10]) 

title('Direct levels without noise') 

 

subplot(1,3,2) 

plot(t,xRK4(:,:)) 

 

axis([0 1 -4 10]) 

title('levels with noise') 

 

subplot(1,3,3) 

plot(t,ErrorXRK4(:,:)) 

% axis([0 0.1 0 1]) 

xlim([0 0.95]) 

title('Error with noise') 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 
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%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

 

% figure(2) 

% subplot(1,3,1) 

% plot(t,V) 

% xlabel('t') 

% ylabel('velocity') 

% legend('V1','V2','V3','V4','V5','V6','V7','V8') 

% title({'Velocity of the evolution';'of energy levels(direct)'}) 

%  

% subplot(1,3,2) 

% plot(t,vRK4) 

% xlabel('t') 

% ylabel('velocity') 

% legend('v1','v2','v3','v4','v5','v6','v7','v8') 

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'}) 

% % axis([0 1 -1.5 1.5]) 

%  

% subplot(1,3,3) 

% plot(t,ErrorV(4,:)) 

% legend('EV1','EV2','EV3','EV4','EV5','EV6','EV7','EV8') 

% title('Error of Velocity') 

% % axis([0 1 0 0.3]) 

 

% Sum1=0; 

% Sum2=0; 

% Sum3=0; 

% Sum4=0; 
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% Sum5=0; 

% Sum6=0; 

% for m=1:NOL 

%    Sum1=Sum1+C(m,1000)*conj(C(m,1000)); 

%    Sum2=Sum2+C(m,2000)*conj(C(m,2000)); 

%     Sum3=Sum3+C(m,3000)*conj(C(m,3000)); 

%      Sum4=Sum4+C(m,4000)*conj(C(m,4000)); 

%       Sum5=Sum5+C(m,5000)*conj(C(m,5000)); 

%        Sum6=Sum6+C(m,6000)*conj(C(m,6000)); 

% end 

figure(2) 

subplot(1,3,1) 

plot(t,X) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

axis([0 1 -4 10]) 

title('Direct levels without noise') 

 

subplot(1,3,2) 

plot(t,xRK4_1) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

axis([0 1 -4 10]) 

title('Levels without noise') 

subplot(1,3,3) 

plot(t,ErrorXRK4_1(:,:)) 

% axis([0 0.1 0 1]) 

xlim([0 0.95]) 
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title('error without noise') 

 

 

figure(3) 

 

subplot(1,4,1) 

plot(t,Probability(:,:)) 

axis([0 1 0 1]) 

legend('1','2','3','4','5','6','7','8') 

title('Probabilty with noise') 

% figure(4) 

 

subplot(1,4,2) 

plot(t,Sum); 

axis([0 1 0 1]) 

title('total probability with noise') 

 

subplot(1,4,3) 

plot(t,Probability_1(:,:)) 

axis([0 1 0 1]) 

legend('1','2','3','4','5','6','7','8') 

title('Probabilty without noise') 

 

subplot(1,4,4) 

plot(t,Sum_1) 

axis([0 1 0 1]) 

title('total probability without noise') 
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% figure(4) 

% subplot(1,2,1) 

% plot(t,X) 

%  

% subplot(1,2,2) 

% plot(t,Xnoise) 

 

toc 

Comparison of the probabilities of being at each energy level of 

Five qubits system 

clear 

tic 

%Five Spin New 

t1=cputime; 

% 1 .initial set up 

totaltime=2*pi; 

steps=4000; 

dt=totaltime/steps; 

% tt=linspace(0,totaltime,steps); 

% t=cos(tt); 

t=linspace(0,totaltime,steps); 

Lambda=0.99*sin(0.1*t); 

 

h=dt; 

dLambda=diff(Lambda)/h; 

numberofqubits=5; 
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NOL=2^numberofqubits; 

 

%Noise function 

%---------------------------------------- 

[Dh,DotDh]=Noise1(NOL,steps,totaltime); 

%----------------------------------------- 

 

% 2 . Pauli matrix and Identity matrix 

Sigma_x=[0 1; 1 0]; 

Sigma_z=[1 0;0 -1]; 

I=[1 0; 0 1]; 

 

% 3. Parameters 

%------------------------------------------------ 

%  Particular set 

Delta1=0.9844;%0.5578 

Delta2=0.8589;%0.3134 

Delta3=0.7856;%0.1662    

Delta4=0.5134;%0.6225 

Delta5=0.1776;%0.9879 

 

h1=0.3986; %0.1704 

h2=0.1339; %0.2578 

h3=0.0309; %0.3968 

h4=0.9391; %0.0740 

h5=0.3013; %0.6841 

 

J_12=0.2955;%0.4024 
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J_13=0.3329;%0.9828 

J_14=0.4671;%0.4022 

J_15=0.6482;%0.6207 

 

J_23=0.0252;%0.1544 

J_24=0.8422;%0.3813 

J_25=0.5590;%0.1611 

 

J_34=0.8541;%0.7581 

J_35=0.3479;%0.8711 

 

J_45=0.4460;%0.3508 

%------------------------------------------------------------- 

%  random set 

% Delta1=rand(1); 

% Delta2=rand(1); 

% Delta3=rand(1); 

% Delta4=rand(1); 

% Delta5=rand(1); 

%  

% h1=rand(1); 

% h2=rand(1); 

% h3=rand(1); 

% h4=rand(1); 

% h5=rand(1); 

%  

% J_12=rand(1); 

% J_13=rand(1); 
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% J_14=rand(1); 

% J_15=rand(1); 

%  

% J_23=rand(1); 

% J_24=rand(1); 

% J_25=rand(1); 

%  

% J_34=rand(1); 

% J_35=rand(1); 

%  

% J_45=rand(1); 

 

% 4 . Define H0, Hf and ZHb 

H0=  Delta1*kron(kron(kron(kron(Sigma_x,I),I),I),I)... 

    +Delta2*kron(kron(kron(kron(I,Sigma_x),I),I),I)... 

    +Delta3*kron(kron(kron(kron(I,I),Sigma_x),I),I)... 

    +Delta4*kron(kron(kron(kron(I,I),I),Sigma_x),I)... 

    +Delta5*kron(kron(kron(kron(I,I),I),I),Sigma_x); 

 

Hf =     h1*kron(kron(kron(kron(Sigma_z,I),I),I),I)... 

        +h2*kron(kron(kron(kron(I,Sigma_z),I),I),I)... 

        +h3*kron(kron(kron(kron(I,I),Sigma_z),I),I)... 

        +h4*kron(kron(kron(kron(I,I),I),Sigma_z),I)... 

        +h5*kron(kron(kron(kron(I,I),I),I),Sigma_z)... 

        +J_12*kron(kron(kron(kron(Sigma_z,Sigma_z),I),I),I)... 

        +J_13*kron(kron(kron(kron(Sigma_z,I),Sigma_z),I),I)... 

        +J_14*kron(kron(kron(kron(Sigma_z,I),I),Sigma_z),I)... 

        +J_15*kron(kron(kron(kron(Sigma_z,I),I),I),Sigma_z)... 
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        +J_23*kron(kron(kron(kron(I,Sigma_z),Sigma_z),I),I)... 

        +J_24*kron(kron(kron(kron(I,Sigma_z),I),Sigma_z),I)... 

        +J_25*kron(kron(kron(kron(I,Sigma_z),I),I),Sigma_z)... 

        +J_34*kron(kron(kron(kron(I,I),Sigma_z),Sigma_z),I)... 

        +J_35*kron(kron(kron(kron(I,I),Sigma_z),I),Sigma_z)... 

        +J_45*kron(kron(kron(kron(I,I),I),Sigma_z),Sigma_z); 

         

ZHb= Hf-H0; 

        %ZHb with noise 

         

         

%             ZHbNoise()=Hf-H0-Dh/Lambda(i); 

         

% 5 . Preallocations 

Hlambda=zeros(NOL,NOL,steps); 

Eigenvectors=zeros(NOL,NOL,steps); 

HD=zeros(NOL,NOL,steps); 

    %preallocation for case with noise 

    %------------------------------------- 

    Hnoise=zeros(NOL,NOL,steps); 

    EigenvectorsNoise=zeros(NOL,NOL,steps); 

    HDNoise=zeros(NOL,NOL,steps); 

    Xnoise=zeros(NOL,steps); 

    Vnoise=zeros(NOL,steps); 

    Lnoise=zeros(NOL,NOL,steps); 

    %------------------------------------- 

X=zeros(NOL,steps); 

V=zeros(NOL,steps); 
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L=zeros(NOL,NOL,steps); 

x=zeros(NOL,steps); 

v=zeros(NOL,steps); 

l=zeros(NOL,NOL,steps); 

 

% 6 . Define H(lambda)=H0+ lambda*ZHb. 

for i= 1:steps 

    Hlambda(:,:,i)= H0+Lambda(i)*ZHb; 

end 

        % 6.1 H(lambda)with noise = H0+lambda*ZHb+Dh 

            for i=1:steps 

               Hnoise=Dh+H0+Lambda(i)...*ZHbNoise; 

                   *ZHb; 

            end 

% 7 . Get eigenvectors and eigenvalue matrix 

for i=1:steps 

    [Eigenvectors(:,:,i),HD(:,:,i)]=eig(Hlambda(:,:,i)); 

    [EigenvectorsNoise(:,:,i),HDNoise(:,:,i)]=eig(Hnoise(:,:,i)); 

end 

       % 7.1 Eigenvectors and eigenvalue matrix with noise 

%           for i=1:steps 

%                 [EigenvectorsNoise(:,:,i),HDNoise(:,:,i)]=eig(Hnoise(:,:,i)); 

%           end 

        

% 8 . get X(m,i). 

for i=1:steps 

    for m=1:NOL 

        X(m,i)=HD(m,m,i); 
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    end 

end 

       % 8.1 X(m,i) with noise 

         for m=1:NOL 

             for i=1:steps 

                 Xnoise(m,i)=HDNoise(m,m,i); 

             end 

         end 

         %attempt to solve the bug that sometimes it is opposite  

%          for m=1:NOL 

%              for i=1:steps 

%                  if Xnoise(m,1)>0 

%                     if Xnoise(m,i)<0 

%                        Xnoise(m,i)=abs(Xnoise(m,i)); 

%                     end 

%                  end 

%                  if Xnoise(m,1)<0 

%                      if Xnoise(m,i)>0 

%                         Xnoise(m,i)=-abs(Xnoise(m,i)); 

%                      end 

%                  end 

%                  if Xnoise(m,1)==0 

%                      Xnoise(m,1)=Xnoise(m,1)+0.001; 

%                  end 

%              end 

%          end 
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% 9 . get V(m,i) and L(m,n,i) 

for i=1:steps 

    for m=1:NOL 

        V(m,i)=transpose(Eigenvectors(:,m,i))*ZHb*Eigenvectors(:,m,i); 

    end 

end 

for i=1:steps 

    for n=1:NOL 

        for m=1:NOL 

            if n~=m 

                L(m,n,i)=(X(m,i)-X(n,i))... 

                        *transpose(Eigenvectors(:,m,i))... 

                        *ZHb*Eigenvectors(:,n,i); 

            end 

        end 

    end 

end 

        % 9.1 V(m,i) and L(m,n,i) with Noise 

            for i=1:steps 

                for m=1:NOL 

                    Vnoise(m,i)= transpose(EigenvectorsNoise(:,m,i))... 

                                *ZHb... 

                                *EigenvectorsNoise(:,m,i); 

                end 

            end 

            for i=1:steps 

                for n=1:NOL 

                    for m=1:NOL 
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                        if n~=m 

                            Lnoise(m,n,i)=(Xnoise(m,i)-Xnoise(n,i))... 

                                          *transpose(EigenvectorsNoise(:,m,i))... 

                                          *ZHb*EigenvectorsNoise(:,n,i); 

                        end 

                    end 

                end 

            end 

 

% 9.1. get DV(m,i) and DL(m,n,i) 

% DV=zeros(NOL,steps); 

% DL=zeros(NOL,NOL,steps); 

% RHSV=zeros(NOL,NOL,steps); 

% RHSL=zeros(NOL,NOL,steps); 

 

% for i=1:steps 

%     for n=1:NOL 

%         for m=1:NOL 

%             if n~=m 

%                if abs(X(m,i)-X(n,i))>0.00758 

%                     RHSV(m,n,i)=2*(( 10000*L(m,n,i)/(10000*X(m,i)-

10000*X(n,i)) )... 

%                                     *( 10000*conj(L(m,n,i)) /(10000*X(m,i)... 

%                                     -10000*X(n,i)) )... 

%                                     /(10000*X(m,i)-10000*X(n,i)))*10000; 

%                     DV(m,i)=DV(m,i)+ RHSV(m,n,i); 

%                end 

%             end 
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%         end 

%     end 

% end 

%  

% for i=1:steps 

%     for m=1:NOL 

%         for n=1:NOL 

%             for k=1:NOL 

%                 if n~=m 

%                     if k~=n 

%                         if k~=m 

%                             if abs( X(k,i)-X(n,i) )>0.00758 

%                                 if abs( X(k,i)-X(m,i) )>0.00758 

%                                     RHSL(m,n,i)=( (10000*X(k,i)-

10000*X(n,i))... 

%                                              /(10000*X(m,i)-10000*X(k,i))... 

%                                              - (10000*X(m,i)... 

%                                             -10000*X(k,i))/(10000*X(k,i)... 

%                                             -10000*X(n,i))) ... 

%                                             *transpose(Eigenvectors(:,m,i))... 

%                                                 ... 

%                                             *ZHb*Eigenvectors(:,k,i)... 

%                                             *transpose(Eigenvectors(:,k,i))... 

%                                             *ZHb*Eigenvectors(:,n,i); 

%                              

%                                     DL(m,n,i)=DL(m,n,i)+RHSL(m,n,i); 

%                                 end 

%                             end 
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%                         end 

%                     end 

%                 end 

%             end 

%         end 

%     end 

% end 

% % 10 . Use Euler method to check directly obtained Xm and Vm. 

% Xeuler= zeros(NOL,steps); 

% for m=1:NOL 

%     Xeuler(m,1)=X(m,1); 

% end 

% for i=1:steps-1 

%     for m=1:NOL 

%         Xeuler(m,i+1)=Xeuler(m,i)+V(m,i)*dt; 

%     end 

% end 

% % 11 . Set initial xm, vm, lmn for i=1 for Pechukas method 

% for m=1:NOL 

%     x(m,1)=X(m,1); 

%     v(m,1)=V(m,1);    

%  

% end 

% %Testbraket=zeros(NOL,NOL,steps); 

% for m=1:NOL 

%     for n=1:NOL 

%         if n~=m 

%             l(m,n,1)= (x(m,1)-x(n,1))... 
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%                        *transpose(Eigenvectors(:,m,1))... 

%                        *ZHb*Eigenvectors(:,n,1); 

%             %Testbraket(m,n,1)= transpose(Eigenvectors(:,m,1))... 

%                        %*ZHb*Eigenvectors(:,n,1); 

%         end 

%     end 

% end 

 

 

 

% 12 . Euler+Pechukas 

%---------------------------- 

% RHSl=zeros(NOL,NOL,steps); 

% RHSv=zeros(NOL,NOL,steps); 

% Dv=Derivativeofv(x,l,steps,NOL); 

% Dl=Derivativeofl(x,l,steps,NOL); 

%------------------------------- 

 

% Dv=zeros(NOL,steps); 

% Dl=zeros(NOL,NOL,steps); 

 

% TestAnticrossing=zeros(NOL,NOL,steps); 

% TestSquare=zeros(NOL,NOL,steps); 

% TestCube=zeros(NOL,NOL,steps); 

% %TestConj=zeros(NOL,NOL,steps); 

% Test1=zeros(NOL,NOL,steps); 

% Test2=zeros(NOL,NOL,steps); 

% Test3=zeros(NOL,NOL,steps); 
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% Test4=zeros(NOL,NOL,steps); 

 

% for i=1:steps-1 

%     for m=1:NOL 

%         for n=1:NOL 

%              

%             for k=1:NOL 

%                 if n~=m 

%                     if k~=n 

%                         if k~=m 

% %                             if x(m,i)~=x(k,i) 

% %                                 if x(k,i)~=x(n,i) 

%                                    if abs(x(m,i)-x(k,i))>0.00758 

%                                        if abs(x(n,i)-x(k,i))>0.00758 

% %                                             RHSl(m,n,i)=( (10000*x(k,i)-

10000*x(n,i))... 

% %                                                  /(10000*x(m,i)-

10000*x(k,i))... 

% %                                                  - (10000*x(m,i)... 

% %                                                 -

10000*x(k,i))/(10000*x(k,i)... 

% %                                                 -10000*x(n,i)) )... 

% %                                                 

*transpose(Eigenvectors(:,m,i))... 

% %                                                 ... 

% %                                                 *ZHb*Eigenvectors(:,k,i)... 

% %                                                 

*transpose(Eigenvectors(:,k,i))... 
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% %                                                 *ZHb*Eigenvectors(:,n,i); 

%                                             

RHSl(m,n,i)=(l(m,k,i)/(10000*x(m,i)-10000*x(k,i)))... 

%                                         *(l(k,n,i)/(10000*x(m,i)-

10000*x(k,i)))... 

%                                         *10000*10000.... 

%                                         -(l(m,k,i)/(10000*x(k,i)-10000*x(n,i)))... 

%                                         *(l(k,n,i)/(10000*x(k,i)-

10000*x(n,i)))*10000*10000; 

%                                             %This algorithm is better, by 

%                                             %timing 10000*10000 at last. 

%                                             %with less error 

%                                             %(max error of X is 1.4595) 

%                                             if abs(RHSL(m,n,i)-

RHSl(m,n,i))<1000 

%                                                 

Dl(m,n,i)=Dl(m,n,i)+RHSl(m,n,i); 

%                                             else 

%                                                 Dl(m,n,i)=Dl(m,n,i); 

%                                             end 

%                                  

% %                                     

Testbraket(m,n,i)=transpose(Eigenvectors(:,m,i))... 

% %                                         ... 

% %                                         *ZHb*Eigenvectors(:,k,i); 

% %                                        end 

% %                                     end 

%                                        else 
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%                                             Dl(m,n,i)=Dl(m,n,i)... 

%                                                          +0; 

%                                        end 

%                                   else 

% %                                     if abs(x(n,i)-x(k,i))>0.00001 

% %                                         Dl(m,n,i)=Dl(m,n,i)... 

% %                                                         +0; 

% %                                     else 

%                                     Dl(m,n,i)=Dl(m,n,i)+0; 

% %                                     end 

%                                    end 

% %                                 end 

% %                             end 

%                         end 

%                     end 

%                 end 

%             end 

%              

%             if n~=m 

%                 if x(m,i)~=x(n,i) 

%                     %test part------------------------------------- 

%                     %Try add a condition to skip those too small values 

%                     %if (x(m,i)-x(n,i))>1e-23 

%                      

%                     %test part------------------------------------- 

%                     if abs(x(m,i)-x(n,i))>0.00758 

% %                         if abs(L(m,n,i))>0.05 

% %                             if abs(L(m,n,i))<5 
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% %                         RHSv(m,n,i)= 2*(( 10000*l(m,n,i)/(10000*x(m,i)-

10000*x(n,i)) )... 

% %                                     *( 10000*conj(l(m,n,i)) /(10000*x(m,i)-

10000*x(n,i)) )... 

% %                                     /(10000*x(m,i)-10000*x(n,i)))*10000; 

%                           RHSv(m,n,i)=2*(l(m,n,i)/(10000*x(m,i)-10000*x(n,i)))... 

%                                      *(conj(l(m,n,i))/(10000*x(m,i)-

10000*x(n,i)))... 

%                                      /(10000*x(m,i)-

10000*x(n,i))*10000*10000*10000; 

% %                     Test1(m,n,i)=( L(m,n,i)/(X(m,i)-X(n,i)) ); 

% %                     Test2(m,n,i)=( conj(L(m,n,i)) /(X(m,i)-X(n,i)) ); 

% %                     Test3(m,n,i)=(X(m,i)-X(n,i)); 

%                     %Test3(m,n,i)= 

%                     %TestConj(m,n,i)=l(m,n,i)-conj(l(m,n,i)); 

%                     %TestAnticrossing(m,n,i)=X(m,i)-X(n,i); 

%                     %TestSquare(m,n,i)=(X(m,i)-X(n,i))^2; 

%                     %TestCube(m,n,i)=(X(m,i)-X(n,i))^3; 

%                         if abs(RHSV(m,n,i)-RHSv(m,n,i))<1000 

%                             Dv(m,i)=Dv(m,i)+RHSv(m,n,i); 

%                         else 

%                             Dv(m,i)=Dv(m,i); 

%                         end 

% %                     Dv(m,i)=Dv(m,i)... 

% %                                   +2*( l(m,n,i)/(x(m,i)-x(n,i)) )... 

% %                                     *( conj(l(m,n,i)) /(x(m,i)-x(n,i)) )... 

% %                                     /(x(m,i)-x(n,i)); 

%                     %else 
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%                     %   Dv(m,i)=Dv(m,i); 

%                     %end 

% %                             end 

%                     end 

% %                     end 

%                 else 

%                     Dv(m,i)=Dv(m,i); 

%                 end 

%                 l(m,n,i+1)=l(m,n,i)+Dl(m,n,i)*dt; 

%                 %l(m,n,i+1)=L(m,n,i+1); 

%             else 

%                 Dv(m,i)=Dv(m,i); 

%                  

%             end 

%         end 

%         v(m,i+1)=v(m,i)+Dv(m,i)*dt; 

%         %v(m,i+1)=V(m,i+1); 

%         x(m,i+1)=x(m,i)+v(m,i)*dt; 

%      

%     end 

% end 

 

% 12.1 . Set errors for X , V, DV , L, RHSV, RHSL 

 

% Gap=zeros(NOL,NOL,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         for n=1:NOL 
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%             if n~=m 

%                 Gap(m,n,i)=abs(X(m,i)-X(n,i)); 

%             end 

%         end 

%     end 

% end 

% MinimumGap1=min(Gap); 

% MinimumGap2=min(MinimumGap1); 

% MinimumGap3=min(MinimumGap2); 

 

% ErrorX=zeros(NOL,steps); 

% ErrorRelativeX=zeros(NOL,steps); 

% ErrorV=zeros(NOL,steps); 

% ErrorDV=zeros(NOL,steps); 

% ErrorRHSV=zeros(NOL,NOL,steps); 

% ErrorRHSL=zeros(NOL,NOL,steps); 

% ErrorL=zeros(NOL,NOL,steps); 

% % for i=1:steps 

% %     for m=1:NOL 

% %         ErrorX(m,i)=abs(X(m,i)-x(m,i)); 

% %         if MinimumGap3~=0 

% %         ErrorRelativeX(m,i)=abs(ErrorX(m,i)/MinimumGap3); 

% %         %cannot use minimumgap for relative error, since it is 0 always. 

% %         end 

% %     end 

% % end 

%  

% for i=1:steps 
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%     for m=1:NOL 

%         ErrorX(m,i)=abs(X(m,i)-x(m,i)); 

%         if X(m,i)~=0 

%         ErrorRelativeX(m,i)=abs(ErrorX(m,i)/X(m,i)); 

%         %cannot use minimumgap for relative error, since it is 0 always. 

%         end 

%     end 

% end 

% for i=1:steps 

%     for m=1:NOL 

%         ErrorV(m,i)=abs(V(m,i)-v(m,i)); 

%         ErrorDV(m,i)=abs(DV(m,i)-Dv(m,i)); 

%     end 

% end 

% for i=1:steps 

%     for m=1:NOL 

%         for n=1:NOL 

%             ErrorRHSV(m,n,i)=abs(RHSV(m,n,i)-RHSv(m,n,i)); 

%             ErrorRHSL(m,n,i)=abs(RHSL(m,n,i)-RHSl(m,n,i)); 

%             ErrorL(m,n,i)=abs(L(m,n,i)-l(m,n,i)); 

%         end 

%     end 

% end 

DirectDV=zeros(NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt); 

    end 
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end 

 

DirectDL=zeros(NOL,NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        for n=1:NOL 

            DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,i))/(2*dt); 

        end 

    end 

end 

 

%  

% xRK4=zeros(NOL,steps); 

% vRK4=zeros(NOL,steps); 

% lRK4=zeros(NOL,NOL,steps); 

%With Noise 

[xRK4,vRK4,lRK4,time]=RK4withNoise(X(:,:),V(:,:),L(:,:,:),NOL,steps... 

                            ,DirectDV,DirectDL,totaltime,Lambda,Dh,DotDh); 

%Without Noise 

[xRK4_1,vRK4_1,lRK4_1,time_1]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps... 

                            ,DirectDV,DirectDL,totaltime,Lambda); 

 

ErrorXRK4=zeros(NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,i)); 

    end 

end 
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ErrorXRK4_1=zeros(NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        ErrorXRK4_1(m,i)=abs(X(m,i)-xRK4_1(m,i)); 

    end 

end 

% ErrorV=zeros(NOL,steps); 

%  

% for i=1:steps 

%     for m=1:NOL 

%         ErrorV(m,i)=abs(V(m,i)-vRK4(m,i)); 

%          

%     end 

% end 

 

 

%------------------------------with noise 

C=zeros(NOL,steps); 

C(1,1)=1; 

Probability=zeros(NOL,steps); 

 

[C,Density]=occupationnumber(xRK4,lRK4,C(:,1),Lambda,NOL,steps,totaltime); 

 

for i=1:steps 

    for m=1:NOL 

        Probability(m,i)=C(m,i)*conj(C(m,i)); 

    end 
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end 

 

Sum=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum(1,i)=Probability(m,i)+Sum(1,i); 

    end 

end 

 

%----------------------------------------without noise LVL1 

Probability_1=zeros(NOL,steps); 

C_1=zeros(NOL,steps); 

C_1(1,1)=1; 

[C_1,Density_1]... 

     =occupationnumber(xRK4_1,lRK4_1,C_1(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_1(m,i)=C_1(m,i)*conj(C_1(m,i)); 

    end 

end 

 

Sum_1=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_1(1,i)=Probability_1(m,i)+Sum_1(1,i); 

    end 

end 
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%----------------------------------------without noise LVL2 

Probability_2=zeros(NOL,steps); 

C_2=zeros(NOL,steps); 

C_2(2,1)=1; 

[C_2,Density_2]... 

     =occupationnumber(xRK4_1,lRK4_1,C_2(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_2(m,i)=C_2(m,i)*conj(C_2(m,i)); 

    end 

end 

 

Sum_2=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_2(1,i)=Probability_2(m,i)+Sum_2(1,i); 

    end 

end 

 

%----------------------------------------without noise LVL3 

Probability_3=zeros(NOL,steps); 

C_3=zeros(NOL,steps); 

C_3(3,1)=1; 

[C_3,Density_3]... 

     =occupationnumber(xRK4_1,lRK4_1,C_3(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 
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        Probability_3(m,i)=C_3(m,i)*conj(C_3(m,i)); 

    end 

end 

 

Sum_3=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_3(1,i)=Probability_3(m,i)+Sum_3(1,i); 

    end 

end 

 

%----------------------------------------without noise LVL4 

Probability_4=zeros(NOL,steps); 

C_4=zeros(NOL,steps); 

C_4(4,1)=1; 

[C_4,Density_4]... 

     =occupationnumber(xRK4_1,lRK4_1,C_4(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_4(m,i)=C_4(m,i)*conj(C_4(m,i)); 

    end 

end 

 

Sum_4=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_4(1,i)=Probability_4(m,i)+Sum_4(1,i); 

    end 
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end 

 

%----------------------------------------without noise LVL5 

Probability_5=zeros(NOL,steps); 

C_5=zeros(NOL,steps); 

C_5(5,1)=1; 

[C_5,Density_5]... 

     =occupationnumber(xRK4_1,lRK4_1,C_5(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_5(m,i)=C_5(m,i)*conj(C_5(m,i)); 

    end 

end 

 

Sum_5=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_5(1,i)=Probability_5(m,i)+Sum_5(1,i); 

    end 

end 

%----------------------------------------without noise LVL6 

Probability_6=zeros(NOL,steps); 

C_6=zeros(NOL,steps); 

C_6(6,1)=1; 

[C_6,Density_6]... 

     =occupationnumber(xRK4_1,lRK4_1,C_6(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 
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        Probability_6(m,i)=C_6(m,i)*conj(C_6(m,i)); 

    end 

end 

 

Sum_6=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_6(1,i)=Probability_6(m,i)+Sum_6(1,i); 

    end 

end 

 

%----------------------------------------without noise LVL7 

Probability_7=zeros(NOL,steps); 

C_7=zeros(NOL,steps); 

C_7(7,1)=1; 

[C_7,Density_7]... 

     =occupationnumber(xRK4_1,lRK4_1,C_7(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_7(m,i)=C_7(m,i)*conj(C_7(m,i)); 

    end 

end 

 

Sum_7=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_7(1,i)=Probability_7(m,i)+Sum_7(1,i); 

    end 
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end 

 

%----------------------------------------without noise LVL8 

Probability_8=zeros(NOL,steps); 

C_8=zeros(NOL,steps); 

C_8(8,1)=1; 

[C_8,Density_8]... 

     =occupationnumber(xRK4_1,lRK4_1,C_8(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_8(m,i)=C_8(m,i)*conj(C_8(m,i)); 

    end 

end 

 

Sum_8=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_8(1,i)=Probability_8(m,i)+Sum_8(1,i); 

    end 

end 

 

%----------------------------------------without noise LVL9 

Probability_9=zeros(NOL,steps); 

C_9=zeros(NOL,steps); 

C_9(9,1)=1; 

[C_9,Density_9]... 

     =occupationnumber(xRK4_1,lRK4_1,C_9(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 
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    for m=1:NOL 

        Probability_9(m,i)=C_9(m,i)*conj(C_9(m,i)); 

    end 

end 

 

Sum_9=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_9(1,i)=Probability_9(m,i)+Sum_9(1,i); 

    end 

end 

%----------------------------------------without noise LVL10 

Probability_10=zeros(NOL,steps); 

C_10=zeros(NOL,steps); 

C_10(10,1)=1; 

[C_10,Density_10]... 

     =occupationnumber(xRK4_1,lRK4_1,C_10(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_10(m,i)=C_10(m,i)*conj(C_10(m,i)); 

    end 

end 

 

Sum_10=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_10(1,i)=Probability_10(m,i)+Sum_10(1,i); 

    end 
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end 

 

%----------------------------------------without noise LVL11 

Probability_11=zeros(NOL,steps); 

C_11=zeros(NOL,steps); 

C_11(11,1)=1; 

[C_11,Density_11]... 

     =occupationnumber(xRK4_1,lRK4_1,C_11(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_11(m,i)=C_11(m,i)*conj(C_11(m,i)); 

    end 

end 

 

Sum_11=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_11(1,i)=Probability_11(m,i)+Sum_11(1,i); 

    end 

end 

 

%----------------------------------------without noise LVL12 

Probability_12=zeros(NOL,steps); 

C_12=zeros(NOL,steps); 

C_12(2,1)=1; 

[C_12,Density_12]... 

     =occupationnumber(xRK4_1,lRK4_1,C_12(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 
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    for m=1:NOL 

        Probability_12(m,i)=C_12(m,i)*conj(C_12(m,i)); 

    end 

end 

 

Sum_12=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_12(1,i)=Probability_12(m,i)+Sum_12(1,i); 

    end 

end 

 

%----------------------------------------without noise LVL13 

Probability_13=zeros(NOL,steps); 

C_13=zeros(NOL,steps); 

C_13(13,1)=1; 

[C_13,Density_13]... 

     =occupationnumber(xRK4_1,lRK4_1,C_13(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_13(m,i)=C_13(m,i)*conj(C_13(m,i)); 

    end 

end 

 

Sum_13=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_13(1,i)=Probability_13(m,i)+Sum_13(1,i); 



241 

 

 

    end 

end 

 

%----------------------------------------without noise LVL14 

Probability_14=zeros(NOL,steps); 

C_14=zeros(NOL,steps); 

C_14(14,1)=1; 

[C_14,Density_14]... 

     =occupationnumber(xRK4_1,lRK4_1,C_14(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_14(m,i)=C_14(m,i)*conj(C_14(m,i)); 

    end 

end 

 

Sum_14=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_14(1,i)=Probability_14(m,i)+Sum_14(1,i); 

    end 

end 

%----------------------------------------without noise LVL15 

Probability_15=zeros(NOL,steps); 

C_15=zeros(NOL,steps); 

C_15(15,1)=1; 

[C_15,Density_15]... 

     =occupationnumber(xRK4_1,lRK4_1,C_15(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 
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    for m=1:NOL 

        Probability_15(m,i)=C_15(m,i)*conj(C_15(m,i)); 

    end 

end 

 

Sum_15=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_15(1,i)=Probability_15(m,i)+Sum_15(1,i); 

    end 

end 

%----------------------------------------without noise LVL16 

Probability_16=zeros(NOL,steps); 

C_16=zeros(NOL,steps); 

C_16(16,1)=1; 

[C_16,Density_16]... 

     =occupationnumber(xRK4_1,lRK4_1,C_16(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_16(m,i)=C_16(m,i)*conj(C_16(m,i)); 

    end 

end 

 

Sum_16=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_16(1,i)=Probability_16(m,i)+Sum_16(1,i); 

    end 
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end 

%----------------------------------------without noise LVL17 

Probability_17=zeros(NOL,steps); 

C_17=zeros(NOL,steps); 

C_17(17,1)=1; 

[C_17,Density_17]... 

     =occupationnumber(xRK4_1,lRK4_1,C_17(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_17(m,i)=C_17(m,i)*conj(C_17(m,i)); 

    end 

end 

 

Sum_17=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_17(1,i)=Probability_17(m,i)+Sum_17(1,i); 

    end 

end 

%----------------------------------------without noise LVL18 

Probability_18=zeros(NOL,steps); 

C_18=zeros(NOL,steps); 

C_18(18,1)=1; 

[C_18,Density_18]... 

     =occupationnumber(xRK4_1,lRK4_1,C_18(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_18(m,i)=C_18(m,i)*conj(C_18(m,i)); 
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    end 

end 

 

Sum_18=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_18(1,i)=Probability_18(m,i)+Sum_18(1,i); 

    end 

end 

%----------------------------------------without noise LVL19 

Probability_19=zeros(NOL,steps); 

C_19=zeros(NOL,steps); 

C_19(19,1)=1; 

[C_19,Density_19]... 

     =occupationnumber(xRK4_1,lRK4_1,C_19(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_19(m,i)=C_19(m,i)*conj(C_19(m,i)); 

    end 

end 

 

Sum_19=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_19(1,i)=Probability_19(m,i)+Sum_19(1,i); 

    end 

end 

%----------------------------------------without noise LVL20 
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Probability_20=zeros(NOL,steps); 

C_20=zeros(NOL,steps); 

C_20(20,1)=1; 

[C_20,Density_20]... 

     =occupationnumber(xRK4_1,lRK4_1,C_20(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_20(m,i)=C_20(m,i)*conj(C_20(m,i)); 

    end 

end 

 

Sum_20=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_20(1,i)=Probability_20(m,i)+Sum_20(1,i); 

    end 

end 

 

%----------------------------------------without noise LVL21 

Probability_21=zeros(NOL,steps); 

C_21=zeros(NOL,steps); 

C_21(21,1)=1; 

[C_21,Density_21]... 

     =occupationnumber(xRK4_1,lRK4_1,C_21(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_21(m,i)=C_21(m,i)*conj(C_21(m,i)); 

    end 
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end 

 

Sum_21=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_21(1,i)=Probability_21(m,i)+Sum_21(1,i); 

    end 

end 

%----------------------------------------without noise LVL22 

Probability_22=zeros(NOL,steps); 

C_22=zeros(NOL,steps); 

C_22(22,1)=1; 

[C_22,Density_22]... 

     =occupationnumber(xRK4_1,lRK4_1,C_22(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_22(m,i)=C_22(m,i)*conj(C_22(m,i)); 

    end 

end 

 

Sum_22=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_22(1,i)=Probability_22(m,i)+Sum_22(1,i); 

    end 

end 

%----------------------------------------without noise LVL23 

Probability_23=zeros(NOL,steps); 
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C_23=zeros(NOL,steps); 

C_23(23,1)=1; 

[C_23,Density_23]... 

     =occupationnumber(xRK4_1,lRK4_1,C_23(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_23(m,i)=C_23(m,i)*conj(C_23(m,i)); 

    end 

end 

 

Sum_23=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_23(1,i)=Probability_23(m,i)+Sum_23(1,i); 

    end 

end 

%----------------------------------------without noise LVL24 

Probability_24=zeros(NOL,steps); 

C_24=zeros(NOL,steps); 

C_24(24,1)=1; 

[C_24,Density_24]... 

     =occupationnumber(xRK4_1,lRK4_1,C_24(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_24(m,i)=C_24(m,i)*conj(C_24(m,i)); 

    end 

end 
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Sum_24=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_24(1,i)=Probability_24(m,i)+Sum_24(1,i); 

    end 

end 

%----------------------------------------without noise LVL25 

Probability_25=zeros(NOL,steps); 

C_25=zeros(NOL,steps); 

C_25(25,1)=1; 

[C_25,Density_25]... 

     =occupationnumber(xRK4_1,lRK4_1,C_25(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_25(m,i)=C_25(m,i)*conj(C_25(m,i)); 

    end 

end 

 

Sum_25=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_25(1,i)=Probability_25(m,i)+Sum_25(1,i); 

    end 

end 

%----------------------------------------without noise LVL26 

Probability_26=zeros(NOL,steps); 

C_26=zeros(NOL,steps); 

C_26(26,1)=1; 
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[C_26,Density_26]... 

     =occupationnumber(xRK4_1,lRK4_1,C_26(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_26(m,i)=C_26(m,i)*conj(C_26(m,i)); 

    end 

end 

 

Sum_26=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_26(1,i)=Probability_26(m,i)+Sum_26(1,i); 

    end 

end 

%----------------------------------------without noise LVL27 

Probability_27=zeros(NOL,steps); 

C_27=zeros(NOL,steps); 

C_27(27,1)=1; 

[C_27,Density_27]... 

     =occupationnumber(xRK4_1,lRK4_1,C_27(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_27(m,i)=C_27(m,i)*conj(C_27(m,i)); 

    end 

end 

 

Sum_27=zeros(1,i); 

for i=1:steps 
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    for m=1:NOL 

      Sum_27(1,i)=Probability_27(m,i)+Sum_27(1,i); 

    end 

end 

%----------------------------------------without noise LVL28 

Probability_28=zeros(NOL,steps); 

C_28=zeros(NOL,steps); 

C_28(28,1)=1; 

[C_28,Density_28]... 

     =occupationnumber(xRK4_1,lRK4_1,C_28(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_28(m,i)=C_28(m,i)*conj(C_28(m,i)); 

    end 

end 

 

Sum_28=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_28(1,i)=Probability_28(m,i)+Sum_28(1,i); 

    end 

end 

%----------------------------------------without noise LVL29 

Probability_29=zeros(NOL,steps); 

C_29=zeros(NOL,steps); 

C_29(29,1)=1; 

[C_29,Density_29]... 

     =occupationnumber(xRK4_1,lRK4_1,C_29(:,1),Lambda,NOL,steps,totaltime); 
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for i=1:steps 

    for m=1:NOL 

        Probability_29(m,i)=C_29(m,i)*conj(C_29(m,i)); 

    end 

end 

 

Sum_29=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_29(1,i)=Probability_29(m,i)+Sum_29(1,i); 

    end 

end 

%----------------------------------------without noise LVL30 

Probability_30=zeros(NOL,steps); 

C_30=zeros(NOL,steps); 

C_30(30,1)=1; 

[C_30,Density_30]... 

     =occupationnumber(xRK4_1,lRK4_1,C_30(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_30(m,i)=C_30(m,i)*conj(C_30(m,i)); 

    end 

end 

 

Sum_30=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_30(1,i)=Probability_30(m,i)+Sum_30(1,i); 
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    end 

end 

%----------------------------------------without noise LVL31 

Probability_31=zeros(NOL,steps); 

C_31=zeros(NOL,steps); 

C_31(31,1)=1; 

[C_31,Density_31]... 

     =occupationnumber(xRK4_1,lRK4_1,C_31(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 

        Probability_31(m,i)=C_31(m,i)*conj(C_31(m,i)); 

    end 

end 

 

Sum_31=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_31(1,i)=Probability_31(m,i)+Sum_31(1,i); 

    end 

end 

%----------------------------------------without noise LVL32 

Probability_32=zeros(NOL,steps); 

C_32=zeros(NOL,steps); 

C_32(32,1)=1; 

[C_32,Density_32]... 

     =occupationnumber(xRK4_1,lRK4_1,C_32(:,1),Lambda,NOL,steps,totaltime); 

for i=1:steps 

    for m=1:NOL 
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        Probability_32(m,i)=C_32(m,i)*conj(C_32(m,i)); 

    end 

end 

 

Sum_32=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      Sum_32(1,i)=Probability_32(m,i)+Sum_32(1,i); 

    end 

end 

 

 

%--------------------compare probability with and without noise 

DiffWithNoise=0; 

for i=1:steps 

    for m=1:NOL 

        DiffWithNoise=DiffWithNoise+abs(Probability(m,i)-Probability_1(m,i)); 

    end 

end 

 

 

%figure 

%----------------------------------------------------------------- 

% figure(1) 

% subplot(1,3,1) 

% plot(t,X) 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

% %     '20','21','22','23','24','25','26','27','28','29','30','31','32') 
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% axis([0 1 -4 10]) 

% title('Direct levels without noise') 

%  

% subplot(1,3,2) 

% plot(t,xRK4(:,:)) 

%  

% axis([0 1 -4 10]) 

% title('levels with noise') 

%  

% subplot(1,3,3) 

% plot(t,ErrorXRK4(:,:)) 

% % axis([0 0.1 0 1]) 

% xlim([0 0.95]) 

% title('Error with noise') 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

% %     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

 

%------------------------------------------------------------------------------- 

 

% figure(2) 

% subplot(1,3,1) 

% plot(t,V) 

% xlabel('t') 

% ylabel('velocity') 

% legend('V1','V2','V3','V4','V5','V6','V7','V8') 

% title({'Velocity of the evolution';'of energy levels(direct)'}) 

%  

% subplot(1,3,2) 
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% plot(t,vRK4) 

% xlabel('t') 

% ylabel('velocity') 

% legend('v1','v2','v3','v4','v5','v6','v7','v8') 

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'}) 

% % axis([0 1 -1.5 1.5]) 

%  

% subplot(1,3,3) 

% plot(t,ErrorV(4,:)) 

% legend('EV1','EV2','EV3','EV4','EV5','EV6','EV7','EV8') 

% title('Error of Velocity') 

% % axis([0 1 0 0.3]) 

 

% Sum1=0; 

% Sum2=0; 

% Sum3=0; 

% Sum4=0; 

% Sum5=0; 

% Sum6=0; 

% for m=1:NOL 

%    Sum1=Sum1+C(m,1000)*conj(C(m,1000)); 

%    Sum2=Sum2+C(m,2000)*conj(C(m,2000)); 

%     Sum3=Sum3+C(m,3000)*conj(C(m,3000)); 

%      Sum4=Sum4+C(m,4000)*conj(C(m,4000)); 

%       Sum5=Sum5+C(m,5000)*conj(C(m,5000)); 

%        Sum6=Sum6+C(m,6000)*conj(C(m,6000)); 

% end 

%--------------------------------------------------------- 
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figure(2) 

subplot(1,3,1) 

plot(t,X) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

    '20','21','22','23','24','25','26','27','28','29','30','31','32') 

axis([0 1 -4 10]) 

title('Direct levels without noise') 

 

subplot(1,3,2) 

plot(t,xRK4_1) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

    '20','21','22','23','24','25','26','27','28','29','30','31','32') 

axis([0 1 -4 10]) 

title('Levels without noise') 

subplot(1,3,3) 

plot(t,ErrorXRK4_1(:,:)) 

% axis([0 0.1 0 1]) 

xlim([0 0.99]) 

 

title('error without noise') 

 

%----------------------------------------------------- 

% figure(3) 

%  

% subplot(1,4,1) 

% plot(t,Probability(:,:)) 

% axis([0 1 0 1]) 

% legend('1','2','3','4','5','6','7','8') 
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% title('Probabilty with noise') 

% % figure(4) 

%  

% subplot(1,4,2) 

% plot(t,Sum); 

% axis([0 1 0 1]) 

% title('total probability with noise') 

%  

% subplot(1,4,3) 

% plot(t,Probability_1(:,:)) 

% axis([0 1 0 1]) 

% legend('1','2','3','4','5','6','7','8') 

% title('Probabilty without noise') 

%  

% subplot(1,4,4) 

% plot(t,Sum_1) 

% axis([0 1 0 1]) 

% title('total probability without noise') 

% %------------------------------------------------------------- 

figure(3) 

subplot(1,8,1) 

plot(t,Probability_1(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 1') 

 

subplot(1,8,2) 
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plot(t,Probability_2(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 2') 

 

subplot(1,8,3) 

plot(t,Probability_3(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 3') 

 

subplot(1,8,4) 

plot(t,Probability_4(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 4') 

 

subplot(1,8,5) 

plot(t,Probability_5(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 5') 

 

subplot(1,8,6) 
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plot(t,Probability_6(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 6') 

 

subplot(1,8,7) 

plot(t,Probability_7(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 7') 

 

subplot(1,8,8) 

plot(t,Probability_8(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 8') 

%------------------------------------------------------------- 

figure(7) 

subplot(1,8,1) 

plot(t,Probability_9(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 9') 
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subplot(1,8,2) 

plot(t,Probability_10(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 10') 

 

subplot(1,8,3) 

plot(t,Probability_11(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 11') 

 

subplot(1,8,4) 

plot(t,Probability_12(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 12') 

 

subplot(1,8,5) 

plot(t,Probability_13(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 13') 
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subplot(1,8,6) 

plot(t,Probability_14(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 14') 

 

subplot(1,8,7) 

plot(t,Probability_15(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 15') 

 

subplot(1,8,8) 

plot(t,Probability_16(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 16') 

%---------------------------------------------------------- 

figure(8) 

subplot(1,8,1) 

plot(t,Probability_17(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 17') 
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subplot(1,8,2) 

plot(t,Probability_18(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 18') 

 

subplot(1,8,3) 

plot(t,Probability_19(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 19') 

 

subplot(1,8,4) 

plot(t,Probability_20(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 20') 

 

subplot(1,8,5) 

plot(t,Probability_21(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 21') 
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subplot(1,8,6) 

plot(t,Probability_22(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 22') 

 

subplot(1,8,7) 

plot(t,Probability_23(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 23') 

 

subplot(1,8,8) 

plot(t,Probability_24(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 24') 

%------------------------------------------------------- 

figure(9) 

subplot(1,8,1) 

plot(t,Probability_25(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 



264 

 

 

title('Start in LVL 25') 

 

subplot(1,8,2) 

plot(t,Probability_26(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 26') 

 

subplot(1,8,3) 

plot(t,Probability_27(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 27') 

 

subplot(1,8,4) 

plot(t,Probability_28(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 28') 

 

subplot(1,8,5) 

plot(t,Probability_29(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 
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title('Start in LVL 29') 

 

subplot(1,8,6) 

plot(t,Probability_30(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 30') 

 

subplot(1,8,7) 

plot(t,Probability_31(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 31') 

 

subplot(1,8,8) 

plot(t,Probability_32(:,:)) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

'20','21','22','23','24','25','26','27','28','29','30','31','32') 

% xlim([0 1]) 

title('Start in LVL 32') 

 

% figure(4) 

% subplot(1,2,1) 

% plot(t,X) 

%  

% subplot(1,2,2) 
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% plot(t,Xnoise) 

 

Toc 

Power Spectral density of Expectation energy value of 2 qubits 

system 

% the only different here is pxx=pwelch(AverageX) instead of pxx=pwelch(Dispersion) 

% note that the data set are saved in different files 

  

 

% clear 

 

% load (strcat('Direct4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

 

%% 

% tic 

for j=1.25:0.01:1.25 

     for p=17.5:0.5:17.5 

        

        load(['D:\Dataset\Loopdata1\'... 

                ,'TwoQubits_',num2str(j),'cos(',num2str(p),'t).mat']); 

 

% toc 

%% 

 

% tic 

% randomX=0; 
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% dt=0.001; 

% dt=0.00003;44 

% constant=3/1; 

% Amplitude=0.5; 

 

%% 

% plan 1, fixed periodnumber but different steps number depending on 

% frequency. Need to calculate Noise everytime. 

 

% periodnumber=100; 

% periodlength=2*pi/constant; %period length= 2*pi/constant 

% stepsperperiod=round(periodlength/dt); 

% steps=periodnumber*stepsperperiod; 

%% 

 

% plan 2, fixed steps number, but different period numbers depending on 

% frequency. Can load Noise , save time. 

% steps=100000; 

% periodlength=2*pi/constant; 

% periodnumber=round(steps*dt/periodlength); 

% stepsperperiod=round(periodlength/dt); 

%% 

% periodnumber=PERIODNUMBER; 

% periodlength=PERIODLENGTH; 

% steps=STEPS; 

% stepsperperiod=STEPSPERPERIOD; 

%  

% constant=CONSTANT; 
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% Amplitude=AMPLITUDE; 

% randomX=RANDOMX; 

% dt=DT; 

 

%% 

totaltime=dt*steps; 

% t=linspace(0,totaltime,steps); 

% t=cos(tt); 

% Lambda=Amplitude*cos(constant*t); 

 

numberofqubits=2; 

NOL=2^numberofqubits; 

% toc 

%% 

% tic 

C1=zeros(NOL,steps); 

C1(3,1)=1; 

 

% C1(3,1)=sqrt(0.5); 

% C1(2,1)=sqrt(0.5); 

 

% for m=1:NOL 

%     C(m,1)=sqrt(1/NOL); 

% end 

Probability1=zeros(NOL,steps); 

 

% [C1,Density1]=occupationnumber(xRK4,lRK4,C1(:,1),Lambda,NOL,steps,totaltime); 

[C1,Density1]=OccupationRenormalize(X,L,C1(:,1),Lambda,NOL,periodnumber,stepsperper
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iod,dt,randomX,steps); 

% 

[C1,Density1]=OccupationRenormalize(XTEST,LTEST,C1(:,1),Lambda,NOL,steps,dt,rando

mX);%input steps instead of period*stepsperperiod 

% 

[C1,Density1]=OccupationNumberNoRe(XTEST,LTEST,C1(:,1),Lambda,NOL,periodnumbe

r,stepsperperiod,dt); 

%% 

for i=1:steps 

    for m=1:NOL 

        Probability1(m,i)=C1(m,i)*conj(C1(m,i)); 

    end 

end 

 

% Dt = diff(t); 

% P_diff = diff(Probability1(1,:), 1, 2) ./ Dt; 

 

Sum1=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      if Probability1(m,i)<Sum1(1,i) 

            Sum1(1,i)=Probability1(m,i)+Sum1(1,i); 

      else 

            Sum1(1,i)=Sum1(1,i)+Probability1(m,i); 

      end 

    end 

end 
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% toc 

%% 

AverageX=zeros(1,steps); 

% AverageX is expectation energy <E> 

for i=1:steps 

    for m=1:NOL 

        AverageX(1,i)=Probability1(m,i)*X(m,i)+AverageX(1,i); 

    end 

end 

 

Dispersion=zeros(1,steps); 

for i=1:steps 

    for m=1:NOL 

        Dispersion(1,i)=Probability1(m,i)*((X(m,i)-AverageX(1,i))^2)... 

                        +Dispersion(1,i); 

    end 

end 

%% 

% pxx=pwelch(Dispersion); 

% pxx=pwelch(AverageX); 

window=steps/4; %length of window, the longer the lower frequency it can revel 

% window=steps/4 or window=steps*dt/4   

fs=1000; 

% fs=2*dt*steps;  % the length of x-axis is half of fs 

noverlap=50; %noverlap range: 35% to 50%. The higher the more accurate.  

NFFT=steps; % sample points, maximum cannot exceed the total points each window 

              % the larger the more details it reveals. 

[pxx,f]=pwelch(AverageX,window,noverlap,NFFT,fs); 
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%% 

 

 

% save(['D:\Dataset\data(pxx=AverageX)\'... 

%                 ,'Data2Qubits_(pxx=AverageX)',num2str(j),'cos(',num2str(p),'t).mat']... 

%                            ,'C1','Density1','Sum1','AverageX','Dispersion','pxx','t'... 

%                             ,'constant','Amplitude','randomX','dt'); 

 

%% 

%... export graphs together in 1 figure 

% set(0,'DefaultFigureVisible', 'on'); 

% figure(7) 

%  

% subplot(1,4,1) 

% plot(t,AverageX) 

% title("<E>") 

% xlabel('time') 

% % ylabel('<E>') 

% % dim=[.27 .6 .3 .3]; 

% % str1="Omega="; 

% % str2=string(constant); 

% % str=strcat(str1,str2); 

% % annotation('textbox',dim,'String',str,'FitBoxToText','on'); 

% % xlim([0 99]) 

% % figure(8) 

% % subplot(1,2,2) 

% subplot(1,4,2) 

% plot(t,Dispersion) 
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% title("Dispersion") 

% xlabel('time') 

% % ylabel('Dispersion of <E>') 

%  

% % figure(9) 

% subplot(1,4,3) 

% % plot(pxx); 

% % axis([0 1020 0 10]) 

% % title("PSD for <E>") 

% % xlabel('Frequency') 

% % ylabel('Intensity') 

% plot(f,pxx); 

% % axis([0 10 0 100]) 

% xlim([0 30]) 

% title("PSD for <E>") 

% xlabel('Frequency') 

% ylabel('Intensity') 

% set(gca,'yscale','log') 

%  

% subplot(1,4,4) 

% plot(t(1:steps-1),P_diff) 

% legend; 

% % exportgraphics(f,['D:\Dataset\plots\'... 

% %     'Omega=',num2str(j),'cos(',num2str(p),'t).jpg']); 

% % saveas(gcf,['D:\Dataset\OriginalPlots（PSD of E）\Compare\'... 

% %     'Lambda=',num2str(j),'cos(',num2str(p),'t).fig']) 

% exportgraphics(gcf,['D:\Dataset\Plots（PSD of E）\Compare\'... 

%     '',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']); 
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% close(gcf); 

%% 

% ... export each graph separately 

 

% figure(1) 

% plot(t,AverageX) 

% title("<E>") 

% xlabel('time') 

% exportgraphics(gcf,['D:\Dataset\Plots（PSD of E）\Compare\'... 

%     'AverageX_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']); 

% close(gcf) 

 

% figure(2) 

% plot(t,Dispersion) 

% title("Dispersion") 

% xlabel('time') 

% exportgraphics(gcf,['D:\Dataset\Plots（PSD of E）\Compare\'... 

%     'Dispersion_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']); 

% close(gcf) 

 

figure(3) 

plot(f,pxx); 

xlim([0 30]) 

title("PSD for <E>") 

xlabel('Frequency') 

ylabel('Intensity') 

set(gca,'yscale','log') 
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% hold on  

% y = 10^-2;  

% x = xlim;  

% line(x, [y y], 'Color', 'r', 'LineStyle', '--');  

% hold off  

 

%repeat test 

exportgraphics(gcf,['D:\Dataset\Plots（PSD of E）\RepeatTest\PSD\'... 

    

'Number=',num2str(NUMBER),'PSD_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num

2str(p),'t).jpg']); 

 

%original save 

% exportgraphics(gcf,['D:\Dataset\Plots（PSD of E）\Mixture\'... 

%     'PSD_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']); 

close(gcf) 

 

% figure(4) 

% plot(t(1:steps-1),P_diff) 

% exportgraphics(gcf,['D:\Dataset\Plots（PSD of E）\Compare\'... 

%     'P_diff_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']); 

% close(gcf) 

 

figure(5) 

plot(t,Probability1(:,:)); 

legend('LV 1','LV 2','LV 3','LV 4'); 
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%repeat test 

exportgraphics(gcf,['D:\Dataset\Plots（PSD of E）\RepeatTest\Prob\'... 

    

'Number=',num2str(NUMBER),'P_ground_state_',num2str(steps),'steps,Lambda=',num2str(j)

,'cos(',num2str(p),'t).jpg']); 

 

%original save 

% exportgraphics(gcf,['D:\Dataset\Plots（PSD of E）\Mixture\'... 

%     

'P_ground_state_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']); 

close(gcf) 

% ... 

 

%% 

% ... print as PDF file 

 

% figure(1) 

% plot(t,AverageX) 

% title("<E>") 

% xlabel('time') 

% print(gcf,'-dpdf',['D:\Dataset\Plots（PSD of E）\Compare\'... 

%     'AverageX_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).pdf']); 

%  

% figure(2) 

% plot(t,Dispersion) 

% title("Dispersion") 

% xlabel('time') 

% print(gcf,'-dpdf',['D:\Dataset\Plots（PSD of E）\Compare\'... 
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%     'Dispersion_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).pdf']); 

%  

% figure(3) 

% plot(f,pxx); 

% xlim([0 30]) 

% title("PSD for <E>") 

% xlabel('Frequency') 

% ylabel('Intensity') 

% set(gca,'yscale','log') 

% print(gcf,'-dpdf',['D:\Dataset\Plots（PSD of E）\Compare\'... 

%     'PSD_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).pdf']); 

%  

% figure(4) 

% plot(t(1:steps-1),P_diff) 

% print(gcf,'-dpdf',['D:\Dataset\Plots（PSD of E）\Compare\'... 

%     'P_diff_',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).pdf']); 

 

% ... 

 

%% 

% IntegralA=0; 

% for Number=1:150001 

%     IntegralA=pxx(Number)*f(Number)+IntegralA; 

% end 

 

 

    end 

end 
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beep 

 

Maximum probability for the 4-qubit systems to fall in the ground 

state during the evolution 

clear 

%Four Spin New 

%Try get a multi qubits code 

tic 

 

for j=50:50 %number of the levels, loop for A 

    tic 

    for p=50:50 %loop for B 

        steps=4000; 

        totaltime=8*pi; 

        dt=totaltime/steps; 

         

        t=linspace(0,totaltime,steps);  

 

%         Matrix_of_Lambda=zeros(1,steps); 

        A=0.01*j; 

        B=0.01*p; 

         

%         Matrix_of_A(1,j)=A; 

%         Matrix_of_B(1,p)=B; 

%         Lambda=A*cos(B*t); 
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Lambda=-0.1*t; 

         

%% 

% 1 .initial set up 

 

% t=cos(tt); 

 

numberofqubits=4; 

NOL=2^numberofqubits; 

 

% 2 .Pauli matrix and Identity matrix 

Sigma_x=[0 1; 1 0]; 

Sigma_z=[1 0; 0 -1]; 

I=[1 0;0 1]; 

 

%-------------------------------------- 

%Particular set 

Delta1=0.4; 

Delta2=0.1; 

Delta3=0.2; 

Delta4=0.3; 

h1=0.1; 

h2=0.2; 

h3=0.3; 

h4=0.4; 

J_12=0.7; 

J_13=0.5; 

J_14=0.3; 



279 

 

 

J_23=0.6; 

J_24=0.5; 

J_34=0.8; 

%---------------------------------- 

%random set 

% Delta1=rand(1); 

% Delta2=rand(1); 

% Delta3=rand(1); 

% Delta4=rand(1); 

% h1=rand(1); 

% h2=rand(1); 

% h3=rand(1); 

% h4=rand(1); 

% J_12=rand(1); 

% J_13=rand(1); 

% J_14=rand(1); 

% J_23=rand(1); 

% J_24=rand(1); 

% J_34=rand(1); 

 

 

% 4 . Define H0, Hf and ZHb 

% ZHb should be independent of Lambda 

H0=Delta1*kron(kron(kron(Sigma_x,I),I),I)+Delta2*kron(kron(kron(I,Sigma_x),I),I)... 

    +Delta3*kron(kron(kron(I,I),Sigma_x),I)+kron(kron(kron(I,I),I),Sigma_x); 

Hf=h1*kron(kron(kron(Sigma_z,I),I),I)+h2*kron(kron(kron(I,Sigma_z),I),I)... 

    +h3*kron(kron(kron(I,I),Sigma_z),I)... 

    +h4*kron(kron(kron(I,I),I),Sigma_z)... 
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+J_12*kron(kron(kron(Sigma_z,Sigma_z),I),I)+J_13*kron(kron(kron(Sigma_z,I),Sigma_z),I

)... 

    +J_14*kron(kron(kron(Sigma_z,I),I),Sigma_z) 

+J_23*kron(kron(kron(I,Sigma_z),Sigma_z),I)... 

    +J_24*kron(kron(kron(I,Sigma_z),I),Sigma_z)... 

    +J_34*kron(kron(kron(I,I),Sigma_z),Sigma_z); 

ZHb=Hf-H0; 

 

 

 

% 5 . Preallocation for variables 

Hlambda=zeros(NOL,NOL,steps); 

Eigenvectors=zeros(NOL,NOL,steps); 

HD=zeros(NOL,NOL,steps); 

 

X=zeros(NOL,steps); 

V=zeros(NOL,steps); 

x=zeros(NOL,steps); 

v=zeros(NOL,steps); 

l=zeros(NOL,NOL,steps); 

LSquare=zeros(NOL,NOL,steps); 

 

%% 

% 6 . Define H(lambda)=H0+lambda*ZHb. 

 

        tic 
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        for i=1:steps 

            Hlambda(:,:,i)=H0+Lambda(i)*ZHb; 

        end 

 

% 7 . Get eigenvectors and eigenvalue matrix 

        for i=1:steps 

            [Eigenvectors(:,:,i),HD(:,:,i)]=eig(Hlambda(:,:,i)); 

        end 

 

% 8 . Get X(m,i) 

        for i=1:steps 

            for m=1:NOL 

                X(m,i)=HD(m,m,i); 

            end 

        end 

 

% 9 . Get V(m,i) and L(m,n,i) 

        for i=1:steps 

            for m=1:NOL 

                V(m,i)=transpose(Eigenvectors(:,m,i))*ZHb*Eigenvectors(:,m,i); 

            end 

        end 

        L=zeros(NOL,NOL,steps); 

        for i=1:steps 

            for m=1:NOL 

                for n=1:NOL 

                    if n~=m 
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                        L(m,n,i)=(X(m,i)-X(n,i))...  

                                *transpose(Eigenvectors(:,m,i))... 

                                *ZHb*Eigenvectors(:,n,i); 

                    end 

                end 

            end 

        end 

 

 

%how many avoided crossings occured? 

 

        DirectDV=zeros(NOL,steps); 

        for i=1:steps-2 

            for m=1:NOL 

                DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt); 

            end 

        end 

         

        DirectDL=zeros(NOL,NOL,steps); 

        for i=1:steps-2 

            for m=1:NOL 

                for n=1:NOL 

                    DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,i))/(2*dt); 

                end 

            end 

        end 

%         q=vpa(0.1*j,3); 

%         w=vpa(0.1*p,3); 
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%% 

% save(['E:\matlab data\Direct4qubit\faster with fewer steps\'... 

%                 ,'Fast4qubit1pi_0.01_',num2str(0.01*j),'cos(',num2str(0.01*p),'t).mat']

... 

%                             ,'X','V','NOL','steps','totaltime','Lambda'... 

%                             ,'L','DirectDV','DirectDL','t','j','p','A','B'); 

%% 

 

 

 

%         filename=['C:\Users\phyx\OneDrive - Loughborough 

University\MATLAB\Data\Routetest\'] 

%         save(['C:\Users\phyx\OneDrive - Loughborough 

University\MATLAB\Data\Routetest\'... 

%               ,currentFile],'X','V','NOL','steps','totaltime','Lambda'... 

%                             ,'L','DirectDV','DirectDL','t','j','p'); 

        toc 

%       

save('directdatafourqubits.mat','X','V','NOL','steps','totaltime','Lambda','L','DirectDV','Direct

DL','t') 

 

    end 

    toc 

end 

%% 

figure(1) 

plot(t,X); 
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% save directL1.dat AAA -ascii; 

% save directL2.dat BBB -ascii; 

% save directL3.dat CCC -ascii; 

toc 

 

 

clear 

for q=1:10 

    for w=1:10 

         

 

%% 

tic 

% load directdatafourqubits.mat 

 

load (strcat('Direct4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

[xRK4,vRK4,lRK4,time]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps,DirectDV,DirectDL,totalti

me,Lambda,j,p); 

 

toc 

%% 

tic 

ErrorXRK4=zeros(NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,i)); 

    end 

end 
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toc 

 

%% 

tic 

 

% save('PYsimulation.mat','xRK4','vRK4','lRK4','ErrorXRK4'); 

save(['E:\matlab data\PY4qubit\'... 

    ,'PY4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat']... 

    ,'xRK4','vRK4','lRK4','ErrorXRK4'); 

 

% save(['C:\Users\phyx\OneDrive - Loughborough University\MATLAB\Data\Routetest\'... 

%      ,'PY1.000000e-01sin(1.000000e-01t)_directfourqubits.mat']... 

%             ,'xRK4','vRK4','lRK4','ErrorXRK4'); 

toc 

%% 

    end 

end 

 

clear 

for r=6:6 

for q=9:9 

    for w=8:8 

%% 

tic 

% load directdatafourqubits.mat; 

% load PYsimulation.mat; 

load (strcat('Direct4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

load (strcat('PY4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 
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toc 

%% 

tic 

C=zeros(NOL,steps); 

%initial distribution 

C(r,1)=1; 

 

Probability=zeros(NOL,steps); 

 

[C,Density]=occupationnumber(xRK4,lRK4,C(:,1),Lambda,NOL,steps,totaltime); 

 

for i=1:steps 

    for m=1:NOL 

        Probability(m,i)=C(m,i)*conj(C(m,i)); 

    end 

end 

toc 

%% 

tic 

Sum=zeros(1,steps); 

for i=1:steps 

    for m=1:NOL 

        if Probability(m,i)<Sum(1,i) 

            Sum(1,i)=Probability(m,i)+Sum(1,i); 

        else 

            Sum(1,i)=Sum(1,i)+Probability(m,i); 

        end 

    end 
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end 

toc 

%% 

tic 

save(['E:\matlab data\Occupation\practice2b\'... 

    ,'Occupation4Start_from_LVL_',num2str(r),'_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).

mat']... 

                        ,'C','Density','Probability','Sum'); 

toc 

 

    end 

end 

end 

 

clear 

%practice2d should be practice2c 

%% 

for r=6:6 

for q=9:9 

    for w=8:8 

tic 

% load directdatafourqubits.mat; 

% load PYsimulation.mat; 

% load C&Probability_Start_From_LVL_1.mat; 

% load 1.000000e-01sin(1.000000e-01t)_directfourqubits.mat 

% load PY1.000000e-01sin(1.000000e-01t)_directfourqubits.mat 

% load OC1.000000e-01sin(1.000000e-01t)_directfourqubits.mat 
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load (strcat('Direct4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

load (strcat('PY4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

load 

(strcat('Occupation4Start_from_LVL_',num2str(r),'_',num2str(0.1*q),'cos(',num2str(0.1*w),'t)

.mat')); 

 

 

toc 

%% 

tic 

%figure 

figure(1) 

subplot(1,3,1) 

plot(t,X) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% axis([0 1 -4 10]) 

 

subplot(1,3,2) 

plot(t,xRK4(:,:)) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% axis([0 1 -4 10]) 

 

subplot(1,3,3) 

plot(t,ErrorXRK4(:,:)) 

% axis([0 0.1 0 1]) 

% xlim([0 0.95]) 
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% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

f=gcf; 

exportgraphics(f,['E:\matlab data\plot\practice2d\' 

'fig1_from_lvl_',num2str(r),'_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).jpg']) 

% figure(2) 

% subplot(1,3,1) 

% plot(t,V) 

% xlabel('t') 

% ylabel('velocity') 

% legend('V1','V2','V3','V4','V5','V6','V7','V8') 

% title({'Velocity of the evolution';'of energy levels(direct)'}) 

%  

% subplot(1,3,2) 

% plot(t,vRK4) 

% xlabel('t') 

% ylabel('velocity') 

% legend('v1','v2','v3','v4','v5','v6','v7','v8') 

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'}) 

% % axis([0 1 -1.5 1.5]) 

%  

% subplot(1,3,3) 

% plot(t,ErrorV(4,:)) 

% legend('EV1','EV2','EV3','EV4','EV5','EV6','EV7','EV8') 

% title('Error of Velocity') 

% % axis([0 1 0 0.3]) 

 

% Sum1=0; 
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% Sum2=0; 

% Sum3=0; 

% Sum4=0; 

% Sum5=0; 

% Sum6=0; 

% for m=1:NOL 

%    Sum1=Sum1+C(m,1000)*conj(C(m,1000)); 

%    Sum2=Sum2+C(m,2000)*conj(C(m,2000)); 

%     Sum3=Sum3+C(m,3000)*conj(C(m,3000)); 

%      Sum4=Sum4+C(m,4000)*conj(C(m,4000)); 

%       Sum5=Sum5+C(m,5000)*conj(C(m,5000)); 

%        Sum6=Sum6+C(m,6000)*conj(C(m,6000)); 

% end 

 

figure(5) 

plot(t,Probability(:,:)) 

% axis([0 1 0 1]) 

legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

legend('Location','northeastoutside'); 

f=gcf; 

exportgraphics(f,['E:\matlab data\plot\practice2d\' 

'fig2_from_lvl_',num2str(r),'_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).jpg']) 

figure(3) 

plot(t,Sum); 

% axis([0 1 0 1]) 

f=gcf; 

exportgraphics(f,['E:\matlab data\plot\practice2d\' 

'fig3_from_lvl_',num2str(r),'_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).jpg']) 
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toc 

 

 

     

%     filename=['C:\Users\phyx\OneDrive - Loughborough 

University\MATLAB\Data\Routetest\practice2d\...' ... 

%         'Fig1_4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).bmp']; 

%     saveas() 

% C:\Users\phyx\OneDrive - Loughborough University\MATLAB\Data\Routetest\practice2d 

    end 

end 

end 

 

 

clear 

%%loading 

% load (strcat('Direct4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

% load (strcat('PY4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

% load (strcat('Occupation4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

%% 

Array_A=zeros(1,9); 

Array_B=zeros(1,9); 

Matrix_Z=zeros(9,9); 

% for r=1:16 

for r=1:4 

for q=1:9 

    for w=1:9 
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        load (strcat('Direct4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat')); 

        Array_A(1,q)=j; 

        Array_B(1,w)=p; 

        load 

(strcat('Occupation4Start_from_LVL_',num2str(r),'_',num2str(0.1*q),'cos(',num2str(0.1*w),'t)

.mat')); 

        Z=abs(Probability(r,1)-Probability(r,steps-3)); 

        Matrix_Z(q,w)=Z; 

 

        save(['E:\matlab data\practice2e\'... 

                ,'Array_A_StartfromLVL_',num2str(r),'.mat']... 

                            ,'Array_A'); 

        save(['E:\matlab data\practice2e\'... 

                ,'Array_B_StartfromLVL_',num2str(r),'.mat']... 

                            ,'Array_B'); 

        save(['E:\matlab data\practice2e\'... 

                ,'Matrix_Z_StartfromLVL_',num2str(r),'.mat']... 

                            ,'Matrix_Z'); 

    end 

end 

end 

 

 

% load Array_A.mat; 

% load Array_B.mat; 

% load Matrix_Z.mat; 
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for r=1:4 

load (strcat('Array_A_StartfromLVL_',num2str(r),'.mat')); 

load (strcat('Array_B_StartfromLVL_',num2str(r),'.mat')); 

load (strcat('Matrix_Z_StartfromLVL_',num2str(r),'.mat')); 

 

Array_A1=zeros(1,9); 

Array_B1=zeros(1,9); 

Matrix_Z1=zeros(9,9); 

for i=1:9 

    for j=1:9 

     Array_A1(1,j)=0.1*Array_A(1,j); 

     Array_B1(1,j)=0.1*Array_B(1,j); 

     Matrix_Z1(i,j)=Matrix_Z(i,j);      

    end 

end 

 

 

 

    if r<3 

       figure(9) 

       subplot(1,2,r) 

       surf(Array_A1,Array_B1,Matrix_Z1); 

       view(0,90); 

       shading interp; 

       colorbar; 

       colormap('hsv'); 

       xlabel('Amplitude'); 

       ylabel('Frequency'); 
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       title(strcat('The extent of escape from the initial level',num2str(r),' at time equals 

8*pi')); 

    else 

       figure(10) 

       subplot(1,2,r-2) 

       surf(Array_A1,Array_B1,Matrix_Z1); 

       view(0,90); 

       shading interp; 

       colorbar; 

       colormap('hsv'); 

       xlabel('Amplitude'); 

       ylabel('Frequency'); 

       title(strcat('The extent of escape from the initial level',num2str(r),' at time equals 

8*pi')); 

    end 

 

% axis equal; 

 

% f=gcf; 

% exportgraphics(f,... 

%     ['E:\matlab data\plot\practice2f\' 'Escape_fig2_from_lvl_'... 

%     ,num2str(r),'_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).jpg']) 

 

end 

% subplot(1,2,2) 

% surf(Array_A,Array_B,Matrix_Z); 

% view(0,90); 

% shading interp; 
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% colorbar; 

% xlabel('A'); 

% ylabel('B'); 

Four qubits simulation through PY method 

clear 

%Four Spin New 

%Try get a multi qubits code 

tic 

% 1 .initial set up 

%if set labmda=t, make sure dt*steps=1. 

steps=40000; 

% totaltime=1; 

totaltime=16*pi; 

dt=totaltime/steps; 

 

t=linspace(0,totaltime,steps); 

% t=cos(tt); 

Lambda=0.9*cos(0.5*t); 

numberofqubits=4; 

NOL=2^numberofqubits; 

 

% 2 .Pauli matrix and Identity matrix 

Sigma_x=[0 1; 1 0]; 

Sigma_z=[1 0; 0 -1]; 

I=[1 0;0 1]; 

 

% 3 . Parameters, could be set to random numbers or function of time. 
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% Delta=zeros(1,numberofqubits); 

% h=zeros(1,numberofqubits); 

% J=zeros(numberofqubits,numberofqubits); 

% for i=1:numberofqubits 

%     Delta(i)=rand(1); 

%     h(i)=rand(1); 

%     for j=1:numberofqubits 

%         if j>i 

%             J(i,j)=rand(1); 

%         end 

%             

%     end 

% end 

%-------------------------------------- 

%Particular set 

Delta1=0.4; 

Delta2=0.1; 

Delta3=0.2; 

Delta4=0.3; 

h1=0.1; 

h2=0.2; 

h3=0.3; 

h4=0.4; 

J_12=0.7; 

J_13=0.5; 

J_14=0.3; 

J_23=0.6; 

J_24=0.5; 
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J_34=0.8; 

%---------------------------------- 

%random set 

% Delta1=rand(1); 

% Delta2=rand(1); 

% Delta3=rand(1); 

% Delta4=rand(1); 

% h1=rand(1); 

% h2=rand(1); 

% h3=rand(1); 

% h4=rand(1); 

% J_12=rand(1); 

% J_13=rand(1); 

% J_14=rand(1); 

% J_23=rand(1); 

% J_24=rand(1); 

% J_34=rand(1); 

 

 

% 4 . Define H0, Hf and ZHb 

% ZHb should be independent of Lambda 

H0=Delta1*kron(kron(kron(Sigma_x,I),I),I)+Delta2*kron(kron(kron(I,Sigma_x),I),I)... 

    +Delta3*kron(kron(kron(I,I),Sigma_x),I)+kron(kron(kron(I,I),I),Sigma_x); 

Hf=h1*kron(kron(kron(Sigma_z,I),I),I)+h2*kron(kron(kron(I,Sigma_z),I),I)... 

    +h3*kron(kron(kron(I,I),Sigma_z),I)... 

    +h4*kron(kron(kron(I,I),I),Sigma_z)... 

    

+J_12*kron(kron(kron(Sigma_z,Sigma_z),I),I)+J_13*kron(kron(kron(Sigma_z,I),Sigma_z),I
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)... 

    +J_14*kron(kron(kron(Sigma_z,I),I),Sigma_z) 

+J_23*kron(kron(kron(I,Sigma_z),Sigma_z),I)... 

    +J_24*kron(kron(kron(I,Sigma_z),I),Sigma_z)... 

    +J_34*kron(kron(kron(I,I),Sigma_z),Sigma_z); 

ZHb=Hf-H0; 

 

% 5 . Preallocation for variables 

Hlambda=zeros(NOL,NOL,steps); 

Eigenvectors=zeros(NOL,NOL,steps); 

HD=zeros(NOL,NOL,steps); 

 

X=zeros(NOL,steps); 

V=zeros(NOL,steps); 

x=zeros(NOL,steps); 

v=zeros(NOL,steps); 

l=zeros(NOL,NOL,steps); 

LSquare=zeros(NOL,NOL,steps); 

 

% 6 . Define H(lambda)=H0+lambda*ZHb. 

for i=1:steps 

    Hlambda(:,:,i)=H0+Lambda(i)*ZHb; 

end 

 

% 7 . Get eigenvectors and eigenvalue matrix 

for i=1:steps 

    [Eigenvectors(:,:,i),HD(:,:,i)]=eig(Hlambda(:,:,i)); 

end 
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% 8 . Get X(m,i) 

for i=1:steps 

    for m=1:NOL 

        X(m,i)=HD(m,m,i); 

    end 

end 

 

% 9 . Get V(m,i) and L(m,n,i) 

for i=1:steps 

    for m=1:NOL 

        V(m,i)=transpose(Eigenvectors(:,m,i))*ZHb*Eigenvectors(:,m,i); 

    end 

end 

L=zeros(NOL,NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        for n=1:NOL 

            if n~=m 

                L(m,n,i)=(X(m,i)-X(n,i))...  

                        *transpose(Eigenvectors(:,m,i))... 

                        *ZHb*Eigenvectors(:,n,i); 

            end 

        end 

    end 

end 

 

% % 9.1. get DV(m,i) and DL(m,n,i) 
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% DV=zeros(NOL,steps); 

% DL=zeros(NOL,NOL,steps); 

% RHSV=zeros(NOL,NOL,steps); 

% RHSL=zeros(NOL,NOL,steps); 

%  

% for i=1:steps 

%     for n=1:NOL 

%         for m=1:NOL 

%             if n~=m 

%                 if abs(X(m,i)-X(n,i))>0.00758 

%                     RHSV(m,n,i)=2*(( 100000000*L(m,n,i)/(100000000*X(m,i)-

100000000*X(n,i)) )... 

%                                     *( 100000000*conj(L(m,n,i)) 

/(100000000*X(m,i)... 

%                                     -100000000*X(n,i)) )... 

%                                     /(100000000*X(m,i)-

100000000*X(n,i)))*100000000; 

% %                     if abs(RHSV(m,n,i))<1000000000 

%                                DV(m,i)=DV(m,i)+ RHSV(m,n,i); 

% %                     end 

%                 end 

%             end 

%         end 

%     end 

% end 

%  

% for i=1:steps 

%     for m=1:NOL 
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%         for n=1:NOL 

%             for k=1:NOL 

%                 if n~=m 

%                     if k~=n 

%                         if k~=m 

%                             if abs( X(k,i)-X(n,i) )>0.00758 

%                                 if abs( X(k,i)-X(m,i) )>0.00758 

%                                     RHSL(m,n,i)=( (100000000*X(k,i)-

100000000*X(n,i))... 

%                                              /(100000000*X(m,i)-

100000000*X(k,i))... 

%                                              - (100000000*X(m,i)... 

%                                             -

100000000*X(k,i))/(100000000*X(k,i)... 

%                                             -100000000*X(n,i)) )... 

%                                             *transpose(Eigenvectors(:,m,i))... 

%                                                 ... 

%                                             *ZHb*Eigenvectors(:,k,i)... 

%                                             *transpose(Eigenvectors(:,k,i))... 

%                                             *ZHb*Eigenvectors(:,n,i); 

%                              

%                                     DL(m,n,i)=DL(m,n,i)+RHSL(m,n,i); 

%                                 end 

%                             end 

%                         end 

%                     end 

%                 end 

%             end 
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%         end 

%     end 

% end 

 

% % 10 . Use Euler method to check directly obtained Xm and Vm. 

% Xeuler=zeros(NOL,steps); 

% for m=1:NOL %can be written as m=1:2^numberofqubits 

%     Xeuler(m,1)=X(m,1); 

% end 

% for i=1:steps-1 

%     for m=1:NOL 

%         Xeuler(m,i+1)=Xeuler(m,i)+V(m,i)*dt; 

%     end 

% end 

%  

% % 11 . Set initial xm, vm, lmn for i=1 

% % for Pechukas method 

% for m=1:NOL 

%     x(m,1)=X(m,1); 

%     v(m,1)=V(m,1); 

%     for n=1:NOL 

%         if n~=m 

%             l(m,n,1)=(X(m,1)-

X(n,1))*transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,n,1); 

%         end 

%     end 

% end 

%  
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% % 12 . Euler+Pechukas 

% Dv=zeros(NOL,steps); 

% Dl=zeros(NOL,NOL,steps); 

% RHSl=zeros(NOL,NOL,steps); 

% RHSv=zeros(NOL,NOL,steps); 

% for i=1:steps-1 

%     for m=1:NOL 

%         for n=1:NOL 

%              

%             for k=1:NOL 

%                 if n~=m 

%                     if k~=n 

%                         if k~=m 

%                             if abs(x(m,i)-x(k,i))>0.00758 

%                                 if abs(x(k,i)-x(n,i))>0.00758 

%                                     %Dl(m,n,i)=Dl(m,n,i)+l(m,k,i)*l(k,n,i)*( 1/(

x(m,i)-x(k,i))^2 - 1/(x(k,i)-x(n,i))^2); 

%                                     Test1=(l(m,k,i)/(x(m,i)-x(k,i))); 

%                                     Test2=(l(k,n,i)/(x(m,i)-x(k,i))); 

%                                     Test3=(l(m,k,i)/(x(k,i)-x(n,i))); 

%                                     Test4=(l(k,n,i)/(x(k,i)-x(n,i))); 

%                                     RHSl(m,n,i)= (l(m,k,i)/(100000000*x(m,i)-

100000000*x(k,i)))... 

%                                         *(l(k,n,i)/(100000000*x(m,i)-

100000000*x(k,i)))... 

%                                         *100000000*100000000.... 

%                                         -(l(m,k,i)/(100000000*x(k,i)-

100000000*x(n,i)))... 
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%                                         *(l(k,n,i)/(100000000*x(k,i)-

100000000*x(n,i)))*100000000*100000000; 

%                                     if abs((RHSl(m,n,i)-RHSL(m,n,i)))<1000 

% %                                     if abs(RHSl(m,n,i))<1000 

%                                         Dl(m,n,i)=Dl(m,n,i)+RHSl(m,n,i); 

%                                     else 

%                                         Dl(m,n,i)=Dl(m,n,i); 

%                                     end 

%                                 else 

%                                     %Dl(m,n,i)=Dl(m,n,i)+l(m,k,i)*l(k,n,i)*( 1/(

x(m,i)-x(k,i))^2 ); 

%                                     

Dl(m,n,i)=Dl(m,n,i)+(l(m,k,i)/(100000000*x(m,i)-

100000000*x(k,i)))*(l(k,n,i)/(100000000*x(m,i)-

100000000*x(k,i)))*100000000*100000000; 

%                                 end 

%                             else 

%                                 if abs(x(k,i)-x(n,i))>0.00758 

%                                     %Dl(m,n,i)=Dl(m,n,i)+l(m,k,i)*l(k,n,i)*( -

1/(x(k,i)-x(n,i))^2 ); 

%                                     Dl(m,n,i)=Dl(m,n,i)-

(l(m,k,i)/(100000000*x(k,i)-100000000*x(n,i)))*(l(k,n,i)/(100000000*x(k,i)-

100000000*x(n,i)))*100000000*100000000; 

%                                 else 

%                                     Dl(m,n,i)=Dl(m,n,i); 

%                                 end 

%                             end 

%                         end 
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%                     end 

%                 end 

%             end 

%              

%             if n~=m 

%                 if abs(x(m,i)-x(n,i))>0.00758 

%                     %Dv(m,i)=Dv(m,i)+2*(l(m,n,i)*conj(l(m,n,i)))/((x(m,i)-

x(n,i))^3); 

%                     %Dv(m,i)=Dv(m,i)+2*((l(m,n,i)/(x(m,i)-

x(n,i)))*(conj(l(m,n,i))/(x(m,i)-x(n,i))))/(x(m,i)-x(n,i)); 

% %                     Test5=(l(m,n,i)/(x(m,i)-x(n,i))); 

% %                     Test6=(conj(l(m,n,i))/(x(m,i)-x(n,i))); 

% %                     Test7=(x(m,i)-x(n,i)); 

%                     RHSv(m,n,i)=2*(l(m,n,i)/(100000000*x(m,i)-

100000000*x(n,i)))... 

%                                      *(conj(l(m,n,i))/(100000000*x(m,i)-

100000000*x(n,i)))... 

%                                      /(100000000*x(m,i)-

100000000*x(n,i))*100000000*100000000*100000000; 

% %                     A=RHSV(m,n,i); 

% %                     B=RHSv(m,n,i); 

%                      

% %                     if abs(RHSv(m,n,i))<1000 

%                     if abs(RHSV(m,n,i)-RHSv(m,n,i))<1000 

%                         Dv(m,i)=Dv(m,i)+RHSv(m,n,i); 

%                     else 

%                         Dv(m,i)=Dv(m,i); 

%                     end 
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%                     %LSquare(m,n,i)=l(m,n,i)*conj(l(m,n,i)); 

%                     %XmminusXnCube=(x(m,i)-x(n,i))^3; 

%                     %Dv(m,i)=Dv(m,i)+2*LSquare(m,n,i)/XmminusXnCube; 

%                 else 

%                     Dv(m,i)=Dv(m,i); 

%                 end 

%                 l(m,n,i+1)=l(m,n,i)+Dl(m,n,i)*dt; 

%             else 

%                 Dv(m,i)=Dv(m,i); 

%                  

%             end 

%              l(m,n,i+1)=l(m,n,i)+Dl(m,n,i)*dt; 

%         end 

%         v(m,i+1)=v(m,i)+Dv(m,i)*dt; 

%         x(m,i+1)=x(m,i)+v(m,i)*dt; 

%          

%     end 

% end 

%  

% ErrorX=zeros(NOL,steps); 

% ErrorRelativeX=zeros(NOL,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         ErrorX(m,i)=abs(X(m,i)-x(m,i)); 

%         if X(m,i)~=0 

%         ErrorRelativeX(m,i)=abs(ErrorX(m,i)/X(m,i)); 

%         end 

%     end 
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% end 

 

% 13 .Plotting 

% figure(1) 

% subplot(1,3,1) 

% plot(t,X) 

% xlabel('t') 

% ylabel('Energy levels') 

% %legend('X1','X2','X3','X4') 

% title('Energy levels(direct)') 

% axis([0 1 -4 4]) 

%  

% subplot(1,3,3) 

% plot(t,Xeuler) 

% xlabel('t') 

% ylabel('Energy levels') 

% %legend('Xe1','Xe2','Xe3','Xe4') 

% title({'Energy levels obtained';'by using Euler method';'with direct velocity'}) 

% axis([0 1 -4 4]) 

%  

% subplot(1,3,2) 

% plot(t,x) 

% xlabel('t') 

% ylabel('Energy levels') 

% %legend('x1','x2','x3','x4') 

% title({'Energy levels obtained';'by using Pechkas formalism';'and Euler method'}) 

% axis([0 1 -4 4]) 

%  
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% figure(2) 

% subplot(1,2,1) 

% plot(t,V) 

% xlabel('t') 

% ylabel('velocity') 

% %legend('V1','V2','V3','V4') 

% title({'Velocity of the evolution';'of energy levels(direct)'}) 

% axis([0 1 -6 6]) 

%  

% subplot(1,2,2) 

% plot(t,v) 

% xlabel('t') 

% ylabel('velocity') 

% %legend('v1','v2','v3','v4') 

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'}) 

% axis([0 1 -6 6]) 

%  

% figure(3) 

%  

% subplot(1,4,1) 

% plot(t,DV) 

% title('DV direct') 

%  

% subplot(1,4,2) 

% plot(t,Dv) 

% title('Dv Pechukas+Euler')   

%  

% subplot(1,4,3) 
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% plot(t,ErrorX) 

% title('Absolute Error of X') 

%  

% subplot(1,4,4) 

% plot(t,ErrorRelativeX) 

% title('Relative Error of X') 

% axis([0 1 0 1]) 

%  

% PartIofL=zeros(1,steps); 

% for i=1:steps 

%     PartIofL(i)=L(1,2,i); 

% end 

% figure(5) 

% plot(t,PartIofL) 

 

%how many avoided crossings occured? 

 

DirectDV=zeros(NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt); 

    end 

end 

 

DirectDL=zeros(NOL,NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        for n=1:NOL 
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            DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,i))/(2*dt); 

        end 

    end 

end 

 

% xRK4=zeros(NOL,steps); 

% vRK4=zeros(NOL,steps); 

% lRK4=zeros(NOL,NOL,steps); 

[xRK4,vRK4,lRK4,time]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps,DirectDV,DirectDL,totalti

me,Lambda); 

 

ErrorXRK4=zeros(NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,i)); 

    end 

end 

% ErrorV=zeros(NOL,steps); 

 

% for i=1:steps 

%     for m=1:NOL 

%         ErrorV(m,i)=abs(V(m,i)-vRK4(m,i)); 

%          

%     end 

% end 

 

% %figure 

% figure(2) 
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% subplot(1,4,1) 

% plot(t,X) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

%  

%  

%  

%  

% subplot(1,4,4) 

% plot(t,ErrorXRK4(:,:)) 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% % axis([0 1 0 1]) 

% xlim([0 0.95]) 

%  

% subplot(1,4,2) 

% plot(t,V(1,:)) 

% xlabel('t') 

% ylabel('velocity') 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% title({'Velocity of the evolution';'of energy levels(direct)'}) 

% axis([0 1 -6 6]) 

%  

% subplot(1,4,3) 

% plot(t,DirectDV(1,:)); 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% % axis([0 1 -6 6]) 

%  

%  

% figure(3) 
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%  

% subplot(1,2,1) 

% plot(t,X) 

%  

%  

% subplot(1,2,2) 

% plot(t,xRK4(:,:)) 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

% %     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% % axis([0 1 -4 5]) 

 

 

C=zeros(NOL,steps); 

C(5,1)=1; 

% for m=1:NOL 

%     C(m,1)=sqrt(1/NOL); 

% end 

Probability=zeros(NOL,steps); 

 

[C,Density]=occupationnumber(xRK4,lRK4,C(:,1),Lambda,NOL,steps,totaltime); 

 

for i=1:steps 

    for m=1:NOL 

        Probability(m,i)=C(m,i)*conj(C(m,i)); 

    end 

end 

 

Sum=zeros(1,i); 
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for i=1:steps 

    for m=1:NOL 

      if Probability(m,i)<Sum(1,i) 

            Sum(1,i)=Probability(m,i)+Sum(1,i); 

      else 

            Sum(1,i)=Sum(1,i)+Probability(m,i); 

      end 

    end 

end 

 

 

 

%figure 

figure(1) 

subplot(1,3,1) 

plot(t,X) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

axis([0 1 -4 10]) 

 

subplot(1,3,2) 

plot(t,xRK4(:,:)) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

axis([0 1 -4 10]) 

 

subplot(1,3,3) 

plot(t,ErrorXRK4(:,:)) 
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% axis([0 0.1 0 1]) 

xlim([0 0.95]) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

 

% figure(2) 

% subplot(1,3,1) 

% plot(t,V) 

% xlabel('t') 

% ylabel('velocity') 

% legend('V1','V2','V3','V4','V5','V6','V7','V8') 

% title({'Velocity of the evolution';'of energy levels(direct)'}) 

%  

% subplot(1,3,2) 

% plot(t,vRK4) 

% xlabel('t') 

% ylabel('velocity') 

% legend('v1','v2','v3','v4','v5','v6','v7','v8') 

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'}) 

% % axis([0 1 -1.5 1.5]) 

%  

% subplot(1,3,3) 

% plot(t,ErrorV(4,:)) 

% legend('EV1','EV2','EV3','EV4','EV5','EV6','EV7','EV8') 

% title('Error of Velocity') 

% % axis([0 1 0 0.3]) 

 

% Sum1=0; 
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% Sum2=0; 

% Sum3=0; 

% Sum4=0; 

% Sum5=0; 

% Sum6=0; 

% for m=1:NOL 

%    Sum1=Sum1+C(m,1000)*conj(C(m,1000)); 

%    Sum2=Sum2+C(m,2000)*conj(C(m,2000)); 

%     Sum3=Sum3+C(m,3000)*conj(C(m,3000)); 

%      Sum4=Sum4+C(m,4000)*conj(C(m,4000)); 

%       Sum5=Sum5+C(m,5000)*conj(C(m,5000)); 

%        Sum6=Sum6+C(m,6000)*conj(C(m,6000)); 

% end 

 

figure(2) 

plot(t,Probability(:,:)) 

axis([0 1 0 1]) 

legend('1','2','3','4','5','6','7','8') 

figure(3) 

plot(t,Sum); 

% axis([0 1 0 1]) 

toc 

 

toc 
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Simulation of the level dynamics of 2-qubit systems through PY 

method 

%TwoSpinwithRK4 

tic 

% 1 .initial set up 

%if set lambda=t, make sure dt*steps=1. 

steps=640000; 

% dt=256*pi/steps; 

dt=pi/16000; 

constant=1/16; 

totaltime=dt*steps; 

t=linspace(0,totaltime,steps); 

Lambda=0.99*cos(constant*t); 

 

numberofqubits=2; 

NOL=2^numberofqubits; 

 

% 2 .Pauli matrix and Identity matrix 

Sigma_x=[0 1;1 0]; 

Sigma_z=[1 0;0 -1]; 

I=[1 0;0 1]; 

 

% 3 .Parameters,could be set to random numbers or function of time. 

Delta1=0.4; 

Delta2=0.5; 

h1=0.7; 

h2=0.2; 
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J_12=0.6; 

 

% 4 .Define H0, Hf and ZHb 

% ZHb should be independent of lambda 

H0=Delta1*kron(Sigma_x,I)+Delta2*kron(I,Sigma_x); 

Hf=h1*kron(Sigma_z,I)+h2*kron(I,Sigma_z)+J_12*kron(Sigma_z,Sigma_z); 

ZHb=Hf-H0; 

 

% 5 .Preallocation for variables 

Hlambda=zeros(NOL,NOL,steps); 

Eigenvectors=zeros(NOL,NOL,steps); 

HD=zeros(NOL,NOL,steps); 

%eigenvaluecolumn=zeros(4,1,steps); 

 

X=zeros(NOL,steps); 

V=zeros(NOL,steps); 

x=zeros(NOL,steps); 

v=zeros(NOL,steps); 

l=zeros(NOL,NOL,steps); 

 

% 6 .Define H(lambda)=H0+lambda*ZHb. 

for i=1:steps 

    Hlambda(:,:,i)=H0+Lambda(i)*ZHb; 

end 

  

% 7 .Get eigenvectors and eigenvalue matrix 

for i=1:steps 

    [Eigenvectors(:,:,i),HD(:,:,i)]=eig(Hlambda(:,:,i)); 
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    %eigenvaluecolumn(:,:,i)=eig(Hlambda(:,:,i)); 

end 

 

% 8 .Get X(m,i) 

for i=1:steps 

    for m=1:NOL 

        X(m,i)=HD(m,m,i); 

    end 

end 

 

% 9 .Get V(m,i) and L(m,n,i) 

for i=1:steps 

    for m=1:NOL 

        V(m,i)=transpose(Eigenvectors(:,m,i))*ZHb*Eigenvectors(:,m,i); 

    end 

end 

L=zeros(NOL,NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        for n=1:NOL 

            if n~=m 

                L(m,n,i)=(X(m,i)-X(n,i))...  

                        *transpose(Eigenvectors(:,m,i))... 

                        *ZHb*Eigenvectors(:,n,i); 

            end 

        end 

    end 

end 
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%------------------------------------------------------------ 

%DirectDV and DirectDL 

DirectDV=zeros(NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt); 

    end 

end 

 

DirectDL=zeros(NOL,NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        for n=1:NOL 

            DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,i))/(2*dt); 

        end 

    end 

end 

 

%-------------------------------------------------------- 

[xRK4,vRK4,lRK4,time]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps,DirectDV,DirectDL,totalti

me,Lambda); 

 

ErrorXRK4=zeros(NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,i)); 

    end 
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end 

 

 

C=zeros(NOL,steps); 

C(3,1)=1; 

% for m=1:NOL 

%     C(m,1)=sqrt(1/NOL); 

% end 

Probability=zeros(NOL,steps); 

% [C,Density]=occupationnumber(xRK4,lRK4,C(:,1),Lambda,NOL,steps,totaltime); 

[C,Density]=occupationnumber(X,L,C(:,1),Lambda,NOL,steps,totaltime); 

 

for i=1:steps 

    for m=1:NOL 

        Probability(m,i)=C(m,i)*conj(C(m,i)); 

    end 

end 

 

Sum=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

        if Probability(m,i)<Sum(1,i) 

            Sum(1,i)=Probability(m,i)+Sum(1,i); 

        else 

            Sum(1,i)=Sum(1,i)+Probability(m,i); 

        end 

         

    end 
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end 

 

 

 

%figure 

figure(1) 

subplot(1,3,1) 

plot(t,X) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% axis([0 1 -4 10]) 

 

subplot(1,3,2) 

plot(t,xRK4(:,:)) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% axis([0 1 -4 10]) 

 

subplot(1,3,3) 

plot(t,ErrorXRK4(:,:)) 

% axis([0 0.1 0 1]) 

xlim([0 0.95]) 

 

figure(2) 

subplot(1,2,1) 

plot(t,Probability(:,:)) 

% axis([0 1 0 1]) 

legend('1','2','3','4') 
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subplot(1,2,2) 

plot(t,Sum); 

 

toc 

Calculating Dispersion 

% AverageX=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         AverageX(1,i)=Probability1(m,i)*X(m,i)+AverageX(1,i); 

%     end 

% end 

% AverageXRK4=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         AverageXRK4(1,i)=Probability1(m,i)*xRK4(m,i)+AverageXRK4(1,i); 

%     end 

% end 

%  

%  

% ErrorExpectEnergy=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%        ErrorExpectEnergy(1,i)=AverageX(1,i)-AverageXRK4(1,i); 

%        

%     end 

% end 
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%  

% AverageM=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         AverageM(1,i)=Probability1(m,i)*m + AverageM(1,i); 

%     end 

% end 

%  

%  

% %Dispersion of Energy value 

% Dispersion=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         Dispersion(1,i)=Probability1(m,i)*((X(m,i)-AverageX(1,i))^2)... 

%                         +Dispersion(1,i); 

%     end 

% end 

%  

% % Dispersion of energy levels 

% DispersionLVL=zeros(1,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         DispersionLVL(1,i)=Probability1(m,i)*((m-AverageM(1,i))^2)... 

%                             +DispersionLVL(1,i); 

%     end 

% end 
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AverageX=zeros(1,steps); 

for i=1:steps 

    for m=1:NOL 

        AverageX(1,i)=Probability1(m,i)*X(m,i)+AverageX(1,i); 

    end 

end 

AverageXRK4=zeros(1,steps); 

for i=1:steps 

    for m=1:NOL 

        AverageXRK4(1,i)=Probability1(m,i)*xRK4(m,i)+AverageXRK4(1,i); 

    end 

end 

 

 

AverageM=zeros(1,steps); 

for i=1:steps 

    for m=1:NOL 

        AverageM(1,i)=Probability1(m,i)*m + AverageM(1,i); 

    end 

end 

 

 

%Dispersion of Energy value 

Dispersion=zeros(1,steps); 

for i=1:steps 

    for m=1:NOL 

        Dispersion(1,i)=Probability1(m,i)*((xRK4(m,i)-AverageX(1,i))^2)... 

                        +Dispersion(1,i); 
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    end 

end 

 

% Dispersion of energy levels 

DispersionLVL=zeros(1,steps); 

for i=1:steps 

    for m=1:NOL 

        DispersionLVL(1,i)=Probability1(m,i)*((m-AverageM(1,i))^2)... 

                            +DispersionLVL(1,i); 

    end 

end 

 

 

 

figure(7) 

subplot(1,2,1) 

plot(t,AverageX) 

title("Expectation Energy direct") 

% xlim([0 99]) 

 

subplot(1,2,2) 

plot(t,AverageXRK4) 

title("Expectation Energy simulated") 

% xlim([0 99]) 

 

% figure(8) 

% plot(t,ErrorExpectEnergy) 

% title("Error of Expectation of energy") 
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% xlim([0 99]) 

 

 

% subplot(1,4,1) 

% plot(t,AverageX) 

% title("Expectation Energy") 

% xlim([0 99]) 

 

% subplot(1,4,2) 

% plot(t,Dispersion) 

% title("Dispersion") 

% xlim([0 99]) 

 

% subplot(1,4,3) 

% plot(t,AverageM) 

% title("Average LVL") 

% xlim([0 99]) 

%  

%  

% subplot(1,4,4) 

% plot(t,DispersionLVL) 

% title("DispersionLVL") 

% xlim([0 99]) 

PY method with Runge-Kutta 4th order method 

function [xRK4,vRK4,lRK4,time]=RK4test3(inputx,inputv,inputl,inputNOL... 

    ,inputsteps,inputDirectDV,inputDirectDL,inputtotaltime,inputLambda) 

t1=cputime; 
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totaltime=inputtotaltime; 

steps=inputsteps; 

NOL=inputNOL; 

Lambda=inputLambda;%Lambda=zeros(1,steps); 

 

t=linspace(0,totaltime,2*steps); 

constant=0.5; 

Lambda1=0.9*cos(constant*t); 

dt=totaltime/(2*steps); 

h=dt; 

DLambda=diff(Lambda1)/h; 

dLambda=DLambda*dt; 

%here dt actually is dlambda 

 

 

count=1; 

threshold=1e-3; 

 

DirectDV=inputDirectDV; 

DirectDL=inputDirectDL; 

%preallocation 

%2*steps 

Ex=zeros(NOL,2*steps); 

 

RHSv=zeros(NOL,NOL,2*steps); 

Dv=zeros(NOL,2*steps); 

RHSl=zeros(NOL,NOL,NOL,2*steps); 

Dl=zeros(NOL,NOL,2*steps); 
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El=zeros(NOL,NOL,2*steps); 

 

IRHSv=zeros(NOL,NOL,2*steps); 

IDv=zeros(NOL,2*steps); 

Iv=zeros(NOL,NOL,2*steps); 

Ix=zeros(NOL,2*steps); 

IRHSl=zeros(NOL,NOL,NOL,2*steps); 

IDl=zeros(NOL,NOL,2*steps); 

Il=zeros(NOL,NOL,2*steps); 

 

IIRHSv=zeros(NOL,NOL,2*steps); 

IIDv=zeros(NOL,2*steps); 

IIv=zeros(NOL,2*steps); 

IIx=zeros(NOL,2*steps); 

IIRHSl=zeros(NOL,NOL,NOL,2*steps); 

IIDl=zeros(NOL,NOL,2*steps); 

IIl=zeros(NOL,NOL,2*steps); 

 

IIIRHSv=zeros(NOL,NOL,2*steps); 

IIIDv=zeros(NOL,2*steps); 

IIIv=zeros(NOL,2*steps); 

IIIRHSl=zeros(NOL,NOL,NOL,2*steps); 

IIIDl=zeros(NOL,NOL,2*steps); 

 

x=zeros(NOL,2*steps); 

v=zeros(NOL,2*steps); 

l=zeros(NOL,NOL,2*steps); 

%steps 
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xRK4=zeros(NOL,steps); 

vRK4=zeros(NOL,steps); 

lRK4=zeros(NOL,NOL,steps); 

%input every x(m,1),v(m,1),l(m,n,1) and NOL,steps. 

for i=1:3 

    for m=1:NOL 

        x(m,i)=inputx(m,i); 

        v(m,i)=inputv(m,i); 

        for n=1:NOL 

         l(m,n,i)=inputl(m,n,i);     

        end 

    end 

end 

 

for i=3:2*(steps-1) 

 

% 1 . ????dt???? 

 

 if mod(count,2)==1 

 

 

 %  Dv(m,i) 

   for m=1:NOL 

        for n=1:NOL 

            if n~=m 

                if abs(x(m,i)-x(n,i))>threshold 

                    RHSv(m,n,i)=2*(( l(m,n,i)/(1e1*x(m,i)-1e1*x(n,i)) )*1e1)... 

                                 *(( conj(l(m,n,i))/(1e1*x(m,i)-1e1*x(n,i)) )*1e1)... 
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                                 /(1e1*x(m,i)-1e1*x(n,i))*1e1; 

                    if abs(RHSv(m,n,i))<abs(Dv(m,i)) 

                        Dv(m,i)=RHSv(m,n,i)+Dv(m,i); 

                    else 

                        Dv(m,i)=Dv(m,i)+RHSv(m,n,i); 

                    end           

                else 

%                     if i>1 

                        Dv(m,i)=DirectDV(m,(i+1)/2); 

%                     else 

%                         if i==1 

%                             Dv(m,i)=Dv(m,i)+RHSv(m,n,i); 

%                         end 

%                     end 

%                     if i>2 

%                     RHSv(m,n,i)=0; 

%                     end 

                end 

                %if abs(RHSv(m,n,i))<5000 

%                 if abs(RHSv(m,n,i))<abs(Dv(m,i)) 

%                     Dv(m,i)=RHSv(m,n,i)+Dv(m,i); 

%                 else 

%                     Dv(m,i)=Dv(m,i)+RHSv(m,n,i); 

%                 end 

                    %end 

            end 

        end 

   end 
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%  Dl(m,n,i) 

   for m=1:NOL   %Dl?m,n,i? ?? x(m,i)?l(m,n,i) 

        for n=1:NOL  %??Dl(m,n,i+2)? ???x(m,i+2)?l(m,n,i+2)??????? 

            for k=1:NOL 

                if k~=n && k~=m && n~=m 

                  if abs(x(m,i)-x(k,i))>threshold &&... 

                          abs(x(k,i)-x(n,i))>threshold 

                       

                                 RHSl(m,n,k,i)=((( l(m,k,i)/(1e1*x(m,i)-

1e1*x(k,i))*1e1)... 

                                                *l(k,n,i)/(1e1*x(m,i)-

1e1*x(k,i)) )*1e1)... 

                                              -(( l(m,k,i)/(1e1*x(k,i)-

1e1*x(n,i))*1e1)... 

                                                *l(k,n,i)/(1e1*x(k,i)-

1e1*x(n,i)) )*1e1; 

%                   if abs(RHSl(m,n,k,1))<5000 

                        if abs(Dl(m,n,i))<abs(RHSl(m,n,k,i)) 

                            Dl(m,n,i)=Dl(m,n,i)+RHSl(m,n,k,i); 

%                   end 

                        else 

                            Dl(m,n,i)=RHSl(m,n,k,i)+Dl(m,n,i); 

                        end 

                  else 

%                       if i>2 

                        Dl(m,n,i)=DirectDL(m,n,(i+1)/2); 

%                       else 

%                           if i==1 
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%                             Dl(m,n,i)=RHSl(m,n,k,i)+Dl(m,n,i); 

%                           end 

%                       end 

%                       if abs(x(m,i)-x(k,i))>threshold 

%                         RHSl(m,n,k,i)=(( l(m,k,i)/(1e1*x(m,i)-1e1*x(k,i))*1e1)... 

%                                                 *l(k,n,i)/(1e1*x(m,i)-

1e1*x(k,i)) )*1e1; 

%                       else 

%                           if i>2 

%                           RHSl(m,n,k,i)=0; 

%                           end 

%                       end 

%                       if abs(x(k,i)-x(n,i))>threshold 

%                         RHSl(m,n,k,i)=-(( l(m,k,i)/(1e1*x(k,i)-1e1*x(n,i))*1e1)... 

%                                                 *l(k,n,i)/(1e1*x(k,i)-

1e1*x(n,i)) )*1e1; 

%                       else 

%                         if i>2     

%                           RHSl(m,n,k,i)=0; 

%                         end 

%                       end 

                  end 

                   

 

                end 

            end 

        end 

   end 
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% 2-1 Ex(m,i+1) 

    for m=1:NOL 

         if abs(x(m,i))<abs(v(m,i)*dLambda(1,i)) 

            Ex(m,i+1)=x(m,i)+v(m,i)*dLambda(1,i); %v(m,1)????????v(m,i)????? 

                                        %??i???1???RK4??v???2??????    

         else 

             Ex(m,i+1)=v(m,i)*dLambda(1,i)+x(m,i); 

         end 

      

    end 

% 2-2 El(m,n,i+1) 

    for m=1:NOL 

        for n=1:NOL 

            if n~=m 

                if abs(l(m,n,i))<abs(Dl(m,n,i)*dLambda(1,i)) 

                    El(m,n,i+1)=l(m,n,i)+Dl(m,n,i)*dLambda(1,i); 

                else 

                    El(m,n,i+1)=Dl(m,n,i)*dLambda(1,i)+l(m,n,i); 

                end 

            end 

        end 

    end 

     

% 2-1&2-1  IDv(m,i+1) 

    for m=1:NOL 

        for n=1:NOL 
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          if n~=m 

            if abs(Ex(m,i+1)-Ex(n,i+1))>threshold 

                IRHSv(m,n,i+1)= (( (2*El(m,n,i+1)/(1e1*Ex(m,i+1)-

1e1*Ex(n,i+1))*1e1)... 

                            *(conj(El(m,n,i+1))/(1e1*Ex(m,i+1)-

1e1*Ex(n,i+1)))*1e1)... 

                            /(1e1*Ex(m,i+1)-1e1*Ex(n,i+1)) )*1e1; 

                               %         if abs(IRHSv(m,n,i+1))<5000 

                if abs(IDv(m,i+1))<abs(IRHSv(m,n,i+1))  

                  IDv(m,i+1)=IDv(m,i+1)+IRHSv(m,n,i+1); 

                else 

                  IDv(m,i+1)=IRHSv(m,n,i+1)+IDv(m,i+1); 

                end 

       %        end 

            else 

               IDv(m,i+1)=1/2*(DirectDV(m,(i+1)/2)+DirectDV(m,((i+1)+2)/2)); 

%                 if i>1 

%                     IRHSv(m,n,i+1)=0; 

%                 end 

            end 

       %         if abs(IRHSv(m,n,i+1))<5000 

%             if abs(IDv(m,i+1))<abs(IRHSv(m,n,i+1))  

%                   IDv(m,i+1)=IDv(m,i+1)+IRHSv(m,n,i+1); 

%             else 

%                   IDv(m,i+1)=IRHSv(m,n,i+1)+IDv(m,i+1); 

%             end 

       %        end 

          end 
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        end 

    end   

% 2-1&2-11  Iv(m,i+1)   

  for m=1:NOL 

      if abs(v(m,i))<abs(IDv(m,i+1)*dLambda(1,i)) 

%           Iv(m,i+1)=v(m,i)+1/2*(IDv(m,i+1)+Dv(m,i))*dt; 

          Iv(m,i+1)=v(m,i)+IDv(m,i+1)*dLambda(1,i); 

      else 

          Iv(m,i+1)=IDv(m,i+1)*dLambda(1,i) +v(m,i); 

%           Iv(m,i+1)=1/2*(IDv(m,i+1)+Dv(m,i))*dt+v(m,i); 

      end 

  end 

           

% 2-1&2-111  Ix(m,i+1) 

  for m=1:NOL 

      if abs(x(m,i))<abs(Iv(m,i+1)*dLambda(1,i)) 

          Ix(m,i+1)=x(m,i)+Iv(m,i+1)*dLambda(1,i); 

      else 

          Ix(m,i+1)=Iv(m,i+1)*dLambda(1,i)+x(m,i); 

      end 

  end 

   

% 2-1&2-2 IDl(m,n,i+1) 

    for m=1:NOL 

        for n=1:NOL 

            for k=1:NOL 

                if m~=n&&k~=m&&k~=n 

                    if abs(Ex(m,i+1)-Ex(k,i+1))>threshold... 
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                      && abs(Ex(k,i+1)-Ex(n,i+1))>threshold 

                      IRHSl(m,n,k,i+1)=( (( El(m,k,i+1)/(1e1*Ex(m,i+1)-

1e1*Ex(k,i+1))*1e1)... 

                                    *El(k,n,i+1)/(1e1*Ex(m,i+1)-

1e1*Ex(k,i+1)) )*1e1)... 

                                   -( (El(m,k,i+1)/(1e1*Ex(k,i+1)-

1e1*Ex(n,i+1))*1e1)... 

                                     *El(k,n,i+1)/(1e1*Ex(k,i+1)-

1e1*Ex(n,i+1)))*1e1; 

                                                    % if 

abs(IRHSl(m,n,k,i+1))<5000 

                        if  abs(IDl(m,n,i+1))<abs(IRHSl(m,n,k,i+1)) 

                            IDl(m,n,i+1)=IDl(m,n,i+1)+IRHSl(m,n,k,i+1); 

                        else 

                            IDl(m,n,i+1)=IRHSl(m,n,k,i+1)+IDl(m,n,i+1); 

                        end 

                   %end 

                    else 

                        

IDl(m,n,i+1)=1/2*(DirectDL(m,n,(i+1)/2)+DirectDL(m,n,((i+1)+2)/2 )); 

                         

%                         if(abs(Ex(m,i+1)-Ex(k,i+1)))>threshold 

%                             IRHSl(m,n,k,i+1)=( (El(m,k,i+1)/(1e1*Ex(m,i+1)-

1e1*Ex(k,i+1))*1e1)... 

%                                               *El(k,n,i+1)/(1e1*Ex(m,i+1)-

1e1*Ex(k,i+1)) )*1e1; 

%                         else 

%                             if i>1 
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%                                 IRHSl(m,n,k,i+1)=0; 

%                             end 

%                         end 

%                         if(abs(Ex(k,i+1)-Ex(n,i+1)))>threshold 

%                             IRHSl(m,n,k,i+1)= -( (El(m,k,i+1)/(1e1*Ex(k,i+1)-

1e1*Ex(n,i+1))*1e1)... 

%                                                 *El(k,n,i+1)/(1e1*Ex(k,i+1)-

1e1*Ex(n,i+1)))*1e1; 

%                         else 

%                             if i>1 

%                                 IRHSl(m,n,k,i+1)=0; 

%                             end 

%                         end 

                    end 

 

                end 

            end 

        end 

    end 

  

% 2-1&2-21 Il(m,n,i+1) 

    for m=1:NOL 

        for n=1:NOL 

            if abs(l(m,n,i))<abs(Il(m,n,i+1)*dLambda(1,i)) 

                Il(m,n,i+1)=l(m,n,i)+IDl(m,n,i+1)*dLambda(1,i); 

            else 

                Il(m,n,i+1)=IDl(m,n,i+1)*dLambda(1,i)+l(m,n,i); 

            end 
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        end 

    end 

   

     

 

     

  

     

  

% IIDl(m,n,i+1) 

    for m=1:NOL 

        for n=1:NOL 

          for k=1:NOL   

            if n~=m&&k~=m&&k~=n 

               if abs(Ix(m,i+1)-Ix(k,i+1))>threshold... 

                 && abs(Ix(k,i+1)-Ix(n,i+1))>threshold 

                  IIRHSl(m,n,k,i+1)= ((( ( Il(m,k,i+1)/(1e1*Ix(m,i+1)-

1e1*Ix(k,i+1)) )*1e1)... 

                                  *Il(k,n,i+1)/(1e1*Ix(m,i+1)-1e1*Ix(k,i+1)) )*1e1)... 

                                -( (( Il(m,k,i+1)/(1e1*Ix(k,i+1)-

1e1*Ix(n,i+1)) )*1e1)... 

                                  *Il(k,n,i+1)/(1e1*Ix(k,i+1)-1e1*Ix(n,i+1)) )*1e1; 

                     if abs(IIDl(m,n,i+1))<abs(IIRHSl(m,n,k,i+1)) 

                        IIDl(m,n,i+1)=IIDl(m,n,i+1)+IIRHSl(m,n,k,i+1); 

                     else 

                        IIDl(m,n,i+1)=IIRHSl(m,n,k,i+1)+IIDl(m,n,i+1); 

                     end 

               else 
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IIDl(m,n,i+1)=1/2*(DirectDL(m,n,(i+1)/2)+DirectDL(m,n,((i+1)+2)/2)); 

%                    if abs(Ix(m,i+1)-Ix(k,i+1))>threshold 

%                        IIRHSl(m,n,k,i+1)=( (Il(m,k,i+1)/(1e1*Ix(m,i+1)-

1e1*Ix(k,i+1))*1e1)... 

%                                           *Il(k,n,i+1)/(1e1*Ix(m,i+1)-

1e1*Ix(k,i+1)) )*1e1; 

%                    else 

%                        if i>1 

%                         IIRHSl(m,n,k,i+1)=0; 

%                        end 

%                    end 

%                    if abs(Ix(k,i+1)-Ix(n,i+1))>threshold 

%                        IIRHSl(m,n,k,i+1)= -( (Il(m,k,i+1)/(1e1*Ix(k,i+1)-

1e1*Ix(n,i+1))*1e1)... 

%                                             *Il(k,n,i+1)/(1e1*Ix(k,i+1)-

1e1*Ix(n,i+1)) )*1e1; 

%                    else 

%                        if i>1 

%                            IIRHSl(m,n,k,i+1)=0; 

%                        end 

%                    end 

               end 

                

            end 

          end 

        end 

    end 
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%  IIl(m,n,i+2) 

for m=1:NOL 

    for n=1:NOL 

        if abs(l(m,n,i))<abs(IIDl(m,n,i+1)*2*dLambda(1,i)) 

           IIl(m,n,i+2)=l(m,n,i)+IIDl(m,n,i+1)*2*dLambda(1,i); 

        else 

           IIl(m,n,i+2)=IIDl(m,n,i+1)*2*dLambda(1,i) + l(m,n,i); 

        end 

    end 

end 

 

 

%  IIDv(m,i+1) 

for m=1:NOL 

    for n=1:NOL 

        if n~=m 

          if abs(Ix(m,i+1)-Ix(n,i+1))>threshold 

            IIRHSv(m,n,i+1)= 2*((((Il(m,n,i+1)/(1e1*Ix(m,i+1)-1e1*Ix(n,i+1)))*1e1)... 

                              *((conj(Il(m,n,i+1))/(1e1*Ix(m,i+1)-

1e1*Ix(n,i+1))))*1e1)... 

                              /(1e1*Ix(m,i+1)-1e1*Ix(n,i+1)))*1e1; 

                                                  %if 

abs(IIRHSv(m,n,i+1))<5000 

                if abs(IIDv(m,i+1))<abs(IIRHSv(m,n,i+1))       

                    IIDv(m,i+1)=IIDv(m,i+1)+IIRHSv(m,n,i+1); 

                else 

                    IIDv(m,i+1)=IIRHSv(m,n,i+1)+IIDv(m,i+1); 

                end 
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                        % end 

          else 

              IIDv(m,i+1)=1/2*(DirectDV(m,(i+1)/2)+DirectDV(m,((i+1)+2)/2)); 

%               if i>1 

%                   IIRHSv(m,n,i+1)=0; 

%               end 

          end 

 

        end 

    end 

end 

 

             

%  IIv(m,i+1) 

for m=1:NOL 

    if abs(v(m,i))<abs(IIDv(m,i+1)*dLambda(1,i)) 

        IIv(m,i+1)=v(m,i)+IIDv(m,i+1)*dLambda(1,i); 

    else 

        IIv(m,i+1)=IIDv(m,i+1)*dLambda(1,i)+v(m,i); 

    end 

end 

     

%  IIx(m,i+2) 

for m=1:NOL 

    if abs(x(m,i))<abs(IIv(m,i+1)*2*dLambda(1,i)) 

      IIx(m,i+2)=x(m,i)+IIv(m,i+1)*2*dLambda(1,i); 

    else 

      IIx(m,i+2)=IIv(m,i+1)*2*dLambda(1,i) + x(m,i); 
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    end 

end 

     

% 8 . IIIDv(m,i+2) 

for m=1:NOL 

    for n=1:NOL 

        if n~=m 

            if abs(IIx(m,i+2)-IIx(n,i+2))>threshold 

                IIIRHSv(m,n,i+2)= 2*(( (( IIl(m,n,i+2)/(1e1*IIx(m,i+2)-

1e1*IIx(n,i+2)) )*1e1)... 

                                   *(( conj(IIl(m,n,i+2))/(1e1*IIx(m,i+2)-

1e1*IIx(n,i+2)) ) )*1e1)... 

                                   /(1e1*IIx(m,i+2)-1e1*IIx(n,i+2)))*1e1; 

                                           %if abs(IIIRHSv(m,n,i+2))<5000     

                if  abs(IIIDv(m,i+2))<abs(IIIRHSv(m,n,i+2))   

                  IIIDv(m,i+2)=IIIDv(m,i+2)+IIIRHSv(m,n,i+2); 

                else 

                  IIIDv(m,i+2)=IIIRHSv(m,n,i+2)+IIIDv(m,i+2); 

                end 

            %end 

            else 

              IIIDv(m,i+2)=DirectDV(m,(i+2+1)/2);   

%                 IIIRHSv(m,n,i+2)=0; 

            end 

                                    

                 

 

        end 
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    end 

end 

% 8 . IIIv(m,i+2) 

for m=1:NOL 

    if abs(v(m,i))<abs(IIIDv(m,i+2)*2*dLambda(1,i)) 

        IIIv(m,i+2)=v(m,i)+IIIDv(m,i+2)*2*dLambda(1,i); 

    else 

        IIIv(m,i+2)=IIIDv(m,i+2)*2*dLambda(1,i) + v(m,i); 

    end 

end     

% 9. IIIDl(m,n,i+2) 

for m=1:NOL 

    for n=1:NOL 

        for k=1:NOL 

            if n~=m && k~=m && k~=n 

                if abs(IIx(m,i+2)-IIx(k,i+2))>threshold... 

                  && abs(IIx(k,i+2)-IIx(n,i+2))>threshold 

                   IIIRHSl(m,n,k,i+2)=((( (IIl(m,k,i+2)/(1e1*IIx(m,i+2)-

1e1*IIx(k,i+2)))*1e1)... 

                                       *(IIl(k,n,i+2)/(1e1*IIx(m,i+2)-

1e1*IIx(k,i+2))) )*1e1)... 

                                     -( ((IIl(m,k,i+2)/(1e1*IIx(k,i+2)-

1e1*IIx(n,i+2)))*1e1)... 

                                       *(IIl(k,n,i+2)/(1e1*IIx(k,i+2)-

1e1*IIx(n,i+2))) )*1e1;  

                                                   %if 

abs(IIIRHSl(m,n,k,i+2))<5000 

                    if abs(IIIDl(m,n,i+2))<abs(IIIRHSl(m,n,k,i+2)) 
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                        IIIDl(m,n,i+2)=IIIDl(m,n,i+2)+IIIRHSl(m,n,k,i+2); 

                    else 

                        IIIDl(m,n,i+2)=IIIRHSl(m,n,k,i+2)+IIIDl(m,n,i+2); 

                    end 

                %end 

                else 

                    IIIDl(m,n,i+2)=DirectDL(m,n,((i+2)+1)/2); 

%                     if abs(IIx(m,i+2)-IIx(k,i+2))>threshold 

%                         IIIRHSl(m,n,k,i+2)=( ((IIl(m,k,i+2)/(1e1*IIx(m,i+2)-

1e1*IIx(k,i+2)))*1e1)... 

%                                             *(IIl(k,n,i+2)/(1e1*IIx(m,i+2)-

1e1*IIx(k,i+2))) )*1e1; 

%                     else 

%                         IIIRHSl(m,n,k,i+2)=0; 

%                     end 

%                     if abs(IIx(k,i+2)-IIx(n,i+2))>threshold 

%                         IIIRHSl(m,n,k,i+2)= -( ((IIl(m,k,i+2)/(1e1*IIx(k,i+2)-

1e1*IIx(n,i+2)))*1e1)... 

%                                               *(IIl(k,n,i+2)/(1e1*IIx(k,i+2)-

1e1*IIx(n,i+2))) )*1e1; 

%                     else 

%                         IIIRHSl(m,n,k,i+2)=0; 

%                     end 

                end 

 

            end 

        end 

    end 
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end 

     

  

 % 10 . x(m,i+2),v(m,i+2),l(m,n,i+2) 

    for m=1:NOL  

%x(m,i)        

%      x(m,i+2)=x(m,i)+(1/6)*2*dt... 

%                       *( v(m,i)+2*Iv(m,i+1)+2*IIv(m,i+1)+IIIv(m,i+2) ); 

                   

       if 

abs(x(m,i))<abs( (1/6)*2*dLambda(1,i)*( v(m,i)+2*Iv(m,i+1)+2*IIv(m,i+1)+IIIv(m,i+2) ) ) 

           

          x(m,i+2)=x(m,i)+(1/6)*2*dLambda(1,i)... 

                      *( v(m,i)+2*Iv(m,i+1)+2*IIv(m,i+1)+IIIv(m,i+2) ); 

       else 

          

x(m,i+2)=((1/6)*2*dLambda(1,i)*( v(m,i)+2*Iv(m,i+1)+2*IIv(m,i+1)+IIIv(m,i+2) ))... 

                   +x(m,i); 

       end 

        

        

%v(m,i)        

%       v(m,i+2)=v(m,i)+(1/6)*2*dt...    

%                        *(Dv(m,i)+2*IDv(m,i+1)+2*IIDv(m,i+1)+IIIDv(m,i+2)); 

                    

       if 

abs(v(m,i))<abs( (1/6)*2*dLambda(1,i)*(Dv(m,i)+2*IDv(m,i+1)+2*IIDv(m,i+1)+IIIDv(m,i+

2)) ) 
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          v(m,i+2)=v(m,i)+(1/6)*2*dLambda(1,i)...    

                       *(Dv(m,i)+2*IDv(m,i+1)+2*IIDv(m,i+1)+IIIDv(m,i+2)); 

       else 

          

v(m,i+2)=(1/6)*2*dLambda(1,i)*(Dv(m,i)+2*IDv(m,i+1)+2*IIDv(m,i+1)+IIIDv(m,i+2))... 

                   +v(m,i); 

       end 

        

        

% l(m,n,i) 

      for n=1:NOL 

%            l(m,n,i+2)=l(m,n,i)+(1/6)*2*dt... 

%                               *(Dl(m,n,i)+2*IDl(m,n,i+1)+2*IIDl(m,n,i+1)... 

%                                  +IIIDl(m,n,i+2)) ; 

%                               

           if abs(l(m,n,i))<abs( (1/6)*2*dLambda(1,i)... 

                                  *(Dl(m,n,i)+2*IDl(m,n,i+1)+2*IIDl(m,n,i+1)... 

                                    +IIIDl(m,n,i+2)) ) 

            

              l(m,n,i+2)=l(m,n,i)+(1/6)*2*dLambda(1,i)... 

                              *(Dl(m,n,i)+2*IDl(m,n,i+1)+2*IIDl(m,n,i+1)... 

                                 +IIIDl(m,n,i+2)) ; 

           else 

              l(m,n,i+2)=(1/6)*2*dLambda(1,i)... 

                              *(Dl(m,n,i)+2*IDl(m,n,i+1)+2*IIDl(m,n,i+1)... 

                                 +IIIDl(m,n,i+2))... 

                         +l(m,n,i); 
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           end 

      end 

    end 

    

   

  end 

  count = count + 1; 

end 

       

% 11 .xRK4, vRK4, lRK4 

 

for i=2:steps 

   for m= 1:NOL 

        xRK4(m,1)=inputx(m,1); 

        xRK4(m,i)=x(m,2*i-1); 

   end 

end 

for i=2:steps 

    for m=1:NOL 

        vRK4(m,1)=inputv(m,1); 

        vRK4(m,i)=v(m,2*i-1); 

    end 

end 

for i=2:steps 

    for m=1:NOL 

        for n=1:NOL 

            if n~=m 

                lRK4(m,n,1)=inputl(m,n,1); 
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                lRK4(m,n,i)=l(m,n,2*i-1); 

            end 

        end 

    end 

end 

 

 

t2=cputime; 

time=t2-t1; 

 

end 

Simulation of 4-qubi system through PY method with Euler 

method 

clear 

%Four Spin New 

%Try get a multi qubits code 

tic 

% 1 .initial set up 

%if set labmda=t, make sure dt*steps=1. 

dt=0.0001; 

periodnumber=10; 

periodlength=1.57; %period length= 2*pi/constant 

stepsperperiod=periodlength/dt; 

steps=periodnumber*stepsperperiod; 

 

constant=6/1; 
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totaltime=dt*steps; 

t=linspace(0,totaltime,steps); 

% t=cos(tt); 

Lambda=0.91*cos(constant*t); 

 

numberofqubits=4; 

NOL=2^numberofqubits; 

 

% 2 .Pauli matrix and Identity matrix 

Sigma_x=[0 1; 1 0]; 

Sigma_z=[1 0; 0 -1]; 

I=[1 0;0 1]; 

 

% 3 . Parameters, could be set to random numbers or function of time. 

% Delta=zeros(1,numberofqubits); 

% h=zeros(1,numberofqubits); 

% J=zeros(numberofqubits,numberofqubits); 

% for i=1:numberofqubits 

%     Delta(i)=rand(1); 

%     h(i)=rand(1); 

%     for j=1:numberofqubits 

%         if j>i 

%             J(i,j)=rand(1); 

%         end 

%             

%     end 

% end 

%-------------------------------------- 
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%Particular set 

Delta1=0.4; 

Delta2=0.1; 

Delta3=0.2; 

Delta4=0.3; 

h1=0.1; 

h2=0.2; 

h3=0.3; 

h4=0.4; 

J_12=0.7; 

J_13=0.5; 

J_14=0.3; 

J_23=0.6; 

J_24=0.5; 

J_34=0.8; 

%---------------------------------- 

%random set 

% Delta1=rand(1); 

% Delta2=rand(1); 

% Delta3=rand(1); 

% Delta4=rand(1); 

% h1=rand(1); 

% h2=rand(1); 

% h3=rand(1); 

% h4=rand(1); 

% J_12=rand(1); 

% J_13=rand(1); 

% J_14=rand(1); 
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% J_23=rand(1); 

% J_24=rand(1); 

% J_34=rand(1); 

 

 

% 4 . Define H0, Hf and ZHb 

% ZHb should be independent of Lambda 

H0=Delta1*kron(kron(kron(Sigma_x,I),I),I)+Delta2*kron(kron(kron(I,Sigma_x),I),I)... 

    +Delta3*kron(kron(kron(I,I),Sigma_x),I)+kron(kron(kron(I,I),I),Sigma_x); 

Hf=h1*kron(kron(kron(Sigma_z,I),I),I)+h2*kron(kron(kron(I,Sigma_z),I),I)... 

    +h3*kron(kron(kron(I,I),Sigma_z),I)... 

    +h4*kron(kron(kron(I,I),I),Sigma_z)... 

    

+J_12*kron(kron(kron(Sigma_z,Sigma_z),I),I)+J_13*kron(kron(kron(Sigma_z,I),Sigma_z),I

)... 

    +J_14*kron(kron(kron(Sigma_z,I),I),Sigma_z) 

+J_23*kron(kron(kron(I,Sigma_z),Sigma_z),I)... 

    +J_24*kron(kron(kron(I,Sigma_z),I),Sigma_z)... 

    +J_34*kron(kron(kron(I,I),Sigma_z),Sigma_z); 

ZHb=Hf-H0; 

 

% 5 . Preallocation for variables 

Hlambda=zeros(NOL,NOL,steps); 

Eigenvectors=zeros(NOL,NOL,steps); 

HD=zeros(NOL,NOL,steps); 

 

X=zeros(NOL,steps); 

V=zeros(NOL,steps); 
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x=zeros(NOL,steps); 

v=zeros(NOL,steps); 

l=zeros(NOL,NOL,steps); 

LSquare=zeros(NOL,NOL,steps); 

 

% 6 . Define H(lambda)=H0+lambda*ZHb. 

for i=1:steps 

    Hlambda(:,:,i)=H0+Lambda(i)*ZHb; 

end 

 

% 7 . Get eigenvectors and eigenvalue matrix 

for i=1:steps 

    [Eigenvectors(:,:,i),HD(:,:,i)]=eig(Hlambda(:,:,i)); 

end 

 

% 8 . Get X(m,i) 

for i=1:steps 

    for m=1:NOL 

        X(m,i)=HD(m,m,i); 

    end 

end 

 

% 9 . Get V(m,i) and L(m,n,i) 

for i=1:steps 

    for m=1:NOL 

        V(m,i)=transpose(Eigenvectors(:,m,i))*ZHb*Eigenvectors(:,m,i); 

    end 

end 
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L=zeros(NOL,NOL,steps); 

for i=1:steps 

    for m=1:NOL 

        for n=1:NOL 

            if n~=m 

                L(m,n,i)=(X(m,i)-X(n,i))...  

                        *transpose(Eigenvectors(:,m,i))... 

                        *ZHb*Eigenvectors(:,n,i); 

            end 

        end 

    end 

end 

 

% % 9.1. get DV(m,i) and DL(m,n,i) 

% DV=zeros(NOL,steps); 

% DL=zeros(NOL,NOL,steps); 

% RHSV=zeros(NOL,NOL,steps); 

% RHSL=zeros(NOL,NOL,steps); 

%  

% for i=1:steps 

%     for n=1:NOL 

%         for m=1:NOL 

%             if n~=m 

%                 if abs(X(m,i)-X(n,i))>0.00758 

%                     RHSV(m,n,i)=2*(( 100000000*L(m,n,i)/(100000000*X(m,i)-

100000000*X(n,i)) )... 

%                                     *( 100000000*conj(L(m,n,i)) 

/(100000000*X(m,i)... 
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%                                     -100000000*X(n,i)) )... 

%                                     /(100000000*X(m,i)-

100000000*X(n,i)))*100000000; 

% %                     if abs(RHSV(m,n,i))<1000000000 

%                                DV(m,i)=DV(m,i)+ RHSV(m,n,i); 

% %                     end 

%                 end 

%             end 

%         end 

%     end 

% end 

%  

% for i=1:steps 

%     for m=1:NOL 

%         for n=1:NOL 

%             for k=1:NOL 

%                 if n~=m 

%                     if k~=n 

%                         if k~=m 

%                             if abs( X(k,i)-X(n,i) )>0.00758 

%                                 if abs( X(k,i)-X(m,i) )>0.00758 

%                                     RHSL(m,n,i)=( (100000000*X(k,i)-

100000000*X(n,i))... 

%                                              /(100000000*X(m,i)-

100000000*X(k,i))... 

%                                              - (100000000*X(m,i)... 

%                                             -

100000000*X(k,i))/(100000000*X(k,i)... 
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%                                             -100000000*X(n,i)) )... 

%                                             *transpose(Eigenvectors(:,m,i))... 

%                                                 ... 

%                                             *ZHb*Eigenvectors(:,k,i)... 

%                                             *transpose(Eigenvectors(:,k,i))... 

%                                             *ZHb*Eigenvectors(:,n,i); 

%                              

%                                     DL(m,n,i)=DL(m,n,i)+RHSL(m,n,i); 

%                                 end 

%                             end 

%                         end 

%                     end 

%                 end 

%             end 

%         end 

%     end 

% end 

 

% % 10 . Use Euler method to check directly obtained Xm and Vm. 

% Xeuler=zeros(NOL,steps); 

% for m=1:NOL %can be written as m=1:2^numberofqubits 

%     Xeuler(m,1)=X(m,1); 

% end 

% for i=1:steps-1 

%     for m=1:NOL 

%         Xeuler(m,i+1)=Xeuler(m,i)+V(m,i)*dt; 

%     end 

% end 
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%  

% % 11 . Set initial xm, vm, lmn for i=1 

% % for Pechukas method 

% for m=1:NOL 

%     x(m,1)=X(m,1); 

%     v(m,1)=V(m,1); 

%     for n=1:NOL 

%         if n~=m 

%             l(m,n,1)=(X(m,1)-

X(n,1))*transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,n,1); 

%         end 

%     end 

% end 

%  

% % 12 . Euler+Pechukas 

% Dv=zeros(NOL,steps); 

% Dl=zeros(NOL,NOL,steps); 

% RHSl=zeros(NOL,NOL,steps); 

% RHSv=zeros(NOL,NOL,steps); 

% for i=1:steps-1 

%     for m=1:NOL 

%         for n=1:NOL 

%              

%             for k=1:NOL 

%                 if n~=m 

%                     if k~=n 

%                         if k~=m 

%                             if abs(x(m,i)-x(k,i))>0.00758 
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%                                 if abs(x(k,i)-x(n,i))>0.00758 

%                                     %Dl(m,n,i)=Dl(m,n,i)+l(m,k,i)*l(k,n,i)*( 1/(

x(m,i)-x(k,i))^2 - 1/(x(k,i)-x(n,i))^2); 

%                                     Test1=(l(m,k,i)/(x(m,i)-x(k,i))); 

%                                     Test2=(l(k,n,i)/(x(m,i)-x(k,i))); 

%                                     Test3=(l(m,k,i)/(x(k,i)-x(n,i))); 

%                                     Test4=(l(k,n,i)/(x(k,i)-x(n,i))); 

%                                     RHSl(m,n,i)= (l(m,k,i)/(100000000*x(m,i)-

100000000*x(k,i)))... 

%                                         *(l(k,n,i)/(100000000*x(m,i)-

100000000*x(k,i)))... 

%                                         *100000000*100000000.... 

%                                         -(l(m,k,i)/(100000000*x(k,i)-

100000000*x(n,i)))... 

%                                         *(l(k,n,i)/(100000000*x(k,i)-

100000000*x(n,i)))*100000000*100000000; 

%                                     if abs((RHSl(m,n,i)-RHSL(m,n,i)))<1000 

% %                                     if abs(RHSl(m,n,i))<1000 

%                                         Dl(m,n,i)=Dl(m,n,i)+RHSl(m,n,i); 

%                                     else 

%                                         Dl(m,n,i)=Dl(m,n,i); 

%                                     end 

%                                 else 

%                                     %Dl(m,n,i)=Dl(m,n,i)+l(m,k,i)*l(k,n,i)*( 1/(

x(m,i)-x(k,i))^2 ); 

%                                     

Dl(m,n,i)=Dl(m,n,i)+(l(m,k,i)/(100000000*x(m,i)-

100000000*x(k,i)))*(l(k,n,i)/(100000000*x(m,i)-
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100000000*x(k,i)))*100000000*100000000; 

%                                 end 

%                             else 

%                                 if abs(x(k,i)-x(n,i))>0.00758 

%                                     %Dl(m,n,i)=Dl(m,n,i)+l(m,k,i)*l(k,n,i)*( -

1/(x(k,i)-x(n,i))^2 ); 

%                                     Dl(m,n,i)=Dl(m,n,i)-

(l(m,k,i)/(100000000*x(k,i)-100000000*x(n,i)))*(l(k,n,i)/(100000000*x(k,i)-

100000000*x(n,i)))*100000000*100000000; 

%                                 else 

%                                     Dl(m,n,i)=Dl(m,n,i); 

%                                 end 

%                             end 

%                         end 

%                     end 

%                 end 

%             end 

%              

%             if n~=m 

%                 if abs(x(m,i)-x(n,i))>0.00758 

%                     %Dv(m,i)=Dv(m,i)+2*(l(m,n,i)*conj(l(m,n,i)))/((x(m,i)-

x(n,i))^3); 

%                     %Dv(m,i)=Dv(m,i)+2*((l(m,n,i)/(x(m,i)-

x(n,i)))*(conj(l(m,n,i))/(x(m,i)-x(n,i))))/(x(m,i)-x(n,i)); 

% %                     Test5=(l(m,n,i)/(x(m,i)-x(n,i))); 

% %                     Test6=(conj(l(m,n,i))/(x(m,i)-x(n,i))); 

% %                     Test7=(x(m,i)-x(n,i)); 

%                     RHSv(m,n,i)=2*(l(m,n,i)/(100000000*x(m,i)-
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100000000*x(n,i)))... 

%                                      *(conj(l(m,n,i))/(100000000*x(m,i)-

100000000*x(n,i)))... 

%                                      /(100000000*x(m,i)-

100000000*x(n,i))*100000000*100000000*100000000; 

% %                     A=RHSV(m,n,i); 

% %                     B=RHSv(m,n,i); 

%                      

% %                     if abs(RHSv(m,n,i))<1000 

%                     if abs(RHSV(m,n,i)-RHSv(m,n,i))<1000 

%                         Dv(m,i)=Dv(m,i)+RHSv(m,n,i); 

%                     else 

%                         Dv(m,i)=Dv(m,i); 

%                     end 

%                     %LSquare(m,n,i)=l(m,n,i)*conj(l(m,n,i)); 

%                     %XmminusXnCube=(x(m,i)-x(n,i))^3; 

%                     %Dv(m,i)=Dv(m,i)+2*LSquare(m,n,i)/XmminusXnCube; 

%                 else 

%                     Dv(m,i)=Dv(m,i); 

%                 end 

%                 l(m,n,i+1)=l(m,n,i)+Dl(m,n,i)*dt; 

%             else 

%                 Dv(m,i)=Dv(m,i); 

%                  

%             end 

%              l(m,n,i+1)=l(m,n,i)+Dl(m,n,i)*dt; 

%         end 

%         v(m,i+1)=v(m,i)+Dv(m,i)*dt; 
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%         x(m,i+1)=x(m,i)+v(m,i)*dt; 

%          

%     end 

% end 

%  

% ErrorX=zeros(NOL,steps); 

% ErrorRelativeX=zeros(NOL,steps); 

% for i=1:steps 

%     for m=1:NOL 

%         ErrorX(m,i)=abs(X(m,i)-x(m,i)); 

%         if X(m,i)~=0 

%         ErrorRelativeX(m,i)=abs(ErrorX(m,i)/X(m,i)); 

%         end 

%     end 

% end 

 

% 13 .Plotting 

% figure(1) 

% subplot(1,3,1) 

% plot(t,X) 

% xlabel('t') 

% ylabel('Energy levels') 

% %legend('X1','X2','X3','X4') 

% title('Energy levels(direct)') 

% axis([0 1 -4 4]) 

%  

% subplot(1,3,3) 

% plot(t,Xeuler) 
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% xlabel('t') 

% ylabel('Energy levels') 

% %legend('Xe1','Xe2','Xe3','Xe4') 

% title({'Energy levels obtained';'by using Euler method';'with direct velocity'}) 

% axis([0 1 -4 4]) 

%  

% subplot(1,3,2) 

% plot(t,x) 

% xlabel('t') 

% ylabel('Energy levels') 

% %legend('x1','x2','x3','x4') 

% title({'Energy levels obtained';'by using Pechkas formalism';'and Euler method'}) 

% axis([0 1 -4 4]) 

%  

% figure(2) 

% subplot(1,2,1) 

% plot(t,V) 

% xlabel('t') 

% ylabel('velocity') 

% %legend('V1','V2','V3','V4') 

% title({'Velocity of the evolution';'of energy levels(direct)'}) 

% axis([0 1 -6 6]) 

%  

% subplot(1,2,2) 

% plot(t,v) 

% xlabel('t') 

% ylabel('velocity') 

% %legend('v1','v2','v3','v4') 
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% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'}) 

% axis([0 1 -6 6]) 

%  

% figure(3) 

%  

% subplot(1,4,1) 

% plot(t,DV) 

% title('DV direct') 

%  

% subplot(1,4,2) 

% plot(t,Dv) 

% title('Dv Pechukas+Euler')   

%  

% subplot(1,4,3) 

% plot(t,ErrorX) 

% title('Absolute Error of X') 

%  

% subplot(1,4,4) 

% plot(t,ErrorRelativeX) 

% title('Relative Error of X') 

% axis([0 1 0 1]) 

%  

% PartIofL=zeros(1,steps); 

% for i=1:steps 

%     PartIofL(i)=L(1,2,i); 

% end 

% figure(5) 

% plot(t,PartIofL) 



363 

 

 

 

%how many avoided crossings occured? 

 

DirectDV=zeros(NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt); 

    end 

end 

 

DirectDL=zeros(NOL,NOL,steps); 

for i=1:steps-2 

    for m=1:NOL 

        for n=1:NOL 

            DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,i))/(2*dt); 

        end 

    end 

end 

 

% xRK4=zeros(NOL,steps); 

% vRK4=zeros(NOL,steps); 

% lRK4=zeros(NOL,NOL,steps); 

[xRK4,vRK4,lRK4,time]=RK4test3FromLaptop(X(:,:),V(:,:),L(:,:,:),NOL,steps,DirectDV,Dir

ectDL,totaltime,Lambda); 

 

ErrorXRK4=zeros(NOL,steps); 

for i=1:steps 

    for m=1:NOL 
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        ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,i)); 

    end 

end 

% ErrorV=zeros(NOL,steps); 

 

% for i=1:steps 

%     for m=1:NOL 

%         ErrorV(m,i)=abs(V(m,i)-vRK4(m,i)); 

%          

%     end 

% end 

 

% %figure 

% figure(2) 

% subplot(1,4,1) 

% plot(t,X) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

%  

% subplot(1,4,4) 

% plot(t,ErrorXRK4(:,:)) 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% % axis([0 1 0 1]) 

% xlim([0 0.95]) 

%  

% subplot(1,4,2) 

% plot(t,V(1,:)) 

% xlabel('t') 

% ylabel('velocity') 
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% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% title({'Velocity of the evolution';'of energy levels(direct)'}) 

% axis([0 1 -6 6]) 

%  

% subplot(1,4,3) 

% plot(t,DirectDV(1,:)); 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16') 

% % axis([0 1 -6 6]) 

%  

%  

% figure(3) 

%  

% subplot(1,2,1) 

% plot(t,X) 

%  

%  

% subplot(1,2,2) 

% plot(t,xRK4(:,:)) 

% % legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

% %     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% % axis([0 1 -4 5]) 

%----------------------------------------------------------------------- 

CT=zeros(NOL,NOL,steps); 

%compare term 

for i= 1:steps 

    for m=1:NOL 

        for n=1:NOL 

            CT(m,n,i)=L(m,n,i)*lRK4(m,n,i); 
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            if CT(m,n,i)<0 

%                 lRK4(m,n,i)=-1*lRK4(m,n,i); 

                  L(m,n,i)=-1*L(m,n,i); 

            end 

        end 

    end 

end 

 

%----------------------------------------------------------------------- 

C=zeros(NOL,steps); 

C(5,1)=1; 

% for m=1:NOL 

%     C(m,1)=sqrt(1/NOL); 

% end 

Probability=zeros(NOL,steps); 

 

[C,Density]=occupationnumber2(X,L,C(:,1),Lambda,NOL,periodnumber,stepsperperiod,dt); 

 

for i=1:steps 

    for m=1:NOL 

        Probability(m,i)=C(m,i)*conj(C(m,i)); 

    end 

end 

 

Sum=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 

      if Probability(m,i)<Sum(1,i) 
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            Sum(1,i)=Probability(m,i)+Sum(1,i); 

      else 

            Sum(1,i)=Sum(1,i)+Probability(m,i); 

      end 

    end 

end 

 

 

%------------------------------------------------------------------------- 

C1=zeros(NOL,steps); 

C1(5,1)=1; 

% for m=1:NOL 

%     C(m,1)=sqrt(1/NOL); 

% end 

Probability1=zeros(NOL,steps); 

 

[C1,Density1]=occupationnumber2(xRK4,lRK4,C1(:,1),Lambda,NOL,periodnumber,stepspe

rperiod,dt); 

 

for i=1:steps 

    for m=1:NOL 

        Probability1(m,i)=C1(m,i)*conj(C1(m,i)); 

    end 

end 

 

Sum1=zeros(1,i); 

for i=1:steps 

    for m=1:NOL 
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      if Probability1(m,i)<Sum1(1,i) 

            Sum1(1,i)=Probability1(m,i)+Sum1(1,i); 

      else 

            Sum1(1,i)=Sum1(1,i)+Probability1(m,i); 

      end 

    end 

end 

%------------------------------------------------------------------------- 

 

figure(1) 

subplot(1,3,1) 

plot(t,X) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% axis([0 1 -4 10]) 

xlabel('time'); 

ylabel('Energy levels'); 

title('Direct Energy Evolution'); 

 

subplot(1,3,2) 

plot(t,xRK4(:,:)) 

% legend('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19',... 

%     '20','21','22','23','24','25','26','27','28','29','30','31','32') 

% axis([0 1 -4 10]) 

xlabel('time'); 

ylabel('Energy levels'); 

title('PY simulated Energy Evolution') 
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subplot(1,3,3) 

plot(t,ErrorXRK4(:,:)) 

% axis([0 0.1 0 1]) 

% xlim([0 0.95]) 

xlabel('time'); 

ylabel('Error'); 

title('Error of simulated energy evolution') 

 

figure(2) 

subplot(1,2,1) 

plot(t,Probability(:,:)) 

% axis([0 1 0 1]) 

legend('1','2','3','4') 

title('Direct PD') 

 

subplot(1,2,2) 

plot(t,Sum); 

title('Sum of direct probabilities') 

 

figure(3) 

subplot(1,2,1) 

plot(t,Probability1(:,:)) 

% axis([0 1 0 1]) 

legend('1','2','3','4') 

title('Simulated PD') 

 

subplot(1,2,2) 
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plot(t,Sum1); 

title('Sum of simulated probabilities') 

 

toc 
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