LOUGHBOROUGH UNIVERSITY

PHD THESIS

PHYSICS DEPARTMENT

Qualitative Analysis of Behaviors of Quantum Systems

June 28, 2024

Primary Supervisor:
Dr Alexandre Zagoskin
Physics department
A.Zagoskin@lboro.ac.uk

Secondary Supervisor:
Dr Alexander Balanov
Physics Department
A.Balanov@lboro.ac.uk

Author:
Yuetonghui Xie
B216726

Physics Department
Y.Xie@lboro.ac.uk


mailto:A.Zagoskin@lboro.ac.uk

Index

ABSTRACT 5
ACKNOWLEDGEMENTS 6
CHAPTER 1: INTRODUCTION 8
1.1 BACKGROUND OF QUANTUM COMPUTING 8

1.2 ADIABATIC QUANTUM COMPUTATION: AN ALTERNATIVE QUANTUM COMPUTING PARADIGM

11
1.3 THE MAIN CHALLENGES FOR DEVELOPING AQC 14
1.4 HOW OUR RESEARCH ADDRESSES THESE CHALLENGES 16
1.5 WHAT HAVE WE FOUND 16
CHAPTER 2: PECHUKAS-YUKAWA FORMALISM 17
2.1 BACKGROUND OF OUR RESEARCH 17
2.2 THE PECHUKAS-YUKAWA MODEL 20
2.3 STOCHASTIC PECHUKAS-YUKAWA FORMULA AND OCCUPATION NUMBERS 22
2.4 STANDARD LANDAU-ZENER TRANSITION FORMULA 26

2.5 NOISE AND THE PRECONDITIONS OF COMBINING THE LZ MODEL WITH THE PY FORMALISM 29

CHAPTER 3: USING PY METHOD TO STUDY LEVEL DYNAMICS AND OCCUPATION

NUMBERS FOR SMALL-SCALE QUANTUM SYSTEMS 38

3.1 EFFICACY OF PECHUKAS-YUKAWA FORMALISM 38

3.1.1 SIMULATION OF THE DYNAMICS OF SMALL-SCALE SYSTEMS WITHOUT THE PRESENCE OF

DECOHERENCE 39

3.1.2 SIMULATION OF THE LEVEL DYNAMICS FOR 2-5 QUBITS SYSTEMS WITH NOISE 44
2



3.1.3 THE EFFECT OF NOISE ON EVOLUTION OF LEVEL DYNAMICS AND THE SIMULATIONS VIA PY

METHOD 47

3.1.4 ACCURACY REQUIRED FOR THE SIMULATION AND LIMITATIONS OF PY METHOD IN SIMULATING

LARGE-SCALE QUANTUM SYSTEMS 52

3.1.5 FURTHER ANALYSIS OF THE SIMULATION ERROR IN THE PECHUKAS-YUKAWA FORMALISM __ 56

3.1.6 MEMORY REQUIREMENTS OF EXACT DIAGONALIZATION VS. THE PECHUKAS—Y UKAWA METHOD

61
3.2 INITIAL STATES, EXTERNAL FIELD PARAMETERS AND OCCUPATION PROBABILITY
DISTRIBUTIONS 63
3.2.1 SIMULATIONS OF THE OCCUPATION PROBABILITY DISTRIBUTION OF 4-QUBIT SYSTEMS
PREPARED IN ARBITRARY STATES THROUGH THE PY METHOD 63
3.2.2 OPTIMAL PARAMETERS OF A FOR MAXIMIZING GROUND STATE PROBABILITY IN A 4-QUBIT
SYSTEM 66

3.2.3 SHARED OPTIMAL PARAMETERS: A POTENTIAL TOOL FOR STATE TRACKING AND PARAMETER

ADJUSTMENT IN QUANTUM SYSTEMS 70
3.3 MANIPULATING QUANTUM SYSTEMS NEAR ANTI-CROSSINGS 74
3.4 SUMMARY OF CHAPTER 3 77

CHAPTER 4: DYNAMICAL COMPLEXITY AND OCCUPATION PROBABILITY

DISTRIBUTION OF 2-QUBIT SYSTEM 78
INTRODUCTION OF CHAPTER 4 78
4.1: FOUNDATIONAL CONCEPTS AND TOOLS 79
4.2: FURTHER VERIFICATION OF OUR HYPOTHESIS AND INTERESTING RESULTS 91
4.2.1 SYSTEMS PREPARED ENTIRELY IN EDGE LEVELS 93
4.2.2 SYSTEMS PREPARED ENTIRELY AT INTERMEDIATE LEVELS: 98
4.3: SYSTEMS PREPARED IN MIXED STATES 114
4.4 SPECTRAL ENTROPY AND ESCAPE SPEED 120

4.5 EXPECTATION ENERGY AND SPECTRAL ENTROPY 125
3




4.6 IMPACT OF NOISE STRENGTH ON THE SYSTEM'S EVOLUTION 128

4.7 SUMMARY OF CHAPTER 4 134
CHAPTER 5: DISCUSSION 136
5.1 SUMMARY OF OUR MAIN RESULTS 137
5.2 IMPLICATIONS 139
5.3 LIMITATIONS AND FUTURE WORK 140
5.4 CONCLUSION 145
APPENDIX 147

APPENDIX A: POWER SPECTRAL DENSITY, THE WELCH METHOD AND WINDOWED FUNCTION 147

POWER SPECTRAL DENSITY 147
THE WELCH METHOD 150
SIGNAL PROCESSING FOR SPECTRUM ANALYSIS: WINDOW FUNCTION 151
APPENDIX B: CODE 155
CODE INDEX 155
CALCULATE OCCUPATION NUMBER WITHOUT RENORMALIZATION 156
CALCULATE OCCUPATION NUMBER WITH RENORMALIZATION 160
WHITE NOISE GENERATE FUNCTION 167

ITERATION THROUGH AMPLITUDE AND FREQUENCY OF A FOR 2-QUBIT SYSTEMS (DIRECT METHOD)

170

SIMULATION OF 5-QUBIT SYSTEM THROUGH PY METHOD 185

COMPARISON OF THE PROBABILITIES OF BEING AT EACH ENERGY LEVEL OF FIVE QUBITS SYSTEM _ 211
POWER SPECTRAL DENSITY OF EXPECTATION ENERGY VALUE OF 2 QUBITS SYSTEM 266
MAXIMUM PROBABILITY FOR THE 4-QUBIT SYSTEMS TO FALL IN THE GROUND STATE DURING THE

EVOLUTION 277

FOUR QUBITS SIMULATION THROUGH PY METHOD 295




SIMULATION OF THE LEVEL DYNAMICS OF 2-QUBIT SYSTEMS THROUGH PY METHOD 316

CALCULATING DISPERSION 322
PY METHOD WITH RUNGE-KUTTA 4™ ORDER METHOD 326
SIMULATION OF 4-QUBI SYSTEM THROUGH PY METHOD WITH EULER METHOD 348
REFERENCES 370

Abstract

Taking advantages of the Pechukas-Yukawa formalism, our research explores the dynamic
behavior of small-scale quantum systems ranging from 2 to 5 qubits with the presence of
decoherence, specifically investigating the conditions that favor the system's occupation of the
ground state. Inspired by the fundamental insights of Landau-Zener transitions which show the
relation between anti-crossings and transitions among adjacent energy levels, our study
leverages the Pechukas-Yukawa formalism to explore the manipulation of transition
probabilities within quantum systems. Our research reveals that the transition probabilities
between adjacent energy levels can be effectively modulated near the vicinity of anti-crossings
by tuning the external controlling parameter A. This shows a possibility of precise control of
the occupation probability distribution of the quantum systems through the external control
parameter. Through the PY formalism, we provide an explanation for the phenomenon occurred
in our simulations that components of noise generally reinforce each other and point out the
possibility that this mutually reinforcing effect can be reduced by changing the composition of
the noise. In addition, we found a relation between the power spectral density of the expectation
value of energy of the quantum system and its likelihood of transitioning from its current energy

level, i.e., the broadening of the power spectral density is always associated with an increased
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probability of a quantum system escaping from the current energy level, especially when
initialised in an edge state (the ground or the most excited energy level). Systems initialised in
edge states have a lower tendency to transit compared to those initialled in intermediate energy
levels. This observation of the relation between the broadening of the power spectral density
of expectation value of energy and an increased likelihood for the system to escape from its
current energy level provides a new research direction about the influence of dynamical
complexity of the system on its occupation probability distribution. Moreover, since spectral
analysis is considered as one of possible indicators of quantum chaotic behaviors, if combined
with other diagnostic methods, our study can provide some help in future studies on the role of
quantum chaos on the dynamics of quantum systems. Additionally, our results show that in
some special cases, the external controlling field A can drive the quantum system from the
mixed excited states to the ground state with a high probability (exceeding 90%). And this
staying in the ground state can be maintained for an extended duration (over 150 periods of ).

This is a discovery with promising implications for the design of adiabatic quantum computers.

Statement: Chatgpt has been used to improve the language of this thesis.
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Chapter 1: Introduction

1.1 Background of Quantum Computing

In 1972, the famous statement “More is different” was made by P.W. Anderson?, which sharply
points out why the world we are living in has so many interesting phenomena, since it is not
only the simple accumulation of elementary particles, but also the complicated combination of
the fundamental parts, which is beyond our wildest imagination.
This statement is especially suitable to describe the contemporary state of scientific research.
As the number of questions have been asked grows, an exponentially increasing demand of
greater calculating power emerges. As a result of this, a bottleneck in technological
development appears due to the lack of capability to solve complicated problems within an
acceptable time scale by the prevailing method, namely, classical computing. For instance,
when simulating quantum computers, this lack of capability of classical computers is mainly
due to the following difficulties:

(1) Tremendous computer memories are required since tracking the probability density of all
executable deployments in a large quantum coherent structure is a very time-consuming
task which could cost thousands of years or even longer through classical computers?.

(2) Exponential increase of computing power is necessary for simulating the time-dependent
evolution of a quantum system with a classical processor, which is subject to error and
becomes unrealistic unless proper approximations are used. However, approximations are
normally only available for specific problems, and there are many limitations even for these
specific problems®.

(3) The exponential growth of computing resources simulating the evolution in the Hilbert
space makes it the “Mission Impossible” for classical computers. Even the most advanced
supercomputer in the world is incapable to simulating quantum systems with 50 or more
qubits efficiently due to this difficulty”.

Addressing the challenges mentioned previously, traditional computational methods may not



offer adequate solutions and a new approach different than classical computation is required.
Fortunately, quantum computing, an emerging field in modern physics, shows promise as a

potential avenue for overcoming these issues.

Unlike its classical counterpart, quantum computers, leveraging their intrinsic property of
quantum superposition, excel naturally at performing quantum simulations, tasks where
classical computers face significant limitations. This capability stems from the ability of
quantum bits (qubits) to exist in multiple states simultaneously, unlike classical bits which are
strictly binary (0 or 1). More specifically, when multiple qubits become entangled, the
computational power grows exponentially: a system of N entangled qubits can simultaneously
represent 2V distinct states. This exponential scaling is what gives quantum computers their
remarkable potential for complex simulations and problem-solving®. The exponentially
growing information required for solving complex problems can therefore be stored and
manipulated through quantum superpositions of the qubits without occupying large physical

computing memory®.

This extraordinary concept of quantum computing (Quantum computation, for short QC) was
originally proposed by Benioff about 4 decades ago, in the early 1980s with the quantum Turing
machine’. Two years later, in 1982, Feynman demonstrated that classical computers can only
imitate quantum mechanics, but quantum computers are necessary if people are seeking a way

to simulate quantum mechanics rather than imitate it®.

However, the capabilities of quantum computing extend far beyond simulating quantum
mechanics.

In fact, over the past 4 decades, quantum information theory and quantum computing have
played important roles as the rising stars in many frontier research directions including but not
limited to optimizing traffic flow °, pharmaceutical designing X, the deciphering of

cryptosystems*! and financial portfolios'?. A growing number of scientists recognized that with



large-scale quantum computers with practical efficiency and error tolerance, some problems

which are infeasible for classical computers become solvable 3.

Although Feynman proposed the idea of a quantum computer in 1982 with the aim of
simulating quantum mechanics, seven years later, in 1989, Deustch proposed an idea of
designing a universal quantum computer: the gate model (also called the circuit model), which
has been widely adopted as the “standard” model later by physicists'*. In 1996, Lloyd
demonstrated that a quantum coherent structure consisting of well-designed qubits. This
structure was initially thought to be a universal quantum simulator, meaning it could be
prepared in a specific way and have unitary quantum gates implemented on it!°.

By coding the evolution of the computation through the whole Hilbert space into a sequence
of unitary operations which constitute the quantum logic gates and eventually form the multi-
level quantum coherent structure, the solution of the questions programmed in a standard model
(i.e., the gate model) is encoded in a form of entanglement of its eigenstates. These

entanglements are considered as fragile since it could be affected by decoherence easily?®.

To be described as “universal”, a quantum computer is supposed to be capable of solving
different challengeable problems programmed properly in it (not limited to specialized
problems only)*’. Nevertheless, it was realized later that universal quantum computers are not

necessarily feasible for realizing quantum simulation®®,

Compared to general-purpose simulators, quantum computers specifically designed for
simulating smaller or less complex quantum systems may hold greater promise. This advantage
stems from their ability to simulate the evolution of other quantum systems within the
simulated environment. By leveraging a workable, smaller-scale quantum system as a tool, we
can explore the behavior of more intricate quantum structures that are currently difficult or

impossible to examine directly. This approach brings us closer to overcoming the challenges
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of simulating complex quantum mechanical problems*®.

1.2 Adiabatic Quantum Computation: An Alternative Quantum

Computing Paradigm

Although the circuit models have the following advantages including a broader range of
algorithms and established techniques®’, they can be easily designed, analyzed, and simulated
on classical computers?!, they are relatively universal and flexible for encoding a wide range
of problems??, quantum advantage can be established through scaling of large circuits®® and
the current situation that building circuit-based quantum computers is highly focused by
commercial applications®*. But considering the fragility brought by decoherence whether from
outside or inside, it is unlikely that a practical quantum computer through the “standard” model

can be reached in the very near future?®®.

However, an alternative approach known as adiabatic quantum computing (AQC) arose as a
promising paradigm, based on following advantages, which present the key for us to reach that
goal ?°. Compared to the circuit model, precise gate operations can be avoided in AQC,
therefore, physically implementing AQC could be easier?” and provides a possibility to avoid
theoretical limits like those present in circuit models including error correction®®, unitary
evolution?®, Solovay-Kitaev bound, scaling attributes constrained by circuit depth®, limitations
of architecture of circuits®® and time evolution focus of logic gates®. In addition, the intrinsic
nature of AQC that the hardware stays in the ground state provides a robust protection against
decoherence and unitary control errors, which are one of main difficulties in designing the standard

model 2.

Specifically, some problems are naturally more suitable for AQC algorithms. For examples, the

traveling salesman can be mapped to finding the ground state of an Ising spin glass Hamiltonian
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3 factorizing numbers can be done using fewer qubits through adiabatic quantum algorithm,

simulation of quantum systems through AQC?, training Boltzmann machines and deep belief
networks are benefited by quantum annealing®’ and structure prediction of protein folding

using adiabatic D-Wave implementations has shown promise®®.

The origin of adiabatic quantum computation (AQC) originated in 2000 with the purpose of
solving instances of the satisfiability problem °. The main theory forming the foundation of
this approach is the adiabatic theory that is one of the most ancient theories in quantum

mechanics:

A non-degenerate quantum system remains in the instantaneous eigenstate when its

Hamiltonian is evolving adiabatically, i.e., slow enough®’.

More precisely, a quantum coherent system will change its functional form to adapt to the
adiabatic evolution if the external governing parameter is changing slowly enough. However,
this adaptation is limited, the system will fail to adapt if the evolving speed becomes too fast.
Here we have an interesting coincidence that we can take advantages of, for adiabatic quantum
computation, we can use the time-independent method by direct diagonalizing the Hamiltonian
to obtain the eigenvalues (this direct approach would fail if the system is changing too fast,
however, we don’t have to worry about this under the context of AQC, since the pre-request of
AQC is slow evolution). This is practically helpful to identify the error size of our simulation

using Pechukas-Yukawa formalism, the details are presented in Chapter 2.

In this approach, the evolution of the quantum state is decided by a time-dependent
Hamiltonian that evolves from its initial Hamiltonian to its final Hamiltonian, where the initial
Hamiltonian should be easy to prepare such as a tensor product, and the solution of the problem
should be encoded to the ground state of the final Hamiltonian, which is the output.

Since in the context of AQC, the system has a high probability of being in the ground state after
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evolving for a long enough time (but not 100% if within a finite time) , a balance between
the time requested for calculation and the probability for the system to finally stay in the ground
state must be considered carefully. To be considered as practically useful, the AQC should have
a large enough probability to be in the ground state during a slow enough but relatively fast

evolution from its initial Hamiltonian to its final Hamiltonian.

Specifically, the time required for the adiabatic evolution depends on multiple factors. Though
the energy gaps between higher excited states also play an important role, especially in complex
quantum systems involving multiple qubits or intricate interactions. The primary determinant
of the adiabatic condition is the minimum energy gap between the ground state and the first
excited state, which is critical because it governs the likelihood of the system undergoing non-
adiabatic transitions during its evolution. How this gap could affect the speed to drop into
ground state is a critical question for the design of adiabatic quantum computer®’. It has been
shown that if the minimal energy gap between the ground state and the first excited state is at
least inverse polynomial, then the time demanded by adiabatic computation is polynomial®?.

Additionally, the evolution duration is influenced by the external controlling fields, including
but not limited to the strength, configuration, and manner in which these fields modulate the
system's dynamics. The design and precise manipulation of external fields are crucial to ensure
the system remains in its ground state to avoid non-adiabatic transitions, thereby ensuring the

correctness and efficiency of the computation. We present some examples of this in chapter 3.

In short, we aim to ensure that the Hamiltonian of our AQC, defined as ( H(s) =
(1 = s)Hinitia1 + SHfinar ), where s is a dimensionless parameter varying from 0 to 1 that
controls the interpolation between the initial Hamiltonian Hjyjiq; and the final Hamiltonian

Hfinai » €volves sufficiently slowly to allow the adiabatic theory to take over control of the
process. Or H(A(t)) = Hy + A(t)ZH, if we would prefer to focus more on the role of the

external controlling field, where H, denotes the unperturbed part of the Hamiltonian, i.e., the

13



free Hamiltonian, ZH,, represents the perturbed Hamiltonian and A stands for the adiabatic

parameter which controls the whole evolution of the AQC.

Another point worth noting is that in 2005, a milestone showed that Adiabatic quantum
computation is polynomial equivalent to the circuit model which had been considered as the
standard quantum computation*®. Therefore, adiabatic quantum computation was proved to be
a promising alternative to the conventional circuit model since any quantum algorithm can be
simulated by AQC in polynomial time, providing a practical approach to bypass the limitations

of the circuit models**.

1.3 The Main Challenges for Developing AQC

Though adiabatic quantum computing is considered as a promising alternative to the gate
model, there are several challenges among its theoretical frameworks, hardware, algorithmic
development, and process verification, which exist as significant obstacles for realizing the
practical quantum advantage that AQC promises.

While taking advantage of the adiabatic theorem, AQC is also limited by this theorem, adiabatic
algorithm must evolve slowly enough to remain in the ground state, leading to long run times
on current hardware which could be considered as impractical. Therefore, finding an optimal
balance between evolution time and probability for AQC to stay in its ground state becomes
important®.

Also based on the principle of the theoretical framework that the system should be in the ground
state as much as possible during the evolution process, factors that may cause the system to
leave the ground state such as noise and decoherence must be considered. The ways in which
noise and decoherence affect the probability for the system to be in the ground state needs to

be studied. And effective management of noise and decoherence is critical and challenging for

hardware design since precise control is required for the system to stay in ground state*. In
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addition, many optimization problems have complicated energy landscapes with multiple local
minima. In strictly adiabatic processes, system has chances to get stuck in these local minima,
especially if the energy barriers between them and the global minimum are high .
Consequently, diabatic annealing is considered as a more promising approach compared to
adiabatic quantum annealing due to its capability to bypass the shortages for AQC such as very
long running time, the inevitable transition caused by noise and decoherence and the risk of

falling into local minima*®.

Besides, there are other challenges raises from the aspect of hardware design such as limited
connectivity and scaling up system size. Among the many existing physical designs and
architecture, especially those based on superconducting qubits or trapped ions, the engineering
and physics layout restrict the interaction between qubits to only adjacent units, which limits
the way for qubits to interact and to be coupled. This also brings a structural limitation on the
design of algorithms, the strategies for encoding the problems should accommodate this limited
connectivity*®. Moreover, the issue of limited connectivity can be more serious as system scale
up. Due to the limitation that qubits can only interact with their nearest neighbors, it will request
additional steps to deliver quantum information across the qubit arrays if we want to implement
complex multi-qubit gates that span a larger system, which will lead to more errors and longer
computation time. Considering this and the complexity of comparing quantum algorithms with
their classical counterparts, rigorously proving a quantum speedup over classical algorithms
remains an open challenge®. Therefore, expanding to large numbers of qubits is extremely
technologically demanding®'. For AQC there are fewer known techniques for mapping

problems®? and less intuitive methods to encode and embed the issues®

compared to gate
model which further reflects the complexity of this algorithm design challenge.
At last, it is also difficult to verify whether an AQC is running properly due to the hardness of

validating adiabatic evolution maintained the ground state®*.
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1.4 How Our Research Addresses These Challenges

Among the above difficulties, our research starts from the three main challenges faced by AQC,
which are very long evolution time, noise and decoherence as well as exploring optimized
operation. We focus more on how to improve the performance of AQC by increasing the

probability for the system to be in the ground state and staying there longer.

We simulated the dynamic evolution of 2 to 5 qubits system in the presence of white noise
through the Pechukas-Yukawa formalism using an adaptive step length Runge-Kutta 4
algorithm in MATLAB. We qualitatively studied the regimes for the impact of a time-varying
external field which controls the evolution of the quantum systems and how phenomena in
broadened power spectral density of the expectation value of energy of the target system, which
is one of possible indicators of the occurrence of quantum chaotic behaviors, can affect the
trending of the probability distribution. Therefore, we can identify which factors determine
when the system is most likely to quickly fall into the ground state and stay there long enough
to allow successfully implementation of the adiabatic algorithm. Our research can provide
insights to help solve the above-mentioned challenges and therefore contribute to the

development of AQC.

1.5 What Have We Found

The Pechukas-Yukawa formalism is both reliable and efficient for simulating the dynamic
evolution of small quantum coherent structures (2 to 5 qubits) in the presence of decoherence.
This method is not limited to simulating small quantum systems if some numerical difficulties
are properly handled (they can be handled, details can be found in chapter 2). Some advantages

and disadvantages of PY method in simulation are presented.

In chapter 3 we show that by adjusting the parameters of the external field near the vicinity of

anti-crossings, the flow of probability for the system to go up or down in energy levels can be
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manipulated. It is worth noting that in our simulations, we found that quantum systems with
any initial probability distribution, they have their corresponding parameters of the external
field (amplitude, frequency) to allow the system having the maximum probability of falling to

the ground state within a certain time.

In addition, the magnitude of the spectral broadening of the power spectral density of the
expectation value of energy of the system, which is one of possible indicators of whether there
is an occurrence of quantum chaos during the evolution, is consistent with the degree to which
the system deviates from the current energy level. Specifically, in the cases where a spectral
broadening is presented, denoting a possibility of having quantum chaos, the ground state and
the highest energy level have less escape propensity than the intermediate energy levels.

Of particular importance for developing AQC is that, in some specific cases, we found that a
system initially prepared in an excited mixed state can quickly fall to the ground state in a

relatively short time and maintain a high probability to stay in the ground level for long time.

Chapter 2: Pechukas-Yukawa Formalism

2.1 Background of Our Research

Our research stemmed from a challenging question: How can we verify that a device, purported

to be a quantum computer, truly functions as one?

How much it is working as a quantum computer (note that a part of it might lose its quantum
characteristics due to decoherence)? In other words, if we are looking for a workable quantum
computer, we must find an answer for the following question “how to test the quantumness of
a quantum computer”®. It cannot be considered as an easy question unless we have a working
universal quantum computer due to the difficulty of simulating a large quantum coherent
structure through a classical computer, which is basically raised by the tremendous need of

computational memory, i.e., to store the information encoded in N qubits, we would need 2V
17



classical bits. The requirement for exponentially increasing computational power significantly
obstructs this goal.

To solve this critical problem, a more suitable approach for the simulation of an evolving
quantum coherent structure is a must since we do not have a working universal quantum

computer for now.

Finding a classical method to simulate quantum computing is a stopgap measure in the absence

of a universal quantum computer.

To simplify this question “how to test the quantumness of a quantum computer”, we can
consider starting with AQC, in which case, due to the principle of AQC, its “quantumness” can
be equated to the probability that the system stays in the ground state.

As a result of this, finding a feasible and precise classical method which is not only capable to
simulate the level dynamics but also the occupation probabilities distribution, is the key to

measure the “quantumness” of AQC.

Given the fact that there is an established equivalence between adiabatic quantum computing
and standard quantum computing, addressing the challenge of how to test the 'quantumness' of
an AQC can be effectively translated into tackling the broader question of assessing the
quantumness of a QC. This logical equivalence allows us to reframe the question of "how to
test the quantumness of a QC" into a more specific inquiry within the context of AQC: "What
is the probability that the AQC is in its ground state during the calculation?" By focusing on
this particular aspect of AQC, not only is the problem of verifying quantum behavior in a novel
way approached but also a concrete method for evaluating the quantum characteristics of
quantum computing systems in general is provided. In another word, this approach leverages
the principles of AQC to simplify and directly address the complexities involved in testing the

quantumness of quantum computers.
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The methodology used in our study takes advantages of the Pechukas-Yukawa formalism,
which was originally introduced by Pechukas®® and further developed by Yukawa®'. It utilizes
the concept of mapping the level dynamics of a quantum coherent system to a one-dimensional
fictitious gas, i.e., the Pechukas gas and provides a sophisticated approach for analysing the
dynamics of quantum systems. We apply this methodology to assess the quantum state of small-
scale (2 to 5 qubits) quantum coherent structures and study the regimes how the external
controlling field could decide the probability distribution of the systems. According to our
simulation results, this approach shows reliability for simulating small-scale quantum systems
(details present in Chapter 3) due to its comprehensive nature and effectiveness, which enables
a direct and insightful analysis of the quantum behaviour of AQC, thereby offering a concrete

strategy for evaluating the 'quantumness' of quantum computing systems.

Therefore, the behavior of energy levels and corresponding eigenstates as parameters change
is described by a set of classical equations of motion, i.e., the Pechukas equations (details in
section 2.2). By applying this transformation, the evolving level dynamics of the quantum

system can be efficiently simulated through classical computational means.

Our research is based on the Pechukas-Yukawa Formalism to qualitatively investigate the
behaviors of quantum coherent systems. Taking advantages of the Pechukas-Yukawa
formalism and the direct diagonalizing method, we efficiently simulated both the level
dynamics and the occupation probability distribution of small-scale quantum coherent

structures ranging from 2 to 5 qubits (details are presented in Chapter 4).

Before introducing the details of how the Pechukas-Yukawa (PY) formalism works, let us first

explain why we choose PY formalism as our main research tool.

In our simulations, though we found that the PY formalism is not as efficient as the direct

diagonalization method even for small-scale quantum systems, it still has other advantages for
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studying the behaviours of quantum systems whose Hamiltonians are controlled by an external
field A due to its unique theoretical framework. By mapping the level dynamics of the target
systems to the dynamics of a 1-dimensional fictitious Pechukas gas, PY formalism enables
researchers to apply classical physics concepts to intuitively understand the behaviour of

quantum systems.

We conclude that the PY formalism is applicable to the study quantum systems controlled by
external perturbations in following aspects: first, by mapping quantum energy levels into the
motion of classical Pechukas gas particles, it intuitively reveals the energy level evolution
process, including the crossing and avoiding crossing phenomena, and is particularly suitable
for studying the gradual changes in energy levels of slowly changing system parameters;
second, the PY formalism can effectively analyze the changes in parameter-dependent
Hamiltonians, providing advanced mathematical tools for predicting and controlling the
behavior of quantum systems; third, although the PY formalism is convenient for adiabatic
processes, it also has great application potential in non-adiabatic processes, and can describe
the changes in quantum energy levels and transition probabilities under rapidly changing
external conditions; fourth, the PY formalism not only describes energy level changes, but also
studies the evolution of quantum states with time, which is conducive to high-precision control
in quantum computing, communication and simulation; finally, the PY formalism provides a
different perturbation theory basis by using matrix elements of the precise instantaneous

eigenstates of the full Hamiltonian.

2.2 The Pechukas-Yukawa Model

The Hamiltonian of an adiabatic quantum computer is presented as the following form below:
H(A(t)) = Ho + A(t)ZH, (1)
where H, represents the unperturbed part of the Hamiltonian, i.e., the free Hamiltonian, and

ZH,, represents the perturbation. The adiabatic parameter which controls the whole evolution
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of the AQC is denoted as A.

For example, for the 2-qubit system used in our simulation for chapter 4:

Hy = Z ASF = ABF @ [+ 1,1 @ 53
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0 01 0 01 0O
0 0 0 1 1 0 0 1
=A +A
1 0 0 o 2lo0 o0 0 1
0 1 0 O 0 0 1 0
0 1
=7 o)
1 0
1 O
7= _1)
0 -1
ZH, = &;(h;67 — Aj67) + Z J k8267
jk
=h6f QI+ h,] Q65— (A16F @I+ 1,1 Q65)+J1,67 ®5§
10 0 0 1 0 0 0 0 010 010 0 1 0
. [o 1 0 o 0 -1 0 o) ,(0oo0 o0 1)_ 10 0 0 0 -
_h100—10+h20010A11000A20001+]1200
00 0 -1 0 0 0 -1 0100 0 01 0 0 0
h‘l + hz +]12 _Az _Al 0
— —A, hy —hy =12 0 —A
-4 0 —hy +hy —J12 —A;
0 =4 =4, —hy —hy +J12
0 A, A, O
(A, 0 0 A
Hy = A, 0 0 A,
0 A, A, O
0 Az Al 0 hl + hz +]12 _Az _A]_ 0
(4 0 0 A -4, hy —hy = Jiz 0 —A;
HD=1a 0 0o a, |7 -a, 0 —hy+hy — ], A,
0 A, A, O 0 -, —A, —hy —hy + 1,

Xm = (MA)[HA)|m (L)) = (mIHDIm>}
Vin = (m(A)|ZHp|m(A))

Im(4)) = Eigenvectors (:,m, 1)

{(m(A)| = transpose( Eigenvectors (:,m,i))

We use the function in MATLAB to obtain eigenvector and eigenvalue, which is [V, HD] =
eig(A), where diagonal matrix HD represent eigenvalues. Matrix V whose columns are the
corresponding eigenvectors. So AxV =V *HD and |m(4)) is the mth column of

Eigenvectors at A.

The Pechukas-Yukawa model (abbreviated as the PY model) benefits us mainly by offering a
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practical approach to map the adiabatic evolution controlled by the adiabatic parameter A of a
perturbed quantum coherent structure onto the 1-dimensional fictitious Pechukas gas®®.

This mapping is considered as promising to be numerically cost-effective in addressing one of
the major challenges in quantum computing study, namely the key question of "how to test the
quantum properties of quantum coherent structures". The details can be seen in the works of
Qureshi®®.

The Pechukas equation for the description of the level dynamics of a multi-qubits quantum

coherent structure has the following form:

d
axm =Unm;
d v =2 Z |lmn|2
da " m#n (xm_xn)3 ’
d 1 !
ﬁlmn - Zkim,n ((xm_xk)z - (xk_xn)z) (2)

The eigenvalue of the mth energy level is represented by the position of the fictitious gas
particles x,,,

While v, and [,,,, denotes the velocity and angular momentum of the Pechukas gas particles.
In Chapter 4 and 5, we showed that the PY formalism is not only particularly helpful for small-
scale quantum coherent structures (ranging from 2 to 5 qubits) with multi-levels of energy that
are greatly entangled, but also extraordinarily convenient for qualitatively studying the regime

of quantum chaotic behaviors.

2.3 Stochastic Pechukas-Yukawa Formula and Occupation

Numbers

For the case of stochastic Pechukas-Yukawa model considering the presence of decoherence,
i.e., noise, the Hamiltonian of a multi-qubit quantum coherent structure will have the following

form where an additional part 6h denoting the randomness is included:

H(A(t)) = Hy + A()ZHp, + 5R(A(D))
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3)
In Eq. (3), 6h represent the impact of noise to the Hamiltonian of the target quantum system
and 6h should be a real number so the system can be simplified in our research.
Thus, the PY method is extended to the generalized Pechukas-Yukawa formalism with an
additional stochastic term denoting to the total influence of noise (internal and external) to
simulate the quantum coherent system far from equilibrium in real cases considering the
presence of decoherence.
Stochastic Pechukas-equations®:

Xy = Uy + 6P,

vm - ZZm:&n (x

|lmn|2 + lmnghnm_ghmn lnm

m—Xn)3 (Xm—xn)? ’
. 1 1
ln = Zk:tm,n Lk lien [(xm_xk)z - (xk_xn)z] (4)

(xm_xn)(lmkghkm_ghmk lkm)
Com=x) (xXxn—x%)

3 Unn(8hmm=G6hnn)
+0hmn (Vi — vy) + T

_.|_

It has the same structure as in Eq. (2), nothing else but additional terms to represent the effect
of decoherence. If the situation is the ideal case without the presence of decoherence, then the
above equations (4) can be reduced to equations (2). This can be seen as a limiting case when
the decoherence term tends to zero.

It should be noted that the stochastic Pechukas equation makes no assumptions about the nature
of the decoherence, e.g., noise, which makes this method a general one and very convenient

for the numerical analysis of stochastic quantum systems with various types of perturbations.

Earlier, we introduced the Pechukas-Yukawa equations which express the dynamics of energy
levels in small scale quantum systems. Nevertheless, more work is needed to link this approach
to quantum reorganization of targeted quantum coherent systems. In another word, we want

the occupation probabilities distribution of the quantum systems.

Extension of the Pechukas-Yukawa Formalism is further reached for constructing a shortcut

between the level dynamics and the quantum states of a coherent quantum system via the
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occupation numbers which are dominated by the eigenstate expansion coefficients C,(t) %, in

which way the entity of quantum system can be studied further.

To study the evolution of the occupation probabilities in an adiabatically evolving quantum
system, we expand the system state in terms of the instantaneous eigenstates of the Hamiltonian
H(t) as follows:
[Y(1)) = LnCa(O)[n(D))
(C1)
For eigenstate coefficients for each fixed instant in time

C,(t) € C , related to the occupation number N,, by the following:

|Cn(t)|2 = Ny, (C2)

The evolution of C,, associated with the eigenvalues of the state is obtained by

H(O[() = i)
=2 % Ca(®)IN(D) = Zn Ea(OI)(®)
(C3)

. o a . o .
Taking the derivative = 5, using Leibnitz rule, we obtain

i% =1 2n G(®)In(®) + G (O)|n(D)
= 2n GrOE, () In(D))

(Ca)

Applying (m(t)| on both sides and through linearity we obtain the dyranics of these

coefficients through time with regards to the eigenvalues of the state
i) O+ (MOICA OO = Y Ca(OEn()mn (C5)
n n

Hence by evaluating the § distributions and rearranging the expression we have the following:
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iCm(t) - Cm(t)Em lZnim C (t)<m(t)| Fy) |Tl(t))/1

(Co)

In determining the evolution of (m(t)| % In(t)) » we have the following

] 9
2 EqIn(t)) =~ H(D)In(t)) ()
Applying the Leibnitz rule on both sides we obtain

En(®) (53 1n(0)) + In(0)) (5= En (D))

) (Cg)
=V () n(®) + H(®) 5; In(D)

Acting on both sides with (m(t)| and through linearity such that m # n , itreads

En(t)(m(t)| % In(©) = MmOV (®)|n(0)) + Em(t)(m(t)I% In(®)) (o)

Hence
[En () — Em(t)](m(t)l S () = MOV [n(D)) (C10)
By applying the Pechukas equations to determine 1,,,,, as described in Eq.(4), we are able

to determine the evolution (m(t)| % [n(t)) entirely using level dynamics

(= X)) & n(£)) = 222 ()
Thus, <m(t)| |n(t)> o _Z 2 (C12)
iCm(t) — CX = —il Zn;tm n(xlil—;)z (C13)

iCn(8) = Cn(O)Em = ~iA(0) Tnem Ca(®)(m(D)I5; (D))
(C1a)
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Use (612) . (613) and (614), we have

iC = (x+id—ms) (Cus)
Where
C =[C1(t) - C(®]" (Ci6)
and the X represents the diagonal matrix®?:
X = diag (x; ...x,) , (C17)
and let
Pmn =_—_tm _ and Pmn =0 when m =n.And P = p,,, -

B (xm—xn)?
Finally, we have the following differential equation for our simulation for the occupation

numbers:

i2C=(X—iiP)C (C18)
On the right-hand side of Eq. ((C;g), X is diagonal, and P indicates the skew-Hermitian and

can be recognized as diagonalizable since L, = —lhm.

2.4 Standard Landau-Zener Transition Formula

When the two adjacent energy levels are approaching each other (forming anti-crossings) as
the system is driven by the external controlling field, there is a probability for the system to
transit between these two adjacent energy levels through a process named as Landau-Zener
(LZ) transition. As a result of this, it is important to study the anti-crossings if we want to know
the conditions for the LZ transition to occur. And in turn, the LZ model can offer a quantitative
tool to calculate the possibility for such transition between these adjacent energy levels.

In practice, anti-crossings and the LZ model are often used together to manipulate the dynamic
behavior of quantum systems under the control of external perturbation. Understanding anti-
crossings can benefit design strategies to prevent unwanted quantum state transitions. And the

LZ model can provide an approach of precise manipulation of the transition rate between the
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adjacent levels of an anti-crossing.

It has been demonstrated®® that the PY method is significantly suitable for the analysis of the
Landau-Zener transitions, for example, for the case where degeneracies occur, i.e., x,(4*) =
X, (1), level crossings occur and relative angular momentum tends to O for the two adjacent
levels L,,(1")=0 at avoided crossing at A*, however, it is impossible to draw the same

conclusion from the converse direction in general.

The main reason for the occurrence of anti-crossings is the presence of non-diagonal (non-local)
terms in the Hamiltonian of the system, which leads to couplings between system energy levels.
In some cases, this kind of coupling can lead to anti-crossings and causes transition between
energy levels. Near the intersection of these energy levels, the energy level difference (spectral
gap) of the system may be significantly reduced, which has a significant impact on the
performance of adiabatic quantum calculations, because smaller energy level differences will
increase the possibility of non-ground state excitation during adiabatic evolution. properties,

thus affecting the accuracy and speed of calculations®.

The degree of likeness to have the Landau-Zener transition for an adiabatic regime without any
impact from the external decoherence can be measured by the probability distribution in the

following form®®:
Piz = exp(—Aqun4m|(mIZHy )|V (11)
The time required for finishing such transition for a level(avoided) crossing is denoted by

Trz = Amin/ A , which refers to the time length when the adjacent two levels interacts within

distance v , with A,,;,, , for level crossings the transition finish instantly.

In the case of a level crossing, the transition time 7;, turns into zero, where a strong repulsion
arises due to the interaction between the two local levels involved in the anti-crossing, which

causes the transition time to occur instantly.
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Due to the assumption of the standard LZ crossing model that the level crossings are
independent of each other, the interaction of all other levels except the two nearest levels, i.e.,
the crossing between several levels, can be ignored in the statistical scenario, so only the
adjacent levels involved in the crossings are considered, specifically at the points where these

crossings occur.

Specifically, the LZ transition model will be especially convenient for the analysis of the
probability exchange near an anti-crossing if the anti-crossings are isolated to each other
because this meets the precondition of the LZ model that only the interactions between the
local two levels are considered.

Consider a case that two symmetric avoided crossings are taking place very closed to each
other, i.e., the centers of the anti-crossings are 1* and A™* = A1* + §, with their transition times

defined as 7;; = 2& and 7;, = 2&' respectively. Recall that the transition time has such a

form T, = A, /A . For the case that the quantum system is evolving adiabatically, it can be
inferred that the requirement for these two avoided crossings to be independent from each other,
should have the relationship (4™ —¢&') > (1" + &) , which enlightens us a property that the
transition times of these two avoided crossings should have no overlapping though the two
anti-crossings are locating closely to each other. Thus, to implement the LZ transition model

we should have such inequality (1" —&") > (A* + &).

In addition, we express the distance between the two local energy levels involved in avoiding
crossings in the equation. d(41) = x,,, — x,, , where we set x,,, > x,, to make sure the distance
has positive value, and these two local levels are tagged by m and n, which represents the m‘"
and n*"energy level in the objective quantum coherent ensemble. If we find that these two
adjacent levels are in a super-adjacent neighborhood with each other, they are represented as

¥, accompanied by the local nearest energy gap shown in the equation d(1*) = A, With

d(i*)ZO, indicating an avoided crossing. Look further, and we will reach an equation bridging
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the distance between the nearest local levels together with the minimum energy gap via
spreading the distance term d(A) about A1*, along with §A = (4 — 1*), which is presented in

the form listed below:

d(A) = Apyin + 622 2~ (12)

min

The definition of local scope can be demonstrated by the following equation, y = d(1* + §),

combining the minimum energy gap between the two adjacent levels as Ay, =Y —

At last we move forward to the requirement for the standard LZ formalism to be suitable with,
4p?
A3

min

in a way of inequality shown as § > %)\ (y-—=—)t¢' , since the locality constraint y on the two

involved energy levels cannot be neglected®®. Investigating further is therefore making sense.
The contribution of noise in the LZ transition model in the PY form is then described in the

next section.

2.5 Noise and the Preconditions of combining the LZ model with

the PY Formalism

It is well known that quantum coherent structures respond differently to two types of noise, 1.e.
transverse noise and longitudinal noise. While the transverse noise only considers diagonal
inputs, the longitudinal noise contains non-diagonal elements instead. Such difference is due

to the different nature of the different noises.

On one hand, longitudinal noise, i.e., pure dephasing refers to the phase loss of a quantum
system due to interaction with the environment but is not accompanied by energy exchange
between energy levels. This process causes the off-diagonal elements of the quantum state to
decay but leaves the diagonal elements of the state (energy level occupation probabilities)
unchanged. Pure dephasing is an important consideration in quantum information processing

because it affects the coherence of qubits without directly causing a loss of energy®’.
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The response of quantum coherent structures to environmental noise does not differ simply
because of the different nature of the noise. In fact, the difference in the impact of longitudinal
noise and transverse noise on quantum systems is mainly due to the different mechanisms of
their interaction with quantum systems.
We will illustrate the impact of longitudinal noise on quantum computing through a simple
example as shown below.
Suppose we have a superposition state of a quantum bit (qubit), represented as:

[¥) = a|0) + 1)

Then we apply a phase gate Ry to adjust the phase of the |1) state without changing the |0)
state. The action of the phase gate Ry can be represented as:
Ry|1) = e'|1)

Thus, after applying the phase gate, the quantum state becomes:

') = a|0) + Be'®|1)
To observe the interference effect, consider passing this quantum state through a specific

quantum gate again, such as a Hadamard gate H which is defined to act on the basis states as

follows:
1
H|0) =ﬁ(|0>+ 1))
1
H|1) =ﬁ(|0>— 1))

Applying the Hadamard gate H to [¢'), we get:

[p") = H(a|0) + Be?|1))

= (10} + |1)) + Bei® —=(]0) — 1))
=5 7z

1 . 1 .
- 9)(0) + — (a — B
5 (a+pe)I0) + —(a —pe')in)

Now, we can see that by adjusting the phase ¢, we can control the probability amplitudes for
the
|0) and |1) states.

Longitudinal noise will change the value of the phase ¢ and therefore influence the probability
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amplitudes and eventually reduce the performance of quantum computing.

On the other hand, transverse noise mainly causes a loss of coherence, i.e. affects the phase
relationship between system states, which is achieved through fluctuations in the off-diagonal
elements of the density matrix. It causes relaxation or excitation processes, leading to a change
in the population of the quantum states.

Relaxation is a process of energy exchange between a quantum system and the environment
around, driving the system to its ground level from an excited level, which is usually
temperature-dependent since thermal fluctuations in the environment cause energy level
transitions in quantum systems.

In the fields of quantum computing and quantum communications, relaxation limits the time
that qubits can remain in the excited state, which is one of the challenges that must be overcome

to achieve efficient quantum operations®.

Unlike pure dephasing, relaxation rate depends on the qubit transition frequency €, by tuning

the qubit we can in principle reduce relaxation but not pure dephasing®.

Overall, the impact of these two types of noise is not only based on their different properties,
but more on the specific mechanism of their interaction with the quantum system, and the way
they affect the coherence and stability of the quantum system. Longitudinal noise introduces
decoherence into quantum coherent structures which is one of the major challenges in the
development of quantum computers. At the same time, the coupling between the quantum
correlation ensemble and the environment is established through the influence of transverse
noise’’.

Let us have a look in the impact of longitudinal noise under the context of the stochastic PY
formalism and LZ model.

Firstly, taking into account the situation of a sole combined source of longitudinal noise
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denoted as §h, with the constraint 8h=617M, in which n corresponds to a random normal-
distributed procedure, random signals with constant power spectral density indicate equal
intensity at different frequencies, i.e., white noise .

In addition, we can use € to represent the magnitude of the perturbation to represent the
diagonal general matrix. Using the Wiener process, we can obtain autocorrelation in the

following equation:

(nmn(ﬂ-)» nmn(ﬂ-’» =51 -2),

(€Nmn (D), €Mmn (1)) = €26 — 1) (13)

Aware that the correlation time is exactly zero, i.e., T, = 0.

Note that the crossover to be avoided may come from the degradation of the horizontal
crossover due to the contribution of the disturbance. In order to study the effects of
perturbations in the PY formalism under the context of LZ transition model, it is necessary to
use multi-level N-level to two local levels of quantum phase involvement ensembles. If the
avoidance of intersections is independent, then according to the assumptions of the LZ
transition model, contributions to the avoidance of interactions at levels other than the two local
levels can be ignored, i.e., isolated.

Via the set of the stochastic PY equations, a random geometric Brownian shifting for imn
related to the m®™ and the n'"* energy level in an avoided crossing can be accessed’*.

The resulting relative angular momentum [,,,,, can be expressed in the following configuration:

Lin @) = Lnn(A" = Oexp(=Z[A— (" = Ol +aW (@) (14)

We should not neglect that the item o on the right of Eq. (14) which can then be presented as

ue

Amin

o =

A necessary condition for implementing the LZ transformation model into a random PY form,
taking into account noise effects, is that the intersections avoided in very close regions must be
independent of each other, that is, isolated from each other. Perturbation can influence the
dynamics around an avoided crossing, potentially facilitating or modifying the system's

transition through such points’2,
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One of the most interesting effects of noise on the development of adiabatic quantum computers
is its contribution to the nearest energy gap between the ground state and the first excited state,
which determines the probability of the Landau-Zener transition and the associated transition

time when it occurs.

By capturing the contribution of noise to the nearest energy gap, the relation between the
transition time and the effect of perturbation is revealed, so that two adjacent independent
isolation conditions can be controlled, that is, to avoid crossing.

In the case where two local level crossings with their minimum energy gaps at two nearby
location 1* and A*™* = A* + § , where transition times 7,,; = 2& and 1;, = 2&’ respectively,
the anti-crossings are said to be in isolation if there is no overlapping part through the transition
instant. Specially, when the inequality (A —¢&') > (A" +¢&) is matched, the LZ
transformation model can be used to examine the likelihood of the corresponding population
change.

If the gap between two energy levels is d(1) = x,, — x,, , and set x,,, > x,, to guarantee that
the distance d(A) to be larger than zero, and tag the two levels having territory on the anti-
crossing as mt" and n'"* level, then a rendition relates to the closest energy level parting can

be reach by spreading the gap d(A) about A*, along with f(1) = —572[/1 - =9l +

énlA— @ =9I

() = By + 622 [AmnZ=D0 o270 1 gy (/1*)] (15)

If we take the neighborhood constraint y in a relationship in the middle of the gap asy =
d(A" + &), we will be rewarded with a new relation that reveals the minimum parting range

between two energy levels local to an avoided crossing in a configuration shown in the

following style:
4|l (A*=8)|? * P
A = y = §2 [AmnEDE 0270 1 e (16)

In Eq. (16), the shortest parting range between two adjacent energy levels of a level crossing is
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always greater than 0, i.e., A,,;;, = 0, which means they will repel before collision, and the
correlation between the minimum interlayer distance and the change of the term reflecting the
noise contribution is shown.

It is critical to realize that such impacts on the shortest distance between the two adjacent levels
also have a non-negligible influence on the related transition instant within an identical
approach. Moreover, it can be obtained from Eq. (15) that if p happens to be zero, the whole
equation can then be reduced to the corresponding part that is settled.

If we also use the transition time boundary constraint, we get another inequality relationship,
which in the configuration below is controlled by the contribution of the diversity of perturbed

sources, avoiding traversal’>:

N > e[y - 246 - )]

_ £ [ =D opa a7
En Afnin

Eq. (17) can be used as a criterion to evaluate whether a pair of intersection avoidance points
are independent of each other and can therefore be regarded as isolated. In other words, we can
be sure that the LZ model applies to this Eq. (17) satisfied.

In short, by dealing with local energy levels associated with crossing or horizontal crossing
avoidance, we can obtain assumptions for implementing the LZ transformation model within
the framework of a formalistic PY scheme, including noise contribution. Therefore, the LZ
transition model can be used within the scheme of the PY formalism framework to easily study
the contribution of environmental decoherence, e.g., noise to the level dynamics. Level

dynamics describes the evolutionary behaviors of quantum coherent systems.

Quantum systems are more sensitive to noise and decoherence due to the characteristic that the
superposition and entanglement can be easily disturbed by interactions with the environment.
This is different to the case in classical systems, which shows more robustness against small

amount of noise.

The relation between noise and decoherence is inherently close. In quantum systems, "noise"
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is a term that represents random fluctuations or disturbances that can affect the state of a
quantum system and can be described as unwanted changes in the system due to its interactions
with the environment. This noise often arises from interactions between the quantum system

and its environment - a process known as environmental decoherence.

Environmental noise is the primary cause of decoherence in quantum systems. When a quantum
system interacts with its environment, the environmental noise can cause the phases of the
quantum states to drift apart. As the phase relationship between different states is essential for
maintaining quantum superposition and entanglement, this dephasing process leads to

decoherence.

The type and intensity of the environmental noise can significantly impact the rate of
decoherence. For example, white noise can often lead to decoherence that scales linearly with
time. In contrast, colored noise can lead to different scaling behaviors due to its correlations in
time. Furthermore, certain types of colored noise, such as low-frequency or "1/f" noise, can be

particularly detrimental to quantum coherence due to their long correlation times.

Noise can also cause other types of errors in quantum systems, such as bit flip or phase flip
errors, which can be considered forms of decoherence. These errors can be mitigated using
quantum error correction techniques, which are designed to protect quantum information

without directly measuring it (as measurement would also lead to decoherence).

While decoherence is a process by which quantum systems interact with their environment in
a manner that uncontrollably alters their quantum states, leading to the loss of quantum
coherence, which is the characteristic ability of qubits to exist in superposition and
entanglement. This interaction with the environment causes the quantum system to revert to
classical behaviours, eliminating the quantum properties of the particles involved. Decoherence

is a significant source of error in quantum computing as it affects the qubits' ability to remain
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in superposition and maintain entanglement, which are essential for quantum computation.

Further expanding on this definition, decoherence is critical in the quantum-to-classical
transition, playing a pivotal role in the dynamical description of this process. It is also a major
obstacle in the development of quantum information processing devices. At a fundamental
level, decoherence provides a dynamical explanation for the transition of quantum probability
distributions towards those expected classically, often being regarded as an environment-

induced, dynamical destruction of quantum coherence.

Understanding and mitigating the effects of noise and decoherence is one of the main
challenges in the development of practical quantum computers. While we can isolate quantum
systems and engineer them to be as noise resistant as possible, some level of noise and
consequent decoherence is currently inevitable. Therefore, much of the research in quantum
computing is focused on developing noise-tolerant quantum algorithms, error correction codes,

and fault-tolerant quantum computing protocols.

Overall, noise and decoherence are crucial aspects of quantum systems, with the two concepts
being closely interconnected. Noise, as induced by environmental interactions, leads to
decoherence, effectively causing quantum systems to lose their unique quantum properties. As
such, these concepts represent significant hurdles to overcome in the path towards realizing

practical and scalable quantum computation.

2.6 Comparison with the LZSM Literature

The two-level system (TLS) is a widely studied model in quantum mechanics, serving as a
foundation for understanding quantum transitions under external driving fields. The Pechukas-
Yukawa (PY) formalism offers a classical approach to describe the evolution of quantum
energy levels, while exact diagonalization provides a numerical method to benchmark these

predictions. In this section we compare the results obtained from the PY model and exact
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diagonalization for a two-level system with the literature on well-studied systems, particularly

focusing on works by Nori and Shevchenko.

2.6.1 Consistencies with the Literature

Occupation Probability Distributions: In Chapter 4 we demonstrate periodic oscillations in
occupation probability distributions under specific external driving conditions. These results
align with the findings of Nori and Shevchenko, where similar periodic behaviors were
observed in well-studied two-level systems under resonant and near-resonant conditions.
Dynamical Complexity Analysis: The use of Power Spectral Density (PSD) to analyze the
system's dynamical complexity is consistent with the methodologies employed in the literature.
The appearance of distinct frequency components in the PSD, corresponding to coherent
quantum dynamics, reflects the spectral features discussed by Shevchenko and Nori.
Transition Probabilities: Both the thesis and the literature utilize exact diagonalization to
calculate transition probabilities between quantum states. The agreement in these probabilistic
outcomes strengthens the analogy between the PY model and established quantum mechanical

approaches.
2.6.2 Differences from the Literature

Approach of the PY Model: Unlike the conventional LZSM approach, which primarily focuses
on non-adiabatic transitions and Stiickelberg interference, the PY model applied in my thesis
offers a broader classical mapping of the energy level dynamics. This divergence provides an
alternative perspective on quantum transitions, potentially expanding the applicability of the
PY model beyond the traditional LZSM framework.

Quantitative vs. Qualitative Analysis: While Nori and Shevchenko's studies provide detailed
quantitative comparisons with experimental data, my thesis focuses more on qualitative
interpretations of dynamical complexity through visual inspection of occupation probability
distributions and PSD features. Future work could enhance this aspect by adopting more
quantitative metrics, such as spectral entropy, to solidify the comparison.

System Parameters and Driving Fields: The external driving conditions used in my thesis differ

from those in the literature. Specifically, my work explores a broader range of driving
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amplitudes and frequencies, potentially revealing novel dynamic regimes not thoroughly

covered in previous studies.

2.6.3 Conclusion

The analysis presented here demonstrates both consistencies and novel contributions of my
research compared to well-established studies by Nori and Shevchenko. By integrating exact
diagonalization results with the PY model and positioning them within the broader context of
LZSM literature, this section highlights the unique perspectives offered by the PY formalism

in understanding two-level quantum systems.

Chapter 3: Using PY Method to study Level
Dynamics and Occupation Numbers for Small-
scale Quantum Systems

We simulated the evolution of quantum systems through PY Formalism in small-scale quantum
systems ranging from 2-5 qubits with the presence of decoherence.

The reliability and efficiency of the Pechukas-Yukawa (PY) formalism were tested using
quantum coherent structures ranging from 2 to 5 qubits with or without the presence of
decoherence. Our simulations show that the PY formalism faithfully captures the dynamics of
these systems over a range of time scales. Figures 3.1.1 and 3.1.2 illustrate the agreement
between the PY formalism and exact numerical solutions for 5- and 4-qubit systems,
respectively. The figures show that the PY method offers a robust and efficient tool for

simulating these types of quantum systems.

3.1 Efficacy of Pechukas-Yukawa Formalism

In this section, we present some numerical results simulated by PY method which demonstrated
the reliability and efficiency of PY method in simulating the dynamic evolution of quantum
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coherent structures, specifically for systems ranging from 2 to 5 qubits under the influence of

decoherence.

In the following two Figures 3.1.1 and 3.1.2 we show the quantum evolution over time of a 5-
qubit and a 4-qubit system under the control of the external perturbation A in clear visualization.
While it is predominantly used for smaller quantum systems(2-qubits), our results show
potential for larger simulations (4 to 5-qubits), granted certain numerical challenges are

addressed (elaborated in Chapter 2).

3.1.1 Simulation of the Dynamics of Small-scale Systems without

the Presence of Decoherence

Firstly, we established the model which is capable to simulate the level dynamics of a small-

scale quantum coherent system with 2 to 5 qubits (i.e., 4 to 32 levels) starting with arbitrary
initial settings of the Hamiltonian H(A(t)) = Hy + A(t)ZH}, in Eq.1 without the presence of

noise, by taking advantage of the Pechukas-Yukawa formalism with the Landau-Zener

transition model and the Runge-Kutta method.
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Fig. 3.1.1: This simulation is conducted entirely in the absence of noise. The left panel shows
the evolution of energy levels of a 5 qubits system with Hamiltonian of this form: H (A(t)) =

Hy + A(t)ZH, in Eq.1, under the control of the perturbative -parameter A(t) = Acos(wt) ,
where the energy value of each level is a direct result from diagonalization of the Hamiltonian.
The middle panel demonstrates the level dynamics of a 5 qubits system with the same initial
settings as the left one but simulated through the Pechukas-Yukawa formalism with Runge-
Kutta method. Both the directly obtained evolution and the simulated evolution are evolution
in time from 0 to 4 without the presence of noise. The right panel is the error of the simulation
by the Pechukas-Yukawa formalism obtained by comparing the left and middle panels. In this

case, the highest error during the evolution time from 0 to 4w is with the magnitude of 107
which has the same magnitude of the length of each step (ﬁ) for this simulation. In addition,

it is worth noting that the size of error generally increases over time.

The Hamiltonians for the 5-qubit system in Fig. 3.1.1 and Fig. 3.1.5, expressed using tensor

products of Pauli matrices and identity operators, are defined as follows:
H(A(t)) = Ho + A(t)ZH,
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List 1: Parameter values for the 5-qubit Hamiltonian for Fig. 3.1.1 and Fig. 3.1.5.

ZH, = Hy — H,
Ho=Ailo, QIQIRIRI)
+AIRc®IRIRI)
TAIQRIRQIRI)
+AIRIQIR o ® 1)
+AIRIRIRIR o))

Hr =hi(0, QIQ IR IR I)
thiI® o, QIRQIRQI)

+hI®I® 0, QIR I)

+h(IQIRIQ 0, @)

+h(IQRIQIRIQ ay)

+Jn(0, ® 0,QIQI® )
+Ji(o, 1Q 0, QIR I)
tlu(o, QIRTIR® 0, Q)
this(o, QIRXTIR IR a,)
th(l® o, ® o, QIR
+(I® 0, ®I® g, R
th(l® o, QIQIR ay,)
+1(IQIQ 0, ® 0, ®I)
(IR 0, QIQ a,)
+Is(IQIRI® 0, ® ;)

Entry Value Entry Value

Ay 0.9844 hq 0.3986
A, 0.8589 h, 0.1339
As 0.7856 hs 0.0309
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A, 0.5134 h, 0.9391
As 0.1776 hs 0.3013
J12 0.2955 J24 0.8422
J13 0.3329 J2s 0.5590
J1a 0.4671 J34 0.8541
Jis 0.6482 J3s 0.3479
J23 0.0252 Jas 0.3479

From Fig.3.1.1, we have the simulation errors which are small enough (with the magnitude 10
3and can be further reduced if we choose more iterations), indicating that the reliability of our
model for simulation of the level dynamics of a small-scale quantum system with 2 to 5 qubits
is confirmed preliminarily. However, this simulation method is not restricted to small-scale
quantum systems. We can see from Fig. 3.1.1 that the error between the simulated result for a
5 qubits coherent system to the direct result obtained straightforward from the diagonalization

of its Hamiltonian, is of the magnitude of 1073, same as the magnitude of the step length of
iteration (which is ﬁ of the magnitude around 1073).
By narrowing the step length, the error of simulation can be further reduced to the

corresponding magnitude of the step length used in the simulation. We demonstrate this by the

following Fig. 3.1.2, showing the simulated result of a 4 qubits system with step length of the

magnitude of 1075,
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Fig. 3.1.2: The left panel shows the level dynamics of a 4-qubit system under a noiseless
condition, obtained via direct diagonalization. The middle panel presents the corresponding
simulation using the Pechukas—Yukawa formalism with identical initial parameters. The right
panel displays the absolute error between the two results. This simulation is conducted entirely
in the absence of noise, aiming to demonstrate that the error magnitude can be further reduced

with smaller integration step sizes.

Figures 3.1.1 and 3.1.2 show the feasibility of our extended model to simulate the evolution of
the energy levels of a small quantum coherent structure. The maximum simulation error is with
the magnitude of 10~ which is two orders of magnitude smaller than the error in Fig. 3.1.1.
Moreover, the size of error also increases with time, which is a feature also presented in Fig.

3.1.1. It can be clearly seen from the Fig. 3.1.2 that the magnitude of error is reduced to 107>
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which is the same magnitude of the step length (which is 401;00 of the magnitude around 107°)

used in this simulation.

3.1.2 Simulation of the Level Dynamics for 2-5 Qubits Systems with

Noise

Secondly, the functionality of the PY model is extended to be capable to simulate the evolving
energy levels of multi-qubits systems under the influence of noise. The noise we used is a white

noise generated through Ornstein-Uhlenbeck process, see Fig. 3.1.3.
H(A(t)) = Hy + A()ZH, + Sh(A(D)) (3)

X = Um + 6Rmm

=2 § |lmn|2 lmn3hnm_3hmn lnm
- )
m#*n

(xm— xn)3 (xm—2xn)?
. 1
lmn = Zk;tm,n Ui lien [(xm_xk)z - (xk_xn)z]

(xm=xn) (lmkghkm_ghmklkm)
(em—x1) (n—xg)
Lnn (§hmm—8hnn)
(Am—xn)

+

+ 8hyn (Vi — ) +
(4)

We used the Hamiltonian of the stochastic Pechukas-Yukawa model in Eq. (3) and the
stochastic Pechukas equations in Eq. (4), in which a new term for each equation denotes the
impact of the noise. Note that these new terms about noise does not appear in the simplified
version of the equations presented in Eq. (2).
We are going to explain equations (4) step by step for better understanding of the PY formalism.
Firstly, through %,, = v,, + 6h,,,, Wwe can see the eigenvalue dynamics are influenced
directly by the velocity term and the noise term. This equation indicates that the derivative of

noise Sh,,, is adding random fluctuations in the derivative of eigenvalues, potentially
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leading to decoherence or other noise-induced effects.

[lmn|? lmnShnm_Shmnlnm

m=n (Xm—xn)3 (Xm—xn)?

Secondly, from v, = ZZ we can find that the velocity

dynamics include terms that describe interactions between different eigenvalues modulated by
noise. The impact of noise can either be stabilizing or destabilizing, depending on the nature

of the noise terms and their interactions.

Thirdly, take a closer look at

. 1 1
lmn = qutm,n Lmtelien [(xm_xk)z - (xk_xn)z]

(xm_xn)(lmk8hkm_3hmk lkm)
(Xm—x1) Ccn—x)

lmn(Shmm - Shnn)
(Am - xn)
we know that the dynamics of the coupling terms [,,,,, are influenced by interactions between

+

+ Shmn(vm —v,) +

different eigenvalues and eigenvectors, as well as by noise. This suggests that noise can lead
to changes in the coupling strengths, potentially affecting the coherence and entanglement

properties of the system.

In our simulations, we used Ornstein-Uhlenbeck process to generate the noise according to the
following equation.

Shyn = 0(1t — 8hyy)dA + cdW,
Where 8h,,,, denotes the instantaneous derivative of noise with respect to A(t), 0 denotes the
reversion speed, i denotes the mean value of noise, ¢ denotes the fluctuation rate and the term
dW; is arandom picked number from a normal distribution set whose mean value is zero while
variance is dA. The following Figures 3.1.3 and 3.1.4 show an example of the simulated noise

used in our study. Fig. 3.1.5 shows the effect of a small white noise on the energy level

evolution of a 5 qubits system.
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Fig. 3.1.3: The left panel denotes the noise simulated by Ornstein-Uhlenbeck process,
whose mean value is 0, mean reversion speed is 10 and the fluctuation rate is 10-. The
right panel represents the derivative of the noise shown in the left panel. The magnitude
of the derivative of noise is 10~ and the magnitude of noise is 10-4. Lines of different colors
corresponding to different &, or & .
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Fig. 3.1.4: Here four samples of the derivative of noise are presented in four panels
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respectively, we can see that the derivatives randomly fluctuate around the mean value 0

with a fixed reversion speed, which is consistent with our setting of white noise.
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Fig. 3.1.5: The left panel shows the evolution of level dynamics of a 5 qubits system obtained
by direct method without the presence of the noise. While the middle panel demonstrates the
evolution of the level dynamics with the presence of the white noise (shown in Fig. 3.1.3). In
the left and middle panels, lines of different colors correspond to different energy levels while
the horizontal axis represents time and the vertical axis represents the energy level. We can see
from the middle panel, a significant deviation occurred on the 7th energy level in the latter part
(around t=2.6) of the simulation. The right panel on shows the difference in the evolution of

the system with and without the presence of noise.

3.1.3 The Effect of Noise on Evolution of Level Dynamics and the

Simulations via PY Method

As can be seen from Fig.3.1.5, when the gap between adjacent energy levels is large enough,
adding a small white noise to the system does not have a significant impact on the evolution of

the energy levels. However, we can see from the middle panel of Fig.3.1.5 (a significant turning
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point occurs near t=2.6) that the impact of noise increases rapidly when the gap between two

adjacent energy levels becomes very small (where anti-crossing occurred).

This phenomenon can be well understood from the stochastic Pechukas equations, i.e., Eq. (4):

Xm = Um + Ohym,
Ilmnl2 + lmnShnm_Shmnlnm
m—%n)3 (xm—2xn)?

U = ZZm;tn x

)

Zmn = qutm,n Lk lken [ ! - : ] 4)

(Xm—x1)? (xX—xn)?
(xm_xn)(lmkahkm_‘Shmk lkm)
Gem—x1) Cen—xx)

3 Unn(8hmm=G6hnn)
+0hmn (Vm — vy) + T

_.|_

We can see from Eq. (4) that the derivative of the velocity, v,,, which determines the relative

|lmn|?

(Xm—xn)3

motion of adjacent energy levels, is determined by terms in the form of fractions and

Imn8Rnm=8Rmnlnm
(Xm—xn)?

with denominators consisting of the square and cube of the gap between

levels such as (x,, — x,)® and (x,, — x,,)?. Noting that imn is also affected by the noise term
according to Eq. (4). When the term (x,, — x,,) which denotes the gap between the two energy
levels becomes very small, it will cause the denominator to be very close to zero, thereby
exponentially amplifying the influence of noise on the evolution of the level dynamics. It is
worth noting that typically only the two adjacent energy levels need to be considered in the
case when (x,, — x,) is very small, i.e., anti-crossing. Because for the energy difference
between non-adjacent levels to be very small, at least three energy levels must be very close to
each other simultaneously, meaning at least two anti-crossings occur together, which is a highly

improbable event.

In addition, the error growth rates corresponding to the different individual energy levels
simulated are also different. This can be understood through the denominator term (x,,, — x,,)3
of Eq. (4) as we have discussed above. Because the difference between the sensitivity to noise

of each individual energy level is determined by the size of their energy gaps.
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Through the PY method, we can understand this more intuitively that even small noises can
have a significant impact on the evolution of energy levels of quantum systems when the
minimum energy gap is small. For example, near an anti-crossing, an error of magnitude 10!

caused by noise of magnitude 10 is shown in Fig.3.1.5.

Moreover, from the right panel of Fig. 3.1.5 we can see the impact of noise on the system’s
evolution grows over time in general, although there are some instances that local errors

decrease.

In our limited number of simulations for small-scale quantum coherent structures, the overall

effect of various noises is always cumulative as it is shown in Fig.3.1.5. This can be explained

| lmn|2 lmnghnm_ghmn lnm
Xm—%Xn)3 (Xm—2xn)?

through the summation term ,,,4,, 0 in Eq. (4), which shows how

the impacts of noise between two different energy levels can interact with each other. We
speculate that the cumulative effect of the impact of noise for each pair of energy levels is
because we used a normal distribution to model our white noise, so the probability of individual
noise terms cancelling each other out is relatively low. In addition, from Eq. (4), we can observe
that the terms representing situations with a narrow energy gap, characterized by a small
denominator (approaching zero), will have a significantly larger impact compared to other
terms. This is because the denominator involves the square or cube of the difference between

two energy levels.

However, this does not imply that the noise terms will necessarily enhance each other. Since
the number of simulations we performed was not large enough, we could not observe the
samples in which each individual noise term showed an overall cancelling effect. Instead, we
can see from the summation terms in Eq. (4), that the impact of each individual noise term has
the possibility either to superimpose or cancel each other out. This bidirectional potential of
noise terms—having the capacity both to superimpose and to cancel each other out— is

particularly critical for the development of quantum computing because if the effects of
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individual noise terms are necessarily cumulative, it means that as the number of qubits in a
quantum system increases, the impact of noise will inevitably become stronger, posing a

significant challenge for large-scale quantum computation.

According to Eq. (4), to achieve a mutual cancellation effect between the two noise terms, it is
necessary for the magnitudes of these two fractions to be similar and their directions opposite.
The denominator of these fractions is determined by the cube and square of the energy level
differences, while the numerator is determined by the difference in the products of the angular
momentum between different energy levels and the corresponding noise (derivative). When the
energy level difference is small (indicating an anti-crossing), the denominator has a more
decisive influence on the magnitude of the fraction relative to the numerator. Therefore,
typically we only need to consider whether the numerators of the two noise terms are of similar
magnitude and opposite direction when the corresponding energy gaps are very small and very

close to each other.

First, the probability of two different anti-crossings having very close energy level differences
is low. Secondly, even if such a situation arises, the differences in the products of the noise
derivatives and angular momenta in the numerator for two noise terms also needs to be of
similar magnitude and opposite direction to achieve mutual cancellation. This is also a low-
probability event in our simulation because the noise we use is generated by the Ornstein-
Uhlenbeck process, which draws random numbers from a normal distribution to produce white
noise. The probability of these two low-probability events occurring simultaneously is even
lower. Therefore, in our limited number of simulations, it is reasonable to observe that the noise
terms exhibit cumulative rather than mutual cancellation effects as demonstrated in the example

of Fig. 3.1.5.

Furthermore, this also suggests a research direction, which is to reduce the impact of noise on

the system as much as possible by designing the composition of noise such that each individual
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noise term has a larger probability of cancelling each other out and lower the probability for
superimposing. This approach should require an in-depth understanding and application of
probability theory, as it involves manipulating the statistical properties of noise to increase the

possibility of mutual cancellation among noise terms.

Since although the Pechukas-Yukawa approach is considered as an approach that is especially
suitable for AQC, while its utility is not limited to AQC only”®, this research direction is
meaningful for the broader development of QC. By strategically designing the noise
distribution and correlations, one can potentially enhance the overall stability and coherence of
the quantum system undergoing either adiabatic or diabatic evolution. We will talk about this

potential further in the discussion part.

The above problems bring us some points to pay attention to when using PY method to simulate

evolution of the quantum systems:

Firstly, when the minimum energy gap is very small, the evolution of the energy levels will be
very sensitive to errors. This problem exists regardless of whether the noise is considered.
When the simulated quantum system is small, we can avoid the occurrence of extremely small
energy gaps by choosing the initial parameters of the Hamiltonian and the external field
controlling the evolution. Nevertheless, when the number of qubits in the system grows large,
there will be a non-negligible number of energy levels which are very closed to each other
(more anti-crossings), which will bring difficulties in numerical simulation through PY method.
For large scale quantum coherent structure, even in the context of AQC, where the energy gap
between the ground state and the first excited state should be as large as possible to prevent the
system from escaping from the ground state, anti-crossings between other excited levels can
still lead to great challenges to the simulation through PY method. Although we can use
adaptive step size simulation (more simulation steps near an anti-crossing) to deal with this

problem to a certain extent, it will increase the required computing resources anyway. As a
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classical simulation method, the PY method still has its limitations when simulating large-scale

quantum computers.

Secondly, when noise is considered in the simulation, the cumulative effect of the noise will
make the originally insignificant simulation error slowly accumulate and become significant
after long simulation time. But this does not imply that the PY method is not a good method
for simulating the evolution over a long time. Since the cumulative error is not unique to the
PY method but is a common issue in all numerical simulation methods over long periods’®.
Therefore, it is not justified to single out the PY method as unsuitable for long-term evolution
solely based on this cumulative error problem. But this requires us to take some methods such
as higher-order numerical integration methods (RK4), adaptive time steps and other methods

to reduce the impact of cumulative errors.

Furthermore, though the adiabatic evolution for AQC takes a long time, from a practical point
of view, we want the system of AQC to quickly fall to the ground state and its Hamiltonian can
evolve from the initial one to the final one as soon as possible to speed up the calculation. In
another word, the evolution time for a practically useful AQC should not be too long, so this
shortcoming of the simulating does not necessarily prevent us from applying PY method in the

simulation of AQC.

3.1.4 Accuracy Required for the Simulation and Limitations of PY

Method in Simulating Large-scale Quantum Systems

In the problem of finding a constructive method for a classical computer to simulate a quantum
coherent system, one important question is how accurate the simulation should be for the
purpose of studying the level dynamics and the occupation probability distribution of the target
quantum coherent system.

In the beginning of our research, we initially assumed that the accuracy of the simulation of
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the energy evolution of such a system with an error with maximum magnitude of 10~ would
be reliable in our study.

However, by comparing the occupation probability distributions using the simulated data set
for the evolution of energy levels of 2-5 qubits systems and that using the direct obtained energy
evolution by diagonalizing the instantaneous Hamiltonian described in Eq. (1) over a certain
time (8 in our simulation), we found the outcome of an error which we firstly considered it
as small (with the magnitude of 10-*) would actually cause an unexpectedly large bias in the
probability distribution whose error could up to the magnitude of 107! by the end of the evolving
time (which is obviously not acceptable in the analysis of the occupation probability

distribution of a multi-qubit quantum system), which is presented in Fig. 3.1.6.
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Fig. 3.1.6: (a) The left panel presents the occupation probability distribution of all energy levels
in a 4-qubit system initially prepared in the ground state. These probabilities are calculated
based on the dataset obtained by directly diagonalizing the instantaneous Hamiltonian. (b) In
contrast, the right panel shows the corresponding distribution derived from the simulated level
dynamics using the Pechukas—Yukawa (PY) method, where the energy level simulation error

is approximately on the order of 1073,

Although this level of energy error may appear sufficiently small, it can induce significant
deviations in the occupation probability distribution—resulting in discrepancies on the order
of 1071,

This amplification arises because even small perturbations in the energy spectrum or eigenstate
structure can substantially affect the projection of the initial state onto the instantaneous
eigenbasis.

Therefore, to ensure the physical reliability of such simulations, it is necessary to improve the
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accuracy of the level dynamics so that the energy-level error remains well below 102, Only

then can the resulting occupation probabilities be trusted for quantitative analysis.

Some reasons for the amplification of this error have been discussed in the previous section
3.1.3.

. . lmn
iC () = Cpy (D), = IA() z Cn(t)(x_—x)z

nxm
On one hand, we can see that in the above equation for calculating the probability, there is a
summation term that will lead to the cumulative effect of the error.
On the other hand, we can see that there is still a term whose denominator is the square of the
energy gap (x,, — x,) on the right side of the equation, which means that when the energy

gap becomes very small (near the vicinity of an anti-crossing), the error can easily explode.

This shows from another perspective that the PY method may encounter difficulties in
simulating the occupation probability distribution of large quantum systems, in which more
anti-crossings and more cumulative error due to summation term, which indicates the objective

difficulties in simulating large-scale quantum computing using this classical method.

In our simulations of systems with 2 to 5 qubits, if we want the error to be in the order of 1073
in the simulation of the probability distribution, then the error in the simulation of the energy
level evolution should be of the order of 1075, However, if we want to use the PY method to
simulate a larger quantum system, to maintain the simulation error of the probability
distribution at the same magnitude of 1073, it is likely that we need to control the error in
simulating level dynamics to be in the magnitude smaller than 10~° due to the sensitivity to
the minimum energy gap and cumulative effect of errors from the summation term.

Unfortunately, as the size of the simulated quantum system gets larger and larger, both of these
drivers of errors get stronger. This shows that the PY method has its limit in simulating large-

scale quantum coherent structure. When the number of qubits grows large enough, PY method
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will no longer be capable to simulate the evolution of the probability distribution of the system

efficiently nor accurately.

To investigate the theoretical foundation of this error growth phenomenon, particularly its
strong sensitivity to the minimum energy gap, we proceed to a more rigorous numerical

validation in the following subsection.

3.1.5 Further Analysis of the Simulation Error in the Pechukas-

Yukawa Formalism

To deepen our understanding of the limitations of the Pechukas—Yukawa (PY) method outlined
above, we focus on its numerical accuracy near avoided level crossings (anti-crossings). In
previous sections, preliminary evidence suggested that the small energy gaps at anti-crossings
are a primary driver of simulation error. Here, we present a detailed analysis to quantitatively
validate the correlation between minimal energy gaps and rapid error growth in PY simulations,
using theoretical arguments and numerical experiments supported by figures (Fig. 3.1.6 and

Fig. 3.1.7).

As noted in Section 3.1.3, we hypothesize that the dominant source of error in the PY
simulation (relative to exact diagonalization) arises from tiny energy gaps between adjacent
levels near anti-crossing points. The rationale comes from the PY equations themselves — for
instance, in Eq. (2) of Section 2.2, a term in the denominator depends on the difference between
two energy levels. When the system’s Hamiltonian parameters evolve such that an avoided
crossing is approached, this denominator approaches zero, greatly amplifying any numerical
error. In other words, as an energy gap AE becomes exceedingly small, even minute integration
errors are magnified (the system becomes highly sensitive to small perturbations). This
amplification mechanism implies that even if one uses a very fine time-step in the numerical

integration, the simulation error can spike near an anti-crossing. Further reducing the time-step
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would eventually control the error, but at the cost of prohibitive computational effort
(extremely small steps dramatically increase simulation time and resource usage). We therefore
expect that the worst error growth in a PY simulation will occur at the moment the system

passes through its minimum energy gap.

To phrase it as a question: Does the time at which the simulation error grows most rapidly
coincide with the time at which the instantaneous energy gap is smallest? Answering this will
test our hypothesis that anti-crossings fundamentally limit the accuracy of the PY method.

And to investigate this question, we need a clear measure of “error growth” over time and a

way to identify when that growth is most pronounced.

To evaluate how simulation error evolves in time and how it correlates with energy gaps, we

examined three candidate metrics. The first is the error growth rate, defined as the first-order

Error
dt

) . . . d . . .
time derivative of the simulation error, . This quantity describes how the error evolves

(increases or decreases) at each moment in time. However, as an accumulated measure of
change, it does not directly pinpoint a single “most severe” moment; the error could be growing

over an extended period, making it hard to identify a unique peak event from this alone.

A second candidate is the derivative of the error growth rate, that is, the second time derivative
of the simulation error. This quantity reflects how rapidly the behavior of the error is changing
over time. However, in a multi-level quantum system, this derivative must be computed
separately for each energy level, since each eigenstate has its own error trajectory. Most of
these error derivatives are not directly related to the particular transitions or features under
investigation. As a result, plotting all of them against the system’s minimum energy gap would
yield a diffuse and inconclusive representation, making it difficult to extract meaningful

physical correlations.

To overcome this, we adopt a more global measure: the maximum error acceleration across
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levels. This quantity represents, at each time step, the largest value of the second derivative of
error among all energy levels. It provides a system-level indicator of dynamic instability and
effectively captures the onset of rapid error amplification associated with non-adiabatic
transitions. Accordingly, we select this maximum error acceleration as the principal metric for
characterizing the moment of strongest simulation error growth in relation to the system’s
spectral properties. Therefore, we select the Max Error Acceleration Across Levels as the key
metric, as it directly characterizes the moment when non-adiabatic transitions lead to rapid

error amplification.

To investigate the relationship between error growth and energy gaps, we numerically compute
the error growth rate, its rate of change, and their correlation with the minimum energy gap.
The error growth rate is defined as the first-order time derivative of the simulation error

ErrorXRK4. Using the central difference method, it is approximated as:

ErrorXRK4,,(t,) — ErrorXRK4,,(t;)
At

ErrorRate,, (t;) = ,2<1i< steps —1

For the boundary points, we use forward difference at t; and backward difference at tgps

ErrorXRK4,, (t,) — ErrorXRK4,, (t,)

ErrorRate,,(t;) =

At
ErrorRatem(tsteps) = ErrorXRK4m(tSteps) _;trrorXRK4m(tsteps B 1)

Then the second-order time derivative of the error, or the rate of change of error growth, is

obtained as:

d ErrorRate.,, (t; — ErrorRate,,, (t;_
ErrorRateChange . (t;) = EErrorRatem(ti) ~ m( l+1)2At m(ti-1)

The moment t,,,, when the error growth changes most rapidly is identified by:

tmax = arg max | ErrorRateChange  (t;) |

To further investigate whether anti-crossings correlate with rapid error growth, we compute the
energy gap between adjacent levels and track its minimum value over time. The energy gap

between the m-th and n-th energy levels is given by:

58



AE . (t) = X (8) — Xp(t), m >n
And the minimum energy gap at each time step is then computed as:

MinEnergyGap(t;) = minAE,,,(t;)
mn

When MinEnergyGap(t;) is at its minimum, the system is at an anti-crossing, where energy
levels become nearly degenerate. And a small value of MinEnergyGap(t;) indicates that the

system is near an anti-crossing, where adjacent energy levels approach each other.

To relate this to error dynamics, we define the maximum change in error growth across all

energy levels at each time step as:

Max Error Acceleration Across Levels (t;) = max | ErrorRateChange  (t;) |
m

Since the minimum energy gap is typically much smaller in magnitude than the values of error
acceleration, we normalize it using a scaling factor to enable visual comparison. The scaled
version is computed as:

MinEnergyGap_scaled(t;)

max(Max Error Acceleration Across Levels)

= MinE G i) X
inEnergyGap(¢;) max( MinEnergyGap )

X scaling_factor
In our simulation, we chose the scaling factor to be 0.1. This transformation ensures that both
curves are scaled to a comparable range, facilitating meaningful visual analysis of their

correlation.

To visualize the relationship between the Max Error Acceleration Across Levels and the
Minimum Energy Gap, we computed and plotted their values for the same 2-qubit system
studied in Chapter 4. Since the raw data for the minimum energy gap is significantly smaller
than that of the error acceleration, direct comparison is not feasible. To address this, we
magnified a small portion of the time axis to highlight detailed features and applied vertical
scaling to the minimum energy gap so that its magnitude aligns with that of the maximum error

growth rate. These adjustments are reflected in Fig. 3.1.7.
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Fig. 3.1.7 illustrates the relationship between the Max Error Acceleration Across Levels and
the Minimum Energy Gap in the same 2-qubit system examined in Chapter 4. under the control

of 1 =0.8cos(18t).

From the resulting figure (Fig. 3.1.7), we observe that the blue curve, representing the
system’s minimum energy gap, reaches its lowest points (anti-crossing) at the same time the
red curve, denoting the Max Error Acceleration Across Levels, attains its peak. This temporal
coincidence indicates that the system undergoes an anti-crossing event precisely when the

simulation error becomes most dynamically unstable.

These two events occur at precisely the same time, providing strong evidence that our

hypothesis regarding the primary source of error in the PY simulation method is correct. In
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other words, when an anti-crossing occurs, the energy gap becomes extremely small, leading
to a rapid increase in error growth. This observation is consistent with the theoretical derivation
from Eq. (2), reinforcing the conclusion that anti-crossings fundamentally limit the accuracy

of the PY method for simulating quantum coherent systems.

3.1.6 Memory Requirements of Exact Diagonalization vs. the

Pechukas—Yukawa Method

Having discussed the accuracy and numerical limitations of the Pechukas—Yukawa (PY)
formalism in the context of avoided crossings, we now turn to another essential dimension for
evaluating the scalability of quantum simulation methods: computational memory efficiency.
In this section, we compare the memory requirements of the PY model with those of exact
diagonalization (ED), a standard approach widely used in quantum system analysis. While ED
offers high numerical precision, it suffers from prohibitive resource demands for large systems.
In contrast, the PY formalism is significantly more memory-efficient, enabling simulations of

larger systems and longer evolution times—albeit with some trade-offs in accuracy.

On one hand, the primary memory requirement in exact diagonalization (ED) arises from
storing the Hamiltonian matrix, which scales with the number of energy levels and the number
of time steps. Specifically, the matrix size is given by:
Matrix Size = (Number of Levels, Number of Levels, Time Steps)

where Number of Levels (Ngpe15) 1S the size of the Hilbert space, which for a system of n
qubits scales as:

Nieyers = 2"
which means the Hamiltonian matrix has a size of 2" X 2™ at each time step while Time
Steps(7T) represents the number of discrete points in time for which the Hamiltonian is

computed.
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Thus, the total memory requirement for storing the Hamiltonian is:

0(2%"T)
For large n, this leads to an exponential growth in memory usage. For example, in a 10-qubit
system, the matrix at each time step contains 210 x 2% = 1024 x 1024 entries. In a 20-qubit
system, this number grows to approximately 22° x 22° = 10° x 10° elements per time
step, which already requires several terabytes of memory.
In addition to storage, performing exact diagonalization requires computational operations that

scale as O (N 191,9153) = 0 (23"), making it infeasible for large n.

On the other hand, the Pechukas-Yukawa (PY) method provides an alternative approach that
avoids storing the full Hamiltonian at each time step. Instead of storing the full 2" x 2"
Hamiltonian matrix, the PY model only tracks energy levels and couplings. This reduces the
storage requirement to:

0 (2"T)
where n is the number of qubits and T is the number of time steps.
Compared to the O(22%"T) scaling of exact diagonalization, this represents an exponential
improvement in storage efficiency.
The trade-off, however, lies in computational cost. The PY formalism requires numerically
integrating a set of coupled nonlinear differential equations governing the energy levels and
their interactions. While this integration process can be computationally intensive, especially
for large number of qubits, it remains tractable given sufficient runtime. In particular, the PY
method enables the simulation of large quantum systems whose full Hilbert space evolution

would be computationally infeasible via exact diagonalization.

In short, exact diagonalization is a powerful method but is fundamentally limited by memory
constraints, restricting it to small systems (typically n < 16 qubits, which requires about 64GB).
The Pechukas-Yukawa model offers a memory-efficient alternative, allowing simulations of

much larger quantum systems, albeit at the cost of increased computation time. This trade-off
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makes the PY model a valuable tool for studying quantum many-body dynamics in regimes

inaccessible to traditional diagonalization methods.

3.2 Initial States, External Field Parameters and Occupation

Probability Distributions

This section mainly introduces how we study the relation between the parameters of the
external field A, the initial occupation probability distribution of the system and the maximum

probability for the system to fall into the ground state with a certain length of time.

In our simulations, it was observed that quantum systems, irrespective of their initial
occupation probability distributions, possess specific corresponding external field parameters
(both amplitude and frequency) to allow the systems to fall into the ground state as quickly as
possible. Adjusting these parameters optimally ensures the system has the highest likelihood
of transitioning to the ground state within a set period. This pivotal result is depicted in Figures
3.2.5, 3.2.6 and 3.2.7, which represent systems with variety of initial distributions and their

subsequent evolution.

3.2.1 Simulations of the Occupation Probability Distribution of 4-
Qubit Systems Prepared in Arbitrary States through the PY
Method

In previous chapters, we have shown that the PY method can effectively simulate the energy
level evolution of 2 to 5 qubit systems, but two of the main problems for the development of
quantum adiabatic computing are unsolved, that is, “how to make the system fall to the ground

state as quickly as possible”, and "Maintain it in the ground state as much as possible." For this
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purpose, further simulations of the evolution of the occupation probability distribution of the
system are required.

Therefore, we further extended our model adding the functionality of simulating the evolution
of the occupation probability distribution of 2 to 5 qubits quantum coherent system. First, we
show that the PY method is capable to simulate the evolution of level dynamics and the
evolution of the occupation probability distribution for small-scale quantum coherent structures

starting from an arbitrary pure state.
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Fig. 3.2.1: (1) Left panel: a 4-qubit system fully prepared in ground state. The probability that
the system is in the ground state is represented in the figure by a blue line that starts from one
and continues to decrease. This decreasing blue line shows that the system keeps escaping from
the ground state and being excited to other energy levels during the evolution process. The
system does not move too far away from the ground state but is mainly concentrated in several
energy levels near the ground state. (2) Middle panel: same system fully prepared in the Ist
Excited State. In this panel, we can intuitively see how the occupation probability distribution
of the system changes between the adjacent energy levels, especially between the 2™ and 3™
levels near t=10. (3) Right panel: same system but fully prepared in the highest excited state,
i.e., the 16" Level. The downward trend of the curve representing the probability of the 16™
energy level is similar to that of the left panel, and the changes in the probability distribution
of the system are mainly concentrated in several energy levels adjacent to the initial energy

level.
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Fig. 3.2.1 is the cornerstone of this section, showing the simulations of the evolution of the
occupation probability distribution of 4-qubit systems via the PY method, and the relationship
between the probability distribution and various parameters can be studied through this.

In the three examples in Fig. 3.2.1, the three different initial states the system was prepared in:
the ground state, the 16" energy level and the 2™ energy level, which actually represent two
types of energy levels (i.e., edge energy levels and intermediate energy levels).

We can see that the quantum system escapes from its original level faster when it was fully
prepared in the 2™ energy level (intermediate level) and escapes in a slower speed when it was
fully prepared in the edge states, i.e., ground level and the highest energy level (edge levels).
This feature in our simulation is consistent with the finding that the escape probability is higher

for the middle levels and lower for the edge levels’’.

Occupation Probability Distribution

Probability

Time

Fig. 3.2.2: This figure shows the evolution of occupation probability distribution for a 4-qubit
system prepared in a mixed state (50% in ground state, blue line and 50% in the 2" energy

level represented by the red line).
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In Fig. 3.2.1, we show that the PY method can simulate the evolution of the probability
distribution when the quantum system is originally prepared in one single state. However, in
actual situations, the systems are often not in a single energy level, so we need to prepare the
system in an initial state that mixes multiple energy levels.

In Fig. 3.2.2, we further show an example of a simulated occupation probability distribution of
a 4-qubit system prepared in a mixed state with 50% ground level and 50% 2"¢ energy level
through PY method. Indeed, in our simulations, we found that the PY method is capable to
simulate the evolution of the occupation probability distribution of small-scale quantum
coherent structures prepared in arbitrary initial state, which provides the feasibility for the

further analyzing both qualitatively and quantitatively of the behaviors of a multi-qubits system.

3.2.2 Optimal Parameters of A for Maximizing Ground State
Probability in a 4-Qubit System

In this part, we will demonstrate how we use the PY method to study a critical problem for
AQC, namely, how to choose the parameters of the external controlling field A to maximize the

probability for the systems to fall into the ground state within a certain period. For efficiency

and demonstration purposes, we chose 4-qubit systems as the simulation object in this section.
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Fig. 3.2.3: These heatmaps show the maximum probability of transition to the ground state for
a 4-qubit system initialized in different excited states. The x-axis represents the amplitude A of
A(t) = Acos(wt), the y-axis represents the frequency w of A and the color represents the
maximum probability for the system to transit to the ground state during the evolution from
t=0 to t=8n. (1) The left panel illustrates the maximum probability of transitioning to the ground
state during the evolution from t=0 to t=8x for a 4-qubit system initially prepared in the 9™
energy level and driven by A. (2) The right panel shows the maximum probability of

transitioning to the ground state for the same system but prepared in the 10" energy level.

In Fig. 3.2.3, we delve deeper into specific parameter sets, highlighting their impact on the
evolution on the occupation probability distribution. We can see from here that the systems
prepared in an excited energy level have different chances to fall in the ground while the
amplitude and frequency of the perturbative parameter A is varying. And the highest maximum
probability for the system to fall into the ground state occurs some chosen parameters A, (w =
0.8 and A = 0.7) for the case presented in the left panel and (w = 0.5 and A = 0.8) for the

case shown in the right.
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Besides, it is important to note that in all the optimization maps (Fig. 3.2.3-3.2.7), we restrict
the scan of the parameter space for the external controlling field A(2) = A cos(wt) to amplitude
and frequency values no more than 0.9. This empirical cutoff is not due to any theoretical
instability around the value 1, but rather a practical limitation imposed by numerical accuracy

in simulations.

Specifically, as shown in Eq. (1) in section 2.2 that the Hamiltonian of the system evolves with
respect to A, while A is a function of time t through the form A(?) = 4 cos(wt).

Therefore, when either A or o increases, the effective step size in A becomes larger, as A(z) =
A cos(wt) varies more rapidly over time. Since the simulation uses a fixed time step dt, any
increase in the amplitude A or frequency o of the driving field A directly results in a larger
effective change in A per step, i.e., a larger dA. When both A and @ approach 1 in our simulations,
this step size dA exceeds the resolution threshold needed to accurately capture the fine structure
of the evolving energy levels. As discussed in Section 3.1.4, maintaining fidelity in the
occupation probabilities (e.g.,error size around 1073) typically requires the accuracy of
level dynamics to be within the order of 107> If the variation dA becomes too large to satisfy
this requirement, the numerical simulation becomes unreliable. While such issues could
theoretically be mitigated by reducing the time step or adopting more advanced integration
schemes, such modifications fall beyond the scope of this exploratory study—particularly in
terms of computational cost. Therefore, to ensure sufficiently high numerical resolution across
all parameter sets while keeping the simulation tractable, we restricted both A and ® to a

maximum value of 0.9.
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Fig. 3.2.4: (1) The left panel: the red circles denote the coordinates (amplitude, frequency) of
Lambda for a 4-qubit system to have the highest maximum probability to reach its ground state
within a certain amount of time. The blue triangles denote the coordinates (amplitude,
frequency) of A for the system to have a second highest maximum probability to reach the
ground state. (2) The right panel: here only the coordinates of 4 for the system to have the

highest maximum probability are plotted.

We have compiled the 16 sets of data of the evolution of the probability distribution for a
system prepared in pure state from 1% level to 16" level in Fig. 3.2.4. And a trend is revealed
that when A is in the upper right corner of the amplitude-frequency graph, the highest
occurrences of maximum probability transitions to the ground state during the evolution are

found.

Moreover, we can consider the coordinate of the red circle as an optimal set of frequency and
amplitude for the system initially prepared in a pure state. And we found that if we prepare the
system in a mixed state composed of two different pure states, each with the same optimal
frequency and amplitude coordinates for maximum probability of transitioning to the ground
state within a certain time, then the mixed state will also exhibit the same optimal frequency
and amplitude coordinates for this maximum probability as those individual pure states. We

will explain this in detail through Fig. 3.2.5 to Fig. 3.2.7.
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3.2.3 Shared Optimal Parameters: A Potential Tool for State

Tracking and Parameter Adjustment in Quantum Systems
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Fig. 3.2.5: It can be observed from the above figure, that the system started from pure state
level 6 (in the left panel) and the system started from pure state level 14 (in the right panel)

both have the same optimal set in (0.8,0.9).

Fig. 3.2.5 introduces a pivotal concept—the general optimal frequency and amplitude. It shows
that systems initialized from different pure states, such as level 6 and level 14, can converge to
the same optimal frequency and amplitude coordinates, specifically (0.8, 0.9). This observation
suggests that the optimal set of frequency and amplitude is not unique to specific initial states,
but rather can be common across different pure states, highlighting the universality of these

optimal parameters.

The investigation of the same set of optimal frequency and amplitude for different initial states
is demonstrated in Fig. 3.2.6. While Fig. 3.2.5 shows the example that systems prepared in

different pure states could share the same value of optimal frequency and amplitude, Fig. 3.2.6
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takes this question and extends it to the cases where systems were prepared in mixed states.
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Fig. 3.2.6: This figure shows the optimal point of the case where the system was prepared in a
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mix state of 50% in level 6 and 50% in level 14. It ends up with a same optimal point (0.8,0.9)

of the two cases prepared in pure state: level 6 and level 14 shown in Fig. 3.2.5.

Fig. 3.2.6 serves as a validation of “the shared optimal point” concept. A system prepared in a
mixed state, with 50% each from level 6 and level 14, also aligns with the same optimal
coordinate of (0.8,0.9). This consistency across both pure and mixed states suggests a

potentially universal phenomenon that warrants further investigation.
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Fig. 3.2.7: Here we change the composition of the distribution of its initial mix state to % in

level 6 and g in level 14, and we find the optimal coordination remains the same at (0.8,0.9).

1
Fig. 3.2.7 shows a change in the composition of the initial mixed state, with 3 in level 6 and

5 n level 14. Despite this alteration in the initial state, the optimal coordinate remains

consistent, pointing to the coordinate (0.8, 0.9). This observation further solidifies the idea that

different initial states, whether pure or mixed, can share a common optimal coordinate.

Fig. 3.2.7 illustrates that when we alter the proportions of different energy levels in the initial
1 2
mixed state, specifically, with 3 in level 6 and 3 in level 14, the shared optimal coordinate

remains unchanged. This consistent optimal coordinate, (0.8, 0.9), indicates that different initial

states, whether pure or mixed, can indeed share a common set of optimal parameters.

Furthermore, this unique sensitivity to specific external field parameters can serve as a

powerful tool for tracking the initial state of the system. By observing the parameters under
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which the system is most likely to transition to the ground state within a given time frame, we

can infer the composition of the initial state in terms of its energy levels.

From the above results, we can see that 4-qubit systems exhibit a unique sensitivity to specific
external field parameters according to their initial state compositions. This sensitivity not only
allows researchers to reverse-investigate the initial state by identifying a system's optimal
coordinate but also provides guidance on how to adjust the amplitude and frequency parameters
in the future to enhance the probability of the system transitioning to the ground state within a

given timeframe.

The finding naturally raises questions about the boundaries and limitations of the “shared
optimal coordinate” concept. Are there conditions under which this phenomenon breaks down?
Or is it a universal trait of quantum systems? These questions could form the basis for further

exploration and research.

If this property is not unique for system for some settings only, then it might provide us a
convenient tool to obtain information about the initial state of a large-scale quantum coherent
system by searching whether an optimal set of parameters exists and what initial states it
indicates. And there exists a potential for manipulation of these parameters, ensuring the
system's highest likelihood of transitioning to the ground state within a given time frame.

On the contrary, if this property is not general, we can investigate the boundary conditions for

it which will also be helpful to understand the behavior of large quantum coherent systems.
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3.3 Manipulating Quantum Systems Near Anti-Crossings

In this section, our simulations provided insights into the manipulability of quantum systems,
specifically near anti-crossings. By modifying the parameters of the external field, we can
strategically direct the probability flow, causing the system to either ascend or descend in
energy levels. Figures 3.3.1 to 3.3.3 display the effect of parameter adjustment on the change
of occupation probability distribution, providing clear visual evidence of our control through A

over these systems.

Occupation Probability Distribution Probabilities of LVL 8 and LVL 9

Energy Levels
Energy Levels

Lambda Lambda

Fig. 3.3.1: (1) The left panel: Here we use a linear perturbative parameter A = 0.1t and plot
the evolution of the energy levels for a 3-qubit system (2) The right panel: the occupation
probability distribution of the same system for the left panel started from a mix state with 50%

in level 8 (blue line) and 50% in level 9 (red line).

We can see the probability exchange shown in the right panel of Fig.3.3.1 occurs in the same

vale of A, near A = 0.4, where the first anti-crossing occurs, marked on the left graph. This

figure serves as a reference for studying the impact of changing A near the first anti-crossing,
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which we will discuss in the next two figures. It can be seen from the right panel of Fig.3.3.1
that the probability change from upper level (red line) to the lower level was around 0.118.
Occupation Probability Distribution Probabilities of LVL 8 and LVL 9
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Fig. 3.3.2: (1) The left panel: the level dynamics of a 3-qubit system driven by a linear

perturbative parameter A = 0.1¢, but we change A from 0.1 to 0.2 near the vicinity of the first
anti-crossing at A = 0.4. (2) The right panel: the occupation probability distribution of the
same system for the left panel started from a mix state with 50% in level 8 (blue line) and 50%

in level 9 (red line).
From the right panel of Fig.3.3.2, we can observe that the probability changed from the upper

level (red line) to the lower level (blue line) is 0.119, which is slightly higher than 0.118 shown
in Fig.3.3.1.
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Occupation Probability Distribution Probabilities of LVL 8 and LVL 9

8

10

12

Energy Levels
Energy Levels

Lambda Lambda

Fig. 3.3.3: Same settings to Fig.3.3.1, but we decrease A from 0.1 to 0.04 near the vicinity of

the first anti-crossing at 4 = 0.4. And the probability changed from the upper level (right line)

to the lower level (blue line) decreased to 0.096 from 0.118 (shown in Fig.3.3.1). There is a

noticeable change in the difference of the probability change after we decrease A

We can conclude a region from Fig.3.3.1 to 3.3.3 that by increasing A near the vicinity of an

anti-crossing, the system favors dropping to the lower level during the Landau-Zener transition

(the transition probability is described by Eq.(11) ). And by decreasing A the system tends to

excite to the upper level.

Pz = exp(—AZ%,,4m|(m|ZH, n)|}) (11)
This regime provides us with an approach to manipulate the evolution of the probability
distribution of a small-scale system which is meaningful in the research of quantum computing,
especially adiabatic quantum computation if it is not restricted to small-scale quantum system
only. Since we can increase the probability for the system to fall into the ground state with a

certain length of time by tuning the external controlling field A. This is helpful for the
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preparation of AQC which requires the system to be prepared in its ground state. Moreover,
when the system is finally in ground state, we can change A to lower the chance for it to escape
from the ground state through a Landau-Zener transition.

However, this method is not restricted to AQC only, since it can also be used as a helpful tool
to manipulate the probability distribution not only concerns the ground state, but all levels.
Moreover, by constructing a network of anti-crossings and tuning A at each anti-crossings, we
may have a chance to drive the system to the particular occupation probability distribution we
want, which will be extremely useful in the study of quantum computing.

In addition, this also provides us a potential research direction to construct patterns with anti-
crossings, since we can control the horizontal distance between anti-crossings by changing A
and control the vertical distance by twitching the curves of energy levels also determined by A.
This enlightens us an interesting direction: if we can take anti-crossings as nodes and construct
patterns with them, as the number of anti-crossings grows large enough, new features will

emerge, which has a potential to be helpful in the development of QC.

3.4 Summary of Chapter 3

In this chapter, we investigated the relation between initial occupation probability distributions
of the quantum systems and their corresponding external field parameters, i.e., amplitude and
frequency of A. Through a series of detailed figures and analyses, this chapter demonstrates
how we can control the transition of a quantum system to its ground state by manipulation of

the parameters of A.

In our simulations, we found that every quantum system has an optimal set of amplitude and
frequency of the external controlling field A to drive the system to the ground state with a
maximum probability within a certain simulating time, no matter what initial configurations of
the occupation probability distribution the system was prepared. In addition, systems prepared
in different configurations of occupation probability distribution could have the same optimal

set of amplitude and frequency of A to allow them to fall into the ground state with a maximum
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chance within the certain time. This suggests that there may be a universality that applies to all
quantum systems and is worth further exploration. Furthermore, if we know which set of
amplitude and frequencies is optimal for which initial probability distribution, we can somehow
infer the original configuration of the occupation probability of the system based on its current
optimal set, which can be helpful in detecting whether the system was working properly.

In short, we show that the potential of the parameters of the external controlling field A to work
as a tool to guide, detect and predict behavior of systems through some simulation examples.
These findings can contribute to further exploration and research in the field of quantum

computation.

Chapter 4: Dynamical Complexity and Occupation
Probability distribution of 2-Qubit System

Introduction of Chapter 4

In this chapter, we investigate the regimes that determine the evolution of the occupation
probability distribution and the relation between it and the broadening of the power spectral
density (PSD) of the expectation value of the system through the simulations of 2-qubit
quantum systems under control of the external perturbation A.

By applying the Pechukas method to simulate dynamical evolution alongside spectral analysis
techniques, we build a connection between the degree of dynamical complexity of the system
and the change of its occupation probability distribution.

It is worth noting that although the analysis we present in this chapter is about 2-qubit systems
due to insufficient computing power, the methods and framework design we adopted are not
limited to 2-qubit systems and can theoretically be extended to larger-scale quantum systems.
Next, we will introduce the regimes we found, supplemented by numerical simulations and
analytical discussions to clarify under what conditions certain quantum behaviours emerge and

how these findings can be used to advance the field of adiabatic quantum computing.
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The simulations in this chapter are based on the 2-qubit Hamiltonian introduced in Section 2.2.
The model parameters used in the numerical results are specified below or in the figure captions
where available.

List 2: Parameters of Hamiltonian used in the simulations of 2-qubit systems in chapter 4.

Parameter Value
A 0.4
A, 0.5
hy 0.7
h, 0.2
J12 0.6

4.1: Foundational Concepts and Tools

In this section, we present the basic concepts of our research through three sets of figures.
First, we introduce how we use the periodic external controlling field 4 = Acos(wt) by tuning
its parameters amplitude (A) and frequency (o) to affect the power spectral density (PSD).
Here Figures 4.1a and 4.1b serve as the cornerstone of our exploration into PSD by presenting
the power spectral density for the expectation value of energy of a 2-qubit system under the
influence of white noise.

Fig. 4.1a focuses on the impact of amplitude variations, illustrates how varying the amplitude
of the perturbative parameter A leads to changes in the spectral density. Fig. 4.1b shifts the lens
towards frequency variations by looking at a similar setup but focuses on the impact of altering
the frequency of A. Together, they lay the groundwork for understanding how these parameters

can be fine-tuned to influence quantum states and, by extension, AQC.

Second, through the comparison of two sets of Figures (4.2 and 4.3), we show the difference

in PSD between PSD with distinct peaks (regular systems) and broadened PSD (a symbol of
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dynamical complexity) and explain the connection between the degree of broadening of the
PSD of the expectation value of the system and the probability distribution. It is also worth to
point out that spectral analysis via PSD can provide a kind of basis for determining whether
quantum chaos occurs, but spectral analysis alone is not enough to make a complete

determination’®.

Fig. 4.2a shows a 'smeared' case in PSD, i.e., a broadened PSD with multi-peaks, indicating a
dynamical complex behavior occurred in the system. While Fig. 4.2b serves as natural
extensions of Fig. 4.2a by presenting the corresponding probability of the ground level.
Together the figures reveal how the broadening of PSD can be related to significant deviations
in occupation probability distributions, thereby affecting the efficiency and reliability of AQC

algorithms.

Fig. 4.3a and 4.3b are presented as a comparison of 4.2a and 4.2b. Fig. 4.3a shows a ‘regular’
case in PSD, while 4.3b presents its corresponding possibility distribution of the energy levels.
They show that in a more regular PSD, i.e., less dynamical complexity, the probability of escape
from the original level in which the system was initially prepared is lower, thereby indicating

a more stable quantum state.
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Fig.4.1a: Power spectral density for expectation value of energy of a 2-qubit system with the
presence of white noise. In this case, by changing the amplitude of the perturbative parameter
A, the “signature” cluster between two main peaks in the power spectral density of expectation
value of energy changes. The dominant peak near v = 3 corresponds to the driving frequency

o = 18, confirming the resonance between system dynamics and the applied modulation.

In Fig. 4.1a, the power spectral density (PSD) of the occupation probability exhibits a dominant
peak at frequency v=3. This matches the expected response to the external driving field A(t) =
Acos(wt), where ©w=18. Since the frequency in hertz is given by v = w/2m = 2.86, the
observed peak confirms that the main oscillation in the system originates from the periodic
driving field A. This indicates that the system dynamics are strongly influenced by the external

driving frequency, consistent with the expected coherent response.
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Fig.4.1b: Power spectral density for expectation value of energy of a 2-qubit system with the
presence of white noise. In this case, by changing the frequency of the perturbative parameter
A from 18 to 17.5, the broadening of peaks between each two adjacent main peaks in the power
spectral density of expectation value of energy increases. In both panel, the dominant peak near
v = 3 corresponds to the driving frequency o = 18(left panel) and w=17.5(right panel),
confirming the resonance between system dynamics and the applied modulation. It is also
evident that variations in amplitude do not affect the principal frequency component in the PSD,

provided the frequency remains constant.

Figures 4.1a and 4.1b serve as an introductory exposition into the realm of Power Spectral
Density (PSD) in quantum systems. Fig. 4.1a provides a foundational understanding of how
amplitude variations in the perturbative parameter A can significantly alter the PSD. As we
transition to Fig. 4.1b, the focus shifts subtly but importantly to the frequency domain. It is not
merely a continuation of Fig. 4.1a but serves to highlight the dual role of amplitude and

frequency in shaping the PSD. The juxtaposition of these two figures lays the groundwork for
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a nuanced understanding of how these parameters can be manipulated to influence quantum
states, a theme that has far-reaching implications for adiabatic quantum computing (AQC).
Because we can further build a relationship between PSD and the evolution of the occupation
probability distribution of the target quantum coherent system. This analysis also reveals the
potential effect of quantum chaos on the occupation probability distribution of system energy

levels which can be explored if more indicators of quantum chaotic behaviors are applied.
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Fig.4.2a: A high degree of broadening in the power spectral density of expectation value of
energy of a 2-qubit system with the presence of white noise where 4 = 1.1cos(18t). The
spectral components observed are broadly distributed, but the dominant peak still appears near

v = 3, corresponding to the driving frequency o = 18 (since v = w/2n = 2.86), confirming the
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influence of the external field A.

The corresponding evolution of the probability of the ground state for the same system is shown
in Fig.4.2b.

On one hand, in Fig. 4.2a, a significant broadening of PSD of expectation value of energy of
the system is evident, characterized by the presence of numerous clusters interspersed between
primary peaks. This feature, indicating a broad spectrum of frequencies within the energy
signal, indicates a complex behavior of the system, and can serve as one of possible indicators
for the presence of quantum chaotic behavior. However, it should be considered a necessary

but not sufficient condition for identifying quantum chaos.

Since each frequency component within this spectrum is associated with a distinct dynamical
mode of the quantum coherent structure under investigation, the presence of a broad range of
such frequencies—manifested by a significant broadening of the primary peaks—suggests a
system characterized by a diverse array of dynamical behaviors, i.e., more complex, indicating

that the system is demonstrating a dynamical complex behavior.

On the other hand, Fig. 4.3a illustrates a PSD that is narrow and discrete, with energy
predominantly concentrated at a limited number of frequencies. Such a spectral profile is

indicative of a system that is more regular and deterministic in nature.

In summary, the Power Spectral Density of the expectation value of energy for the target
quantum coherent structure serves as a valuable diagnostic tool for intuitively assessing the
degree of the dynamic complexity of the system. A high degree of broadening of the PSD is an
indicator that the system is exhibiting dynamical complex behaviors. This can also be

considered as one of the indicators for possible quantum chaotic behavior for further research.
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Fig.4.2b: Drastic changing probability of ground state for 2-qubit system. We can see that the
probability for the system to be in ground state varies greatly when the system exists a

significant broadening of PSD (many clusters between main peaks in Fig.4.2a).

While it is established that the Power Spectral Density (PSD) is influenced by the amplitude
and frequency of Lambda when it operates as a periodically oscillating cosine function, this
knowledge facilitates only an intuitive assessment of the dynamical complexity of the system.
For these insights to have practical utility in the advancement of Adiabatic Quantum
Computation (AQC) technology, it is imperative to establish a theoretical link between the
dynamical complexity and the temporal evolution of the occupation probability distributions

of the systems.
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Operating under the foundational principle that successful Adiabatic Quantum Computation
(AQC) necessitates the system's maintenance of its ground state throughout the evolution
process, an appropriate vantage point for exploring the interrelationship between the
dynamical complexity of the quantum coherent structure and the performance of AQC is the
temporal evolution of the ground state's occupation probability distribution. In addition,
based on our study, the relationship between quantum chaos and AQC performance can be

studied in future research by utilizing more indicators to identify quantum chaos behavior.

To this end, Fig. 4.2b illustrates the dynamic alterations in the probability of the system
residing in its ground state, having been initially prepared in this state prior to undergoing

evolution governed by the parameter A.

This is juxtaposed with the observations from Fig. 4.2a, which displays a multi-peaked Power
Spectral Density (PSD) replete with clusters between the primary frequency peaks—a
signifier of dynamical complex behavior of the system. One can observe in Fig. 4.2b that the

probability of the system remaining in the ground state exhibits significant fluctuations.

The question then arises: is there a correlation between the degree of the broadening of PSD
of the expectation value of energy of the system which indicates the dynamical complexity in
the system and the variability in the probability of the system occupying its ground state? To
substantiate this hypothesis, it becomes essential to draw comparisons with scenarios where
the PSD manifests regular characteristics, which is presented in the following Fig.4.3a and

Fig.4.3b.
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Fig.4.3a: A low degree of broadening in the power spectral density for expectation value of
energy of a 2-qubit system with the presence of noise where 4 = 0.8cos(18t). The dominant

peak near v = 3 corresponds to the driving frequency o = 18.

We can see the frequency here is the same as the one in Fig.4.2a, while the amplitude is changed
to 0.8 from 1.1. The number of clusters between main peaks significantly reduced and became
more discrete, which indicates a less dynamical complexity of the system. The corresponding
variation of the probability for the system to be in ground state is more stable which can be

found in Fig.4.3b.
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Fig.4.3b: Slowly changing probability of ground state for 2-qubit system. When the power
spectral density is more discrete (see Fig. 4.3a), the system has less dynamical complexity and

shows less tendency to leave its original state.

It is noteworthy that in the scenarios depicted in Figures 4.2 and 4.3, the system is initially
prepared in the ground state .Upon contrasting the cases, it becomes evident that a higher
degree of dynamical complexity of the system (as seen in Fig. 4.2a) correlates with a more
substantial deviation from the system's original ground state (as illustrated in Fig. 4.2b in

comparison to Fig. 4.3b).

As a preliminary inference, one may posit that the presence of dynamical complexity
negatively impacts the operational efficiency of an adiabatic quantum computer initially

prepared in its ground state. To be more explicit, the degree of dynamical complexity of the
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system appears to be directly correlated with the extent of deviation from the ground state.
Greater dynamical complexity increases the likelihood of the system transitioning away from
its original states (ground states in the above cases). This observation leads to a speculative
query: could the degree of dynamical complexity be proportionally related to the extent of
deviation from the initial state? This line of inquiry warrants further investigation, which will
be pursued in subsequent discussions.

Furthermore, although periodic fluctuations are observable from Fig.4.1a to Fig.4.3b, it is
worth noting that the occupation probability distribution of the system does not necessarily
demonstrate periodic changes. In other words, the system could evolve away from its initial
occupation probability distribution and not revert to its original configuration (further details

are presented in Fig. 4.4a).
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Fig.4.4a: Evolution of the probabilities of each energy level if a 2-qubit system, A =

1.25c0s(14.5t). The system shows a non-periodic evolution and escapes from its original state
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(ground state) rapidly.

102 PSD for <E>

10° § ;
Pary
= 0. ]
2 10
(D)
Q
©
S 0™
Q.
w
o
2 108k
(el

109'F

10'10 1 1 1 1 1
0 5 10 15 20 25 30
Frequency

Fig.4.4b: A high degree of broadening in the power spectral density for expectation value of
energy of a 2-qubit system with the presence of noise where 1 = 1.25c0s(14.5t). Many
clusters amidst main peaks indicate that the system is demonstrating dynamical complex
behaviors. From the driving frequency o = 14.5, we estimate the corresponding frequency in
hertz as v= / 2n = 2.31. The observed dominant peak near v = 2.5 supports this estimation,

indicating a clear resonance with the external modulation.

In Fig. 4.4a, the system is initially prepared in its ground state, as indicated by the blue marker
originating at a probability of one. And unlike the previous examples, following a period of
temporal evolution, the system shows non-periodic behaviours and undergoes a substantial

transition away from its ground state and does not revert to its original configuration.

The corresponding Power Spectral Density (PSD) of the system's expectation value of energy
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value is delineated in Fig. 4.4b. This spectral profile intimates a quantum coherent structure
with a propensity for manifesting dynamical complex behaviours.

The concurrent phenomena of rapid departure from the initial energy level and a broadened
PSD in Fig. 4.4b—which is indicative of higher degree of dynamical complexity—corroborate
our preliminary hypothesis. Specifically, we have posited that the extent of complexity of the
system is proportionally related to the degree of deviation from the initial energy level.
Accordingly, the PSD serves as a diagnostic tool for gauging the likelihood of the system's

escape from its original energy state.

To empirically substantiate this hypothesis, we systematically varied the amplitude of A within
the range of 0.95 to 1.25, in increments of 0.05, and the frequency from 12.5 to 22.5, in

increments of 0.5, during simulation. The results were congruent with our conjecture.

As it stands, pending the emergence of counterexamples, there is justified confidence in
asserting that for a two-qubit system subjected to an external cosine field in the presence of
white noise and initially prepared entirely in its ground state, the propensity for departing from

the initial energy level is proportional to the degree of the dynamical complexity of the system.

It is worth noting, however, that the discussion thus far has exclusively focused on a two-qubit
system initially prepared 100% in its ground state. Given that a two-qubit system possesses
four discrete energy levels—comprising two edge levels (the first and fourth) and two
intermediate levels (the second and third)—it becomes imperative to extend our inquiry to
scenarios where the system is entirely prepared in these other energy states. Such analyses will

be undertaken in Section II.

4.2: Further Verification of Our Hypothesis and Interesting Results

Different Tendencies: Edge vs. Intermediate Levels

In this section we will discuss the relationship between PSD and the occupation probability
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distribution of the system energy levels when the two-qubit system is fully prepared in three
energy levels except the ground state.

We used a different approach, the PY method, to reach the same conclusion as the previous
research’®, that is, the escape velocity of the intermediate energy level is faster than that of the

edge energy level.

Moreover, we found that when the system is completely prepared at the edge energy level, it
follows two different sets of regimes than when it is completely prepared at the intermediate
energy level.

Therefore, we will discuss and compare the two cases of edge energy level and intermediate
energy level respectively.

First, we will start our exploration from the other edge energy level in the two-qubit system

except the ground state, that is, the fourth energy level.
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4.2.1 Systems prepared entirely in edge levels
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Fig.4.5a: Probability distribution, A=1.25cos(18t), start from 100% LVL 4. The probability for

this 2-qubit system to remain in the original state LVL4 varies a lot in periodic changes.

Recalling our previous findings in Section I, where the system was initiated in its ground state,
we established a proportionality between the degree of dynamical complexity (quantified by
the degree of broadening of the PSD of the system's expectation value of energy) and the extent

of deviation from this initial state.

We extended this observation to hypothesize that the degree of dynamical complexity of the
system is correlated with the likelihood of the system departing from its initially prepared state.
Should this hypothesis hold universally and not be confined to systems initiated in the ground
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state, then one would anticipate a broadening PSD, indicative of higher degree of dynamical

complexity of systems, in instances where there is significant variation from the original state.

Fig. 4.5a indeed corroborates this, demonstrating marked fluctuations when the system starts

from a configuration exclusively in the fourth energy level.

Substantiating our hypothesis, Fig. 4.5b reveals a PSD characterized by a significant
broadening appearance, replete with clusters between the primary frequency peaks, thereby

indicating that the system undergoes complex behaviors.
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Fig.4.5b: Power spectral density of the expectation value of energy for the 2-qubit system
started from 100% LVL 4 under the control of an external field A=1.25cos(18t). From the

driving frequency o = 18, we estimate the corresponding frequency in hertzas v=o / 2n =
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2.86. The observed dominant peak near v = 3 supports this estimation, indicating a clear

resonance with the external modulation.

Next, we demonstrate a pair of graphs of a ‘regular’ example for comparison:
While Fig. 4.6a demonstrates a case with a relatively regular PSD for the expectation value of
energy, i.e., less, and shorter clusters between main peaks of frequencies. Fig. 4.6b presents the

corresponding evolution of the probability distribution of the energy levels.
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Fig.4.6a: Power spectral density of the expectation value of energy for the 2-qubit system

started from 100% prepared in the 4™ energy level under the control of an external field
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A=1.25cos (18.5t). In this case, the amplitude of A is fixed, while the frequency is changed from
18 to 18.5. From the driving frequency o = 18.5, we estimate the corresponding frequency in
hertz as v = o / 2n = 2.94. The observed dominant peak near v = 3 supports this estimation,

indicating a clear resonance with the external modulation.

As illustrated in Fig. 4.6a, the PSD displays less broadening, both interposed between and
adjacent to the primary frequency peaks, compared to what is observed in Fig. 4.5b. This
reduction in cluster count and size suggests a less degree of dynamical complexity of the system.
If our earlier hypothesis—which posited a proportionality between the degree of dynamical
complexity of the system and the system's likelihood of deviating from its initial state—is
applicable beyond just the ground state to include both edge energy levels, then a

correspondingly smaller deviation from the initial state should be observable in Fig. 4.6b

Examination of Fig. 4.6b confirms this prediction, revealing a less pronounced departure from
the system's initial energy level. This observation not only supports but also broadens the scope
of our original conjecture. Specifically, we can now extend our hypothesis to state: "When a
two-qubit system is driven by an external field characterized by 4 = Acos(wt) and subjected
to white noise, and is initially prepared entirely in one of the edge energy levels (as opposed to
solely the ground state), the system's tendency to deviate from this initial energy level is

proportionate to the degree of dynamical complexity of the system.”
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Fig.4.6b: Probability distribution, A=1.25cos (18.5t), start from 100% in the 4™ energy level

(edged level, and most excited level for 2-qubits system).

Though our simulated results show that the system's tendency to deviate from this initial energy
level is proportionate to the degree of dynamical complexity of the system measured by the
degree of the broadening of PSD of expectation value of energy for two-qubit systems which
are driven by external fields characterized by A = Acos(wt) and subjected to white noise and
were initially prepared entirely in one of the edge energy levels, it is still too early to make a
bigger statement like “the degree of dynamical complexity of the system is proportional to the

tendency for the system to escape from its original state”.

To dig further, we are going to demonstrate the situations in which the 2-qubit systems are

prepared entirely in the intermediate levels instead of edge levels through Figures 4.7 to 4.11.
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4.2.2 Systems prepared entirely at intermediate levels:

As delineated in Figures 4.7a and 4.7b, we first consider a scenario wherein the two-qubit

system is initially prepared at one of the intermediate levels (the third energy level).

Fig. 4.7a reveals a rapid departure of the system from its initial energy state. Surprisingly,
however, the corresponding Power Spectral Density (PSD) of the system's expectation value
of energy, as depicted in Fig. 4.7b, manifests as a structured pattern rather than a 'smeared' one.
This PSD with a lower degree of broadening in PSD also indicates low degree of dynamical

complexity of the system.

This observation starkly contrasts with previous scenarios where the system was prepared at
one of the edge energy levels. Consequently, we postulate that when the system is initialized at

an intermediate energy level, an alternative set of dynamical rules might govern its behavior.

To empirically substantiate this hypothesis, we employed our extended Pechukas-Yukawa
formalism to simulate systems initialized at intermediate energy levels (either the 2nd or the
3rd). The amplitude of A was systematically varied within the range of 0.95 to 1.25, in
increments of 0.05, and the frequency was adjusted between 12.5 and 22.5, in increments of

0.5.

Our findings corroborated that, irrespective of the PSD patterns, systems initialized at
intermediate levels consistently exhibit a rapid divergence from their initial states compared to

systems initialized at edge levels.

These studies report a relative speed difference in escaping from initial states between edge
and intermediate energy levels, with systems in intermediate states diverging more rapidly. This

observed speed differential intuitively makes sense; for intermediate energy levels,
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probabilities can flow in two possible directions, whereas for edge states, the flow of
probability is restricted to a single direction.
Nevertheless, the underlying mechanics of this phenomenon warrant further investigation, a

topic we shall delve into subsequently in the future.

At this juncture, it would be prudent to refocus our attention on the behaviour of systems

initially prepared in one of these intermediate energy levels.

Returning our focus to the relevant figures, it is noteworthy that while a direct correlation
between system’s dynamical complexity (quantified via Power Spectral Density, or PSD) and
the velocity at which the system departs from its initial energy level remains elusive, an
alternative method of establishing a link between the system's dynamical complexity and
occupation probability distribution has come to light. Specifically, this alternative metric can
be characterized by the gap between the lines that represent the probabilities of the system

occupying the 1% and 4™ energy levels, as delineated in Figures 4.7a and 4.8b.

Upon scrutinizing the simulated data, we observed a noteworthy pattern: as the degree of
system’s dynamical complexity escalates, the intertwining of the lines representing the
probabilities of the system residing in the two edge energy levels (namely the first and the
fourth) becomes increasingly intricate. Conversely, in scenarios with a minimal degree of

system’s dynamical complexity, the separation between these lines is significantly pronounced.
This refined interpretation offers a nuanced perspective, potentially furnishing us with an

auxiliary metric for evaluating the degree of dynamical complexity of the system in relation to

the probability distribution across edge energy levels.
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Fig.4.7a: Probability distribution, A=1.24cos (13t), start from 3™ energy level 100% (an

intermediate level).

In Fig. 4.7a, the rapid efflux of probability from the original state—Level 3 (LVL 3)—is evident,
eventually coalescing predominantly at the highest excited state, Level 4 (LVL 4). The curves
corresponding to these states configure into a horizontally oriented 'U' shape, distinguished by

a conspicuously broad interstice at the midpoint.

According to the heuristic framework we have derived from the simulation data, a larger
separation between the lines representing the probabilities of the two edge energy states—Level

1 and Level 4—correlates with a more structured Power Spectral Density (PSD).

Corroborating this observation, Fig. 4.7b exhibits a PSD of the expectation value of energy
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value that adheres to a regular pattern.
Consequently, this instance lends credence to our summarily established rules governing the
relationship between PSD of the expectation energy value and the occupation probably

distributions.

PSD for <E>

—
S
'S

Power Spectral Density

-
=
(o}

5 10 15 20 25 30
Frequency

N
Q
[02]
T

—_

-
-
o

Fig.4.7b: Power spectral density of the expectation value of energy for the 2-qubit system
started from 100% LVL 3(middle level) under the control of an external field A=1.24cos (13t)
with the presence of white noise. Compare this to its neighbor in the following Fig.4.8a, where
Lambda=1.24cos (13.5t), we can see this one has significantly less clusters, i.e., less degree of
dynamical complexity of the system. From the driving frequency @ = 13, we estimate the
corresponding frequency in hertz as v= / 2n = 2.07. The observed dominant peak near v = 2

supports this estimation, indicating a clear resonance with the external modulation.
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Nevertheless, isolated corroborative instances are insufficient for drawing comprehensive
conclusions. As such, we intend to furnish additional examples to robustly elucidate the
interconnections between dynamical complexity and the probabilistic distribution across

energy levels of the system.

The following examples will intuitively show what kind of occupation probability distribution
situations will correspond to different degrees of system’s dynamical complexity measured by

the broadening of PSD, helping us gain a more comprehensive understanding.
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Fig.4.8a: Power spectral density of the expectation value of energy for the 2-qubit system
started from 100% LVL 3(middle level) under the control of an external field A=1.24cos (13.5t).
As the frequency changes from 13 to 13.5, the number of clusters increases and we can see

many peaks higher than 1072, which indicates a higher degree of system’s dynamical
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complexity. From the driving frequency o = 13.5, we estimate the corresponding frequency in
hertz as v = o / 2n = 2.15. The observed dominant peak near v = 2 supports this estimation,

indicating a clear resonance with the external modulation.

Let us engage in a speculative exercise to anticipate the characteristics of Fig. 4.8b, which
represents the corresponding probability distribution, based on the Power Spectral Density
(PSD) delineated in Fig. 4.8a. This speculation will be informed by the heuristic framework

we previously established:

Given that the rate of probability escape from middle energy levels has been empirically
observed to exceed that from edge levels, one can reasonably surmise that variations in the

degree of complexity of system are unlikely to substantively affect this escape rate.

Consequently, regardless of the degree of dynamical complexity of system, the probability
associated with middle levels is expected to asymptotically approach minimal values. This
leads us to predict a rapid decline in the probability curve corresponding to the original energy

level, akin to the case illustrated in Fig. 4.7a.

Furthermore, the 'smeared' appearance of the PSD in Fig. 4.8a suggests a higher degree of
dynamical compexity. According to our heuristic framework, this should correlate with
increased interlacing between the curves representing the edge energy levels (1st and 4th levels)
as temporal evolution unfolds. Therefore, we anticipate a smaller separation between these

probability curves compared to what was observed in Fig. 4.7a.
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Fig.4.8b: Probability distribution, A=1.24cos (13.5t), start from 100% LVL 3 (a level in the
middle) with the presence of white noise. More dynamical complexity shows, see Fig.4.8a. The
probability transits out from its original state LVL 3 rapidly and eventually concentrates on the
edged levels, LVL 4 and LVL 1. And it has a trend that the probability will eventually
concentrate on LVL4. The gap between the purple and blue curves are narrower compared to
the one with less dynamical complexity of the system in Fig.4.7a. The curves representing the

probability of the two edge levels are ‘oscillating’.

Upon examination of Fig. 4.8b, it becomes evident that our speculative predictions have been
borne out, thereby fortifying the empirical rules we have formulated based on the simulated
data set.

Continuing with our line of reasoning, let us consider the implications of the heuristic rule we

have deduced. According to this rule, an increase in the degree of the dynamical complexity
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during the system's temporal evolution—evidenced by a broadened Power Spectral Density
(PSD) containing multiple frequencies—should be accompanied by an increasing degree of
intersection between the probability curves representing the first and fourth energy levels.

Eventually, these curves may converge to the point of complete overlap.
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Fig.4.9a: A high degree of broadening in the power spectral density of the expectation value
of energy for the 2-qubit system started from 100% LVL 3(middle level) under the control of
an external field A=1.24cos (15.5t). Many clusters aside the peaks and we can barely recognize
the valley between the first few peaks, which denotes a dynamical complex behavior of the
system. From the driving frequency o = 15.5, we estimate the corresponding frequency in hertz
as v=o/2n = 2.47. The observed dominant peak near v = 2.5 supports this estimation,

indicating a clear resonance with the external modulation.

Upon comparative analysis of the Power Spectral Density (PSD) plots in Figures 4.9a and 4.8a,
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it is evident that the PSD in Fig. 4.9a exhibits a higher complexity, manifested as a greater
frequency spread or 'smeared' appearance. This serves as one of possible indicators for an
increased degree of dynamical complexity of the system.

It should be noted that the vertical axis in these PSD figures is logarithmically scaled.
Consequently, when evaluating the complexity of the PSDs, our focus is directed towards
quantifying those frequencies that manifest greater intensity. This is operationalized by
examining both the number of secondary peaks adjacent to the primary peaks and the average

intensity of the clusters appearing between these primary peaks.
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Fig.4.9b: Probability distribution of the 2 qubits system prepared in 100% level 3 driven by
A=1.24cos (17t).

Examination of Fig. 4.9b reveals that the probability curves for the system occupying the edge

levels (the 1st and 4th levels) are nearly indistinguishable, thus validating our earlier hypothesis.
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This intertwining of the curves is further corroborated by the complex, 'smeared' appearance
of the corresponding PSD in Fig. 4.9a, which suggests a higher degree of dynamical complexity

of the system.

This empirical observation is congruent with our theoretical postulate, reinforcing the notion
that increasing degree of dynamical complexity of the system is correlated with the proximal
convergence of the probability curves for the edge energy levels.

However, this realization precipitates a new challenge: While it appears that the extent of this
convergence plateaus when the curves overlap fully (yielding an inter-curve distance
approaching zero), the degree of dynamical complexity of the system is not necessarily
constrained to a finite upper limit.

In this context, a question emerges: What will transpire with respect to the system's energy-
level probability distribution should the degree of dynamical complexity of the system continue

to escalate?
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Fig.4.10a: Power spectral density of the expectation value of energy for the 2-qubit system
started from 100% LVL 3(middle level) under the control of an external field A=1.25cos (17.5t).
Both amplitude and frequency are changed in this case compared to the A in Fig.4.9a. From the
driving frequency o = 17.5, we estimate the corresponding frequency in hertzas v=w / 2n =
2.79. The observed dominant peak near v = 3 supports this estimation, indicating a clear

resonance with the external modulation.

Compared with the PSD in Fig. 4.9a, the PSD in Fig. 4.10a has more side slits next to the main
peaks and more clusters with higher intensity between the main peaks in frequency, indicating
a higher degree of dynamical complexity of the system. This is the situation where the degree

of dynamical complexity continues to escalate as mentioned in the question we raised before.
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Note that in Fig. 4.9b, the probability curves representing the two edge energy levels have
almost completely overlapped (the distance between the curves is almost 0), so now when we
continue to upgrade the degree of dynamical complexity of the system, how will the probability

curves change?

We will see the answer in the corresponding occupation probability distribution demonstrated

in Fig.4.10b.
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Fig.4.10b: Probability distribution, A=1.25cos (17.5t), start from 100% LVL 3 (a level in the
middle) with the presence of white noise. With the presence of a higher degree of dynamical
complexity of the system, the curves representing the probability of the two edged levels
(ground and most excited state) are oscillating periodically, while the probabilities of the

middle levels drop rapidly to a very low percentage.

As we further intensify the degree of dynamical complexity of the system—already high
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enough that the probability curves for the edge energy levels nearly coincide—another
surprising behavior manifests: the curves cross one another, creating a cross-oscillation pattern,
as exemplified in Fig. 4.10b. This cross-oscillation can be understood to some extent as a

negative distance.

It is noteworthy that, in a departure from previous observations, the probability associated with
the second energy level (represented by the red curve) unusually exceeds 10% for an extended
period during the intermediate and latter phases of the system's temporal evolution. This
probability is also consistently higher than that for the third energy level (represented by the

yellow curve).

Such behavior indicates that, under conditions of elevated degree of dynamical complexity of
the system where the edge energy levels exhibit cross-oscillations, the intermediate energy
level maintains a statistically significant representation. This observation affords a pivotal point
of entry for future investigations aimed at elucidating the mechanisms governing the
occupation probability distribution among disparate energy levels. It opens up the prospect of

integrating such an analysis with Landau-Zener transition models to yield novel insights.

Besides, it is imperative to dispel any presumption that the probability invariably gravitates
toward the system's highest energy level as time progresses. While this trend has been evident
in all previously presented examples, it is not a definitive rule. Subsequent discussions will
introduce an instance where the probability ultimately coalesces around the system's ground

state.
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Fig.4.11a: Power spectral density of the expectation value of energy for the 2-qubit system
started from 100% LVL 3(middle level) under the control of an external field A=1.24cos (15.5t).
From the driving frequency o = 15.5, we estimate the corresponding frequency in hertz as v =
® / 2m = 2.47. The observed dominant peak near v = 2.5 supports this estimation, indicating a

clear resonance with the external modulation.

In Fig. 4.11a, Power Spectral Density (PSD) suggests a lower degree of dynamical complexity
of the system compared to what is shown in Figures 4.8a, 4.9a, and 4.10a. However, it displays
a relatively higher degree of dynamical complexity of the system than that exhibited in Fig.

4.7b.

Based on our previously established framework, a reduced degree of dynamical complexity of
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the system should correlate with a greater separation between the probability curves
corresponding to the ground and the highest excited states. Consequently, we anticipate that
the distance between these curves in Fig. 4.11b should be less than what we observe in Fig.

4.7a, yet greater than those displayed in Figures 4.8b, 4.9b, and 4.10D.
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Fig.4.11b: Probability distribution of 2-qubit system driven by A=1.24cos (15.5t). Specifically,
the blue curve which represents the ground state becomes dominant in the latter stage of

evolution, which is different than other cases.

In Fig.4.11b we found two interesting features; the first feature is that the probability of the 2
energy level surpasses 10% many times. The second feature is that the probability eventually

concentrates on the ground state.
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The first feature cannot be seen in those cases in which the system is initially prepared in the
3 Jevel and probability eventually concentrates on the 4™ level. However, in the case where
the ground state cross-oscillates with the highest excited state (see Fig.4.10b), and in the case
where the system was initially prepared in the 3™ level, but the probability of the ground state
eventually dominates (see Fig.4.11b), the probability of the second energy level exceeds 10%
many times. This is because the probability moves from the third energy level to the first energy

level needs to pass through the second energy level.

The second feature is meaningful for the design of AQC. Recalling that high probability to stay
in ground state is a critical prerequisite for the successful operation of an adiabatic quantum
computer. In the above case we can see that by applying an external driving field with particular
parameters, the system falls into the ground state in a relatively fast speed and remains in the

ground state with a high probability (around 80% chance).

This is an exciting discovery; it shows that there exist some particular sets of parameters for
the external field A that would drive the system to its ground state from an excited state and
then control the system to remain in the ground state with a considerable probability for a long

enough time.

However, in the real world, it is unlikely to have a quantum coherent system prepared in a pure
excited state (considering that the intermediate energy level is easy to escape). Therefore, for
our research to have practical significance, it is necessary for us to verify the regimes in systems

prepared not in a pure state, but a mixture of different states.
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4.3: Systems Prepared in Mixed States
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Fig.4.12a: Probability distribution, A=1.25cos (13.5t), start from a mixture of 50% Iv12 and 50%
IvI3.

In the forthcoming Fig. 4.12b, a relatively discrete Power Spectral Density (PSD) is evident.
Owing to the less degree of dynamical complexity during the system's temporal evolution, there
is a substantial separation between the probability curves for the ground state (indicated by the
blue line) and the highest excited state (represented by the purple line). Most notably, however,
the system transitions from a composite of excited states—Level 2 and Level 3—into the
ground state under the influence of the external field Lambda. This transition is marked by an
exceptionally high probability of greater than 90% and persists for an extended duration,
exceeding 150 periods.
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These findings point to the existence of specific parameter sets for the external field A capable
of steering the system from a blend of excited states into the ground state, while subsequently
maintaining it there with a remarkably high probability—approaching 100% —for an extended

time frame exceeding 100 periods.

These observations lead to a speculative yet promising hypothesis: For a broad range of
arbitrary 2-qubit systems, initialized in any ratio of mixed excited states, there likely exists a
tailored set of parameters for the external driving field that can induce a transition to the ground
state and sustain it for a significant duration. If this regime were to extend beyond the confines
of elementary 2-qubit systems to more complex quantum coherent structures, the implications

for the design and operational efficacy of adiabatic quantum computers could be profound.
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Fig.4.12b: Power spectral density of the expectation value of energy for the 2-qubit system
started from 100% LVL 3(middle level) under the control of an external field A=1.25cos (13.5t),
start from a mixture of 50% IvI2 and 50% 1vI3. A rather discrete one with few clusters and
peaks taller than 1072, denoting less degree of dynamical complexity of the system. From the
driving frequency o = 13.5, we estimate the corresponding frequency in hertzas v=w /2n =
2.15. The observed dominant peak near v = 2 supports this estimation, indicating a clear

resonance with the external modulation.
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Fig.4.13a: Probability distribution, A=1.25cos (22t), start from a mixture of 50% lvl2 and 50%
IvI3.

As evidenced by the Power Spectral Density (PSD) depicted in Fig. 4.13b, the system under
consideration exhibits a greater degree of the dynamical complexity of the system compared to
that displayed in Fig. 4.12b. This is further corroborated by the reduced separation between the
probability curves representing the ground state and Level 4 (LVL4), as seen in Fig. 4.13a, in

contrast to their counterparts in Fig. 4.12a.

Figures 4.13a and 4.13b provide a comparative perspective to Figures 4.12a and 4.12b,
illustrating a scenario where the PSD indicates higher dynamical complexity in the evolution
of the 2-qubit system. This empirical observation lends further credence to the regime

delineated in Section II, asserting that a diminished degree of the dynamical complexity of the
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system correlates with a more substantial separation between the probability curves for the

edge energy levels.

This empirical evidence underscores the robustness of the established regime: irrespective of
the system being initialized at an intermediate energy level in a mixed state, it continues to
adhere to the same governing principles as a system initialized at an intermediate energy level

in a pure state.

9 PSD for <E>
10 T T T T T
100 ¢ ;
- i
"5 10'2 l s
o
(D)
=) }
©
5 fo™ l ‘ E
()
& i
) .
2 106}
(e 4
107k :
10.1() I 1 1 ! 1
0 9 10 19 20 25 30
Frequency

Fig.4.13b: Power spectral density of the expectation value of energy for the 2-qubit system
started from 100% LVL 3(middle level) under the control of an external field A=1.25cos(22t),
start from a mixture of 50% 1vI2 and 50% Iv13. Very smeared one with many clusters, denoting
a rather complex behavior of the system. From the driving frequency o = 22, we estimate the

corresponding frequency in hertz as v= / 2n = 3.5. The observed dominant peak near v = 3.5
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supports this estimation, indicating a clear resonance with the external modulation.

Based on our comprehensive analysis, we can delineate the following regimes governing the

behavior of 2-qubit systems:

Probability Flow Concentration: Despite the degree of the dynamical complexity of the system,
the probabilities associated with the middle energy levels (LVL2 or LVL3) exhibit a higher rate
of outflow compared to the edge levels. Stated differently, the system demonstrates a tendency

for probability concentration at the edge energy levels (LVL1 and LVLA4).

Dynamical Complexity-Proportional Probability Change: The magnitude of the change in
probability from its original state for edge levels is directly proportional to the degree of the
dynamical complexity of the system. Specifically, greater complexity results in larger

fluctuations in the probability distributions for these edge levels.

Middle-Level Insensitivity to the Degree of the Dynamical Complexity of the System: For
systems initialized at middle energy levels, the degree of the dynamical complexity of the
system does not significantly influence the probability change for those levels. Rather, it
determines the divergence or convergence between the probability curves of the edge levels.
As the system exhibits a higher degree of the dynamical complexity, the probabilities

associated with the edge levels tend to converge.

Moreover, while our presented examples have primarily focused on systems initialized at
middle levels, the final probability distribution does not invariably converge to the highest
excited level (LVL4). By judiciously manipulating system parameters—specifically frequency
and amplitude—it is possible to achieve alternate scenarios where the probability distribution
either centralizes at the ground state (LVL1) or becomes more uniformly distributed between

both edge states.
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4.4 Spectral Entropy and Escape Speed

To further explore the relationship between the speed for the system to escape its initial
occupation probability state and the dynamical complexity of the system, a quantity to measure
the dynamical complexity of the system can be helpful. Here we chose spectral entropy as the

quantity to measure dynamical complicity for the following reasons:

First, spectral entropy quantifies the distribution of power across different frequency
components, making it a suitable metric for assessing the dynamical complexity of the system.
Systems with simple, regular dynamics tend to have power concentrated in a few dominant
frequencies, resulting in lower spectral entropy, whereas systems exhibiting more complex,
irregular, or chaotic behaviour tend to have broader spectral distributions, leading to higher

spectral entropy.

Second, spectral entropy is particularly useful in analysing externally driven quantum systems.
In the presence of periodic driving fields, the response of a quantum system can range from
regular oscillations to highly complex dynamics, depending on the driving strength and
frequency. A simple response, such as Rabi oscillations in a two-level system under weak
driving, manifests as a sharply peaked power spectral density (PSD) and thus low spectral
entropy. In contrast, strong or off-resonant driving can induce multiple competing frequencies,
quantum interference effects, and nontrivial transitions, leading to a broader spectral
distribution and higher spectral entropy. This makes spectral entropy a natural candidate for

measuring how external driving influences the complexity of the system.

Third, spectral entropy provides a single scalar quantity that encapsulates the dynamical
complexity of the time evolution of the system, without requiring detailed state-space analysis
or explicit phase-space reconstructions. This allows for an efficient and intuitive quantification

of dynamical complexity, making it particularly convenient for analysing quantum systems
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where direct trajectory visualization is often not feasible.

Finally, the connection between spectral entropy and escape speed provides an insightful
perspective on the evolution of the system. If a system transitions more rapidly from its initial
state, it suggests that it is undergoing richer and more complex dynamics, which is supposed
to be reflected in a higher spectral entropy. Thus, by establishing a correlation between spectral
entropy and escape speed, we can validate the idea that increased dynamical complexity

facilitates faster departure from the initial occupation probability state.

To obtain the power spectral density (PSD), which characterizes how power is distributed
across different frequency components of a signal. The PSD, typically denoted as S(f), which
is derived from the squared magnitude of the Fourier transform of a time-domain signal. We

used the pwelch function in MATLAB to gain the power spectral density.

Since entropy is defined for probability distributions, we need to transform the PSD into a valid
probability distribution by normalizing it. This is done by dividing each PSD component by

the total power:

S(fi)
Rlorm i)=& araN
v %;8(f)

where B, (f;) represents the normalized spectral weight at frequency f;. This ensures that
the sum of all probabilities equals 1, making it a proper probability distribution.
Once we have the normalized probability distribution, the spectral entropy (SE) is computed

using the Shannon entropy formula:
SE = — Z Pnorm (fl) IOg Rlomq (fl)
i

This formula measures the uncertainty or spread of the spectral power distribution.
If most of the power is concentrated in a small number of frequency components, the entropy

is low, indicating a simple, predictable system. If the power is spread across many frequency
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components, the entropy is higher, indicating greater complexity in the system’s dynamics.

To explore the relationship between spectral entropy and the system’s escape speed from its
initial occupation probability state, we applied an external field x of the form A=Acos(ot).

We varied the amplitude A from 1.25 to 1.35 in steps of 0.1 and the frequency ® from 20.5 to
21.5 in steps of 0.1, generating a total of 20 different cases. For each case, we computed the
spectral entropy as well as the escape speed of the system from its initial state, where the system

was initially prepared in the ground state with 100% probability.

The escape speed was defined as the inverse of the time t; at which the ground state
occupation probability first dropped below 25%. While the threshold value of 25% was used
in this analysis, other nearby thresholds (e.g., 10%, 15%) yield qualitatively similar trends in
the results. This choice reflects a trade-off between sensitivity to early dynamics and robustness
against high-frequency fluctuations in the probability signal. And t; is the first time when the ground
state probability drops below 25%. Note that the variation in marker color arises from multiple data points
occupying the same or nearly identical coordinates in the plot; this overplotting effect can cause certain points to
appear darker or to exhibit visual artifacts such as color blending or border intensification.

We then computed escape speed as:
75%

1

Escape Speed =
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We then plotted a scatter plot of spectral entropy (x-axis) versus escape speed (y-axis) and

fitted a trend line to the data, as shown in Fig. 4.14.
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Fig. 4.14: Scatter plot showing the relationship between Spectral Entropy and Escape Speed.
The data points represent different simulations of a two-qubit system under an external driving
field 2=A4 cos(wt), where the amplitude A varies from 1.25 to 1.35 in steps of 0.1, and the
frequency varies from 20.5 to 21.5 in steps of 0.1. Note that the variation in marker color arises
from multiple data points occupying the same or nearly identical coordinates in the plot; this
overplotting effect can cause certain points to appear darker or to exhibit visual artifacts such

as color blending or border intensification.

In Fig. 4.14, a positive correlation is observed, indicating that higher spectral entropy generally
corresponds to greater escape speed. Some data points (between the horizontal axes 2.6 and

2.7, there are several data points with large vertical dispersion) in the plot exhibit noticeably
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different behavior compared to the rest. This is likely because, when scanning the frequency
and amplitude of the external driving field, we did not use particularly small step sizes in order
to keep the total simulation time manageable. In most cases this resolution is sufficient, but for
certain parameter choices—especially when the system has an unusually small energy gap—
this may lead to increased numerical error in estimating the escape speed. Despite these minor
discrepancies, the overall trend supports the hypothesis that higher dynamical complexity, as
quantified by spectral entropy, is associated with a faster escape from the initial state.

Overall, the results indicate a positive correlation between escape speed and spectral entropy:

higher spectral entropy generally corresponds to a greater escape speed.
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4.5 Expectation Energy and Spectral Entropy

In this section, we present two examples (Fig. 4.15 and Fig. 4.16) to illustrate the relationship
between (E)(t), the system's dynamical complexity, and the rate at which the system escapes

from its initial energy level through comparative analysis.

2-Qubit System prepared in 100% ground state, SE = 2.3706, A(t) = 1.1 cos(18t)
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—
o
[=]

Power Spectral Density
S
= ——N
—_—
=

—
<
S
o
m._
—
a2t
A_
o
N L
)
N L
A
W
S

50 | 100 15 20 25'0b 300
(a) Frequency (b)
Evolution of <E>(t)

50 100 150 200 250 300
Time ( C)

Fig. 4.15: Dynamical behavior of a 2-qubit system under the driving field 4 = 1. 1cos(18t),
with initial state fully occupying the ground state (LV1), and spectral entropy SE=2.3706S. (a)
Evolution of occupation probabilities for the four instantaneous eigenstates (labeled LV1-LV4).
(b) Power spectral density (PSD) of the expectation energy (E)(t), exhibiting a broad frequency
distribution indicative of high dynamical complexity. (¢) Time evolution of the expectation

energy (E)(t), showing significant oscillations over a wide range of amplitude.
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2-Qubit System prepared in 100% ground state, SE = 2.1407, A(f) = 0.8 cos(18t)
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Fig. 4.16 Dynamical behavior of a 2-qubit system under the driving field 4 = 0.8cos(18t),
with the initial state fully occupying the ground state (LV1), and spectral entropy SE=2.1407.
(a) Time evolution of the occupation probabilities for the four instantaneous eigenstates. The
system remains localized in the ground state, with negligible transitions to excited levels. (b)
Power spectral density (PSD) of the expectation energy (E)(t), exhibiting a narrow-band
structure dominated by low-frequency components. (¢) Time evolution of the expectation
energy (E)(t), showing low-amplitude oscillations around a stable value. These features
collectively indicate that the system undergoes regular, low-complexity dynamics under this

driving field.

The two plots, Fig. 4.15c and Fig. 4.16c, present the time evolution of the expectation value of
energy (E)(t) under distinct dynamical conditions. Spectral entropy (SE) serves as a measure

of signal complexity in the frequency domain, quantifying how dispersed the energy of the
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signal is across various frequency components. A higher spectral entropy implies a more
broadened energy distribution across a wide frequency range, whereas a lower spectral entropy

suggests energy concentration around a few dominant modes.

On one hand, in Fig. 4.15c, where the spectral entropy is relatively high (SE = 2.3706), the
system exhibits significant variations in (E)(t) over time, with noticeable large-scale
oscillations superimposed with fine-scale fluctuations. Such presence of both slow and rapid
changes suggests a broad range of frequency components in the signal. In the frequency domain,
this implies that the energy is distributed across a wider spectrum rather than being
concentrated at a few dominant frequencies (see Fig. 4.15b). These characteristics indicate a
system with a higher dynamical complexity, as it contains both low-frequency and high-
frequency components, which is consistent with the numerical simulation result of spectral

entropy

On the other hand, as shown in Fig. 4.16c, the evolution of the average energy (E)(t) remains
relatively stable and bounded, exhibiting only minor fluctuations. These variations are
uniformly distributed and remain confined within a narrow range, suggesting a more regular
and predictable dynamical pattern. In the frequency domain, this behavior implies that most of
the spectral energy is concentrated in a limited frequency band, with significantly fewer
contributions from higher-frequency components, which is consistent with the power spectral
density observed in Fig. 4.16b. This localization in frequency space corresponds to a lower
spectral entropy value (SE = 2.1407), indicating that the system exhibits more coherent or

periodic dynamics compared to more dynamical complex cases.

In Fig. 4.15c, the system exhibits higher spectral entropy, which reflects a richer distribution
of frequency components and corresponds to a more complex or irregular evolution of energy
levels. By contrast, Fig. 4.16c shows a lower spectral entropy, indicating a more concentrated

frequency content and a smoother, more predictable energy evolution. This suggests that the
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dynamics in this case may be more regular and exhibit features characteristic of periodic or

quasi-periodic behavior.

Taken together, the comparison between Figures 4.15¢ and 4.16c¢ illustrates how spectral
entropy serves as a useful indicator of dynamical complexity in the energy expectation
evolution (E)(t). Systems with higher dynamical complexity—reflected by a broader power
spectral density (PSD) of the expectation energy—tend to exhibit higher spectral entropy.
Consequently, these systems tend to depart from their initial state (which, in both cases,
corresponds to the system being 100% prepared in the ground state) at a faster rate. The
corresponding occupation probability distribution plots over time (Fig. 4.15a and Fig. 4.16a)

are also consistent with our conclusion.

4.6 Impact of Noise Strength on the System's Evolution

Although we have previously explored how noise can influence the evolution of quantum
systems—particularly through its effects on energy level trajectories and simulation
accuracy—our analysis has so far focused on isolated instances with fixed noise configurations.
What remains to be examined is how the strength of the noise systematically alters the behavior
of the system. Specifically, we have not yet addressed how varying degrees of stochastic
perturbation reshape the system’s ground state occupancy, its dynamical regularity, and the
complexity of its energy fluctuations. This section aims to fill that gap by conducting a
comparative analysis across multiple noise intensities, thereby providing a deeper

understanding of the noise-induced transitions in dynamical regimes.

We examine how different levels of noise impact the time evolution of the ground state
probability, the power spectral density (PSD) of expectation energy, and the spectral entropy
(SE) of the system.

The key questions we address in this section are threefold. First, we investigate how the

strength of noise influences the system's ability to escape from the ground state. Second, we
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examine how effectively spectral entropy (SE) reflects the complexity of the system’s evolution.

Finally, we consider how power spectral density (PSD) can be used to reveal structural changes

in the system’s transition dynamics.

To answer these questions, we compare the system’s evolution in the absence of noise (Fig.4.2a
and Fig.4.2b) with three cases of increasing noise strength (o = 0.0005, 0.005, and 0.01)
demonstrated in two figures: Fig. 4.17 and Fig. 4.18. The results demonstrate that higher noise
strength does not necessarily lead to a faster departure from the ground state; instead, it alters

the system’s evolution in a more complex manner.

Evolution of Ground State Probability

Evolution of Ground State Probability

300

Fig. 4.17: Time evolution of a two-qubit system under the driving field A = 1.1cos(18t),
comparing noiseless and noisy cases. (a) Ground state probability evolution without noise,
serving as a reference case. The corresponding spectral entropy (SE) is 2.3706. (b) Power
spectral density (PSD) of the expectation energy for the noiseless system, with SE = 2.3706.

(¢) Ground state probability evolution with noise strength ¢ = 0.0005. A slight deviation from
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the noiseless case in panel (a) is observed. SE = 2.3873. (d) PSD of the expectation energy
with 6 = 0.0005, exhibiting stronger high-frequency components than in panel (b), indicating

increased dynamical complexity due to noise.
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Fig. 4.18: Time evolution of a two-qubit system under the driving field A = 1.1cos(18t), with
increased noise strengths (o = 0.005 and ¢ = 0.01). (a) Ground state probability evolution for
o = 0.005. Although the trajectory shows a clear deviation from the noiseless case (cf. Fig.
4.17a) and the weaker noise case (Fig. 4.17c), the overall periodicity remains visible. Spectral
entropy (SE) =2.3917, comparable to the noiseless case. (b) PSD of the expectation energy for

= 0.005. The high-frequency components are noticeably stronger than in Fig. 4.17b,
indicating more pronounced spectral broadening and increased dynamical complexity. (c)
Ground state probability evolution for 6 = 0.01, with SE = 2.4447—the highest among all four
cases. The evolution no longer exhibits the periodic structure seen in Fig. 4.17a, but the system

escapes from the ground state more slowly. (d) PSD of the expectation energy for ¢ = 0.01.
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The spectral profile becomes more evenly distributed, with further enhancement in high-

frequency components, suggesting a transition to an even higher dynamical complexity regime.

To investigate how varying noise strengths affect the dynamical evolution of the quantum
system, we first examine the time-dependent behavior of the ground state occupation
probability under different levels of perturbation. The corresponding results are presented in
Figs. 4.17a, 4.17¢c, 4.18a and 4.18c. In the absence of noise (Fig. 4.17a), the probability of
occupying the ground state follows a well-defined oscillatory pattern that gradually decays over
time. Minor fluctuations superimposed on this trajectory originate from the renormalization
process applied during the computation of occupation probabilities, rather than from any
external perturbation. When a weak noise is introduced (¢ = 0.0005, Fig. 4.17¢c), the overall
shape of the evolution remains largely consistent with the noiseless case, though small random
deviations are observable. As the noise level increases to ¢ = 0.005 (Fig. 4.18a), the transition
dynamics become more irregular, and the probability curve begins to deviate substantially from
the baseline case. However, despite these differences, the primary waveform of the evolution
can still be traced back to the noiseless case, suggesting that the fundamental transition
structure remains influenced by the original dynamics. At a stronger noise level (¢ = 0.01, Fig.
4.18c), the deviation becomes more pronounced. However, it is noteworthy that this does not
translate into a faster departure from the ground state. In some cases, the system remains in the
ground state for longer periods than in the noiseless scenario. This implies that noise does not
simply accelerate transitions but rather restructures the transition process in a more intricate

and non-monotonic mannetr.

To further characterize these changes, we analysed the power spectral density (PSD) of the
expectation value of the system’s energy. As shown in Fig. 4.17b (no noise), the spectrum is
sharply concentrated around a few dominant frequency components, reflecting the orderly and
coherent evolution of the system. With weak noise (¢ = 0.0005, Fig. 4.17d), the PSD begins to

broaden slightly, indicating the introduction of additional frequency components, although
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distinct peaks still remain visible. When the noise strength reaches ¢ = 0.005 (Fig. 4.18b), the
PSD becomes significantly broadened, suggesting that multiple competing dynamical modes
are contributing to the energy fluctuations. At the strongest noise level considered (o = 0.01,
Fig. 4.18d), the PSD is nearly flat, implying that the energy dynamics are dominated by
stochastic fluctuations rather than coherent oscillations. These findings illustrate a gradual
transition from deterministic to noise-dominated behaviour as the strength of perturbation
increases. However, just as with the ground state occupation probabilities, this spectral
broadening does not necessarily correspond to faster state transitions. Instead, it reveals the
increasing complexity of the system’s internal dynamics, decoupled from a simple relation to

transition rates.

To further characterize these changes, we analysed the power spectral density (PSD) of the
expectation value of the system’s energy. As shown in Fig. 4.17b (no noise), the spectrum is
sharply concentrated around a few dominant frequency components, reflecting the orderly and
coherent evolution of the system. With weak noise (¢ = 0.0005, Fig. 4.17d), the PSD begins to
broaden slightly, indicating the introduction of additional frequency components, although
distinct peaks still remain visible. When the noise strength reaches ¢ = 0.005 (Fig. 4.18b), the
PSD becomes significantly broadened, suggesting that multiple competing dynamical modes
are contributing to the energy fluctuations. At the strongest noise level considered (¢ = 0.01,
Fig. 4.18d), the PSD shows an even more uniform distribution, implying that the system’s

energy fluctuations are now dominated by noise rather than discrete resonance frequencies.

These results indicate that stronger noise leads to more widespread frequency distribution in
the system’s energy transitions, shifting the system from a regime dominated by deterministic
oscillations to one where stochastic fluctuation plays a major role. However, this does not
necessarily correlate with a higher transition rate away from the ground state, reinforcing the

need to analyse transition behaviours beyond simple noise strength considerations.
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In addition, to quantify the complexity of a system’s frequency distribution, we calculate the
spectral entropy (SE) associated with each noise condition. The computed SE values are as
follows: 2.3706 for the noiseless case, 2.3873 for 6 = 0.0005, 2.3917 for 6 = 0.005, and 2.4447
for o = 0.01. As expected, SE increases with noise strength, reflecting a more uniform
distribution of spectral power across frequencies. Nevertheless, this increase does not correlate
in a straightforward way with the system’s transition dynamics. For instance, although the
evolution of the ground state probability changes significantly between ¢ = 0.0005 and ¢ =
0.005, their SE values remain nearly identical. Moreover, while SE rises more noticeably at ¢
= (.01, the system may still exhibit longer dwell times in the ground state compared to weaker

noise scenarios.

These observations highlight a limitation of SE as a standalone measure: it SE provides insight
into the overall spread of power across frequency components but does not always reflect the
transition speed or specific dynamical pathways of the system. Therefore, SE must be
interpreted in conjunction with occupation probability trajectories and PSD analysis to provide

a comprehensive understanding of the system’s behaviour under noise.

These findings collectively highlight that increasing noise strength does not universally
accelerate transitions away from the ground state. Although strong perturbations such as ¢ =
0.01 can significantly alter the system’s dynamical behaviour, the resulting evolution may
become more complex and even lead to extended residence times in the ground state, as
observed in Fig. 4.18c. Rather than acting as a simple driver of faster transitions, noise

restructures the quantum evolution pathway in a more complex way.

From the perspective of spectral analysis, power spectral density (PSD) provides valuable
insight into this transformation. As noise intensifies, the system undergoes a gradual shift from
deterministic, resonance-dominated transitions to stochastic behaviour characterized by

broadly distributed energy fluctuations across frequencies as shown in Fig. 4.18d.

133



Spectral entropy (SE), while useful for capturing the overall spread of frequency components,
remains a limited indicator of dynamical complexity. It fails to differentiate between cases with
comparable entropy values but substantially different transition structures. For example,
although Figs. 4.17¢ and 4.18a yield nearly identical SE values, their respective ground state
probability evolutions exhibit significant qualitative differences. This reinforces the need to
interpret SE in conjunction with more direct dynamical indicators such as the occupation

probability distribution (OPD) and PSD.

In summary, a comprehensive evaluation of quantum system dynamics under noise requires
the integration of multiple analytical tools. Relying on a single metric, such as SE, risks
overlooking critical aspects of the system's behaviour. Instead, by examining OPD, PSD, and
SE collectively, one gains a richer and more accurate understanding of how noise

fundamentally reshapes the evolution of quantum systems.

4.7 Summary of Chapter 4

In this chapter, we conducted a comprehensive analysis of the dynamical evolution and
occupation probability distributions of a two-qubit quantum system using the Pechukas—
Yukawa (PY) formalism, incorporating spectral tools such as power spectral density (PSD) and
spectral entropy to explore the system's complexity and sensitivity to external conditions. The
chapter extended our prior observations by systematically examining systems initialized in
edge states, intermediate states, and mixed configurations, and by introducing noise of varying

strengths to simulate environmental decoherence.

The occupation probability evolution exhibits strong dependence on the initial state. Systems
initialized in intermediate levels (e.g., the second or third excited states) show rapid escape

from these levels, often redistributing towards edge levels (ground or maximum excited states).
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In contrast, systems initialized in edge states display significantly slower probability migration,
consistent with the energy-level repulsion mechanism and the suppressed transition

probabilities typical near anti-crossings.

Systems initialized in mixed configurations (linear superpositions of different eigenstates)
reveal distinct dynamical trends. Notably, with carefully tuned external field parameters (1),
certain mixed initializations facilitate efficient transitions into and stabilization within the
ground state. In particular cases, the system can be driven to exceed a 90% occupation in the
ground state and sustain this for over 150 periods of A oscillation. This result has critical

implications for optimizing state preparation in AQC protocols.

We introduced spectral entropy as a quantitative measure of dynamical complexity, showing
that higher spectral entropy correlates with broadened PSD and enhanced escape tendencies
from the initially occupied states. This relationship is especially pronounced when the system
starts in an edge state, where entropy-induced transitions were found to be more tightly linked

to the likelihood of state change.

By incrementally increasing the strength of white noise, we quantified its influence on both the
spectral broadening of energy expectation values and the fidelity of occupation probability
distributions. Our results demonstrate that even weak noise can significantly alter system
behavior near anti-crossings. Moreover, the noise-enhanced dispersion of occupation
probabilities is non-uniform across levels: intermediate levels remain most susceptible, while
edge levels display a relative resilience. This supports our interpretation that the interplay
between anti-crossing geometry and noise is central to understanding decoherence in adiabatic

regimes.

A principal contribution of this chapter is the identification of external driving parameters as

powerful tools for manipulating occupation distributions. The amplitude and frequency of A
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can be fine-tuned to either enhance or suppress transitions. In specific regimes, shared optimal
parameters were identified that maximize ground state probability for various initial

configurations, suggesting a framework for adaptive control in quantum system operation.

Additionally, across all power spectral density (PSD) analyses conducted in this chapter, the
dominant spectral peaks consistently appear near the theoretically predicted frequencies v =
w / 2m, derived from the applied driving field. This coherence confirms the presence of
resonance between the system’s intrinsic dynamics and external modulation, reinforcing the

validity of the underlying theoretical model.

While the focus of this chapter has been on 2-qubit systems, both the methodological
framework—based on the Pechukas—Yukawa formalism—and the spectral diagnostic tools are
directly applicable to larger quantum systems. The principles established here form a
foundation for future work exploring system stabilization, noise engineering, and quantum

control in systems of greater complexity.

Chapter 5: Discussion

The preceding chapters of this thesis have provided an in-depth analysis of the behavior of
small-scale (2 to 5 qubits) quantum systems under varying conditions and external controlling
fields. Through the application of the extended Pechukas-Yukawa formalism and the spectral
analysis methods, we have elucidated critical dynamics and properties of these systems. While
the study serves as a steppingstone for understanding the complex behavior of multi-qubit
systems under the presence of decoherence, it opens avenues for further inquiry and
technological advancements in the rapidly evolving field of quantum computing. This chapter
delves into the broader implications, limitations, and future directions of our research findings.
It offers a comprehensive discussion of the research outcomes, connecting them to wider
implications in the fields of quantum computing. The chapter begins with a concise overview

of our main findings.
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5.1 Summary of QOur Main Results

Regardless of their initial configuration of occupation probability distribution, quantum
systems will exhibit unique responses to certain external field parameters (amplitude and
frequency). This property provides us with the possibility of manipulating the external field

parameters to optimally bring the system to the ground state within a limited time.

There could be a shared optimal frequency and amplitude for the systems with different initial
occupation probability distribution to fall in the ground state. Systems with different initial
states can have the same optimal coordinates in the amplitude-frequency graph. This
phenomenon was observed consistently across various initial states, both pure and mixed,
potentially suggesting a universal trait of quantum systems. This consistent feature across
various initial states offers a potential tool for quantum system analysis. By identifying a
system's optimal frequency and amplitude for ground state, one might infer its initial state or
the combination of states, providing invaluable insights into the behavior of large-scale
quantum coherent systems. In addition, it can also serve as a guideline to increase the
probability for the AQC to fall into the ground state by tuning the external controlling field.
Systems initialized at intermediate energy levels demonstrate a tendency for probabilities to
rapidly move towards edge levels. This trend is evident regardless of the degree of the
broadening of the PSD of the expectation value of the system, which serves as an assessing
tool for dynamical complexity of behaviors of the system.

In contrast, when a system starts from an edge energy level, the rate of escape from its original
state is directly proportional to the degree of dynamical complexity of the system assessed from
the PSD perspective involved. This provides us with valuable insights into how dynamical

complexity of the system modulates the probability distribution of a system.

A novel phenomenon is also observed when the system is prepared at intermediate levels.

While the speed of probability flow from these levels is inherently faster than those edge levels,
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irrespective of the degree of dynamical complexity of the system. However, the impact of the
degree of dynamical complexity becomes significant when it comes to the spacing between
probability curves of the edge levels. The higher the dynamic complexity of the system, the
closer these probability curves are to each other, and in extreme cases, even cross-oscillation
between these probability curves can be observed. The reason for this phenomenon may be that
the speed at which the system escapes from its edge energy level is proportional to the degree
of dynamical complexity. Since the escape velocity of the intermediate energy level is greater
than that of the edge energy level, the probability of the system tends to be enriched to the edge
energy level. Then when the degree of dynamical complexity is high, the edge energy level
enriched with probability will also be transformed from the original edge energy level more
quickly. The system will escape from the edge energy level it used to be in and quickly
exchange through the intermediate energy level and reach the other edge energy level. As a
result, the two curves representing the edge energy level probabilities tend to move closer when

the degree of dynamical complexity increases (also a kind of exchange of probability).

Importantly, our results indicate that external parameters such as frequency and amplitude can
be tailored to direct the system's probability distribution in a specific manner. This has broader
implications for the field of adiabatic quantum computing, where controlling such distributions

could be essential for efficient computation.

Alongside the principal conclusions, other interesting results have also emerged which enrich
our understanding of quantum systems and offer new avenues for exploration.

The approach combining Pechukas-Yukawa formalism and spectral analysis extends its
applicability beyond the current scope of 2-qubit systems. Thus, while the study builds a
foundational understanding of the interplay between dynamical complexity and occupation
probability distribution in 2-qubit systems, it also lays the groundwork for scaling these

findings to more complex quantum systems, i.e., larger-scale quantum systems.
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In addition, an intriguing observation has been the occasional rise in the probability levels of
intermediate states (for example, LVL 2) during periods of high dynamical complex behaviors.
This unusual observation provides a valuable entry point for studying the underlying
mechanisms that govern probability flow between energy levels. Inspired by the fundamental
insights of Landau-Zener transitions, which shows the relationship between level crossings and
probability transitions among adjacent energy levels, a bridge to the deeper reasons

determining the occupation probability distribution could be provided.

5.2 Implications

The implications of these results are multifaceted and hold significant promise for both

theoretical and practical applications in quantum physics and computation.

The adaptability of our research method to more complex quantum systems indicate its
potential as a generalized framework for studying systems demonstrating dynamical complex
behaviors. This broad applicability could significantly impact the efficiency and effectiveness

of future research endeavors in this domain, indicating methodological robustness.

Though the current study is more descriptive in its conclusions, identifying the underlying
causes for observed behaviors could be the key to unlocking new quantum algorithms or
computing techniques. Thus, the results here serve as a steppingstone for more causally focused
research. Our study's results concerning the control of quantum systems via external field
parameters are particularly salient for the design of adiabatic quantum computers, which
provides a viable pathway for tailoring quantum systems and enhancing computational power

and system stability.

In Chapter 3, we analyzed and discussed why in our simulations, noise always plays a
cumulative role in the error during the evolution of the system energy level. We analyzed it

based on the stochastic PY equation and concluded that it is because the composition of the
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white noise used in our simulation determines. This implies that by designing a better noise
composition method, we can reduce the cumulative effect of noise on the error during the
system energy level evolution process. In theory it is even possible that each term of the noise
cancels each other out rather than adding, which is particularly important for the development

of quantum computing.

The observed variations in intermediate energy level behavior during high dynamical
complexity of the system offer a nuanced understanding that could be critical for future
investigations. By revealing these subtleties, this study lays the groundwork for subsequent

research that could focus on the precise mechanisms governing these dynamics.

In summary, this study proposes new ideas for improving the performance of quantum
adiabatic computers through the connection between dynamical complexity and occupation

probability distribution of the system.

5.3 Limitations and Future Work

One of the critical limitations of the current study lies in its focus on drawing descriptive
relationships between dynamical complexity of the system and its occupation probability
distribution, without delving deeply into causality. The underlying reasons for these behaviors
and the specific conditions under which dynamical complex behaviors emerge remain less

understood.

The current research primarily focuses on 2-qubit systems, employing Pechukas-Yukawa
formalism and Power Spectral Density (PSD) analysis to study the relationship between
dynamical complexity and occupation probability distributions. This focus, while insightful,
leaves room for a broader investigation. For instance, the role of different forms of controlling
parameters in quantum dynamics remains an unexplored area. Since A is essential for defining

the system's Hamiltonian, variations in its form could have profound implications on the
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observed phenomena, such as the speed at which probabilities transit between energy levels.

Technically, the study has not yet examined the effects of other types of noise besides white
noise on quantum dynamics. Other kinds of noise could add another layer of complexity in the
system, potentially making the dynamical complex behavior more intricate or, conversely,
stabilizing specific energy levels. Moreover, while initial results suggest that the phase of A has

negligible impact on PSD, more exhaustive tests are needed for a conclusive understanding.

The investigation is also circumscribed by its computational scope. The extent to which
classical computers can simulate larger quantum systems remains an open question, with clear
implications for the generalizability of our results. Artificial Intelligence (Al) might offer
solutions here, providing algorithms that could make the simulation more efficient or even offer

predictive insights into system behavior.

Another point worth noting is that the study, while elucidating the relationship between
dynamical complex behaviors and occupation probability distribution, hasn't delved into the
underlying causes, particularly for the rapid escape of probability from the intermediate energy
levels. This gap in understanding opens up a fertile ground for future exploration, perhaps by
combining the Landau-Zener transition models with energy level diagrams to dissect the
mechanisms at play. When high levels of dynamic complexity are involved, edge-level
probabilities display complex oscillatory behaviors, offering an intriguing entry point for future

studies.

Moreover, differentiating between degrees of dynamic complexity—normal dynamic
complexity and hyper dynamical complexity, for example, could be critical, especially when
the probability curves for edge energy levels intersect or display negative distances. Other
theoretical tools such as Lyapunov exponents could serve as a valuable mathematical tool in

making these distinctions.
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Finally, there's an interesting synergy between the results of chapter 3 and 4, which discusses
the role of frequency and amplitude of the controlling parameter in rapid ground-state
convergence. Merging these insights could provide a more comprehensive strategy for

manipulating quantum systems, invaluable for applications like adiabatic quantum computing.

Thus, while this research establishes important initial results and provides a methodological
framework applicable beyond 2-qubit systems, the path ahead is laden with opportunities for

more nuanced, multidimensional, and scaled-up explorations.

As discussed in Chapter 4 (e.g., Fig. 4.1), the dominant frequency observed in the system aligns
with the external driving frequency, suggesting a resonance-driven dynamics. We now explore

whether these oscillatory behaviors may be identified as Rabi oscillations.

In the time-evolution plots (Fig 4.5a and Fig 4.10b) of the occupation probabilities for certain
energy levels, particularly in two-qubit systems under periodically varying external fields, we
observe oscillatory behaviors characterized by relatively stable amplitudes and well-defined
temporal periodicity. These features persist across different initial states and parameter regimes,

suggesting a potential underlying mechanism of coherent population transfer.

This pattern qualitatively resembles Rabi oscillations, a well-known quantum phenomenon in
which a two-level system driven near resonance exhibits sinusoidal transitions between energy
eigenstates. In particular, the apparent regularity and symmetry of the occupation probability
oscillations hint at the possibility that a resonant interaction between two energy levels may be

responsible for the observed dynamics.

However, this interpretation remains tentative at this stage. We have not yet quantitatively

confirmed whether the frequency of the observed oscillations corresponds to the theoretical
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Rabi frequency, defined by

_HE

Qg .

nor have we rigorously established whether the system dynamics are dominated by an effective

two-level subspace during these intervals. The current simulations did not isolate such

subspaces, and no direct parameter scans were conducted to test resonance conditions.

To address these uncertainties, several directions for future research are proposed. First, one
can extract the oscillation frequencies from the numerical time series of occupation
probabilities and compare them with theoretical Rabi frequencies derived from estimated
dipole moments and driving field amplitudes. Second, a Fourier analysis of the temporal
evolution may reveal whether the dynamics are governed by a dominant frequency component,
as expected in ideal Rabi scenarios. Third, by projecting the full Hilbert space onto localized
two-level subspaces near avoided crossings, one could test whether a two-level approximation
captures the system's dominant behavior. Finally, by systematically varying the external driving
parameters—such as field amplitude, frequency, and symmetry—it would be possible to
identify resonance-enhanced regimes that either confirm or refute the presence of Rabi-type

dynamics.

It 1s also worth noting that such oscillatory behaviors are not observed uniformly across all
simulations. For instance, while Figs. 4.5a and 4.10b exhibit dynamics that closely resemble
Rabi oscillations, other cases such as Fig. 4.8b show irregular or non-sinusoidal patterns that
deviate from the expected Rabi profile. This contrast suggests that Rabi-like dynamics may
only emerge under specific conditions—such as particular initial states, avoided crossing
structures, or driving parameters—and are not a generic feature of all two-qubit configurations.
If the oscillations observed in Figs. 4.5a and 4.10b are indeed attributable to Rabi dynamics,
this contrast provides a compelling motivation to use the Pechukas-Yukawa formalism to
explore systematically which configurations and parameter regimes permit or suppress such

behavior. Identifying these conditions could help clarify the necessary ingredients for
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coherence-preserving resonant transitions in larger systems and build toward a deeper
understanding of how avoided crossings and driving fields jointly influence coherent

population transfer.

Should the oscillatory behavior indeed correspond to Rabi oscillations, this would provide
strong evidence that the Pechukas-Yukawa (PY) formalism is capable of capturing not only
qualitative aspects of level dynamics, but also coherent, resonance-driven population

transitions typically studied in two-level systems.

As discussed in Chapter 3, compared to exact diagonalization, the PY method has already
demonstrated a significant advantage in terms of memory efficiency, allowing simulations of
larger quantum systems despite increased runtime. If the oscillations observed in our simulation
for small-scale systems through PY formalism are Rabi oscillations, this raises the possibility
of using it to systematically investigate whether, and under what conditions, similar coherent
oscillations could persist in larger and more complex quantum systems. Furthermore, by
drawing connections with the Landau-Zener-Stiickelberg-Majorana (LZSM) framework, it
may become possible to identify how specific avoided crossings—particularly those involving
intermediate energy levels—facilitate or inhibit Rabi-like behavior under periodic driving. This
would offer a concrete mechanism to understand the interplay between level structure and
coherent control, potentially informing the design of adiabatic or hybrid quantum computing
schemes that leverage such oscillatory dynamics for state manipulation. In this sense, the
confirmation of Rabi oscillations would not merely validate a physical phenomenon but also
position the PY formalism as a scalable tool to explore resonance-enabled quantum control

across system sizes beyond the reach of conventional methods.

Conversely, if the observed oscillations are shown not to be Rabi oscillations, their persistence
and structure would still be of significant interest. They may indicate more complex, possibly

multi-level coherent processes or reflect emergent quantum chaotic behavior under structured
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driving fields. In this case, the Pechukas-Yukawa formalism would provide a valuable tool for

exploring non-integrable quantum dynamics from a novel classical-mapping perspective.

Either outcome would yield meaningful insight. A confirmation would reinforce the validity of
the classical-quantum correspondence embodied in the Pechukas-Yukawa framework, while a
refutation would open new avenues for investigating the spectral and dynamical complexity of

multi-level quantum systems under external perturbation.

5.4 Conclusion

The journey to understand the dynamic evolution of quantum systems, especially in the
presence of decoherence, has always been fraught with complexities and critical to the
development of AQC. Our exploration of the Pechukas-Yukawa (PY) formalism has pointed

out a pathway to unravelling these intricacies, especially in systems with a scale of 2 to 5 qubits.

Our work affirmed that the PY method stands as a helpful tool of reliability and efficiency for
modelling small quantum coherent structures. Importantly, while its current application domain
1s within small quantum systems, it is by no means restricted to them. The scalability of the PY
method, contingent on tackling certain numerical challenges, elucidates a potential to be a not

only foundational but also convenient tool in quantum simulations of the future.

A central discovery is the adaptability of quantum systems at anti-crossings. By judiciously
modulating external field parameters like amplitude and frequency, we wield the ability to
influence the system's probability trajectories across energy levels. This isn’t a mere theoretical
exposition, it provides a broader application prospect, that is, if we can correctly adjust the
parameters of the external field, we can maximize the possibility of the system falling into the
ground state, which will greatly improve the performance of quantum adiabatic calculations

and therefore could span from quantum computing to avant-garde material science.
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Additionally, the relationship between initial probability distributions and the ensuing
dynamical evolution of quantum systems is profound. The capability to predetermine external
field conditions to maximize the likelihood of a system falling to its ground state is invaluable.
This not only gives us a deterministic edge over quantum evolutions but also has potential

applications in quantum annealing and quantum optimization problems.

The observed correlation between the degree of broadening of the PSD of the expectation value
of the system and deviations of occupation probability distribution presents intriguing
possibilities for further studies in the domain of dynamical complex behaviours. Further studies
about quantum chaotic and hyper quantum chaotic phenomena in larger quantum systems could

be benefited by our research when other indicators of quantum chaos are included.

What is particularly interesting is the different transition trends of the edge and middle energy
levels in the case of a high degree of dynamical complexity of the system. On the one hand, it
supports the previous research conclusion that the edge and middle levels have different escape

rate, from a new angle via dynamic complexity of the system.

In conclusion, while this dissertation has made strides in comprehending and modelling the
dynamic evolution of quantum systems, it is but a drop in the vast ocean of quantum mechanics.
Our results have carved out more questions than answers, indicative of the richness and depth
of the subject. The PY method, with its potential and promise, could be a cornerstone in future
quantum research, shaping the way we understand, manipulate, and harness the power of the

quantum realm.

We hope our research can be helpful to further exploration in the development of quantum

computation and therefore advance our understanding of the universe.
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Appendix

Appendix A: Power Spectral Density, the Welch Method and

Windowed Function

Power Spectral Density

Power Spectral Density (PSD) serves as a valuable tool for studying quantum chaotic behavior
because it provides a way to examine the frequency components of a given quantum system
over time, thereby offering insights into its dynamical characteristics. Here are some key

reasons why PSD is especially relevant in the context of quantum chaos:

Frequency Domain Information: The PSD represents how the power of a signal is distributed
across different frequency components. Chaotic systems often exhibit a broad spectrum of
frequencies, and analyzing the PSD allows us to identify this broadening or the presence of

specific dominant frequencies, which can be indicative of chaotic or regular behavior.

Signal Complexity: Quantum chaotic systems are inherently complex and can have behavior
that appears random or disordered. PSD offers a way to quantify this complexity by examining
the dispersion of the frequency components. In the context of quantum systems, a more uniform

distribution of power across frequencies may signify chaotic evolution.

Sensitivity to Initial Conditions: One of the hallmarks of chaos is extreme sensitivity to initial
conditions. The PSD can capture this feature indirectly. If small changes in initial conditions
lead to vastly different frequency distributions in the PSD, this could be indicative of chaotic

behavior.

Correlation Analysis: By studying how the PSD varies with different parameters or initial
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conditions, one can gain insights into the underlying correlations or dependencies within the

system, helping to identify the boundaries between chaotic and non-chaotic regimes.

Temporal Evolution: Often, quantum chaotic behavior isn't just about what happens at a
particular instant but how the system evolves over time. The PSD can be calculated for different
time slices to study how the frequency components evolve, which can be crucial for

understanding the onset of chaos.

Comparison with Classical Chaos: In many cases, insights from classical chaotic systems have
been extended to quantum systems. Classical systems often use PSD to study chaos, and there
is a rich literature on what features to look for in a PSD that indicate chaotic behavior.
Translating these insights to quantum systems can provide a starting point for a more nuanced

understanding.

Parameter Sensitivity: Given that quantum chaotic systems are often studied in terms of varying
external parameters (like external fields or coupling constants), the PSD provides a robust way
to examine how small changes in these parameters might lead the system into or out of chaotic

regimes.

By offering these multidimensional insights, PSD serves as an invaluable tool in the study of
quantum chaotic behavior, contributing both to theoretical understanding and practical

applications such as adiabatic quantum computing.

Therefore, we realize that spectral analysis is a helpful tool for studying quantum chaos,
particularly within the framework of the Pechukas-Yukawa formalism and adiabatic quantum
computation. Spectral analysis offers a comprehensive lens through which to examine the
eigenvalues and eigenfunctions of quantum systems, thereby shedding light on their chaotic or

integrable nature.
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In quantum mechanics, one of the most direct ways to characterize a system is through its
Hamiltonian. The spectrum of this operator, which consists of the system's eigenvalues and
corresponding eigenstates, captures important features of the system's dynamical behavior. In
a chaotic regime, we expect the spectral statistics to exhibit universal features, which are often
characterized by Random Matrix Theory (RMT), which is further introduced in Appendix A.
RMT can effectively model the statistical distribution of level spacings in the spectrum and
offers crucial insights into the transition from quantum regularity to chaos. Given that my work
frequently entails blending theoretical constructs with data-driven analytics, the quantifiable

nature of spectral statistics is immensely beneficial.

Furthermore, the Pechukas-Yukawa formalism provides a robust foundation for understanding
chaos in quantum systems. It brings forth an insightful partitioning of the Hamiltonian matrix
into blocks that represent regular and chaotic components. Spectral analysis enables us to
isolate and study these submatrices, thereby deepening our understanding of how chaos
emerges and interacts with regular structures. In the realm of adiabatic quantum computation,
understanding the spectral properties is pivotal for estimating the adiabatic timescale and

ensuring effective problem-solving.

Additionally, spectral analysis is computationally tractable, a critical factor given the data-
intensive nature of our work. Computational libraries and packages optimized for spectral
algorithms align well with my skillset as a data scientist, thereby facilitating a seamless
integration of mathematical rigor and computational efficiency. This allows us to proceed with
our research at an accelerated pace, which is crucial at this final stage of my PhD journey where

time is of the essence for completing my thesis proficiently and promptly.

To sum up, the combination of spectral analysis with the theoretical frameworks I specialize in

offers an ideal avenue for advancing our understanding of quantum chaos. It allows for a
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quantitative, computationally efficient, and deeply insightful exploration of complex quantum
systems, aligning perfectly with both my academic focus and the practical constraints of my

research timeline.

The Welch method

The Welch method is a popular technique for estimating the power spectral density (PSD) of a
signal. Named after its inventor, Peter D. Welch, it's an improvement over the standard
periodogram spectrum estimating method and is known for its ability to reduce noise in the

estimated power spectra.

The basic idea behind the Welch method is to divide the time signal into overlapping segments,
compute periodograms for each segment, and then average these periodograms to produce the
power spectral density estimate. This process reduces the variance of the estimated power

spectrum.

Here are the steps involved in the Welch method:

Segmentation: Divide the entire signal into overlapping segments. The overlap is normally set
to 50%, but this can be adjusted based on the specific application.

Windowing: Apply a window function to each segment. This is done to reduce the spectral
leakage that results from truncating the signal. Common window functions include the
Hamming window, Hann window, and Blackman window.

Compute Periodograms: For each windowed segment, compute the periodogram by taking the
Fourier transform, squaring its magnitude, and normalizing it.

Average Periodograms: Average the periodograms of each segment to produce the power

spectral density estimate.

Why we chose the pwelch function in MATLAB to estimate the power spectral density of a
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signal based on the idea of the Welch method? Because it offers us a relatively good balance
between computational complexity and spectrum estimation accuracy. Moreover, Welch
method is also a convenient tool for power spectrum estimation with the presence of noise in

various fields such as signal processing, telecommunications, and digital communications.

By dividing the signal into overlapping segments and then averaging the periodograms of each
segment (a measure of the power of a signal at each frequency). The pwelch function has three
main parameters that can be used to control the accuracy and smoothness of the PSD estimation.
These parameters include the number of windows, the width of each window, and the type of

window that is used to weight the segments.

Signal processing for Spectrum analysis: Window function

In the section of simulation of the power spectral density of the expectation value of energy of
2-5 qubit systems, we use the PWELCH function (a function to estimate the power spectral
density) provided by MATLAB. While applying this method, a proper number of windows are

implied on the range of data.

Because each Fast Fourier Transform is only capable to transform time-domain data of limited
length, therefore, signal truncation needs to be performed on the time-domain signal. However,
even though the signal is a periodic signal, if the truncated time length is not an integer multiple
of the period (period truncation), then there will be leakage in the truncated signal, which will
bring us the unwanted errors. In order to minimize this leakage error (note that here we say
reduce, instead of eliminating, it is impossible to fully eliminate such leakage, what we can do
is to reduce it into an acceptable scale), we need to use a weighting function, also known as the

window function.

The main purpose of applying window function is to make the time-domain signal seem to
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better meet the periodic requirements of FFT processing and therefore reduce leakage.

In spectrum analysis, it is impossible for a computer to store and calculate the entire length of
the signal (it could be infinite long), therefore, we need to truncate the signal to meet this
requirement. And when the signal is truncated, it can only be truncated to a certain length, even
if the original signal is infinitely long. Therefore, it seems that a "window" (more like a "frame"

to be precise) is used for such truncation.

Here the "window" is a weighting function of unit weight, called "rectangular window". The
signal outside this "window" is not stored by our computer, only the signal inside the window
is existing. This is like looking at the outside world through a window. Even though the world
is very big and exciting, consists of tremendous information, but all the person watching
through the window can see is the truncated part of the world inside the window. The
information outside out of the window is lost in some sense. This is the vivid reason why such

a weighting function is called a window function, an intuitive name indeed.

The window function is a weighting function, and the weighting of different window functions
is different. There are many different approaches to set the weighting for the window functions.
Commonly used window functions include rectangular window, Hanning window, flat top
window, exponential window, etc. Which window function to use depends on the type of signal
and the purpose of the analysis. In another word, different interception functions (window

functions) can be chosen for signal interception according to the situations.

The essence of applying window function is to use window function to multiply the original
time-domain signal (of course, windowing can also be performed in the frequency domain, but
the time domain is more common, in our case, window function is performed in time domain
since the original signal is in time domain), so that the multiplied signal seems to better satisfy
the periodicity requirement of the Fast Fourier transform. For example, if the original signal

does not meet the periodicity requirements of FFT transformation, and there is leakage after
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transformation. By applying a window function, the leakage will therefore be reduced to a
certain extent. To reduce leakage, the window function is manipulated to multiply the original
periodic signal to obtain a windowed signal as a periodic signal, thus meeting the periodicity

requirement of FFT transformation.

Different window functions have different spectral characteristics.
The main differences in the spectral characteristics of various window functions: main lobe
width (also known as effective noise bandwidth, ENBW), amplitude distortion, maximum side

lobe height and side lobe attenuation rate and other parameters.

The fundamental thought of windowing is to replace the rectangular window function that
intercepts signal samples with a smoother window function, that is, to perform specific unequal
weighting on the truncated time-domain signal, so that the two ends of the truncated time-
domain waveform suddenly change. It needs to be smoothed to suppress the side lobes of the
spectral window. Because the side lobe has the largest amount of leakage, the smaller the side

lobe, the smaller the leakage is correspondingly reduced.

The main lobe width mainly affects the signal energy distribution and frequency resolution.
The actual resolution in frequency is the effective noise bandwidth times the frequency
resolution. Therefore, the wider the main lobe, the wider the effective noise bandwidth. When
the frequency resolution is the same, the frequency resolution is poor. For the main lobe with
a wide window function, it is difficult to distinguish if there is a small peak frequency adjacent

to it.

The height of the sidelobe and its decay rate affect the degree of energy leakage (spectral
smearing effect). The higher the sidelobe, the more serious the energy leakage, the slower the
attenuation, and the more serious the spectrum smearing. Relatively speaking, if the sidelobe

energy is small and the height tends to zero, so that the signal energy is relatively concentrated
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on the main lobe, it is closer to the real spectrum. Different window functions have different
effects on the signal spectrum, mainly because different window functions have different

leakage and frequency resolution.

For the purpose to obtain higher frequency resolution, the main lobe width of the window
function spectrum should be as narrow as possible when we increase the length of the window
function; The sidelobe attenuation of the window should be as large as possible to reduce
spectral smearing, but in general these two requirements cannot be met simultaneously, a good
balance is critical for the analyzing signals. The difference between different windows is
mainly the ratio of the energy concentrated in the main lobe to the energy dispersed in all the

side lobes.

The principle for choosing the right window depends on the target of the analysis and the type
of signal being analyzed. Generally, the wider the effective noise band is, the worse the
frequency resolution obtained for the signal, and the more difficult it is for us to distinguish the
adjacent frequencies with the same scale of amplitude. The increase in selectivity (i.e., the
ability to distinguish weak components adjacent to strong component frequencies) is related to
the decay rate of the sidelobes. In principle, the window with narrower effective noise
bandwidth has lower sidelobe attenuation rate, so a balanced choice of window is a compromise

between the two.

In the ideal case, the truncated signal is still a periodic signal, then there is no leakage and no
need for windowing, which is equivalent to adding a rectangular window. However, in real
spectrum analysis, the truncated signal is always not a periodic signal therefore, a suitable

window must be chosen according to the characteristics of the target signal.

If the signal is a random signal or an unknown signal, or has multiple frequency components,

the test focuses on the frequency point rather than the energy level, Hanning window is suitable
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for this case. For calibration purposes, where accurate amplitudes are required, a flat top
window is a good choice. Kaiser window is outstanding in dealing with the case where both
amplitude accuracy and frequency accuracy are required, Blackman window is good for

dealing with the situation where two signals with similar frequencies and different amplitudes®.

In our case, since our original signal to be applied by window function is the expectation value
of energy of 2-5 qubit systems controlled by an external perturbative parameter with the
presence of decoherence, i.e., noise, which is a kind of random signal, we chose Hanning

window in our study.

Each window function has an impact on the frequency domain description of the target signal.
Overall, though adding window functions reduces the accuracy of the peak amplitude of the
function and therefore makes the resulting damping appear larger than it actually is (these errors
are completely unwanted), they are more acceptable compared to the severe distortion caused
by leakage. By applying window function on our original signal, we reduce the leakage to an

acceptable scale and reduce the error to less than 10%.

Appendix B: Code

Code Index

o Calculate occupation number without Renormalization

o Calculate Occupation number with Renormalization

o White Noise Generate Function

o Iteration through Amplitude and Frequency of A for 2-qubit systems (direct
method)

o Simulation of 5-qubit systems through PY method with RK4
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o Comparison of the probabilities of being at each energy level of Five qubits
system

o Power Spectral density of Expectation energy value of 2 qubits system

o Maximum probability for the 4-qubit systems to fall in the ground state during
the evolution

o Simulation of 4-qubit systems through PY method with RK4

o Simulation of 2-qubit systems through PY method with RK4

o PY method with Runge-Kutta 4th order method

o Simulation of 4-qubi system through PY method with Euler method

Calculate occupation number without Renormalization

[C1,Density [=occupationnumber(inputx,inputl,inputinitial C,inputlambda,inputNOL,inputstep
s,inputtotaltime)

totaltime=inputtotaltime;

X=inputx;

|=inputl;

lambda=inputlambda;

NOL=inputNOL;

steps=inputsteps;

dt=totaltime/steps;
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h=dt;
Dlambda=diff(lambda)/h;
C=zeros(NOL,steps);
C(:,1)=inputinitialC;
DC=zeros(NOL,steps);
P=zeros(NOL,NOL,steps);

X=zeros(NOL,NOL,steps);

i=1:steps

X(:,:,1)=diag(x(:,1));

i=1:steps
m=1:NOL
n=1:NOL
abs(x(m,i)-x(n,i))>0
P(m,n,i)=1*((1(m,n,i)/(1*x(m,i)-1#x(n,i)))/(1*x(m,i)-1*x(n,i)))*1*1;

%How to deal with the singularity

P(m,n,1)=0

%
[C=zeros(NOL,steps);
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IDC=zeros(NOL,steps);

[IC=zeros(NOL,steps);

[IDC=zeros(NOL,steps);

[IIC=zeros(NOL,steps);

[IIDC=zeros(NOL,steps);

% count=1;

%
%
%
%
%
%
%
%
%

i=1:steps-3
if mod(count,2)==1
for m=1:NOL
for n=1:NOL
DC(:,i)=(-1i.¥X(:,:,1)+Dlambda(:,i).*P(:,:,1)) *C(:,1);
if abs(DC(:,1)*dt)<abs(C(:,1))
C(:,i+1)=DC(:,1)*dt +C(:,1);
else
C(:,i+1)=C(:,))+DC(:,i)*dt;
end
IC(:,i+1)=C(:,))+DC(:,1)*dt;
IDC(:,i+1)=(-11.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1);

HC(,i+1)=C(:,)+IDC(:,i+1)*dt;
IDC(:,i+1)=(-11.%X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,1+1)) *HC(:,1+1);

HIC(:,i+2)=C(:,)+IIDC(:,i+1)*2*dt;

MDC(:,i+2)=(-11.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,1+2) ) *IIIC(:,i+2);

C(:,i+2)=C(:,i)+1/6*dt*(DC(:,i)+2*¥IDC(:,i+ 1) +2*IIDC(:,i+ 1 )+IIDC(:,i+2));
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% end

% count=count+1;
% end

% end

% %

Cl=zeros(NOL,steps);
%
i=1:steps-3
C1(,1)=C(:,1);

i=1:steps/2-1
C1(:,2*1)=(C(:,2*1-1)+C(:,2*1+1))/2;

Density=zeros(NOL,NOL,steps);

1=1:steps
m=1:NOL
n=1:NOL
% if n~=m
Density(n,m,1)=conj(C1(m,1))*C1(n,1);
% end
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Calculate Occupation number with Renormalization

[C1,Density]
=QOccupationRenormalize(inputx,inputl,inputinitial C
,inputlambda,inputNOL,inputperiodnumber
,inputstepsperperiod,inputdt

,inputrandomX,inputsteps)

% totaltime=inputtotaltime;

% If want to accelerate more, then
dt=inputdt;

x=inputx;

I=inputl;

lambda=inputlambda;

NOL=inputNOL;

% steps=inputsteps;
%%
periodnumber=inputperiodnumber;

stepsperperiod=inputstepsperperiod;

randomX=inputrandomX;

steps=inputsteps;
% steps=99998;
%%
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h=dt;
Dlambda=diff(lambda)/h;
C=zeros(NOL,steps);
C(:,1)=inputinitial C;
DC=zeros(NOL,steps);
P=zeros(NOL,NOL,steps);

X=zeros(NOL,NOL,steps);
Probability=zeros(NOL,steps);

Sum=zeros(1,steps);

i=1:steps

X(:,:,1)=diag(x(:,1));

i=1:steps
m=1:NOL
n=1:NOL
abs(abs(x(m,i))-abs(x(n,i)))>0
P(m,n,1)=((1(m,n,1)/(x(m,1)-x(n,1)))/(x(m,1)-x(n,1)));

%How to deal with the singularity

P(m,n,1)=0
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%

[C=zeros(NOL,steps);
IDC=zeros(NOL,steps);
[IC=zeros(NOL,steps);
[IDC=zeros(NOL,steps);
[IIC=zeros(NOL,steps);
IIIDC=zeros(NOL,steps);

% count=1;

j=1:periodnumber

% randomX=randi([5,6000],1);

Jj<periodnumber

i=(j-1)*stepsperperiod+1:(j-1)*stepsperperiod+1+randomX

DC(:,i)=(-1i.¥X(,:,i)+Dlambda(:,i). ¥P(:,:,)) *C(:,i);

IC(:,i+1)=C(:,1))+DC(:,1)*dt;
IDC(:,i+1)=(-11.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1);

HC(,i+1)=C(:,)+IDC(:,i+1)*dt;
IDC(:,i+1)=(-11.%X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1) ) *IC(:,i+1);

HIC(:,i+2)=C(:,)+IIDC(:,i+1)*2*dt;
MDC(:,i+2)=(-11.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,1+2) ) *IIIC(:,i+2);
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C(:,i+2)=C(:, i)+ 1/6*dt*(DC(:,i)+2*¥IDC(:, i+ 1)+2*IIDC(:,i+ 1 )HIIDC(:,i+2));

m=1:NOL
Probability(m,i+1)=C(m,i+1)*conj(C(m,i+1));
Probability(m,i+1)<Sum(1,i+1)
Sum(1,i+1)=Probability(m,i+1)+Sum(1,i+1);

Sum(1,i+1)=Sum(1,i+1)+Probability(m,i+1);

C(:,(-1)*stepsperperiod+1+randomX+1) =
C(:,(j-1)*stepsperperiod+1+randomX+1)
/sqrt(Sum(1,(j-1)*stepsperperiod+1+randomX+1));

1= (j-1)*stepsperperiod+1+randomX+1:j*stepsperperiod

IC(:,i+1)=C(:,1))+DC(:,1)*dt;
IDC(:,i+1)=(-11.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1);

HC(:,i+1)=C(:,1)+IDC(:,i+1)*dt;
IDC(:,i+1)=(-11.%X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1) ) *IC(:,i+1);

HIC(:,i+2)=C(:,)+IIDC(:,i+1)*2*dt;
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HIDC(:,i+2)=(-11.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,i+2))*IIIC(:,i+2);

C(:,i+2)=C(:, i)+ 1/6*dt*(DC(:,i)+2*¥IDC(;, i+ 1)+2*IIDC(:,i+ 1 )HIIDC(:,i+2));

m=1:NOL
Probability(m,i+1)=C(m,i+1)*conj(C(m,i+1));

Probability(m,i+1)<Sum(1,i+1)
Sum(1,i+1)=Probability(m,i+1)+Sum(1,i+1);

Sum(1,i+1)=Sum(1,i+1)+Probability(m,i+1);

1=(j-1)*stepsperperiod+1: (j-1)*stepsperperiod+1+ randomX

IC(:,i+1)=C(:,))+DC(:,1)*dt;
IDC(:,i+1)=(-11.*X(:,:,i+ 1 )+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1);

IC(:,i+1)=C(:,i)+IDC(:,i+1)*dt;
IIDC(:,i+1)=(-11.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,:,i+1))*IIC(:,i+1);
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HIC(:,i+2)=C(:,i)+HIDC(:,i+1)*2*dt;
MDC(:,i+2)=(-11.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,1+2) ) *IIIC(:,i+2);

C(:,i+2)=C(:,i)+1/6*dt*(DC(:,i)+2*IDC(:,i+1)+2*IIDC(:,i+1)+IIDC(:,i+2));

m=1:NOL
Probability(m,i+1)=C(m,i+1)*conj(C(m,i+1));

Probability(m,i+1)<Sum(1,i+1)
Sum(1,i+1)=Probability(m,i+1)+Sum(1,i+1);

Sum(1,i+1)=Sum(1,i+1)+Probability(m,i+1);

C(:,(j-1)*stepsperperiod+1+ randomX +1)=
C(:,(j-1)*stepsperperiod+1+ randomX +1)
/sqrt(Sum(1,(j-1)*stepsperperiod+1+ randomX +1));

%the line below, -1 or -2 or -37??

i= (j-1)*stepsperperiod+1+ randomX +1 : j*stepsperperiod-3

IC(:,i+1)=C(:,1)+DC(:,1)*dt;
IDC(:,i+1)=(-11.*X(:,:,i+ 1 )+Dlambda(:,i+1).*P(:,:,i+1))*IC(:,i+1);
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TIC(,i+1)=C(:,))HIDC(.,i+1)*dt;
IDC(:,i+1)=(-1i.*X(:,:,i+1)+Dlambda(:,i+1).*P(:,,i+ 1) *IIC(,i+1);

IIC(:,i+2)=C(:,i)HIDC(:,i+1)*2*dt;

DC(:,i+2)=(-11.*X(:,:,i+2)+Dlambda(:,i+2).*P(:,:,1+2) ) *IIIC(:,i+2);

C(,i+2)=C(:, i)+ 1/6*dt*(DC(:,i)+2*¥IDC(, i+ 1)+2*IIDC(:,i+ 1 )+HIIDC(,i+2));

m=1:NOL
Probability(m,i+1)=C(m,i+1)*conj(C(m,i+1));

Probability(m,i+1)<Sum(1,i+1)
Sum(1,i+1)=Probability(m,i+1)+Sum(1,i+1);

Sum(1,i+1)=Sum(1,i+1)+Probability(m,i+1);
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A e

Cl=zeros(NOL,steps);
%
i=1:steps-3
C1(,1)=C(:,1);

i=1:steps/2-1
C1(:,2*¥1)=(C(:,2*1-1)+C(:,2*i+1))/2;

Density=zeros(NOL,NOL,steps);

i=1:steps
m=1:NOL
n=1:NOL
% if n~=m
Density(n,m,i)=conj(C1(m,1))*C1(n,1);
% end

White Noise Generate Function

[Dh,DotDh]= Noise2(inputNOL,inputsteps,inputtotaltime)
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% tic

% NOL=;

% steps=1000;

% totaltime=1%*pi;
NOL=inputNOL;

steps=inputsteps;

totaltime=inputtotaltime;

t=linspace(0,totaltime,steps);
% Lambdal=j*cos(p*t);
dt=totaltime/(steps);

% h=dt;

% DLambda=diff(Lambdal)/h;
% dLambda=DLambda*dt;

Dh=zeros(NOL,NOL,steps);
DotDh=zeros(NOL,NOL,steps);

% c1=50; %mean reversion speed
cl1=10;

¢2=0; %mean value

% ¢3=0.005; %fluctuation rate
¢3=0.0005;

sigma=c3;

pd = makedist('Normal',0,sqrt(dt)); %probability distribution
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% for m=1:NOL
% for n=1:NOL

% % Dh(m,n,1)=0.0001*random(pd);
% Dh(m,n,1)=0;

% end

% end

Dh(:,:,1)=0;

filename='"NoiseDh.mat';
ExportO=matfile(filename, Writable',true);
Export0.Dh=Dh;
m=1:NOL
n=1:NOL

i=1:steps-1

mu=c1*(c2-Dh(m,n,i));

%

dW=random(pd); %dW denotes a random motion

DotDh(m,n,1)= mu*dt+sigma*dW;
DotDh(m,n,1)= mu*dLambda(i)+sigma*dW;
Dh(m,n,i+1)=Dh(m,n,1)+ DotDh(m,n,1);

Cup=zeros(1,steps);

Box=zeros(1,steps);
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m=1:NOL
Box(m,i)=Dh(m,m,i);
Cup(m,i)=DotDh(m,m,i);

%toc

Iteration through Amplitude and Frequency of A for 2-qubit

systems (direct method)

%%
% 1 . Initialization

randomX=10;

dt=0.001;

totallength=300;
steps=round(totallength/dt);
totaltime=dt*steps;
t=linspace(0,totaltime,steps);

%%

% 2 .Pauli matrix and Identity matrix
Sigma x=[01; 1 0];

Sigma z=[10; 0 -1];

I=[10;0 17];
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numberofqubits=2;
NOL=2"numberofqubits;

%%

% 3 . Parameters, could be set to random numbers or function of time.
% Delta=zeros(1,numberofqubits);

% h=zeros(1,numberofqubits);

% J=zeros(numberofqubits,numberofqubits);
% for i=1:numberofqubits

% Delta(i)=rand(1);

% h(i)=rand(1);

% for j=1:numberofqubits

% if j>i

% J(i,j)=rand(1);

% end

%

% end

% end

0/pmme -

Deltal=0.4;

Delta2=0.5;

h1=0.7;

h2=0.2;

J 12=0.6;

%%

% 4 . Define HO, Hf and ZHb

% ZHb should be independent of Lambda

HO=Deltal *kron(Sigma_x,I)+Delta2*kron(I,Sigma x);
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Hf=h1*kron(Sigma_ z,I)+h2*kron(I,Sigma z)+J 12*kron(Sigma_z,Sigma z);
ZHb=H{-HO;

%%

% 5 . Preallocation for variables

Hlambda=zeros(NOL,NOL,steps);

Eigenvectors=zeros(NOL,NOL,steps);

HD=zeros(NOL,NOL,steps);

X=zeros(NOL,steps);
V=zeros(NOL,steps);
x=zeros(NOL,steps);
v=zeros(NOL,steps);
l=zeros(NOL,NOL,steps);
LSquare=zeros(NOL,NOL,steps);

%%
% [Dh,DotDh]=Noise2(NOL,steps,totaltime);
% save('NoiseDh.mat','Dh'");

i=1.25:0.01:1.25
p=17.5:0.5:17.5

fprintf('j=%d\n',j)

fprintf(‘p="%d\n',p)
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% dt=0.0003;
%%
Amplitude=j ;

constant=p;

[Dh,DotDh]=Noise2(NOL,steps,totaltime);

save('NoiseDh.mat','Dh");

%%

% plan 1, fixed periodnumber but different steps number depending on

% frequency. Need to calculate Noise everytime.

% periodnumber=100;

% periodlength=2*pi/constant; %period length= 2*pi/constant

% stepsperperiod=round(periodlength/dt);

% steps=periodnumber*stepsperperiod;

%%

% plan 2, fixed steps number, but different period numbers depending on

% frequency. Can load Noise , save time.

%%
periodlength=2*pi/constant;
periodnumber=fix(steps*dt/periodlength);

stepsperperiod=fix(periodlength/dt);

Lambda=Amplitude*cos(constant*t);

% Lambda=Amplitude*cos(constant*t+pi);

% tic
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% [Dh,DotDh]=Noise2(NOL,steps,totaltime, Amplitude,constant);
% save('NoiseDh.mat','Dh");
% % load('"NoiseDh.mat');
% toc
%%
% 6 . Define H(lambda)=HO-+lambda*ZHb+Dh.
i=1:steps
% Hlambda(:,:,i)=HO+Lambda(i)*ZHb;%without noise
Hlambda(:,:,i)=HO+Lambda(i)*ZHb+Dh(i); %with noise

% 7 . Get eigenvectors and eigenvalue matrix
i=1:steps

[Eigenvectors(:,:,1),HD(:,:,1)]=eig(Hlambda(:,:,1));

% 8 . Get X(m,i)
1=1:steps
m=1:NOL
X(m,1)=HD(m,m,1);

% 9 . Get V(m,i) and L(m,n,i)
i=1:steps
m=1:NOL

V(m,i)=transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,m,i);
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L=zeros(NOL,NOL,steps);

i=1:steps
m=1:NOL
n=1:NOL
n~=m
L(m,n,i)=(X(m,i)-X(n,1))
*transpose(Eigenvectors(:,m,i))
*ZHb*Eigenvectors(:,n,i);
%%

% filename='DirectDatal .mat’;

% ExportO=matfile(filename, Writable',true);
% % Export0. XTEST=zeros(NOL,steps*periodnumber);
% % Export0.XTEST=[];

% % Export0.VTEST=[];

% % Export0.LTEST=[];

% Export0.Time=t;

% Export0.XTEST=X;

% Export0.VTEST=V;,

% Export0.LTEST=L;

%

% Export0.PERIODNUMBER=periodnumber;
% Export0.PERIODLENGTH=periodlength;
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% Export0.STEPS=steps;

% Export0.STEPSPERPERIOD=stepsperperiod;
%

% Export). CONSTANT=constant;

% Export0. AMPLITUDE=Amplitude;

% Export).RANDOMX=randomX;

% Export0.DT=dt;

%%
save(['D:\Dataset\Loopdatal\'
, TwoQubits_',;num2str(j),'cos(',num2str(p),'t).mat']
, 1, X'V, 'periodnumber’,'periodlength’,'steps'
,'stepsperperiod','constant',' Amplitude', randomX','dt','Lam

bda','-v7.3");

beep

% % 9.1. get DV(m,i) and DL(m,n,i)

% DirectDV=zeros(NOL,steps);

% for i=1:steps-2

% for m=1:NOL

% DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt);
% end

% end

%

% DirectDL=zeros(NOL,NOL,steps);
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% for i=1:steps-2
% for m=1:NOL

% for n=1:NOL

% DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,1))/(2*dt);
% end

% end

% end

% xRK4=zeros(NOL,steps);

% vRK4=zeros(NOL,steps);

% IRK4=zeros(NOL,NOL,steps);

% [xRK4,vRK4,IRK4,time]=RK4test3FromLaptop(X(:,:),V(:,:),L(:,:).NOL...
% ,steps,DirectDV,DirectDL,totaltime,Lambda...

% ,constant, Amplitude);

% [xRK4,vRK4,IRK4,time]=RK4test3FromLaptop(X(:,:),V(:,:),L(:,:,:),NOL...

% ,steps,DirectDV,DirectDL,totaltime,Lambda...
% ,constant,Amplitude);
%

%  [xRK4,vRK4,]IRK4,time]=RK4withNoise(X(:,:),V(:,:),L(:,:,:),NOL,steps...%not  using
Xnoise and etc. becuause there is a sign error of matlab eig() function

% ,DirectDV,DirectDL,totaltime,Lambda,Dh,DotDh,j,p);

% ErrorXRK4=zeros(NOL,steps);
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% for i=1:steps

% for m=1:NOL

% ErrorXRK4(m,1)=abs(X(m,1)-xRK4(m,1));
% end

% end

% ErrorNoAbs=zeros(NOL,steps);

% for i=1:steps

% for m=1:NOL

% ErrorNoAbs(m,i)=X(m,i)-xRK4(m,i);

% end

% end

%

% ErrorSumLevels=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% if abs(ErrorSumLevels(1,1))<abs(ErrorXRK4(m,1))

% ErrorSumLevels(1,1)=ErrorSumLevels(1,1)+ErrorXRK4(m,1);
% else

% ErrorSumLevels(1,1)=ErrorXRK4(m,1)+ErrorSumLevels(1,1);
% end

% end

% end

% ErrorV=zeros(NOL,steps);

% for i=1:steps
% for m=1:NOL
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% ErrorV(m,i)=abs(V(m,i)-vRK4(m,1));
%

% end

% end

%%
%%--

%%--

% Cl=zeros(NOL,steps);

% C1(4,1)=1;

% % for m=1:NOL

% % C(m,1)=sqrt(1/NOL);

% % end

% Probability 1=zeros(NOL,steps);

%

% % [C1,Density1 J=occupationnumber(xRK4,IRK4,C1(:,1),Lambda,NOL,steps,totaltime);
%
[C1,Density1]=OccupationRenormalize(xRK4,IRK4,C1(:,1),Lambda,NOL,periodnumber,ste
psperperiod,dt,randomX);

% %
[C1,Density1]=OcNoRe(xRK4,IRK4,C1(:,1),Lambda,NOL,periodnumber,stepsperperiod,dt,r
andomX);

% for i=1:steps

% for m=1:NOL

% Probability 1(m,i1)=C1(m,i)*conj(C1(m,1));

% end

% end

%

179



% Suml1=zeros(1,1);
% for i=1:steps
% for m=1:NOL

% if Probability1(m,i)<Suml1(1,i)

% Sum1(1,1)=Probability1(m,1)+Sum1(1,1);
% else

% Sum1(1,1)=Sum1(1,i)+Probability1(m,i);
% end

% end

% end

%

% figure(2*j-1)

% subplot(1,3,1)

% plot(t,X)

% % % legend('1','2','3','4",)'5",'6",'7",'8",'9",'10",'11",'12",'13",'14','15",'16",'17','18','19",...
% % % '20,'21','22',23",'24','25','26',27",'28",'29','30",'31",'32")

% % % axis([0 1 -4 10])

% % xlabel('time');

% % ylabel('"Energy levels');

% % % x1im([0 0.2])

% title('Direct Energy Evolution');

% %

% subplot(1,3,2)

% plot(t,xRK4(:,:))

% % legend('1','2','3','4','5",'6",'7",'8",'9",'10",'11",'12','13",'14','15",'16','17','18",'19',...
% % '20,21','22',23",'24','25','26',27",'28",'29','30",'31",'32")
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% % axis([0 1 -4 10])

% xlabel('time");

% ylabel('"Energy levels');

% % x1lim([0 0.2])

% title('PY simulated Energy Evolution')
%

%

% subplot(1,3,3)

% plot(t,ErrorXRK4(:,:))

% % % axis([0 0.1 0 1])

% % % xlim([0 0.3])

% % xlabel('time');

% % ylabel('Error");

% title('Error of simulated energy evolution')
%

%

%

% figure(2*j)

% subplot(1,2,1)

% plot(t,Probabilityl(:,:))

% % axis([0101])

% % legend('1",'2','3",'4",'5','6','7','8','9",'10",'11",'12",'13",'14",'15','16")
% title('Simulated PD')

%

% subplot(1,2,2)

% plot(t,Sum1);

% title('Sum of simulated probabilities')

%
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%
%

%

% figure(6)

%

% subplot(1,4,1)

% plot(t,Probability3(:,:))

% % axis([0 10 1])

% legend('1','2','3','4",'5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15",'16")
% title('Direct PD OCNoRe")

%

% subplot(1,4,2)

% plot(t,Sum3);

% title("Sum of Direct probabilities OCNoRe'")

%

%

% subplot(1,4,3)

% plot(t,Probability4(:,:))

% % axis([0 10 1])

% legend('1','2','3','4','5",'6",'7",'8",'9",'10",'11",'12','13",'14','15",'16")
% title('Simulated PD OCNoRe')

%

% subplot(1,4,4)

% plot(t,Sum4);

% title("Sum of simulated probabilities OCNoRe')
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L —

Ly -

% AverageX=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% AverageX(1,1)=Probability1(m,i)*X(m,i)+AverageX(1,1);
% end

% end

% AverageXRK4=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% AverageXRK4(1,i)=Probability 1 (m,i)*xRK4(m,i)+AverageXRK4(1,1);
% end

% end

%

%

% AverageM=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% AverageM(1,1)=Probability 1(m,1)*m + AverageM(1,1);
% end

% end

%

%

% %Dispersion of Energy value

% Dispersion=zeros(1,steps);
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% for i=1:steps
% for m=1:NOL

% Dispersion(1,1)=Probability1(m,i)*((xRK4(m,1)-AverageX(1,1))"2)...
% +Dispersion(1,i);

% end

% end

%

% % Dispersion of energy levels

% DispersionLVL=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% DispersionLVL(1,i)=Probability1(m,i)*((m-AverageM(1,i))"2)...
% +DispersionLVL(1,1);

% end

% end

%

% figure(j+7)

% subplot(1,2,1)

% plot(t,AverageX)

% title("Expectation Energy direct")

% % x1im([0 99])

%

% subplot(1,2,2)

% plot(t,AverageXRK4)

% title("Expectation Energy simulated")

%
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%

Simulation of 5-qubit system through PY method

clear

tic

%Five Spin New
t1=cputime;

% 1 .initial set up
totaltime=2*pi;

steps=4000;
dt=totaltime/steps;

% tt=linspace(0,totaltime,steps);
% t=cos(tt);
t=linspace(0,totaltime,steps);

Lambda=0.3*sin(1*t);

h=dt;
dLambda=diff(Lambda)/h;
numberofqubits=5;

NOL=2"numberofqubits;

%Noise function

L . —_—

[Dh,DotDh]=Noise1(NOL,steps,totaltime);
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L -

% 2 . Pauli matrix and Identity matrix

Sigma x=[0 1; 1 0];
Sigma z=[1 00 -1];
I=[10;01];

% 3. Parameters

Ly -
% Particular set

Deltal=0.9844;%0.5578
Delta2=0.8589;%0.3134
Delta3=0.7856;%0.1662
Delta4=0.5134;%0.6225
Delta5=0.1776;%0.9879

h1=0.3986; %0.1704
h2=0.1339; %0.2578
h3=0.0309; %0.3968
h4=0.9391; %0.0740
h5=0.3013; %0.6841

J 12=0.2955;%0.4024
J 13=0.3329;9%0.9828
J 14=0.4671;%0.4022
J 15=0.6482;9%0.6207

J 23=0.0252;9%0.1544
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J 24=0.8422;%0.3813
J 25=0.5590;%0.1611

J 34=0.8541;%0.7581
J 35=0.3479;%0.8711

J 45=0.4460;9%0.3508

/pmmm
% random set

% Deltal=rand(1);
% Delta2=rand(1);
% Delta3=rand(1);
% Deltad=rand(1);
% DeltaS=rand(1);
%

% hl=rand(1);

% h2=rand(1);

% h3=rand(1);

% h4=rand(1);

% h5=rand(1);

%

% J_12=rand(1);
% J_13=rand(1);
% J_14=rand(1);
% J_15=rand(1);
%

% J 23=rand(1);
% J 24=rand(1);
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% J_25=rand(1);
%
% J 34=rand(1);
% J_35=rand(1);
%
% J_45=rand(1);

% 4 . Define HO, Hf and ZHDb

HO= Deltal *kron(kron(kron(kron(Sigma_x,I),I),I),I)
+Delta2*kron(kron(kron(kron(I,Sigma_x),I),I),I)
+Delta3*kron(kron(kron(kron(LI),Sigma_x),I),I)
+Delta4*kron(kron(kron(kron(I,1),I),Sigma_x),I)
+Delta5*kron(kron(kron(kron(LI),I),I),Sigma_x);

Hf = h1*kron(kron(kron(kron(Sigma_z,I),I),I),I)
+h2*kron(kron(kron(kron(L,Sigma_z),I),I),I)
+h3*kron(kron(kron(kron(L,1),Sigma_z),I),I)
+h4*kron(kron(kron(kron(L,1),I),Sigma_z),I)
+h5*kron(kron(kron(kron(L,1),I),I),Sigma_z)
+J_12*kron(kron(kron(kron(Sigma_z,Sigma_z),1),1),I)
+J_13*kron(kron(kron(kron(Sigma_z,I),Sigma_z),I),I)
+J_14*kron(kron(kron(kron(Sigma_z,I),I),Sigma_z),I)
+J_15*kron(kron(kron(kron(Sigma_z,I),I),I),Sigma_z)
+J_23*kron(kron(kron(kron(I,Sigma z),Sigma_z),1),1)
+J_24*kron(kron(kron(kron(I,Sigma z),I),Sigma_z),I)
+J_25*kron(kron(kron(kron(I,Sigma z),I),I),Sigma_z)
+J_34*kron(kron(kron(kron(L,I),Sigma z),Sigma_z),I)
+J_35*kron(kron(kron(kron(l,1),Sigma z),I),Sigma_z)

188



+J_45*kron(kron(kron(kron(I,I),I),Sigma z),Sigma z);

ZHb= H{-HO;

%ZHb with noise

% ZHbNoise()=Hf-HO-Dh/Lambda(i);

% 5 . Preallocations
Hlambda=zeros(NOL,NOL,steps);
Eigenvectors=zeros(NOL,NOL,steps);
HD=zeros(NOL,NOL,steps);
%preallocation for case with noise

%___ _____ N

Hnoise=zeros(NOL,NOL,steps);
EigenvectorsNoise=zeros(NOL,NOL,steps);
HDNoise=zeros(NOL,NOL,steps);
Xnoise=zeros(NOL,steps);
Vnoise=zeros(NOL,steps);
Lnoise=zeros(NOL,NOL,steps);

O e

X=zeros(NOL,steps);
V=zeros(NOL,steps);
L=zeros(NOL,NOL,steps);
x=zeros(NOL,steps);
v=zeros(NOL,steps);
I=zeros(NOL,NOL,steps);
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% 6 . Define H(lambda)=HO+ lambda*ZHb.
i= 1:steps

Hlambda(:,:,i)= HO+Lambda(i)*ZHb;

% 6.1 H(lambda)with noise = HO+lambda*ZHb+Dh
i=1:steps
Hnoise=Dh+HO0+Lambda(i) *ZHbNoise;
*ZHb;

% 7 . Get eigenvectors and eigenvalue matrix
i=1:steps
[Eigenvectors(:,:,1),HD(:,:,1)]=eig(Hlambda(:,:,1));
[EigenvectorsNoise(:,:,1),HDNoise(:,:,1)|=eig(Hnoise(:,:,1));

% 7.1 Eigenvectors and eigenvalue matrix with noise

% for i=1:steps
% [EigenvectorsNoise(:,:,1),HDNoise(:,:,i)|=eig(Hnoise(:,:,1));
% end

% 8 . get X(m,i).
i=1:steps
m=1:NOL
X(m,1)=HD(m,m,i);

% 8.1 X(m,1) with noise
m=1:NOL

1=1:steps
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Xnoise(m,1)=HDNoise(m,m,i);

%attempt to solve the bug that sometimes it is opposite

% for m=1:NOL

% for i=1:steps

% if Xnoise(m,1)>0

% if Xnoise(m,1)<0

% Xnoise(m,i)=abs(Xnoise(m,1));
% end

% end

% if Xnoise(m,1)<0

% if Xnoise(m,i)>0

% Xnoise(m,i)=-abs(Xnoise(m,i));
% end

% end

% if Xnoise(m,1)==0

% Xnoise(m,1)=Xnoise(m,1)+0.001;
% end

% end

% end

% 9 . get V(m,i) and L(m,n,1)
i=1:steps
m=1:NOL

V(m,i)=transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,m,i);
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i=1:steps

n=1:NOL
m=1:NOL
n~=m

L(m,n,)=(X(m,1)-X(n,1))
*transpose(Eigenvectors(:,m,1))

*ZHb*Eigenvectors(:,n,i);

% 9.1 V(m,i) and L(m,n,1) with Noise
i=1:steps
m=1:NOL
Vnoise(m,i)= transpose(EigenvectorsNoise(:,m,1))
*7ZHb

*EigenvectorsNoise(:,m,1);

i=1:steps
n=1:NOL
m=1:NOL
n~=m
Lnoise(m,n,1)=(Xnoise(m,i)-Xnoise(n,i))
*transpose(EigenvectorsNoise(:,m,1))

*ZHb*EigenvectorsNoise(:,n,i);
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% 9.1. get DV(m,1) and DL(m,n,1)
% DV=zeros(NOL,steps);

% DL=zeros(NOL,NOL,steps);

% RHSV=zeros(NOL,NOL,steps);
% RHSL=zeros(NOL,NOL,steps);

% for i=1:steps
% for n=1:NOL

% for m=1:NOL

% if n~=m

% if abs(X(m,1)-X(n,1))>0.00758

% RHSV(m,n,i)=2*(( 10000*L(m,n,1)/(10000*X(m,i)-

10000*X(n,i)) )...

% *( 10000*conj(L(m,n,1)) /(10000*X(m,i)...
% -10000*X(n,1)) )...

% /(10000*X(m,1)-10000*X(n,1)))* 10000;
% DV(m,i)=DV(m,i)+ RHSV(m,n,i);

% end

% end

% end

% end

% end

%

% for i=1:steps
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%
%
%
%
%
%
%
%
%

for m=1:NOL
for n=1:NOL
for k=1:NOL
if n~=m
if k~=n
if k~=m
if abs( X(k,1)-X(n,1) )>0.00758
if abs( X(k,1)-X(m,1) )>0.00758
RHSL(m,n,1)=( (10000*X(k,1)-

10000%X(n,i))...

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

/(10000*X(m,i)-10000*X(k,i))...
- (10000*X(mi)...
~10000*X (k,i))/(10000*X (k. i)...
~10000%X(n,i))) ...

*transpose(Eigenvectors(:,m,i))...

*ZHb*Eigenvectors(:,k,1)...
*transpose(Eigenvectors(:,k,1))...

*ZHb*Eigenvectors(:,n,i);

DL(m,n,i)=DL(m,n,i)+RHSL(m,n,i);
end
end
end
end
end
end

end
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% end

% end

% % 10 . Use Euler method to check directly obtained Xm and Vm.
% Xeuler= zeros(NOL,steps);

% for m=1:NOL

% Xeuler(m,1)=X(m,1);

% end

% for i=1:steps-1

% for m=1:NOL

% Xeuler(m,i+1)=Xeuler(m,i)+V(m,1)*dt;
% end

% end

% % 11 . Set initial xm, vm, Imn for i=1 for Pechukas method
% for m=1:NOL

% x(m,1)=X(m,1);

% v(m,1)=V(m,1);

%

% end

% % Testbraket=zeros(NOL,NOL,steps);

% for m=1:NOL

% for n=1:NOL

% if n~=m

% 1(m,n,1)= (x(m,1)-x(n,1))...

% *transpose(Eigenvectors(:,m,1))...

% *ZHb*Eigenvectors(:,n,1);

% %Testbraket(m,n,1)= transpose(Eigenvectors(:,m,1))...
% %*ZHb*Eigenvectors(:,n,1);

% end
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% end
% end

% 12 . Euler+Pechukas

L
% RHSI=zeros(NOL,NOL,steps);

% RHSv=zeros(NOL,NOL,steps);

% Dv=Derivativeofv(x,l,steps,NOL);
% DI=Derivativeofl(x,l,steps,NOL);
0/pmme —

% Dv=zeros(NOL,steps);
% Dl=zeros(NOL,NOL,steps);

% TestAnticrossing=zeros(NOL,NOL,steps);
% TestSquare=zeros(NOL,NOL,steps);

% TestCube=zeros(NOL,NOL,steps);

% %TestConj=zeros(NOL,NOL,steps);

% Testl=zeros(NOL,NOL,steps);

% Test2=zeros(NOL,NOL,steps);

% Test3=zeros(NOL,NOL,steps);

% Testd=zeros(NOL,NOL,steps);

% for i=1:steps-1
% for m=1:NOL
% for n=1:NOL
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%

%

%

%

%

% %

% %

%

%

% %
10000*x(n,1))...
% %
10000*x(k,1))...
% %

% %

for k=1:NOL
if n~=m
if k~=n
if k~=m
if x(m,1)~=x(k,1)
if x(k,i)~=x(n,1)
if abs(x(m,1)-x(k,1))>0.00758
if abs(x(n,1)-x(k,1))>0.00758
RHSI(m,n,i)=( (10000*x(k,1)-

10000*x(k,1))/(10000*x(k,1)...

% %
%

/(10000%*x(m, )-
- (10000*x(m,i)...
-10000*x(n,i)) )...
%

*transpose(Eigenvectors(:,m,i))...

% %
% %
%

*ZHb*Eigenvectors(:,k,1)...
%

*transpose(Eigenvectors(:,k,1))...

% %
%

*ZHb*Eigenvectors(:,n,1);

RHSI(m,n,i)=(1(m,k,i)/(10000*x(m,i)-10000*x(k,i)))...

%

10000%x(k,i)))...

*(1(k,n,i)/(10000*x(m,i)-
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% *10000%10000....
% ~(I(m,k,i)/(10000*x(k,i)-10000*x(n,i)))...
% *(1(k,n,i)/(10000*x(k,)-
10000*x(n,i)))*10000*10000;

% %This algorithm is better, by

% %timing 10000*10000 at last.

% %with less error

% %(max error of X is 1.4595)

% if abs(RHSL(m,n,1)-
RHSI(m,n,1))<1000

%

DI(m,n,1)=DI(m,n,i)+RHSI(m,n,i);

% else

% DI(m,n,1)=DI(m,n,i);

% end

%

% %

Testbraket(m,n,1)=transpose(Eigenvectors(:,m,1))...

% %

% % *ZHb*Eigenvectors(:,k,i);
% % end

% % end

% else

% DI(m,n,i)=DI(m,n,i)...
% +0;

% end

% else

% % if abs(x(n,i)-x(k,i))>0.00001
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% % DI(m,n,1)=DIl(m,n,1)...
% % +0;
% % else

% DI(m,n,i)=DI(m,n,i)+0;

% % end

% end

% % end

% % end

% end

% end

% end

% end

%

% if n~=m

% if x(m,1)~=x(n,1)

% Y%test part
% %Try add a condition to skip those too small values
% %if (x(m,i)-x(n,i))>1e-23

%

% Y%test part

% if abs(x(m,1)-x(n,1))>0.00758

% % if abs(L(m,n,1))>0.05

% % if abs(L(m,n,1))<5

% % RHSv(m,n,i)= 2*(( 10000*1(m,n,i)/(10000*x(m,i)-
10000*x(n,1)) )...

% % *( 10000*conj(1(m,n,i)) /(10000*x(m,i)-
10000*x(n,1)) )...

% % /(10000*x(m,i)-10000*x(n,1)))*10000;
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% RHSv(m,n,i)=2*((m,n,i)/(10000%x(m,i)-10000*x(n,i)))...

% *(conj(1(m,n,1))/(10000*x(m,1)-
10000*x(n,1)))...
% /(10000*x(m,1)-

10000*x(n,1))*10000*10000*10000;

% % Test1(m,n,i)=( L(m,n,1)/(X(m,i)-X(n,i)) );

% % Test2(m,n,1)=( conj(L(m,n,1)) /(X(m,i)-X(n,i)) );
% % Test3(m,n,i)=(X(m,i)-X(n,1));

% %Test3(m,n,i)=

% %TestConj(m,n,i)=1(m,n,i)-conj(l(m,n,i));

% %TestAnticrossing(m,n,i)=X(m,1)-X(n,1);

% %TestSquare(m,n,i)=(X(m,1)-X(n,1))"2;

% %TestCube(m,n,1)=(X(m,1)-X(n,1))"3;

% if abs(RHSV(m,n,1)-RHSv(m,n,1))<1000

% Dv(m,1)=Dv(m,i)+RHSv(m,n,i);

% else

% Dv(m,1)=Dv(m,i);

% end

% % Dv(m,1)=Dv(m,i)...

% % +2*( 1(m,n,1)/(x(m,1)-x(n,1)) )...
% % *( conj(I(m,n,1)) /(x(m,1)-x(n,1)) )...
% % /(x(m,1)-x(n,1));

% %oelse

% %  Dv(m,i)=Dv(m,i);

% %end

% % end

% end

% % end
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% else

% Dv(m,1)=Dv(m,i);
% end

% 1(m,n,i+1)=1(m,n,1)+DI(m,n,i)*dt;
% %I(m,n,i+1)=L(m,n,i+1);
% else

% Dv(m,1)=Dv(m,i);

%

% end

% end

% v(m,i+1)=v(m,i)+Dv(m,1)*dt;

% %v(m,i+1)=V(m,i+1);

% x(m,i+1)=x(m,i)+v(m,1)*dt;

%

% end

% end

% 12.1 . Set errors for X, V, DV, L, RHSV, RHSL

% Gap=zeros(NOL,NOL,steps);
% for i=1:steps
% for m=1:NOL

% for n=1:NOL

% if n~=m

% Gap(m,n,i)=abs(X(m,i)-X(n,i));
% end

% end

% end
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% end
% MinimumGap |=min(Gap);
% MinimumGap2=min(MinimumGap1);

% MinimumGap3=min(MinimumGap2);

% ErrorX=zeros(NOL,steps);

% ErrorRelativeX=zeros(NOL,steps);
% ErrorV=zeros(NOL,steps);

% ErrorDV=zeros(NOL,steps);

% ErrorRHSV=zeros(NOL,NOL,steps);
% ErrorRHSL=zeros(NOL,NOL,steps);
% ErrorL=zeros(NOL,NOL,steps);

% % for i=1:steps

% % for m=1:NOL

% % ErrorX(m,i)=abs(X(m,i)-x(m,1));

% % if MinimumGap3~=0

% % ErrorRelativeX(m,i)=abs(ErrorX(m,1)/MinimumGap3);

% % %cannot use minimumgap for relative error, since it is 0 always.
% % end

% % end

% % end

%

% for i=1:steps
% for m=1:NOL

% ErrorX(m,i)=abs(X(m,i)-x(m,1));

% if X(m,i)~=0

% ErrorRelativeX(m,i)=abs(ErrorX(m,i)/X(m,1));

% %cannot use minimumgap for relative error, since it is 0 always.
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% end
% end

% end

% for i=1:steps

% for m=1:NOL

% ErrorV(m,i)=abs(V(m,i)-v(m,i));

% ErrorDV(m,1)=abs(DV(m,i)-Dv(m,1));
% end

% end

% for i=1:steps
% for m=1:NOL

% for n=1:NOL

% ErrorRHSV(m,n,1)=abs(RHSV(m,n,i1)-RHSv(m,n,1));
% ErrorRHSL(m,n,1)=abs(RHSL(m,n,1)-RHSI(m,n,1));
% ErrorL(m,n,1)=abs(L(m,n,i)-1(m,n,1));

% end

% end

% end

DirectDV=zeros(NOL,steps);
1=1:steps-2
m=1:NOL
DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt);

DirectDL=zeros(NOL,NOL,steps);
i=1:steps-2
m=1:NOL
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n=1:NOL
DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,1))/(2*dt);

%

% xRK4=zeros(NOL,steps);

% vRK4=zeros(NOL,steps);

% IRK4=zeros(NOL,NOL,steps);

%With Noise

[xRK4,vRK4,IRK4,time]=RK4withNoise(X(:,:),V(:,:),L(:,:,:),NOL,steps
,DirectDV,DirectDL,totaltime,Lambda,Dh,DotDh);

%Without Noise

[xRK4 1,vRK4 1,IRK4 1,time 1]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps

,DirectDV,DirectDL,totaltime,Lambda);

ErrorXRK4=zeros(NOL,steps);
1=1:steps
m=1:NOL
ErrorXRK4(m,1)=abs(X(m,1)-xRK4(m,1));

ErrorXRK4 1=zeros(NOL,steps);
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i=1:steps
m=1:NOL
ErrorXRK4 1(m,i)=abs(X(m,1)-xRK4 1(m,i));

% ErrorV=zeros(NOL,steps);
%
% for i=1:steps

% for m=1:NOL

% ErrorV(m,i)=abs(V(m,i)-vRK4(m,1));
%

% end

% end

Yo--- -- ---with noise

C=zeros(NOL,steps);
C(1,1)=1;
Probability=zeros(NOL,steps);

[C,Density]=occupationnumber(xRK4,IRK4,C(:,1),Lambda,NOL,steps,totaltime);

i=1:steps

m=1:NOL
Probability(m,1)=C(m,i)*conj(C(m,i));
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Sum=zeros(1,1);
i=1:steps
m=1:NOL
Sum(1,1)=Probability(m,i)+Sum(1,1);

A - ----without noise

Probability 1=zeros(NOL,steps);
C_l1=zeros(NOL,steps);
C_1(10,1)=1;
[C_1,Density 1]
=occupationnumber(xRK4 1,IRK4 1,C 1(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 1(m,i)=C_1(m,1)*conj(C_1(m,i));

Sum_1=zeros(1,1);
i=1:steps
m=1:NOL
Sum_1(1,i)=Probability 1(m,i)+Sum_1(1,i);

Yommmmmmmmm e compare probability with and without noise

DiffWithNoise=0;
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i=1:steps
m=1:NOL
DiffWithNoise=DiffWithNoise+abs(Probability(m,i)-Probability 1(m,i));

Y%figure

figure(1)

subplot(1,3,1)

plot(t,X)

% legend('1','2','3",'4','5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16",'17','18",'19",...
% '201,'21','22','23",'24','25''26','27','28",'29','30",'31','32")

axis([0 1 -4 10])

title('Direct levels without noise')

subplot(1,3,2)
plot(t,xRK4(:,:))

axis([0 1 -4 10])

title('levels with noise')

subplot(1,3,3)

plot(t,ErrorXRK4(:,:))

% axis([0 0.1 0 1])

x1im([0 0.95])

title('Error with noise')

% legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16",'17','18",'19',...
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% '20','21','22','23",'24','25','26','27','28','29','30",'31",'32")

% figure(2)

% subplot(1,3,1)

% plot(t,V)

% xlabel('t")

% ylabel('velocity")

% legend('V1','V2','V3''V4''V5''V6','VT7''V8")

% title({'Velocity of the evolution';'of energy levels(direct)'})
%

% subplot(1,3,2)

% plot(t,vRK4)

% xlabel('t")

% ylabel('velocity")

% legend('vl','v2','v3','v4','v5','v6','v7','v8")

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'})
% % axis([0 1-1.51.5])

%

% subplot(1,3,3)

% plot(t,ErrorV(4,:))

% legend('EV1','EV2''EV3"'EV4''EV5','EV6','EV7''/EVS")
% title('Error of Velocity')

% % axis([0 1 00.3])

% Sum1=0;
% Sum?2=0;
% Sum3=0;
% Sumd4=0;
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% Sum5=0;

% Sum6=0;

% for m=1:NOL

% Sum1=Sum1+C(m,1000)*conj(C(m,1000));
% Sum2=Sum?2+C(m,2000)*con;j(C(m,2000));
% Sum3=Sum3+C(m,3000)*conj(C(m,3000));

% Sum4=Sum4+C(m,4000)*conj(C(m,4000));

% Sum5=Sum5+C(m,5000)*conj(C(m,5000));
% Sum6=Sum6+C(m,6000)*conj(C(m,6000));
% end

figure(2)

subplot(1,3,1)

plot(t,X)

% legend(llI,V2V’|3I,V4V’|5I,V6|’V7V,I8I’V9V,l10!7!1 1!;12!7!13"!14!" 1 5')!16!; 1 7'5!181’11915“.
% 00',21',22',23',24',25'26',27',28','29',30",'31','32")
axis([0 1 -4 10])

title('Direct levels without noise')

subplot(1,3,2)
plot(t,xRK4 1)
% legend('1','2','3",'4','5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16','17','18",'19",...
% '20','21',22','23','24','25",'26','27','28','29','30','31','32")
axis([0 1 -4 10])

title('Levels without noise')

subplot(1,3,3)

plot(t,ErrorXRK4 1(:,:))

% axis([0 0.1 0 1])

x1im([0 0.95])
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title('error without noise")

figure(3)

subplot(1,4,1)
plot(t,Probability(:,:))

axis([0 1 0 1])
legend('1','2','3",'4",'5",'6",'7",'8")
title('Probabilty with noise')

% figure(4)

subplot(1,4,2)
plot(t,Sum);
axis([0 1 0 1])

title("total probability with noise")

subplot(1,4,3)
plot(t,Probability 1(:,:))
axis([0 1 0 1])
legend('1',2','3",'4",'5",'6",'7",'8")

title('Probabilty without noise')

subplot(1,4,4)
plot(t,Sum_1)
axis([0 10 1])

title('total probability without noise')
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% figure(4)

% subplot(1,2,1)
% plot(t,X)

%

% subplot(1,2,2)
% plot(t,Xnoise)

toc

Comparison of the probabilities of being at each energy level of

Five qubits system

clear

tic

%Five Spin New
t1=cputime;

% 1 .initial set up
totaltime=2*pi;

steps=4000;
dt=totaltime/steps;

% tt=linspace(0,totaltime,steps);
% t=cos(tt);
t=linspace(0,totaltime,steps);

Lambda=0.99*sin(0.1*t);

h=dt;
dLambda=diff(Lambda)/h;

numberofqubits=5;
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NOL=2"numberofqubits;

%Noise function

- - - _—

[Dh,DotDh]=Noisel(NOL,steps,totaltime);

Ly - R

% 2 . Pauli matrix and Identity matrix
Sigma x=[01; 1 0];

Sigma z=[1 0;0 -1];

I=[10;01];

% 3. Parameters

Ly - S

% Particular set

Deltal=0.9844;%0.5578
Delta2=0.8589;%0.3134
Delta3=0.7856;%0.1662
Deltad4=0.5134;%0.6225
Delta5=0.1776;%0.9879

h1=0.3986; %0.1704
h2=0.1339; %0.2578
h3=0.0309; %0.3968
h4=0.9391; %0.0740
h5=0.3013; %0.6841

J 12=0.2955;%0.4024
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J 13=0.3329;9%0.9828
J 14=0.4671;%0.4022
J 15=0.6482;%0.6207

J 23=0.0252;%0.1544
J 24=0.8422;%0.3813

J 25=0.5590;%0.1611

J 34=0.8541;%0.7581
J 35=0.3479;%0.8711

J 45=0.4460;%0.3508

Ly - -
% random set

% Deltal=rand(1);
% Delta2=rand(1);
% Delta3=rand(1);
% Deltad=rand(1);
% DeltaS=rand(1);
%

% hl=rand(1);

% h2=rand(1);

% h3=rand(1);

% h4=rand(1);

% h5=rand(1);

%

% J_12=rand(1);
% J_13=rand(1);
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% J 14=rand(1);
% J_15=rand(1);
%

% J_23=rand(1);
% J 24=rand(1);
% J_25=rand(1);
%

% J 34=rand(1);
% J 35=rand(1);
%

% J_45=rand(1);

% 4 . Define HO, Hf and ZHb

HO= Deltal *kron(kron(kron(kron(Sigma_x,I),I),I),I)
+Delta2*kron(kron(kron(kron(I,Sigma_x),I),I),I)
+Delta3*kron(kron(kron(kron(I,1),Sigma_x),I),I)
+Delta4*kron(kron(kron(kron(LI),I),Sigma_x),I)
+DeltaS*kron(kron(kron(kron(LI),I),I),Sigma x);

Hf = h1*kron(kron(kron(kron(Sigma_z,I),I),I),I)
+h2*kron(kron(kron(kron(I,Sigma_z),I),I),I)
+h3*kron(kron(kron(kron(L,1),Sigma z),I),I)
+h4*kron(kron(kron(kron(L,1),I),Sigma_z),I)
+h5*kron(kron(kron(kron(L,1),I),I),Sigma_z)
+J_12*kron(kron(kron(kron(Sigma_z,Sigma_z),I),I),I)
+J_13*kron(kron(kron(kron(Sigma_z,I),Sigma_z),1),1)
+J_14*kron(kron(kron(kron(Sigma_z,I),I),Sigma_z),I)
+J_15*kron(kron(kron(kron(Sigma_z,I),I),I),Sigma_z)
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+J 23*kron(kron(kron(kron(I,Sigma z),Sigma_z),I),I)
+J_24*kron(kron(kron(kron(I,Sigma z),I),Sigma_z),I)
+J 25*kron(kron(kron(kron(I,Sigma z),I),I),Sigma z)
+J_34*kron(kron(kron(kron(L,I),Sigma z),Sigma_z),I)
+J 35*kron(kron(kron(kron(I,I),Sigma_z),I),Sigma z)
+J_45*kron(kron(kron(kron(LI),I),Sigma z),Sigma_z);

ZHb= Hf-HO;
%ZHb with noise

% ZHbNoise()=Hf-HO-Dh/Lambda(i);

% 5 . Preallocations
Hlambda=zeros(NOL,NOL,steps);
Eigenvectors=zeros(NOL,NOL ,steps);
HD=zeros(NOL,NOL,steps);
%preallocation for case with noise

%___ _____ .

Hnoise=zeros(NOL,NOL,steps);
EigenvectorsNoise=zeros(NOL,NOL,steps);
HDNoise=zeros(NOL,NOL,steps);
Xnoise=zeros(NOL,steps);
Vnoise=zeros(NOL,steps);
Lnoise=zeros(NOL,NOL,steps);
A e

X=zeros(NOL,steps);
V=zeros(NOL,steps);
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L=zeros(NOL,NOL,steps);
x=zeros(NOL,steps);
v=zeros(NOL,steps);
I=zeros(NOL,NOL,steps);

% 6 . Define H(lambda)=HO0+ lambda*ZHb.
1= 1:steps

Hlambda(:,:,i)= HO+Lambda(i)*ZHb;

% 6.1 H(lambda)with noise = HO+lambda*ZHb+Dh
i=1:steps
Hnoise=Dh+HO0+Lambda(i) *ZHbNoise;
*ZHb;

% 7 . Get eigenvectors and eigenvalue matrix
i=1:steps
[Eigenvectors(:,:,1),HD(:,:,1)]=eig(Hlambda(:,:,1));

[EigenvectorsNoise(:,:,1),HDNoise(:,:,1)|=eig(Hnoise(:,:,1));

% 7.1 Eigenvectors and eigenvalue matrix with noise

% for i=1:steps
% [EigenvectorsNoise(:,:,1),HDNoise(:,:,1)]=eig(Hnoise(:,:,1));
% end

% 8 . get X(m,1).
i=1:steps
m=1:NOL
X(m,1)=HD(m,m,i);
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

% 8.1 X(m,1) with noise

m=1:NOL
i=1:steps

Xnoise(m,i)=HDNoise(m,m,i);

Y%attempt to solve the bug that sometimes it is opposite

for m=1:NOL
for i=1:steps
if Xnoise(m,1)>0

if Xnoise(m,1)<0

Xnoise(m,i)=abs(Xnoise(m,i));

end
end
if Xnoise(m,1)<0

if Xnoise(m,1)>0

Xnoise(m,i)=-abs(Xnoise(m,1))

end
end

if Xnoise(m,1)==0

Xnoise(m,1)=Xnoise(m,1)+0.001;

end
end

end
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% 9 . get V(m,1) and L(m,n,1)
i=1:steps
m=1:NOL

V(m,i)=transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,m,i);

i=1:steps
n=1:NOL
m=1:NOL
n~=m
L(m,n,i)=(X(m,i)-X(n,i))
*transpose(Eigenvectors(:,m,i))

*ZHb*Eigenvectors(:,n,i);

% 9.1 V(m,i) and L(m,n,i) with Noise
i=1:steps
m=1:NOL
Vnoise(m,i)= transpose(EigenvectorsNoise(:,m,1))
*7ZHb

*EigenvectorsNoise(:,m,i);

1=1:steps
n=1:NOL
m=1:NOL
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n~=m
Lnoise(m,n,i)=(Xnoise(m,i)-Xnoise(n,1))
*transpose(EigenvectorsNoise(:,m,1))

*ZHb*EigenvectorsNoise(:,n,i);

% 9.1. get DV(m,1) and DL(m,n,1)
% DV=zeros(NOL,steps);

% DL=zeros(NOL,NOL,steps);

% RHSV=zeros(NOL,NOL,steps);
% RHSL=zeros(NOL,NOL,steps);

% for i=1:steps
% for n=1:NOL

% for m=1:NOL

% if n~=m

% if abs(X(m,i)-X(n,i))>0.00758

% RHSV(m,n,i)=2*(( 10000*L(m,n,1)/(10000*X(m,i)-
10000*X(n,1)) )...

% *( 10000*conj(L(m,n,i)) /(10000*X(m,)...
% -10000*X(n,1)) )...

% /(10000*X(m,1)-10000*X(n,1)))*10000;

% DV(m,i)=DV(m,i)+ RHSV(m,n,i);

% end

% end
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%
%

% end

%

end

end

% for i=1:steps

% for m=1:NOL

% for n=1:NOL

% for k=1:NOL

% if n~=m

% if k~=n

% if k~=m

% if abs( X(k,1)-X(n,1) )>0.00758

% if abs( X(k,1)-X(m,i) )>0.00758

% RHSL(m,n,i)=( (10000*X(k,i)-
10000*X(n,1))...

% /(10000*X(m,1)-10000*X(k,1))...
% - (10000*X(m,)...

% -10000*X(k,1))/(10000*X(k,1)...
% -10000*X(n,1))) ...

% *transpose(Eigenvectors(:,m,1))...
%

% *ZHb*Eigenvectors(:,k,1)...

% *transpose(Eigenvectors(:,k,1))...
% *ZHb*Eigenvectors(:,n,i);

%

% DL(m,n,i)=DL(m,n,i)+RHSL(m,n,i);

% end

% end
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% end

% end

% end

% end

% end

% end

% end

% % 10 . Use Euler method to check directly obtained Xm and Vm.
% Xeuler= zeros(NOL,steps);

% for m=1:NOL

% Xeuler(m,1)=X(m,1);

% end

% for i=1:steps-1

% for m=1:NOL

% Xeuler(m,i+1)=Xeuler(m,i)+V(m,1)*dt;
% end

% end

% % 11 . Set initial xm, vm, Imn for i=1 for Pechukas method
% for m=1:NOL

% x(m,1)=X(m,1);

% v(m,1)=V(m,1);

%

% end

% Y%Testbraket=zeros(NOL,NOL,steps);

% for m=1:NOL

% for n=1:NOL

% if n~=m

% 1(m,n,1)= (x(m,1)-x(n,1))...
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%
%
%
%
%
%

% end

*transpose(Eigenvectors(:,m,1))...
*ZHb*Eigenvectors(:,n,1);
% Testbraket(m,n,1)= transpose(Eigenvectors(:,m,1))...
%*ZHb*Eigenvectors(:,n,1);
end

end

% 12 . Euler+Pechukas

Ly

% RHSI=zeros(NOL,NOL,steps);

% RHSv=zeros(NOL,NOL,steps);

% Dv=Derivativeofv(x,l,steps,NOL);

% DIl=Derivativeofl(x,l,steps,NOL);

Ly

% Dv=zeros(NOL,steps);

% Dl=zeros(NOL,NOL,steps);

% TestAnticrossing=zeros(NOL,NOL,steps);

% TestSquare=zeros(NOL,NOL,steps);

% TestCube=zeros(NOL,NOL,steps);

% % TestConj=zeros(NOL,NOL,steps);

% Testl=zeros(NOL,NOL,steps);

% Test2=zeros(NOL,NOL,steps);

% Test3=zeros(NOL,NOL,steps);
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% Testd=zeros(NOL,NOL,steps);

% for i=1:steps-1

%
%
%
%
%
%
%
% %
% %
%
%

% %

for m=1:NOL
for n=1:NOL

for k=1:NOL

if n~=m

if k~=n

10000*x(n,i))...

% %

10000%x(k,i))...

% %

% %

10000*x(k,i))/(10000%x(K,i)...

% %
%

if k~=m
if x(m,i)~=x(k,1)
if x(k,1)~=x(n,1)
if abs(x(m,1)-x(k,1))>0.00758
if abs(x(n,1)-x(k,1))>0.00758
RHSI(m,n,i)=( (10000*x(k,1)-

/(10000*x(m, )-

- (10000*x(m,1)...

-10000%*x(n,i)) )...
%

*transpose(Eigenvectors(:,m,1))...

% %
% %
%

*transpose(Eigenvectors(:,k,1))...

*ZHb*Eigenvectors(:,k,1)...
%

223



% %
%

*ZHb*Eigenvectors(:,n,i);

RHSI(m,n,i)=(1(m,k,i)/(10000%x(m,i)-10000*x(k,i)))...

%

10000*x(k,1)))...

%

%

%
10000*x(n,1)))*10000*10000;
%

%

%

%

%

RHSI(m,n,1))<1000

%
DI(m,n,i)=DI(m,n,i)+RHSI(m,n,i);
%

%

%

%

%

#(1(k,n,i)/(10000*x(m,i)-

*10000*10000....
*(1(k,n,i)/(10000*x(k,i)-

%This algorithm is better, by
%timing 10000*10000 at last.
%with less error
%(max error of X is 1.4595)

if abs(RHSL(m,n,i)-

else
DI(m,n,i)=DIl(m,n,1);

end

%

Testbraket(m,n,i)=transpose(Eigenvectors(:,m,1))...

% %
% %
% %
% %
%

*ZHb*Eigenvectors(:,k,1);
end
end

else
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%
%
%
%
% %
% %
% %
% %
%
% %
%
% %
% %
%
%
%
%
%
%
%
%
%
%
%
%
%
% %
% %

DI(m,n,1)=DI(m,n,i)...
+0;
end
else
if abs(x(n,1)-x(k,1))>0.00001
DIl(m,n,1)=DI(m,n,i)...
+0;
else
DI(m,n,i)=DI(m,n,1)+0;
end
end
end
end
end
end
end

end

if n~=m

if x(m,i)~=x(n,i)

%test part
%Try add a condition to skip those too small values

%if (x(m,1)-x(n,i))>1e-23

%otest part
if abs(x(m,1)-x(n,1))>0.00758
if abs(L(m,n,1))>0.05

if abs(L(m,n,1))<5
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% % RHSv(m,n,i)= 2*(( 10000*I(m,n,i)/(10000*x(m,i)-
10000*x(n,1)) )...

% % *( 10000*conj(1(m,n,i)) /(10000*x(m,i)-
10000*x(n,1)) )...

% % /(10000*x(m,1)-10000*x(n,1)))*10000;

% RHSv(m,n,1)=2*(1(m,n,i)/(10000*x(m,i)-10000*x(n,1)))...
% *(conj(1(m,n,1))/(10000*x(m,i)-
10000*x(n,1)))...

% /(10000*x(m,1i)-
10000*x(n,1))*10000*10000*10000;

% % Test1(m,n,1)=( L(m,n,1)/(X(m,1)-X(n,i)) );

% % Test2(m,n,i)=( conj(L(m,n,1)) /(X(m,1)-X(n,1)) );

% % Test3(m,n,1)=(X(m,1)-X(n,1));

% %Test3(m,n,i)=

% %TestConj(m,n,i)=I(m,n,i)-conj(l(m,n,i));

% %TestAnticrossing(m,n,i)=X(m,i)-X(n,1);

% %TestSquare(m,n,i)=(X(m,1)-X(n,1))"2;

% %TestCube(m,n,i)=(X(m,i)-X(n,i))"3;

% if abs(RHSV(m,n,1)-RHSv(m,n,1))<1000

% Dv(m,i)=Dv(m,i)*RHSv(m,n,i);

% else

% Dv(m,1)=Dv(m,i);

% end

% % Dv(m,1)=Dv(m,i)...

% % +2*( 1(m,n,1)/(x(m,1)-x(n,1)) )...

% % *( conj(1(m,n,1)) /(x(m,i)-x(n,i)) )...

% % /(x(m,1)-x(n,1));

% %else
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% % Dv(m,i)=Dv(m,i);

% %end

% % end

% end

% % end

% else

% Dv(m,1)=Dv(m,1);
% end

% 1(m,n,i+1)=l(m,n,i1)+DI(m,n,1)*dt;
% %I(m,n,i+1)=L(m,n,i+1);
% else

% Dv(m,1)=Dv(m,i);

%

% end

% end

% v(m,i+1)=v(m,i)+Dv(m,i)*dt;

% %v(m,i+1)=V(m,i+1);

% x(m,i+1)=x(m,i)+v(m,i)*dt;

%

% end

% end

% 12.1 . Set errors for X , V, DV, L, RHSV, RHSL

% Gap=zeros(NOL,NOL,steps);
% for i=1:steps

% for m=1:NOL

% for n=1:NOL
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% if n~=m

% Gap(m,n,i)=abs(X(m,i)-X(n,i));
% end

% end

% end

% end

% MinimumGap =min(Gap);

% MinimumGap2=min(MinimumGap1);

% MinimumGap3=min(MinimumGap2);

% ErrorX=zeros(NOL,steps);

% ErrorRelativeX=zeros(NOL,steps);
% ErrorV=zeros(NOL,steps);

% ErrorDV=zeros(NOL,steps);

% ErrorRHSV=zeros(NOL,NOL,steps);
% ErrorRHSL=zeros(NOL,NOL,steps);
% ErrorL=zeros(NOL,NOL,steps);

% % for i=1:steps

% % for m=1:NOL

% % ErrorX(m,i)=abs(X(m,i)-x(m,i));

% % if MinimumGap3~=0

% % ErrorRelativeX(m,i)=abs(ErrorX(m,i)/MinimumGap3);

% % %cannot use minimumgap for relative error, since it is 0 always.
% % end

% % end

% % end

%

% for i=1:steps
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

for m=1:NOL
ErrorX(m,i)=abs(X(m,i)-x(m,1));
if X(m,1)~=0
ErrorRelativeX(m,i)=abs(ErrorX(m,i)/X(m,i));
%cannot use minimumgap for relative error, since it is 0 always.
end
end
end
for i=1:steps

for m=1:NOL
ErrorV(m,i)=abs(V(m,i)-v(m,i));
ErrorDV(m,i)=abs(DV(m,i)-Dv(m,i));
end
end
for i=1:steps
for m=1:NOL
for n=1:NOL
ErrorRHSV(m,n,1)=abs(RHSV(m,n,1)-RHSv(m,n,1));
ErrorRHSL(m,n,i)=abs(RHSL(m,n,1)-RHSI(m,n,1));
ErrorL(m,n,1)=abs(L(m,n,1)-1(m,n,1));
end
end

end

DirectDV=zeros(NOL,steps);

i=1:steps-2
m=1:NOL
DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt);
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DirectDL=zeros(NOL,NOL,steps);
i=1:steps-2
m=1:NOL
n=1:NOL
DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,1))/(2*dt);

%

% xRK4=zeros(NOL,steps);

% vRK4=zeros(NOL,steps);

% IRK4=zeros(NOL,NOL,steps);

%With Noise

[xRK4,vRK4,IRK4,time]=RK4withNoise(X(:,:),V(:,:),L(:,:,:),NOL,steps
,DirectDV,DirectDL,totaltime,LLambda,Dh,DotDh);

%Without Noise

[xRK4 1,vRK4 1,IRK4 1,time 1]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps
,DirectDV,DirectDL,totaltime,Lambda);

ErrorXRK4=zeros(NOL,steps);
i=1:steps
m=1:NOL
ErrorXRK4(m,1)=abs(X(m,1)-xRK4(m,1));
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ErrorXRK4 1=zeros(NOL,steps);
i=1:steps
m=1:NOL
ErrorXRK4 1(m,i)=abs(X(m,1)-xRK4 1(m,i));

% ErrorV=zeros(NOL,steps);
%
% for i=1:steps

% for m=1:NOL

% ErrorV(m,i)=abs(V(m,i)-vRK4(m,1));
%

% end

% end

Yo--- -- ---with noise

C=zeros(NOL,steps);
C(1,1)=1;
Probability=zeros(NOL,steps);

[C,Density]=occupationnumber(xRK4,1IRK4,C(:,1),Lambda,NOL,steps,totaltime);

i=1:steps

m=1:NOL
Probability(m,1)=C(m,i)*conj(C(m,i));
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Sum=zeros(1,1);
i=1:steps
m=1:NOL
Sum(1,1)=Probability(m,i)+Sum(1,1);

B - ----without noise LVL1

Probability 1=zeros(NOL,steps);
C_l1=zeros(NOL,steps);
C_1(1,1)=1;
[C_1,Density 1]
=occupationnumber(xRK4 1,IRK4 1,C 1(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 1(m,1)=C_1(m,i)*conj(C_1(m,1));

Sum_1=zeros(1,1);
i=1:steps
m=1:NOL
Sum_1(1,i)=Probability 1(m,i)+Sum_1(1,i);
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Yommmmmmmmmmmmeam - ----without noise LVL2
Probability 2=zeros(NOL,steps);
C_2=zeros(NOL,steps);
C 2(2,1)=1;
[C_2,Density 2]
=occupationnumber(xRK4 1,IRK4 1,C 2(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 2(m,i)=C_2(m,i)*conj(C_2(m,i));

Sum_2=zeros(1,1);
i=1:steps
m=1:NOL
Sum_2(1,i)=Probability 2(m,i)+Sum_2(1,i);

B - ----without noise LVL3

Probability 3=zeros(NOL,steps);
C_3=zeros(NOL,steps);
C 3(3,1)=1;
[C_3.Density 3]
=occupationnumber(xRK4 1,IRK4 1,C 3(:,1),Lambda,NOL,steps,totaltime);
i=1:steps

m=1:NOL
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Probability 3(m,i)=C 3(m,i)*conj(C_3(m,i));

Sum_3=zeros(1,1);
i=1:steps
m=1:NOL
Sum_3(1,i)=Probability 3(m,i)+Sum_3(1,i);

B - ----without noise LVL4

Probability 4=zeros(NOL,steps);
C_4=zeros(NOL,steps);
C 44,1)=1;
[C_4,Density 4]
=occupationnumber(xRK4 1,IRK4 1,C 4(:,1),Lambda,NOL,steps,totaltime);
1=1:steps
m=1:NOL
Probability 4(m,1)=C_4(m,i1)*conj(C_4(m,1));

Sum_4=zeros(1,1);
i=1:steps
m=1:NOL
Sum_4(1,i)=Probability 4(m,i)+Sum_4(1,i);
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D - ----without noise LVL5

Probability 5=zeros(NOL,steps);
C_5=zeros(NOL,steps);
C 5(5,1)=1;
[C 5,Density 5]
=occupationnumber(xRK4 1,IRK4 1,C 5(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 5(m,1)=C_5(m,i)*conj(C_5(m,i));

Sum_5=zeros(1,1);
i=1:steps
m=1:NOL
Sum_5(1,1)=Probability 5(m,1)+Sum_5(1,1);

%o-=mmmmmm - - ----without noise LVL6
Probability 6=zeros(NOL,steps);
C_6=zeros(NOL,steps);
C _6(6,1)=1;
[C_6,Density 6]
=occupationnumber(xRK4 1,IRK4 1,C 6(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
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Probability 6(m,i)=C_6(m,i)*conj(C_6(m,i));

Sum_6=zeros(1,1);
i=1:steps
m=1:NOL
Sum_6(1,i)=Probability 6(m,i)+Sum_6(1,i);

Opmmmmmmmmmm e - ----without noise LVL7

Probability 7=zeros(NOL,steps);
C_T7=zeros(NOL,steps);
C 7(7,1)=1,;
[C_7,Density 7]
=occupationnumber(xRK4 1,IRK4 1,C 7(:,1),Lambda,NOL,steps,totaltime);
1=1:steps
m=1:NOL
Probability 7(m,1)=C_7(m,i)*conj(C_7(m,1));

Sum_7=zeros(1,1);
i=1:steps
m=1:NOL
Sum_7(1,i)=Probability 7(m,i)+Sum_7(1,i);
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B - ----without noise LVLS

Probability 8=zeros(NOL,steps);
C_8=zeros(NOL,steps);
C 8(8,1)=1;
[C 8,Density 8]
=occupationnumber(xRK4 1,IRK4 1,C 8(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 8(m,1)=C_8(m,i)*conj(C_8(m,i));

Sum_8=zeros(1,1);
i=1:steps
m=1:NOL
Sum_8(1,1)=Probability 8(m,1)+Sum_8(1,1);

b ——— - ----without noise LVL9

Probability 9=zeros(NOL,steps);
C_9=zeros(NOL,steps);
C 909,1)=1;
[C_9,Density 9]
=occupationnumber(xRK4 1,IRK4 1,C 9(:,1),Lambda,NOL,steps,totaltime);

i=1:steps
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m=1:NOL
Probability 9(m,1)=C 9(m,i)*conj(C_9(m,i));

Sum_9=zeros(1,1);
i=1:steps
m=1:NOL
Sum_9(1,i)=Probability 9(m,i)+Sum_9(1,i);

Opmmmmmmmmmm e - -——-without noise LVLI10

Probability 10=zeros(NOL,steps);
C_10=zeros(NOL,steps);
C _10(10,1)=1;
[C_10,Density 10]
=occupationnumber(xRK4 1,IRK4 1,C 10(:,1),Lambda,NOL,steps,totaltime);
1=1:steps
m=1:NOL
Probability 10(m,i)=C_10(m,i)*conj(C_10(m,1));

Sum_10=zeros(1,1);
i=1:steps
m=1:NOL
Sum_10(1,1)=Probability 10(m,1)+Sum_10(1,1);
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D - ----without noise LVL11

Probability 11=zeros(NOL,steps);
C_11=zeros(NOL,steps);
C_11(11,1)=1;
[C_11,Density 11]
=occupationnumber(xRK4 1,IRK4 1,C 11(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 11(m,1)=C_11(m,i)*conj(C_11(m,1));

Sum_11=zeros(1,1);
i=1:steps
m=1:NOL
Sum_11(1,1)=Probability 11(m,1)+Sum_11(1,1);

B - ----without noise LVL12

Probability 12=zeros(NOL,steps);
C_12=zeros(NOL,steps);
C 12(2,1)=1;
[C_12,Density 12]
=occupationnumber(xRK4 1,IRK4 1,C 12(:,1),Lambda,NOL,steps,totaltime);

i=1:steps
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m=1:NOL
Probability 12(m,i)=C 12(m,i)*conj(C_12(m,i));

Sum_12=zeros(1,1);
i=1:steps
m=1:NOL
Sum_12(1,1)=Probability 12(m,1)+Sum_12(1,1);

R - ----without noise LVLI13
Probability 13=zeros(NOL,steps);
C_13=zeros(NOL,steps);
C 13(13,1)=1;
[C_13,Density 13]
=occupationnumber(xRK4 1,IRK4 1,C 13(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 13(m,i)=C_13(m,i)*conj(C_13(m,1));

Sum_13=zeros(1,1);
i=1:steps
m=1:NOL
Sum_13(1,1)=Probability 13(m,1)+Sum_13(1,1);
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A - ----without noise LVL14

Probability 14=zeros(NOL,steps);
C_l4=zeros(NOL,steps);
C _14(14,1)=1;
[C_14,Density 14]
=occupationnumber(xRK4 1,IRK4 1,C 14(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 14(m,i)=C_14(m,i)*conj(C_14(m,i));

Sum_14=zeros(1,1);
i=1:steps
m=1:NOL
Sum_14(1,1)=Probability 14(m,1)+Sum_14(1,1);

b ——— - ----without noise LVL15

Probability 15=zeros(NOL,steps);
C_15=zeros(NOL,steps);
C_15(15,1)=1;
[C _15,Density 15]
=occupationnumber(xRK4 1,IRK4 1,C 15(:,1),Lambda,NOL,steps,totaltime);

i=1:steps
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m=1:NOL
Probability 15(m,1)=C _15(m,i)*conj(C_15(m,i));

Sum_15=zeros(1,1);
i=1:steps
m=1:NOL
Sum_15(1,1)=Probability 15(m,1)+Sum_15(1,1);

Opmmmmmmmmmm e - -——-without noise LVL16

Probability 16=zeros(NOL,steps);
C_16=zeros(NOL,steps);
C _16(16,1)=1;
[C_16,Density 16]
=occupationnumber(xRK4 1,IRK4 1,C 16(:,1),Lambda,NOL,steps,totaltime);
1=1:steps
m=1:NOL
Probability 16(m,i)=C_16(m,i)*conj(C_16(m,1));

Sum_16=zeros(1,1);
i=1:steps
m=1:NOL
Sum_16(1,1)=Probability 16(m,1)+Sum_16(1,1);
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Yommmmmmmmm - - ----without noise LVL17
Probability 17=zeros(NOL,steps);
C_17=zeros(NOL,steps);
C 17(17,1)=1;
[C_17,Density 17]
=occupationnumber(xRK4 1,IRK4 1,C 17(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 17(m,i)=C_17(m,i)*conj(C_17(m,i));

Sum_17=zeros(1,1);
i=1:steps
m=1:NOL
Sum_17(1,1)=Probability 17(m,1)+Sum_17(1,1);

e - ----without noise LVL18
Probability 18=zeros(NOL,steps);
C_18=zeros(NOL,steps);
C_18(18,1)=1;
[C 18,Density 18]
=occupationnumber(xRK4 1,IRK4 1,C 18(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 18(m,i1)=C_18(m,i)*conj(C_18(m,1));

243



Sum_18=zeros(1,1);
i=1:steps
m=1:NOL
Sum_18(1,1)=Probability 18(m,i)+Sum_18(1,1);

Opmmmmmmmmmm e - -——-without noise LVL19

Probability 19=zeros(NOL,steps);
C_19=zeros(NOL,steps);
C _19(19,1)=1;
[C_19,Density 19]
=occupationnumber(xRK4 1,IRK4 1,C 19(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 19(m,i)=C_19(m,i)*conj(C_19(m,1));

Sum_19=zeros(1,1);
i=1:steps
m=1:NOL
Sum_19(1,1)=Probability 19(m,1)+Sum_19(1,1);

e - ----without noise LVL20

244



Probability 20=zeros(NOL,steps);
C_20=zeros(NOL,steps);
C _20(20,1)=1;
[C_20,Density 20]
=occupationnumber(xRK4 1,IRK4 1,C 20(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 20(m,i)=C_20(m,i)*conj(C_20(m,1));

Sum_20=zeros(1,1);
i=1:steps
m=1:NOL
Sum_20(1,1)=Probability 20(m,1)+Sum_20(1,1);

B - ----without noise LVL21

Probability 21=zeros(NOL,steps);
C_21=zeros(NOL,steps);
C 21(21,1)=1;
[C_21,Density 21]
=occupationnumber(xRK4 1,IRK4 1,C 21(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 21(m,i)=C_21(m,i)*conj(C_21(m,1));
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Sum_21=zeros(1,1);
i=1:steps
m=1:NOL
Sum_21(1,1)=Probability 21(m,i)+Sum_21(1,1);

e - ----without noise LVL22
Probability 22=zeros(NOL,steps);
C_22=zeros(NOL,steps);
C 22(22,1)=1;
[C 22,Density 22]
=occupationnumber(xRK4 1,IRK4 1,C 22(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 22(m,i)=C_22(m,i)*conj(C_22(m,1));

Sum_22=zeros(1,1);
1=1:steps
m=1:NOL
Sum_22(1,1)=Probability 22(m,1)+Sum_22(1,1);

B - ----without noise LVL23

Probability 23=zeros(NOL,steps);
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C_23=zeros(NOL,steps);
C 23(23,1)=1;
[C_23,Density 23]
=occupationnumber(xRK4 1,IRK4 1,C 23(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 23(m,i)=C 23(m,i)*conj(C_23(m,i));

Sum_23=zeros(1,1);
i=1:steps
m=1:NOL
Sum_23(1,i)=Probability 23(m,i)+Sum_23(1,i);

Yommmmmmmmmmmmmm - ----without noise LVL24
Probability 24=zeros(NOL,steps);
C_24=zeros(NOL,steps);
C 24(24,1)=1,
[C_24,Density 24]
=occupationnumber(xRK4 1,IRK4 1,C 24(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 24(m,i)=C_24(m,i)*conj(C_24(m,1));
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Sum_24=zeros(1,1);
i=1:steps
m=1:NOL
Sum_24(1,1)=Probability 24(m,i)+Sum_24(1,1);

B - ----without noise LVL25

Probability 25=zeros(NOL,steps);
C_25=zeros(NOL,steps);
C 25(25,1)=1;
[C_25,Density 25]
=occupationnumber(xRK4 1,IRK4 1,C 25(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 25(m,i)=C_25(m,i)*conj(C_25(m,1));

Sum_25=zeros(1,1);
1=1:steps
m=1:NOL
Sum_25(1,i)=Probability 25(m,i)+Sum_25(1,i);

B - ----without noise LVL26

Probability 26=zeros(NOL,steps);
C_26=zeros(NOL,steps);
C 26(26,1)=1,
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[C_26,Density 26]
=occupationnumber(xRK4 1,IRK4 1,C 26(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 26(m,i)=C_26(m,i)*conj(C_26(m,i));

Sum_26=zeros(1,1);
i=1:steps
m=1:NOL
Sum_26(1,1)=Probability 26(m,i)+Sum_26(1,i);

B - ----without noise LVL27

Probability 27=zeros(NOL,steps);
C_27=zeros(NOL,steps);
C 27Q27,1)=1,
[C_27,Density 27]
=occupationnumber(xRK4 1,IRK4 1,C 27(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 27(m,i)=C_27(m,i)*conj(C_27(m,1));

Sum_27=zeros(1,1);
i=1:steps
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m=1:NOL
Sum_27(1,1)=Probability 27(m,i)+Sum_27(1,i);

D - ----without noise LVL28

Probability 28=zeros(NOL,steps);
C_28=zeros(NOL,steps);
C 28(28,1)=1;
[C 28,Density 28]
=occupationnumber(xRK4 1,IRK4 1,C 28(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 28(m,i)=C_28(m,i)*conj(C_28(m,1));

Sum_28=zeros(1,1);
1=1:steps
m=1:NOL
Sum_28(1,i)=Probability 28(m,i)+Sum_28(1,i);

B - ----without noise LVL29

Probability 29=zeros(NOL,steps);
C_29=zeros(NOL,steps);
C 29(29,1)=1;
[C_29,Density 29]
=occupationnumber(xRK4 1,IRK4 1,C 29(:,1),Lambda,NOL,steps,totaltime);
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i=1:steps
m=1:NOL
Probability 29(m,i)=C_29(m,i)*conj(C_29(m,i));

Sum_29=zeros(1,1);
i=1:steps
m=1:NOL
Sum_29(1,i)=Probability 29(m,i)+Sum_29(1,i);

Yommmmmmmmmmmmm - ----without noise LVL30
Probability 30=zeros(NOL,steps);
C_30=zeros(NOL,steps);
C 30(30,1)=1;
[C_30,Density_30]
=occupationnumber(xRK4 1,IRK4 1,C 30(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 30(m,i)=C_30(m,i)*conj(C_30(m,1));

Sum_30=zeros(1,1);
i=1:steps
m=1:NOL
Sum_30(1,1)=Probability 30(m,1)+Sum_30(1,1);
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D - ----without noise LVL31

Probability 31=zeros(NOL,steps);
C_31=zeros(NOL,steps);
C 31(31,1)=1;
[C_31,Density 31]
=occupationnumber(xRK4 1,IRK4 1,C 31(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
Probability 31(m,i)=C_31(m,i)*conj(C_31(m,1));

Sum_31=zeros(1,1);
i=1:steps
m=1:NOL
Sum_31(1,i)=Probability 31(m,i)+Sum_31(1,i);

%o-=mmmmmm - - ----without noise LVL32
Probability 32=zeros(NOL,steps);
C_32=zeros(NOL,steps);
C 32(32,1)=1;
[C_32,Density 32]
=occupationnumber(xRK4 1,IRK4 1,C 32(:,1),Lambda,NOL,steps,totaltime);
i=1:steps
m=1:NOL
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Probability 32(m,1)=C 32(m,1)*conj(C_32(m,i));

Sum_32=zeros(1,1);
i=1:steps
m=1:NOL
Sum_32(1,i)=Probability 32(m,i)+Sum_32(1,i);

Yo-mmmmmmm - compare probability with and without noise
DiffWithNoise=0;
i=1:steps
m=1:NOL
DiftWithNoise=DiffWithNoise+abs(Probability(m,i)-Probability 1(m,1));

%figure
%___ . e e e e e e e e e o e e e e e

% figure(1)

% subplot(1,3,1)

% plot(t,X)

% % legend('1','2",'3",'4",'5','6','7','8",'9",'10",'11",'12','13",'14",'15','16','17",'18",'19',...
% % '201,'21','22','23",'24','25''26','27','28",'29','30",'31','32")
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% axis([0 1 -4 10])

% title('Direct levels without noise')
%

% subplot(1,3,2)

% plot(t,xRK4(:,:))

%

% axis([0 1 -4 10])

% title('levels with noise")

%

% subplot(1,3,3)

% plot(t,ErrorXRK4(:,:))

% % axis([0 0.1 0 1])

% x1im([0 0.95])

% title('Error with noise')

% % legend('1','2','3','4','5','6','7",'8",'9",'10",'11",'12','13",'14','15",'16','17','18",'19,...
% % '20,'21','22','23",'24','25','26',27",'28",'29','30",'31",'32")

Ly

% figure(2)

% subplot(1,3,1)

% plot(t,V)

% xlabel('t")

% ylabel('velocity')

% legend('V1','V2','V3''V4''V5''V6','VT7','V8")

% title({'Velocity of the evolution';'of energy levels(direct)'})
%

% subplot(1,3,2)
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% plot(t,vRK4)

% xlabel('t")

% ylabel('velocity")

% legend('vl','v2','v3','v4','v5",'v6','v7','v8")

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'})
% % axis([0 1 -1.5 1.5])

%

% subplot(1,3,3)

% plot(t,ErrorV(4,:))

% legend('EV1','EV2','EV3''JEV4''EV5'EV6','EV7''EVS")
% title('Error of Velocity")

% % axis([0 1 0 0.3])

% Sum1=0;

% Sum?2=0;

% Sum3=0;

% Sum4=0;

% Sum5=0;

% Sum6=0;

% for m=1:NOL

% Sum1=Sum1+C(m,1000)*conj(C(m,1000));
% Sum2=Sum2+C(m,2000)*con;j(C(m,2000));
% Sum3=Sum3+C(m,3000)*conj(C(m,3000));

% Sum4=Sum4+C(m,4000)*conj(C(m,4000));
% Sum5=Sum5+C(m,5000)*conj(C(m,5000));
% Sum6=Sum6+C(m,6000)*conj(C(m,6000));
% end

Ly
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figure(2)

subplot(1,3,1)

plot(t,X)

legend('1',2','3",'4",)'5",'6",'7','8",'9",'10",'11','12",'13",'14",'15",'16",'17','18",'19',
'200,'21','22','23",'24','25",'26','27','28",'29','30",'31','32")

axis([0 1 -4 10])

title('Direct levels without noise')

subplot(1,3,2)

plot(t,xRK4 1)

legend('1',2','3','4','5",'6",'7",'8",'9",'10",'11",'12",'13",'14",'15",'16','17','18",'19',
'20,'21','22','23",'24",'25",'26','27','28",'29','30",'31','32")

axis([0 1 -4 10])

title('Levels without noise")

subplot(1,3,3)

plot(t,ErrorXRK4 1(:,:))

% axis([0 0.1 0 1])

xlim([0 0.99])

title('error without noise')

Ly -

% figure(3)

%

% subplot(1,4,1)

% plot(t,Probability(:,:))

% axis([0 1 0 1])

% legend('1','2','3','4",'5','6",'7",'8")
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% title('"Probabilty with noise')

% % figure(4)

%

% subplot(1,4,2)

% plot(t,Sum);

% axis([0 1 0 1])

% title('total probability with noise')

%

% subplot(1,4,3)

% plot(t,Probability 1(:,:))

% axis([0 1 0 1])

% legend('1','2','3','4",'5",'6",'7",'8")

% title('"Probabilty without noise')

%

% subplot(1,4,4)

% plot(t,Sum_1)

% axis([0 1 0 1])

% title('total probability without noise')
% %

figure(3)

subplot(1,8,1)

plot(t,Probability 1(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15',"16",'17','18','19",
20',21',22',23',24',25',26',27',28',29',30','31',32")

% x1im([0 1])

title('Start in LVL 1)

subplot(1,8,2)

257



plot(t,Probability 2(:,:))
legend('1',2','3",'4",'5",'6",'7','8",'9",'10",'11','12",'13",'14",'15",'16",'17','18",'19',
'200,'21','22','23",'24','25",'26','27','28",'29','30','31','32")

% xlim([0 1)

title('Start in LVL 2")

subplot(1,8,3)

plot(t,Probability 3(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15','16','17','18','19",
20,21','22','23',124','25','26','27',28",'29','30','31",'32")

% xlim([0 1)

title('Start in LVL 3")

subplot(1,8,4)

plot(t,Probability 4(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16','17','18",'19',
'200,'21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% xlim([0 1])

title('Start in LVL 4")

subplot(1,8,5)

plot(t,Probability 5(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15',"16",'17','18','19",
20',21',22',23',24',25',26',27',28',29',30','31',32")

% x1im([0 1])

title('Start in LVL 5")

subplot(1,8,6)
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plot(t,Probability 6(:,:))
legend('1',2','3",'4",'5",'6",'7','8",'9",'10",'11','12",'13",'14",'15",'16",'17','18",'19',
'200,'21','22','23",'24','25",'26','27','28",'29','30','31','32")

% xlim([0 1)

title('Start in LVL 6")

subplot(1,8,7)

plot(t,Probability 7(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15','16','17','18','19",
20,21','22','23',124','25','26','27',28",'29','30','31",'32")

% xlim([0 1)

title('Start in LVL 7')

subplot(1,8,8)

plot(t,Probability 8(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16','17','18",'19',
'200,'21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% xlim([0 1])

title('Start in LVL 8")

0/pmme —
figure(7)

subplot(1,8,1)

plot(t,Probability 9(:,:))

legend('1',2','3",4','5','6','7','8",'9',' 10", 11',12",'13','14','15','16',17','18','19",
'200,21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% x1im([0 1])

title('Start in LVL 9")
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subplot(1,8,2)

plot(t,Probability 10(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15",'16",'17','18','19",
20,21','22','23',124",'25','26','27',28",'29','30','31",'32")

% xlim([0 17])

title('Start in LVL 10")

subplot(1,8,3)

plot(t,Probability 11(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16','17','18",'19',
'200,'21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% xlim([0 1])

title('Start in LVL 11")

subplot(1,8,4)

plot(t,Probability 12(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15',"16",'17','18','19",
'20,'21','22',23",'24','25",'26','27','28",'29','30",'31','32")

% x1im([0 1])

title('Start in LVL 12)

subplot(1,8,5)

plot(t,Probability 13(:,:))
legend('1',2','3','4','5",'6",'7",'8",'9",'10",'11",'12','13","14",'15",'16','17','18",'19',
'200,21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% x1im([0 1])

title('Start in LVL 13")
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subplot(1,8,6)

plot(t,Probability 14(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15",'16",'17','18','19",
20,21','22','23',124",'25','26','27',28",'29','30','31",'32")

% xlim([0 1)

title('Start in LVL 14")

subplot(1,8,7)

plot(t,Probability 15(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16','17','18",'19',
'200,'21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% xlim([0 1])

title('Start in LVL 15")

subplot(1,8,8)

plot(t,Probability 16(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15',"16",'17','18','19",
201,21',22',23',24',25',26',27',28',29',30','31',32")

% x1im([0 1])

title('Start in LVL 16")

Ly -

figure(8)

subplot(1,8,1)

plot(t,Probability 17(:,:))
legend('1','2','3",'4",)'5",'6",'7','8",'9",'10",'11','12",'13",'14",'15",'16",'17','18",'19',
'20',21',22','23",'24''25','26','27','28','29','30','31','32")

% xlim([0 17])

title('Start in LVL 17")
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subplot(1,8,2)

plot(t,Probability 18(:,:))
legend('1',2','3",'4",)'5",'6",'7','8",'9",'10",'11','12",'13",'14",'15",'16",'17','18",'19',
'200,'21','22','23",'24',"25",'26','27','28",'29','30",'31','32")

% xlim([0 1)

title('Start in LVL 18")

subplot(1,8,3)

plot(t,Probability 19(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15','16','17','18','19",
20,21','22','23',124','25','26','27',28",'29','30','31",'32")

% xlim([0 1)

title('Start in LVL 19")

subplot(1,8,4)

plot(t,Probability 20(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15',"16','17','18','19",
'200,'21','22','23",'24',"25",'26','27','28",'29','30",'31','32")

% x1im([0 1])

title('Start in LVL 20")

subplot(1,8,5)

plot(t,Probability 21(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15',"16','17','18','19",
'20',21',22','23",'24''25','26','27','28','29','30','31','32")

% x1im([0 1])

title('Start in LVL 21")
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subplot(1,8,6)

plot(t,Probability 22(:,:))
legend('1',2','3",'4",)'5",'6",'7','8",'9",'10",'11','12",'13",'14",'15",'16",'17','18",'19',
'200,'21','22','23",'24',"25",'26','27','28",'29','30",'31','32")

% xlim([0 1)

title('Start in LVL 22")

subplot(1,8,7)

plot(t,Probability 23(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15','16','17','18','19",
'200,21','22','23",'24','25",'26','27','28",'29','30",'31','32")

% xlim([0 1)

title('Start in LVL 23")

subplot(1,8,8)

plot(t,Probability 24(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16','17','18",'19',
'200,'21','22','23",'24',"25",'26','27','28",'29','30",'31','32")

% xlim([0 1])

title('Start in LVL 24")

0/pmme —

figure(9)

subplot(1,8,1)

plot(t,Probability 25(:,:))
legend('1',2',3",'4',)5','6','7',8',/9",'10",'11,'12','13','14',15',16',17','18','19",
'200,'21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% x1im([0 1])
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title('Start in LVL 25"

subplot(1,8,2)

plot(t,Probability 26(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15",'16','17','18','19",
20,21','22','23',124",'25','26','27',28",'29','30','31",'32")

% xlim([0 17])

title('Start in LVL 26")

subplot(1,8,3)

plot(t,Probability 27(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16','17','18",'19',
'200,'21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% xlim([0 1])

title('Start in LVL 27")

subplot(1,8,4)

plot(t,Probability 28(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15',"16",'17','18','19",
201,21',22',23',24',25',26',27',28',29',30','31',32")

% x1im([0 1])

title('Start in LVL 28")

subplot(1,8,5)

plot(t,Probability 29(:,:))

legend('1',2',3',4,'5,6,'7,'8,/9,' 10,1112/, 13','14',15',16'17', 18,19,
'200,'21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% x1im([0 1])
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title('Start in LVL 29

subplot(1,8,6)

plot(t,Probability 30(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15",'16','17','18','19",
20,21','22','23',124",'25','26','27',28",'29','30','31",'32")

% xlim([0 17])

title('Start in LVL 30")

subplot(1,8,7)

plot(t,Probability 31(:,:))
legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16','17','18",'19',
'200,'21','22','23",'24',25",'26','27','28",'29','30",'31','32")

% xlim([0 1])

title('Start in LVL 31")

subplot(1,8,8)

plot(t,Probability 32(:,:))
legend('1',2','3",'4",'5",'6",'7','8','9",'10",'11",'12",'13",'14",'15',"16",'17','18','19",
'20,'21','22',23",'24','25",'26','27','28",'29','30",'31','32")

% x1im([0 1])

title('Start in LVL 32")

% figure(4)

% subplot(1,2,1)
% plot(t,X)

%

% subplot(1,2,2)
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% plot(t,Xnoise)

Toc

Power Spectral density of Expectation energy value of 2 qubits

system

% the only different here is pxx=pwelch(AverageX) instead of pxx=pwelch(Dispersion)

% note that the data set are saved in different files

% clear

% load (strcat('Direct4qubit_',num?2str(0.1*q),'cos(',num2str(0.1*w),'t).mat"));

%%
% tic
j=1.25:0.01:1.25
p=17.5:0.5:17.5

load(['D:\Dataset\Loopdatal\'

, TwoQubits_',;num2str(j),'cos(',num2str(p),'t).mat']);

% toc

%%

% tic

% randomX=0;
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% dt=0.001;
% dt=0.00003;44
% constant=3/1;

% Amplitude=0.5;

%%
% plan 1, fixed periodnumber but different steps number depending on

% frequency. Need to calculate Noise everytime.

% periodnumber=100;

% periodlength=2*pi/constant; %period length= 2*pi/constant
% stepsperperiod=round(periodlength/dt);

% steps=periodnumber*stepsperperiod;

%%

% plan 2, fixed steps number, but different period numbers depending on
% frequency. Can load Noise , save time.

% steps=100000;

% periodlength=2*pi/constant;

% periodnumber=round(steps*dt/periodlength);
% stepsperperiod=round(periodlength/dt);

%%

% periodnumber=PERIODNUMBER;

% periodlength=PERIODLENGTH;

% steps=STEPS;

% stepsperperiod=STEPSPERPERIOD;

%

% constant=CONSTANT;

267



% Amplitude=AMPLITUDE;
% randomX=RANDOMX;
% dt=DT;

%%

totaltime=dt*steps;

% t=linspace(0,totaltime,steps);
% t=cos(tt);

% Lambda=Amplitude*cos(constant*t);

numberofqubits=2;
NOL=2"numberofqubits;
% toc

%%

% tic
Cl=zeros(NOL,steps);
CI1(3,1)=1;

% C1(3,1)=sqrt(0.5);
% C1(2,1)=sqrt(0.5);

% for m=1:NOL

% C(m,1)=sqrt(1/NOL);
% end

Probability 1=zeros(NOL,steps);

% [C1,Density1]=occupationnumber(xRK4,IRK4,C1(:,1),Lambda,NOL,steps,totaltime);

[C1,Density1]=OccupationRenormalize(X,L,C1(:,1),Lambda,NOL,periodnumber,stepsperper
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iod,dt,randomX,steps);
%
[C1,Density1]=OccupationRenormalize(XTEST,LTEST,C1(:,1),Lambda,NOL,steps,dt,rando
mX);%input steps instead of period*stepsperperiod
%
[C1,Density1]=OccupationNumberNoRe(XTEST,LTEST,C1(:,1),Lambda,NOL,periodnumbe
r,stepsperperiod,dt);
%%
i=1:steps
m=1:NOL
Probability 1(m,i1)=C1(m,i)*conj(C1(m,1));

% Dt = diff(t);
% P_diff = diff(Probability1(1,:), 1, 2) ./ Dt;

Suml=zeros(1,1);
i=1:steps
m=1:NOL
Probability 1(m,i1)<Sum1(1,1)
Sum1(1,1)=Probability I (m,1)+Sum1(1,1);

Sum1(1,1)=Sum1(1,i)+Probability1(m,i);
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% toc
%%
AverageX=zeros(1,steps);
% AverageX is expectation energy <E>
i=1:steps
m=1:NOL
AverageX(1,1)=Probability1(m,1)*X(m,1)+AverageX(1,1);

Dispersion=zeros(1,steps);
i=1:steps
m=1:NOL
Dispersion(1,i)=Probability1(m,i)*((X(m,i)-AverageX(1,i))"2)

+Dispersion(1,1);

%%

% pxx=pwelch(Dispersion);

% pxx=pwelch(AverageX);

window=steps/4; %length of window, the longer the lower frequency it can revel

% window=steps/4 or window=steps*dt/4

fs=1000;

% fs=2*dt*steps; % the length of x-axis is half of fs

noverlap=50; %noverlap range: 35% to 50%. The higher the more accurate.

NFFT=steps; % sample points, maximum cannot exceed the total points each window
% the larger the more details it reveals.

[pxx,f]=pwelch(Average X ,window,noverlap,NFFT,fs);
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%%

% save(['D:\Dataset\data(pxx=AverageX)\'...

% ,Data2Qubits_(pxx=AverageX)',num2str(j),'cos(',num2str(p),'t).mat']...
% ,’C1','Densityl','Sum]1','AverageX','Dispersion’,'pxx','t'...
% ,’constant',' Amplitude','randomX",'dt");

%%

%... export graphs together in 1 figure
% set(0,'DefaultFigureVisible', 'on');
% figure(7)

%

% subplot(1,4,1)

% plot(t,AverageX)

% title("<E>")

% xlabel('time")

% % ylabel('<E>")

% % dim=[.27 .6 .3 .3];

% % strl1="Omega=";

% % str2=string(constant);

% % str=strcat(strl,str2);

% % annotation('textbox',dim,'String',str,'FitBoxToText','on");
% % xlim([0 997])

% % figure(8)

% % subplot(1,2,2)

% subplot(1,4,2)

% plot(t,Dispersion)
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% title("Dispersion")

% xlabel('time")

% % ylabel('Dispersion of <E>")

%

% % figure(9)

% subplot(1,4,3)

% % plot(pxx);

% % axis([0 1020 0 10])

% % title("PSD for <E>")

% % xlabel('Frequency")

% % ylabel('Intensity")

% plot(f,pxx);

% % axis([0 10 0 100])

% x1im([0 30])

% title("PSD for <E>")

% xlabel('Frequency")

% ylabel('Intensity")

% set(gca,'yscale','log")

%

% subplot(1,4,4)

% plot(t(1:steps-1),P_diff)

% legend;

% % exportgraphics(f,['D:\Dataset\plots\'...

% % 'Omega=",num2str(j),'cos(',num2str(p),'t).jpg']);
% % saveas(gcf,['D:\Dataset\OriginalPlots (PSD of E) \Compare\'...
% % 'Lambda=',num2str(j),'cos(',num2str(p),'t).fig'])
% exportgraphics(gcf,['D:\Dataset\Plots (PSD of E) \Compare\'...

% " num?2str(steps),'steps,Lambda=",num2str(j),'cos(',num2str(p),'t).jpg']);
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% close(gcf);
%%

% ... export each graph separately

% figure(1)

% plot(t,AverageX)

% title("<E>")

% xlabel('time")

% exportgraphics(gef,['D:\Dataset\Plots (PSD of E) \Compare\'...

% 'AverageX '.num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']);
% close(gcf)

% figure(2)

% plot(t,Dispersion)

% title("Dispersion")

% xlabel('time")

% exportgraphics(gef,['D:\Dataset\Plots (PSD of E) \Compare\'...

% 'Dispersion_',num2str(steps),'steps,Lambda=",num2str(j),'cos(',num2str(p),'t).jpg']);

% close(gcf)

figure(3)
plot(f,pxx);

xlim([0 30])
title("PSD for <E>")
xlabel('Frequency")
ylabel('Intensity")

set(gca,'yscale','log")
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% hold on

% y=10"-2;

% x = xlim;

% line(x, [y y], 'Color', 't', 'LineStyle', '--");
% hold off

%repeat test

exportgraphics(gcf,['D:\Dataset\Plots (PSD of E) \RepeatTest\PSD\'

'Number=',num2str(NUMBER),'PSD ' ,num2str(steps),'steps,Lambda=',num2str(j),'cos(',num

2str(p),'t).ipg');

%original save
% exportgraphics(gef,['D:\Dataset\Plots (PSD of E) \Mixture\'...
% 'PSD_'",num2str(steps),'steps,Lambda=",num2str(j),'cos(',num2str(p),'t).jpg']);

close(gcf)

% figure(4)

% plot(t(1:steps-1),P_diff)

% exportgraphics(gcf,['D:\Dataset\Plots (PSD of E) \Compare\'...

% 'P_diff ',num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']);
% close(gcft)

figure(5)
plot(t,Probability1(:,:));

legend('LV 1',/LV 2',LV 3LV 4");
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%repeat test

exportgraphics(gef,['D:\Dataset\Plots (PSD of E) \RepeatTest\Prob\'

‘Number=",num2str(NUMBER),'P_ground state ',num2str(steps),'steps,Lambda=',num2str(j)

,'cos(',num2str(p),'t).jpg']);

%original save

% exportgraphics(gef,['D:\Dataset\Plots (PSD of E) \Mixture\'...

%

'P_ground state '.num2str(steps),'steps,Lambda=',num2str(j),'cos(',num2str(p),'t).jpg']);

close(gcf)
% ...

%%
% ... print as PDF file

% figure(1)

% plot(t,AverageX)
% title("<E>")

% xlabel('time")

% print(gcf,'-dpdf',['D:\Dataset\Plots (PSD of E) \Compare\'...

% 'AverageX '.num2str(steps),'steps,Lambda=",num2str(j),'cos(',num2str(p),'t).pdf']);
%
% figure(2)

% plot(t,Dispersion)
% title("Dispersion")
% xlabel('time")

% print(gcf,'-dpdf',['D:\Dataset\Plots (PSD of E) \Compare)\'...
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% 'Dispersion_',num2str(steps),'steps,Lambda=",num2str(j),'cos(',num2str(p),'t).pdf']);
%

% figure(3)

% plot(f,pxx);

% xlim([0 30])

% title("PSD for <E>")

% xlabel('Frequency")

% ylabel('Intensity")

% set(gca,'yscale','log")

% print(gcf,'-dpdf',['D:\Dataset\Plots (PSD of E) \Compare)\'...

% 'PSD_',num2str(steps),'steps,Lambda=",num?2str(j),'cos(',num2str(p),'t).pdf']);
%
% figure(4)

% plot(t(1:steps-1),P_diff)
% print(gcf,'-dpdf',['D:\Dataset\Plots (PSD of E) \Compare)\'...
% 'P_diff ',num2str(steps),'steps,Lambda=",num2str(j),'cos(',num2str(p),'t).pdf']);

% ...

%%

% Integral A=0;

% for Number=1:150001

% Integral A=pxx(Number)*f(Number)+IntegralA;
% end
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beep

Maximum probability for the 4-qubit systems to fall in the ground

state during the evolution

clear

%Four Spin New

%Try get a multi qubits code

tic

%

%
%
%

j=50:50 Y%number of the levels, loop for A

tic

p=50:50 %loop for B
steps=4000;
totaltime=8*pi;

dt=totaltime/steps;

t=linspace(0,totaltime,steps);

Matrix_of Lambda=zeros(1,steps);

A=0.01%j;
B=0.01*p;

Matrix_of A(1,))=A;
Matrix_of B(1,p)=B;
Lambda=A*cos(B*t);
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Lambda=-0.1%t;

%%

% 1 .initial set up

% t=cos(tt);

numberofqubits=4;

NOL=2"numberofqubits;

% 2 .Pauli matrix and Identity matrix
Sigma x=[0 1; 1 0];

Sigma z=[10;0 -1];

I=[10;0 17;

0/pmme - - -
%Particular set
Deltal=0.4;
Delta2=0.1;
Delta3=0.2;
Deltad4=0.3;
h1=0.1;
h2=0.2;
h3=0.3;
h4=0.4;

J 12=0.7,

J 13=0.5;

J 14=0.3;
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J 23=0.6;
J 24=0.5;
J 34=0.8;
0/5--- - -

%random set

% Deltal=rand(1);
% Delta2=rand(1);
% Delta3=rand(1);
% Deltad=rand(1);
% hl=rand(1);

% h2=rand(1);

% h3=rand(1);

% h4=rand(1);

% J_12=rand(1);
% J _13=rand(1);
% J_14=rand(1);
% J 23=rand(1);
% J 24=rand(1);
% J 34=rand(1);

% 4 . Define HO, Hf and ZHb

% ZHD should be independent of Lambda

HO=Deltal *kron(kron(kron(Sigma_x,l),I),I)+Delta2*kron(kron(kron(I,Sigma_x),I),I)
+Delta3*kron(kron(kron(I,I),Sigma_x),I)+kron(kron(kron(I,I),I),Sigma_x);

Hf=h1*kron(kron(kron(Sigma_z,1),I),I)+h2*kron(kron(kron(I,Sigma z),I),I)
+h3*kron(kron(kron(I,I),Sigma_z),I)
+h4*kron(kron(kron(I,I),I),Sigma_z)
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+J_12*kron(kron(kron(Sigma z,Sigma_z),I),[)+J 13*kron(kron(kron(Sigma z,1),Sigma_z),I
)
+J_14*kron(kron(kron(Sigma_z,1I),I),Sigma z)
+J 23*kron(kron(kron(I,Sigma z),Sigma z),I)
+J_24*kron(kron(kron(I,Sigma_z),I),Sigma z)
+J 34*kron(kron(kron(I,I),Sigma z),Sigma z);
ZHb=Hf-HO0;

% 5 . Preallocation for variables
Hlambda=zeros(NOL,NOL,steps);
Eigenvectors=zeros(NOL,NOL ,steps);
HD=zeros(NOL,NOL,steps);

X=zeros(NOL,steps);
V=zeros(NOL,steps);
x=zeros(NOL,steps);
v=zeros(NOL,steps);
I=zeros(NOL,NOL,steps);
LSquare=zeros(NOL,NOL,steps);

%%
% 6 . Define H(lambda)=HO+lambda*ZHb.

tic
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i=1:steps

Hlambda(:,:,i)=HO+Lambda(i)*ZHb;

% 7 . Get eigenvectors and eigenvalue matrix
i=1:steps

[Eigenvectors(:,:,1),HD(:,:,1)]=eig(Hlambda(:,:,1));

% 8 . Get X(m,i)
i=1:steps
m=1:NOL
X(m,i)=HD(m,m,1);

% 9 . Get V(m,i) and L(m,n,i)
i=1:steps
m=1:NOL

V(m,i)=transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,m,i);

L=zeros(NOL,NOL,steps);
i=1:steps
m=1:NOL
n=1:NOL

n~=—m
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L(m,n,1)=(X(m,1)-X(n,1))
*transpose(Eigenvectors(:,m,i))

*7ZHb*Eigenvectors(:,n,i);

%how many avoided crossings occured?

DirectDV=zeros(NOL,steps);
i=1:steps-2
m=1:NOL
DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt);

DirectDL=zeros(NOL,NOL,steps);
1=1:steps-2
m=1:NOL
n=1:NOL
DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,i))/(2*dt);

% q=vpa(0.1%},3);
% w=vpa(0.1*p,3);
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%%

% save(['E:\matlab data\Direct4qubit\faster with fewer steps\'...

% ,Fast4qubitlpi_0.01 ';num?2str(0.01%)),'cos(',num2str(0.01*p),'t).mat']
% ,X','V','"NOL','steps','totaltime','Lambda’...

% ,'L','DirectDV','DirectDL','t".'}','p','A",'B");

%%

% filename=['C:\Users\phyx\OneDrive - Loughborough

University\MATLAB\Data\Routetest\']
% save(['C:\Users\phyx\OneDrive -  Loughborough

University\MATLAB\Data\Routetest\'...

% ,currentFile],'’X",'V','NOL','steps', totaltime','Lambda’...

% ,'L','DirectDV','DirectDL",'t","','p");
toc

%

save('directdatafourqubits.mat',’X','"V','NOL','steps', 'totaltime','Lambda’,'L','DirectDV',' Direct

DLu,vtv)

toc

%%

figure(1)
plot(t,X);
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% save directL1.dat AAA -ascii;
% save directL2.dat BBB -ascii;
% save directL.3.dat CCC -ascii;

toc
clear
g=1:10
w=1:10
%%
tic

% load directdatafourqubits.mat

load (strcat('Direct4qubit ',num2str(0.1*q), cos(',num2str(0.1*w),'t).mat"));
[xRK4,vRK4,IRK4,time]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps,DirectDV,DirectDL,totalti

me,Lambda,j,p);

toc
%%
tic
ErrorXRK4=zeros(NOL,steps);
i=1:steps
m=1:NOL
ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,1));
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toc

%%

tic

% save('PYsimulation.mat',’xRK4','VRK4''IRK4",'ErrorXRK4');
save(['E:\matlab data\PY4qubit\'
,PY4qubit '.num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat']
,XRK4''VRK4''IRK4','ErrorXRK4');

% save(['C:\Users\phyx\OneDrive - Loughborough University\MATLAB\Data\Routetest\'...
% ,'PY1.000000e-01sin(1.000000e-01t) directfourqubits.mat']...

% ,XRK4','vVRK4''IRK4','ErrorXRK4');

toc

%%

%%

tic

% load directdatafourqubits.mat;

% load PYsimulation.mat;

load (strcat('Direct4qubit ',num?2str(0.1*q),'cos(',num2str(0.1*w),'t).mat"));

load (strcat('PY4qubit ',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat'));
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toc

%%

tic
C=zeros(NOL,steps);
%initial distribution

C(r,1)=1;

Probability=zeros(NOL,steps);

[C,Density]=occupationnumber(xRK4,1IRK4,C(:,1),Lambda,NOL,steps,totaltime);

i=1:steps
m=1:NOL
Probability(m,i)=C(m,i)*conj(C(m,i));

toc

%%

tic

Sum=zeros(1,steps);

i=1:steps
m=1:NOL
Probability(m,i)<Sum(1,1)
Sum(1,1)=Probability(m,i)+Sum(1,1);

Sum(1,1)=Sum(1,1)+Probability(m,i);

286



toc
%%
tic
save(['E:\matlab data\Occupation\practice2b\'
,’Occupation4Start from LVL 'num2str(r),” ',num2str(0.1*q),'cos(',num2str(0.1*w),'t).
mat']
,'C','Density','Probability','Sum");

toc

clear
Y%practice2d should be practice2c
%%

=6:6

q=9:9

w=8:8

tic
% load directdatafourqubits.mat;
% load PYsimulation.mat;
% load C&Probability Start From LVL 1.mat;
% load 1.000000e-01sin(1.000000e-01t) directfourqubits.mat
% load PY1.000000e-01sin(1.000000e-01t) directfourqubits.mat
% load OC1.000000e-01sin(1.000000e-01t) directfourqubits.mat
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load (strcat('Direct4qubit ',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat'));

load (strcat('PY4qubit ',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat'));

load

(strcat('OccupationdStart from LVL 'num2str(r)," ',;num2str(0.1*q),'cos(',num2str(0.1*w),'t)

.mat'));

toc

%%

tic

Y%figure

figure(1)

subplot(1,3,1)

plot(t,X)

% legend('1','2','3",'4','5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16','17','18",'19",...
% '201,'21','22','23",'24','25','26','27','28",'29','30",'31','32")

% axis([0 1 -4 10])

subplot(1,3,2)

plot(t,xRK4(:,:))

% legend('1','2','3','4','5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16','17','18",'19",...
% '20','21',22','23','24','25",'26','27','28','29','30','31','32")

% axis([0 1 -4 10])

subplot(1,3,3)
plot(t,ErrorXRK4(:,:))
% axis([0 0.1 0 1])

% x1im([0 0.95])
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% legend('1','2','3",'4",'5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16",'17','18",'19",...
% '201,'21','22','23",'24','25''26','27','28",'29','30",'31','32")

f=gcf;

exportgraphics(f,['E:\matlab data\plot\practice2d\'
'figl from Ivl ",;num2str(r)," ',num2str(0.1*q),'cos(',num2str(0.1*w),'t).jpg'])
% figure(2)

% subplot(1,3,1)

% plot(t,V)

% xlabel('t")

% ylabel('velocity")

% legend('V1','V2','V3''V4''V5''V6','VT7','V8")

% title({'Velocity of the evolution';'of energy levels(direct)'})

%

% subplot(1,3,2)

% plot(t,vRK4)

% xlabel('t")

% ylabel('velocity')

% legend('vl','v2','v3','v4','v5','v6','v7','v8")

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'})
% % axis([0 1 -1.5 1.5])

%

% subplot(1,3,3)

% plot(t,ErrorV(4,:))

% legend('EV1','EV2''EV3"'EV4''EV5''EV6','EV7''EVS")

% title("Error of Velocity")

% % axis([0 1 0 0.3])

% Sum1=0;
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% Sum2=0;

% Sum3=0;

% Sum4=0;

% Sum5=0;

% Sum6=0;

% for m=1:NOL

% Sum1=Sum1+C(m,1000)*con;j(C(m,1000));
% Sum2=Sum2+C(m,2000)*conj(C(m,2000));
% Sum3=Sum3+C(m,3000)*conj(C(m,3000));

% Sum4=Sum4-+C(m,4000)*conj(C(m,4000));

% Sum5=Sum5+C(m,5000)*conj(C(m,5000));
% Sum6=Sum6-+C(m,6000)*conj(C(m,6000));
% end

figure(5)

plot(t,Probability(:,:))

% axis([0 1 0 1])

legend('1',2','3",'4",'5",'6",'7",'8",'9",'10",'11','12",'13",'14",'15",'16")
legend('Location','northeastoutside');

f=gcf;

exportgraphics(f,['E:\matlab data\plot\practice2d\'
'fig2 from Ivl ''num2str(r)," ',;num2str(0.1*q),'cos(',num2str(0.1*w),'t).jpg'])

figure(3)

plot(t,Sum);

% axis([0 1 0 1])

f=gcf;

exportgraphics(f,['E:\matlab data\plot\practice2d\'

'fig3 from Ivl ",;num2str(r),” ',num2str(0.1*q),'cos(',num2str(0.1*w),'t).jpg'])
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toc

% filename=['C:\Users\phyx\OneDrive - Loughborough

% 'Figl 4qubit ';num2str(0.1*q),'cos(',num2str(0.1*w),'t).bmp'];
% saveas()

% C:\Users\phyx\OneDrive - Loughborough University\MATLAB\Data\Routetest\practice2d

clear
%%loading
% load (strcat('Directdqubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat'));
% load (strcat('PY4qubit_'.num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat'));
% load (strcat('Occupation4qubit_',num2str(0.1*q),'cos(',num2str(0.1*w),'t).mat'));
%%
Array A=zeros(1,9);
Array B=zeros(1,9);
Matrix Z=zeros(9,9);
% forr=1:16

r=1:4

g=1:9

w=1:9

291



load (strcat('Direct4qubit ',num2str(0.1*q), cos(',num2str(0.1*w),'t).mat"));
Array_A(l,q)=j;

Array B(1,w)=p;

load

(strcat('Occupationd4Start from LVL 'num2str(r)," ',num2str(0.1*q),'cos(',num2str(0.1*w),'t)

.mat'));

Z=abs(Probability(r,1)-Probability(r,steps-3));
Matrix_7Z(q,w)=Z;

save(['E:\matlab data\practice2e\'
,Array A StartfromLVL '.num2str(r), .mat']
,Array A");
save(['E:\matlab data\practice2e\'
,Array B StartfromLVL 'num2str(r), . mat']
,'Array_B');
save(['E:\matlab data\practice2e\'
,Matrix 7 StartfromLVL '-num2str(r),".mat']

, Matrix_7");

% load Array A.mat;

% load Array B.mat;

% load Matrix_Z.mat;
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r=1:4
load (strcat('Array A StartfromLVL ',num2str(r),'.mat'));
load (strcat('Array B StartfromLVL '.num2str(r),'.mat'));

load (strcat('Matrix Z StartfromLVL 'num2str(r), . mat'));

Array Al=zeros(1,9);
Array Bl=zeros(1,9);
Matrix_Z1=zeros(9,9);
i=1:9
=19
Array_Al(1,j)=0.1*Array_A(1,j);
Array BI1(1,))=0.1*Array B(l,j);
Matrix_Z1(i,j)=Matrix_Z(i,j);

r<3
figure(9)
subplot(1,2,r)
surf(Array Al,Array B1,Matrix Z1);
view(0,90);
shading interp;
colorbar;
colormap('hsv");
xlabel("Amplitude');

ylabel('Frequency');
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title(strcat('The extent of escape from the initial level',num2str(r)," at time equals

8%pi"));

figure(10)

subplot(1,2,1-2)

surf(Array Al,Array B1,Matrix Z1);

view(0,90);

shading interp;

colorbar;

colormap(‘hsv");

xlabel("Amplitude');

ylabel('Frequency");

title(strcat('The extent of escape from the initial level' ,num2str(r)," at time equals

8%p1));

% axis equal;

% f=gcf;
% exportgraphics(f,...
% ['E:\matlab data\plot\practice2f\' 'Escape fig2 from Ivl "..

% ;Lnum?2str(r),” ',num?2str(0.1*q),'cos(',num2str(0.1*w),'t).jpg'])

% subplot(1,2,2)

% surf(Array A,Array B,Matrix_Z);
% view(0,90);

% shading interp;
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% colorbar;
% xlabel('A");
% ylabel('B");

Four qubits simulation through PY method

clear

%Four Spin New

%Try get a multi qubits code

tic

% 1 .initial set up

%if set labmda=t, make sure dt*steps=1.
steps=40000;

% totaltime=1;

totaltime=16%*pi;

dt=totaltime/steps;

t=linspace(0,totaltime,steps);
% t=cos(tt);
Lambda=0.9*cos(0.5*t);
numberofqubits=4;

NOL=2"numberofqubits;

% 2 .Pauli matrix and Identity matrix
Sigma x=[0 1; 1 0];

Sigma z=[10; 0 -1];

I=[10;0 17];

% 3 . Parameters, could be set to random numbers or function of time.
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% Delta=zeros(1,numberofqubits);
% h=zeros(1,numberofqubits);

% J=zeros(numberofqubits,numberofqubits);
% for i=1:numberofqubits

% Delta(i)=rand(1);

% h(i)=rand(1);

% for j=1:numberofqubits

% if j>i

% J(i,j)=rand(1);
% end

%

% end

% end

0/pmme -

%Particular set
Deltal=0.4;
Delta2=0.1;
Delta3=0.2;
Deltad4=0.3;
h1=0.1;
h2=0.2;
h3=0.3;
h4=0.4;

J 12=0.7;

J 13=0.5;

J 14=0.3;

J 23=0.6;

J 24=0.5;
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J 34=0.8;
0/fmme - ,

%random set

% Deltal=rand(1);
% Delta2=rand(1);
% Delta3=rand(1);
% Deltad=rand(1);
% hl=rand(1);

% h2=rand(1);

% h3=rand(1);

% h4=rand(1);

% J_12=rand(1);
% J _13=rand(1);
% J_14=rand(1);
% J 23=rand(1);
% J 24=rand(1);
% J 34=rand(1);

% 4 . Define HO, Hf and ZHb

% ZHD should be independent of Lambda

HO=Deltal *kron(kron(kron(Sigma_x,I),I),I)+Delta2*kron(kron(kron(I,Sigma_ x),I),I)
+Delta3*kron(kron(kron(L,I),Sigma_x),I)+kron(kron(kron(L,I),I),Sigma_x);

Hf=h1*kron(kron(kron(Sigma_z,1),I),I)+h2*kron(kron(kron(I,Sigma z),I),I)
+h3*kron(kron(kron(I,I),Sigma_z),I)
+h4*kron(kron(kron(I,I),I),Sigma_z)

+J _12*kron(kron(kron(Sigma z,Sigma_z),I),I)+J 13*kron(kron(kron(Sigma z,I),Sigma_z),I
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+J_14*kron(kron(kron(Sigma_z,1I),I),Sigma_z)
+J 23*kron(kron(kron(I,Sigma z),Sigma z),I)

+J_24*kron(kron(kron(I,Sigma_z),I),Sigma z)

+J 34*kron(kron(kron(I,I),Sigma z),Sigma z);
ZHb=Hf-HO0;

% 5 . Preallocation for variables
Hlambda=zeros(NOL,NOL,steps);
Eigenvectors=zeros(NOL,NOL ,steps);
HD=zeros(NOL,NOL,steps);

X=zeros(NOL,steps);
V=zeros(NOL,steps);
x=zeros(NOL,steps);
v=zeros(NOL,steps);
I=zeros(NOL,NOL,steps);
LSquare=zeros(NOL,NOL,steps);

% 6 . Define H(lambda)=HO+lambda*ZHb.
i=1:steps

Hlambda(:,:,i)=HO+Lambda(i)*ZHb;

% 7 . Get eigenvectors and eigenvalue matrix
i=1:steps

[Eigenvectors(:,:,1),HD(:,:,1)]=eig(Hlambda(:,:,1));
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% 8 . Get X(m,i)
i=1:steps
m=1:NOL
X(m,i)=HD(m,m,1);

% 9 . Get V(m,i) and L(m,n,1)
i=1:steps
m=1:NOL

V(m,i)=transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,m,i);

L=zeros(NOL,NOL,steps);
i=1:steps
m=1:NOL
n=1:NOL
n~=m
L(m,n,i)=(X(m,i)-X(n,1))
*transpose(Eigenvectors(:,m,i))

*ZHb*Eigenvectors(:,n,1);

% % 9.1. get DV(m,1) and DL(m,n,1)
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% DV=zeros(NOL,steps);

% DL=zeros(NOL,NOL,steps);

% RHSV=zeros(NOL,NOL,steps);

% RHSL=zeros(NOL,NOL,steps);

%

% for i=1:steps

% for n=1:NOL

% for m=1:NOL

% if n~=m

% if abs(X(m,1)-X(n,i))>0.00758

% RHSV(m,n,1)=2*(( 100000000*L(m,n,i)/(100000000*X(m,i)-
100000000*X(n,1)) )...

% *( 100000000*conj(L(m,n,i))
/(100000000*X (m,1)...

% -100000000*X(n,1)) )...

% /(100000000*X (m,i)-
100000000*X(n,1)))*100000000;

% % if abs(RHSV(m,n,1))<1000000000

% DV(m,i)=DV(m,i)+ RHSV(m,n,i);

% % end

% end

% end

% end

% end

% end

%

% for i=1:steps

% for m=1:NOL
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% for n=1:NOL

% for k=1:NOL

% if n~=m

% if k~=n

% if k~=m

% if abs( X(k,1)-X(n,i) )>0.00758

% if abs( X(k,i)-X(m,i) )>0.00758

% RHSL(m,n,i)=( (100000000*X(k,i)-
100000000*X(n,1))...

% /(100000000* X (m,i)-
100000000*X(k,1))...

% - (100000000* X (m,)...

% -
100000000*X(k,1))/(100000000*X (k,1)...

% -100000000*X(n,i)) )...

% *transpose(Eigenvectors(:,m,i))...
%

% *ZHb*Eigenvectors(:,k,1)...

% *transpose(Eigenvectors(:,k,1))...

% *ZHb*Eigenvectors(:,n,i);

%

% DL(m,n,i)=DL(m,n,i)+RHSL(m,n,i);

% end

% end

% end

% end

% end

% end
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% end
% end
% end

% % 10 . Use Euler method to check directly obtained Xm and Vm.
% Xeuler=zeros(NOL,steps);

% for m=1:NOL %can be written as m=1:2"numberofqubits
% Xeuler(m,1)=X(m,1);

% end

% for i=1:steps-1

% for m=1:NOL

% Xeuler(m,i+1)=Xeuler(m,i)+V(m,1)*dt;

% end

% end

%

% % 11 . Set initial xm, vm, Imn for i=1

% % for Pechukas method

% for m=1:NOL

% x(m,1)=X(m,1);

% v(m,1)=V(m,1);

% for n=1:NOL

% if n~=m

%
X(n,1))*transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,n,1);
% end

% end

% end

%
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% % 12 . Euler+Pechukas

% Dv=zeros(NOL,steps);

% Dl=zeros(NOL,NOL,steps);

% RHSI=zeros(NOL,NOL,steps);

% RHSv=zeros(NOL,NOL,steps);

% for i=1:steps-1

% for m=1:NOL

% for n=1:NOL

%

% for k=1:NOL

% if n~=m

% if k~=n

% if k~=m

% if abs(x(m,1)-x(k,1))>0.00758

% if abs(x(k,1)-x(n,i))>0.00758
% %DI(m,n,1)=DI(m,n,i)+1(m,k,1)*I1(k,n,1)*( 1/(
x(m,1)-x(k,1))"2 - 1/(x(k,i)-x(n,1))"2);

% Test1=(1(m,k,1)/(x(m,1)-x(k,1)));

% Test2=(1(k,n,1)/(x(m,1)-x(k,1)));

% Test3=(1(m,k,1)/(x(k,1)-x(n,1)));

% Testd=(1(k,n,1)/(x(k,1)-x(n,1)));

% RHSI(m,n,i)= (1(m,k,1)/(100000000*x(m,i)-
100000000*x(k,1)))...

% *(1(k,n,1)/(100000000*x(m,1)-
100000000*x(k,1)))...

% *100000000%100000000....

% -(1(m,k,1)/(100000000*x(k,1)-
100000000*x(n,1)))...
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% *(1(k,n,1)/(100000000*x (k,)-
100000000*x(n,i)))* 100000000* 100000000;

% if abs((RHSI(m,n,i)-RHSL(m,n,1)))<1000

% % if abs(RHSI(m,n,1))<1000

% DI(m,n,i)=DI(m,n,i)+RHSI(m,n,i);

% else

% DI(m,n,i)=DI(m,n,i);

% end

% else

% %DI(m,n,1)=DI(m,n,i)+1(m,k,1)*I1(k,n,1)*( 1/(

x(m,1)-x(k,1))"2 );

%
DI(m,n,i)=DI(m,n,i)+(1(m,k,i)/(100000000*x(m,1)-
100000000*x(k,1)))*(1(k,n,1)/(100000000*x(m,1)-
100000000*x(k,1)))*100000000*100000000;

% end

% else

% if abs(x(k,1)-x(n,i))>0.00758

% %DI(m,n,i)=DI(m,n,i)+1(m,k,i)*1(k,n,i)*( -

1/(x(k,1)-x(n,1))"2 );

% DI(m,n,i)=DI(m,n,i)-
(1(m,k,1)/(100000000*x(k,1)-100000000*x(n,1)))*(1(k,n,1)/(100000000*x(k,i)-
100000000*x(n,1)))*100000000*100000000;

% else

% Dl(m,n,1)=DI(m,n,i);
% end

% end

% end
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% end

% end

% end

%

% if n~=m

% if abs(x(m,1)-x(n,1))>0.00758

% %Dv(m,1)=Dv(m,i)+2*(1(m,n,i)*conj(l(m,n,i)))/((x(m,i)-
X(n,1))"3);

% %Dv(m,1)=Dv(m,1)+2*((1(m,n,1)/(x(m,1)-
x(1,0)))*(comj(1(mm,))/(x(m,)-x(m, )/ (x(m, i) x(n,);

% % Test5=(1(m,n,1)/(x(m,i)-x(n,1)));

% % Test6=(conj(1(m,n,1))/(x(m,1)-x(n,1)));

% % Test7=(x(m,1)-x(n,1));

% RHSv(m,n,1)=2*(1(m,n,i)/(100000000*x(m,i)-
100000000*x(n,1)))...

% *(conj(1(m,n,1))/(100000000*x(m,i)-
100000000*x(n,1)))...

% /(100000000*x(m,1)-
100000000*x(n,1))*100000000*100000000* 100000000;

% % A=RHSV(m,n,i);

% % B=RHSv(m,n,1);

%

% % if abs(RHSv(m,n,1))<1000

% if abs(RHSV(m,n,i)-RHSv(m,n,1))<1000
% Dv(m,1)=Dv(m,i)+RHSv(m,n,i);

% else

% Dv(m,1)=Dv(m,i);

% end
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% %LSquare(m,n,i1)=I(m,n,1)*conj(l(m,n,1));
% Y%XmminusXnCube=(x(m,i)-x(n,i))"3;
% %Dv(m,1)=Dv(m,1)+2*LSquare(m,n,i)/XmminusXnCube;
% else

% Dv(m,1)=Dv(m,1);

% end

% 1(m,n,i+1)=I(m,n,i)+DIl(m,n,i)*dt;

% else

% Dv(m,1)=Dv(m,i);

%

% end

% 1(m,n,i+1)=I(m,n,i)+DI(m,n,i)*dt;

% end

% v(m,i+1)=v(m,i)+Dv(m,i)*dt;

% x(m,i+1)=x(m,i)+v(m,i)*dt;

%

% end

% end

%

% ErrorX=zeros(NOL,steps);

% ErrorRelativeX=zeros(NOL,steps);

% for i=1:steps

% for m=1:NOL

% ErrorX(m,i)=abs(X(m,i)-x(m,i));

% if X(m,i)~=0

% ErrorRelativeX(m,i)=abs(ErrorX(m,1)/X(m,1));
% end

% end
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% end

% 13 .Plotting

% figure(1)

% subplot(1,3,1)

% plot(t,X)

% xlabel('t")

% ylabel("Energy levels')

% %legend('X1','X2','X3','X4")

% title('Energy levels(direct)')

% axis([0 1 -4 4])

%

% subplot(1,3,3)

% plot(t,Xeuler)

% xlabel('t")

% ylabel("Energy levels')

% %legend('Xel',"Xe2','Xe3','Xe4")
% title({'"Energy levels obtained';'by using Euler method';'with direct velocity'})
% axis([0 1 -4 4])

%

% subplot(1,3,2)

% plot(t,x)

% xlabel('t")

% ylabel('"Energy levels')

% %legend('x1','x2','x3",'x4")

% title({'"Energy levels obtained';'by using Pechkas formalism';'and Euler method'})
% axis([0 1 -4 4])

%
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% figure(2)

% subplot(1,2,1)

% plot(t,V)

% xlabel('t")

% ylabel('velocity")

% %legend('V1','V2','V3','V4')
% title({'Velocity of the evolution';'of energy levels(direct)'})
% axis([0 1 -6 6])

%

% subplot(1,2,2)

% plot(t,v)

% xlabel('t")

% ylabel('velocity')

% %legend('v1','v2','v3','v4")
% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'})
% axis([0 1 -6 6])

%

% figure(3)

%

% subplot(1,4,1)

% plot(t,DV)

% title('DV direct')

%

% subplot(1,4,2)

% plot(t,Dv)

% title('Dv Pechukas+Euler')
%

% subplot(1,4,3)
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% plot(t,ErrorX)

% title('Absolute Error of X')
%

% subplot(1,4,4)

% plot(t,ErrorRelativeX)

% title('Relative Error of X')
% axis([0 1 0 1])

%

% PartlofL=zeros(1,steps);
% for i=1:steps

% PartlofL(i1)=L(1,2,1);
% end

% figure(5)

% plot(t,PartlofL)

%how many avoided crossings occured?

DirectDV=zeros(NOL,steps);
i=1:steps-2
m=1:NOL
DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt);

DirectDL=zeros(NOL,NOL,steps);
1=1:steps-2
m=1:NOL
n=1:NOL
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DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,1))/(2*dt);

% xRK4=zeros(NOL,steps);

% vRK4=zeros(NOL,steps);

% IRK4=zeros(NOL,NOL,steps);
[xRK4,vRK4,IRK4,time]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps,DirectDV,DirectDL,totalti

me,Lambda);

ErrorXRK4=zeros(NOL,steps);
i=1:steps
m=1:NOL
ErrorXRK4(m,i)=abs(X(m,i)-xRK4(m,i));

% ErrorV=zeros(NOL,steps);

% for i=1:steps

% for m=1:NOL

% ErrorV(m,i)=abs(V(m,i)-vRK4(m,1));
%

% end

% end

% %figure
% figure(2)
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% subplot(1,4,1)

% plot(t,X)

% legend('1','2','3",'4",'5",'6",'7",'8",'9",'10",'11",'12','13",'14','15",'16")

%

%

%

%

% subplot(1,4,4)

% plot(t,ErrorXRK4(:,:))

% % legend('1','2",'3','4','5",'6",'7",'8",'9",'10",'11",'12",'13",'14','15",'16")
% % axis([0 1 0 1])

% xlim([0 0.95])

%

% subplot(1,4,2)

% plot(t,V(1,:))

% xlabel('t")

% ylabel('velocity')

% % legend('1','2",'3','4','5",'6",'7",'8",'9",'10",'11",'12",'13",'14','15",'16")
% title({'Velocity of the evolution';'of energy levels(direct)'})

% axis([0 1 -6 6])

%

% subplot(1,4,3)

% plot(t,DirectDV(1,:));

% % legend('1','2",'3','4','5",'6','7",'8",'9",'10",'11",'12",'13",'14','15",'16")
% % axis([0 1 -6 6])

%

%

% figure(3)
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%

% subplot(1,2,1)

% plot(t,X)

%

%

% subplot(1,2,2)

% plot(t,xRK4(:,:))

% % legend('1','2','3','4','5",'6",'7",'8",'9",'10",'11",'12','13",'14','15",'16','17','18",'19',...
% % '201,'21','22',23",'24','25''26','27','28",'29','30",'31','32")

% % axis([0 1 -4 5])

C=zeros(NOL,steps);
C(5,1)=1;

% for m=1:NOL

% C(m,1)=sqrt(1/NOL);
% end
Probability=zeros(NOL,steps);

[C,Density |=occupationnumber(xRK4,IRK4,C(:,1),Lambda,NOL,steps,totaltime);

1=1:steps

m=1:NOL
Probability(m,1)=C(m,1)*conj(C(m,1));

Sum=zeros(1,1);
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i=1:steps
m=1:NOL
Probability(m,i)<Sum(1,i)
Sum(1,1)=Probability(m,i)+Sum(1,1);

Sum(1,i)=Sum(1,i)+Probability(m,i);

Y%figure
figure(1)
subplot(1,3,1)
plot(t,X)

% legend('1','2','3','4','5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16','17','18",'19",...
% '20','21',22','23",'24','25",'26','27','28','29','30','31','32")
axis([0 1 -4 10])

subplot(1,3,2)
plot(t,xRK4(:,:))
% legend('1','2','3','4','5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16','17','18",'19",...
% '20','21',22','23','24','25",'26','27','28','29','30','31','32")
axis([0 1 -4 10])

subplot(1,3,3)
plot(t,ErrorXRK4(:,:))
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% axis([0 0.1 0 1])

xlim([0 0.95)

% legend('1',2,3,4,'5'/6',7.'8.'9'/10"'11,'12','13','14,'1516'/ 17, 18" 19',...
% o '20,21,22,23,24'25,26',27',28',29',30',31',32')

% figure(2)

% subplot(1,3,1)

% plot(t,V)

% xlabel('t")

% ylabel('velocity")

% legend('V1','V2','V3''V4''V5''V6','VT7','V8")

% title({'Velocity of the evolution';'of energy levels(direct)'})
%

% subplot(1,3,2)

% plot(t,vRK4)

% xlabel('t")

% ylabel('velocity')

% legend('vl','v2','v3','v4','v5','v6','v7','v8")

% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'})
% % axis([0 1 -1.5 1.5])

%

% subplot(1,3,3)

% plot(t,ErrorV(4,:))

% legend('EV1','EV2''EV3"'EV4''EV5''EV6','EV7''EVS")
% title("Error of Velocity")

% % axis([0 1 0 0.3])

% Sum1=0;
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% Sum2=0;

% Sum3=0;

% Sum4=0;

% Sum5=0;

% Sum6=0;

% for m=1:NOL

% Sum1=Sum1+C(m,1000)*con;j(C(m,1000));
% Sum2=Sum2+C(m,2000)*conj(C(m,2000));
% Sum3=Sum3+C(m,3000)*conj(C(m,3000));

% Sum4=Sum4-+C(m,4000)*conj(C(m,4000));

% Sum5=Sum5+C(m,5000)*conj(C(m,5000));
% Sum6=Sum6-+C(m,6000)*conj(C(m,6000));
% end

figure(2)

plot(t,Probability(:,:))

axis([0 1 0 1])
legend('1','2','3",'4",'5",'6",'7",'8")
figure(3)

plot(t,Sum);

% axis([0 10 1])

toc

toc
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Simulation of the level dynamics of 2-qubit systems through PY

method

%TwoSpinwithRK4

tic

% 1 .initial set up

%if set lambda=t, make sure dt*steps=1.
steps=640000;

% dt=256*pi/steps;

dt=pi/16000;

constant=1/16;

totaltime=dt*steps;
t=linspace(0,totaltime,steps);

Lambda=0.99*cos(constant*t);

numberofqubits=2;

NOL=2"numberofqubits;

% 2 .Pauli matrix and Identity matrix
Sigma x=[0 1;1 0];

Sigma z=[1 0;0 -1];

I=[10;0 17;

% 3 .Parameters,could be set to random numbers or function of time.
Deltal=0.4;

Delta2=0.5;

h1=0.7;

h2=0.2;
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J 12=0.6;

% 4 .Define HO, Hf and ZHb

% ZHD should be independent of lambda

HO=Deltal *kron(Sigma_x,I)+Delta2*kron(I,Sigma_x);
Hf=h1*kron(Sigma_z,I)+h2*kron(I,Sigma z)+J 12*kron(Sigma z,Sigma z);
ZHb=Hf-HO0;

% 5 .Preallocation for variables
Hlambda=zeros(NOL,NOL,steps);
Eigenvectors=zeros(NOL,NOL,steps);
HD=zeros(NOL,NOL,steps);

%eigenvaluecolumn=zeros(4,1,steps);

X=zeros(NOL,steps);
V=zeros(NOL,steps);
x=zeros(NOL,steps);
v=zeros(NOL,steps);
I=zeros(NOL,NOL,steps);

% 6 .Define H(lambda)=HO+lambda*ZHb.
1=1:steps

Hlambda(:,:,i)=HO+Lambda(i)*ZHb;

% 7 .Get eigenvectors and eigenvalue matrix
i=1:steps

[Eigenvectors(:,:,1),HD(:,:,1)]=eig(Hlambda(:,:,1));
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%eigenvaluecolumn(:,:,1)=eig(Hlambda(:,:,1));

% 8 .Get X(m,i)
i=1:steps
m=1:NOL
X(m,i)=HD(m,m,1);

% 9 .Get V(m,1) and L(m,n,1)
i=1:steps
m=1:NOL

V(m,i)=transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,m,i);

L=zeros(NOL,NOL,steps);
1=1:steps
m=1:NOL
n=1:NOL
n~=m
L(m,n,i)=(X(m,1)-X(n,1))
*transpose(Eigenvectors(:,m,i))

*ZHb*Eigenvectors(:,n,1);
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0/pmme
%DirectDV and DirectDL
DirectDV=zeros(NOL,steps);
i=1:steps-2
m=1:NOL
DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt);

DirectDL=zeros(NOL,NOL,steps);
i=1:steps-2
m=1:NOL
n=1:NOL
DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,1))/(2*dt);

0/pmme
[xRK4,vRK4,IRK4,time]=RK4test3(X(:,:),V(:,:),L(:,:,:),NOL,steps,DirectDV,DirectDL totalti

me,Lambda);

ErrorXRK4=zeros(NOL,steps);
i=1:steps
m=1:NOL
ErrorXRK4(m,i)=abs(X(m,i1)-xRK4(m,1));
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C=zeros(NOL,steps);

C@3,1)=1;

% for m=1:NOL

% C(m,1)=sqrt(1/NOL);

% end

Probability=zeros(NOL,steps);

% [C,Density]=occupationnumber(xRK4,IRK4,C(:,1),Lambda,NOL,steps,totaltime);

[C,Density |=occupationnumber(X,L,C(:,1),Lambda,NOL,steps,totaltime);

i=1:steps
m=1:NOL
Probability(m,1)=C(m,1)*conj(C(m,1));

Sum=zeros(1,1);
1=1:steps
m=1:NOL
Probability(m,i)<Sum(1,1)
Sum(1,1)=Probability(m,i)+Sum(1,1);

Sum(1,i)=Sum(1,i)+Probability(m,i);
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%figure
figure(1)
subplot(1,3,1)
plot(t,X)

% legend('1','2",'3".'4")'5"'6",'7','8",'9",'10",'11"','12",'13",'14",'15",'16",'17','18",'19,...
% '201,'21','22','23",'24','25''26','27','28",'29','30",'31','32")
% axis([0 1 -4 10])

subplot(1,3,2)
plot(t,xRK4(:,:))
% legend('1','2','3",'4','5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16','17','18",'19",...
% '201,'21','22',23",'24','25','26','27','28",'29','30",'31",'32")
% axis([0 1 -4 10])

subplot(1,3,3)
plot(t,ErrorXRK4(:,:))
% axis([0 0.1 0 1])
xlim([0 0.95])

figure(2)
subplot(1,2,1)
plot(t,Probability(:,:))
% axis([0 10 1])
legend('1',2','3",'4")
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subplot(1,2,2)
plot(t,Sum);

toc

Calculating Dispersion

% AverageX=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% AverageX(1,1)=Probability 1(m,1)*X(m,i)+AverageX(1,i);
% end

% end

% AverageXRK4=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% AverageXRK4(1,1)=Probability 1(m,1)*xRK4(m,1)+Average XRK4(1,1);
% end

% end

%

%

% ErrorExpectEnergy=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% ErrorExpectEnergy(1,i)=AverageX(1,1)-AverageXRK4(1,1);
%

% end

% end
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%

% AverageM=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% AverageM(1,1)=Probability 1(m,1)*m + AverageM(1,1);
% end

% end

%

%

% %Dispersion of Energy value
% Dispersion=zeros(1,steps);

% for i=1:steps

% for m=1:NOL

% Dispersion(1,i)=Probability 1(m,i)*((X(m,i)-AverageX(1,i))"2)...
% +Dispersion(1,1);

% end

% end

%

% % Dispersion of energy levels
% DispersionLVL=zeros(1,steps);
% for i=1:steps

% for m=1:NOL

% DispersionLVL(1,1)=Probability 1(m,1)*((m-AverageM(1,1))"2)...
% +DispersionLVL(1,1);

% end

% end
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AverageX=zeros(1,steps);
i=1:steps
m=1:NOL
AverageX(1,1)=Probability1(m,i)*X(m,i)+AverageX(1,1);

AverageXRK4=zeros(1,steps);
i=1:steps
m=1:NOL
AverageXRK4(1,i)=Probability1(m,i)*xRK4(m,i)+AverageXRK4(1,i);

AverageM=zeros(1,steps);
i=1:steps
m=1:NOL
AverageM(1,1)=Probability 1(m,1)*m + AverageM(1,1);

%Dispersion of Energy value
Dispersion=zeros(1,steps);
i=1:steps
m=1:NOL
Dispersion(1,i)=Probability1(m,i)*((xRK4(m,1)-AverageX(1,i))"2)

+Dispersion(1,1);
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% Dispersion of energy levels
DispersionLVL=zeros(1,steps);
i=1:steps
m=1:NOL
DispersionLVL(1,1)=Probability 1(m,i)*((m-AverageM(1,1))"2)
+DispersionLVL(1,1);

figure(7)

subplot(1,2,1)

plot(t,AverageX)
title("Expectation Energy direct")

% x1im([0 99])

subplot(1,2,2)
plot(t,AverageXRK4)
title("Expectation Energy simulated")

% xlim([0 99])

% figure(8)
% plot(t,ErrorExpectEnergy)

% title("Error of Expectation of energy")
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% xlim([0 99])

% subplot(1,4,1)

% plot(t,AverageX)

% title("Expectation Energy")
% x1im([0 99])

% subplot(1,4,2)
% plot(t,Dispersion)
% title("Dispersion")

% x1lim([0 99])

% subplot(1,4,3)

% plot(t,AverageM)

% title("Average LVL")
% x1im([0 99])

%

%

% subplot(1,4,4)

% plot(t,DispersionLVL)
% title("DispersionLVL")
% x1im([0 99])

PY method with Runge-Kutta 4™ order method

[xRK4,vRK4,IRK4,time]=RK4test3(inputx,inputv,inputl,inputNOL
,Jnputsteps,inputDirectDV,inputDirectDL,inputtotaltime,inputLambda)

tl=cputime;
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totaltime=inputtotaltime;
steps=inputsteps;
NOL=inputNOL;

Lambda=inputLambda;%Lambda=zeros(1,steps);

t=linspace(0,totaltime,2*steps);
constant=0.5;
Lambdal=0.9*cos(constant*t);
dt=totaltime/(2*steps);

h=dt;
DLambda=diff(Lambdal)/h;
dLambda=DLambda*dt;

%here dt actually is dlambda

count=1;

threshold=1e-3;

DirectDV=inputDirectDV;
DirectDL=inputDirectDL;
%preallocation

%2*steps

Ex=zeros(NOL,2*steps);

RHSv=zeros(NOL,NOL,2*steps);
Dv=zeros(NOL,2*steps);
RHSI=zeros(NOL,NOL,NOL,2*steps);
DI=zeros(NOL,NOL,2*steps);
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El=zeros(NOL,NOL,2*steps);

IRHSv=zeros(NOL,NOL,2*steps);
IDv=zeros(NOL,2*steps);
Iv=zeros(NOL,NOL,2*steps);
Ix=zeros(NOL,2*steps);
IRHSI=zeros(NOL,NOL,NOL,2*steps);
IDIl=zeros(NOL,NOL,2*steps);
[I=zeros(NOL,NOL,2*steps);

IIRHSv=zeros(NOL,NOL,2*steps);
[IDv=zeros(NOL,2*steps);
[Iv=zeros(NOL,2*steps);
[Ix=zeros(NOL,2*steps);
[IRHSI=zeros(NOL,NOL,NOL,2*steps);
[IDI=zeros(NOL,NOL,2*steps);
[Ml=zeros(NOL,NOL,2*steps);

IMMRHSv=zeros(NOL,NOL,2*steps);
[IIDv=zeros(NOL,2*steps);
[MIv=zeros(NOL,2*steps);
IIIRHSI=zeros(NOL,NOL,NOL,2*steps);
[IIDIl=zeros(NOL,NOL,2*steps);

x=zeros(NOL,2*steps);
v=zeros(NOL,2*steps);
I=zeros(NOL,NOL,2*steps);

Y%steps

328



xRK4=zeros(NOL,steps);
vRK4=zeros(NOL,steps);
IRK4=zeros(NOL,NOL,steps);
%input every x(m,1),v(m,1),I(m,n,1) and NOL,steps.
1=1:3
m=1:NOL
x(m,1)=inputx(m,i);
v(m,i)=inputv(m,i);
n=1:NOL

1(m,n,i)=inputl(m,n,i);

1=3:2%(steps-1)

% 1.72777dt?777?

mod(count,2)==

% Dv(m,1)
m=1:NOL
n=1:NOL
n~=m
abs(x(m,1)-x(n,1))>threshold
RHSv(m,n,1)=2*(( 1(m,n,1)/(1e1*x(m,i)-1el1*x(n,1)) )*1el)
*(( conj(l(m,n,1))/(1el *x(m,1)-1el*x(n,1)) )*1el)
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%

%
%
%
%
%
%
%
%

%
%
%
%
%

/(1el*x(m,i)-lel*x(n,1))*1el;
abs(RHSv(m,n,1))<abs(Dv(m,1))
Dv(m,i)=RHSv(m,n,i)+Dv(m,i);

Dv(m,i)=Dv(m,1)+RHSv(m,n,1);

if i>1

Dv(m,i)=DirectDV(m,(i+1)/2);

else
if i==1
Dv(m,i1)=Dv(m,1)+RHSv(m,n,1);
end
end
if i>2

RHSv(m,n,1)=0;

end

%if abs(RHSv(m,n,1))<5000
if abs(RHSv(m,n,1))<abs(Dv(m,1))
Dv(m,i)=RHSv(m,n,i)+Dv(m,i);
else
Dv(m,i)=Dv(m,i)+RHSv(m,n,i);
end

%end
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% DIl(m,n,i)
m=1:NOL  %DI?m,n,i? ?? x(m,i)?1(m,n,i)
n=1:NOL %??DI(m,n,i+2)? ??7x(m,i+2)?1(m,n,i+2)???77??
k=1:NOL
k~=n && k~=m && n~=m
abs(x(m,i)-x(k,1))>threshold &&
abs(x(k,1)-x(n,1))>threshold

RHSI(m,n,k,1)=((( I(m,k,1)/(1e1*x(m,i)-
lel*x(k,i))*1el)
*1(k,n,1)/(1el*x(m,1)-
lel*x(k,i)) )*1el)
-(( 1(m,k,1)/(1e1*x(k,1)-
lel*x(n,i))*1el)
*1(k,n,1)/(1el*x(k,1)-
lel*x(n,i)) )*1el;
% if abs(RHSI(m,n,k,1))<5000
abs(Dl(m,n,i))<abs(RHSI(m,n k1))
DI(m,n,i)=DI(m,n,i1)*RHSI(m,n,k,1);
% end
DI(m,n,1)=RHSI(m,n,k,i)+DI(m,n,1);
% if i>2
DI(m,n,i)=DirectDL(m,n,(i+1)/2);
% else
% if i==
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% DI(m,n,1)=RHSI(m,n,k,i)+DI(m,n,1);

% end

% end

% if abs(x(m,i)-x(k,1))>threshold

% RHSI(m,n,k,1)=(( 1(m,k,1)/(1e1*x(m,i)-1el*x(k,i))*lel)...

% *1(k,n,1)/(1el*x(m,i)-
lel*x(k,i)) )*1el;

% else

% if i>2

% RHSI(m,n,k,1)=0;

% end

% end

% if abs(x(k,1)-x(n,1))>threshold

% RHSI(m,n,k,1)=-(( 1(m,k,i)/(1e1*x(k,i)-1e1*x(n,i))*1el)...

% *1(k,n,1)/(1el*x(k,i)-
lel*x(n,i)) )*1el;

% else

% if i>2

% RHSI(m,n,k,1)=0;

% end

% end
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% 2-1 Ex(m,i+1)

m=1:NOL

abs(x(m,1))<abs(v(m,1)*dLambda(1,1))

Ex(m,i+1)=v(m,i)*dLambda(1,1)+x(m,i);

% 2-2 El(m,n,i+1)

m=1:NOL
n=1:NOL
n~=m
abs(I(m,n,1))<abs(Dl(m,n,i)*dLambda(1,1))
El(m,n,i+1)=I(m,n,1)+DI(m,n,i)*dLambda(1,1);
El(m,n,i+1)=DI(m,n,1)*dLambda(1,i1)+1(m,n,1);
% 2-1&2-1 IDv(m,i+1)
m=1:NOL
n=1:NOL
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n~=m

abs(Ex(m,i+1)-Ex(n,i+1))>threshold

IRHSV(m,n,i+1)= « (2*El(m,n,i+1)/(1e1 *Ex(m,i+1)-

lel*Ex(n,i+1))*lel)

*(conj(El(m,n,i+1))/(1e1*Ex(m,i+1)-

lel*Ex(n,i+1)))*1el)

%
%
%

%
%
%
%
%

/(1e1*Ex(m,i+1)-1e1*Ex(n,i+1)) )*1el;
% if abs(IRHSv(m,n,i+1))<5000
abs(IDv(m,i+1))<abs(IRHSv(m,n,i+1))
IDv(m,i+1)=IDv(m,i+1)+IRHSv(m,n,i+1);

IDv(m,i+1)=IRHSv(m,n,i+1)+IDv(m,i+1);

% end

IDv(m,i+1)=1/2*(DirectDV (m,(i+1)/2)+DirectDV(m,((i+1)+2)/2));
if i>1
IRHSv(m,n,i+1)=0;

end

% if abs(IRHSv(m,n,i+1))<5000
if abs(IDv(m,i+1))<abs(IRHSv(m,n,i+1))
IDv(m,i+1)=IDv(m,i+1)+IRHSv(m,n,i+1);
else
IDv(m,i+1)=IRHSv(m,n,i+1)+IDv(m,i+1);
end

% end
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% 2-1&2-11  Iv(m,i+1)
m=1:NOL
abs(v(m,i))<abs(IDv(m,i+1)*dLambda(1,1))
% Iv(m,i+1)=v(m,1)+1/2*(IDv(m,i+1)+Dv(m,i))*dt;
Iv(m,i+1)=v(m,i)+IDv(m,i+1)*dLambda(1,i);

Iv(m,i+1)=IDv(m,i+1)*dLambda(1,1) +v(m,i);
% Iv(m,i+1)=1/2*(IDv(m,i+1)+Dv(m,i))*dt+v(m,i);

% 2-1&2-111  Ix(m,i+1)
m=1:NOL
abs(x(m,1))<abs(Iv(m,i+1)*dLambda(1,1))
Ix(m,i+1)=x(m,1)+Iv(m,i+1)*dLambda(1,1);

Ix(m,i+1)=Iv(m,i+1)*dLambda(1,1)+x(m,i);

% 2-1&2-2 IDI(m,n,i+1)
m=1:NOL
n=1:NOL
k=1:NOL
m~=n&&k~=m&&k~=n
abs(Ex(m,i+1)-Ex(k,i+1))>threshold
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&& abs(Ex(k,i+1)-Ex(n,i+1))>threshold

IRHSI(m,n,k,i+1)=( (« El(m,k,i+1)/(1e1*Ex(m,i+1)-

lel*Ex(k,i+1))*lel)

lel*Ex(k,i+1)) )*1lel)

lel*Ex(n,i+1))*1el)

lel*Ex(n,i+1)))*1lel;

abs(IRHSI(m,n,k,i+1))<5000

%end

*Bl(k,n,i+1)/(1e] *Ex(m,i+1)-

< (El(m,k,i+1)/(1e]*Ex(k,i+1)-

*Bl(k,n,i+1)/(1e] *Ex(k,i+1)-

% if

abs(IDI(m,n,i+1))<abs(IRHSI(m,n,k,i+1))
IDI(m,n,i+1)=IDI(m,n,i+1)+IRHSI(m,n,k,i+1);

IDI(m,n,i+1)=IRHSI(m,n,k,i+1)+IDIl(m,n,i+1);

IDI(m,n,i+1)=1/2*(DirectDL(m,n,(i+1)/2)+DirectDL(m,n,((i+1)+2)/2));

%
%
lel*Ex(k,i+1))*1lel)...
%
lel*Ex(k,i+1)) )*lel;
%
%

if(abs(Ex(m,i+1)-Ex(k,i+1)))>threshold
IRHSI(m,n,k,i+1)=( (El(m,k,i+1)/(1e1*Ex(m,i+1)-

*El(k,n,i+1)/(1e ] *Ex(m,i+1)-

else

if i>1
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% IRHSI(m,n,k,i+1)=0;

% end

% end

% if(abs(Ex(k,i+1)-Ex(n,i+1)))>threshold

% IRHSI(m,nk,i+1)= -( (El(m.k,i+1)/(1e1*Ex(k,i+1)-
lel*Ex(n,i+1))*1el)...

% *El(k,n,i+1)/(1e1*Ex(k,i+1)-
lel*Ex(n,i+1)))*1lel;

% else

% if i>1

% IRHSI(m,n,k,i+1)=0;

% end

% end

% 2-1&2-21 Il(m,n,i+1)
m=1:NOL
n=1:NOL
abs(l(m,n,1))<abs(Il(m,n,i+1)*dLambda(1,1))
[1(m,n,i+1)=I(m,n,i)+IDI(m,n,i+1)*dLambda(1,1);

[1(m,n,i+1)=IDl(m,n,i+1)*dLambda(1,1)+l(m,n,i);
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% I1IDI(m,n,i+1)
m=1:NOL
n=1:NOL
k=1:NOL
n~=m&&k~=m&&k~=n
abs(Ix(m,i+1)-Ix(k,i+1))>threshold
&& abs(Ix(k,i+1)-Ix(n,i+1))>threshold

ITRHSI(m,n k,i+1)= ((( ( [(m,k,i+1)/(1el*Ix(m,i+1)-
lel*Ix(k,i+1)) )*1el)
*T1(k,n,i+1)/(1e1*Ix(m,i+1)-1el*Ix(k,i+1)) )*1el)
-( (( (m,k,i+1)/(1el*Ix(k,i+1)-
lel*Ix(n,i+1)) )*1el)

*T(k,n,i+1)/(1e1*Ix(k,i+1)-1e1*Ix(n,i+1)) )*1el;
abs(IIDI(m,n,i+1))<abs(IIRHSI(m,n,k,i+1))
[IDI(m,n,i+1)=IIDl(m,n,i+1)+IIRHSI(m,n,k,i+1);

[IDI(m,n,i+1)=IIRHSI(m,n,k,i+1)+1IDIl(m,n,i+1);
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[IDI(m,n,i+1)=1/2*(DirectDL(m,n,(i+1)/2)+DirectDL(m,n,((i+1)+2)/2));

%
%
lel*Ix(k,i+1))*1el)...
%
lel*Ix(k,i+1)) )*1el;
%
%
%
%
%
%
%
lel*Ix(n,i+1))*1el)...
%
lel*Ix(n,i+1)) )*1el;
%
%
%
%
%

if abs(Ix(m,i+1)-Ix(k,i+1))>threshold
IMRHSI(m,n,k,i+1)=( (Il(m,k,i+1)/(1el*Ix(m,i+1)-

*T1(k,n,i+1)/(le1*Ix(m,i+1)-

else
if i>1
HRHSI(m,n,k,i+1)=0;
end
end
if abs(Ix(k,i+1)-Ix(n,i+1))>threshold
HRHSI(m,n,k,i+1)= -( (Il(m,k,i+1)/(1el*Ix(k,i+1)-

1(k,n,i+1)/(lel *Ix(k,i+1)-

else
if i>1
ITRHSI(m,n,k,i+1)=0;
end

end
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%  1I(m,n,i+2)
m=1:NOL
n=1:NOL
abs(l(m,n,i))<abs(IIDl(m,n,i+1)*2*dLambda(1,1))
1(m,n,i+2)=1(m,n,i)+IIDI(m,n,i+1)*2*dLambda(1,i);

[11(m,n,i+2)=IIDI(m,n,i+1)*2*dLambda(1,i) + I(m,n,i);

% IIDv(m,i+1)
m=1:NOL
n=1:NOL
n~=m
abs(Ix(m,i+1)-Ix(n,i+1))>threshold
ITRHSv(m,n,i+1)=2*((((Il(m,n,i+1)/(1e1*Ix(m,i+1)-1el *Ix(n,i+1)))*1el)
*((conj(Il(m,n,i+1))/(1e1*Ix(m,i+1)-
lel*Ix(n,i+1))))*1el)
/(Te1*Ix(m,i+1)-1el*Ix(n,i+1)))*1el;
Yoif
abs(ITRHSv(m,n,i+1))<5000
abs(IIDv(m,i+1))<abs(IIRHSv(m,n,i+1))
[IDv(m,i+1)=IIDv(m,i+1)+IIRHSv(m,n,i+1);

[IDv(m,i+1)=IIRHSv(m,n,i+1)+IDv(m,i+1);

340



% end

[IDv(m,i+1)=1/2*(DirectDV(m,(i+1)/2)+DirectDV(m,((i+1)+2)/2));

% if i>1
% ITIRHSv(m,n,i+1)=0;
% end

% IIv(m,i+1)
m=1:NOL
abs(v(m,i))<abs(IIDv(m,i+1)*dLambda(1,1))
[Iv(m,i+1)=v(m,i)+1IDv(m,i+1)*dLambda(1,1);

[Iv(m,i+1)=IIDv(m,i+1)*dLambda(1,i)+v(m,1);

% IIx(m,i+2)
m=1:NOL
abs(x(m,i))<abs(IIv(m,i+1)*2*dLambda(1,1))
[Ix(m,1+2)=x(m,1)+Iv(m,i+1)*2*dLambda(1,1);

[Ix(m,1+2)=IIv(m,i+1)*2*dLambda(1,1) + x(m,1);
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% 8 . IIIDV(m,i+2)
m=1:NOL
n=1:NOL
n~=m
abs(IIx(m,i+2)-1Ix(n,i+2))>threshold
IMRHSvV(m,n,i+2)= 2*(( (( I(m,n,i+2)/(1e1 *1Ix(m,i+2)-

lel*IIx(n,i+2)) )*1el)
*(( conj(IIl(m,n,i+2))/(1el *IIx(m,i+2)-

lel*IIx(n,it2)) ) )*1el)
/(1e1*1Ix(m,i+2)-1el *1Ix(n,i+2)))*1el;

%if abs(IITIRHSv(m,n,i+2))<5000
abs(IIIDv(m,i+2))<abs(IIIRHSv(m,n,i+2))
HIDV(m,i+2)=IIDv(m,i+2)+IIRHSv(m,n,i+2);

HIDv(m,i+2)=ITRHSv(m,n,i+2)+1Dv(m,i+2);

%end

[IDv(m,i+2)=DirectDV(m,(i+2+1)/2);
% IITRHSv(m,n,i+2)=0;

342



% 8 . Iv(m,i+2)
m=1:NOL
abs(v(m,i))<abs(IIIDv(m,i+2)*2*dLambda(1,1))
Mv(m,i+2)=v(m,i)+1IDv(m,i+2)*2*dLambda(1,i);

Iv(m,i+2)=IIDv(m,i+2)*2*dLambda(1,i) + v(m,i);

% 9. IIDI(m,n,i+2)
m=1:NOL
n=1:NOL
k=1:NOL
n~=m && k~=m && k~=n
abs(IIx(m,i+2)-1Ix(k,i+2))>threshold
&& abs(IIx(k,i+2)-1Ix(n,i+2))>threshold
HIRHSI(m,n,k,i+2)=((( (IM(m,k,i+2)/(1e 1 *[Ix(m,i+2)-
lel*IIx(k,i+2)))*1el)
*(I(k,n,i+2)/(1e 1 *1Ix(m,i+2)-
lel*IIx(k,i+2))) )*1el)
-( ((MI(m,k,i+2)/(1e1*1Ix(k,i+2)-
lel*1Ix(n,i+2)))*1el)
*(I(k,n,i+2)/(1e1 *1x(k,i+2)-
lel*IIx(n,i+2))) )*1el;
Yoif
abs(IITRHSI(m,n,k,i+2))<5000
abs(IIIDI(m,n,i+2))<abs(IIIRHSI(m,n,k,i+2))
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IIDI(m,n,i+2)=HIDI(m,n,i+2)+IT1IRHSI(m,n,k,i+2);

IIDI(m,n,i+2)=IIRHSI(m,n,k,i+2)+IIDI(m,n,i+2);

%end

%
%

lel*IIx(k,i+2)))*lel)...

%
lel*IIx(k,i+2))) )*lel;
%

%

%

%

%

lel*1Ix(n,i+2)))*1el)...

%
lel*IIx(n,i+2))) )*1el;
%
%
%

HIDI(m,n,i+2)=DirectDL(m,n,((i+2)+1)/2);
if abs(IIx(m,i+2)-1Ix(k,i+2))>threshold
HIRHSI(m,n,k,i+2)=( ((I1l(m,k,i+2)/(1el*1Ix(m,i+2)-

*(I1(k,n,i+2)/(1e 1 ¥TIx(m,i+2)-

else
[TRHSI(m,n,k,i+2)=0;
end
if abs(I1Ix(k,1+2)-1Ix(n,i+2))>threshold
HIRHSI(m,n,k,i+2)= -( ((IIl(m,k,i+2)/(1el1 *I1Ix(k,i+2)-

*(IT1(k,n,i+2)/(1e 1 *1Ix (k,i+2)-

else

IMRHSI(m,n,k,1+2)=0;

end
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% 10 . x(m,i+2),v(m,i+2),1(m,n,i+2)

m=1:NOL
%x(m,1)
% x(m,i+2)=x(m,1)+(1/6)*2*dt...
% *(v(m,1)+2*Iv(m,i+1)+2*v(m,i+1)+Iv(m,i+2) );

abs(x(m,i))<abs( (1/6)*2*dLambda(1,1)*( v(m,1)+2*Iv(m,i+1)+2*[Iv(m,i+1)+Iv(m,i+2) ) )

x(m,i+2)=x(m,i)+(1/6)*2*dLambda(1,1)

*(v(m,1)+2*Iv(m,i+1)+2*1Iv(m,i+1)+H1IIv(m,i+2) );

x(m,i+2)=((1/6)*2*dLambda(1,i)*( v(m,i)+2*Iv(m,i+1 )+ 2*Iv(m,i+1)+HIIv(m,i+2) ))

+x(m,1);
%v(m,i)
% v(m,i+2)=v(m,i)+(1/6)*2*dt...
% *(Dv(m,1)+2*IDv(m,i+1)+2*[IDv(m,i+1)+IIIDv(m,i+2));

abs(v(m,i))<abs( (1/6)*2*dLambda(1,i)*(Dv(m,1)+2*IDv(m,i+1)+2*I[IDv(m,i+1)+IIDv(m,i+
2)))
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v(m,i+2)=v(m,i)+(1/6)*2*dLambda(1,1)
*(Dv(m,1)+2*IDv(m,i+1)+2*1IDv(m,i+1)+I1IDv(m,i+2));

v(m,i+2)=(1/6)*2*dLambda(1,i)*(Dv(m,i)+2*IDv(m,i+1)+2*[[Dv(m,i+1)+I[Dv(m,i+2))

+v(m,1);
% l(m,n,1)
n=1:NOL
% 1(m,n,i+2)=I(m,n,i)+(1/6)*2*dt...
% *(DI(m,n,i)+2*IDI(m,n,i+1)+2*IIDI(m,n,i+1)...
%, +IIIDI(m,n,i+2)) ;
%

abs(I(m,n,1))<abs( (1/6)*2*dLambda(1,1)
*(Dl(m,n,1)+2*ID1(m,n,i+1)+2*IIDl(m,n,i+1)
+IIIDI(m,n,i+2)) )

1(m,n,i+2)=I(m,n,1)+(1/6)*2*dLambda(1,i)
*(DI(m,n,i)+2*ID1(m,n,i+1)+2*IIDI(m,n,i+1)
+I1ID1(m,n,i+2)) ;

1(m,n,i+2)=(1/6)*2*dLambda(1,1)
*(Dl(m,n,1)+2*ID1l(m,n,i+1)+2*I1IDI(m,n,i+1)
+IIIDI(m,n,i+2))

+1(m,n,i);
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count = count + 1;

% 11 .xRK4, vRK4, IRK4

i=2:steps
m= 1:NOL
xRK4(m,  )=inputx(m,1);
xRK4(m,i)=x(m,2*i-1);

1=2:steps
m=1:NOL
vRK4(m,1)=inputv(m,1);
vRK4(m,i)=v(m,2*i-1);

1=2:steps
m=1:NOL
n=1:NOL
n~=m

IRK4(m,n,1)=inputl(m,n,1);
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IRK4(m,n,i)=l(m,n,2*i-1);

t2=cputime;

time=t2-t1;

Simulation of 4-qubi system through PY method with Euler

method

clear

%Four Spin New

%Try get a multi qubits code

tic

% 1 .initial set up

%if set labmda=t, make sure dt*steps=1.
dt=0.0001;

periodnumber=10;

periodlength=1.57; %period length= 2*pi/constant
stepsperperiod=periodlength/dt;

steps=periodnumber*stepsperperiod;

constant=6/1;
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totaltime=dt*steps;
t=linspace(0,totaltime,steps);
% t=cos(tt);

Lambda=0.91*cos(constant*t);

numberofqubits=4;

NOL=2"numberofqubits;

% 2 .Pauli matrix and Identity matrix
Sigma x=[0 1; 1 0];

Sigma z=[10; 0 -1];

I=[10;0 17;

% 3 . Parameters, could be set to random numbers or function of time.
% Delta=zeros(1,numberofqubits);

% h=zeros(1,numberofqubits);

% J=zeros(numberofqubits,numberofqubits);
% for i=1:numberofqubits

% Delta(i)=rand(1);

% h(i)=rand(1);

% for j=1:numberofqubits

% if j>i

% J(i,j)=rand(1);

% end

%

% end

% end

349



%Particular set
Deltal=0.4;
Delta2=0.1;
Delta3=0.2;
Delta4=0.3;
h1=0.1;
h2=0.2;
h3=0.3;
h4=0.4;

J 12=0.7;

J 13=0.5;

J 14=0.3;

J 23=0.6;

J 24=0.5;

J 34=0.8;

0/pmme

%random set

% Deltal=rand(1);
% Delta2=rand(1);
% Delta3=rand(1);
% Deltad=rand(1);
% hl=rand(1);

% h2=rand(1);

% h3=rand(1);

% h4=rand(1);

% J 12=rand(1);
% J_13=rand(1);
% J 14=rand(1);
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% J 23=rand(1);
% J 24=rand(1);
% J 34=rand(1);

% 4 . Define HO, Hf and ZHDb

% ZHD should be independent of Lambda

HO=Deltal *kron(kron(kron(Sigma_x,I),I),I)+Delta2*kron(kron(kron(I,Sigma_x),I),I)
+Delta3*kron(kron(kron(LI),Sigma_x),I)+kron(kron(kron(L,I),I),Sigma_x);

Hf=h1*kron(kron(kron(Sigma_z,I),I),I)+h2*kron(kron(kron(I,Sigma_z),I),I)
+h3*kron(kron(kron(L,I),Sigma_z),I)
+h4*kron(kron(kron(L,I),I),Sigma_z)

+J_12*kron(kron(kron(Sigma_z,Sigma z),I),[)+J 13*kron(kron(kron(Sigma z,1I),Sigma z),I
)
+J_14*kron(kron(kron(Sigma_z,1I),I),Sigma_z)
+J_23*kron(kron(kron(L,Sigma_z),Sigma_z),I)
+J_24*kron(kron(kron(I,Sigma z),I),Sigma_z)
+J_34*kron(kron(kron(L,I),Sigma_z),Sigma_z);
ZHb=Hf-HO0;

% 5 . Preallocation for variables
Hlambda=zeros(NOL,NOL,steps);
Eigenvectors=zeros(NOL,NOL,steps);
HD=zeros(NOL,NOL,steps);

X=zeros(NOL,steps);
V=zeros(NOL,steps);
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x=zeros(NOL,steps);
v=zeros(NOL,steps);
l=zeros(NOL,NOL,steps);
LSquare=zeros(NOL,NOL,steps);

% 6 . Define H(lambda)=HO-+lambda*ZHb.
i=1:steps

Hlambda(:,:,i)=HO0+Lambda(i)*ZHb;

% 7 . Get eigenvectors and eigenvalue matrix
i=1:steps

[Eigenvectors(:,:,1),HD(:,:,1)]=eig(Hlambda(:,:,1));

% 8 . Get X(m,i)
i=1:steps
m=1:NOL

X(m,1)=HD(m,m,i);

% 9 . Get V(m,i) and L(m,n,1)
i=1:steps
m=1:NOL

V(m,i)=transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,m,i);
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L=zeros(NOL,NOL,steps);
i=1:steps
m=1:NOL
n=1:NOL
n~=m
L(m,n,i)=(X(m,1)-X(n,1))
*transpose(Eigenvectors(:,m,i))

*ZHb*Eigenvectors(:,n,i);

% % 9.1. get DV(m,i) and DL(m,n,i)
% DV=zeros(NOL,steps);

% DL=zeros(NOL,NOL,steps);

% RHSV=zeros(NOL,NOL,steps);
% RHSL=zeros(NOL,NOL,steps);
%

% for i=1:steps

% for n=1:NOL

% for m=1:NOL

% if n~=m

% if abs(X(m,i)-X(n,1))>0.00758

% RHSV(m,n,i)=2*(( 100000000*L(m,n,1)/(100000000* X (m,1)-
100000000*X(n,1)) )...

% *( 100000000*conj(L(m,n,i))
/(100000000*X(m,1)...
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% -100000000*X(n,1)) )...

% /(100000000*X (m,1)-
100000000*X(n,1)))*100000000;

% % if abs(RHSV(m,n,1))<1000000000

% DV(m,i)=DV(m,i)+ RHSV(m,n,i);

% % end

% end

% end

% end

% end

% end

%

% for i=1:steps

% for m=1:NOL

% for n=1:NOL

% for k=1:NOL

% if n~=m

% if k~=n

% if k~=m

% if abs( X(k,1)-X(n,1) )>0.00758

% if abs( X(k,1)-X(m,i) )>0.00758

% RHSL(m,n,i)=( (100000000*X(k,1)-
100000000*X(n,1))...

% /(100000000*X (m,1)-
100000000*X(k,1))...

% - (100000000*X(m,1)...

% -
100000000*X(k,1))/(100000000* X (k,1)...
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% -100000000*X(n,1)) )...
% *transpose(Eigenvectors(:,m,i))...
%

% *ZHb*Eigenvectors(:,k,1)...
% *transpose(Eigenvectors(:,k,1))...
% *ZHb*Eigenvectors(:,n,i);
%

% DL(m,n,i)=DL(m,n,i)+RHSL(m,n,i);
% end

% end

% end

% end

% end

% end

% end

% end

% end

% % 10 . Use Euler method to check directly obtained Xm and Vm.
% Xeuler=zeros(NOL,steps);

% for m=1:NOL %can be written as m=1:2"numberofqubits

% Xeuler(m,1)=X(m,1);

% end

% for i=1:steps-1

% for m=1:NOL

% Xeuler(m,i+1)=Xeuler(m,i)+V(m,i)*dt;

% end

% end
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%

% % 11 . Set initial xm, vm, Imn for i=1
% % for Pechukas method

% for m=1:NOL

% x(m,1)=X(m,1);

% v(m,1)=V(m,1);

% for n=1:NOL

% if n~=m

%
X(n,1))*transpose(Eigenvectors(:,m,1))*ZHb*Eigenvectors(:,n,1);
% end

% end

% end

%

% % 12 . Euler+Pechukas

% Dv=zeros(NOL,steps);

% Dl=zeros(NOL,NOL,steps);

% RHSI=zeros(NOL,NOL,steps);

% RHSv=zeros(NOL,NOL,steps);

% for i=1:steps-1

% for m=1:NOL

% for n=1:NOL

%

% for k=1:NOL

% if n~=m

% if k~=n

% if k~=m

% if abs(x(m,1)-x(k,1))>0.00758
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% if abs(x(k,i)-x(n,i))>0.00758
% %DI(m,n,1)=DI(m,n,i)+1(m,k,1)*I1(k,n,1)*( 1/(
x(m,1)-x(k,1))"2 - 1/(x(k,1)-x(n,1))"2);

% Test1=(1(m,k,1)/(x(m,i)-x(k,1)));

% Test2=(1(k,n,i)/(x(m,1)-x(k,1)));

% Test3=(1(m,k,1)/(x(k,i)-x(n,1)));

% Test4=(1(k,n,1)/(x(k,1)-x(n,1)));

% RHSI(m,n,i)= (1(m,k,1)/(100000000*x(m,i)-
100000000*x(k,1)))...

% *(1(k,n,1)/(100000000*x(m,1)-
100000000*x(k,1)))...

% *100000000%100000000....

% -(1(m,k,1)/(100000000*x(k,1)-
100000000*x(n,1)))...

% *(1(k,n,1)/(100000000*x(k,1)-

100000000*x(n,1)))*100000000*100000000;

% if abs((RHSI(m,n,1)-RHSL(m,n,1)))<1000

% % if abs(RHSI(m,n,1))<1000

% DI(m,n,i)=DI(m,n,i)+RHSI(m,n,i);

% else

% DI(m,n,i)=DI(m,n,i);

% end

% else

% %DI1(m,n,1)=DI(m,n,i)+1(m,k,i)*I1(k,n,i)*( 1/(

x(m,1)-x(k,1))"2 );

%
DI(m,n,i)=DI(m,n,i)*+(1(m.k,i)/(100000000*x (m,)-
100000000*x(k,i)))*(1(k,n,i)/(100000000*x(m,)-

357



100000000*x(k,1)))*100000000*100000000;

% end

% else

% if abs(x(k,1)-x(n,1))>0.00758

% %DI1(m,n,i)=DI(m,n,i)+1(m,k,i)*I1(k,n,i)*( -

1/(x(k,1)-x(n,1))"2 );

% DI(m,n,i)=DI(m,n,i)-
(1(m,k,1)/(100000000*x(k,1)-100000000*x(n,1)))*(1(k,n,1)/(100000000*x(k,1)-
100000000*x(n,i)))*100000000*100000000;

% else

% DI(m,n,i)=DI(m,n,1);

% end

% end

% end

% end

% end

% end

%

% if n~=m

% if abs(x(m,1)-x(n,1))>0.00758

% %Dv(m,1)=Dv(m,1)+2*(1(m,n,1)*conj(I(m,n,1)))/((x(m,1)-
x(0,i))3);

% %Dv(m,1)=Dv(m,1)+2*((1(m,n,1)/(x(m,1)-
x(n,1)))*(conj(I(m,n,i))/(x(m,i)-x(n,1))))/(x(m,i)-x(n,1));

% % Test5=(1(m,n,1)/(x(m,1)-x(n,1)));

% % Test6=(conj(1(m,n,1))/(x(m,i)-x(n,1)));

% % Test7=(x(m,1)-x(n,1));

% RHSv(m,n,1)=2*(1(m,n,i)/(100000000*x(m,i)-
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100000000*x(n,i)))...

% *(conj(1(m,n,i))/(100000000*x(m, )-
100000000*x(n,i)))...
% /(100000000*x(m,i)-

100000000*x(n,1))*100000000*100000000*100000000;

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%

A=RHSV(m,n,i);
B=RHSv(m,n,1);

if abs(RHSv(m,n,1))<1000
if abs(RHSV(m,n,1)-RHSv(m,n,1))<1000
Dv(m,1)=Dv(m,i)+RHSv(m,n,i);
else
Dv(m,1)=Dv(m,i);
end
%LSquare(m,n,i)=I(m,n,i)*conj(l(m,n,1));
Y%XmminusXnCube=(x(m,i)-x(n,i))"3;
%Dv(m,1)=Dv(m,1)+2*LSquare(m,n,i)/XmminusXnCube;
else
Dv(m,1)=Dv(m,i);
end
1(m,n,i+1)=I(m,n,i)+DI(m,n,i)*dt;
else

Dv(m,i)=Dv(m,i);

end
1(m,n,i+1)=I(m,n,1)+DI(m,n,i)*dt;
end

v(m,i+1)=v(m,i)+Dv(m,i)*dt;
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% x(m,i+1)=x(m,i)+v(m,i)*dt;
%

% end

% end

%

% ErrorX=zeros(NOL,steps);

% ErrorRelativeX=zeros(NOL,steps);

% for i=1:steps

% for m=1:NOL

% ErrorX(m,i)=abs(X(m,i)-x(m,i));

% if X(m,i)~=0

% ErrorRelativeX(m,i)=abs(ErrorX(m,i)/X(m,i));
% end

% end

% end

% 13 .Plotting

% figure(1)

% subplot(1,3,1)

% plot(t,X)

% xlabel('t")

% ylabel("Energy levels')

% %legend('X1','X2',"X3','’X4")
% title('Energy levels(direct)')
% axis([0 1 -4 4])

%

% subplot(1,3,3)

% plot(t,Xeuler)
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% xlabel('t")

% ylabel("Energy levels')

% %legend('Xel','Xe2','Xe3','Xed")

% title({'Energy levels obtained';'by using Euler method';'with direct velocity'})
% axis([0 1 -4 4])

%

% subplot(1,3,2)

% plot(t,x)

% xlabel('t")

% ylabel("Energy levels')

% %legend('x1','x2",'x3",'x4")

% title({'Energy levels obtained';'by using Pechkas formalism';'and Euler method'})
% axis([0 1 -4 4])

%

% figure(2)

% subplot(1,2,1)

% plot(t,V)

% xlabel('t")

% ylabel('velocity")

% %legend('V1','V2','V3''V4")

% title({'Velocity of the evolution';'of energy levels(direct)'})
% axis([0 1 -6 6])

%

% subplot(1,2,2)

% plot(t,v)

% xlabel('t")

% ylabel('velocity")

% %legend('vl','v2','v3','v4")
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% title({'Velocity obtained by';'using Pechukas formalism';'and Euler method'})
% axis([0 1 -6 6])

%

% figure(3)

%

% subplot(1,4,1)

% plot(t,DV)

% title('DV direct')

%

% subplot(1,4,2)

% plot(t,Dv)

% title('Dv Pechukas+Euler")
%

% subplot(1,4,3)

% plot(t,ErrorX)

% title('Absolute Error of X')
%

% subplot(1,4,4)

% plot(t,ErrorRelativeX)

% title('Relative Error of X')
% axis([0 1 0 1])

%

% PartlofL=zeros(1,steps);
% for i=1:steps

% PartlofL(i1)=L(1,2,1);
% end

% figure(5)

% plot(t,PartlofL)
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%how many avoided crossings occured?

DirectDV=zeros(NOL,steps);
i=1:steps-2
m=1:NOL
DirectDV(m,i+1)=(V(m,i+2)-V(m,i))/(2*dt);

DirectDL=zeros(NOL,NOL,steps);
i=1:steps-2
m=1:NOL
n=1:NOL
DirectDL(m,n,i+1)=(L(m,n,i+2)-L(m,n,1))/(2*dt);

% xRK4=zeros(NOL,steps);

% vRK4=zeros(NOL,steps);

% IRK4=zeros(NOL,NOL,steps);
[xRK4,vRK4,IRK4,time]=RK4test3FromLaptop(X(:,:),V(:,:),L(:,:,:),NOL,steps,DirectDV,Dir

ectDL,totaltime,Lambda);

ErrorXRK4=zeros(NOL,steps);
i=1:steps
m=1:NOL
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ErrorXRK4(m,i1)=abs(X(m,i)-xRK4(m,1));

% ErrorV=zeros(NOL,steps);

% for i=1:steps

% for m=1:NOL

% ErrorV(m,i)=abs(V(m,i)-vRK4(m,1));
%

% end

% end

% %figure

% figure(2)

% subplot(1,4,1)

% plot(t,X)

% legend('1','2','3','4','5','6",'7",'8",'9",'10",'11",'12','13",'14','15",'16")
%

% subplot(1,4,4)

% plot(t,ErrorXRK4(:,:))

% % legend('1','2','3','4",'5','6','7",'8",'9",'10','11','12",'13",'14','15",'16")
% % axis([0 1 0 1])

% x1im([0 0.95])

%

% subplot(1,4,2)

% plot(t,V(1,:))

% xlabel('t")

% ylabel('velocity')
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% % legend('1','2",'3','4','5','6','7",'8",'9",'10",'11','12",'13",'14','15",'16")
% title({'Velocity of the evolution';'of energy levels(direct)'})

% axis([0 1 -6 6])

%

% subplot(1,4,3)

% plot(t,DirectDV(1,:));

% % legend('1','2','3','4','5','6','7",'8",'9",'10",'11','12",'13",'14','15",'16")
% % axis([0 1 -6 6])

%

%

% figure(3)

%

% subplot(1,2,1)

% plot(t,X)

%

%

% subplot(1,2,2)

% plot(t,xRK4(:,:))

% % legend('1','2','3','4','5",'6','7",'8",'9",'10",'11",'12','13",'14','15",'16','17','18",'19,...
% % '201,'21','22',23",'24','25','26','27','28",'29','30",'31",'32")
% % axis([0 1 -4 5])

0/pmmm e

CT=zeros(NOL,NOL,steps);
%compare term
i= l:steps
m=1:NOL
n=1:NOL
CT(m,n,1)=L(m,n,1)*IRK4(m,n,i);
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CT(m,n,i1)<0
% IRK4(m,n,i)=-1*IRK4(m,n,i);
L(m,n,i)=-1*L(m,n,1);

0o N e
C=zeros(NOL,steps);

C(, =1,

% for m=1:NOL

% C(m,1)=sqrt(1/NOL);

% end

Probability=zeros(NOL,steps);

[C,Density]=occupationnumber2(X,L,C(:,1),Lambda,NOL,periodnumber,stepsperperiod,dt);

i=1:steps
m=1:NOL
Probability(m,1)=C(m,1)*conj(C(m,1));

Sum=zeros(1,1);
i=1:steps
m=1:NOL
Probability(m,i)<Sum(1,1)
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Sum(1,1)=Probability(m,i)+Sum(1,1);

Sum(1,1)=Sum(1,1)+Probability(m,i);

A e
Cl=zeros(NOL,steps);

CI1(5,1)=1;

% for m=1:NOL

% C(m,1)=sqrt(1/NOL);

% end

Probability 1=zeros(NOL,steps);

[C1,Density1]=occupationnumber2(xRK4,IRK4,C1(:,1),Lambda,NOL,periodnumber,stepspe

rperiod,dt);

1=1:steps
m=1:NOL
Probability 1(m,1)=C1(m,1)*conj(C1(m,1));

SumI=zeros(1,1);
i=1:steps

m=1:NOL
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Probability 1(m,1)<Suml(1,1)
Sum1(1,i)=Probability 1 (m,i)+Sum1(1,i);

Sum1(1,1)=Suml(1,i)+Probability1(m,i);

0= - e

figure(1)
subplot(1,3,1)
plot(t,X)

% legend('1','2','3",'4','5",'6",'7",'8",'9",'10",'11",'12','13",'14",'15','16','17','18",'19',...
% '201,'21','22','23",'24','25','26','27','28",'29','30",'31','32")
% axis([0 1 -4 10])

xlabel('time');

ylabel('Energy levels');

title('Direct Energy Evolution');

subplot(1,3,2)
plot(t,xRK4(:,:))
% legend('1','2','3",'4",'5",'6",'7','8','9",'10",'11','12",'13",'14",'15",'16','17','18",'19',...
% '201,'21','22','23",'24','25''26','27','28",'29','30",'31','32")
% axis([0 1 -4 10])

xlabel('time');

ylabel('"Energy levels');

title('PY simulated Energy Evolution")
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subplot(1,3,3)
plot(t,ErrorXRKA4(:,:))
% axis([0 0.1 0 1])

% x1lim([0 0.95])
xlabel('time");
ylabel('Error');

title('Error of simulated energy evolution")

figure(2)
subplot(1,2,1)
plot(t,Probability(:,:))
% axis([0 10 1])
legend('1',2','3",'4")
title('Direct PD")

subplot(1,2,2)
plot(t,Sum);

title('Sum of direct probabilities')

figure(3)
subplot(1,2,1)
plot(t,Probability1(:,:))
% axis([0 10 1])
legend('1','2','3",'4")
title('Simulated PD")

subplot(1,2,2)
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plot(t,Sum1);

title('Sum of simulated probabilities")

toc
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