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Abstract: Quantum cryptography revolutionizes secure information transfer, providing defense

against both quantum and classical computational attacks. The primary challenge in extending the

reach of quantum communication comes from the exponential decay of signals over long distances.

We meet this challenge by experimentally realizing the Quantum-Protected Control-Based Key

Distribution (QCKD) protocol, utilizing physical control over signal losses. By ensuring significant

non-orthogonality of the leaked quantum states, this control severely constrains eavesdroppers’

capacities. We demonstrate the performance and scale of our protocol by experiments over a 1707 km

long fiber line. The scalability of the QCKD opens the route for globally secure quantum-resistant

communication.

Keywords: quantum cryptography; quantum communication; quantum-protected control-based

key distribution; QCKD; loss control; long-distance fiber communication; optical time-domain

reflectometry; OTDR; quantum networks; scalability of quantum protocols; non-orthogonal quantum

states

1. Introduction

Quantum cryptography promising information transmission invulnerable to cyber
threats stands at the forefront of a new era in secure communication. One of the major
challenges here is the development of methods allowing for high-rate quantum communi-
cation over long distances. In real lossy quantum channels, particularly in the fiber-optic
lines, transmissivity drops exponentially with distance, severely limiting the communi-
cation range. Despite this obstacle, remarkable progress has been achieved in extending
quantum communication distances to hundreds and even a thousand kilometers [1]. No-
table milestones in quantum communication include advancements in quantum one-time
programs [2,3], quantum secure direct communication [4], the twin-field technique [1,5],
measurement-device-independent quantum communication [6], satellite-based communi-
cation [7], and the time-bin technique [8,9]. Another possible way of extending transmission
distances is the use of quantum repeaters [10–15], which are based on utilizing the quantum
entanglement resource.

Recent theoretical papers [16,17] have established an alternative approach to over-
coming the distance limitations of key distribution, which has later been realized experi-
mentally [18]. The developed Quantum-Protected Control-Based Key Distribution (QCKD)
follows the prepare-and-measure logics in the optical setting. In this protocol, the bits 0 and
1 are represented by the coherent states |γ0⟩ and |γ1⟩. The central idea is that the legitimate
users Alice and Bob monitor the local signal leakages within the transmission channel, a
fiber-optic line, and ensure that the leaked states—potentially captured by an eavesdropper,
Eve—are substantially non-orthogonal. If the proportion of the leaked signal is rE, then

|⟨√rEγ0|
√

rEγ1⟩| ≈ 1, and as this scalar product closely approaches 1, the information
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accessible to Eve, constrained by the Holevo bound [19], goes to zero. As long as the
leakage remains below a certain threshold, the users maintain an informational advantage
over Eve, ensuring the safe distribution of the secret key. Importantly, given that the em-

ployed coherent states’ intensities, |γ0|2 and |γ1|2, are sufficiently low, eavesdropping on
the homogeneously distributed Rayleigh scattering is unfeasible [16]. With that, the signal
states can have sufficient intensities to be transmitted across a long fiber line containing
optical amplifiers.

Here, we present the experimental realization of the QCKD protocol effectively work-
ing in a 1707 km long optical line. Our experimental settings include, in particular, specially
designed bidirectional erbium-doped fiber amplifiers (BEDFAs) and a robust loss control
apparatus. We show the precision and effectiveness of the loss control based on optical
time-domain reflectometry (OTDR) [20,21]. As compared to [18], where experiments with
a 1079 km line were reported, this study not only extends the protocol’s range but also
addresses the impacts of statistical fluctuations and technical noise on the key distribution
rate. Furthermore, here we demonstrate that the application of advantage distillation in the
QCKD, which increases the system’s tolerance to errors, allowing for the accommodation of
larger signal losses over longer transmission distances. Finally, we present the experimental
results of the key distribution over various distances, including 1707 km. In addition, we
discuss the possibility of expanding the QCKD to a multi-user network.

2. Description of the QCKD

In this section, we outline the implemented QCKD protocol, which is a modified
version of the protocol described in detail in Ref. [16]. The protocol utilizes an optical fiber
line for the transmission of quantum states and a classical authenticated channel for the
exchange of service information.

Before beginning the main steps of the protocol, the users must complete an initializa-
tion phase. During this phase, and only during this phase, the users must be sure that the
fiber line is secure against any unauthorized access or intervention by Eve. For instance,
this phase may take place before deploying the fiber in the field. At this stage, the users
establish the initial loss profile of the line by the OTDR method, which is widely used
to assess the integrity of fiber lines, especially in the absence of optical amplifiers. The
OTDR uses Rayleigh scattering as an instrument in detecting any new leakages that may
arise along the fiber-optic line. The core principle involves transmitting a high-intensity
probing pulse into the optical fiber, and then, measuring the power of the light that is
backscattered to the source. This measurement records the distance to the corresponding
scattering point, which is determined based on the time it takes for the light to return.
Any newly occurring leakage changes the power of the backscattered radiation from the
OTDR probing pulse. Specifically, the backscattered power decreases in the segment of the
fiber where the eavesdropping intervention is located. The collected data from this process
are represented in a reflectogram, which is a log-linear plot that depicts the backscattered
power as a function of distance along the fiber.

Natural homogeneous losses, resulting from Rayleigh scattering due to density fluctu-
ations in the fiber, cannot be effectively exploited by Eve, as described in detail in Ref. [16],
and are considered as non-compromised losses. Conversely, localized losses, which occur
at optical connections, splices, or bends where the signal can leak, can be eavesdropped.
These losses must be either assumed to be compromised by Eve (and the users must take
these losses into account in their evaluation of Eve’s information for the subsequent privacy
amplification stage discussed below) or must be reduced by avoiding physical connectors
and eliminating bends in the fiber. Our experimental analysis shows that losses at splice
joints are minimal, around 0.1%, which is acceptable. Nevertheless, the use of continuous
fiber without connections or splice joints further reduces the leakage.

In addition to assessing and pinpointing the losses, the OTDR also generates a unique
fingerprint of the line. Given that quenched disorder within the fiber acts as a physically
unclonable function, its corresponding reflectogram cannot be duplicated. Consequently,
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any interference into the fiber would alter this fingerprint, and thus, will be detectable [22].
The reflectogram obtained during initialization serves as the baseline fingerprint, allowing
for the users to periodically use the OTDR for comparisons.

The main steps of the protocol are depicted in Figure 1. The protocol starts with the
OTDR scan, but this time, the users no longer need to ensure that Eve is absent. The inferred
reflectogram is compared with the initial one. If the users observe a significant alteration in
the line’s reflectogram, the protocol must be terminated, and the corresponding region of
the line must be inspected for a breach.
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privacy amplification
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line losses
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Figure 1. Main stages of the QCKD protocol. The information transmission between Alice and Bob

over the classical authenticated channel is indicated by arrows.

After the OTDR phase, Alice encodes randomly generated bits into the phase-randomized
coherent states, with 0 and 1 represented by different photon numbers carried by the light
pulses. These photon numbers are not large, and as a result, these pulses’ states are non-
orthogonal to each other. Alice sends a high-intensity synchronizing pulse every 31 bits,
marking the beginning of a new bit package. This allows Bob to accurately identify the
beginning of each bit package. On their side, Bob measures the energy of the received states
to obtain bits.

Following the bit transmission, the process continues with the transmittometry. At this
stage, Alice sends a high-intensity pulse with modulated intensity. Bob measures this pulse,
and, by comparing the input and output power at the modulation frequency communicated
over the authenticated classical channel, both users evaluate the total loss value. This value
is then compared to the baseline to identify the extent of the newly appeared losses. The
baseline for losses is updated in each OTDR session, providing the baseline value of the sine
wave amplitude, aref. Subsequently, by determining the signal amplitude, at, at the used
frequency, the loss is calculated as 1 − at/aref. The use of the high-frequency modulation
reduces the impact of 1/ f noise, which can distort the measurements; the applied method
is, thus, similar to the lock-in technique [23]. If the loss control reveals losses exceeding
some specific threshold rc established through a numerical optimization, it indicates that
Eve may have gained excessive information about the bits. In such scenarios, users cannot
maintain an information advantage over Eve, and must discard the affected bit package.
However, if the losses remain below rc, the users proceed with the postselection.

Example probability distributions of the measured photon numbers for bits 0 and 1
are illustrated in Figure 2. The postselection process involves discarding bit positions based
on unsatisfactory measurement outcomes. If the measured photon number falls between
the expected average photon numbers for the 0 and 1 pulses, assigning it to either bit
becomes challenging. Consequently, the users take photon numbers between Θ1 and Θ2 as
inconclusive and discard those bit positions. Conversely, if the photon number measured by
Bob is either too low or too high—making it straightforward to assign it to either 0 or 1—Eve
might also easily deduce what these states represent. As explained in Ref. [16], this occurs
because the use of optical amplifiers introduces correlations between the states that may
have potentially leaked to Eve and the states measured at Bob’s end. Therefore, the users
must also discard bit positions corresponding to photon numbers below Θ3 and above Θ4.
Through this selective sifting of measurement results, the users generate the raw key.

To correct discrepancies between Bob’s bit string and Alice’s original sequence, the users
execute the error correction procedure. In the experiment, we employ the low-density
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parity-check (LDPC) codes with advantage distillation, as explained in Section 6. Af-
ter the error correction, the users perform the privacy amplification procedure to reduce
Eve’s potential knowledge of the final key by compressing the distributed sequence. The
compression coefficient is determined by the losses threshold rc, which essentially puts
the upper bound on Eve’s information about bits. In the experiment, we use a privacy
amplification algorithm based on Toeplitz hashing [24].
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Figure 2. Postselection criteria. The measured photon counts within the range from Θ3 to Θ1 are

designated as representing the 0 bit. Counts observed in the range from Θ2 to Θ4 are assigned the 1

bit. Bit positions corresponding to measurements outside these selected ranges are discarded.

The pulses’ and post-processing parameters and rc = 2% are chosen in such a way that
if rE falls below rc, then after post-processing Eve does not have any information about the
resulting block of bits. This is based on the equation for Lf (see Equation (1), which utilizes
the users’ information advantage over Eve) [16]. Conversely, if rE exceeds rc, the block
is assumed to be compromised, and thus, is discarded. The binary decision making—to
save or not to save a packet of bits—differs from the original approach of Ref. [16], which
suggests adapting the pulses’ and post-processing parameters based on the leakage to
harvest a useful key from every block of bits. However, the core principle of the protocol
remains the same.

The security of the QCKD relies on the following additional physically justified as-
sumptions [16]. First, it is assumed that the users’ loss control enables them to detect any
replacement of a section of the quantum communication channel with another one. If
such an eavesdropper’s action is detected, the users must terminate the protocol. Conse-
quently, Eve must collect information about the optical signals propagating through the
given channel, limiting Eve’s actions to those associated with that particular channel. The
second assumption is that Eve cannot collect and effectively measure the natural signal
losses occurring due to Rayleigh scattering, which are distributed homogeneously across
the entire channel. As explained in Refs. [16,17], this would require constructing a device
similar to a Maxwell demon, which must furthermore include an unfeasibly long antenna.
Therefore, it is assumed that Eve is limited to creating local leakages or exploiting existing
local leakages, such as losses at fiber bends or fiber connectors. All local losses can be
detected by the users’ physical loss control, down to the loss control precision limit.

3. Experimental Setup

We begin by outlining our experimental QCKD setup. The setup is illustrated in
Figure 3a. The key distribution begins with the generation of non-orthogonal optical states
encoding random bits into coherent optical pulses at Alice’s side:
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1. Coherent light from the 1530.33 nm laser source first passes through a phase mod-
ulator (PM) linked to a random signal generator (RSG), inducing the light’s phase
randomization.

2. The light then enters a Mach–Zender amplitude modulator (AM), which forms bit-
encoding optical states: The AM is linked to a control module comprising a quantum
random number generator (QRNG) and a field-programmable gate array (FPGA). The
FPGA converts L random bits from the QRNG into voltage pulses which are fed to
the AM. The resulting light pulses corresponding to 0 and 1 comprise |γ0|2 = 10,000
photons and |γ1|2 = 10,600 photons, respectively.

3. The optical signal is split by a beam splitter (BS), with one part directed to Bob and the
other part to a monitoring detector. The monitoring ensures precise adjustment of the
control module and the AM. The primary signal portion then passes through an optical
isolator to prevent noise and signal reflections from reaching the sending equipment.

Laser

Laser
OTDR

AMPM

RSG

BS

Isolator

Circulator

Controller

Switch

50 km

50 km

50 km

5 km

BEDFA

BEDFA
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BEDFA
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QRNG

Control module

OTDR

Monitoring
detector

OTDR
detector

Bob’s
detector
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10 dB
...
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Filter
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Electrical connection
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WDM
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Active
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Figure 3. Experimental setup. (a) Schematics of the QCKD system. At Alice’s end, a phase modulator

(PM) connected to a random signal generator (RSG) randomizes the phase of the light from the laser.

A quantum random number generator (QRNG) creates a bit sequence, which is encoded into the

passing light signal with a field-programmable gate array (FPGA) and an amplitude modulator (AM).

A beam splitter (BS) redirects part of the signal to Alice for monitoring. The signal then passes through

the 1707 km communication line, comprising 50 km fiber spans and bidirectional erbium-doped

fiber amplifiers (BEDFAs). After preamplification, filtering, and detection at Bob’s end, the signal

is converted to bits with an analog-to-digital converter (ADC). The switch alternates between key

generation, and optical time-domain reflectometry (OTDR). (b) Scheme of the BEDFA (adapted from

Ref. [16] under CC BY 4.0). A wavelength-division multiplexing (WDM) system merges the optical

line’s signal with diode pumping into an active fiber segment, which then connects to the main fiber.

The signal then travels through the 1707 km long transmission line, composed of
the 50 km long optical fiber spans and BEDFAs. The main feature that distinguishes
the BEDFA [16], depicted in Figure 3b, from the regular erbium-doped fiber amplifier
(EDFA) [25,26] is the absence of optical isolators or circulators, allowing for the transmission
of the backscattered components of the probing signal used for the OTDR. At Bob’s end,
the signal undergoes several steps:

1. The signal is preamplified by 20 dB with an EDFA.
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2. It then passes through a thermostabilized optical filter with an 8.5 GHz bandwidth,
which eliminates noise in secondary modes caused by the amplifiers.

3. Finally, the signal reaches Bob’s detector. The analog signal from the detector is
converted into a digital signal by an analog-to-digital converter (ADC).

The L bits now distributed between Alice’s and Bob’s computers undergo post-
processing consisting of postselection, advantage distillation (explained in detail below),
error correction, and privacy amplification.

Continuous monitoring of signal leakage rE is achieved using transmittometry and
the OTDR:

• Transmittometry. During this phase, Alice’s AM and FPGA produce a high-intensity
periodic signal at 25 MHz. Bob measures the signal at their end, and by comparing
the input and output spectral power peaks, the users determine the total leakage
in the line; the signal modulation suppresses the 1/ f noise. Knowing the baseline
of homogeneous natural losses (established during the preliminary stage without
eavesdropping threats), the users can estimate the overall leakage.

• The OTDR. In this phase, the system activates the switch, halting the light transmis-
sion from Alice’s primary laser. The transmission line is then utilized for probing
pulses generated by the OTDR module. A high-intensity probing pulse is produced
by the dedicated OTDR laser controlled by the FPGA. The probing pulse is directed
through an optical circulator, subsequently amplified by the BEDFA, and then, trans-
mitted into the optical fiber line. The backscattered components then retrace their
path back through the circulator and filter and are subsequently detected by the
OTDR detector.

The signal wavelength of 1530.33 nm is specifically selected because it aligns with the
peak of the BEDFA amplification gain spectrum in the C-band optical frequency range.
Opting for a commonly used wavelength like 1550 nm would lead to a situation where
the amplified spontaneous emission noise in the secondary modes—particularly around
1530 nm—would be amplified more than the actual signal. This can particularly result in
radiation generation (the amplifiers would essentially work as lasers) and instability of the
transmission line. Other details on BEDFAs can be found in Ref. [16].

It is also important to mention that the encoding scheme employed in our study
is impervious to the effect of chromatic dispersion, which often leads to problems in
long-distance optical signal transmission. As detailed in the Methods section, chromatic
dispersion does not alter the photon counts in signal pulses, which carry the bit information.
However, alternative schemes, such as encoding bits into the pulses’ shapes, may still
be susceptible to chromatic dispersion, potentially resulting in an increased number of
bit errors.

4. Optical Time-Domain Reflectometry

We now discuss in detail the experimental loss control for the 1707 km line, concen-
trating on the OTDR [20,21]. In telecommunications, the OTDR is typically only applied
to the segments of the transmission line that do not contain amplifiers. This is because
standard amplifiers include elements, like optical circulators, that prevent the return of
backscattered light, making it not possible to analyze the line in its entirety. However, our
BEDFAs, a schematic of which is depicted in Figure 3b, are designed without these elements.
Figure 4a displays the experimentally obtained reflectogram for the entire 1707 km line,
including 32 BEDFAs. The measurement, which took 180 s (including both the physical
measurements and the computational processing of the obtained data), was conducted
at a wavelength 1530 nm, with a probing-pulse duration of 200 ns, and averaging over
5000 pulses’ runs. The reflectogram exhibits a characteristic saw-like pattern. This indicates
the sharp increases in backscattered power at each BEDFA, providing a visual map of their
positions along the fiber.

After obtaining the line’s reflectogram, we employ the L1-filtering technique [27] to
infer the loss profile of the line. This technique consists of approximating the reflectogram
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with a weighted sum of step-like functions (corresponding to local leakages) and a linear
function (describing natural Rayleigh scattering losses) through minimizing the L1 norm of
the steps’ weights. Then, removing the linear part of the function and analyzing only the
remaining step-like functions, we separate local leakages from the natural losses and back-
ground noise. Optical amplifiers additionally introduce step-like functions with positive
discrete derivatives which must also be filtered out. After this filtering, we obtain the local
losses from the remaining step-like functions by calculating the drops of these functions.
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Figure 4. The OTDR leakage detection in the 1707 km long fiber line. (a) Detailed reflectogram of the

entire 1707 km line, featuring 32 optical amplifiers. The measurements are conducted at a 1530 nm

wavelength and with a probing-pulse duration of 200 ns; the reflectogram represents an average of

5000 individual probing-pulse runs. (b) Enhanced view of the 50 km segment near the end of the line:

the reflectogram displays six local leakages (fusion splices), deliberately introduced to demonstrate

the capacity of the loss control. (c) Loss profile for the same 50 km segment, illustrating the leakage

measured in relation to the local power immediately preceding each leakage point. (d) Same loss

profile, but with leakage quantified in relation to the initial input power.

Panels (b) and (c) in Figure 4 illustrate the reflectogram and the loss profile (with
leakage normalized to the power just before the corresponding scattering point), respec-
tively, for a 50 km section subsequent to the 31st amplifier within our 1707 km line. The
leakages, ranging from 1 to 5%, were purposefully induced in this specific segment to
demonstrate the operation of the loss control. Figure 4d additionally presents the same
loss profile but with leakage normalized to the initial power of the probing pulse, this loss
profile is used for determining the value of rE utilized in the protocol. Despite the extensive
length of the fiber, we achieved impressive OTDR precision, ranging from 0.01 dB at the
beginning of the fiber section to 0.07 dB at the section’s end. We calculate this precision
by constructing four individual reflectograms—each one representing an average over
1000 separate probe runs—and then, obtaining the standard deviation over these four
reflectograms for each distance.

Figure 5a presents two independently obtained reflectograms of the 4 km long fiber
section at the end of the line. In turn, Figure 5b depicts the corresponding profiles obtained
from the reflectograms by subtracting the linear components. Remarkably, the traces
corresponding to the independent OTDR measurements exhibit identical patterns with
a correlation coefficient of 0.95. This confirms that the observed features are not mere
noise but are, in fact, unique patterns due to the amorphous structure of the silica fiber.
Considering the significant distance of over 1700 km from the reflectometer, the consistency
in replicating this pattern is highly notable. As the silica amorphous structure cannot be
replicated, the observed distinctive pattern is a physically unclonable function [28–31]. Any
physical tampering with the line would, thus, alter its characteristic ‘fingerprint’. With
the BEDFAs maintaining the initial power levels of both the OTDR probing pulse and its
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backscattered components across the line, we can, thus, verify this unique ‘fingerprint’ and
check the integrity of the fiber over the entire 1707 km line [22].
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over 5000 pulses. (b) Subtracting the linear component of the reflectograms yields reproducible

patterns of the backscattered signal, which correlate with a coefficient of 0.95.

5. Statistical Fluctuations and Technical Noise

Experimental key distribution deals with finite data samples, whereas theoretical
security proofs operate with probabilities. To bridge these two scenarios, the notion of the
secret key and the security proof in the finite data regime can be properly modified [32]. In
particular, this modification involves estimation of the upper bounds of the deviations of
measurable statistical average values from their ideal expectation values and refining the
formulas for the secure key rate to include experimentally measurable parameters derived
from finite data sets. This approach requires introducing an additional parameter, a level
of confidence that the actual secure key, obtained from the measured statistics, and the
ideal key, based on probabilistic values, are indistinguishable with the given confidence
level. Typically, the confidence level is selected to be 1 − ϵ, with a pretty small value
of ϵ ≃ 10−10 ÷ 10−12, which corresponds to the tolerance interval with 6 ÷ 7 standard
deviations. Below, we address the issue of discrepancy between the statistical mean values
and the corresponding probabilities in our protocol.

Note that besides statistical fluctuations, there are additional noise sources that also
impact the secret key rate. In the case of our protocol, the leakage rE is obtained via the loss
control procedure that operates on a finite number of probing pulses, thus estimation of rE

is influenced by the finite data statistics as well. Moreover, measurements at the loss control
part are inherently noisy due to various technical imperfections, which further affects
rE. Security analysis of key distribution protocols typically focuses only on the statistical
fluctuations due to the finite size of data used for key generation. In these protocols, all
types of noise and imperfections in the communication line lead to an increased quantum bit
error rate, or another metric indicating the potential presence of Eve. An important aspect
of our protocol is that the secret key rate depends not only on the quantum data, but also on
the line control procedure. The latter involves estimation of the local leakage rE, which is
affected by both statistical fluctuations and various technical imperfections. Following the
theory of our protocol outlined in Ref. [16], the secret key rate depends on values rE, |γ0|2,
and |γ1|2. The secret key rate implies certain fixed values of γ0/1 obtained through the
secret key rate maximization, while in practice these values are derived from a calibration
process that is inherently noisy due to the finite number of calibration measurements.
The value rE is a free parameter that reflects the amount of eavesdropping, which we
estimate by OTDR. We estimate the probability that our security will be compromised to
be about 10−9, hence the expectation values rE, γ0, and γ1 (utilized in the secret key rate
formula) should fall within six standard deviations from the corresponding sample mean
values. We also assume that all measurement results that are used for estimation of rE,
|γ0|2, and |γ1|2 are independent and identically distributed.
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First, we start with the photon numbers |γ0|2 and |γ1|2. Ideally, these values are fixed,
and can be found by optimization of the secret key rate for any given communication
line. In practice, the pulses’ intensities are calibrated to a reference, which involves a finite
number of intensity measurements. Specifically, we run a sequence of 50,000 calibration
signals and gather the resulting voltage statistics from the detector. We then translate this
statistics into photon numbers, and obtain the mean values and the standard deviations.
The corresponding fluctuations surpass the shot noise due to the technical noise inherent to
the electronics. To evaluate the impact of the finite statistics of the experimental dataset on
the precision of the estimated values, we employ the previously mentioned assumptions.
As an example, we obtain the sample mean values |γ̃0|2 = 9990 and |γ̃1|2 = 10,550
and standard deviations σ̃0 = 450 and σ̃1 = 600, which correspond to the estimates
|γ0|2 = |γ̃0|2 − 6σ̃0/

√
50,000 ≃ 9980 and |γ1|2 = |γ̃1|2 + 6σ̃1/

√
50,000 ≃ 10,570.

Next, we estimate the value rE measured via the OTDR. Let the relative power levels
of the light backscattered before and after the point of the local leakage be Db and Da,
respectively. We measure the difference r̃E = Db − Da by collecting 20 reflectograms each
obtained by averaging over 5000 probing pulses. Based on the experimental data, we
obtain the sample mean r̃E ≃ 0.0146 and standard deviation σrE

≃ 5 · 10−4. To fall within
the 6σ interval, the statistical estimate is rE = r̃E + 6σrE

/
√

20 ≃ 0.0153. After long-term
monitoring of the communication line, we find that these are quite typical values. Thus, we
set an upper bound rE = 0.02, which, according to our observations, is always satisfied.

In the next section, we utilize the calculated inaccuracies of rE, |γ0|2, and |γ1|2 to
compute the key rates (see Figure 6b,d) and perform the comparison with the asymptotic
limit (Figure 6a,c).

a b

c d

Figure 6. Secret key generation rate as a function of the observed parameters for different values

of the block’s length M. We take that Eve is located right after Alice’s side, and the probability of

a conclusive bit measurement result is p✓ = 0.42%. (a) Key rate dependence on BER (rE = 2%),

asymptotic limit. (b) Key rate dependence on BER (rE = 2%), the statistical fluctuations are taken

into account. (c) Key rate dependence on rE (perr = 34%), asymptotic limit. (d) Key rate dependence

on rE (perr = 34%), the statistical fluctuations are taken into account.
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6. Advantage Distillation and Final Key Length

Scattering losses and amplifier noise in a long transmission line raise the bit error
rate (BER), perr, which in the case of our 1707 km line reaches as much as 34.0%. Under
such conditions, the standard error correction based on the low-density parity-check
(LDPC) codes and privacy amplification are insufficient for securing a key against potential
adversaries. To increase the tolerance to errors and harvest the key even with perr = 34.0%,
we employ the so-called advantage distillation technique [33–36].

The advantage distillation is conducted after the postselection but before the error
correction stage. During this phase, the legitimate users divide their sifted strings into
blocks of length M. For each block a ∈ {0, 1}M, Alice publicly declares a syndrome of
the block according to the repetition code with the block’s length M. In this way she
announces that her block is either a or a (the overline stands for the inversion of a). If Bob’s
corresponding block coincides with a or a, the users agree to count it as a single bit of the
raw key (e.g., a means 0, a means 1), otherwise it gets discarded. The probability for a block
to survive this stage is equal to pM

err + (1 − perr)M, while the modified error probability in
the new raw key is p̃err = pM

err/
(

pM
err + (1 − perr)M

)

. For more details on the technique, see
Methods section.

Following the advantage distillation, Alice and Bob carry out the standard error
correction and privacy amplification procedures, obtaining the final secret key. If L is the
number of bits that Alice initially sends to Bob, the length of the final key is

Lf =
p✓L

M

(

pM
err + (1 − perr)

M
)

·
[

1 − f ( p̃err)h2( p̃err)− I(A : E)

]

, (1)

where p✓ is the proportion of bits that are not discarded during the postselection, and (pM
err +

(1 − perr)M)
/

M corresponds to the bit reduction due to the advantage distillation. The
term in the square brackets results from the Devetak–Winter equation [37] and represents
the informational advantage of Alice and Bob over Eve: the classical information disclosed
to Eve during error correction is f ( p̃err)h2( p̃err), where the parameter f ≥ 1 characterizes
the efficiency of a particular correction code, h2 is the binary entropy, and I(A : E)
is the information that Eve can extract from the intercepted proportion of signal (see
Equations (3) and (4) in Methods).

Figure 6 shows the final key generation rate in the presence of advantage distillation
as a function of the observed parameters. This is illustrated in two scenarios: one in
the asymptotic limit (see Figure 6a) and the other accounting for finite-size effects and
fluctuations (see Figure 6b). The five curves in each plot represent different values of the
block’s length M; M = 1 corresponds to the scenario without advantage distillation. In the
asymptotic limit, the system’s tolerance to the BER can be improved from 20% up to 39%,
while in the finite-size case, it reaches 37%. However, this increase in the BER tolerance
comes at a cost, notably reducing the key generation rate by two orders of magnitude. Such
high critical BER values are achieved for M = 5; further increase in M provides a slight
improvement in the critical BER, yet, it leads to a much more significant decrease in the
key rate.

The advantage distillation also significantly enhances the system’s resilience against
the leakage rE. Figure 6 shows the final key distribution rate as a function of rE for the fixed
BER value of perr = 34 %, as well. Here, Figure 6c,d correspond to the asymptotic and
finite-size regimes, respectively. It is important to note that for perr = 34 % the secure key
distribution becomes unattainable without advantage distillation. Nevertheless, advantage
distillation with any non-trivial block length (M ≥ 2) solves this problem and yields
non-negative secret key rates. Particularly, with a block length of M = 5, successful key
distribution is achievable for leakage rates as high as 4.8% in the asymptotic limit and up
to 3.4% in the finite-size scenario.
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Our results add to the findings established in our previous publications [17,38], in
which we explored various strategies to enhance the efficiency of key distribution through
modifications of post-processing.

7. Key Distribution Results

We now present the results of the key distribution itself. With the parameters rc = 2%,
|γ0|2 = 10, 000, and |γ1|2 = 10, 600, leveraging a random number generation rate of 5 Mbps
at Alice’s side, and advantage distillation with a block size of M = 3, we achieve a key rate
of 0.9 bps across our 1707 km optical fiber line. This assumes that the value of rE is below
rc, as ensured by the loss control precision. This achievement, along with the key rates
obtained at other transmission distances using the same setup, is depicted in Figure 7 (all
results are obtained in the asymptotic limit). We note that we did not encounter radiation
generation, so despite comprising the 32 BEDFAs, the line remains stable.

348 km

749 bps 656 km

469 bps
1079 km

168 bps

1707 km

0.9 bps

Figure 7. Graphical representation of the key rates achieved at various transmission distances using

our experimental setup. The key rate of 0.9 bps is achieved over the 1707 km line. Additional key

rates for other transmission lengths are obtained with similar equipment. All results correspond to

the asymptotic limit.

To assess the statistical quality of the distributed bits, we accumulate them over an
extended period of time and divide them into 2930 segments, each containing 1024 bits.
We then compute the average and variance of the bit sum per segment across the entire en-
semble, yielding 512.4 and 255.9, respectively. This result closely aligns with the theoretical
expectations of 512 and 256, corresponding to the binomial distribution. Such consistency
with the binomial distribution additionally underscores the robustness of the realized
QCKD. Further analysis of the key’s statistical properties, including a comprehensive
examination with NIST testing methods, will be uncovered in our upcoming publication.

8. The QCKD Network

Beyond the point-to-point secure communication, the expanding digital landscape
demands the quantum-resistant key distribution solutions for multiple users [39–46]. It
turns out that the operational principle of our QCKD opens the possibility of building a
zero-trust key distribution network that does not require connecting everyone to everyone.
This section outlines such a network architecture, where users can alternate between
receiving and transmitting modes under the supervision of other network participants.

Consider a network with three users, Alice, Charlie, and Bob, connected via a direct
quantum channel; see Figure 8a. Each pair of users is also linked via a classical authenticated
channel, which is not depicted. Each user is equipped with a switch that enables the
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reception of signals through this channel or the bypassing of signals to the intended receiver.
When Alice initiates a signal transmission to their adjacent neighbor, Charlie, they must
fully capture and measure it, blocking the next participant, Bob, from this transmission.
Alternatively, if Alice targets their signal for Bob, Charlie’s switch must be configured to
direct the signal exclusively to Bob. A critical aspect of the proposed communication system
is the ability of the users to monitor channel losses end-to-end. This allows Alice and Bob
to ascertain that Charlie does not intercept—or even partially access—the signal when it is
not designated for him. Upon detecting any unauthorized intervention by Charlie, such
as signal tapping, the transmission is immediately terminated, and the affected bits are
discarded. The classical authenticated channels enable user coordination, allowing them to
decide who will participate in the key distribution and in what order.

Alice BobCharlie

a

A B

b A B

K
1

K
3

K
2

c

Figure 8. Simplest QCKD networks. (a) Tripartite network where the users (Alice, Bob, and Charlie)

are linked by a single quantum channel. Alice can send a key to either Bob or Charlie. Depending

on who is the intended recipient, Charlie needs to alternate between receiving and transmitting

modes (under the watchful eye of Alice and Bob). (b) Within a linear chain of users, User A has the

option to transmit keys to User B through various sets of reproducers. These sets, colored red, green,

and blue, provide different pathways for the keys. (c) A network structure equivalent to (b). User A

distributes different initial keys (K1, K2, and K3) through the red, green, and blue sets of reproducers,

respectively. As these sets are mutually exclusive, no single reproducer has knowledge of the entire

final key K = H[K1, K2, K3].

While it is feasible for the sender to transmit the key directly to the recipient, bypassing
all intermediate nodes, this approach may not always be viable due to the decrease in
the key rate with increasing distance. Therefore, instead of bypassing all intermediate
users, it may be more advantageous to bypass only some of them. The others would then
act as trusted nodes, measuring the signal and resending it; we will refer to these users
as reproducers. In this scenario, the sender and recipient may employ the secret sharing
scheme [47–49]. Consider the one-dimensional network depicted in Figure 8b. Within
this user chain, three different initial keys, K1, K2, are K3, are distributed via different sets
of reproducers, marked as red, green, or blue. By controlling leakages across the entire
line—either collectively or through some central entity that does not have access to the
keys themselves—it is ensured that only the designated group of reproducers handles a
specific initial key. Thus, while each group of reproducers knows their respective Ki, they
lack knowledge of the other initial keys. The final key, K, is composed of all initial keys
(e.g., through a hashing algorithm, K = H[K1, K2, K3]) and remains unknown to any of the
reproducers. The introduced control mechanism effectively increases the connectivity of
the QCKD network: what was initially a simple one-dimensional user chain in Figure 8b
becomes equivalent to a more interconnected network with multiple branches, as illustrated
in Figure 8c.

The design of the switches remains a subject of future investigation. Key requirements
for such switches include minimal local leakage and the capability for extreme transmittivity
control—meaning the switch should either fully transmit or completely block the signal.
Potential designs for these switches may encompass configurations like the Mach–Zehnder
interferometer, incorporating beam splitters and at least one phase modulator, as well as
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other optical elements such as microelectromechanical systems (MEMSs), lithium niobate
(LiNbO3), and optomechanical components.

9. Discussion

In this study, we have demonstrated the practical implementation and performance of
the QCKD over an extensive 1707 km fiber line. We have shown the robustness of the sys-
tem’s various components, in particular, the effectiveness of the used equipment, including
the BEDFAs and loss control and advantage distillation procedure. These developments
collectively enhance the scalability of the QCKD solution, enabling quantum-protected
communication over unprecedented distances. Furthermore, we have discussed the poten-
tial of the QCKD in multi-user key distribution, paving the way for broader applications.
The subject of QCKD networks will be further studied in our upcoming publication.

A notable feature of the keys generated through the QCKD is their everlasting security,
which is inherent to quantum cryptography [50]. Unlike classical cryptography, once the
keys are securely distributed through the QCKD they remain impossible to compromise
by attacking the QCKD hardware, including the loss control components. Our findings
establish the viability of device-dependent quantum cryptography and underscores its
remarkable capacity.

10. Methods

10.1. Chromatic Dispersion Effect

Long-distance transmission of optical signals usually faces the problem of chromatic
dispersion [51]. Chromatic dispersion is the variation in the refractive index of an electro-
magnetic wave across different optical frequencies. When an optical pulse propagates, it
travels at the group velocity, but the phenomenon known as a group-velocity dispersion
(GVD) contributes to the widening or broadening of the pulse. The effect blurs the bit en-
coding wave packets so the adjacent ones partially overlap. In the case of key distribution,
this may cause additional errors and limit the key rate [52–54].

We estimate the influence of chromatic dispersion on a single pulse, which is pre-
sented in the form of a super-Gaussian pulse at the beginning of the transmission line.
The amplitude’s dependence on time T for a super-Gaussian pulse is proportional to

exp(−(T/4T0)
2m). In our case, m = 2 and T0 ≈ 1.2 ns. The relative time broadening of

such a pulse can be calculated according to the following equation; see chapter 3 in Ref. [51]:

α =

√

√

√

√1 + m2
Γ(2 − 1/2m)

Γ(3/2m)

(

β2z

T2
0

)2

, (2)

where Γ(·) is the gamma function, z is the transmission distance, and β2 is the GVD constant.
In our case of 1530 nm wavelength, β2 = −19.7 ps2/km. The resulting broadening α

at a distance of 1707 km is only 0.08% of the initial time width and can be considered
insignificant compared to the time interval between adjacent pulses, which is about 5 ns.

In the case of phase randomization, chromatic dispersion significantly alters the
temporal shapes of propagating pulses. We conduct numerical simulations to examine the
evolution of bit-encoding wave packets for a representative sequence of phase-randomized
pulses. Figure 9a illustrates the temporal profile of optical pulses corresponding to the
bit sequence ‘101101’ and randomized phase shifts. The amplitude of the initial signal is
multiplied by a phase factor determined by the green curve. After propagating through the
whole 1707 km line, the shapes of the pulses are altered at moments corresponding to the
phase shift switching, as shown in Figure 9b. However, the total number of photons (or
energy) in each pulse remains constant.

Consequently, in the case of the photon number encoding scheme implemented in this
experiment, chromatic dispersion does not impact the key distribution, as the modification
of the pulses’ temporal profiles does not influence the measurement results. However,
in the scenario of shape coding—where bits are encoded into the temporal profiles of the



Entropy 2024, 26, 437 14 of 18

pulses—the legitimate users should either refrain from phase randomization or employ
methods to mitigate chromatic dispersion [55].

� �

Figure 9. Numerical simulations of the influence of chromatic dispersion on phase-randomized

signal pulses propagating along a 1707 km line. (a) Temporal profile of signal’s optical power for a

bit sequence “101101” (dark red curve) and temporal profile of randomized phase shift (green curve).

The time duration of each bit is 2 ns. The optical power for bits “0” and “1” corresponds to average

photon numbers of 10,000 and 10,600, respectively. (b) Temporal profile of the signal’s optical power,

influenced by chromatic dispersion (orange curve), at a distance of 1707 km compared to the initial

temporal profile. The shape is modified at moments when the phase shift switches from one value

to another.

10.2. Advantage Distillation Specifics

The advantage distillation procedure is schematically shown in Figure 10. The example
raw string of a length 36 bits is divided into 12 blocks. For each block a, Alice announces a
and ā and the rule according to which blocks will be translated to the bits of the new string.
If Bob’s block coincides with a or a, it is transformed into one bit of a new string (see 2nd,
3rd, 6th, 8th, 10th, and 11th blocks in Figure 10), otherwise it is discarded. The length of the
blocks, M, should be chosen in accordance with the observed parameters (the raw BER,
perr, and leakage, rE) to achieve the maximally attainable key rate.

Alice’s new string

Alice’s raw srtring

Alice’s

announcements

Bob’s raw string

Bob’s new string

1

1  1  1

000      0

111      1

1  1  1

1

1

1  0  1

010      0

101      1

1  0  1

1

0

0  1  1

011      0

100      1

0  1  1

0

0

0  1  0

010      0

101      1

0  1  0

0

0

0  0  1

001      0

110      1

0  0  1

0

1  0  0

011      0

100      1

1  0  1

0  0  1

001      0

110      1

0  1  1

0  1  0

010      0

101      1

0  0  1

1

1  0  0

011      0

100      1

0  1  1

0

1  1  0

001      0

110      1

1  0  0

1  1  1

000      0

111      1

1  1  0

1  0  1

010      0

101      1

1  1  1

block 1        block 2        block 3        block 4        block 5       block 6         block 7       block 8        block 9       block 10     block 11       block 12

errors in the raw string error in the new string

Figure 10. Schematic of the advantage distillation procedure. Alice divides the raw string into blocks

of length M (here, M = 3). For every block, Alice publicly announces two pieces of information: the

block’s actual value and its bitwise inverse (without telling which one is which). If Bob’s block does

not match either of the values Alice announced, both Alice and Bob discard that particular block (the

discarded blocks are marked as “×”). The remaining blocks are translated into a new bit string with

a lower BER (we mark a new bit which is incorrect).
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In the most general case, Eve’s information I(A : E), appearing in Equation (1),
depends on the values of the pair of blocks between which the eavesdropper has to
distinguish, {a, a}. The estimate of the intercepted information is given by the maximal
value of the Holevo bound [19] for all the ensembles corresponding to different blocks a:

I(A : E) ≤ max
a ∈ {0, 1}M

χ(Ea), (3)

where Eve’s ensemble, conditioned on Alice having announced block a, is the following:

Ea =

{(

1

2
, ρ

(a1)
E ⊗ . . . ⊗ ρ

(aM)
E

)

,

(

1

2
, ρ

(a1)
E ⊗ . . . ⊗ ρ

(aM)
E

)}

. (4)

Here, ai stands for the i-th bit of block a and ρ
(ai)
E is Eve’s density matrix for this single bit

ai. Such an ensemble appears when Eve possesses quantum memory and can maintain
intercepted states until blocks’ announcements.

The density matrix of Eve for a single bit is influenced by the position of the leakage
and the state coming from Alice’s end. In this work, we consider that the adversary’s
intrusion occurs immediately after Alice. Ideally, Alice prepares a pure coherent state
with an amplitude γai

and randomizes its phase. However, in our experimental setup,
the electronics controlling the amplitude modulation of the generated states (refer to
Figure 3) do not provide a predetermined value of controlling voltage for a fixed bit of a key.
Consequently, for a given bit ai, Alice prepares a mixture of phase-randomized coherent
states with a probability distribution pai

(|γ|), which is determined by the electronics in the
amplitude modulator. The density matrix of the eavesdropper’s subsystem can be written
as follows:

ρ
(ai)
E = ∑

|γ|
pai

(|γ|) 1

2π

2π
∫

0

dφ
∣

∣

∣
eiφ√rE|γ|

〉〈

eiφ√rE|γ|
∣

∣

∣

E

= ∑
|γ|

pai
(|γ|)e−rE|γ|2

+∞

∑
n=0

(

rE|γ|2
)n

n!
|n⟩⟨n|E . (5)

Substituting Equations (4) and (5) into Equation (3), we estimate the upper bound of the
eavesdropper’s information. The estimation is in turn utilized for computing the secret key
generation rate according to Equation (1); the results are depicted in Figure 6.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-digital converter

AM Amplitude modulator

BEDFA Bidirectional erbium-doped fiber amplifier

BER Bit error rate

BS Beam splitter

EDFA Erbium-doped fiber amplifier

FPGA Field-programmable gate array

GVD Group-velocity dispersion

MEMS Microelectromechanical system

OTDR Optical time-domain reflectometry

PM Phase modulator

QCKD Quantum-Protected Control-Based Key Distribution

QRNG Quantum random number generator

RSG Random signal generator

WDM Wavelength-division multiplexing
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