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Docteur ès sciences, mention physique

par

Elisa Fenu

de

Bologna (Italie)
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GENÈVE

Atelier de reproduction de la Section de physique

2011



2



Résumé

L’objet d’étude de la cosmologie est notre propre Univers conçu comme un système physique

obéissant aux lois de la physique valides sur Terre. Dès lors, le dessein des cosmologistes

est de parvenir à la compréhension des origines de notre Univers et de son évolution au

travers de stages temporels distincts par leurs dynamiques propres. Un des aspects les

plus stimulants de la cosmologie moderne est la possibilité pour les physiciens d’avoir un

aperçu et finalement de tester un éventail d’énergies si hautes qu’elles ne peuvent pas être

atteintes en laboratoire. Cet objectif peut être réalisé par l’étude de processus physiques

caractéristiques des premiéres secondes suivant le Big-Bang, alors que la température était

extrêmement haute et que des mécanismes n’ayant pas encore de confirmation physique

ont pu joué un rôle important.

Dans cette thèse, j’ai étudié l’Univers jeune au travers des empreintes que des mécan-

ismes à hautes énergies ont pu laisser dans le fonds diffus cosmologique et dans le fonds

des ondes gravitationnelles. A l’aide des nouvelles données, nous sommes sur le point

d’atteindre, d’ici quelques années, un niveau de précision nous permettant d’accéder à une

compréhension plus profonde des processus typiques de l’Univers issu directement du Big-

Bang, et ainsi, de tester la physique aux très hautes températures d’alors. J’ai en particulier

concentré mes recherches sur deux traits fondamentaux différents qui ont pu caractériser

l’Univers jeune: les champs magnétiques primordiaux et les défauts cosmologiques.

D’un côté, nous nous intéressons à la question qui concerne l’origine des champs mag-

nétiques observés aujourd’hui dans les galaxies et les clusters: il demeure flou de savoir

si de tels champs ont été générés par un champs primordial provenant de l’Univers jeune

et de ses processus à hautes énergies ou s’il s’agit du résultat de scénarios de séparation

de charges lors de la formation tardive des structures. Selon la première option, nous

devrions alors pouvoir détecter les empreintes d’un tel champs dans le fonds diffus. Une

telle analyse a déjà permis d’obtenir d’importantes contraintes sur les caractéristiques du

champs primordial avant la recombinaison, telle son amplitude initiale. Nous avons d’abord

analysé les interactions entre les champs magnétiques et les ondes gravitationnelles, con-

firmant que ces interactions ne sont pas une cause d’amplification de ces deux quantités

physiques, au moins jusqu’au second ordre dans les perturbations. Concernant d’autres

conséquences de cette interaction, nous avons suivi une idée présentée auparavant dans la

littérature selon laquelle nous pouvons obtenir des limites supérieures plus sévères qu’au

travers d’une analyse du fonds diffus sur l’amplitude du champs primordial, à supposer

qu’il provienne de mécanismes causaux. Appliquant les limites de la nucléosynthèse sur

la densité d’énergie des ondes gravitationnelles produites par un champs primordial alors

que l’Univers est encore très jeune, nous avons pu exclure la plupart des mécanismes pri-

mordiaux proposés pour générer des champs magnétiques. En effet, nous avons confirmé

que des champs générés de manière causale n’ont pas assez de puissance à grande échelle

même s’ils présentent initialement une composante hélicöıdale les faisant évoluer par cas-

cade inverse. Les limites dans le cas de champs hélicöıdaux sont plus souples que celles

obtenues pour des champs standards non hélicöıdaux, mais ils ne peuvent pas avoir générés

les champs observés dans les galaxies et les clusters, même si la plus efficace amplification

dynamo est admise. Seuls des champs magnétiques apparus durant l’inflation avec un spec-

tre rouge, ou ceux produits durant une transition de phases QCD tardive peuvent avoir

assez de puissance pour produire le champ présent aujourd’hui. Pour traiter d’un autre

chapitre concernant la génération d’un champs magnétique primordial dans l’Univers je-
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une, nous avons étudié la possibilité de produire un champs faible à travers une dynamique

non linéaire créant des courants vorticaux lorsque l’approximation du couplage fort entre

les photons et les baryons n’est plus valide, proche de la surface de dernière diffusion. Ce

mécanisme est nécessairement présent dans l’Univers primordial et a déjà été analysé par

différents auteurs. Dans le but de reconsidérer ce processus dans toute sa complétude,

nous avons pris en compte, pour la première fois dans la littérature scientifique, toutes

les contributions au spectre de puissance du champs magnétique résultant. A l’aide d’un

calcul numérique, nous avons obtenu une amplitude du champs trop faible pour soutenir

les mécanismes d’amplification nécessaires afin d’expliquer le champs observé aujourd’hui.

Ceci signifie que le champs faible généré par la magnéto-genèse autour de la recombinai-

son n’a pas assez de puissance pour expliquer le champs magnétique que nous observons

aujourd’hui. Un autre pas important dans l’énigme des champs magnétiques consiste en

l’analyse de l’influence des particules relativistes, non sujettes aux interactions avec le fluide

cosmique avant la recombinaison, sur les empreintes qu’un champs magnétique constant

laisse sur les anisotropies du fonds diffus. Alors qu’un failbe champs initial produit prin-

cipalement un quadrupole, nous observons comment ce quadrupole peut être effacé par

compensation des tensions anisotropes du champs et des particules relativistes circulant

librement dans un Univers anisotrope. Cette compensation résulte en une isotropisation

de l’Univers et, dans le cas pour lequel ceci reste vrai même durant la recombinaison, dans

une annulation complète du quadrupole généré par le champs magnétique. Si nous prenons

les neutrinos primordiaux dans le rôle des particules relativistes, cet argument dépend bien

entendu de leur masse, et la suppression finale sera d’autant plus efficace si les neutri-

nos restent longtemps relativistes. Même si aucune compréhension définitive concernant

l’origine des champs magnétiques observés aujourd’hui n’a été atteinte, des réponses plus

claires ont pu être apportées à quelques questions fondamentales de l’option primordiale.

Il est évident que davantage de recherches sont nécessaires pour résoudre complétement

l’énigme des champs magnétiques.

Un autre aspect de mes recherches était concentré sur les ondes gravitationnelles pro-

duites par un champs scalaire ayant brisé une symétrie globale. Nous obtenons que la

partie du spectre qui concerne les longueurs d’ondes plus grandes que l’horizon lors de la

génération est plat avec une amplitude qui, pour quelques valeurs d’espérance de vide, est

dans la fourchette de sensibilité de certaines observations. En d’autres mots, ce spectre

est très semblable à celui produit par des perturbations tensorielles primordiales générées

durant l’inflation. Ainsi, il est important de trouver une façon efficace de démêler ces deux

spectres dans le cas d’amplitudes similaires. Ceci est la motivation nous ayant poussés à

entreprendre l’analyse de la polarisation B du spectre produit par les défauts, ceci dans

le cadre d’un second projet sur ce même sujet. Dans le but de détecter ou de mieux con-

traindre la contribution des défauts cosmologiques au fonds diffus, nous avons étudié la

polarisation B locale du fonds diffus comme étant produite par différentes sortes de dé-

fauts cosmologiques et par des perturbations inflationnaires primordiales. Nous soulignons

d’abord qu’étant donné que les expériences réelles du fonds diffus ne sont pas des échan-

tillons idéals des anisotropies de la température couvrant tout le ciel, l’analyse de modes

B locaux, qui ne dépend pas des conditions aux bords, confère de grands avantages par

rapport aux modes B standards non locaux. En effet, dans la polarisation locale, le signal

du défaut est substantiellement augmenté par apport à l’inflationnaire, alors que, si nous

considérons le cas non local, ce n’est pas le cas, car le rapport signal/bruit pour deux

modèles est presque équivalent. De plus, nous avons aussi montré que la comparaison
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de ce rapport entre deux signaux correspondant à des portions du ciel de taille différente

indique que, lorsque nous agrandissons la taille d’une portion observée du ciel, le rapport

de l’inflation augmente significativement, alors que celui du défaut ne change pas. Ceci

est une conséquence de la nature non causale de l’inflation, qui présente ses caractères

principaux dans un éventail d’angles correspondant à des distances plus grandes que le

rayon de Hubble à la recombinaison. Si nous considérons donc des morceaux de ciel corre-

spondant à des angles plus petits, nous nous attendons à extraire le signal correspondant

aux processus causaux comme la génération des perturbations des défauts. Avec notre

proposition d’analyse du ciel, nous prévoyons une amélioration des limites supérieures sur

la contribution des défauts aux anisotropies du fonds cosmologique de plusieurs ordres de

grandeurs.

La recherche présentée dans cette thèse représente d’importantes briques sur le chemin

de la construction d’une compréhension plus complète et profonde des mécanismes physique

caractéristiques des premières secondes après la création de notre Univers, un régime de

température et d’énergies autrement inaccessibles en laboratoire. De plus, ceci souligne

également les questions ouvertes qui restent non résolues.
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Chapter 1

Introduction

After almost four years of Ph.D. in Cosmology, I have achieved the unquestionable ability

of listing the first most frequently asked questions about my field of research. Most of

these questions are very difficult to be answered and often the physical community is still

doubting about a concluding common understanding of the physical mechanism responsible

for a given phenomenon. Personally, I always feared them: being a physicist, I am part

of the group of few people that is supposed to know almost all the answers, while most of

the time the real state of the art obliges us to reply that no conclusive interpretation is

yet known. Moreover, on the personal point of view, I have to admit that most of these

questions were and are questions that I ask myself still today.

Here are the top three: “Is the Universe finite of infinite?” and “Is the Universe going

to collapse again and finish?”, not to mention the most scaring one: “What is Cosmology

useful for?”.

The aim of the next few pages of this introduction is to provide my personal answer to

the most fundamental and complicated among the above queries concerning why we should

study Cosmology today. I will provide a broad picture of this field of research in order to

underline the scientific characteristics that make Cosmology be part of Physics and that,

in my opinion, are the origin of its fascination.

1.1 The basis of Cosmology

The first reasonable answer that highlights the importance of Cosmology and that could

be provided to the leading question quoted above stands in the clear evidence that this

discipline has been subject of study since hundreds of years. It is more than two millennia

that researchers and ancient time thinkers are involved in trying to understand and predict

the evolution of the Universe that surrounds us. Of course, the “Universe” under analysis

changed through the years, as well as the theoretical and mathematical techniques at

disposal for scientists and researchers. But the aim of the cosmological investigation has

always been the common need of exploring the sky around us and of providing the most

scientific answers to the fundamental question concerning the origin of our Universe.

Stating without doubts the epoch corresponding to the birth of Cosmology as the scien-

tific discipline studied today is not an easy task [1, 2]. Already in the ancient Greece, Plato,

Aristotle and Ptolemy were involved in a sort of cosmological pseudo-science intended as

a search for a picture of the Universe that would have made sense with no mention of

divine beings. Their cosmological model of the Universe consisted in a stationary Earth
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around which the Sun and all the planets were rotating. This model has been replaced

by a more sophisticated heliocentric model by Copernicus in 1543 and later emphasized

and partially confirmed by Galileo through his new telescopic observations in 1632. In the

17th century, Kepler, using Tycho Brahe’s observational data, showed that the Earth and

the other planets all travel around the Sun in elliptical orbits. The issue concerning how

the planets continued to retrace the same paths forever around the Sun remained a central

problem of Cosmology until Isaac Newton explained how objects move under gravity. He

accomplished this, with the help of other mathematicians as Euler and Laplace, by showing

how motions in the sky obey the same laws that determine the movement of bodies on

Earth. During the 19th century, remarkable new observational techniques, photography

and spectroscopy, did address cosmological questions: for the first time, scientists could

investigate what the Universe was made of and this was a major turning point in the de-

velopment of Cosmology. Another fundamental improvement towards modern Cosmology

is represented by the capability of precisely measuring distances, that remains one of the

more challenging difficulties even today. In the 20th century the astronomers started to

use basic properties of a type of variable stars called Cepheids, that are characterized by

a particular period-luminosity relation. Considering that their apparent magnitude is di-

rectly related to their absolute magnitudes (brightness diminishes with the square of the

distance), astronomers succeeded in inferring their distances from Earth.

Another turning point in the history of Cosmology is represented by the gravitational

field equations with which Einstein provided a compact mathematical tool that could

describe the general configuration of matter and space taking the Universe as a whole.

By the early 1920s most leading scientists agreed that Einstein’s field equations provide

the foundation for Cosmology. Finding realistic solutions to these equations in order to

produce a model of the Universe was a very difficult task. After a large debate, the

scientific community agreed on a dynamical expanding model that has been worked out

independently first by Friedmann and later by Lemâıtre, Robertson and Walker. This

Friedmann-Robertson-Walker (FRW) solution was in agreement with Hubble’s observations

of a linear relation between velocities and distances of galaxies in the Universe and set

the birth of the so-called Big Bang theory of the origin of the Universe, scenario that

corresponds to the background of modern Cosmology still today. The deciding experimental

confirmation supporting this model comes from 1965, when Arno Penzias and Robert

Wilson, studying the sky’s microwave ”noise” for Bell Telephone Laboratories, detected

microwaves coming from all around the sky as an universal background [3]. Indeed, back

in 1948 Gamov had argued that the Big Bang Universe would be permeated by a radiation

background with a temperature barely above the absolute zero. This radiation, that now

people refer to as Cosmic Microwave Background (CMB) was initially dominating the

expansion of the Universe and then it cooled down reaching very low energies. By the

early 1970s, Cosmology became increasingly an observational science, even if philosophical

considerations remain a central issue for a long time afterwards.

Nevertheless, despite the old history behind modern Cosmology, someone can still doubt

about whether it is a useful and scientific subject to be studied or not: the only fact that,

from a very ancient time, people has always been involved in exploring the visible Universe

does not prove unambiguously its deep importance for Science. Neglecting digressions

concerning the definition of“usefulness”of a discipline, that is not the aim of this Thesis, one
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fundamental aspect that places in the present epoch Cosmology at the center of Theoretical

Physics is given by the insights that scientists gain through the study of the primordial

Universe: they can investigate and understand laws of Physics at energies and temperatures

so high that can not be reached otherwise in laboratories. Behind the fascinating charme

of Cosmology as a discipline that studies the most fundamental and mysterious physical

system one can think of, our Universe, there is the capacity of Physics to interpret and

understand what we see in the deep sky. The above claim alone makes clear in my opinion

how far is human understanding gone up to today and how much it is important to keep

questioning in a scientific way about a Universe that seemed obscure and unachievable

until some decades ago.

Indeed, through the discovery of the CMB and the observation that it follows a black

body distribution at a temperature of 2.725 ◦K, corresponding to a frequency of ≃ 160GHz,

physicists are now able to constrain and get information concerning physical processes that

take place at energies close to the Planck scale, MP ≃ 1019 GeV, roughly 13.7 billions of

years ago.

This represents the main aim of my research: I have been trying to extract information

about physical mechanisms that may have taken place in a primordial Universe through

the imprints that they have left in the cosmological observables that we are investigating

today.

In order to be able to constrain most of the high energy processes that may character-

ize the primordial Universe, we consider mainly two different important observables: the

anisotropies of the CMB and the Gravitational Wave Background (GWB). In the last few

decades the level of accuracy with which people is able to measure the CMB is improving

significantly, therefore cosmologists have been able to reject and constrain an increasing

number of theoretical models. On the other hand, we also need more accurate theoretical

predictions in order to understand the nature of our measurements of the sky temperature

and polarization maps.

As I already mentioned above, the CMB is a prediction of the hot Big Bang model of

Cosmology and it has been first detected by Penzias and Wilson back in 1965 [3]. This

is the result of the free-streaming of photons from a redshift z ≃ 1100 towards us as a

consequence of recombination, a process that takes place at a temperature of about 0.2 eV,

or 3×105 years after the Big Bang. Before this epoch the CMB photons are tightly coupled

to the baryons and therefore they are not free to travel toward us. Once the Universe cools

down while expanding, the hydrogen and helium nuclei can bind electrons into neutral

atoms and photons start free-stream. Therefore, the CMB gives us a snapshot of the

Universe when it is only 105 years old.

Of course, from this snapshot we can also gain information concerning processes that

take place in an earlier Universe. Indeed, COBE satellite discovered in 1992 [4] the pres-

ence of small fluctuations on top of the isotropic and homogeneous background of the CMB

temperature. These variations of temperature from one part of the CMB sky to another, to

which we refer to as CMB anisotropies, seem to be compatible with the predictions given

from inflation, an early stage in the evolution of the Universe during which it expanded

exponentially fast. In this scenario density perturbations are generated in the very early

Universe, only about 10−43 sec after the Big Bang, and propagate until photon decoupling,

where we detect their imprint on the uniform CMB sky. In inflationary models [5] pertur-
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bations are generated by quantum fluctuations of the inflaton field which are set by the

energy scale of inflation. Through this mechanism, both scalar and tensor anisotropies are

generated and they need to be tested against experimental data in order to gain a deeper

understanding of the physics behind inflation.

Given the importance of the information that is contained in these anisotropies, after

their first discovery there has been a lot of activity in increasing the accuracy of the

sky maps in order to reach enough sensitivity to enable us to discriminate and constrain

several theoretical models proposed as possible mechanisms to generate such perturbations.

With this purpose, in 2001 a new NASA satellite, the Wilkinson Microwave Anisotropy

Probe (WMAP) [6], was launched and has been taking data for 7 years. The WMAP

data, together with other astrophysical data (Supernovae, Baryonic Acoustic Oscillations,

Lyman Alpha, Weak Lensing...), have lead to a stunning confirmation of the Standard

Model of Cosmology and to quite precise constraints on a minimal set of cosmological

parameters. CMB anisotropies turn out to have an amplitude of 10−5 over a wide range

of angular scales and they do not show a preferred direction in the sky. The best fit to the

data is given at the present stage of our knowledge by the so-called ΛCDM model, which

tells us that the expansion history of our Universe is now dominated by a unexpectedly

small cosmological constant M2
PlΛ ≃ 10−47 GeV4. This “new” unknown source of energy is

thought to be responsible for the recent acceleration of the Universe as it is shown by data

up to redshifts of about z ≃ 1. This picture is also consistent with almost gaussian adiabatic

initial conditions for the density perturbations generated during inflation. The relative

abundance of tensor anisotropies produced in the early stages of the Universe through a

similar scenario is measured by the tensor-to-scalar r, whose measure is important since

it is directly related to the scale at which inflation took place. This is a model dependent

quantity, but in general it is predicted to be smaller than unity, making the primordial

gravitational waves (GWs) coming from inflationary tensor perturbations very difficult to

be detected. Present constraints on the tensor-to-scalar ratio are r < 0.43 using WMAP

(5 years analysis) alone and get tight as r < 0.22 once we include other experimental data

[7].

In order to enrich Cosmology with even more precise measurements, a new European

satellite, Planck [8] has been launched by ESA in May 2009 and it is now taking data.

With Planck we expect to have a significant improvement concerning the data that we

will have soon at our disposal: it will resolve the CMB temperature anisotropies up to

multipoles corresponding to ℓ ≃ 2500 (while WMAP resolution was reaching ℓ’s of about

700), increasing the angular resolution by 3 times and the sensitivity by 10 times with

respect to its American precursor. Concerning the polarization measurements, Planck is

performing as well as WMAP was measuring temperature anisotropies.

Since Thomson scattering of an anisotropic radiation field also generates polarization,

the CMB is predicted to be polarized roughly at 5% level of the temperature anisotropies.

This polarization signal is usually decomposed in E-modes (parity even) and B-modes

(parity odd). Since scalar perturbations have no handedness, B-modes can only be sourced

by vector and tensor modes. As we already mentioned above, inflation generates both

scalar and tensor perturbations, while vectors are not generated and if they are they decay

after inflation in the radiation dominated Universe. Therefore the detection of a non-

zero B-mode signal is a way to measure the GW contribution given by primordial tensor
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anisotropies, even if it is rather weak. This translates in a determination of the tensor-to-

scalar ratio r and in a consequent derivation of the energy scale of inflation.

In a sense, primordial GWs can be understood as being the gravitational analog of the

CMB for photons and as a consequence they carry fundamental information about the early

Universe. The reason behind this comparison stands in the fact that particles with only

gravitational interaction decouple much earlier than particles which have also electroweak

or strong interactions. Therefore, gravitons decoupled at scales below the Planck scale,

namely already 10−44 sec after the Big Bang. This means that a GWB encodes in its

frequency spectrum all the information concerning the conditions in which it is created.

In other words, their extremely small cross section represents on one hand the reason why

GWs are so interesting but on the other hand this is the reason why they are so difficult

to be detected and until today we only have an indirect probe of their existence [9].

A huge effort is focused into GW detection in the present epoch: terrestrial interfer-

ometers as LIGO [10, 11] and VIRGO [12] are now being upgraded and are likely to detect

the first GW signal in the years to come. Their range of frequency is 10 − 1000 Hz, while

the space interferometer LISA [13, 14, 15, 16], which is expected to be lunched in 2020 or

even later, will have its best sensitivity around 10−3 Hz. Even more futuristic detectors

with a much more deep sensitivity as BBO or DECIGO are under study [17]. Another

very promising experiment for the GW detection is represented by the pulsar timing ar-

rays which use high accuracy timing of a collection of low timing noise pulsars to search

for GWs in the µhz to nhz frequency bands [18, 19].

As mentioned above, GWs represents the smoking-gun for inflation models, since they

are expected to be produced during the early exponential expansion of the Universe and

therefore we should be able to detect a B-mode signal of primordial origin. But not

only inflation sources GWs and therefore B-modes: there are many other cosmological

mechanisms that are thought to give rise to a GWB that in some case, for some values of

parameters describing these models, may be seen by present or future GW detectors.

One important but model-dependent mechanism that may characterize the early stages

of our Universe is pre-heating. This takes place just after inflation, roughly 10−32 sec after

the hot Big Bang, when the inflaton field has decayed and leads to a thermal bath of mainly

standard model particles. It is quite hard to work out the details of this mechanism works

but it can generate inhomogeneities leading to GWs [20, 21, 22]. The typical frequency that

characterizes the peak of the spectrum of such a GWB is ω & 1010 Hz and unfortunately

there are no GW detectors at so high frequencies.

Another proposed mechanism that may lead to a production of a significant GWB is

represented by first order phase transitions. While expanding adiabatically, the Universe

may have undergone several phase transitions due to the temperature decrease. The nature

of these transitions depends mainly on the theoretical models that describe particle physics

interactions and if they are first order transitions, they proceed via bubble nucleation. This

violent and inhomogeneous process represents an efficient source of GWs. More in detail,

during a first order phase transition, true-vacuum bubbles nucleate and collide, breaking

the spherical symmetry of the bubble walls. On one hand this generates anisotropic stresses

that source GWs, and on the other hand we have injection of energy in the plasma with

the consequent formation of magnetohydrodynamic (MHD) turbulence in the fluid. This

turbulence generates itself GWs and amplifies small magnetic fields (MFs) generated by

charge separation at bubble walls. MFs themselves are a possible source of GWs, given

the fact that they have non-zero anisotropic stresses, and this aspect represents one of the
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pillars of my research, as it will be described in the next section.

In the standard model of particle physics the electroweak (EW) phase transition is

not even a second order transition, but only a cross-over [23, 24]. But in some scenarios

beyond the standard model, see e.g. [20, 21, 22], the transition may be first order. In this

last case, a strongly first order EW phase transition can produce a GWB that peaks at a

characteristic frequency corresponding to a 1% of the Hubble time during the transition,

ω ∼ 10−3 Hz [25]. That means that the signal falls into the sensitivity range expected for

the future GW detector LISA.

Moreover, standard lattice simulations predict QCD phase transition to be a simple

crossover [26, 27]. But, considering a sufficiently large neutrino chemical potential [28], this

confinement transition may become first order [29]. In this case, GW’s typical frequency,

ω ∼ 10−7 Hz, is in the range of sensitivity of pulsar timing-array

Finally, another important source of GW backgrounds is represented by topological or

non-topological defects. They might form during early Universe phase transitions or re-

heating and have been considered in a first stage as possible candidate for seeding structure

formation [30, 31]. A later comparison with CMB anisotropies [32, 33] show that they do

not reproduce the observed dependence of the anisotropies from the multipole momenta.

This allowed us to put constraints on their contribution to density perturbations: they can

not contribute more than 10% to the total CMB anisotropies [34]. Given the fact that

defects have non vanishing anisotropic stresses, they also source GWs, whose frequency

strongly depends on the scale at which these defects are created. I will focus on the GWBs

produced by defects in Section 1.3.

Let me stress again, before describing in more detail my research, that the main aim

of this Thesis is to study some of the imprints that important physical mechanisms which

may have occurred in the primordial Universe have left in the CMB and to predict the main

features of the GW spectrum starting from a description of the sources that produced it

in order to be able to detect or constrain models and parameters that govern high energy

physics, which would not be accessible otherwise. More in detail, one of the topics on

which I concentrated my research is the investigation of a possible production of seed

MFs in the early Universe, through which we can explain the existence of the MF that

is measured today and which permeates all the galaxies and clusters reachable by our

observations. Another subject on which I centered my interest are topological and non-

topological defects, with the attempt to better constrain them through a more careful and

clever investigation of the GWB that they generate.

This fundamental interest in investigating and understanding better several scenarios

that might have happened in our primordial Universe is supported and needed by new

incoming data provided by several more accurate detectors.

1.2 Magnetic fields in the Universe: primordial or late ori-

gin?

Since their discovery in the 1950s, MFs have been detected on larger and larger scales in

our Universe [35, 36]. Initially MFs with a strength of some µGauss have been measured

in our galaxy and, more recently, in other more distant galaxies [37, 38, 39, 40] up to a

redshift z ≃ 2. They have a correlation length of some kpc. There is also evidence of MFs
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with an amplitude of 1−10−2µGauss on a scale of some Mpc in clusters of galaxies [41, 42].

Finally, measurements also detected MFs in superclusters [43].

MF measurements are in general quite challenging: Zeeman splitting detection can be

used in nearby galaxies, but once high redshift measurements are needed people usually

uses synchrotron radiation or Faraday rotation evaluations. However, through these es-

timation methods, we obtain information only concerning regions of the sky where free

electrons are present with a somehow known or predictable number density. Only recently

new evidence has been achieved for intergalactic MFs [44, 45, 46, 47]. Indeed, these MFs

can deflect the charged particles resulting from electromagnetic pair cascades of high ener-

getic gamma rays coming from distant point sources once they interact with background

photons. This deflection causes a dispersion of lower energy gamma rays coming from

inverse Compton scattering from the beam and the lack of GeV signals highlighted by

the latest FERMI data suggests a lower bound of 10−16 Gauss for the MF amplitude in

filaments and voids.

During the years and motivated by the improvements in detecting and measuring MFs

throughout more distant regions of the Universe, various mechanisms have been proposed

in the literature in order to explain their origin [36, 48, 49, 50]. The main question that

I addressed and tried to answer during these years is whether these MFs are generated in

late Universe through charge separation processes during structure formation or by ejection

from stars and galaxies, or whether they are the result of an amplification of a seed field

generated in a primordial Universe. The final part of the story is that up to today there is

yet not clear conclusive answer to this fundamental question and more work is needed on

both theoretical and experimental sides.

Concerning the first mentioned scenario related to astrophysical processes that take

place during nonlinear collapse of galaxies and clusters, there are still some difficulties in

understanding how this mechanism can lead to fields which have the observed coherence

scales and amplitudes. On the other hand, there are several high energy scenarios able

to produce MFs in the early Universe, from EW [51, 52, 53] or even QCD [54] phase

transitions to inflationary options [55, 56, 57, 58, 59].

There are still several problems and doubts even concerning how MFs can be gener-

ated in a primordial Universe: unknown physics must be invoked in order to justify the

non-minimal coupling of the electromagnetic field to the inflation sector through which a

MF can be produced on all scales during inflation. Similarly, MFs generated during phase

transitions, through the mechanism that I briefly pictured in the previous section, seem

not to have enough power on large scales in order to explain the observed large coherence

of the fields. This argument will be deeply investigated in Chapter 3.

A third possible primordial mechanism that generates a small seed MF is related to mag-

netogenesis induced by charge separation processes before recombination. This is a rather

standard mechanism through which a MF is inevitably produced on scales larger than the

ones interested by earlier phase transitions but it seems too weak to represent the conclud-

ing explanation to the MF puzzle. Chapter 4 will investigate this option in detail.

I have focused my research on the hypothesis that the observed MFs are seeded by a

primordial field generated in the very early Universe. Clearly, seed primordial fields have a

very tiny amplitude and, once they are generated, they need to be amplified. Two mainly

different physical mechanisms have been proposed in order to reach this aim during the
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evolution of the Universe and it is not yet clear which one of the two is the key for the MF

amplification.

On one hand there is the adiabatic contraction, which is related to the fact that during

structure formation the cosmic plasma is a good conductor and the MHD approximation

holds. The MF lines are therefore frozen in while galaxies and clusters grow and its ampli-

tude scales as ρ2/3, where ρ denotes the matter density of the cosmic plasma. This means

that the MF strength is enhanced by roughly 3 orders of magnitude by simple contraction,

therefore MFs of nGauss are needed initially to explain the observational data in galaxies

and clusters.

Alternatively, seed fields might have been amplified by the so-called nonlinear dynamo

mechanism, that is able to exponentially enhance the MF amplitude by a factor up to

1015, combining the turbulent motion of the ionized gas with the differential rotation of

galaxies [48]. In this case the initial MF strength can be as small as 10−21Gauss. However,

this mechanism is exponentially sensitive to the age of the Universe, therefore it is not

clear how it can amplify MFs in galaxies at higher redshifts. Indeed, at a redshift z ≃ 1

the age of the Universe is half of its present value and this would reduce the enhancement

factor to less than 108.

As I already discussed above, we can obtain information concerning the amplitude and

the structure of a MF present in our Universe before recombination through the investiga-

tion of the imprints that have been left in the CMB and GWB.

Since the MF stress energy tensor contains scalar, vector and tensor perturbations,

it might leave signatures in all the possible CMB and large scale structure observables

and, even if the small temperature anisotropies are fully accounted for by initial small

fluctuations which are generated during inflation, small deviations from these predictions

are used to limit other sources of perturbations that might be present in the early Universe.

These bounds on primordial MFs have been deeply studied in the literature and limits of

the order of 10−9 Gauss have been derived from CMB anisotropies [60, 61, 62, 63], non-

gaussianties [64, 65, 66] and structure formation [67]. The fundamental point behind this

relaxed upper-bound is that CMB limits cannot get more stringent than the nGauss and

the main reason is that CMB anisotropies give information on scales larger than those

that characterize correlation lengths of MFs produced during causal processes as phase

transitions, that are much smaller [68]. In other words, large scale CMB anisotropies are

not so sensitive to fluctuations that may be produced by a primordial MF on a very small

scale. This is summarized by the following general expression representing the MF energy

density parameter ΩB in terms of CMB anisotropies Ωrad [69]

ΩB ≃ 10−5Ωrad

(

B

10−8Gauss

)2

. (1.1)

Through the above equation we understand how a primordial MF of the order of 10−9 Gauss

would contribute to the CMB anisotropies with a 1% effect and therefore it is clear that a

MF amplitude as small as 10−22 Gauss will never be detectable in the CMB.

On the other hand, GWs are much more efficient compared to the CMB in setting

upper-bounds on initial MF amplitudes. The reason is that they give an integrated bound

on the additional amount of relativistic energy density that may have been present at the

moment of nucleosynthesis and therefore they are able to probe also much smaller scales

with respect to CMB anisotropies. This aspect is briefly discussed below and will be in-
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vestigated in detail in the following Chapter 3.

Summarizing, the main point of this research stands in the evidence that investigating

and eventually probing the existence of cosmic MFs can provide us with important infor-

mation about processes that took place at the time when such a field was generated, as well

as knowledge about turbulent dynamo scenarios that characterize structure formation and

that might amplify the seed MFs in recent stages of the Universe. Only more and more

precise measurements can help us understanding their real origin, and a big experimental

improvement is expected in the next years, given the application of new techniques as the

one proposed by Refs.[44, 45, 46, 47] or the radio observations that will be performed by

the Square Kilometre Array telescope [70], that allow us to detect the presence of MFs

in the intergalactic medium. Therefore, more research is required in order to investigate

different reasonable mechanisms for MF generation.

1.2.1 Interaction between gravitational waves and primordial magnetic
fields

As a first step in the investigation of primordial MFs, we focus on the interaction between

MFs and GWs following an idea proposed in [71]. Here the author addresses this small

nonlinear effect and claims to have found conditions under which a resonant amplification

of the second order MF can take place due to the interaction with the GWB. Similar

conclusions have been found in [72, 73].

We review this MF-GW interaction up to second order in [74], studying the modifi-

cations induced by this interaction on the MF spectrum. More precisely, we investigate

the growth of second order MF and GW energy densities on super horizon scales finding

no enhancement of both second order quantities. In contrast with the previous litera-

ture, our results are expressed in terms of measurable physical quantities that makes them

immediately understandable and clear, as it is confirmed by our following final equations

Ω
(2)
B ≃ Ω

(1)
B Ω

(1)
GW ≃ Ω

(1)
B

(

Hinf

MP

)2

≪ Ω
(1)
B , (1.2)

Ω
(2)
GW ≃

[

Ω
(1)
B

]2
+
[

Ω
(1)
GW

]2
. (1.3)

The above expressions summarize our conclusive results and represent the energy density

parameters of the second order MF and GW induced by first order quantities once the

scales cross the horizon. We find that the sub-horizon amplification is negligible and, as

it is clear from Eq. (1.2), that no enhancement of the second order MF is induced by

the interaction with first order GWs. The reason is that, since tensor perturbations grow

on super-horizon scales, the first order density parameter Ω
(1)
GW grows as well and reaches

a constant value only inside the horizon. For perturbation theory to be valid, we have

to require that this constant value at horizon crossing is much smaller than unity, and

in particular it turns out to be of the order of (Hinf/MP)2 ≪ 1, where Hinf stands for

the Hubble parameter at the end of inflation. Equivalently, we obtain comparable results

concerning the second order production of GWs, as shown by Eq. (1.3).

Finally, we underline that, since the growth comes from super-horizon evolution, con-

ductivity and other large scales plasma properties are not relevant in this analysis. This

is justified by the argument that currents are generated on sub-horizon scales, since they
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are induced by electromagnetic causal fields. Despite this simple argument, this seems a

controversial topic and has already been discussed in [75, 76].

1.2.2 Helical primordial magnetic fields: a feasible option?

Continuing with the investigation concerning the interaction between MFs and GWs, we

extend a computation first presented in [77]. Here the authors obtain very stringent upper-

bounds on primordial MFs produced by causal mechanisms, applying the nucleosynthesis

constraint on the GWs produced by the MF itself. These limits suggest that causally gener-

ated MFs do not have enough power on large scale and therefore cannot seed the observed

MF in galaxies and clusters, even considering the most efficient dynamo amplification. In

ref. [77] the authors also conclude that only MFs generated during an inflationary stage

could have enough power on large scales if their spectrum was very red.

The reason behind these strong constraints on causal MFs relies on the fact that causal-

ity implies a blue MF spectrum on large super horizon scales, whose corresponding energy

density scales like
dρB(k)

d log k
∝ k5 , (1.4)

where k is the wave number. As a consequence, the nucleosynthesis limit on the GWs

produced by such a MF, even if it is a relaxed limit, is dominated mostly by the contri-

bution of the smallest scales where the MF amplitude is maximal. Indeed, the spectrum

of GWs generated by primordial MFs turns out to have a blue large scale tail whose peak

corresponds roughly to the initial magnetic correlation length, that for causal processes is

well inside the Hubble radius at the time of MF generation. This sets very strong limits

on the MF amplitude on such scales.

In order to obtain conservative constraints, [77] and ourselves afterwards consider only

GWs produced by primordial MFs as candidates to which we should apply the nucleosyn-

thesis bound, however no other primordial sources of GWs are taken into account for this

computation. The more one adds up different contributions to the GW production, the

more the limits on the primordial MF amplitude become stringent.

In more detail, in [77] the authors assume that the primordial MF evolves via direct

cascade: it is damped on very small scales due to its interaction with the cosmic plasma,

while on scales larger than its correlation length its flux is conserved, namely the MF spec-

trum scaled to today remains constant on large scales. This evolution can be summarized

by the following expressions for the time variation of the MF correlation scale L(t) and

energy density ρB(t)

L(t) ∝ t2/(n+5), ρB(t) ∝ t−2(n+3)/(n+5), (1.5)

where n is the spectral index that characterizes the slope of the MF power spectrum on

large scales (n = 2 for a causal MF spectrum).

The GW energy obtained through this computation amounts on [77]

ΩGW ∝ (Ω∗
B)2

Ωrad
, (1.6)

with a prefactor that depends on the detail of the mechanism that generates the MF. This

equation underlies how the final GW density parameter directly depends on the initial
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amount of MF energy Ω∗
B responsible for its generation. With this it becomes clear how,

applying the nucleosynthesis bound on ΩGW, we get information about the initial maximal

allowed strength of the primordial MF, B∗
λ.

Finally, in ref. [77] the authors estimate the suppression of the magnetic field amplitude

on a comoving scale λ with respect to its initial strength B∗
λ due to its direct cascade

evolution to be given by the following analytical expression

Bλ ≃ BL∗

(

L∗
λ

)(n+3)/2

. (1.7)

Considering that the initial magnetic correlation scale L∗ is always many orders of magni-

tude smaller than the scale λ at which we estimate the MF amplitude, that we consider for

example to correspond to the cluster correlation length λ = 0.1Mpc, the above equation

translates into upper-bounds of the order of Bλ < 10−31 Gauss for a causal MF produced

during the EW phase transition. For red MFs generated during inflation (n ≃ −1.8) the

limits weaken down to Bλ < 10−19 Gauss, allowing them to be possible candidates for

dynamo amplification, as already explained above.

In order to escape these strong upper-bounds on the seed field strength, a MF with an

initial non-zero helicity has been proposed as a possible way out [78]. Indeed, helical MFs

evolve via inverse cascade during a turbulent phase of the expansion of the Universe and

the transfer of power from small to larger scales has been argued to be a possible solution

to relax these constraints, given the fact that the magnetic correlation length grows much

faster than during a direct cascade evolution. This can be seen by the following expressions

of the time dependent quantities L(t) and ρB(t) during an inverse cascade evolution, as

obtained from numerical simulations of helical MFs in a turbulent MHD evolution during

a radiation dominated phase [79]

L(t) ∝ t2/3, ρB(t) ∝ t−2/3. (1.8)

Slightly different results have been obtained in Refs. [80, 78].

In Ref. [81] we compute the amount of GWs produced by an helical MF during the

inverse cascade evolution [79] and we apply the nucleosynthesis bound on these GWs.

The first difference with respect the previous treatment is given by the fact that in

this case the MF spectrum contains also an antisymmetric part corresponding to the non-

vanishing helicity of the MF. This anyway does not contribute to its energy density but it

only influences the time evolution of L(t) and ρB(t).

In addition to the above evolution equations (1.8), we also model in a simple way

the initial MF evolution in which its energy density grows from a zero initial value to the

moment in which the MHD turbulence is fully developed. The reason for doing this is that,

as it is proven in the article, the time continuity of the GW source affects not only the

slope of the power spectrum on small scales, but also the peak position and the amplitude

of the final resulting GW spectrum.

We concentrate our analysis on the GWs produced during the turbulent stage, since it

is in this regime that an helical MF is characterized by the inverse cascade evolution. This

turbulent stage ends when the dissipation scale, at which we have the UV cutoff of the

MF spectrum, growing more rapidly than L(t), reaches the correlation scale. After this

turbulent stage we consider the source of GWs to vanish. This is not completely correct,
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since the MF is still present and able to source GWs and the only difference is that now

it evolves via flux conservation on large scales. Since this later evolution only influences

scales that are larger than the horizon at the moment in which turbulence stops, this does

not affect the peak of the GWs that is the main responsible of our constraints on the MF

amplitude, and therefore we can safely ignore it.

It is important to underline that an explicit computation concerning the duration of

the turbulent regime related to the different scenarios that we consider as possible candi-

dates for the MF production (EW and QCD phase transitions and inflation) shows that

turbulence lasts for many Hubble times. This classifies this GW generation mechanisms as

long-lasting processes, as referred by in Ref. [82], and this justifies a completely coherent

approximation for the magnetic anisotropic stress, which represents the actual source of

GWs. Moreover, numerical simulations of colliding bubbles have proven that the totally

coherent approximation, that corresponds in a deterministic time evolution, is in good

agreement with numerical results [83].

The resulting GW energy density produced by a primordial helical MF is similar in its

form to the result previously obtained for the direct cascade evolution case, Eq. (1.6). The

GW spectrum presents a blue large-scale slope and the final resulting amplitude of the

GW peak obviously depends, as before, on the initial MF energy density at our disposal to

generate GWs. We underlined in the paper that, for a reasonable initial magnetic density

parameter Ω∗
B ≃ 0.1, the GWs produced by a blue MF originated during the EW phase

transition can almost reach the level of sensitivity of the LISA experiment. On the other

hand, GWs produced by red inflationary MFs are much below any proposed experiment.

Finally, our result can be summarized, as for the direct cascade evolution, by the

following equation, representing the dependence of the maximal allowed MF amplitude on

a comoving scale λ by the initial MF B∗
λ

Bλ ≃ BL∗

(

L∗
λ

)(n+3)/2 ( Tin

Tfin

)(n+2)/3

. (1.9)

The difference from the results obtained by [77] is encoded in the last factor, which is the

one that exactly comes from the inverse cascade evolution of the MF. This last term is also

the responsible for the mitigation of the limits that we obtained for helical MFs produced

by causal mechanisms with respect to non-helical primordial MFs: considering for example

the EW phase transition with a spectral index n = 2 one gets a relaxation on the constraint

Bλ of roughly 7 orders of magnitude. This is obtained considering the initial temperature

of the EW phase transition to be Tin = 100GeV and computing the final temperature at

which turbulence ends to correspond to 21MeV. On the other hand, constraints on red

MFs such as the ones produced during inflation are not strongly influenced by the inverse

cascade evolution. This is mainly due to their negative spectral indices that reduce the

importance of the mitigating term coming from the inverse cascade evolution.

Two other brief comments are important at this point: first, we considered until now

the smoothing scale λ to correspond to the cluster correlation scale λ = 0.1Mpc. This

choice is also justified by the fact that this scale corresponds roughly to the smallest scale

the survived damping at recombination [84, 85]. However, the authors of [78], following

numerically the evolution of a primordial MF, find a smaller dissipation scale at recombina-

tion. Since the above bounds strongly depend on the smoothing scale at which we compute

the amplitude Bλ, we have a huge relaxation of the limits if we decrease the smoothing

scale, in particular for blue MF spectra. Indeed, the scaling of the maximally allowed MF
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amplitude Bλ with the length λ reads

Bλ̃ = Bλ

(

λ

λ̃

)(n+3)/2

. (1.10)

This makes clear that, considering a smaller smoothing scale λ̃ = 1kpc, the bounds are

relaxed by 5 orders of magnitude for the EW phase transition (n = 2) and only by a factor

of 16 for inflation with a red spectral index n = −1.8.

The second important remark is that we get much more stringent constraints imposing

the limit of not overcoming the 10% of the radiation amount during all its evolution directly

to the initial MF energy density

Ω∗
B ≤ 0.1Ωrad . (1.11)

Considering the usual example of the EW phase transition, the above limit translates in an

improvement of 2 orders of magnitude with respect to the bounds imposed by nucleosyn-

thesis. We did not explore this possibility from the beginning since we know that the only

moment of the evolution of the Universe where this prescription has necessarily to hold

corresponds to nucleosynthesis. In this way we left space to some unexplored mechanisms

where the initial MF energy density may overpass the 10% of the radiation amount at some

initial time prior to nucleosynthesis.

To summarize, the important results that we obtain from the computation presented

above are a slight relaxation of the bounds on the initial MF amplitude in the case of

inverse cascade evolution. We are able to reject most of the proposed causal primordial

high energy mechanisms able to produce MFs in the early Universe even if they have

a non-zero helicity: the observed field in galaxies and cluster are either not seeded by

primordial MFs or these primordial fields have been generated during inflation and have a

red spectrum. They can also be the remnant of a later QCD phase transition, even if it is

unlikely to be a first order transition, that would be the only case where a sufficient MF

can be generated.

To evade this conclusion, another possibility would be to argue that MFs with a correlation

scale as small as 1 kpc are sufficient to be amplified and seed the field observed today in

galaxies and clusters.

1.2.3 Seed magnetic fields from recombination

As I have already mentioned above, we also investigate the production of second order

MFs during recombination through the so-called Harrison mechanism [86]. Indeed, non-

linear dynamics can create vortical currents when the tight-coupling approximation be-

tween photons and baryons breaks down near the last scattering surface. This mechanism

is necessarily present in the early Universe and it has been already analyzed by several

authors [87, 88, 89, 90, 91, 92, 93, 94].

The main idea behind this scenario is related to a sort of competition between the

different interactions governing the primordial plasma, namely the Thomson scattering

between electrons and photons (whose cross-section is much bigger than the cross-section

for the same interaction between protons and photons, that can therefore be safely ignored)

and the Coulomb interaction between electrons and protons. A careful analysis of the

characteristic time scales involved in the problem shows that the Coulomb scattering is
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always inefficient with respect to the Thomson interaction and this results in a electric field

generation. This electric field is the main responsible for keeping electrons and protons

always tightly coupled and its main contribution is represented by the velocity difference

between baryons and photons. This has been already pointed out in Ref. [94].

From the computation of the electric field curl generated by this effect, we obtain the

following three different contributions that source the MF

(

a2B
)′

= S1

[

∆v
(2)
bγ

]

+ S2

[{

δ(1)
γ + Φ(1) − Ψ(1)

}

∆v
(1)
bγ

]

+ S3

[

Θ(1)
γ v

(1)
b

]

, (1.12)

where Φ,Ψ are first order metric perturbations, ∆vbγ = vb − vγ is the photon-baryon ve-

locity difference, and Θγ is the photon quadrupole moment, from anisotropic stress. The

first part of the source is a purely second order term in perturbation theory, while the other

two are quadratic first order contributions. We take into account for the first time in the

literature all the three above contributions to the resulting MF power spectrum in [95].

In more detail, due to the presence of the electric field, electrons and protons are very

tightly coupled and from the point of view of photons they can be considered as a single

fluid of baryons. In this sense the analysis of this evolution can be addressed as a two-fluid

dynamics of photons and baryons, whose equations are very close to the CMB dynamics.

We use therefore the second-order Boltzmann code of [96], through which we consider a

full tight-coupling treatment and a second order expansion of cosmological perturbations.

The numerical computation, whose steps have been followed and checked analytically

in regimes where the power spectrum behavior could have been predicted through some

reasonable approximations, gives as final result a MF amplitude of 10−29 Gauss on a comov-

ing smoothing scale of 1Mpc. This means that the seed field generated by magnetogenesis

around recombination is too weak to sustain the amplification mechanisms that can amplify

it in order to explain the observed field today.

However, this is not the only relevant conclusion that we obtain through this analysis.

We also understand the reason behind the importance of considering all the terms that

source the MF generation. Indeed, on large scales we observe some cancelation among all

the terms and neglecting this cancelation would lead to wrong over-estimating results. We

also understand this effect from an analytical point of view as a suppression of the resulting

quadratic terms by a factor (kη)2, that at early times and large scales reduces the resulting

MF power.

We also point out how the MF continues to be created even after photon decoupling,

as the output of our numerical integration clearly shows. The reason is that, even if the

majority of electrons and protons combine to give hydrogen atoms, a non-zero residual

ionization fraction of free electrons is present. This translates in an increasing of the

MF production at the recombination instant and stopping the numerical integration at

recombination, as previous authors did, under-estimates the final MF amplitude by one

order of magnitude.

Finally, we get an inside understanding of the physical process responsible for this

generation that allowed us to compare our computation with other previous approaches.

We interpret the magnetogenesis scenario produced by second order perturbations in the

tight coupling regime as summarized by the following equation

(a2B)′ ∼ ωb + O(quad) . (1.13)
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This tells us that the contributions sourcing the MF through the Harrison mechanism are

of two different kinds: the first term represents the vorticity of baryons, which can not be

generated even at second order in perturbation theory in the tight coupled regime. This

is already pointed out in [97] and in [98] through a first order computation. The second

term encodes a purely second order contribution that is present even in the tight coupled

regime and this is the main responsible for the MF generation in the case we analyze: these

quadratic terms can source the MF even if there is no initial vorticity.

1.2.4 Constant magnetic fields and free-streaming particles

As a last step concerning my research on primordial MFs, we focus our attention on

constant MFs, namely MFs coherent over Hubble scales. Upper-bounds concerning such

fields have already been obtained in the literature: Refs. [99, 100, 101] set limits of the

order of B ≤ 10−9 Gauss, considering both the anisotropies produced in the CMB and the

Faraday rotation generated by these homogeneous fields.

We review these limits imposed by CMB perturbations, considering also the presence

in a primordial Universe of free-streaming massless particles such as neutrinos after their

decoupling before recombination (T ≃ 1.4MeV). We conclude that the above CMB limits

are invalid in the case where a massless free-streaming particle is present before photon

decoupling. The reason behind this conclusion is that massless free-streaming particles

traveling in an anisotropic Universe develop anisotropic stresses which scale exactly as

the anisotropic stress of the MF. This results in a compensation of the two anisotropic

stresses and in an isotropization of the Universe. Therefore, the quadrupole of the CMB

anisotropies is canceled.

In detail, we mimic the presence of a constant MF in the primordial Universe via a

modification of the Friedmann background geometry. Such a Universe is described by a

Bianchi I geometry and we compute the effects that this anisotropic background produces

on the CMB multipoles. The analytical computation is performed at leading order in the

MF energy density ΩB ≪ 1 and this is justified by the fact that Faraday rotation constraints

are not influenced by our analysis. This can be understood as a small deviation from the

homogeneous and isotropic Friedmann background.

As a first case, we consider only the MF as a source of CMB perturbation, without

taking into account the presence of free-streaming neutrinos. The result shows, as expected,

that the CMB quadrupole is then proportional to the MF energy density parameter

C2 ∝
(

ΩB

Ωrad

)2

, (1.14)

allowing us to constrain its amplitude via this imprint in the CMB.

However, as the Universe reaches the temperature of 1.4MeV, neutrinos decouple and

start to free-stream. Their distribution function in momentum-space is affected by the

anisotropic expansion caused by the presence of the MF and therefore they develop an

anisotropic stress, which, at the leading order in our expansion around a Friedmann Uni-

verse, scales like their pressure with the expansion of the Universe. This means that this

anisotropic stress scales as the one of the MF (∝ a−4) as long as neutrinos can be con-

sidered massless relativistic particles and this turns out to be the main ingredient behind

the compensation argument explained above. In other words, once the anisotropic stress
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of neutrinos is adjusted to the one of the MF after a few Hubble times, they redshift in the

same way and their sum remains zero. The Universe expands therefore as in a Friedmann

background and the CMB quadrupole is erased.

It is important to underline that this effect depends on the absolute value of the en-

ergy density parameter characterizing the massless relativistic particles responsible for

the compensation. Namely, in the case of neutrinos it is efficient only because we have

Ων ∼ 0.4 > 5/32. Any other free-streaming relativistic component contributing with an

energy density Ωx < 5/32, as for example primordial GWs from inflation, is not able to

damp the anisotropy efficiently enough to cancel the quadrupole. On the other hand, the

GW contribution from another source like for example phase transitions in a later Universe

are constrained only by the nucleosynthesis to be such that ΩGW < 0.2 and can therefore

compensate the MF anisotropy. In this case neither photons nor neutrinos would have

experienced any anisotropic expansion and the only evidence of a constant MF would be

present in the GWB quadrupole.

Neglecting an eventual compensation due to GWs from phase transitions, the isotropiza-

tion provided by relativistic free-streaming neutrinos is maintained until neutrinos become

non relativistic and this depends on their masses: this happens when their temperature

drops below their mass scale. For the temperature anisotropies of the CMB it is relevant

whether this happens before or after photon decoupling. Once neutrinos become non rela-

tivistic, their pressure drops drastically (∝ a−5) and their anisotropic stress is no more able

to counteract the MF anisotropy. In order to quantify the effect due to this transition, we

repeat the same computation for the CMB quadrupole considering that the neutrinos are

almost degenerate. We have then to distinguish between two different cases: if their mass is

high enough that they became non relativistic before photon decoupling, the isotropization

effect is not present and the CMB will be affected by the MF anisotropy as if these massless

particles were not present. In other words, photons result to be unable to counteract the

MF anisotropic stress, even if their energy density is high enough to overpass the limiting

value 5/32. The reason is that they decouple only in a matter dominated background, pre-

venting the compensation mechanism to take place. On the other hand, if neutrino masses

are small enough such that they were relativistic even after photon decoupling, the CMB

quadrupole is noticeably reduced due to the compensation illustrated above. Indeed they

will maintain the expansion of the Universe isotropic until they become non relativistic.

In this last scenario, the final resulting quadrupole turns out to be reduced with respect

the previous case by several orders of magnitude, loosening the constraints on the MF

amplitude as obtained from the CMB anisotropies.

Finally, we point out that, considering non-degenerate neutrinos, as soon as we are left

with only one neutrino species that is still relativistic, this effect of compensation can no

more be guaranteed. The reason is that, as it was the case for photons, once the equilibrium

between the anisotropic stresses of neutrinos and MF is broken, it can not be re-established

in a matter dominated background.

We check our approximated computation through a numerical evolution of the exact

equations, confirming the significant suppression of the CMB quadrupole in the case of

massless free streaming neutrinos that become non relativistic long after photon decoupling,

as explained above.

With our qualitative analysis we make clear how the mechanism of compensation be-

tween the anisotropic stresses of a MF and free-streaming neutrinos works in the simple

case of a large scale coherent MF.
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1.3 Cosmological defects: how much can they contribute to

the CMB fluctuations?

Another source of perturbations that might be present in the early Universe and that might

leave detectable imprints in the CMB anisotropies is represented by the so-called cosmo-

logical defects. They may originate at the end of hybrid inflation scenarios or by a first

order phase transition that takes place in a later Universe. Indeed, spontaneous symmetry

breaking which can happen during expansion and cooling of the Universe can lead to the

formation of defects, regions of space where a large potential energy is concentrated and

cannot relax to the vacuum due to topological obstruction.

For example, they represent the N − 1 Goldstone modes resulting from a global O(N)

phase transition of a N -component symmetric scalar field that might be present in the

early Universe. After the global symmetry breaking, these Goldstone modes start to order

on the horizon scale, as it is the case for a typical causal process. This originates in a nearly

scale invariant spectrum of CMB anisotropies for temperature perturbations at very large

scales. The same prediction is given by inflation and a first confirmation of the solidity

of these forecasts has been provided by the COBE satellite, who initially detected the

flat large scale plateau of the CMB spectrum. This is the reason why in the ’80s many

researches focused on the analysis of the anisotropies produced by cosmological defects.

Defects have been for the first time excluded as main cause for the fluctuations of the

CMB by [32]: they have been discovered to give rise to a different first acoustic peak in

the temperature power spectrum with respect to perturbations generated during inflation.

The defect acoustic peak is too small with respect to the Sachs-Wolfe plateau and its

peak position in ℓ-space corresponds to smaller scales, as it is the case for isocurvature

perturbations, than the peak predicted by adiabatic perturbations from inflation. The main

reason behind this difference is related to the fact that only scalar perturbations contribute

to the peak amplitude, while the amplitude of the plateau is influenced by all kinds of

perturbations. Defects generate, contrary to inflation, all kinds of perturbations, scalar,

vector and tensor and the main feature of these perturbations is that the amplitude of vector

anisotropies is comparable to the tensor strength [30, 102, 103, 104, 105]. Therefore, the

presence of vector anisotropies for defects explains the difference of these two amplitudes.

Another cause of the disagreement in the peaks of the TT-power spectrum between defects

and inflation is given by the fact that defects represent an incoherent source of cosmological

perturbations, while inflation generates coherent anisotropies. Naively one can picture

this as a cancelation on super-horizon scales of the perturbations sourced by defects and

this causes a smaller signal than the one given by inflation mechanisms. Testing this

different prediction against incoming experimental data, the defect contribution to CMB

anisotropies has been constrained to be less than 10% [102, 103, 104, 105, 34].

Decoherence is also the main responsible for the suppression of the EE- and TE-

correlation peaks produced by defects in comparison with inflation. Refs. [106, 107] point

out how it destroys cross-correlations of defects perturbations. This is another efficient

way to constrain the defect contribution to the CMB perturbations.

However, in order to improve the existing upper-bounds for this contribution, we con-

centrate our attention on the polarization signal produced by defects. Indeed, their BB-

power spectrum presents fundamental differences with respect to the inflationary one,

mainly due to the fact that the vector contribution modifies the B-polarization signal com-

ing from defects. It peaks at smaller scales (ℓ ∼ 500) and its amplitude is larger than the
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polarization generated during inflation, when we set the temperature anisotropies of defects

to be the allowed proportion of 10% of the total CMB anisotropies. Finally, since polar-

ization is not influenced by the ISW effect, it represents a direct probe of super-horizon

correlations at the recombination epoch. This would be a discriminating signal able to

invalidate a defect contribution or any other purely causal generation process.

These are the main reasons that suggested us to focus our research on a deeper analysis of

the GWB and B-polarization signals sourced by defects.

1.3.1 Gravitational wave background generated by a self-ordering scalar
field

The GWB generated during hybrid preheating [108, 109, 110, 111, 112, 113, 114, 115]

or during first order phase transitions [51, 116, 52, 53, 117, 118] has been investigated

in great detail in the literature. These causal processes usually originate GW spectra

that peak at wavelengths that are well inside the Hubble horizon during their generation.

Therefore, most of the past analysis were focused on characterizing the GWBs produced

on wavelengths smaller than the causal horizon at time of production.

Our first aim concerning the defect analysis is to investigate the tail of the GW spectrum

involving wavelengths that are still outside of the Hubble radius while these GWs are

produced. We consider therefore a N -component scalar field that undergoes a global phase

transition and we focused on the large-scale analysis of the system. In this limit, once the

transition is finished, we can consider the field to be fixed in its vacuum expectation value,

neglecting its oscillations. Therefore, the only scales that characterize this system are the

mass scale of the field that breaks the symmetry and the Hubble radius during the GW

generation. The equation of motion of the field components in the large-scale limit can be

approximated by the so-called “non-linear sigma model” (NLSM) equation [119]. In order

to solve analytically this equation, we consider the number of the field components N to be

large (numerical simulations showed that N > 4 is large enough for this approximation to

hold). In the large-N limit the NLSM equation becomes liner and can be solved analytically

in terms of simple Bessel functions depending on the background evolution of the Universe.

Therefore, in this large-N limit we are able to follow analytically all the steps that

lead to the GW generation, obtaining finally the spectral shape of the GWB generated

by self-ordering scalar fields on scales that are super-horizon at the time of production.

The result is presented in [120] for two different cases, short- and long-lasting sources,

depending on whether the source of GWs was decaying while Universe expanded or not.

We focus our computation on wavelengths that were entering the horizon during a radiation

dominated background, namely whose frequencies are in the range of sensitivity of most

of the proposed GW experiments (a similar computation focused on a matter dominated

background has been performed in [121]).

The main result of this computation is represented by a scale invariant spectrum of

GWs whose amplitude in the case of a long-lasting source is

dΩGW(k, t0)

d log k
∝ Ωrad

N

(

v

MP

)4

. (1.15)

Depending of course on the value of the true vacuum expectation value v of the scalar field

which is breaking the symmetry, this GWB is in some scenarios within the the range of

sensitivity of some GW experiments. The reason behind the flatness of the spectrum is that
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the GW energy density continues to grow until horizon crossing and saturates thereafter,

reaching its constant value.

Finally, it is important to compare this GWB with the one generated by primordial

tensor perturbations from inflation. The ratio of these two backgrounds gives

R ≃ 256

N

( v

M

)4
, (1.16)

that depends on the number of field components N and on the value of its vacuum ex-

pectation value v. However, the most important point of this analysis is that the power

spectrum characterizing the GWs generated by a self-ordering scalar field is very similar

to the one coming from inflation. Therefore, it is important to find an efficient way to

disentangle these two spectra in the case they turn out to have also similar amplitudes.

This is the motivation that push us toward the analysis of the B-polarization spectrum

produced by defects that is briefly summarized in the following subsection.

1.3.2 B-polarization: defects vs. inflation

With the initial aim of finding a powerful tool able to help us distinguishing between the

scale-invariant GWB produced by a self-ordering scalar field from a global phase transition

in the early Universe and an inflationary background of primordial GWs, we focus our

attention on the B-polarization power spectra produced by these two different scenarios.

I already mentioned above, the several differences between the two B-polarization spec-

tra, whose main causes are the presence of vector defect perturbations and the causal nature

of the defect generation process. We concentrate our attention on a deeper investigation

of these differences with the attempt of building a sort of template that could be used

by present and future experiments to detect or better constrain the defect contribution to

CMB anisotropies.

In detail, we want to find a way to exploit the higher amplitude of the small-scale

defect B-mode peak, characteristic that is even more pronounced in the real space angu-

lar correlation function. Indeed, plotting this function for defects and for inflation, it is

immediately clear which scales are of most interest for the two different processes: defect

signals, being a causal source of perturbations, are more pronounced on scales that were

causally connected at recombination, corresponding to small angles θ ∈ [0◦, 1◦]. On the

other hand, the a-causal nature of inflation is evident from the large scale features of its

correlation function, whose oscillations have a smaller amplitude but are on angles corre-

sponding to scales that were super-horizon during recombination, θ ∈ [2◦, 4◦]. Therefore,

a relevant issue that we want to address was whether the defect peak on small scales could

be measured by full or partial sky experiments.

Instead of examining the usual B-modes for the CMB polarization signal, we consider

the so-called local B̃-modes, that are defined locally in every small patch of the sky and

are directly related to the measured Stokes parameters. The usual non-local B-modes

are obtained by a inverse Laplacian operation on the local B̃-modes, and this operation

depends significantly on the boundary conditions. Therefore, even if on the theoretical

point of view these two quantities contain the same amount of information, the real CMB

experiments are not full sky ideal probes of the temperature anisotropies and this makes a

big difference. Indeed, CMB experiments measure temperature and polarization on a given

patch of the sky with fixed noise level and resolution, depending on the instruments. The
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analysis of local B̃-modes does not suffer from the inversion of the differential operators,

that depends on boundary conditions and affects the final result for local observations.

In Ref. [122] we compute, following Ref. [123], the signal-to-noise ratio (S/N) for the

local B̃-polarization sourced by defects and by inflation. In order to reflect and extract

the importance of the defect signal that is concentrated on the small scale part of the

spectrum, we consider first small patches of the sky corresponding to angles θ ∈ [0◦, 1◦],
sampling this interval with a fixed number of equal bins. Then, we compare this first result

with the S/N for the two sources considering bigger patches of the sky, θ ∈ [0◦, 4◦] and

keeping fixed the number of bins of our sampling. The comparison between the two S/N

corresponding to different sky patch sizes shows that, once we enlarge the patch of the sky

that we observe, the inflation S/N increases significantly, while the one for defects does

not change much. This corresponds to fact that angles above ∼ 1◦ do not contain more

information concerning defects, while large scales encode the most characteristic features of

inflation, as it is evident from the real space angular correlation function discussed above.

Moreover, in order to compare the efficiency of the local B̃-modes with respect the

usual non-local ones, we compute the S/N for local B̃- and usual non-local B-modes for

both generation mechanism, defects and inflation, fixing the sky patch size. The result

shows that in the local polarization the defect signal is substantially enhanced with respect

the inflationary one, while, if we consider the non-local one, this is not the case, namely

the S/Ns for the two models are almost equivalent.

Summarizing, our contribution is relevant since with our proposed method, for clever

choices of smoothing scale and observed angle patch sizes, we expect to be able to improve

the current upper-bounds on the defect contribution to the CMB anisotropies by several

orders of magnitude.
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PHYSICAL REVIEW D 79, 024021 (2009)

Interactions of cosmological gravitational waves and
magnetic fields

Elisa Fenu and Ruth Durrer

The energy momentum tensor of a magnetic field always contains a spin-2 component

in its anisotropic stress and therefore generates gravitational waves. It has been argued in

the literature (Caprini & Durrer [77]) that this gravitational wave production can be very

strong and that back-reaction cannot be neglected. On the other hand, a gravitational

wave background does affect the evolution of magnetic fields. It has also been argued

(Tsagas et al. [124], [71]) that this can lead to a very strong amplification of a primordial

magnetic field. In this paper we revisit these claims and study back reaction to second

order.

DOI: 10.1103/PhysRevD.79.024021 PACS numbers 04.50.+h, 11.10.Kk, 98.80.Cq

2.1 Introduction

Wherever we can measure them in the Universe, magnetic fields of 0.5 to several micro

Gauss are present. They have been found in ordinary galaxies [37, 38] like ours, but also in

galaxies at relatively high redshift [39] and in galaxy clusters [41, 42]. It is still unknown

where these cosmological magnetic fields come from. Are they primordial, i.e. generated

in the early universe [93, 125, 98], or did they form later on by some non-linear aspect

of structure formation, like the Harrison mechanism which works once vorticity or, more

generically, turbulence has developed [126]?

In addition, once initial fields are generated, it is still unclear whether they are strongly

amplified by a dynamo mechanism or only moderately by contraction. Since the cosmic

plasma is an excellent conductor, the magneto-hydrodynamic (MHD) approximation can

be employed which implies that the magnetic field lines are frozen in during structure

formation. Therefore, as long as non-linear magnetic field generation can be neglected, the

magnetic field scales inversely proportional to the area, so that B/ρ2/3 is roughly constant

during structure formation. Here ρ is the energy (or matter) density of the cosmic plasma.

For galaxies, with a density of about ρgal ∼ 105ρ̄ this means that simple contraction will

enhance magnetic fields by approximately 103, ρ̄ is the mean density. Hence, if no dynamo

is active during galaxy formation, initial fields of Bin ∼ 10−9Gauss are needed. On the

other hand, non-linear dynamo action can enhance the magnetic field exponentially by

a factor up to 1015, so that initial fields as tiny as Bin ∼ 10−21Gauss might suffice [?].

However, since this enhancement is exponentially sensitive to the age of the Universe, it

remains unclear how it can generate the magnetic fields in galaxies at redshifts of z ∼ 1

or more, where the age of the Universe was at most half its present value reducing the

amplification factor to less than 108.
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Another problem of cosmic magnetic fields is that primordial generation of fields usually

leads to a very blue magnetic field energy spectrum,

dρB

d log k
∝ kM+3 , (2.1)

where M = 2 for “causally” produced magnetic fields [68] and M ∼ 0 for typical inflation-

ary production mechanisms [55]. Such blue magnetic field spectra are strongly constrained

by their gravity wave production [77] and cannot lead to the large scale fields observed

today. The only solution to the problem might lie in an ”inverse cascade” by which en-

ergy is transferred from small to larger scales. Since within the linearized approximation

each Fourier mode evolves independently, such a cascade is inherently non-linear. Within

standard MHD is has been shown that only helical magnetic fields can lead to inverse

cascade [48].

In this work, we want to address a weakly non-linear effect which has not been consid-

ered in [48], namely the interaction of gravitational waves and magnetic fields. We shall

study how this interaction can modify the magnetic field spectrum. We also re-interpret

a finding by Tsagas [71], where the interaction between gravitational waves and magnetic

fields has been interpreted as ”resonant amplification”. Similar conclusions are drawn in

Refs. [72], [73]. However, in this last article it is noted that the amplification can take

place only on super-horizon scales. And even though Ref. [73] does mention that there is

no amplification in the long-wavelength limit, they do not really quantify this statement.

We show that the build up of magnetic fields due to their interaction with gravitational

waves is at most logarithmic and thus comparable to the generation of gravitational waves

by magnetic fields.

Furthermore, in Ref. [73] it has also been pointed out that the super-horizon ”ampli-

fication” is independent of the fact whether the plasma is highly conducting or not. This

seems physically reasonable as currents generated by electromagnetic fields can act only

causally, i.e. on sub-horizon scales. An animated discussion on this subject follwed the

above publications and can be found in Refs. [75], [76]. Here the role of a finite conduc-

tivity in an expanding Universe is addressed but controversal final conclusions have been

reached.

The main advantage of our treatment is that we express the relevant results entirely in

terms of physical, measurable quantities, which renders the interpretation straight forward.

We actually find for the density parameters of second order perturbations that, once the

scales considered are inside the horizon,

Ω
(2)
B ≃ Ω

(1)
B Ω

(1)
GW ≃ Ω

(1)
B

(

Hinf

MP

)2

, (2.2)

Ω
(2)
GW ≃

[

Ω
(1)
B

]2
+
[

Ω
(1)
GW

]2
, (2.3)

as one probably would expect naively. Even though most parts of this result can already be

found in the above cited papers, they are interpreted there in a different way, and especially

in Eq. (2.2) it is not always noted that the factor Ω
(1)
GW always has to remain small.

The paper is organized as follows. In the next section we set up the fully non-linear

equations for the evolution of magnetic fields in the relativistic MHD approximation. We

use the 3+1 formalism and closely follow the derivation given in Ref. [127]. Since we
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are mainly interested in gravitational waves, we specialize to the vorticity free case. In

Section III we consider linear perturbations. We solve the linear perturbation equations

for gravitational waves and magnetic fields with given initial conditions. We also derive

the evolution of the corresponding energy densities. This part is not new and mainly

included for completeness and to fix the notation for the subsequent Section IV, where we

solve the second order equations. On this level the gravitational waves interact with the

magnetic field. We calculate the second order magnetic field generated by this interaction

and show that for reasonable values for the first order perturbations, its energy density

remains always much smaller than the energy density of the first order contributions. In

this sense, one cannot speak of resonant amplification. In Section V we summarize our

results and draw some conclusions.

Throughout this work we use the metric signature (−,+,+,+). Conformal time is

denoted by t and we neglect the background curvature of the Universe, K = 0. Spacetime

indices are denoted by lower case Greek letters, µ, ν, while lower case Latin letters, i, j are

used for spatial indices. Most of our calculations are performed in the radiation dominated

era and we shall often use the expression

a(t) = Hina
2
int

for the scale factor.

2.2 The basic equations

We work in the MHD approximation, where we assume high conductivity. The electric

field is then small compared to the magnetic field in the baryon rest-frame which we take

to be the frame of our “fundamental observer”. In addition, we assume the velocity uµ of

this fundamental observer to be vorticity-free and we neglect acceleration. According to

Frobenius’ theorem u is hyper-surface orthogonal and we can choose spatial coordinates in

the three-space orthogonal to u. Furthermore, in the early Universe which is of interest to

us, the dominant radiation and baryons are tightly coupled so that the energy flux is also

given by u and we can set the heat flux q = 0. In our vorticity free frame, the magnetic

part of the Weyl tensor, Hij is related to the shear simply by

Hij = curlσij ,

where curl is the 3-dim curl on the hyper-surface normal to u. Here σ is the shear of u

given by

σµν ≡ 1
2 (uµ;ν + uµ;ν) − 1

3Θp̃µν ,

Θ ≡ uµ
;µ and p̃µν ≡ gµν + uµuν .
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Note that the normalization of u implies 0 = uνuν;µ ∝ u0;µ. The gravito-magnetic interac-

tion can then be described by the following equations, see [127]

∇uEij = −ΘEij −
1

2
κ

(

ρ + p +
1

6π
B2

)

σij − D2σij − κ
1

2
∇uΠij −

1

6
ΘκΠij

+3σ〈i
nEj〉n − 1

2
κσ〈i

nΠj〉n , (2.4)

∇uσij = −Eij +
1

2
κΠij−σ〈i

nσj〉n − 2

3
Θσij , (2.5)

∇uBi = −2

3
p̃ijΘBj + σijB

j , (2.6)

∇uΘ = −1

3
Θ2− 1

2
κ

(

ρ+3p+
1

4π
B2

)

−2σ2 . (2.7)

Here Eij is the electric part of the Weyl tensor, ρ and p are the energy density and pressure

of the cosmic fluid which is assumed to follow the motion of the baryons (like, e.g. radiation

before decoupling), κ = 8πG is the gravitational coupling constant and Bi is the magnetic

field. We have neglected the electric field in the above equations, since we assumed it to be

much smaller that the magnetic field, i.e. B2 ≫ E2. The covariant derivative in direction

u is denoted by ∇u and the brackets indicate symmetrization and trace subtraction,

X〈ij〉 =
1

2
(Xij + Xji) −

1

3
p̃ijXm

m .

D2 is the Laplace operator on the hyper-surface orthogonal to u. The scalars B2 and σ2

are simply σ2 ≡ σijσ
ij/2 and B2 ≡ BiB

i.

In addition to this we have the Einstein equation, the spatial part of which yields

Rij = Eij +
2

3

(

κρ +
1

8π
κB2 − 1

3
Θ2 + σ2

)

p̃ij

+
1

2
κΠij −

1

3
Θσij + σn〈iσ

n
j〉 , (2.8)

and its trace, the generalized Friedmann equation,

1

3
Θ2 +

1

2
R = κρ +

1

8π
κB2 + σ2 . (2.9)

Here Rij is the Ricci tensor on the spatial hyper-surface and R is its trace.

From this system we can derive second order equations for σij and Bi which are

∇u∇uσij − D2σij +
5

3
Θ∇uσij +

(

4

9
Θ2 − 3

2
κp − 5

6
κρ − 1

6π
κB2 − 4

3
σ2

)

σij =

κ∇uΠij +
2

3
ΘκΠij +

2

3
κB2σij + Θσ〈i

nσj〉n + 2σ〈i
n∇uσj〉n −∇uσ〈i

nσj〉n

−κσ〈i
nΠj〉n +

1

3
σ2σij + 3σ〈i

n

[

1

2

(

σj〉
mσnm + σn

mσj〉m
)

− 2

3
δj〉nσ2

]

,

(2.10)
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and

∇u∇uBi − D2Bi +
5

3
Θ∇uBi +

(

1

3
κρ − κp +

2

9
Θ2 +

1

12π
κB2 +

2

3
σ2

)

Bi =

σij∇uBj + 2ΘσijB
j + 2(∇uσij)B

j − 3

2
κΠijB

j + σn
〈iσj〉nBj + curlJi .

(2.11)

Eq. (2.11) can be obtained from Eq. (40) of [128] when setting Ai = 0, ωij = 0 and qi = 0. Ji

stands for the 3-dimensional current. Eq. (2.11) is obtained without neglecting the electric

field. The term curlEi, which is present in the original Maxwell equation which reduces

to Eq. (2.6) if Ei = 0 [127] results in the Laplacian term D2Bi and terms proportional to

the wavenumber k times the electric field [see Eq. (40) of [128]]. We have neglected these

latter contributions in the above equation, since they are only relevant inside the horizon

(kt ≫ 1), where we can neglect the source term of the equations, as we shall argue in the

following.

In a regime of low conductivity we can neglect also the current in Eq. (2.11) and the

magnetic field obeys to the above wave equation, while in a very hight conductivity case

we should directly set the electric field Ei = 0 from the beginning and solve Eq. (2.6),

obtaining a power-low behaviour with respect to time for Bi. In both cases we find that

the behaviour in time of the induced second order magnetic field B
(2)
i is the same on

super-horizon scales (up to uncertain logarithmic corrections). We interpret this as the

insensitivity of super-horizon perturbations to plasma properties like conductivity.

Inside the horizon, we neglect the source term. This is motivated by the Green function

of the damped wave equation obtained when linearizing (2.11), which rapidly oscillates on

sub-horizon scales. For Eq. (2.6) it is not the Green function but the source term σ
(1)
ij Bj

(1)
which oscillates when kt ≫ 1, since gravity waves start oscillating at horizon crossing.

Therefore again, the sub-horizon amplification is unimportant. The same conclusion is

actually drawn in Ref. [73], where the fluid velocities are not neglected.

In the following we shall consider these equations in first and second perturbative orders

with respect to a spatially flat Friedmann background,

ds2 = a2(−dt2 + δijdxidxj) .

We neglect a possible spatial curvature of the background and work with conformal time

t. The time dependence of the scale factor a is determined by the Friedmann equation,

(

ȧ

a

)2

=
κ

3
ρa2 and

ρ̇ = −3(1 + w)ρ

(

ȧ

a

)

, w = p/ρ .

2.3 First order perturbations

2.3.1 Magnetic fields

A background Friedmann Universe can of course not contain a magnetic field since the latter

always generates anisotropic stresses Πij 6= 0 which break isotropy. When considering a
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magnetic field as a first order perturbation, Eq. (2.6) leads in first order to

Ḃ
(1)
i = − ȧ

a
B

(1)
i . (2.12)

For this we use that to lowest order u = a−1∂t and (∇uB)i = a−1(∂t−ȧ/a)Bi. Furthermore

p̃ij = gij = a2δij and Θ = 3ȧ/a2. This is solved by

B
(1)
i (x, t) = B

(1)
i in(x)

ain

a(t)
, Bi(1)(x, t) = B

i(1)
in (x)

a3
in

a3(t)
. (2.13)

The average energy density of the first order magnetic field is then given by

〈ρ(1)
B 〉 =

1

8π
〈B(1)2

(in) (x)〉 a4
in

a4(t)
. (2.14)

Here, we assume that the first order magnetic field has been generated by some random pro-

cess. Hence B
(1)
i in is a random variable and 〈· · ·〉 denotes the expectation value. We assume

also that this random process is statistically homogeneous so that 〈ρ(1)
B 〉 is independent of

position.

2.3.2 Gravitational waves

For the gravity wave equation we consider a Fourier component

σ
(1)k
ij (x, t) = σ(1)(k, t)Qij(k̂) exp(ik · x) ,

D2σ
(1)k
ij (x, t) = − k2

a2(t)
σ

(1)k
ij (x, t) .

Here Qij(k̂) is a transverse traceless polarization tensor. We assume that the gravity

waves are statistically isotropic and parity invariant so that both polarizations have the

same averaged square amplitudes. For the amplitude σ(1)(k, t) we obtain to first order

the usual tensor perturbation propagation equation (neglecting anisotropic stresses of the

cosmic fluid)

σ̈(1) +

[

k2 − 3

2
(1 + w)H2

]

σ(1) = 0 , (2.15)

where H = ȧ/a denotes the co-moving Hubble parameter, H = aH, where H is the

physical Hubble parameter. We now rewrite this equation in terms of the dimensionless

variable Σ(1)(k, t) ≡ σ(1)(k, t)/(a2
inΘ) = σ(1)(k, t)/(3Ha2

in). We have normalized by the

factor 1/a2
in in order for the quantity Σ to be independent of the normalization of the scale

factor. This is not true for σ which is σ ∝ a2
in. In this way, Σ can be directly related

to observable quantities which are of course independent of the normalization of the scale

factor. Equivalently, we will make use of the variable B that is defined as B ≡ √
κB/(3Hain)

in order to be independent of the normalization of the scale factor, as well as Σ. In terms

of Σ the above equation becomes

Σ̈(1) − 3(1 + w)HΣ̇(1) +

[

k2 +

(

3

2
+ 6w +

9

2
w2

)

H2

]

Σ(1) = 0 . (2.16)
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In the matter or radiation era, the solutions to this linear homogeneous differential equation

are well known in terms of Bessel functions. We are mainly interested in the radiation

epoch, where w = 1/3. During radiation domination the Universe expands like a(t) ∝ t

such that H = Ha = 1/t. We can therefore express the scale factor as

a(t) = Hina
2
int . (2.17)

In the radiation dominated Universe Eq. (2.16) reduces to

Σ̈(1) −
4

t
Σ̇(1) +

(

k2 +
4

t2

)

Σ(1) = 0 , (2.18)

with solution

Σ(1) ∝ (kt)3 [j1(kt) + y1(kt)] , (2.19)

where jn and yn denote the spherical Bessel functions of index n [129].

We distinguish the super- and sub-horizon behaviors. In the long wavelengths limit,

z ≡ kt ≪ 1, we have

lim
z→0

z3j1(z) ≃ z4

3
, lim

z→0
z3y1(z) ∝ −z .

Taking into account only the faster growing mode, we obtain

Σ(1)(t) ≃ Σin
(1)

(

kt

ktin

)4

, kt ≪ 1 , (2.20)

or equivalently

Σ(1)(t) ≃ Σin
(1)

(

a

ain

)4

, kt ≪ 1 . (2.21)

The quantity directly related to gravity waves is however given by σ(1) = 3Ha2
inΣ(1), for

which we obtain on super-horizon scales

σ(1)(t) ≃ σin
(1)

(

a

ain

)2

, kt ≪ 1 . (2.22)

A direct consequence of this is that the “gravity wave energy density” is constant in time

outside the horizon, as we show in the next sub-section. Of course the notion of “gravity

wave energy density” and “gravity wave” is not strictly well defined for wavelengths larger

than the size of the Hubble horizon. We shall just use the expression which is valid

inside the horizon and call this the “gravity wave energy density” by analogy. It has a

physical interpretation as a true energy density only once it enters the horizon. However,

whenever this quantity becomes of the order of the background energy density, we know

that perturbations become large and we can no longer trust linear perturbation theory.

Let us also consider the short wavelengths limit where kt ≫ 1. In this limit we can

approximate

Σ(1)(t) ≃ (kt)2
cos(kt)

cos(1)
Σ(1)(kt = 1) , kt ≫ 1 , (2.23)

where the initial constant Σ(1)(kt = 1) stands for the value of Σ(1) when it enters the
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horizon and can be obtained from Eq. (2.20),

Σ(1)(kt = 1) ≃ Σin
(1)

(

1

ktin

)4

.

The behavior of gravity waves on sub-horizon scales, kt ≫ 1, is then given by

σ(1)(t) ≃ 3a2
inH(kt)2

cos(kt)

cos(1)
Σ(1)(kt = 1) . (2.24)

We shall see that in this case the gravity waves energy density decreases like 1/a4, as it

has to be for true gravity waves which are massless modes.

2.3.3 Energy Densities

As a first physically important quantity, let us discuss the energy densities of these first

order perturbations and the corresponding density parameters.

The magnetic energy density is

ρ
(1)
B ≡

B2
(1)

8π
=

B
(1)
i Bi

(1)

8π
, (2.25)

with Eq. (2.14), this becomes

ρ
(1)
B (t) =

1

8π
B2

(1) in

(

a4
in

a4

)

. (2.26)

In the radiation dominated universe under consideration, the density parameter of the first

order magnetic field is therefore given by

Ω
(1)
B (t) ≡ ρ

(1)
B

ρc
=

8πGρ
(1)
B

3H2
=

G

3

B2
(1) in

H2
in

= Ω
(1)
B in . (2.27)

The density parameter Ω
(1)
B is constant in time. Both, the background radiation and the

magnetic field which is frozen in, scale in the same way with the expansion of the Universe.

As long as the magnetic field density parameter Ω
(1)
B is much smaller than 1, the magnetic

field can be considered a small perturbation.

This is the result for a constant magnetic field. We also want to consider a stochastic

magnetic field. In this case B(x) is a random variable and its spectrum is given by [77]

a2(t)B(x, t) =
1

(2π)3

∫

d3kB(k)eix·k , (2.28)

〈Bi(k)B∗
j (q)〉 = (2π)3δ(k−q)Pij(k̂)P(1)

B in(k) . (2.29)

Here the basic time evolution of the magnetic field ∝ a−2 has been removed so that, to first

order B(k) is independent of time. Pij(k̂) = δij −k−2kikj is the projection tensor onto the

plane normal to k. The tensorial form of the spectrum is dictated by statistical isotropy

which also requires that P(1)
B in depends only on the absolute value k = |k|, and by the fact
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that B is divergence free. The Dirac delta is a consequence of statistical homogeneity1. In

this case we obtain

〈ρ(1)
B 〉 =

1

(2π)68π

∫

d3k

∫

d3q〈B(k)B(q)〉eix·(k−q)

=
1

(2π)3

∫

dk

k
k3P(1)

B in(k) =

∫

dk

k

dρ
(1)
B (k)

d log k
.

For the magnetic field density parameter at scale k this yields

dΩ
(1)
B (k, t)

d log k
=

8πG

3(2π)3
k3P(1)

B in(k)

H2
in

=
dΩ

(1)
B in(k)

d log k
. (2.30)

Let us now consider gravity waves. The gravity wave energy density in real space is

given by

ρ
(1)
GW ≡ 〈ḣij ḣ

ij〉
8πG

1

a2
, (2.31)

where the factor 1/a2 comes from the fact that the dot denotes the derivative with respect

to conformal time and the difference of a factor 4 in the normalization as compared e.g. to

[131] comes from our definition of the perturbation variable [gij = a2(δij + 2hij)]. In

Eq. (2.31) hij is considered as tensor field with respect to the spatial metric δij so that

there are no scale factors involved in raising or lowering indices, hij = hi
j = hij . For

simplicity we shall keep this convention is this section for all spatial tensors.

To lowest order the shear is given by σ
(1)
ij = aḣij . Furthermore, the fact that σ

(1)
ij is

transverse and traceless together with statistical isotropy determines entirely the tensor

structure of the power spectrum.

〈σ(1) in
ij (k)σ

(1) in
lm (q)〉 =

(2π)3δ(k − q)Mijlm(k̂)P(1)
σ in(k) ,

where [77]

Mijlm(k̂) ≡ δilδjm + δimδjl − δijδlm + k−2(δijklkm +

δlmkikj − δilkjkm − δimklkj − δjlkikm

−δjmklki) + k−4kikjklkm . (2.32)

We have Mij
ij = 4, which takes into account the two polarization degrees of freedom.

Therefore, considering that also for the shear we do not multiply by the scale factor while

raising or lowering indices, σij = σij, we can write the gravity waves energy density in

terms of σij as

ρ
(1)
GW =

〈σijσ
ij〉

8πG

1

a4
. (2.33)

1One could also add a term which is odd under parity but we disregard this possibility in this work [130].
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For the contribution to the energy density per logarithmic frequency interval we then obtain

dρ
(1)
GW (k, t)

d log k
=

2

(2π)3G

[

k3P(1)
σ (k, t)

] 1

a4

=
18

(2π)3G

[

k3P(1)
Σ (k, t)

]

H2
(ain

a

)4
, (2.34)

where we have used the relation σij = 3Ha2
inΣij or equivalently P(1)

σ (k, t) = 9H2a4
inP

(1)
Σ (k, t).

Finally, we can write the gravity wave density parameter as

dΩ
(1)
GW(k, t)

d log k
≡ 1

ρc

dρ
(1)
GW

d log k
=

48π

(2π)3

[

k3P(1)
Σ (k, t)

] (ain

a

)4
. (2.35)

We have now to distinguish between super- and sub-horizon modes. Using our super-

horizon result for Σ(1) = σ(1)/(3Ha2
in) where kt ≪ 1

Σ
(1)
ij (k, t) ≃ Σ

(1)
ij in(k)

(

t

tin

)4

,

we find

dρ
(1)
GW (k, t)

d log k
=

18

(2π)3G

[

k3P(1)
Σ in(k)

]

(

a

ain

)8

H2
(ain

a

)4

=
18

(2π)3G

[

k3P(1)
Σ in(k)

]

H2
in =

dρ
(1)
GW in

d log k
. (2.36)

For the last equal sign we made use of Eq. (2.17). Hence on super-horizon scales the

“gravity wave energy density” is time independent. Then, of course the gravity wave

density parameter grows like a4,

dΩ
(1)
GW(k, t)

d log k
=

dΩ
(1) in
GW

d log k

(

a

ain

)4

, kt ≪ 1 , (2.37)

where
dΩ

(1) in
GW (k)

d log k
=

48π

(2π)3

[

k3P(1)
Σ in(k)

]

. (2.38)

Inside the horizon, kt ≫ 1, we have to insert the expression of Σ(1) given by Eq. (2.23) in

Eq. (2.34), which yields

dρ
(1)
GW (k, t)

d log k
≃ 9

(2π)3G

[

k3P(1)
Σ in(k)

] H2
in

(ktin)4

(ain

a

)4
∝ 1

a4
. (2.39)

For the density parameter we obtain in a radiation dominated background

dΩ
(1)
GW (k)

d log k
≃ 24π

(2π)3

(

1

ktin

)4
[

k3P(1)
Σ in(k)

]

≃ 1

2

(

1

ktin

)4 dΩ
(1) in
GW

d log k
, kt ≫ 1 . (2.40)
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Inside the horizon, the gravity wave density parameter is constant in time as is natural

in a radiation dominated Universe. Note that this agrees, up to the factor 1/2 which

comes from averaging cos2(kt), with Eq.(2.37) at horizon entry, where (a/ain)4 = (ktin)
−4.

Large scale gravity waves from inflation, are “amplified” for a long time before entering the

horizon, i.e. they have ktin ≪ 1. Only if
[

dΩ
(1)
GW (k)/d log k

]

is small for all values of k,

perturbation theory is justified. Therefore it is not sufficient if
[

dΩ
(1) in
GW /d log k

]

is small,

but we actually need that (ktin)−4
[

dΩ
(1) in
GW /d log k

]

be small. This is better understood if

we write the energy density in terms of the metric perturbation. In a radiation dominated

Universe the ”growing” (not decaying) mode solution for the metric perturbation is

hij(k, t) = eij(k)hinj0(kt) ,

where eij(k) is transverse traceless and j0 is the spherical Bessel function of order 0. Using

j′0 = −j1 and Eq. (2.31) yields

ρ
(1)
GW = k3 k2〈|hin|2〉j2

1 (kt)

8πGa2

With ρc = 3H2/(8πG) = 3/(8πGa2t2) and 〈|hin|2〉 ≡ Ph, we find

dΩGW

d log k
= 3[(kt)2j2

1(kt)]k3Ph ≃ 3(kt)4k3Ph , if kt ≪ 1 . (2.41)

Hence if the metric perturbations are small for all values of k, i.e. k3Ph ≪ 1 this implies

dΩGW

d log k
≪ (kt)4 .

Therefore the requirement (ktin)
−4
[

dΩ
(1) in
GW /d log k

]

≪ 1 is equivalent to the requirement

that the metric perturbations be small on super horizon scales [note that j0(z) ≃ 1 for

z ≪ 1].

Before we go to the second order, let us stress this point once more, because it is the

origin of the confusion in the literature. Inflation generates gravitational waves with an

amplitude

k3Ph ≃
(

Hinf

MP

)2

≤ 10−10 ,

where MP is the Planck mass and Hinf denotes the scale factor during inflation. The

maximum value of 10−10 is the maximum tensor fluctuation from inflation allowed by the

cosmic microwave background anisotropies.

However, the density parameter on super-horizon scale is given by, see Eq. (2.41)

dΩ
(1)
GW

d log k
≃ (kt)4

(

Hinf

MP

)2

, kt ≪ 1 .

This equation is correct for any power law background, a ∝ tq, also for matter and even for

inflation. 0nly at horizon crossing, can the density parameter become of the order 10−10.

Inside the horizon it stays constant if the background is radiation. Hence Eq. (2.40) can
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be written as
dΩ

(1)
GW (k)

d log k
≃
(

Hinf

MP

)2

, kt ≫ 1 . (2.42)

2.4 Second order perturbations

In this section we include all terms of second order in the perturbations, and we shall insert

our first order results for them; i.e. in terms of the form σijB
j we insert σ

(1)
ij Bj

(1) or for

Πij we insert the first order magnetic fields, Π
(1)
ij = B

(1)
i B

(1)
j − (1/3)p̃

(0)
ij B(1)2 in Eqs. (2.10)

and (2.11). We obtain the following differential equations for the evolution of the second

order perturbations B
(2)
i (x, t) and σ

(2)
ij (x, t):

∇u∇uB
(2)
i − D2B

(2)
i +

5

3
Θ∇uB

(2)
i +

1

3
Θ2(1 − w)B

(2)
i =

σ
(1)
ij ∇uBj

(1) + 2Θσ
(1)
ij Bj

(1) + 2∇uσ
(1)
ij Bj

(1)

+(D2)(1)B
(1)
i + curlJi , (2.43)

∇u∇uσ
(2)
ij − D2σ

(2)
ij +

5

3
Θ∇uσ

(2)
ij +

1

6
Θ2(1 − 3w)σ

(2)
ij =

κ∇uΠ
(1)
ij +

2

3
ΘκΠ

(1)
ij + Θσ〈i(1)

nσ
(1)
j〉n + (D2)(1)σ

(1)
ij

+2σ
n(1)
〈i ∇uσ

(1)
j〉n −∇uσ〈i(1)

nσ
(1)
j〉n . (2.44)

Taking into account that ∇uBi(1) = −(2/3)ΘBi(1) together with ∇uΠ
(1)
ij = −(4/3)ΘΠ

(1)
ij ,

Eqs. (2.43), (2.44) can be simplified to

∇u∇uB
(2)
i − D2B

(2)
i +

5

3
Θ∇uB

(2)
i +

1

3
Θ2(1 − w)B

(2)
i =

[

4

3
Θσij(1) + 2∇uσ

(1)
ij

]

Bj
(1) + (D2)(1)B

(1)
i , (2.45)

∇u∇uσ
(2)
ij − D2σ

(2)
ij +

5

3
Θ∇uσ

(2)
ij +

1

6
Θ2(1 − 3w)σ

(2)
ij =

−2

3
ΘκΠ

(1)
ij + Θσ〈i(1)

nσ
(1)
j〉n + (D2)(1)σ

(1)
ij

+2σ
n(1)
〈i ∇uσ

(1)
j〉n −∇uσ〈i(1)

nσ
(1)
j〉n . (2.46)

We have also neglected the term curlJi in Eq. (2.43). Since it is proportional to k in the

Fourier space, its contribution is important only on sub-horizon scales, where we anyway

neglect the source part. Outside the horizon, kt ≪ 1, it is negligible.

2.4.1 The second order magnetic field from gravity waves and a constant
magnetic field

For simplicity, and to gain intuition, we first consider a constant first order magnetic field,

B
(1)
i (x, t) = B

(1)
i in

ain

a
, B

(1)
i (k, t) = B

(1)
i in

ain

a
δ3(k) .
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In this case, the convolution of B(1) and σ(1) into which the products in ordinary space

transform under Fourier transformation, become normal products and the second order

magnetic field B
(2)
i has the same wavelength as the first order gravity wave which generates

it.

Remembering that σij ∝ a−4

√

P(1)
σ ≡ a−4σ(1) one obtains

B̈
(2)
i + 2HḂ

(2)
i + B

(2)
i

[

k2 +
1

2
H2(1 − 3w)

]

= 2σ̇
(1)
ij B

(1)
j in

ain

a2
. (2.47)

In principle, one has to consider the corrections to the orthogonal spatially projected

covariant derivative (D2)(1)B
(1)
i due to the tensor perturbations hij in the metric tensor

gµν . Computing these corrections, they turn out to be equal to zero, since the magnetic

field is transverse. This remains valid even if B(1) is not constant.

Considering the expansion-normalized dimensionless variable B(2)
i ≡ √

κB
(2)
i /(Θain),

we obtain

B̈(2)
i −H(1 + 3w)Ḃ(2)

i + B(2)
i

[

k2 + H2

(

1

2
+ 3w +

9

2
w2

)]

= fi ,

fj ≡ 2
√

κ

[

Σ̇
(1)
ij − 3

2
H(1 + w)Σ

(1)
ij

]

B
(1)
j in

(ain

a

)2
. (2.48)

We investigate the behavior of the second order perturbation in the radiation dominated

phase.

Moreover, since the source fi(k, t) and therefore also B(2)
i (k, t) are random variables,

we want to determine their spectra. The first order gravity wave spectrum is

〈Σ(1) in
ij (k)Σ

∗(1) in
ln (q)〉 = (2π)3Mijln(k̂)δ3(k − q)P(1)

Σ in(k) ,

〈Σ(1) in
ij (k)Σ∗ij

(1) in(q)〉 = 4(2π)3δ3(k − q)P(1)
Σ in(k) ,

where Mijlm is the gravity waves polarization tensor defined in Eq. (2.32). It can also be

expressed in terms of the projection tensor Pij(k̂), Mijlm ≡ PilPjm + PimPjl − PijPlm.

Actually (1/2)Mij
lm is the projection tensor onto the two transverse traceless modes of a

rank 2 symmetric tensor. The power spectrum of the second order magnetic field B(2) is

of the form

〈B(2)
i (k, t)B∗(2)

j (p, t)〉 = (2π)3Pij(k̂)δ3(k−p)P(2)
B (k, t) . (2.49)

We obtain the solution for B(2)
i (k, t) with the help of Green function method,

B(2)
i (k, t) =

∫ t

tin

dt′G(t, t′,k)fi(k, t′) . (2.50)

Here G is the Green function of the second order linear differential operator acting on

B(2)
i which depends on the cosmological background. It can be determined in terms of the

homogeneous solutions which in the radiation dominated era are simply spherical Bessel

functions and powers. More precisely, in terms of z = kt, Eq. (2.48) in the radiation
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dominated case, w = 1/3, becomes

B(2)′′
i − 2

z
B(2)′

i +

(

1 +
2

z2

)

B(2)
i = k−2fi(z,k) , (2.51)

where the prime denotes a derivative w.r.t. z. Two homogenous solutions to this equation

are P1(z) = z2j0(z) and P2(z) = z2y0(z). Defining the Wronskian, W (z) = P ′
1(z)P2(z) −

P1(z)P ′
2(z) = z2, a possible Green function is

G(z, z′,k) =
P1(z

′)P2(z) − P1(z)P2(z
′)

W (z′)
. (2.52)

The solution obtained by integrating with this Green function satisfies the initial condition

B(2)
i (zin,k) = B(2)′

i (zin,k) = 0. Any other solution can be obtained by adding a homoge-

neous solution to this one. We discuss the physically correct choice of initial conditions in

more detail in the Appendix 2.6.1. For the magnetic field, the initial conditions chosen with

this Green function seem adequate to us. We can now write the magnetic field spectrum

as

〈B(2)
i (k, t)B∗(2)

j (p, t)〉 =

∫ z

zin

dz′
∫ z

zin

dz′′k−2p−2 ×

G(z, z′,k)G∗(z, z′′,p)〈fi(k, z′)f∗
j (p, z′′)〉 . (2.53)

We solve Eq. (2.51), distinguishing the sub- and super-horizon regimes. In the long

wavelength limit, kt = z ≪ 1, we have to insert the solution obtained for gravity waves

Σ
(1)
ij on super-horizon scales and given in Eq. (2.20). Therefore, the source term fi(k, t)

reads

fi(k, t′) = 4
√

κPs
i (k̂)

[

Σ(1) in
sn (k)B(1) in

n

]

(Hinain)
2t′ , (2.54)

and equivalently for f∗
j (q, t′′). The power spectrum of fi can then be written as

〈fi(k, z′)f∗
j (p, z′′)〉 = 16κPs

i (k̂)P l
j(q̂)〈Σ(1) in

sn (k)Σ
∗(1) in
lr (k)〉B(1) in

n B∗(1) in
r (Hinain)

4z′z′′k−2

≡ (2π)3δ3(k − p)Pij(k̂)h(z′, z′′, k) . (2.55)

For the function h(z′, z′′, k) we obtain the following expression

h(z′, z′′, k) ≃ F (k)g(z′)g(z′′) ,

F (k) = κB2
(1) inP

(1)
Σ in(k)k−2 ,

g(z′) = 4H2
inainz

′ .

The solution for the power spectrum of the second order perturbation of the magnetic field

can then be written as

〈B(2)
i (k, t)B∗(2)

j (p, t)〉 = (2π)3Pij(k̂)δ3(k−p) ×
[
∫ z

zin

dz′G(z, z′,k)
√

F (k)g(z′)

]2

. (2.56)
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The square [· · · ]2 is simple the power spectrum P(2)
B (k, t) which we want to determine. Of

course, the integrals in the square bracket are solutions to our magnetic field Eq. (2.51)

with source
√

F (k)g(z). Hence

√

P(2)
B satisfies the equation

P ′′ − 2

z
P ′ +

(

1 +
2

z2

)

P =
α

k3
z , (2.57)

|P | ≡
√

P(2)
B (k, t) , z ≡ kt ,

α ≡ 4H2
inain

√

κB2
(1) inP

(1)
Σ in(k) .

Solving the above equation with the Wronskian method in the regime z = kt ≪ 1, one

finds

P (z) ≃ α

2k3
z3 , z = kt ≪ 1 .

This yields

k3P(2)
B (k, t) ≃ 4κ

Bin 2
(1)

H2
in

[

k3P(1)
Σ in(k)

]

(

a

ain

)6

, kt ≪ 1 . (2.58)

This is the second order magnetic field power spectrum induced by the presence of a first

order field and a gravitational wave. It is the growth ∝ t6 of this induced field which has

been interpreted in Refs. [124, 71, 72] as strong amplification. But before drawing such

conclusions, we want to compare the energy density parameter of B(2) with the one of σ(1)

and B(1) inside the horizon, where these quantities have a simple physical interpretation.

Inside the horizon, kt ≫ 1, we can no longer use the above simple approximation for

the source term. The solution of Eq. (2.57) with a generic source term,

[
√

P(2)
B (k, z)

]′′
− 2

z

[
√

P(2)
B (k, z)

]′
+

[
√

P(2)
B (k, z)

]

= S(k, z) , (2.59)

can be written as
√

P(2)
B (k, z) =

∫ z

zin

dz′S(k, z′)G(z, z′,k) . (2.60)

But, once the gravity waves enter the horizon, the source and the Green function start

oscillating and the contribution to the above integral becomes negligible. We therefore

neglect the source inside the horizon and simply match the solution at horizon crossing

with the homogeneous solutions of Eq. (2.57) given above, that are P1(z) = z2j0(z) and

P2(z) = z2y0(z) (z = kt). Considering the limit z ≫ 1, this yields

k3P(2)
B (k, t) ≃ 2κ

Bin 2
(1)

H2
in

[

k3P(1)
Σ in(k)

]

(

a

ain

)2 1

(ktin)4
, kt ≫ 1 . (2.61)

2.4.1.1 The energy density

To analyze this amplification which happens mainly on super-horizon scales, let us compare

energy densities after horizon entry. The energy density of our second order magnetic field
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is

dρ
(2)
B (k, t)

d log k
≡ 1

(2π)3

[

k3P(2)
B (k, t)

] 1

a2

=
1

(2π)3

[

k3P(2)
B (k, t)

] 9H2

κ

(ain

a

)2
. (2.62)

The factor 1/a2 comes from the fact that we have to raise one index of 〈B(2)
i B

(2)
i 〉 in order

to compute the energy density, while a2
in is due to the definition of B(2)

i ∝ B
(2)
i /ain that we

gave above. The density parameter for B(2) then reads

dΩ
(2)
B (k, t)

d log k
=

3

(2π)3

(ain

a

)2 [

k3P(2)
B (k, t)

]

. (2.63)

With H = Hina
2
in/a

2 we find that even though P(2)
B (k, t) is growing like t6 on super-horizon

scales, the density parameter grows like Ω
(1)
GW. After horizon entry, this growth stops and

Ω
(2)
B remains constant. Inserting the solutions (2.58) and (2.61) for k3P(2)

B (k, t) gives

dΩ
(2)
B (k, t)

d log k
= 6

dΩ
(1)
GW(k, t)

d log k
Ω

(1)
B (2.64)

on super- and sub-horizon scales.

Hence, even though the second order magnetic field B(2) is growing considerably, this

reflects only the growth of the unphysical density parameter Ω
(1)
GW on super-horizon scales.

Once this is factored in, the magnetic field density parameter is not. The values for both,
[

dΩ
(1) in
GW (k)/d log k

]

(ktin)
−4 =

[

dΩ
(1)
GW(k)/d log k

]

and Ω
(1)
B are at most of the order of

10−5 and smaller. For the gravity waves, we have seen that
[

dΩ
(1) in
GW (k)/d log k

]

(ktin)−4 is

just the square amplitude of the metric perturbations on super horizon scales, which has to

be k3Ph
<∼ 10−10 in order not to overproduce CMB anisotropies on large scales (integrated

Sachs–Wolfe effect). Similar arguments yield Ω
(1)
B < 10−5 on large scales (see, e.g. [60, 63]).

Therefore, even though we agree with the calculation in Ref. [71], we do not agree with

the interpretation. If the gravitational wave energy density is as small as required by the

measurements of CMB anisotropies, Ω
(2)
B always remains smaller than Ω

(1)
B . Furthermore,

up to logarithmic corrections, B(2) inherits the spectrum of the first order gravity waves.

In the next section we show that this conclusion persists also if we allow for a stochastic

magnetic field. Just the computation becomes more involved.

2.4.2 The second order magnetic field from gravity waves and a stochas-
tic magnetic field

In the case in which the first order magnetic field is not spatially constant, all the products

Σ
(1)
ij (x, t)Bj

(1)(x, t) become convolutions in Fourier space

∫

d3xeik·xΣ
(1)
ij (x, t)Bj

(1)(x, t) =
1

(2π)3
Pi

n(k̂)

∫

d3qΣ
(1)
nj (q, t)Bj

(1)(k− q, t) ,

52



Second order perturbations

where the projector Pi
n ≡ δn

i − k̂ik̂
n projects onto the transverse modes. The result of

this convolution is a magnetic field and therefore transverse. Hence this projector is not

strictly necessary. But as we shall see, it simplifies the calculations.

Our equations are written in terms of the dimensionless expansion-normalized variables

B(2)
i (x, t) and Σ

(2)
ij (x, t), and we want to express their power spectra in terms of the power

spectra of the first order random variables B
(1)
i (x, t) and Σ

(1)
ij (x, t) for which we assume

simple power laws,

B
(1)
i (k, t) = Bin

i(1)(k)
ain

a
,

Bi
(1)(k, t) = Bin i

(1) (k)
a3

in

a3
,

a2
in〈B

(1) in
i (k)B

∗(1) in
j (q)〉 = (2π)3Pij(k̂)δ3(k − q)P(1)

B in(k) ,

〈B(1) in
i (k)B∗i

(1) in(q)〉 = 2(2π)3δ3(k − q)P(1)
B in(k) ,

P(1)
B in(k) =

{

[B2
(1) inλ

3](λk)M for k < kd,

0 for k > kd,
(2.65)

where kd is the damping scale which we assume to be always much smaller than the Hubble

scale. The scale λ is arbitrary, e.g., the scale at which we want to calculate the magnetic

field. With this normalization Bin
(1) is simply the amplitude of the magnetic field at scale λ

at time tin. At any other moment, the magnetic field at scale λ is given by Bin
(1)a

2
in/a

2(t).

Equivalently we have for the gravity wave power spectrum

Σ
(1)
ij (k, t) = Σ

(1) in
ij (k)T (k, t) ,

〈Σ(1) in
ij (k)Σ

∗(1) in
ln (q)〉 = (2π)3Mijln(k̂)δ3(k − q)P(1)

Σ in(k) ,

〈Σ(1) in
ij (k)Σ∗ij

(1) in(q)〉 = 4(2π)3δ3(k − q)P(1)
Σ in(k) ,

P(1)
Σ in(k) = [Σ2

(1) inλ
3](λk)A . (2.66)

Here the transfer function T (k, t) keeps track of the deterministic time-dependence of the

gravity waves. In the previous section we have derived the well known behavior of the

gravity wave transfer function which oscillates on sub-horizon scales, kt ≫ 1, and behaves

like a power law on super-horizon scales. For the radiation dominated case,

T (k, t) ≃
(

a

ain

)4

, kt ≪ 1 . (2.67)

Starting from Eq. (2.45), we can write the following evolution equation for the second

order perturbation

B̈
(2)
i (x, t) + 2HḂ

(2)
i (x, t) − a2D2B

(2)
i (x, t) +

1

2
H2(1 − 3w)B

(2)
i (x, t) = 2aσ̇

(1)
ij (x, t)Bj

(1)(x, t) . (2.68)
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Replacing B
(2)
i = 3HainB(2)

i /
√

κ and σ
(1)
ij = 3Ha2

inΣ
(1)
ij , we obtain

B̈(2)
i (x, t) − (1 + 3w)HḂ(2)

i (x, t) − a2D2B(2)
i (x, t) +

(

1

2
+ 3w +

9

2
w2

)

H2B(2)
i (x, t) =

2
√

κainaBj
(1)(x, t)

[

Σ̇
(1)
ij (x, t) − 3

2
H(1 + w)Σ

(1)
ij (x, t)

]

. (2.69)

This is the same differential equation as for the constant magnetic field. In Fourier space

this equation becomes

B̈(2)
i (k, t) − (1 + 3w)HḂ(2)

i (k, t) + B(2)
i (k, t) ×

[

k2 +

(

1

2
+ 3w +

9

2
w2

)

H2

]

= fi(k, t) , (2.70)

where the source fi(k, t) is now given by a convolution

fi(k, t) ≡ 2

(2π)3
√

κainaPi
r(k̂) ×

[
∫

d3qΣ̇
(1)
rj (q, t)Bj

(1)(k− q, t) − 3

2
(1 + w)H×

∫

d3qΣ
(1)
rj (q, t)Bj

(1)(k − q, t)

]

.

(2.71)

In terms of the variable z = kt we obtain again Eq. (2.51). As in the previous section

we solve it with the Green function method. Therefore, the power spectrum of B(2)
i is given

by

〈B(2)
i (k, t)B∗(2)

j (p, t)〉 = (2π)3δ3(k−p) × (δij−k̂ik̂j)P(2)
B (k, t) ,

with

P(2)
B (k, t) =

∫ z

zin

dz′
∫ z

zin

dz′′G(z, z′,k) × G∗(z, z′′,p)〈fi(k, z′)f∗
j (p, z′′)〉 ,

where z = kt. In the radiation dominated epoch (w = 1/3) the source term reads

fi(k, t′) =
2

(2π)3
√

κaina(t′)Pi
r(k̂) ×

[
∫

d3qΣ̇(1)
rm(q, t′)Bm

(1)(k− q, t′) − 2H(t′)
∫

d3qΣ(1)
rm(q, t′)Bm

(1)(k − q, t′)

]

=
2

(2π)3
√

κ
a2

in

a2(t′)
Pi

r(k̂) ×
[
∫

d3qΣ(1) in
rm (q)Ṫ (q, t′)B(1) in

m (k− q)−

2H(t′)
∫

d3qΣ(1) in
rm (q)T (q, t′)B(1) in

m (k−q)

]

, (2.72)

and equivalently for f∗
j (p, t′′). To determine the power spectrum of fi we assume that the
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magnetic field B(1) and gravity waves σ(1) are uncorrelated, so that

〈fi(k, t′)f∗
j (p, t′′)〉 ≡ (2π)3δ3(k − p)Pij(k̂)h(t′, t′′, k) =

16κ

(2π)6
H(t′)H(t′′)

[

a(t′)a(t′′)

a2
in

]2

Pi
r(k̂)Pj

n(p̂) ×
∫

d3q

∫

d3s〈Σ(1) in
rm (q)Σ

∗(1) in
nl (s)〉 ×

〈B(1) in
m (k − q)B

∗(1) in
l (p− s)〉 . (2.73)

The function h(t′, t′′, k) is given by [77]

h(t′, t′′, k) =
8κ

(2π)3
H(t′)H(t′′)

[

a(t′)a(t′′)

a2
in

]2

I(k) ,

I(k) ≡
∫

d3q(1 + γ2)(1 + α2)P(1)
Σ in(q)P

(1)
B in(|k − q|) , (2.74)

where α ≡ k̂ · (k̂ − q) and γ ≡ k̂ · q̂. We neglect the angular dependence of (1 + γ2) and

(1 + α2) and simply set

(1 + γ2)(1 + α2) ≃ 1 .

We then have to solve the following integral,

I(k) = 4πΣ2
(1) inB

2
(1) inλ

A+M+6

∫ 1/max(t′,t′′)

0
dqqA+2

∫ 1

−1
dµ(k2 + q2 − 2µkq)M/2 .

Here we evaluate the integral only up to the scale q which enters the horizon at the later

of the two times. All scales q < 1/max(t′, t′′) are super-horizon from tin to max(t′, t′′). A

soon as q enters the horizon, the gravity wave transfer function begins to oscillate and the

contribution to the integral becomes negligible. The integral over µ can be evaluated; for

M 6= −2 it yields

I(k) =
8π

2 + M
Σ2

(1) inB
2
(1) inλ

A+M+6

∫ 1/max(t′,t′′)

0

dq qA+2

kq

(

|k+q|M+2−|k−q|M+2
)

.

We shall not treat the case M = −2, where the angular integral introduces a logarith-

mic dependence on q, separately. This corresponds to approximating log(k/q) ∼ 1. We

approximate these integrals by their dominant contribution.

• If the spectra are sufficiently red such that A + M + 3 < 0, the result is dominated

by the region k < 1/max(t′, t′′) and we obtain

I(k) ≃ 16πΣ2
(1) inB

2
(1) inλ

3(λk)A+M+3

(

1

A + 3
− 1

A + M + 3

)

.

• On the other hand, if the spectra are blue such that A + M + 3 > 0, the integral is

dominated by its value at the upper boundary,

I ≃ 16πΣ2
(1) inB

2
(1) inλ

3 1

A + M + 3

[

λ

max(t′, t′′)

]A+M+3

.
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If, as in the previous sub-section, we can write the function h(t′, t′′, k) in the form

h(t′, t′′, k) ≃ F (k)g(t′)g(t′′) , (2.75)

we can proceed as we did before to obtain the results (2.58) and (2.61). A source where

the time dependence of the unequal time correlator factorizes is called “totally coherent”.

In the totally coherent case, the power spectrum is simply the square of the solution

which has as its source the square root of the power spectrum of the source [31]. In most

cases, the unequal time correlator is more complicated than this, but the totally coherent

approximation is often quite reasonable [31]. If the source is totally coherent, the square

root of the power spectrum P(2)
B simply satisfies the same evolution equation as B(2) with

source term
√

Fg.

• If A + M + 3 < 0, we can write

F (k) =
128πκ

(2π)3
(kλ)A+M+3λ3 ×

(

1

A + 3
− 1

A + M + 3

)

,

g(t′) =
B(1) inΣ(1) in

a2
in

H(t′)a2(t′) .

• For A + M + 3 > 0, we set

F (k) =
128πκ

(2π)3
1

A + M + 3
λA+M+6 ,

g(t′) =
B(1) inΣ(1) in

a2
in

H(t′)a2(t′)

(

1

t′

)(A+M+3)/2

.

This corresponds to replacing

[

1

max(t′, t′′)

](A+M+3)

by

(

1

t′t′′

)(A+M+3)/2

which is of course not entirely correct and we expect this to over estimate the true re-

sult somewhat. However, within the accuracy of our approximations this is sufficient.

To obtain a more accurate result we would have to expand the function h(k, t′, t′′) in

eigenfunctions with respect to convolution in time, as it is done in Ref. [31].

Within this totally coherent approximation we can now solve the problem like in the

previous sub-section. In the case A + M + 3 < 0 we find on super-horizon scales, where

the source is active

k3P(2)
B (k, t) ≃ 32πκ

(2π)3

[

k3P(1)
B in(k)

]

H2
in

[

k3P(1)
Σ in(k)

]

×
(

a

ain

)6

, kt ≪ 1 . (2.76)

On sub-horizon scales, performing the matching at horizon crossing, we obtain

k3P(2)
B (k, t) ≃ 16πκ

(2π)3

[

k3P(1)
B in(k)

]

H2
in

[

k3P(1)
Σ in(k)

]

×
(

a

ain

)2 1

(ktin)4
, kt ≫ 1 . (2.77)
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If A + M + 3 > 0, we analyze in in more detail only the case A ≃ −3 and M = 2. The

spectral index A = −3 correspond to a scale invariant gravity wave power spectrum as it

is obtained in slow-roll inflation [132]. The index M = 2 characterizes a causal magnetic

field B(1). In this case, we have to solve the differential equation,

P ′′ − 2

z
P ′ +

(

1 +
2

z2

)

P =
α

k2
, (2.78)

α ≡ (ainHin)
2B

(1)
in Σ

(1)
in

√

64π

(2π)3
κλ5 ,

where the source is constant in time. Detailed comments about the initial conditions chosen

for the solution of the above equation can be found in Appendix 2.6.1. Finally, we can

write the solution for P (z) in the case where z = kt ≪ 1 as

P (z) ≃ α

k2
z2 log

(

z

zin

)

, z ≪ 1 .

The power spectrum of B(2) on super-horizon scales is therefore given by

k3P(2)
B (k, t) ≃ 16πκ

(2π)3

[

k3P(1)
B in(k)

]

H2
in

[

k3P(1)
Σ in(k)

]

×
(

a

ain

)4 1

(ktin)2
log2

(

a

ain

)

, kt ≪ 1 . (2.79)

On sub-horizon scales, z = kt ≫ 1, we match the super-horizon solution at horizon crossing

with the homogeneous solution of Eq. (2.78), as we did above, obtaining

k3P(2)
B (k, t) ≃ 32πκ

(2π)3

[

k3P(1)
B in(k)

]

H2
in

[

k3P(1)
Σ in(k)

]

×
(

a

ain

)2 1

(ktin)4
log2 (ktin) , kt ≫ 1 . (2.80)

2.4.2.1 Density parameter

Using Eq. (2.62), we find the following expressions for the energy density of the stochastic

second order magnetic field. If A + M + 3 < 0, we have on super-horizon scales

dρ
(2)
B (k, t)

d log k
≡ 1

(2π)3
k3P(2)

B (k, η)
(ain

a

)2
≃ 288π

(2π)6

[

k3P(1)
B in(k)

] [

k3P(1)
Σ in(k)

]

. (2.81)

This results in a density parameter for B(2) given by

dΩ
(2)
B (k, t)

d log k
≡ 1

ρc

dρ
(2)
B (k, η)

d log k
≃ 6

dΩ
(1)
B in(k)

d log k

dΩ
(1)
GW (k, t)

d log k
, kt ≪ 1 . (2.82)
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Inside the horizon we obtain for the second order magnetic field density parameter

dΩ
(2)
B (k, t)

d log k
≃ 6

dΩ
(1)
B in(k)

d log k

dΩ
(1)
GW (k)

d log k
, kt ≫ 1 . (2.83)

The gravity wave density parameter,
[

dΩ
(1)
GW (k, t)/d log k

]

is given by Eqs. (2.37) and (2.40)

respectively. This corresponds, as in the previous section for a constant magnetic field, to

the naively expected result, Ω
(2)
B ∼ Ω

(1)
GWΩ

(1)
B .

For blue spectra, A + M + 3 > 0, the second order magnetic field density parameter

reads in the interesting case A ≃ −3 and M = 2 on super-horizon scales

dΩ
(2)
B (k, t)

d log k
=

12

(kt)2
dΩ

(1)
B in(k)

d log k

dΩ
(1)
GW(k, t)

d log k
log2

(

a

ain

)

= 12
dΩ

(1)
GW(k, t)

d log k

dΩ
(1)
B in(k)

d log k

∣

∣

∣

∣

∣

k=1/t

(kt)3 log2

(

a

ain

)

, kt ≪ 1 . (2.84)

Note that the value of
[

dΩ
(2)
B (k, t)/d log k

]

on super-Hubble scales is affected by
[

dΩ
(1)
B (kt)/d log kt

]

at horizon crossing, kt = 1/t which may well be larger than
[

dΩ
(1)
B (k)/d log k

]

but of course has also to be much smaller than 1.

This expression grows only logarithmically faster than
[

dΩ
(1)
GW (k, t)/d log k

]

. The

growth stops at horizon entry where the second order magnetic field density parameter

has acquired a factor log2(ktin). Inside the horizon we obtain a density parameter of

dΩ
(2)
B (k, t)

d log k
= 12

dΩ
(1)
B in(k)

d log k

dΩ
(1)
GW(k)

d log k
log2(ktin) , kt ≫ 1 . (2.85)

Up to the logarithmic correction, this corresponds to the result for red spectra above.

2.4.2.2 Reheating and matter dominated epochs

In order to make contact with Refs. [124, 71], we now repeat the calculation in a matter

dominated background (w = 0). We want to point out that the results we obtain are math-

ematically the same as the ones found in [71]. The only difference lies in the interpretation.

In the previous paragraph we have seen that, even though

dΩ
(1)
GW (k)

d log k
∼
(

1

ktin

)4
[

k3P(1)
Σ in(k)

]

,

and even though (ktin)
−4 can become very large, this product is never larger than about

10−10. We believe that this point has been missed in Ref. [71].

If w = 0, the scale factor grows like a ∝ t2 so that H = 2/t. As mentioned before, for

the super horizon amplification the question whether the conductivity is high or low is not

relevant.

From the first order perturbations, we obtain the same behaviour for the magnetic field
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B(1) in terms of the scale factor, therefore the density parameter is then given by

dΩ
(1)
B (k, t)

d log k
=

8πG

3(2π)3

[

k3P(1)
B in(k)

]

H2
in

ain

a
. (2.86)

The first order gravity waves on super-horizon scales now behaves as

Σ
(1)
ij (k, t) = Σ

(1)
ij in(k)

(

a

ain

)3

. (2.87)

Once the gravitational waves enter the horizon, they start oscillating and the energy density

decays as radiation. Therefore in this case the relative density parameters for the first order

gravity waves is

dΩ
(1)
GW(k, t)

d log k
=

48π

(2π)3

[

k3P(1)
Σ in(k)

]

(

a

ain

)2

, kt ≪ 1 . (2.88)

On sub-horizon scales we obtain

dΩ
(1)
GW(k, t)

d log k
=

24π

(2π)3

[

k3P(1)
Σ in(k)

] (ain

a

) 1

(ktin)6
, kt ≫ 1 . (2.89)

Computing finally the induced second order magnetic field density parameter, we obtain

the naively expected result on super-horizon scales

dΩ
(2)
B (k, t)

d log k
≃







































dΩ
(1)
B (k,t)

d log k
dΩ

(1)
GW(k,t)
d log k ,

for A + M + 3 < 0

(kt)3
[

dΩ
(1)
B (k,t)

d log k

]

k=1/t

×

dΩ
(1)
GW(k,t)
d log k log2 a

ain
,

for A + M + 3 > 0

kt ≪ 1 .

On sub-horizon scales the density parameter turns out to be given by

dΩ
(2)
B (k, t)

d log k
≃ dΩ

(1)
B (k, t)

d log k

dΩ
(1)
GW(k, tk)

d log k

≃ dΩ
(1)
B (k, t)

d log k

(

Hinf

MP

)2

, kt ≫ 1 , (2.90)

for both cases A + M + 3 < 0 and A ≃ −3, M = 2, up to logarithmic corrections. Here

tk stands for the horizon crossing time, tk = 1/k, and in the last ≃ sign we have used that
[

dΩ
(1)
GW(k, tk)/d log k

]

≃ (Hinf/MP)2 is the gravity waves density parameter at horizon

crossing, which is smaller than 10−10. This means that the second order magnetic field

does not grow larger the the first order one. Inside the horizon they decrease both like

∝ a−1. Ω
(2)
B stays always much smaller than Ω

(1)
B , as we have found in the case of a radiation

dominated background.
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2.4.3 Second order gravity waves

Starting from Eq. (2.46), we can write the evolution equation for σ
(2)
ij in real space (x, t)

as follows:

σ̈
(2)
ij − a2D2σ

(2)
ij − 3

2
H2(1 + w)σ

(2)
ij =

−2κaHΠ
(1)
ij +

[

aHσ〈i(1)
nσ

(1)
j〉n + 2aσ〈i(1)

nσ̇
(1)
j〉n − aσ̇n

〈i(1)σ
(1)
j〉n

] 1

a2
. (2.91)

The factor 1/a2 in the source part of the above equation comes from the fact that in

Eq. (2.46) we had to add factors a2(t) in order to lower or rise indices. On the other hand,

now we deal with purely spatial tensors such that σij = σij and also σ̇ij = σ̇ij.

Introducing again the dimensionless expansion-normalized variable Σ
(2)
ij , the previous

equation can be written as

Σ̈
(2)
ij − 3(1 + w)HΣ̇

(2)
ij + 3H2

(

3

2
w2 + 2w +

1

2

)

Σ
(2)
ij − a2D2Σ

(2)
ij =

−2

3
κ

a2

a2
in

Π
(1)
ij +

[

−3

2
(1 + 3w)H2Σ〈i(1)

nΣ
(1)
j〉n

+6HΣ〈i(1)
nΣ̇

(1)
j〉n − 3HΣ̇n

〈i(1)Σ
(1)
j〉n

] (ain

a

)2
. (2.92)

As for B(2), the source is given by the first order perturbations magnetic field [Π
(1)
ij ] and the

first order gravity waves and does e.g. not couple to the second order magnetic field. Since

we assume the first order magnetic field and gravity wave fluctuations to be independent,

we can add the power spectra for the solutions of the individual source terms,

k3P(2)
Σ (k, t) = k3P(2) Π

Σ (k, t) + k3P(2) GW
Σ (k, t) .

where P(2) Π
Σ (k, t) is the power spectrum of the solution of Eq. (2.92) with source term Π(1)

only and P(2) GW
Σ (k, t) comes from the source terms containing Σ(1).

2.4.3.1 Magnetic field part of the source
[

k3P(2) Π
Σ (k, t)

]

Considering first the magnetic field part of the source, we have to solve the following

differential equation in the momentum space (k, t)

Σ̈
(2)
ij − 3(1 + w)HΣ̇

(2)
ij +

[

k2 + 3H2

(

3

2
w2 + 2w +

1

2

)

]

Σ
(2)
ij = fij , (2.93)

where the source is given by

fij(k, t) ≡ −2

3
κ

a2

a2
in

Π
(1)
ij (k, t) . (2.94)

As before, we have to compute the unequal time correlator:

〈Π(1)
ij (k, t′)Π∗(1)

rn (p, t′′)〉 = (2π)3δ3(k − p)Mijrn(k̂)h(k, t′, t′′) , (2.95)
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where the anisotropic stresses are given by

Π
(1)
ij (k, t′) = − 1

16π(2π)3
Mij

ls(k̂)

∫

d3qB
(1)
l (q, t′)B(1)

s (k − q, t′) .

(1/2)Mij
ls(k̂) is the projector on the tensor modes. We have neglected a trace contribution

to the magnetic field stress tensor since, once we project with Mij
ls, the trace vanishes.

After some computation [77], we find for the function h(k, t′, t′′) the following expres-

sion:

h(k, t′, t′′) =
1

(8π)2
1

4(2π)3
I(k)

[

a2
in

a(t′)a(t′′)

]2

, (2.96)

I(k) =

∫

d3q(1 + γ2)(1 + α2)P(1)
B in(q) × P(1)

B in(|k − q|) . (2.97)

where α ≡ k̂ · (k̂ − q) and γ ≡ k̂ · q̂. As before, we approximate (1 + γ2)(1 + α2) ≃ 1. With

this, we obtain the following expression for the expectation value of the source term:

〈fij(k, t′)f∗
rn(p, t′′)〉 =

4

9
κ2 a2(t′)a2(t′′)

a4
in

〈Π(1)
ij (k, t′)Π∗(1)

rn (p, t′′)〉 . (2.98)

The expectation value of the stochastic variable Σ
(2)
ij can be written as

〈Σ(2)
ij (k, t)Σ∗(2)

rn (p, t)〉 = (2π)3δ3(k− p)Mijrn(k̂)P(2)
Σ (k, t) . (2.99)

If 〈Π(1)
ij (k, t′)Π∗(1)

rn (p, t′′)〉 can be written as a product of a function of (k, t) and (k, t′′),
this source is totally coherent and we can write the function h(k, t′, t′′) of Eq. (2.96) in the

form

4

9
κ2 a2(t′)a2(t′′)

a4
in

h(k, t′, t′′) = F (k)g(t′)g(t′′) ,

where we introduced the pre-factor of h since we finally need an expression for the unequal

time correlator of the source, as in Eq. (2.98), while the function h alone is only part of

the correlator of the anisotropic stress, Eq. (2.95).

The square root of the power spectrum is then a solution of the differential equation (2.93)

with source term
√

F (k)g(t). Written as differential equation for the variable z = kt and

setting w = 1/3, this becomes

[
√

P(2) Π
Σ (k, z)

]′′
− 4

z

[
√

P(2) Π
Σ (k, z)

]′
+

(

1 +
4

z2

)[
√

P(2) Π
Σ (k, z)

]

=

√

F (k)
g(z/k)

k2
. (2.100)

As for the second order magnetic field, we distinguish between two cases. First we

consider 2M + 3 > 0. The integral I is then dominated by the upper cutoff. The magnetic

field is not oscillating and we therefore take damping scale kd as the upper cutoff. We

neglect the slow time dependence of this scale. Using Eq. (2.65) for the magnetic field

61



Second order perturbations

power spectrum, I can be approximated by

I ≃ 8π

2M + 3

[

B
(1)4
in λ3

]

(λkd)
2M+3 .

Hence the functions F (k), g(t′) are given by

F (k) =
κ2

36(2π)4
1

2M + 3
(λkd)

2M+3
[

B
(1)4
in λ3

]

,

g(t′) = 1 .

In the case 2M + 3 < 0, we obtain

I ≃ 8π
[

B
(1)4
in λ3

]

(λk)2M+3

(

1

M + 3
− 1

2M + 3

)

.

This case is totally coherent and we can set

F (k) =
κ2

36(2π)4

[

B
(1)4
in λ3

]

(

1

M + 3
− 1

2M + 3

)

(λk)2M+3 ,

g(t′) = 1 .

We now solve Eq. (2.100) for the two different source terms.

• In the case 2M + 3 > 0, we can write Eq. (2.100) in the form

P ′′ − 4

z
P ′ +

(

1 +
4

z2

)

P =
α

k2
,

z ≡ kt , |P | ≡
√

P(2) Π
Σ (k, t) , α ≡

√

F (k) .

Solving the above equation on super-horizon scales and following the considerations

for the choice of initial conditions explained in Appendix 2.6.1, we find

P (z) ≃ − α

2k2
z2 , z ≪ 1 ,

this gives the second order power spectrum

k3P(2) Π
Σ (k, t) ≃ κ2

36(2π)4(2M + 3)

[

k3P(1)
B in(k)

H2
in

]2
(

a

ain

)4(kd

k

)2M+3

,

kt ≪ 1 . (2.101)

This is equivalent to a density parameter for Σ(2) given by

dΩ
(2)Π
GW (k, t)

d log k
≃

[

dΩ
(1)
B in(k)

d log k

]2
(

kd

k

)2M+3

≃
[

dΩ
(1)
B in(kd)

d log k

]2
(

k

kd

)3

,

kt ≪ 1 . (2.102)

Inside the horizon, the Green function oscillates and we can neglect the contribution
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from the source. The solution for the power spectrum is then given by

k3P(2) Π
Σ (k, t) ≃ κ2

36(2π)4(2M + 3)

[

k3P(1)
B in(k)

H2
in

]2
(

a

ain

)4(kd

k

)2M+3

,

kt ≫ 1 . (2.103)

Therefore, the second order density parameter is given by the same expression,

dΩ
(2)Π
GW (k, t)

d log k
≃
[

dΩ
(1)
B in(kd)

d log k

]2
(

k

kd

)3

, kt ≫ 1 . (2.104)

Up to logarithmic factors this result agrees with the findings of Ref. [77].

• In the case 2M + 3 < 0 we have again to solve the equation

P ′′ − 4

z
P ′ +

(

1 +
4

z2

)

P =
α

k2
, (2.105)

Hence

P (z) ≃ − α

2k2
z2 , z ≪ 1 .

But now

α ≡ κ

6(2π)2

√

1

2

(

1

M + 3
− 1

2M + 3

)

k2M+3 ×
[

B
(1)2
in λ3

]

λM ,

so that

k3P(2) Π
Σ (k, t) ≃ κ2

144(2π)4

[

k3P(1)
B in(k)

H2
in

]2
(

a

ain

)4

, kt ≪ 1 . (2.106)

As in the first case, the density parameter is the same for kt < 1 and kt > 1,

dΩ
(2) Π
GW (k, t)

d log k
≃
[

dΩ
(1)
B in(k)

d log k

]2

. (2.107)

2.4.3.2 Gravity waves part of the source
[

k3P(2) GW
Σ (k, t)

]

Let us finally consider the part of the source given by first order gravity waves. In this

case, we can write the source fij as:

fij(x, t) =
[

− 3

2
(1 + 3w)H2Σ

(1)
〈i

n
Σ

(1)
j〉n + 6HΣ

(1)
〈i

n
Σ̇

(1)
j〉n − 3HΣ̇

(1)n
〈i Σ

(1)
j〉n

] (ain

a

)2
. (2.108)

As before, we ignore the traces that are present in the above products, once we evaluate

them in the momentum space, since we project them out with (1/2)Mij
lm afterwards.

Remembering that Σij = Σij, we have on super-horizon scales, where the transfer function
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is given by Eq. (2.67):

[

Σ〈i(1)
nΣ

(1)
j〉n

]

(k, t) =
1

2(2π)3

(

a

ain

)8

Mij
lm(k̂)

∫

d3qΣ
(1) in
ln (q)Σ(1) in

nm (k− q) ,

[

Σ〈i(1)
nΣ̇

(1)
j〉n

]

(k, t) =
[

Σ̇n
〈i(1)Σ

(1)
j〉n

]

(k, t) =

2H
(2π)3

(

a

ain

)8

Mij
lm(k̂) ×

∫

d3qΣ
(1) in
ln (q)Σ(1) in

nm (k − q) .

These equations are strictly true only on super-horizon scales where Σ ∝ 1/a4. However,

since inside the horizon Σ oscillates and the contribution from the source is negligible, we

can use this approximation. Setting w = 1/3 we can finally write the source in the form

fij(k, t) =
9

2(2π)3
H2

(

a

ain

)6

×Mij
lm(k̂)

∫

d3pΣ
(1) in
ln (p)Σ(1) in

nm (k − p) , (2.109)

and the two-point correlation function of the source part reads:

〈fij(k, t′)f∗
rc(q, t′′)〉 = (2π)3δ3(k − q)Mijrc(k̂)h(k, t′, t′′) ,

h(k, t′, t′′) =
1

8(2π)3
U(t′, t′′)I(k) ,

U(t′, t′′) =
81

4
H2(t′)H2(t′′)

[

a(t′)
ain

]6 [a(t′′)
ain

]6

,

I(k) = Mbdlm(k̂)

∫

d3p
[

Mlnbf (p̂)Mmndf (k̂ − p)+

Mlndf (p̂)Mmndf (k̂ − p)
]

P(1)
Σ in(p)P(1)

Σ in(|k − p|) .

More details about the computation of h(k, t′t′′) and of the four point correlation function

of the gravity waves can be found in Appendix 2.6.2.

Using the tensor calculus package “xAct” for Mathematica [133], we can compute the above

products of the three projectors,

Mbdlm(k̂)
[

Mlnbf (p̂)Mmndf (k̂− p) + Mlndf (p̂)Mmnbf (k̂ − p)
]

=

2(1 + α2 + β2 + α2β2 − 8αβγ + γ2 + α2γ2 + β2γ2 + α2β2γ2) ≃ 2 .

(2.110)

where α ≡ k̂ · (k̂ − p), β ≡ p̂ · (k̂ − p) and γ ≡ k̂ · p̂. Again we have approximated this

angular dependence by a constant to simplify the calculations. This approximation is well

justified within our accuracy. In order to write the function h(k, t′, t′′) ≃ F (k)g(t′)g(t′′),
we have to evaluate the integral I as before. We first consider the most interesting case of

a scale invariant spectrum, A ≃ −3. Up to an infrared log-divergence which we neglect as

usual (this divergence can be avoided if we choose A = −2.99 instead of A = −3), we have

F (k) ≃ 81π

2(2π)3

[

k3P(1)
Σ in(k)

]2 1

k3
,

g(t′) ≃ H2(t′)

[

a(t′)
ain

]6

.
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Therefore, the equation for

√

P(2) GW
Σ (k, t) in the radiation dominated era becomes

P ′′(z) − 4

z
P ′ +

(

1 +
4

z2

)

P =
α

k6
z4 ,

z ≡ kt , |P | ≡
√

P(2) GW
Σ (k, t) ,

α ≡ 1

t6in

√

√

√

√ 81π

2(2π)3

[

k3P(1)
Σ in(k)

]2

k3
.

The super-horizon solution, evaluated always with the help of the Wronskian method and

keeping only the non-homogeneous part as explained in the Appendix 2.6.1, is the given

by

P (z) ≃ 1

10

α

k6
z6 , z ≪ 1 ,

that yields a contribution to the gravity wave power spectrum given by

k3P(2) GW
Σ (k, t) ≃ 0.4

π

(2π)3

[

k3P(1)
Σ in(k)

]2
(

a

ain

)12

, kt ≪ 1 . (2.111)

For the density parameter on super-horizon scales this yields

dΩ
(2)Σ
GW (k, t)

d log k
≃ 0.01

[

dΩ
(1)
GW(k, t)

d log k

]2

, kt ≪ 1 . (2.112)

Considering now the sub-horizon limit, we obtain for the power spectrum the following

expression:

k3P(2) GW
Σ (k, t) ≃ 0.1

π

(2π)3

[

k3P(1)
Σ in(k)

]2 1

(ktin)8

(

a

ain

)4

, kt ≫ 1 , (2.113)

and the density parameter becomes

dΩ
(2)Σ
GW (k, t)

d log k
≃ 0.02

[

dΩ
(1)
GW(k)

d log k

]2

, kt ≫ 1 .

(2.114)

On the other hand, when 2A + 3 > 0 we have

F (k) ≃ 81π

2(2π)3
Σ4

(1) inλ
6+2A 1

2A + 3
,

g(t′) ≃ H2(t′)

[

a(t′)
ain

]6( 1

t′

)(2A+3)/2

.
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In the radiation epoch the equation for

√

P(2) GW
Σ (k, t) reads:

P ′′ − 4

z
P ′ +

(

1 +
4

z2

)

P = αz(5/2−A) ,

α ≡
√

81π

2(2π)3
1

2A + 3
k3/2P(1)

Σ in(k)
1

(ktin)6
.

Solving the above equation in the long wavelengths limit, we find:

P (z) ≃ α

2
z9/2−A , z ≪ 1 ,

where the exact pre-factor depends weakly on the value of A. For the power spectrum this

results in

k3P(2) GW
Σ (k, t) ≃ 81π

8(2π)3

[

k3P(1)
Σ in(k)

]2
(

a

ain

)12

(kt)−2A−3 , kt ≪ 1 . (2.115)

and inside the horizon this reads

k3P(2) GW
Σ (k, t) ≃ 81π

16(2π)3

[

k3P(1)
Σ in(k)

]2
(

a

ain

)4 1

(ktin)8
, kt ≫ 1 . (2.116)

Translating this to the density parameter as above, we obtain

dΩ
(2)Σ
GW (k, t)

d log k
≃ 0.2

[

dΩ
(1)
GW(k)

d log k

]2

(kt)−2A−3

≃ 0.2





dΩ
(1)
GW(k)

d log k

∣

∣

∣

∣

∣

k=1/t





2

(kt)3 , kt ≪ 1 ,

dΩ
(2)Σ
GW (k, t)

d log k
≃ 0.1

[

dΩ
(1)
GW(k)

d log k

]2

, kt ≫ 1 .

(2.117)

2.5 Summary and conclusions

In this work we have studied the evolution of stochastic cosmic magnetic fields and gravity

waves up to second order in the perturbations. We have especially calculated the density

parameters of the generated second order perturbations. We start with density parameters
[

dΩ
(1)
B (k, t)/d log k

]

and
[

dΩ
(1)
GW(k, t)/d log k

]

which are related to the first order magnetic

field and gravitational wave power spectra in Section 2.3.3. Since tensor perturbations grow

on super-horizon scales, the gravity wave density parameter grows on super-Hubble scales

and only becomes constant once the perturbations enter the horizon. For perturbation

theory to be valid, we have of course to require that these density parameters are much

smaller than unity. As we have seen in Section 2.3.3, to require that
[

dΩ
(1)
GW(k, t)/d log k

]
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is smaller than one also on sub-Hubble scales, is equivalent to

dΩ
(1)
GW(k, tin)

d log k

1

(ktin)4
≃
(

Hinf

MP

)2

≪ 1 . (2.118)

Here we summarize the new results on the density parameters for second order pertur-

bation on sub-horizon scales. For magnetic fields, we obtain

dΩ
(2)
B (k)

d log k
≃ dΩ

(1)
GW(k)

d log k

dΩ
(1)
B (k)

d log k
, tk ≫ 1 , (2.119)

up to numerical constants and logarithms which are beyond the accuracy of our approx-

imation. Hence, it is not correct that the presence of gravity waves resonantly enhances

a first order magnetic field. The second order density parameter is quite what we would

naively expect and it is much smaller than the first order perturbations as long as the latter

are small. Also on super-horizon scales, the second order magnetic field density parameter

is always much smaller than the first order one, see Eqs.(2.82) and (2.84).

Since the growth comes from super horizon scales, conductivity is not relevant for this

result. We have shown that also in a matter dominated background we obtain

dΩ
(2)
B (k)

d log k
≃ dΩ

(1)
GW(k)

d log k

∣

∣

∣

∣

∣

kt=1

dΩ
(1)
B (k)

d log k

≃
(

Hinf

MP

)2 dΩ
(1)
B (k)

d log k
≪ dΩ

(1)
B (k)

d log k
, (2.120)

hence no significant amplification.

Second order gravity waves are induced on the one hand by the anisotropic stresses

of the first order magnetic fields and on the other hand by the quadratic terms in the

evolution equation for σij which are, e.g., of the form σimσ̇m
j and similar expressions. In

Section 2.4.3.1 we have shown that the second order contribution from anisotropic stresses

on sub-Hubble scales is of the order of

dΩ
(2)Π
GW (k, t)

d log k
≃























[

dΩ
(1)
B (kd)

d log kd

]2
(

k
kd

)3
, if 2M + 3 > 0

[

dΩ
(1)
B (k)

d log k

]2

, if 2M + 3 < 0 ,

(2.121)

both on super- and sub-horizon scales. Note that the above expression is continuous at

2M +3 = 0, where both expressions scale like (kλ)3 and are independent of kd. One should

point out that we neglected the slow time dependence of the damping scale. Correctly one

has to choose the value of the damping scale at horizon crossing, kd(tk) with tk = 1/k.

Depending on the magnetic field spectrum, the resulting gravity waves come mainly from

the small scale magnetic field, if its spectrum is blue 2M + 3 > 0. In this case the gravity

waves power spectrum is always proportional to k3. In our case of a simple power law

magnetic field spectrum, this behavior is maintained for all k < kd. If the magnetic field

spectrum is red, 2M + 3 < 0, gravity waves depend on the field at scale k and their

spectrum is the square of the B-field spectrum. In the first case, the non-linearity leads to
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a ’sweeping’ of magnetic field power on small scales to gravitational wave power on larger

scales. This can be regarded as an ’inverse cascade’ of small scale magnetic field power

into large scale gravity waves. But in no case can the gravity wave density parameter

become larger than the one of the magnetic field, which has to be much smaller than one,

for perturbation theory to be valid.

A similar result was already obtained in Ref. [77]. Contrary to this reference we have

no logarithmic build-up of gravity waves. This comes from our different treatment; we

directly calculate the shear σij and not the tensor perturbation of the metric, hij . In this

way we loose the log term which corresponds to the homogeneous hij = constant solution

on super-horizon scales to which we are not sensitive. However, in our more qualitative

work, we do not want to insist on log terms which we neglect in this work also in other

places.

The second order gravity wave density parameter induced by first order gravity waves

is given by

dΩ
(2)Σ
GW (k, t)

d log k
≃
[

dΩ
(1)
GW(k, t)

d log k

]2

, kt ≫ 1 , (2.122)

on sub-horizon scales.

Adding both contributions we find

dΩ
(2)
GW(k, t)

d log k
≃







































[

dΩ
(1)
B (kd)

d log kd

]2
(

k
kd

)3
+

[

dΩ
(1)
GW(k,t)
d log k

]2

,

if 2M + 3 > 0 , kt ≫ 1

[

dΩ
(1)
B (k)

d log k

]2

+

[

dΩ
(1)
GW(k,t)
d log k

]2

,

if 2M + 3 < 0 , kt ≫ 1 .

(2.123)
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2.6 Appendix

2.6.1 General Solution of a Differential Equation with the Wronskian
Method

Here we discuss in detail the Wronskian method with which we find the solution of the dif-

ferential equations in this paper. If we have a inhomogeneous linear second order equation

with inhomogeneity S(z), its most general solution is of the form

P (z) = c1(z)P1(z) + c2(z)P2(z) + a1P1(z) + a2P2(z) ,
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where P1(z) and P2(z) are two (linearly independent) homogeneous solutions which we

suppose to be known, W (z) = P1P
′
2 − P ′

1P2 is their Wronskian, and

c1(z) = −
∫ z

zin

dx
S(x)

W (x)
P2(x) ,

c2(z) =

∫ z

zin

dx
S(x)

W (x)
P1(x) .

The particular solution given by the first two terms is such that Pinh(z) = c1(z)P1(z) +

c2(z)P2(z) vanishes at z = zin and also P ′
inh(zin) = 0. The general solution is obtained by

adding a homogeneous solution, Phom(z) = a1P1(z) + a2P2(z) with arbitrary constants a1

and a2.

Let us first consider the example given in Eq. (2.105),

P ′′ − 4

z
P ′ +

(

1 +
4

z2

)

P =
α

k2
,

where α/k2 is a constant source term. The homogeneous solutions are given by P1(z) =

z3j1(z) and P2(z) = z3y1(z) and the Wronskian determinant reads

W (z) = z3 .

In the regime z ≪ 1 we can approximate the spherical Bessel functions by powers and we

find the following general expression for P (z):

P (z) = − α

3k2

(

z2

2
− z4

2z2
in

+ z2− zzin

)

+ a1z
4+ a2z . (2.124)

where we have used the fact that, when z ≪ 1, we can approximate P1(z) ≃ z4 and

P2(z) ≃ −z. Now it is important to notice that the second and the fourth terms of

the inhomogeneous solution (2.124) have the same functional behavior as homogeneous

solutions and we can always choose a1 and a2 such that the homogeneous part cancels

them. This is actually always true for the contributions from the lower boundary of the

inhomogeneous solution. This may sound pedantic, but it is very important in this specific

case as the second term in (2.124) dominates if it is present. In our analysis we have always

subtracted such “homogeneous contributions” and only kept the “minimal part”, which in

this case is

P (z) ≃ − α

2k2
z2 , z ≪ 1 . (2.125)

This procedure is important and it is responsible for the results which we have obtained.

We justify it also by the fact that the first order solution has exactly the the same time

evolution as the homogeneous term and therefore a term ∝ z4 present at early times,

should be included in the first order perturbations. Once the wave number has entered the

horizon, z ≫ 1, the Green function starts to oscillate and the additional contribution to

the integral can be neglected. We then can match the inhomogeneous solution at horizon

crossing to the homogenous one at later times. Up to matching details which we have not
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considered, this yields

P (z) ≃ α

2k2
z2 cos z , z ≫ 1 . (2.126)

In the same way, we deal with Eq. (2.78)

P ′′ − 4

z
P ′ +

(

1 +
4

z2

)

+ P =
α

k2
. (2.127)

The homogeneous solutions are P1(z) = z2j0(z) ≃ z2 and P2(z) = z2y0(z) ≃ −z. These

approximations are valid for z ≪ 1. Using again the Wronskian method, we obtain the

following general solution on super-Hubble scales, z ≪ 1:

P (z) =
α

k2

(

z2 log

(

z

zin

)

− z2 + zzin

)

+ a1z
2 + a2z , z ≪ 1 , (2.128)

Here, the homogeneous solution parts are −z2 and zzin, therefore we can identify the

solution due to the presence of the source again as

P (z) ≃ α

k2
z2 log

(

z

zin

)

, z ≪ 1 . (2.129)

On sub-horizon scales this becomes, up to matching details which only modify the phase

and have an irrelevant effect on the pre-factors,

P (z) ≃ α

k2
log(ktin)z cos z , z ≫ 1 . (2.130)

If the source term depends on z, the details of the calculation as well as the results change

somewhat, but the basic argumentation remains the same. We therefore do not repeat the

z-dependent examples which arise in this work here.

2.6.2 The four-point correlator of gravity waves

Starting from Eq. (2.109), we compute the two-point correlation function of the source

term 〈fij(k, t′)f∗
rn(p, t′′)〉, which is given by

〈fij(k, t′)f∗
rc(q, t′′)〉 =

1

(2π)6
U(t′, t′′)Mij

lm(k̂) ×

Mrc
bd(q̂)

∫

d3p

∫

d3s〈Σ(1) in
ln (p)Σ(1) in

nm (k − p)Σ
∗(1) in
bf (s)Σ

∗(1) in
fd (q− s)〉,

(2.131)

where the function U(t′, t′′) contains the all time-dependence of the above expression:

U(t′, t′′) =
81

4
H2(t′)H2(t′′)

[

a(t′)
ain

]6 [a(t′′)
ain

]6

. (2.132)

To compute the four-point correlator, we assume that the random variables that de-

scribe gravity waves are Gaussian, therefore we can apply Wick’s theorem. The we can
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write the products of four gravity waves Σ(1) as

〈Σ(1) in
ln (p)Σ(1) in

nm (k − p)Σ
∗(1) in
bf (s)Σ

∗(1) in
fd (q − s)〉 =

〈Σ(1) in
ln (p)Σ

∗(1) in
bf (s)〉〈Σ(1) in

nm (k − p)Σ
∗(1) in
fd (q − s)〉 +

〈Σ(1) in
ln (p)Σ

∗(1) in
fd (q − s)〉〈Σ(1) in

nm (k− p)Σ
∗(1) in
bf (s)〉 +

〈Σ(1) in
ln (p)Σ(1) in

nm (k − p)〉〈Σ∗(1) in
bf (s)Σ

∗(1) in
fd (q − s)〉 . (2.133)

Once the double integration is performed, the last term contributes a constant ∝ δ3(k)

which can be disregarded (a background term). Integrating the remaining two terms over

d3s, we can eliminate one of the two δ-functions which come from the expression of the

two point gravity wave correlator. Using the reality condition, Σ∗
ij(k) = Σij(−k), and the

expression for the two-point correlation function of gravity waves given in Eq. (2.66), we

then obtain
∫

d3p

∫

d3s〈Σ(1) in
ln (p)Σ(1) in

nm (k− p)Σ
∗(1) in
bf (s)Σ

∗(1) in
fd (q − s)〉 =

(2π)6δ3(k− q)

∫

d3pP(1)
Σ in(p)P(1)

Σ in(|k − p|) ×
[

Mlnbf (p̂)Mmndf (k̂ − p) + Mlndf (p̂)Mmnbf (k̂ − p)
]

. (2.134)

The above equation is symmetric in k and q, as well as under the exchange of the first and

second pairs of indices. Moreover, it is symmetric under the exchange of the first index

with the second and the third with the fourth. This suggests us to write the two point

correlation function of the source term as

〈fij(k, t′)f∗
rc(q, t′′)〉 = (2π)3δ3(k − q)Mijrc(k̂)h(k, t′, t′′) , (2.135)

since the tensor Mijrc has the same symmetries.

To obtain an expression for the function h(k, t′, t′′), it is sufficient to calculate the

trace of the above two point correlator. We hence should multiply the r.h.s. of the above

equation and of Eq. (2.131) by Mijrc(k̂). Then, setting them to be equal and remembering

that MijrcMijrc = 8 [130], we obtain

8(2π)3δ3(k − q)h(k, t′, t′′) =

U(t′, t′′)δ3(k− q)Mcrlm(k̂)Mbd
rc(q̂)

∫

d3pP(1)
Σ in(p)P(1)

Σ in(|k − p|) ×
[

Mlnbf (p̂)Mmndf (k̂ − p) + Mlndf (p̂)Mmnbf (k̂ − p)
]

, (2.136)

with

h(k, t′, t′′) =
1

8(2π)3
U(t′, t′′)Mbdlm(k̂)

∫

d3pP(1)
Σ in(p)P(1)

Σ in(|k − p|) ×
[

Mlnbf (p̂)Mmndf (k̂ − p) + Mlndf (p̂)Mmnbf (k̂ − p)
]

.

(2.137)

Finally, we have to perform the above product of three polarization tensors, defined as
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Appendix

in Eq. (2.32). To achieve this aim, we use the free source package “xAct” for Mathematica

[133]: it is sufficient to define a three dimensional flat metric and the projection tensor

Pij(k̂) = δij − k−2kikj onto the plane normal to k. Then, we can express Mijlm(k̂) in

terms of this projector as

Mijlm ≡ PilPjm + PimPjl − PijPlm .

Defining the angles between the three directions as α ≡ k̂ · (k̂ − p), β ≡ p̂ · (k̂ − p) and

γ ≡ k̂ · p̂, we obtain the expression given in Eq. (2.110).
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Can the observed large scale magnetic fields be seeded by
helical primordial fields?

Chiara Caprini, Ruth Durrer and Elisa Fenu

Gravitational wave production induces a strong constraint on the amplitude of a pri-

mordial magnetic field. It has been shown that the nucleosynthesis bound for a stochastic

gravitational wave background implies that causally generated fields cannot have enough

power on large scales to provide the seeds necessary for the observed magnetic fields in

galaxies and clusters, even by the most optimistic dynamo amplification. Magnetic fields

generated at inflation can have high enough amplitude only if their spectrum is very red.

Here we show that helicity, which leads to an inverse cascade, can mitigate these limits. In

particular, we find that helical fields generated at the QCD phase transition or at inflation

with red spectrum are possible seeds for the dynamo. Helical fields generated at the elec-

troweak phase transition are instead excluded as seeds at large scales. We also calculate

the spectrum of gravitational waves generated by helical magnetic fields.

DOI: 10.1088/1475-7516/2009/11/001

3.1 Introduction

Magnetic fields are ubiquitous in the Universe. Wherever they can be measured, they

are found. In stars, in galaxies [37], locally and at high redshift [39], and in clusters of

galaxies [41]. There is also evidence of magnetic fields in super clusters [43]. However,

the origin of these fields is still unclear. Have they emerged in the late Universe from

charge separation processes or by ejection from stars and galaxies [36]? Or have they been

amplified from primordial seed fields which may represent a relic from the early Universe,

from the electroweak (EW) phase transition [51, 52, 53] or even from inflation [55, 56, 57,

58, 59]? If the second exciting possibility is realized, this means that we can learn about

processes in the early universe from studying cosmological large scale magnetic fields.

In a previous paper [77] it has been shown that primordial magnetic fields lead to

significant production of gravitational waves. If the magnetic field spectrum is blue, as

it has to be if the production mechanism is causal [68], the nucleosynthesis limit for a

gravitational wave (GW) background strongly constrains the amplitude of magnetic fields

on large scales. This strong constraint comes from the fact that for causal magnetic fields,

the energy density has to behave like

dρB(k)

d log k
∝ k5, (3.1)
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with comoving wave number k, on scales which are larger than the correlation scale. Hence

even the moderate nucleosynthesis limit, since it comes from the smallest scales, highest

wave numbers, at which the magnetic field is maximal, leads to a very strong limit on the

field amplitude at large, cosmological scales. The detailed results are given in [77, 82]. For

the derivation of this limit it is assumed that the magnetic field spectrum evolves solely

via the damping of fields on small scales and via flux conservation. On large scales, the

magnetic field spectrum scaled to today is assumed to remain constant.

However, if the magnetic field has non-vanishing helicity, the conservation of helicity

leads to an inverse cascade, i.e. it can move power from small to large scales. A derivation

of this result can be found in the review [48]. This can mitigate the magnetic field limit

which precisely comes from the fact that for causally produced magnetic fields there is so

little power on large scales. The production of helical magnetic fields has been proposed for

both, inflation [134, 135, 136] and the EW phase transition where the magnetic field helicity

is linked to the baryon number [137, 138, 139]. Furthermore, the formation of maximally

helical magnetic fields at the QCD phase transition has been proposed in Ref. [54].

The evolution of helical magnetic fields and the inverse cascade have been studied in

numerical simulations, and simple fits which describe the evolution of the correlation scale

L(t) and of the magnetic field energy density ρB(t) have been derived in Refs. [80, 78,

79]. Using these results, we want to determine upper bounds on the amplitude of helical

magnetic fields from the induced GWs. These bounds are summarised in Table 3.1.

In Section 3.2 we present the basic definitions and discuss the evolution of normal and

helical magnetic fields. Here we make use of the results for the inverse cascade discussed in

Ref. [79]. In Section 3.3 we calculate the induced GW spectrum. In Section 3.4 we derive

the limits on helical magnetic fields on cosmological scales. In Section 6.5 we conclude.

Notation: Throughout this paper we neglect curvature and the cosmological constant,

which are not relevant for our discussion. The cosmological metric is given by

ds2 = a2(t)
(

−dt2 + δijdxidxj
)

, (3.2)

where t denotes conformal time and the scale factor, normalized to 1 today, is given to a

good approximation by

a(t) ≃ H0t

[

H0t

4
+
√

Ωrad

(

g0

geff(t)

)1/6
]

, (3.3)

where H0 denotes the present value of the Hubble parameter, geff (t) is the number of

effective relativistic degrees of freedom at time t, g0 ≡ geff(t0) = 2, and Ωrad is the radiation

density parameter today. In the following, the density parameter is defined as ΩX(t) =

ρX(t)/ρc(t), where ρc(t) denotes the critical energy density at time t.

Spatial vectors are indicated in bold face, 3d spatial indices are lower case Latin letters

while 4d spacetime indices are lower case Greek letters.

3.2 The evolution of helical magnetic fields

3.2.1 Basic definitions

The high conductivity of the cosmic plasma implies that, to lowest order, magnetic fields

evolve by flux conservation, so that B ∝ a−2. We are mainly interested in the part of
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the time dependence of our quantities which is not simply due to the expansion of the

Universe but to the growth of the magnetic correlation length and to the additional decay

of the magnetic energy density due to dissipation and to the MHD cascade [80, 78, 79].

Therefore we eliminate the scaling with redshift by expressing all the quantities in terms

of comoving ones scaled to today which we denote by a tilde. For example the comoving

magnetic energy density is given by [82]

〈B̃2(t)〉 = 〈B2(t)〉a4(t) . (3.4)

Here 〈B̃2(t)〉 depends on time via the evolution of the correlation length and because of

energy dissipation. Comoving quantities are not multiplied by powers of the scale factor

a2(t) when lowering and rising indices.

The power spectrum of the magnetic field can be written as [130]

〈B̃i(k, t)B̃∗
j (q, t)〉 =

(2π)3

2
δ3(k − q)

[(

δij − k̂ik̂j

)

S(k, t) + iǫijnk̂nA(k, t)
]

. (3.5)

The functions S and A denote the parity even and the parity odd parts of the two point

correlator respectively and k is the comoving wave vector (on the quantities where there is

no danger of confusion because they always denote conformal quantities like k, S or A, we

omit the tilde). Using the above expressions, we compute the comoving magnetic energy

density ρ̃B = (8π)−1B̃2,

ρ̃B(t) =

∫ ∞

0

dk

k

dρ̃B(k, t)

d log k
,

dρ̃B(k, t)

d log k
=

k3S(k, t)

2(2π)3
. (3.6)

Note that the antisymmetric part of the spectrum does not contribute to the energy density

but its presence, which indicates non-vanishing helicity, influences the time dependence of

ρ̃B and of the magnetic correlation length. In [79] the author derives analytically the

expressions for the time evolution of the magnetic energy density and of the magnetic

correlation length. These evolution laws have also been obtained in numerical simulations

of a magnetic field in a turbulent MHD phase during the radiation dominated era [78]. On

the other hand, the simulations of Ref. [80] indicate different exponents for the evolution

laws. In the following analysis we adopt the analytical picture and the evolution laws

derived in [79]. It is easy to show that during this epoch the MHD equations are identical

to those of a non-expanding Universe, provided that all physical variables are replaced by

comoving variables (see [140, 78]).

Our aim is to compute the GWs generated by an helical magnetic field and to use the

GW energy density to derive constraints on the magnetic field strength on the comoving

scale λ̃ ≃ 0.1 Mpc. For this we express the results of Ref. [79] in terms of the quantities

introduced above. Campanelli [79] defines the spectral energy density εB(k, t) which is

related to Eq. (3.6) by1

dρ̃B(k, t)

d log k
=

k3S(k, t)

2(2π)3
= k εB(k, t) . (3.7)

1Ref. [79] is using Heavyside-Lorentz units such that ρB = (1/2)B2 while we are using Gaussian units
with ρB = (1/8π)B2. This leads to differences of factors of 4π in the relative expressions.
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We adopt the following power spectrum for the magnetic field energy:

εB(k, t) =







ηB(t) L̃(t)Kn+2

(1+K2)(7+2n)/4 for K ≤ L̃(t)

l̃diss(t)
,

0 for K ≥ L̃(t)

l̃diss(t)
.

(3.8)

Here ηB(t) parametrizes the time dependence of ρB (see Eq. (3.9)), K ≡ kL̃(t)/(2π), L̃(t)

is the time dependent comoving correlation length which we infer from [79] and l̃diss is the

comoving dissipation scale (for smaller scales the magnetic power spectrum is exponentially

suppressed and we thus can set it to zero). We derive the dissipation scale l̃diss(t) in

Appendix 3.6.1.2. Eq. (3.8) is inspired by Eq. (19) of [141], which provides a continuous

expression for the turbulent velocity spectrum, interpolating between the large and small

scale behaviours. We extend it here to the case of a magnetic field processed by MHD

turbulence. The initial power spectrum at large scales, kL̃ ≪ 1 behaves like k2S(k) ∝ kn+2,

n is the spectral index introduced in Refs. [82, 77]. If the initial correlation length is finite,

the power spectrum given in Eq. (3.5) must be analytic and hence n ≥ 2 must be an

even integer [68]. A scale invariant spectrum corresponds to n = −3. We have chosen the

form of εB(k, t) such that it scales like k−3/2 in the inertial range, 2π/L̃(t) < k < 2π/l̃diss.

This behavior corresponds to the Iroshnikov–Kraichnan spectrum, which can be realised

in fully developed MHD turbulence [142, 143, 144]. Here we could have equally chosen

the Kolmogorov or Goldreich-Sridhar spectral slopes: our main result does not depend

significantly on this choice. Note that Ref. [79] does not account for the presence of the

inertial range.

We adopt here the interpolating formula (3.8) in order to avoid joining the two asymp-

totic behaviours, at large and small scales, of the magnetic field spectrum up to the energy

injection scale L̃(t). This has been done for example in Ref. [77], and it leads to an overes-

timation of the peak amplitude. Note that we extend the formula of Ref. [141] to represent

also magnetic fields with red spectra, generated during inflation.

Integrating Eq. (3.8) over k we obtain the total comoving magnetic field energy density,

ρ̃B(t) = ρc(t0)Ω̃B(t) ≃ ηB(t)
πΓ
(

1
4

)

Γ
(

n+3
2

)

Γ
(

2n+7
4

) , (3.9)

where we have set the upper limit of integration to infinity. Hence the function ηB(t)

reflects the time dependence of the total energy density. In the above expression we have

introduced

Ω̃B(t) ≡ ρ̃B(t)

ρc(t0)
=

ρB(t)a4(t)

ρc(t0)
=

ρB(t)a4(t)

ρrad(t0)
Ωrad

=

(

g0

geff(t)

)1/3 ρB(t)

ρrad(t)
Ωrad =

(

g0

geff(t)

)1/3

ΩB(t)Ωrad . (3.10)

We restrict to the analysis of magnetic fields in a radiation dominated universe. Further-

more, adiabatic expansion implies [132] that the entropy S ∝ geff(aT )3 is independent of

time, so that ρrad(t) = ρrad(t0)a(t)−4[g0/geff (t)]1/3. At time t∗, which we define as the time
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at which turbulence is fully developed (as we shall see in the following), one has

Ω∗
B ≡ ΩB(t∗) =

Ω̃B(t∗)
Ωrad

(

g∗
g0

)1/3

≃ Ω̃B(t∗)
Ωrad

, (3.11)

where g∗ ≡ geff(t∗). The comoving magnetic energy density parameter Ω̃B(t) depends on

time via the dissipation of magnetic energy.

In the following we will often neglect changes in geff(t). For example, we neglect the fact

that the evolution of gravitational radiation is modified, even if the universe is radiation

dominated, due to the fact that while geff (t) is evolving the scale factor does not expand

like a ∝ t but somewhat faster. For the EW phase transition (g∗/g0)
1/3 ≃ 3.7. In the

magnetic field limits this factor enters at most with power 1/2, which yields differences of

less than a factor of two. In the amplitude of gravitational waves it can enter with a higher

power and change it by up to an order of magnitude. But this is in any case roughly the

precision of the results derived in this work.

3.2.2 Direct and inverse cascades

The main difference between non helical field evolution (which only exhibits direct cascade

and dissipation on small scales) and helical field evolution (which leads to inverse cascade)

can be expressed in the time evolution of the correlation scale L̃(t) and the comoving

magnetic field energy density ρ̃B(t), which we cast in the amplitude ηB(t) [79].

We introduce the normalized conformal time τ

τ =
t − tin

t∗L
, (3.12)

where t∗L denotes the initial eddy turn-over time on the scale of energy injection L̃∗, and

tin is the time at which the magnetic field is generated. The eddy turnover time is defined

as t∗L ≃ L̃∗/(2vL), where vL is the initial eddy turnover speed and the factor 1/2 comes

from the fact the L̃∗ is the eddy diameter.

Starting from the asymptotic laws given in [79], we rewrite the time evolution of the

comoving magnetic energy density and of the comoving magnetic correlation length in

terms of the normalised conformal time (3.12). However, with respect to [79] we add a

model of the initial evolution in which the magnetic energy density grows continuously

from zero to the equipartition value, at which MHD is fully developed. We do this because

later on we evaluate the GW spectrum generated by the magnetic source, and the time

continuity of the source does affect the resulting GW spectrum (see Ref. [83] and section

3.3.4). Therefore, we assume that the magnetic field energy density is zero (continuous) at

t = tin, τ = 0; it then reaches its maximal value ρ̃∗B after a ’switching on’ time which we set

equal to the characteristic eddy turnover time, t∗L, namely at t∗ = tin + t∗L. We therefore

define t∗ ≡ tin + t∗L as the time when turbulence is fully developed, and normalise also the

energy injection scale as L̃∗ = L̃(t∗), L̃(tin) = 0.

• Direct cascade: the evolution laws are in this case

ρ̃B(t) = ρ̃∗B

{

τ for tin ≤ t < t∗ , τ ≤ 1 ,

τ−2(n+3)/(n+5) for t ≥ t∗ , τ ≥ 1 ,
(3.13)

L̃(t) = L̃∗τ
2/(n+5) , (3.14)
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where we may only consider n > −2 in order to recover the correct behavior with

respect to time of the above quantities (i.e. decay for the energy and growth for

the correlation scale). The above expressions go continuously to zero with τ →
0 and they have the asymptotic behavior found in Ref. [79] for t ≫ tin ≥ t∗L,

τ ≫ 1. Note that Ref. [79] uses a spectral index p which is related to n via

p = n + 2. For simplicity, the parameter κdiss of [79] is set to one, correspond-

ing to γ = 3Γ2[(1 + p)/2]/(3 + p)/Γ2[p/2].

The energy injection scale L̃∗ is determined by the physical process that generates the

magnetic field and the turbulence. Generically it can be parametrised as a fraction

of the horizon at the initial time. Therefore, we introduce the small parameter ǫ < 1

defined by

L̃∗ = ǫ t∈ , such that t∗L ≃ L̃∗
2vL

=
ǫ

2vL
t∈ . (3.15)

A typical value for causally generated turbulence is ǫ ≃ 10−2 (see for example [82]).

The necessary condition to have a turbulent cascade is that t∗L ≤ tin, i.e. vL ≥ ǫ/2.

Eddies of the size of the horizon which move at the speed of light are the limiting case.

Although it grows, the correlation length never becomes larger than the horizon. In

fact one has

L̃(t)

t
=
[

(2vL)2 ǫn+3
]1/(n+5)

(

1 − t∈
t

)2/(n+5)( t∈
t

)(n+3)/(n+5)

, (3.16)

which is smaller than one for all times t ≥ tin. Indeed, for the initial period t∈ ≤ t ≤
t∗, the term (1 − t∈/t)2/(n+5) → 0 and it dominates the above expression, while for

t ≫ t∗ > t∈ the asymptotic behaviour is controlled by the last term of the equation

which keeps the correlation length smaller than the Hubble radius. This is shown in

Fig. 3.1.

Even though the correlation length is growing, the spectral energy on a given comov-

ing scale k is at best constant. On scales which are larger than the correlation scale,

kL̃(t) < 1
dρ̃B(k, t)

d log k
∝ ρ̃B(t)(kL̃(t))n+3 . (3.17)

From Eqs. (3.13) and (3.14) it follows that during direct cascade L̃n+3(t)ρ̃B(t) =

constant, hence dρ̃B/d log k does not evolve on large scales. The same behaviour

is observed in the free decay of the turbulent velocity field, and is related to the

constancy in time of Loitsyansky invariant (see for example [145, 146, 147])

• Inverse cascade:

During inverse cascade we assume that the magnetic field energy and correlation

length evolve according to [79]

ρ̃B(t) = ρ̃∗B

{

τ for tin ≤ t < t∗ , τ ≤ 1 ,

τ−2/3 for t ≥ t∗ , τ ≥ 1 ,
(3.18)

L̃(t) = hBL̃∗τ
2/3, (3.19)

where hB is the initial fractional helicity: hB = 0 corresponds to a non-helical mag-
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Figure 3.1: Time evolution of the comoving correlation length L̃(τ) as a function of τ for
an inverse cascade (blue, dashed line) and for a direct cascade with the spectral indexes
n = 2 (red, solid line) and n = −1.8 (green, dotted line). They are compared with the time
evolution of the comoving Hubble radius in a radiation dominated background, in units of
the correlation length L̃∗ (magenta, dot-dashed line).

netic field that remains non-helical for all its evolution (for which the above scaling

relations do not apply), while hB = 1 characterizes a maximally helical field. The

above equations are again valid only for p = n + 2 > 0.
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Figure 3.2: Time evolution of the comoving correlation length L̃(τ) as a function of τ during
inverse cascade as given in Ref. [79] (green dashed line) and neglecting the logarithmic terms
as in Eq. (3.19) (red solid line).

The original expression of Ref. [79] for L̃(t) contains also a logarithmic term, and

gives asymptotically a slower growth than Eq. (3.19), as can be seen in Fig. 3.2.

In the following we neglect this logarithmic correction. Similarly, ρ̃B(t) given by

Eq. (3.18) decays more rapidly than the full expression given in [79], due to the same
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logarithmic correction (see Fig. 3.3). The limits on the magnetic field on large scales

obtained using Eqs. (3.19) and (3.18) are less stringent than those one would obtain

using the more accurate expression of [79]. Neglecting the logarithmic corrections is

therefore a conservative assumption.
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Figure 3.3: Time evolution of the magnetic energy density as a function of τ during inverse
cascade as given in Ref. [79] (green dashed line) and neglecting the logarithmic terms as
in Eq. (3.18) (red solid line).

Although the correlation length grows faster than in the direct cascade phase, it

never becomes larger than the horizon even in this case (see Fig. 3.1). During the

inverse cascade the product L̃(t)ρ̃B(t) = L̃∗ρ̃∗B is constant. From Eq. (3.17) one sees

that during the inverse cascade the spectral energy density is growing like L̃n+2(t) at

large scales.

In Ref. [79] it is claimed that Eqs. (3.18), (3.19) apply only after a first phase during

which the system behaves as if the magnetic helicity was zero, i.e. by direct cascade. Only

when the magnetic field (with initial fractional helicity hB) becomes maximally helical, the

inverse cascade can start, and Eqs. (3.18) and (3.19) apply. This is probably a simplified

picture: it seems more realistic that some amount of inverse cascade can happen as soon

as an appreciable helical component has developed. For simplicity in our treatment we

follow Ref. [79] and neglect this effect. Note however that this does not affect the final

results, which are derived only for the case of a maximally helical magnetic field, for which

the inverse cascade starts immediately. In the analysis of [79], in order to find the time

at which the field becomes maximally helical one matches the product L̃(t)ρ̃B(t) (which

is time dependent during direct cascade), to its constant value during the inverse cascade.

This defines the transition time th

th = tin

[

1 +
ǫ

2vL
h
−(n+5)/(2n+4)
B

]

. (3.20)

For a maximally helical magnetic field th(hB = 1) = t∗. In general, for a given hB , the

second stage takes place for times t > th ≥ t∗ and lasts until the time tfin at which the

turbulent phase ends (c.f. next section). Moreover, in the case of zero initial helicity, one

has purely direct cascade: th → ∞ when hB → 0 (this is true only if we restrict the value
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of the spectral index to be n > −2, which we always do in the following).

3.2.3 The end of the turbulent phase and the dissipation scale

The turbulent phase ends when the Reynolds number on the scale of energy injection,

L̃(t), becomes of order unity [147]. In Appendix 3.6.1.1 we calculate the epoch at which

turbulence ends for the EW and the QCD phase transitions, as well as for inflation with

T∗ ∼ 1014 GeV. The most important result from this calculation is that in all cases turbu-

lence lasts for many Hubble times and therefore the source is not short lived. This finding

and its consequences are the subject of [25]. For example, for a maximally helical field

generated at the EW phase transition we find the final temperature Tfin ≃ 21MeV (note

that turbulence ends before nucleosynthesis [78]).

In Appendix 3.6.1.2 we determine the dissipation scale which is the scale l̃diss(t) below

which energy injection no longer leads to turbulence but is simply dissipated. This scale

determines the time-dependent UV cutoff of our spectra. The evolution of both the corre-

lation length L̃(T ) and the dissipation scale l̃diss(T ) for the EW phase transition is shown

in Fig. 3.4. The dissipation scale grows faster than the correlation length and turbulence

terminates roughly when the two curves cross.

In the evaluation of these scales, we often use the approximation T1/T2 ≃ t2/t1, which

neglects changes in the number of effective relativistic degrees of freedom. Moreover in the

following we do not distinguish among the temperatures corresponding to the initial time

tin and to the time at which turbulence is fully developed t∗, since they are separated by

less than one Hubble time. Therefore, we generically indicate with T∗ the temperature at

which the generation mechanism for the magnetic field takes place.

After the end of turbulence the magnetic field simply stays frozen in the fluid at scales

larger than the dissipation scale l̃diss(Tfin) ≃ L̃(Tfin). Eventually other dissipation processes,

due to radiation viscosity, become active [84, 85].
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Figure 3.4: The evolution of the comoving magnetic correlation length (red solid line)
and dissipation length (green dashed line), in the inverse cascade phase for the EW phase
transition. Both quantities have been normalized with respect the initial value of the
comoving correlation length L̃∗.
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3.3 The GW spectrum

3.3.1 Generation of GWs from sources

In this section we calculate the spectrum of the GWs generated by a helical magnetic field.

We restrict our analysis to the case of maximally helical fields. This calculation has also

been performed in Ref. [148], where however stationarity in time of both the source and the

GWs has been assumed. This invariance under time translation of the source seems to us

justified only if the time over which the source is active is much shorter than a Hubble time.

As we have argued in Section 3.2 and derived in Appendix 3.6.1.1, the Reynolds number

remains larger than unity for the scales of interest over many Hubble times. Therefore we

want to re-calculate the GW spectrum without the assumption of stationarity. We shall

then compare our results with Ref. [148].

The parity invariant part the GW spectrum, which is the part which contributes to the

energy density, is of the form [82, 130]

〈ḣij(k, t)ḣ∗
ln(q, t)〉 =

(2π)3

4
Mijln(k̂)δ3(k − q)|ḣ|2(k, t) . (3.21)

Here Mijln(k̂) is the GW polarization tensor normalized such that Mijij = 4 and |ḣ|2(k, t)

is related to the GW energy spectrum as follows [131, 82, 130]:

ρ̃GW(t) =
〈ḣij ḣij〉

32πGa2(t)
=

∫ ∞

0

dk

k

dρ̃GW(k, t)

d log k
,

dρ̃GW(k, t)

d log k
=

k3|ḣ|2(k, t)

8(2π)3Ga2(t)
. (3.22)

Our definition of the metric perturbations hij differs by a factor 2 with the one in [82,

130] and agrees with [131], ds2 = a2(t)
[

−dt2 + (δij + hij)dxidxj
]

. The Fourier space

expression of the projection tensor onto the transverse traceless component, Mijln(k̂), is

given explicitly e.g. in Ref. [130].

The evolution equation which governs the generation of GWs in an expanding universe

is simply, see e.g. [132]

ḧij + 2
ȧ

a
ḣij + k2hij = 16πGa2Πij , (3.23)

where the source term is the tensor contribution to the anisotropic stress of the energy

momentum tensor of the source. In our case these come from the magnetic field and we

relate the tensor anisotropic stress spectrum to the magnetic field spectrum in the next

section. In terms of the comoving anisotropic stress Π̃ij = a4Πij the above equation

becomes

ḧij + 2
ȧ

a
ḣij + k2hij = 16πG

Π̃ij

a2
. (3.24)

For GWs generated by a primordial magnetic field we cannot neglect the expansion of the

Universe, since this source is active over a period which is much longer than a Hubble time.

In terms of the rescaled variable h̄ij ≡ ahij , Eq. (3.24) becomes

¨̄hij +

(

k2 − ä

a

)

h̄ij = 16πG
Π̃ij

a
. (3.25)
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In a radiation dominated background with a ∝ t so that ä = 0,

¨̄hij + k2h̄ij = 16πG
Π̃ij

a
. (3.26)

Since initially hij = ḣij = 0, the solution of the the above differential equation is given by

the convolution of the source with the retarded Green function G(k, t1, t2) = sin(k(t1−t2)),

h̄ij(k, x < xfin) =
16πG

k2

∫ x

x∈

dy
Π̃ij(k, y)

a(y)
sin(x − y), (3.27)

where we have introduced x ≡ kt1 and y ≡ kt2.

We assume that the source is active until the final time tfin at which turbulence termi-

nates and the anisotropic stress become negligible. This is not completely correct, since

after this final time we have no longer an inverse cascade, but the magnetic field is frozen

in and evolves according to flux freezing. However, this is relevant only for GW production

at scales which are super-horizon at tfin, and therefore it does not affect the peak region

of the GW spectrum and the value of the integrated energy density, which determines our

constraints (see Ref. [82] and section 3.3.3).

Once the source has decayed, GWs are freely propagating. This behavior is described

by the homogeneous solution of Eq. (6.33),

h̄ij(k, t > tfin) = Aij(k) sin(kt − ktfin) + Bij(k) cos(kt − ktfin) . (3.28)

The coefficients Aij and Bij are determined by requiring continuity of h̄ij and ˙̄hij at t = tfin.

Matching (3.28) to the result from Eq. (3.27) yields

Aij(k) =
16πG

k2

∫ xfin

x∈

dy
Π̃ij(k, y)

a(y)
cos(xfin − y) ,

Bij(k) =
16πG

k2

∫ xfin

x∈

dy
Π̃ij(k, y)

a(y)
sin(xfin − y) . (3.29)

With Eq. (3.21), using the above solution for h̄ij , we obtain for t > tfin

|ḣ|2(k, t > tfin) =
1

2a2
(k2 + H2)

(

〈AijA
∗
ij〉 + 〈BijB

∗
ij〉
)

=
(k2 + H2)

2a2

(

16πG

k2

)2 ∫ xfin

x∈

dy

∫ xfin

x∈

dz cos(z − y)
Π̃B(k, y, z)

a(y)a(z)
, (3.30)

where we have set y = kt1 and z = kt2. Furthermore, we have introduced the anisotropic

stress unequal time power spectrum,

〈Π̃ij(k, t1)Π̃
∗
ij(q, t2)〉 = (2π)3δ3(k − q)Π̃B(k, t1, t2) . (3.31)

To obtain Eq. (3.30) we have not only performed an ensemble average, but also averaged

over several periods so that 〈sin2(kt)〉 = 〈cos2(kt)〉 = 1/2 and 〈cos(kt) sin(kt)〉 = 0. At

times t at which we can observe a GW with wave number k, the latter must be largely

sub-horizon so that kt ≫ 1. We therefore may neglect the second term in the pre-factor
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(k2 +H2) ≃ k2(1+1/(kt)2). Rewriting Eq. (3.30) as integral over time, we find with (6.37)

dρGW(k, t)

d log k
=

2G

πa4(t)
k3

∫ tfin

t∈

dt1

∫ tfin

t∈

dt2 cos(kt1 − kt2)
Π̃B(k, t1, t2)

a(t1)a(t2)
. (3.32)

3.3.2 Magnetic anisotropic stresses

According to Eq. (3.32), in order to determine the GWs produced by a cosmic magnetic

field, we need to calculate the unequal time correlator of the tensor type magnetic stress,

Π̃B(k, t1, t2), which sources GWs. By statistical isotropy, the tensor type magnetic stress

2-point function has the same tensor structure as the one of GWs,

〈Π̃ij(k, t)Π̃ln(q, t)〉 =
(2π)3

4
δ3(k − q)

[

Mijln(k̂)Π̃B(k, t, t) + Aijln(k̂)Π̃A(k, t, t)
]

. (3.33)

In the above expression Π̃A(k, t, t) is the term of odd parity due to the non-vanishing he-

licity of the magnetic field. It it does not contribute to the GW energy density but only

to their polarization [130]. The odd parity projection tensor is also given in [130].

Following [130], we use Wick’s theorem to reduce this four point correlator to the convo-

lution of two 2-point correlators. The ansatz (3.5) then gives for the equal time correlator

Π̃B(k, t, t) = N1

∫

d3q
[

(1 + γ2)(1 + α2)S(q, t)S(|k − q|, t) + 4γαA(q, t)A(|k − q|, t)
]

(3.34)

where we set N1 = 2/(4π)5, α ≡ k̂ ·(k̂ − q) and γ ≡ k̂ ·q̂. In the case of a maximally helical

magnetic field, the symmetric and antisymmetric parts of the magnetic field spectrum are

equal on sub-horizon scales,

|A(k, t)| = S(k, t) , kt > 1 . (3.35)

On super-horizon scales helicity is suppressed (see e.g. [68]). In order to account for this

dependence, we introduce the function Σ(t, q, |k − q|) in the integral (3.34)

Σ(t, q, |k − q|) =

{

1 , for qt ≥ 1 and |k − q|t ≥ 1 ,
0 , otherwise ,

(3.36)

and we set

Π̃B(k, t, t) ≃ N1

∫

d3q
[

(1 + γ2)(1 + α2) + 4γαΣ(t, q, |k − q|)
]

S(q, t)S(|k − q|, t) . (3.37)

The integral (3.37) for the equal time correlator is evaluated numerically and the results

is approximated by an analytical fit. More details on this are given in Appendix 3.6.2.1.

Here we simply present the results for two exemplary values of the spectral index, a causal

spectrum with n = 2 and a red spectrum with n = −1.8:

Π̃B(K, t) ≃ N2

2π
L̃3(t)ρ̃2

B(t)
0.034

1 + (K/12)4 + (K/6)7/2
, n = 2 , (3.38)

Π̃B(K, t) ≃ N2

2π
L̃3(t)ρ̃2

B(t)
(K/40)−3/5

1 + (K/1.4)29/10
, n = −1.8 . (3.39)
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Here

N2 ≡
[

Γ
(

2n+7
4

)

Γ
(

1
4

)

Γ
(

n+3
2

)

]2

=

{

0.11 for n = 2 ,
0.04 for n = −1.8 .

3.3.3 The GW spectrum produced by a maximally helical magnetic field

Let us now consider a magnetic field with maximal initial helicity hB = 1, which immedi-

ately (i.e. at t∗ = tin + t∗L) develops an inverse cascade. To compute the GWs produced by

this field, we have to make assumptions about the unequal time correlator of the anisotropic

stress. There are different possibilities which are discussed in the literature [83, 117].

We consider a completely coherent source, namely a source with deterministic time

evolution for which the unequal time correlator is just the product of the square root of

the equal time correlators at the different times,

Π̃B(k, t1, t2) =

√

Π̃B(k, t1, t1)

√

Π̃B(k, t2, t2) . (3.40)

This is not only the simplest approximation, but the results obtained in this case are

also quite close to the results from a model with exponential decoherence as discussed in

Ref. [25]. Furthermore, for colliding bubbles where numerical simulations exist, the totally

coherent approximation is in good agreement with the numerical results [83]. This justifies

our hope that this approximation captures the main features of the resulting spectrum and,

especially, that it gives a good estimate for the total GW energy density. Note also that

this assumption has usually been made in previous works, for a magnetic field which is

simply redshifting with the expansion of the universe [77, 149]. A comparision of different

approximations can be found in Refs. [83, 117].

For a completely coherent source we obtain

dρGW(k, t)

d log k
≃ 2G

πa4(t)
k3















∫ tfin

t∈

dt′ cos(kt′)

√

Π̃B(k, t′)

a(t′)





2

+





∫ tfin

t∈

dt′ sin(kt′)

√

Π̃B(k, t′)

a(t′)





2










. (3.41)

In order to compute the above integrals, we substitute approximations (3.38) for the

anisotropic stresses of a magnetic field with a blue spectrum (n = 2), or (3.39) for a red

spectrum (n = −1.8).

We fix the final time at which the source of GWs ceases to be active as the time given

by the end of turbulence, when Re (L(T
(1)
fin )) ≃ 1. This corresponds to the time at which

the inertial range (K & 1) is entirely dissipated, when the dissipation scale has grown to

reach the correlation length, l̃diss(T
(1)
fin ) ≃ L̃(T

(1)
fin ). This condition determines the value of

the final temperature T
(1)
fin at which turbulence terminates (in principle, the magnetic field

is not damped after this temperature, but simply stays frozen in the fluid and keeps on

generating GWs; however, here for simplicity we restrict to GW production during the

turbulent phase, an assumption which, as previously mentioned, does not affect our result

in a relevant way).
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In Appendix 3.6.1.1 we estimate the final temperature for inverse cascade turbulence

initiated at different times:

T
(1)
fin ≃ 21MeV for the EW phase transition, (3.42)

T
(1)
fin ≃ 5MeV for the QCD phase transition, (3.43)

T
(1)
fin ≃ 1GeV for inflation. (3.44)

The final time t
(1)
fin corresponding to these temperatures is given by [132]

t
(1)
fin = t(T

(1)
fin ) ≃ 0.5

(

geff(T
(1)
fin )
)−1/6 mP l

T0T
(1)
fin

. (3.45)

On the other hand, we know that the dissipation scale grows more rapidly than the cor-

relation scale. Therefore, when a given wavelength, smaller than the correlation scale

but initially larger than the dissipation scale, becomes of the order of the dissipation scale

2π/k ≃ l̃diss(T
(2)
fin (k)), turbulence is dissipated on this scale and the GW source has decayed.

This defines a second, k-dependent final temperature T
(2)
fin (k) ≥ T

(1)
fin given by

l̃diss(T
(2)
fin (k)) = 2π/k = L̃∗/K∗ .

Since T
(2)
fin (k) > T

(1)
fin , the final time of integration for the wave number k is t

(2)
fin (k) =

t(T
(2)
fin (k)) < t

(1)
fin .

In Appendix 3.6.1.2 we derive analytical expressions for t
(2)
fin (k), taking into account the

time evolution of the dissipation length, see Eqs. (3.92) and (3.93). The final time tfin is

given by

tfin(k) = min
[

t
(1)
fin , t

(2)
fin (k)

]

. (3.46)

Indeed, for scales smaller than L̃(t
(1)
fin ), hence K(t

(1)
fin ) > 1, tfin(k) is equal to t

(2)
fin (k), while

larger scales are dissipated only at the end of turbulence, t
(1)
fin .

The K∗-dependence of tfin for magnetic fields generated at the EW phase transition and

at inflation is plotted in Fig. 3.5. The final time starts to decrease for small wavelengths,

namely around K∗ = K∗
1 ≃ 10−3 for the EW transition and at K∗ = K∗

1 ≃ 10−9 for

inflation. This value is given by

1 = K1(Tfin) = K∗
1

L̃(Tfin)

L̃∗
= K∗

1τ
2/3
fin ≃ K∗

1

(

2vL

ǫ

T∗
Tfin

)2/3

, (3.47)

so that

K∗
1 ≃

(

ǫ

2vL

Tfin

T∗

)2/3

. (3.48)

To calculate the integrals (3.41) we use Eqs. (3.38) and (3.39) for the time evolution

of the magnetic anisotropic stress. More details on the explicit form of (3.41) are given in
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Figure 3.5: K∗-behavior of tfin for the EW phase transition (green, solid line) and for
inflation (blue, dotted line), both normalized with respect tew∗ .

Appendix 3.6.2.2. The GW energy spectrum can be written in the form

dΩGW(k, t0)

d log k
≃ 3N2

(

ḡ

g0

)1/3 (Ω̃∗
B)2

Ωrad
IGW(K∗) , (3.49)

which holds for magnetic fields with both a blue and a red spectrum. Here ḡ denotes an

average number of relativistic degrees of freedom while the source is active. We neglect

this factor in the following (it enters the limits for the magnetic field amplitude only as

(ḡ/g0)
1/12). The integral IGW(K∗) determines the spectral shape. We have calculated it

numerically for both cases: a magnetic field generated at the EW phase transition with

a blue spectrum, with parameters n = 2, ǫ = 0.01 and v2
L = 0.2, and one generated at

inflation with a red spectrum, setting the parameters to n = −1.8 and ǫ = vL = 1. This

means that in the inflationary case, the initial stirring scale is set equal to the horizon size,

and the eddy turnover time is half the initial Hubble time, t∗L = tin/2
2.

For a causal magnetic field spectrum with n = 2, the GW density parameter in units

of (Ω̃∗
B)2/Ωrad is shown in Fig. 3.6.

Below the peak frequency, located at k ≃ 2π/t∗L, the numerical result can be approxi-

mated by

dΩGW(k, t0)

d log k
≃ 3N2

(Ω̃∗
B)2

Ωrad























ǫ1K
3
∗ for 0 < K∗ < L̃∗/(2π tfin) ,

ǫ2K
2
∗ for L̃∗/(2π tfin) < K∗ < L̃∗/(2π t∗) ,

ǫ3K
1/2
∗ for L̃∗/(2π t∗) < K∗ < L̃∗/t∗L .

(3.50)

2Note that in the inflationary case, we could as well have chosen the stirring scale to coincide with
the horizon at any time. One could argue, in fact, that as soon as a scale enters the horizon, it causes a
stirring of the cosmic fluid, acting as the stirring scale. We have evaluated the GW spectrum also setting
L̃(τ ) ∝ H

−1
∝ τ (instead of ∝ τ 2/3) and consequently ρ̃B(τ ) ∝ τ−1 to maintain the inverse cascade. We

did not find an appreciable difference among the two resulting GW spectra.
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Figure 3.6: The GW energy density spectrum from a causal magnetic field n = 2 generated
at the EW phase transition with maximal initial helicity hB = 1. The spectrum grows like
k3 (blue, dotted line) up to the horizon at the end of the turbulent phase, k ≃ t−1

fin . Then the

slope is given by k2 (green, dashed line) up to the initial horizon k ≃ t−1
∗ and by

√
k (red,

solid line) up to the peak at k ≃ (2π)/t∗L. Above the peak frequency the GW spectrum
decays rapidly. For the EW phase transition one has f/mHz = 4K∗. The wiggles in the
spectrum are due to the coherent approximation (interference effects in the integration of
Eq. (3.41)).

A part from the peak, the spectrum shows features at wave numbers corresponding to

the characteristic times of the source: k ≃ t−1
fin and k ≃ t−1

∗ (tin is too close to t∗ to be

distinguishable). More details on the fit, including the values of the parameters ǫi, are given

in Appendix 3.6.2.3. Using the above approximation (3.50), we find that the integrated

energy density parameter of GWs today is approximately given by

ΩGW(t0) =

∫ ∞

0

dk

k

dΩGW(k, t0)

d log k
≃ 6N2

(Ω̃∗
B)2

Ωrad
ǫ3

√

L̃∗
t∗L

≃ 2 × 10−8 (Ω̃∗
B)2

Ωrad
. (3.51)

Here we have neglected the decaying part of the GW spectrum, since the main contribution

to the integrated energy density ΩGW comes from the part of the spectrum close to the peak

k ≃ 2π/t∗L. For the numerical value, we have inserted ǫ = 0.01 and v2
L = 0.2 for a magnetic

field generated at the EW phase transition with T∗ = 100GeV. The GW spectrum from a

magnetic field generated at the QCD phase transition, T∗ = 100 MeV, for the same values

of ǫ and vL is very similar, and in particular it has the same amplitude at the peak.

Next we consider an inflationary magnetic field with red spectrum n = −1.8. In this

case we have to use the anisotropic stress given in Eq. (3.39). The resulting spectrum is
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plotted in Fig. 3.7, and below the peak frequency it can be approximated by

dΩGW(k, t0)

d log k
≃ 3N2

(Ω̃∗
B)2

Ωrad



































ǫ4K
2n+6
∗ , for 0 < K∗ < L̃∗

2π tfin
,

ǫ5K
(2n+10)/3
∗ , for L̃∗

2π tfin
< K∗ <

(

(4π)5

R9
∗

)1/7
,

ǫ6K
−(2+6n)/5
∗ , for

(

(4π)5

R9
∗

)1/7
< K∗ < L̃∗

t∗L
≃ 2 .

(3.52)

Here, the K∗−dependence is written in terms of the general spectral index n, and it is

valid for any n < −3/2. On the other hand, the values of the matching constants ǫi are

derived in Appendix 3.6.2.3 under the assumption n = −1.8.
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Figure 3.7: GW energy density spectrum from an inflationary magnetic field with red
spectrum n = −1.8 and maximal initial helicity hB = 1. The analytically expected behavior

is also indicated (c.f. Eq. (3.52)): ∝ K2n+6
∗ (blue, dotted line), ∝ K

(2n+10)/3
∗ (green, dashed

line) and ∝ K
−(2+6n)/5
∗ (red, solid line). For inflation one has f/Hz ≃ 107 K∗. Also here,

the coherent approximation leads to wiggles on small scales.

Neglecting the decaying part of the GW spectrum, and using the slope K
−(2+6n)/5
∗ up

to the peak k ≃ 2π/t∗L, we find the total GW energy density parameter:

ΩGW(t0) ≃ 3N2
(Ω̃∗

B)2

Ωrad

( −5

2 + 6n

)

ǫ6

(

L̃∗
t∗L

)−(2+6n)/5

n < −3

2
(3.53)

≃ 5.2
(Ω̃∗

B)2

Ωrad
,

Note that this approximation causes an overestimation of the total GW energy density of

about three orders of magnitude. However, this does not affect the bounds on the magnetic

field amplitude significantly: it translates into a bound that is stronger by about the 20%

(see section 3.4). For the numerical value in the last equality of (3.53), we have inserted

the value n = −1.8 and ǫ = vL = 1.

Finally, to make contact with future observations, we express the GW spectra in terms
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of the GW amplitude as function of the frequency f . For this we use [150]

h(f) = 1.26 × 10−18h0

√

ΩGW(f)

(

Hz

f

)

, (3.54)

where the frequency is f = k/(2π) and

ΩGW(f) ≡ dΩGW(k, t0)

d log k

∣

∣

∣

∣

k=2πf

.

The behavior of h(f) for a causal and for an inflationary produced magnetic field, choosing

a maximal magnetic field amplitude of Ω∗
B ≃ 0.1, is plotted in Fig. 3.8. For another

magnetic field density parameter the resulting amplitude h(f) is simply rescaled by the

factor Ω∗
B/0.1.
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Figure 3.8: The GW amplitude h(f) as a function of frequency from a maximally helical
magnetic field with Ω∗

B ≃ 0.1. Blue, dotted: causal generation at the EW phase transition
with n = 2; red, solid: generation during inflation with n = −1.8.

The result for a magnetic field with a blue spectrum, shown in Fig. 3.8, agrees qualita-

tively with the one obtained in Ref. [148] . The position of the peak is the same, although

the amplitude is higher in Ref. [148] by nearly one order of magnitude. This may come from

the different assumptions for the unequal time correlator: in [148] the source is assumed

to be stationary with exponential decorrelation, while we choose a completely coherent

source. Moreover, in the magnetic energy spectrum, we have modelled the transition from

the kn+2−behaviour at low wave number to the inertial range, while Ref. [148] extends

the Kolmogorov spectrum down to k = 2π/L̃∗. We have experienced that this leads to

a significant overestimation of the peak amplitude [82]. Furthermore, the low frequency

tail of the spectrum in [148] grows as
√

f , whereas in our case it becomes constant for

f > 1/tfin: this is due to the fact that our source is long lasting, while theirs lasts for less

than one Hubble time (see [25]).

For Ω∗
B ≃ 0.1, the EW result is somewhat below the sensitivity range of LISA [13, 14,

15, 16]. On the other hand, the inflationary result is much below any proposed experiment:

even though the energy density is higher, much of it is at high frequency, resulting in a
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very low gravitational wave amplitude (see Fig. 3.8).

3.3.4 The peak position

In Ref [83] it has been argued that approximating the source of GWs by a discontinuous

function might influence the decay law and even the peak position of the resulting GW

spectrum. Therefore, as already discussed in section 3.2.2, in this work we model the

’switching on’ process and avoid a discontinuous source function. Here we compare our

result with what we would have obtained assuming a discontinuous source.

Fig. 3.9 shows the results for a continuous source and for a discontinuous one where the

inverse cascade starts instantaneously at t = t∗. The predictions of Ref. [83] are confirmed:

in the discontinuous case the peak is no longer at t∗L but rather at L̃∗ ≃ t∗L/(2vL), leading

to an over estimate of the resulting GW output. Therefore, it is important to take into

account continuity.

In order to further clarify this issue, we vary the initial speed vL, which relates the

initial correlation length L̃∗ and the characteristic turnover time t∗L ≃ L̃∗/(2vL). We fix

it to vL = 10−2 so that L̃∗ and t∗L are clearly separated: t∗L ≃ 102L̃∗. As can be seen

in Fig. 3.9, in the discontinuous case the peak position is independent of the velocity vL,

while in the continuous one it is located at k = 2π/t∗L.

Summarising, having assumed that the magnetic field processed by MHD turbulence

needs a characteristic time of order t∗L to ’form’ induces a peak in the GW spectrum at a

wave number corresponding to this characteristic time. If the field builds up much faster,

almost instantaneously, the peak can move to k = 2π/L̃∗.
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Figure 3.9: The GW spectrum, normalised to the magnetic energy density, for a causal
magnetic field n = 2 with maximal initial helicity hB = 1. Continuous source: green,
dashed line with v2

L = 0.2 and magenta, solid line with v2
L = 10−4. Discontinuous source:

orange, dashed line with v2
L = 0.2 and blue, solid line with v2

L = 10−4. In the continuous
case the spectrum peaks at k ≃ 2π/t∗L while in the discontinuous one it peaks at k ≃ 2π/L̃∗.

3.4 Limits

The main aim of this paper is to derive constraints on the amplitude of a primordial

magnetic field scaled to today, smoothed over an interesting characteristic scale. We choose
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the comoving scale λ̃ ≃ 0.1 Mpc. On one hand, this is approximately the largest correlation

scale of cluster magnetic fields today, on the other hand it is only a little larger than the

smallest scale which survived dissipation prior to recombination [84, 85]. Note however

that, accounting for the full evolution of the magnetic field, Ref. [78] found a smaller

dissipation scale at recombination, of about 1 kpc.

To constrain the magnetic field amplitude, we use the GW energy density generated

by the magnetic field and we apply the nucleosynthesis bound to these GWs, the same

strategy followed in Ref. [77]. We define the comoving magnetic field smoothed on the

comoving scale λ̃ by

B̃i(λ̃) =
1

V1

∫

d3x B̃i(x) exp

(

−x2

λ̃2

)

, (3.55)

where V1 is the normalization volume given by

V1 =

∫

d3y exp

(

−y2

λ̃2

)

= (
√

πλ̃)3, (3.56)

and B̃ is the magnetic field scaled to today, B(x, t) = B̃(x)/a2(t). A short calculation

gives the smoothed amplitude

B̃2
λ =

1

V2

∫

d3x〈B̃(x) · B̃(x + y)〉 exp

(

− y2

2λ̃2

)

, (3.57)

whit V2 = (
√

2πλ̃)3. Translating the above expression to Fourier space we obtain

B̃2
λ =

1

2π2

∫ ∞

0
dk k2S(k, t) exp

(

−k2λ̃2

2

)

= 8π

∫ ∞

0
dk εB(k, t) exp

(

−k2λ̃2

2

)

. (3.58)

We relate this amplitude to the comoving magnetic density parameter Ω̃∗
B using Eqs. (3.8), (3.9)

for εB(k, t) which are valid for both direct and inverse cascade. Performing the above in-

tegral we find

B̃2
λ(t) = 8πρc(t0)Ω̃B(t)

Γ
(

2n+7
4

)

Γ
(

1
4

) U





n + 3

2
,
3

4
, 2π2

(

λ̃

L̃

)2


 , (3.59)

where U denotes the confluent hyper-geometric function, see e.g. [129].

We assume that the initial helicity of the cosmic magnetic field responsible for GW

production is maximal, hB = 1. Therefore, during the inverse cascade phase, the magnetic

correlation length evolves as given in Eq. (3.19), and the product L̃(t)Ω̃B(t) is constant in

time. The inverse cascade goes on until the temperature Tfin at which MHD turbulence

terminates. In the maximally helical case, this can vary from a temperature of a few

MeV to approximately 1 GeV depending on the epoch of generation of the field (see Eqs.

(3.42)-(3.44)). Up to this final time, the correlation length has grown substantially, but

one readily confirms that it remains several orders of magnitude smaller than our scale of

interest, λ̃ = 0.1 Mpc ≃ 1013sec,

L̃(tfin) ≃ L̃∗

(

tfin

t∗L

)2/3

≪ λ̃ . (3.60)
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Therefore, we can expand the function U(a, b, z) = z−a[1 + O(z−1)]. With this we find

B̃2
λ(t) =

8πΓ
(

2n+7
4

)

(
√

2π)n+3Γ
(

1
4

)ρc(t0)Ω̃B(t)

(

L̃(t)

λ̃

)n+3

. (3.61)

Taking into account that during inverse cascade Ω̃B(t)L̃(t) = constant and L̃(t) = L̃∗τ2/3,

we obtain at t∗ ≪ t ≤ tfin

B̃2
λ(t) = B̃2

λ(t∗)τ
2(n+2)/3 , with (3.62)

B̃2
λ(t∗) ≡ 8πΓ

(

2n+7
4

)

(
√

2π)n+3Γ
(

1
4

)ρc(t0)Ω̃
∗
B

(

L̃∗
λ̃

)n+3

. (3.63)

For t > tfin the primordial fluid enters in the viscous phase and the magnetic field energy

density is dissipated by radiation viscosity [84, 85]. During this phase, the evolution on

large scales is similar to direct cascade, i.e. such that the large scale part of the power

spectrum remains constant: Ω̃B(t)L̃n+3(t) = constant. From the general evolution of B̃λ

given in Eq. (3.61), we see that it is justified to assume that, on the scale λ̃, after tfin the

magnetic field energy density evolves only by redshifting. Therefore, the comoving quantity

B̃λ(t) remains constant:

B̃2
λ ≡ B̃2

λ(t ≥ tfin) ≃ B̃2
λ(t∗)

(

tfin

t∗L

)2(n+2)/3

. (3.64)

Like every contribution to radiation energy density prior to nucleosynthesis, ΩGW is

constrained by the nucleosynthesis bound [151]

ΩGW ≤ Ωlim ≃ 0.1Ωrad . (3.65)

Via Eqs. (3.51), (3.53) this yields a constraint on the magnetic field energy density param-

eter Ω̃∗
B, in terms of L̃∗/tin = ǫ and L̃∗/t∗L ≃ 2vL:

Ω̃∗
B . 36

(ǫ11 v2
L)1/12 Ωrad blue case n = 2, EW , (3.66)

Ω̃∗
B . 0.14 v

(2+6n)/10
L Ωrad red case n = −1.8, inflation . (3.67)

With the help of Eqs. (3.62)-(3.64) we translate this into a constraint on B̃λ. Using

ρrad(t0) = ρc(t0)Ωrad ≃ 2×10−51GeV4 ≃ 0.4×10−12 (Gauss)2, we find for a blue magnetic

field generated at the EW phase transition

B̃λ

1µGauss
.

0.3

(ǫ11 v2
L)1/24

(

L̃∗
λ̃

)(n+3)/2
(

tfin

t∗L

)(n+2)/3

, (3.68)

for n = 2, generated at the EW phase transition
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and for a red magnetic field generated during inflation

B̃λ

1µGauss
. 0.27 v

(2+6n)/20
L

(

L̃∗
λ̃

)(n+3)/2
(

tfin

t∗L

)(n+2)/3

, (3.69)

for n = −1.8, generated at inflation.

In these equations the pre-factors are calculated using the spectral indexes and the initial

and final temperatures corresponding to the generation times. The dependence on vL and

ǫ is kept explicit for completeness.

It is interesting to see that the inverse cascade simply relaxes the limit by the factor

τ
(n+2)/3
fin , absent in the non-helical case for which B̃λ(t) = B̃∗

λ. This factor tends to 1 for

n → −2, the limiting value for which the inverse cascade relations (3.18) and (3.19) apply.

For causal generation with n = 2 the limit for a magnetic field is substantially reduced,

while for a red magnetic field spectrum with n = −1.8 the reduction is only by τ
0.2/3
fin .

Let us apply our findings to the two generation mechanisms considered above (EW

phase transition and inflation), to which we add also the interesting case of the QCD

phase transition [54]. As mentioned in Sec. 3.3.3, we have evaluated the spectrum also in

this case, finding a very similar amplitude to the EW phase transition case, for the same

values of vL and ǫ. Therefore, we are confident that we can trivially extend the above

Eq. (3.68) also to this case.

For a maximally helical field we find the following limits on B̃λ:

• If the field is generated at the EW phase transition at 100 GeV, tin ≃ 7.8 × 104

sec, assuming a causal spectrum with n = 2, taking the values ǫ = 0.01, v2
L = 0.2,

Tfin ≃ 21 MeV, setting geff(Tfin) = 43/4 and using λ̃ = 0.1 Mpc ≃ 1013 sec, we obtain

the constraint

B̃0.1Mpc . 8 × 10−24 Gauss, EW phase transition, T∗ = 100GeV (3.70)

• If the field is generated at the QCD phase transition at 100 MeV, tin ≃ 1.1× 108 sec,

with the same parameters as before but Tfin ≃ 5 MeV, the constraint becomes

B̃0.1Mpc . 2 × 10−19 Gauss, QCD phase transition, T∗ = 100MeV (3.71)

• If the field is generated during inflation at T∗ ≃ 1014GeV, tin ≃ 7× 10−8sec, with an

acausal red spectrum n = −1.8, choosing ǫ = vL = 1, Tfin ≃ 1 GeV and geff(Tfin) =

287/4, we find the constraint

B̃0.1Mpc . 2 × 10−18 Gauss, inflation, n = −1.8 (3.72)

• If the field is generated during inflation but with a blue, acausal spectrum n = 0,

with the same values of the parameters as before we find the stronger constraint

B̃0.1Mpc . 4 × 10−28 Gauss, inflation, n = 0 . (3.73)

The above limits are summarised in Fig. 3.10 as a function of n, and in Table 3.1. These

upper bounds on the amplitude of the primordial magnetic field are less stringent than the

ones obtained from a direct cascade by the factor τ
(n+2)/3
fin . Moreover, they strongly depend
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on the choice for the smoothing scale λ̃, in particular for blue spectra. The scaling with λ̃

is in fact given by (c.f. Eq. (3.61) and [68])

B̃λ1 = B̃λ2

(

λ̃2

λ̃1

)(n+3)/2

. (3.74)

Therefore, for a smaller smoothing scale of e.g. λ̃ = 1 kpc [78], the above bounds are

relaxed by a factor of 105 in the EW and QCD generation cases, and by a factor of 103 in

the inflationary case with flat spectrum n = 0. For red spectra the bound does not change

much, e.g. in the inflationary case with n = −1.8 it is relaxed only by a factor of about

16.
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Figure 3.10: Upper bounds on the comoving amplitude of a primordial magnetic field from
GW production as a function of n, for λ̃ = 0.1 Mpc, for a field generated at inflation (blue,
dotted), and at a phase transition (EW: red, dashed, QCD: green, solid). In these last two
cases, the generation is causal, consequently only n ≥ 2 is allowed.

More stringent bounds on the amplitude of a causally produced magnetic field can be

obtained by imposing simply that the energy density of the magnetic field cannot overcome

10% of the total energy density in radiation at generation time:

Ω̃∗
B ≤ 0.1Ωrad .

Comparing this last inequality with Eq. (3.66), one sees that in the latter the factor multi-

plying Ωrad is 5 orders of magnitude larger than 0.1 (with the usual values for the param-

eters). This shows that, in the causal case, the conversion of magnetic energy density into

GW energy density, although quite efficient, is not at all complete. For example, using

Ω̃∗
B ≤ 0.1Ωrad, the bound on an helical magnetic field becomes B̃0.1Mpc . 5× 10−26 Gauss

for the EW phase transition. In the inflationary case, on the other hand, the bounds are

not modified, since the conversion into GW is much more efficient (c.f. the pre-factor in

Eq. (3.67)).

However, accounting for GW production seems to us more model independent. Once

GWs are generated they do not interact with the cosmic fluid and simply redshift with

the evolution of the universe. We are therefore sure that any GW energy density sourced
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before nucleosynthesis is still present at that time and must respect the nucleosynthesis

bound. On the other hand, magnetic energy density can be dissipated or converted into

other forms of energy during the evolution of the universe. We could therefore invoke

the extreme scenario in which a magnetic field is formed in the very early universe with

amplitude higher than the presumed radiation energy density at that time. The magnetic

energy can subsequently be transformed into other forms of energy in such a way that it

satisfies the nucleosynthesis bound at nucleosynthesis. The main motivation to consider

GW production is to obtain a bound which is safe from these exotic, but in principle

possible, scenarios.

3.5 Conclusions

In this paper we have derived new upper bounds on the amplitude of primordial magnetic

fields. We have considered helical magnetic field power spectra, which evolve via inverse

cascade transferring power from small to large scales.

For the non-helical case, upper bounds on the magnetic field amplitude on the cos-

mologically relevant scale λ̃ ≃ 0.1 Mpc have been derived in previous analyses [77, 82].

These bounds apply to magnetic fields generated before nucleosynthesis, for which the cor-

relation scale at the moment of generation is L̃∗ ≪ λ̃. If the magnetic field spectrum is

blue n > −3/2, the peak of the energy density per logarithmic scale sits at L̃∗, then the

amplitude at the scale λ̃ is very constrained:

B̃λ ≃ B̃L∗(L̃∗/λ̃)(n+3)/2 ≪ B̃L∗ .

On the other hand, if an inverse cascade is active, the power at L̃∗ is moved to the

larger correlation scale L̃(τ), following the evolution law L̃(τ) = L̃∗τ2/3. At the end of the

inverse cascade process, we have seen that the magnetic field on the scale λ̃ is finally

B̃λ ≃ B̃L∗(L̃∗/λ̃)(n+3)/2τ
(n+2)/3
fin (3.75)

(naively one might expect a scaling like τ
(n+3)/3
fin , but some of the initial amplitude is lost

during the inverse cascade process, so that Ω̃B(t)L̃(t) = constant. This reduces the growth

of B̃λ by a factor τ
1/3
fin ).

The strong limits from magnetic fields which obey a direct cascade are therefore miti-

gated in the helical case by a factor

τ
(n+2)/3
fin =

[

2vL

ǫ

T∗
Tfin

(

g∗
gfin

)1/6
](n+2)/3

(3.76)

≃















































5.3 × 107 for the EW transition,
n = 2 , T∗ = 100GeV

2 × 104 for the QCD transition,
n = 2 , T∗ = 100MeV

9.3 for inflation,
n = −1.8 , T∗ = 1014GeV

4.8 × 109 for inflation,
n = 0 , T∗ = 1014GeV .
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In this paper we have only considered spectral indexes n > −2, since Ref. [79] does not

analyse smaller spectral indexes, and numerical simulations have always chosen either n = 2

[80], or n = 0 [78]. Consequently, we do not know whether for a red spectrum with n ≤ −2

the inverse cascade is still active, or whether the limits are those of the direct cascade. For

spectral indexes close to n = −2 the above mitigating factor is small, even if the magnetic

field is generated in the very early universe. On the other hand, for blue magnetic fields

generated at the QCD phase transition, the inverse cascade is not very efficient, since

turbulence anyway stops after e+e− annihilation: therefore τfin is not very large.

In Table 3.1 we summarise our results. We give the upper bounds on the magnetic field

amplitude obtained both accounting for GW production and imposing that the magnetic

energy does not overcome 10% of the radiation energy, for helical and non-helical magnetic

fields smoothed on scales of 0.1 Mpc and 1 kpc. The upper bounds for a non-helical

magnetic field are in agreement with those given in [77, 82].

We have found that only red magnetic field spectra from inflation or helical fields

from the QCD phase transition can have the amplitude of B0.1Mpc
>∼ 10−22 Gauss which is

necessary for amplification by a dynamo mechanism up to the observed µGauss field [48].

Especially, the well motivated helical fields from the EW phase transition are still too

constrained, even after the inverse cascade.

This leads us to the conclusion that the observed magnetic fields in galaxies and clusters

have either not been seeded by primordial fields, or these primordial fields have been

produced during inflation and have a red spectrum n <∼ − 1.8, or they have been produced

during the QCD phase transition. In this latter case it is crucial that these QCD fields be

helical because the boost by the factor of about 20000 is absolutely needed, while for red

(−2 < n < −3/2) inflationary fields the inverse cascade is not relevant.

To evade this conclusion one can argue that magnetic fields coherent on a smaller scale,

of about 1 kpc, and with the required amplitude of 10−22 Gauss are sufficient to give rise to

the fields observed today in galaxies and clusters [78]. If this is so, then the bounds derived

here are relaxed in such a way that also helical fields from the EW phase transition can

have a sufficiently high amplitude (however, for non-helical fields this is still not enough –

see Table 3.1).
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GW limits

helical non-helical

λ = 0.1Mpc λ = 1kpc λ = 0.1Mpc λ = 1kpc

EW 8 × 10−24G 8 × 10−19 G 10−31G 10−26G

QCD 2× 10−19 G 2 × 10−14 G 10−23G 10−18 G

Infl. n = −1.8 2× 10−18G 3 × 10−17 G 2× 10−19 G 3 × 10−18 G

Infl. n = 0 4 × 10−28G 4 × 10−25G 8 × 10−38G 8 × 10−35G

limits from Ω∗
B < 0.1

EW 5 × 10−26G 5 × 10−21G 6 × 10−34G 6 × 10−29G

QCD 10−21G 10−16G 6 × 10−26G 6 × 10−21G

Infl. n = −1.8 2× 10−18G 3 × 10−17G 2× 10−19G 3 × 10−18G

Infl. n = 0 4 × 10−28G 4 × 10−25G 8 × 10−38G 8 × 10−35G

Table 3.1: This table summarises the upper bounds for the magnetic field amplitude av-
eraged over the scales λ = 0.1 Mpc and λ = 1 kpc, for the different generation epochs
discussed in the paper. Here we present the limits for maximally helical as well as non-
helical fields. In the four top rows we give the limits from the production of GWs while
in the lower part of the table we present the limits coming from the requirement that the
magnetic field contribution be always subdominant: more precisely we require Ω∗

B < 0.1.
The values which may be sufficient for dynamo amplification are given in boldface.
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3.6 Appendix

3.6.1 The end of turbulence and the dissipation scale

3.6.1.1 The end of turbulence

The turbulent phase ends when the Reynolds number on the scale of energy injection

becomes of order unity [147]

Re (L(Tfin), Tfin) =
vL L

ν

∣

∣

∣

∣

Tfin

≃ 1 . (3.77)

Here L denotes the physical energy injection scale, ν is the kinetic viscosity, and vL is the

eddy velocity on the scale L. We assume that in the MHD cascade kinetic and magnetic

energy have the same time evolution (equipartition). Substituting L(t) = L̃(t)a(t) =

L̃(t) (T0/T (t)) (g0/geff(T ))1/3, we find (geff (T∗) ≡ g∗),

Re (L(T ), T ) = R∗
T∗
T

(

g∗
geff(T )

)1/3 ν∗
ν(T )

τα , R∗ ≡ Re (L∗, T∗) , (3.78)

where the power α represents the evolution of the product L̃(t)vL(t) and we use vL(t) ∝√
ρ̃B. With Eqs. (3.13, 3.14) and (3.18, 3.19) we obtain

α =

{

−(n + 1)/(n + 5) for non-helical fields (normal cascade),
1/3 for helical fields (inverse cascade).

(3.79)

The kinetic viscosity is approximately given by the mean free path of the particle with

the weakest interaction [131], ν ≃ ℓmfp/5. During the early radiation dominated phase,

neutrinos determine the viscosity until they decouple at T ≃ 1 MeV, when photon viscosity

sets in. For T > 1MeV the mean free path of the neutrinos is given by

ℓ
(ν)
mfp ≃ 1

3G2
F T 5

, 1MeV < T < 100GeV , (3.80)

where GF = (293GeV)−2 is the Fermi coupling constant. Below 1 MeV we have to consider

the photon mean free path which can be approximated by Thomson scattering

ℓ
(γ)
mfp ≃ 1

σT ne
≃ 3m2

e mp

8πe4 Ωb ρc

(

T0

T

)3

, 0.3 eV < T < 1 MeV , (3.81)

where σT is the Thomson cross section, ne is the electron density, Ωb is the baryon density

parameter and we neglect the short period of time during which electrons are still relativis-

tic, after neutrino decoupling but before electron positron annihilation. The lower limit

in (3.81) comes from recombination, when the electron density drops sharply and photons

decouple. The situation also changes at very high temperature, when the EW symmetry is

restored, T >∼ 100GeV. Then the coupling constant is nearly independent of temperature,

and the relativistic mean free path is of the order of the inverse temperature [152]

ℓmfp ≃ 22

T
, T > 100GeV . (3.82)
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We first calculate the Reynolds number at the time of generation and at the initial

correlation scale of the magnetic field, in order to confirm that a turbulent MHD phase is

indeed present. With (3.78) we obtain

R∗ = vL ǫ
t∈
ν∗

T0

T∗

(

g0

g∗

)1/3

, (3.83)

where we have identified the temperatures T∈ ≃ T∗. Furthermore, we use ν = ℓmfp/5 and

t∈ =
1

a∈H∈
≃ 0.5 g

−1/6
∗

mPl

T∗T0
,

R∗ ≃ 3 vL ǫ√
g∗

mPl

T 2∗ ℓmfp(t∗)
. (3.84)

We consider the two situations, 1MeV ≤ T∗ ≤ 100GeV and T∗ > 100 GeV, where the

expressions (3.80) and (3.82) for the mean free path give

R∗ ≃ 9vL ǫ√
g∗

mPlT
3
∗ G2

F , 1MeV ≤ T∗ ≤ 100GeV (3.85)

R∗ ≃ 3
22

vL ǫ√
g∗

mPl
T∗

, T∗ > 100 GeV . (3.86)

Let us start by considering the generation of turbulence during the EW phase transition

at 100 GeV. Setting T∗ = 100 GeV, ǫ = 0.01 and v2
L = 0.2, with g∗ ≃ 100 we obtain

R∗ ≃ 1013. The corresponding parameters for the QCD transition at T∗ = 100 MeV and

g∗ ≃ 10 yield R∗ ≃ 104. Both Reynolds numbers are much larger than one so that we can

be certain that a first order phase transition will induce turbulence. To determine when

turbulence terminates we use Eqs. (3.78) and (3.80), setting

1 = Re (L(Tfin), Tfin) = R∗τ
α

(

g∗
geff(Tfin)

)1/3(Tfin

T∗

)4

≃ R∗

(

2vL

ǫ

)α(Tfin

T∗

)4−α

. (3.87)

For the last equal sign we have used t∗L = L̃∗/(2vL) = ǫt∈/(2vL), τ ≃ t/t∗L and we have

approximated tfin/tin ≃ T∗/Tfin. This corresponds to neglecting changes in the number of

effective relativistic degrees of freedom.

For direct cascade with n = 2, hence α = −3/7, we obtain Tfin ≃ 200 MeV for the EW

phase transition and Tfin ≃ 20 MeV for the QCD phase transition.

In the helical case with inverse cascade α = 1/3, turbulence is maintained longer and

we find Tfin ≃ 21 MeV for the EW phase transition and Tfin ≃ 5 MeV for the QCD phase

transition.

For generation of magnetic fields and turbulence at the end of inflation T∗ = 1014 GeV,

no causality restriction holds and we choose ǫ = vL = 1. As long as ν(T ) ∝ ℓmfp ≃
22/T , the Reynolds number at the correlation length L(T ) evolves like (t/tin)

α ≃ (T∗/T )α

according to Eq. (3.78) (where we neglect changes in the effective number of relativistic

degrees of freedom). At T∗ ≃ 1014 GeV, with g∗ ≃ 200 we have R∗ ≃ 0.01mPl/T∗ ≃ 103.

As time evolves, the Reynolds number at L(T ) decays only in the non-helical case if n > −1,

so that α = −(n+1)/(n+5) < 0. In the helical case and for n < −1 the Reynolds number

Re (L(T ), T ) grows as the temperature drops. Once T = Tew = 100 GeV is reached, the

viscosity ν starts decaying rapidly, like T−5, and the Reynolds number then decreases.

We consider three cases
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i) Direct cascade with n = 0, α = −1/5

Re (L(Tew), Tew) = R∗(T∗/Tew)α ≃ 6 ,

so Tfin ≃ 100 GeV.

ii) Direct cascade with n = −3/2, α = 1/7

In this case

Re (L(Tew), Tew) = R∗(T∗/Tew)α ≃ 9 × 104 ,

and

Tfin = TewRe (L(Tew), Tew)
−1
4−α ≃ 5GeV .

iii) Inverse cascade, α = 1/3

In this case

Re (L(Tew), Tew) = R∗(T∗/Tew)α ≃ 2 × 107 ,

and

Tfin = TewRe (L(Tew), Tew)
−1
4−α ≃ 1GeV .

We draw the important conclusion that in all cases the MHD turbulent phase always

lasts for many Hubble times before the total kinetic energy is dissipated [25].

3.6.1.2 The dissipation scale

In the previous subsection we have considered the energy injection scale L̃(T ) and de-

termined first that turbulence is present on this scale, and second when turbulence ends

(i.e. when the entire Kolmogorov range is dissipated). Now we want to know, for a given

fixed time t (or temperature T ), what is the scale below which kinetic energy is dissipated.

This defines the comoving dissipation scale l̃diss(T ). The function l̃diss(T ) can be found

considering that, on scales smaller than this scale, viscosity dominates, therefore there is

no turbulence. Thus, ldiss corresponds to the physical scale at which the Reynolds number

is equal to 1,

Re (ldiss, T ) =
vl ldiss

ν
∼ 1 . (3.88)

Here ν is the kinetic viscosity as in the previous section, and vl is the eddy velocity at the

dissipation scale. We determine l̃diss(T ) only for the helical case which is our main interest

in this paper (see [25] for the non-helical one). In the inertial range the turbulent eddy

velocity obeys a Kolmogorov spectrum so that [82]

vl = vL

(

l̃diss

L̃(T )

)1/3

. (3.89)

Now we use Re (L(T ), T ) = vL(T )L(T )/ν(T ) so that, from Eq. (3.78) neglecting changes

in the number of relativistic degrees of freedom, we find

Re (ldiss, T ) = Re (L(T ), T )

(

l̃diss

L̃(T )

)4/3

≃ R∗τ
α T∗

T

ν∗
ν

(

l̃diss

L̃(t)

)4/3

. (3.90)
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Hence Re (ldiss, T ) = 1 yields

l̃diss(T ) ≃ l̃∗diss τ5/12

(

T

T∗

ν(T )

ν∗

)3/4

, (3.91)

where we define l̃∗diss ≡ L̃∗/R
3/4
∗ . For the last equal sign we have used the behavior of the

correlations scale with τ = (t − t∈)/t∗L as τ2/3, (3.19), and α = 1/3 for the helical case.

The evolution of both the correlation length L̃(T ) and the dissipation scale l̃diss(T ) are

compared in Fig. 3.4 for the EW phase transition. Turbulence stops roughly when the two

curves cross. We call this time t
(1)
fin .

Finally, we have to take into account that for a given comoving scale, l̃ = 2π/k the

Reynolds number can become unity long before the end of turbulence. The time at which

turbulence on the scale l̃ is dissipated is denoted t
(2)
fin (k) and it is defined by

l̃ = 2π/k = l̃diss(t
(2)
fin (k)) .

Let us first consider T∗ ≤ Tew = 100 GeV, so that for all times of interest the kinetic

viscosity behaves as ν ∝ T−5. This leads to

k =
2π

l̃diss(t
(2)
fin (k))

⇒ t
(2)
fin (k)

t∗
≃
[

1

K∗

L̃∗
l̃∗diss

(

ǫ

2vL

)5/12
]12/41

. (3.92)

Here again, we neglect a possible difference in geff between t∗ and t
(2)
fin and we set τ

(2)
fin ≃

t
(2)
fin 2vL/(ǫt∈). We also use R∗ = (L̃∗/l̃∗diss)

4/3.

The situation is somewhat more complicated for generation temperatures T∗ > Tew:

until Tew the kinematic viscosity decays roughly like ν ∝ 1/T . We therefore have to

distinguish between scales which are damped at temperatures above Tew and those which

are damped below. Since we are in this situation only for the inflationary case, we set

ǫ = vL = 1 for this case. We then obtain

t
(2)
fin (k) ≃



















t∗
2

(

K−1
∗

L̃∗

l̃∗diss

)12/5

for K∗ such that t
(2)
fin (k) < tew , K∗ > K∗

ew ,

tew

(

K∗
ew

K∗

)12/41
2−5/41 for K∗ < K∗

ew .

(3.93)

Here K∗
ew is the value of K∗ for which turbulence terminates at Tew,

K∗
ew ≃

(

Tew

2T∗

)5/12 L̃∗
l̃∗diss

. (3.94)

When applying these formulas for the calculation of GWs, we must choose the true

final time given by

tfin = min
[

t
(1)
fin , t

(2)
fin (k)

]

. (3.95)

For turbulence from the EW phase transition and from inflation this function is plotted in

Fig 3.5 . At t
(1)
fin turbulence is dissipated on all scales l̃ ≤ L̃(t

(1)
fin ) which is the scale of the

largest eddies: therefore, the entire Kolmogorov range is dissipated.
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3.6.2 The equal time correlator and other integrals

3.6.2.1 Π̃B(k, t)

According to Eq. (3.37) we can write the equal time correlator as the following integral

Π̃B(k, t) =
N2

2π
L̃3(t)ρ̃2

B(t) [I1(k, t) + 4I2(k, t)] =
N2

2π
L̃3(t)ρ̃2

B(t)I(k, t) , (3.96)

I1(k, t) =

∫ L̃(t)/l̃diss(t)

0
dQ

Qn+2

(1 + Q2)(2n+7)/4
×

∫ 1

max

„

−1; K
2Q

+ Q
2K

− L̃2

2KQl̃2
diss

« dγ(1 + γ2)
xn−2

(1 + x2)(2n+7)/4
×

[2K2 + (1 + γ2)Q2 − 4γKQ] , (3.97)

I2(k, t) =

∫ L̃(t)/l̃diss(t)

L̃(t)/(2πt)
dQ

Qn+2

(1 + Q2)(2n+7)/4
×

∫ min
“

1; K
2Q

+ Q
2K

− L̃2

2KQ(2πt)2

”

max

„

−1; K
2Q

+ Q
2K

− L̃2

2KQl̃2
diss

« dγ
xn−1

(1 + x2)(2n+7)/4
γ(K − Qγ) , (3.98)

where we have used α = (k − γq)/
√

k2 + q2 − 2γkq and we have set

x ≡
√

K2 + Q2 − 2γKQ and Q(t) ≡ qL̃(t)/(2π). We have also introduced the constant

N2 defined by

N2 ≡
[

Γ
(

2n+7
4

)

Γ
(

1
4

)

Γ
(

n+3
2

)

]2

=















0.11 for n = 2 ,
0.08 for n = 0 ,
0.05 for n = −3/2 ,
0.04 for n = −1.8 .

We have performed the double integrals Ij(k, t) numerically for different values of the

spectral index n > −2. In the numerical integration we neglect the time dependent cutoff

in the above integrals and consider only the time dependence given by K(t) = K∗τβ , with

K∗ ≡ kL̃∗/(2π), τ ≡ [(t−tin)/t
∗
L] and β = 2/(n+5) for the direct cascade regime while β =

2/3 in the inverse cascade phase. In general we find that the antisymmetric contribution I2

is negative (as it should be [130]), and negligible with respect to the symmetric contribution,

namely I1 ≪ |I2|.
First we consider a blue magnetic field spectrum which is characterized by n > −3/2.

The result of the numerical integration for n = 2 , which corresponds to a causal magnetic

field, is shown in Fig. 3.11. The integral I(K) can be approximated by the following

analytical expression,

I(K) ≃ 0.034

1 +
(

K
12

)4
+
(

K
6

)7/2
. (3.99)

With this approximation the equal time correlator Π̃B(K, t) can be written as

Π̃B(K, t) ≃ N2

2π
L̃3(t)ρ̃2

B(t)
0.034

1 +
(

K
12

)4
+
(

K
6

)7/2
. (3.100)

For a red magnetic field spectrum with n < −3/2 we find a somewhat different power

spectrum which is shown in Fig. 3.12 for the case n = −1.8. The integral can be approxi-
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Figure 3.11: Symmetric part I1(K) (blue, dash-dotted line) and absolute value of the anti-
symmetric part |I2(K)| (green, dotted line) of the anisotropic stresses for a blue magnetic
field with n = 2. The sum of the two parts I(K) = I1 + 4I2 (red, dashed line) and the fit
(black, solid line) are also shown.

10-6 10-4 0.01 1 100
10-7

10-4

0.1

100

105

KHtL

IHK
L

Figure 3.12: Symmetric part I1(K) (blue, dash-dotted line) and absolute value of the
antisymmetric part |I2(K)| (green, dotted line) of the anisotropic stresses considering now
a red magnetic field with n = −1.8. We plot also the sum of the two parts I(K) (red,
dashed line) and the fit (black, solid line).
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mated by

I(K) ∝ KA

1 + (K/C)B
, (3.101)

where the constants A and B are given by A = 2n + 3 < 0 and B = A + 7/2 = 2n + 13/2

and C varies with n and has been chosen to be equal to 1.4 in order to fit the numerical

result. We recover the asymptotic behavior for the anisotropic stress of a red magnetic

field found in [77], [82]:

I(K) ≃ K2n+3 for K ≪ 1 ,

I(K) ≃ K−7/2 for K ≫ 1 .

This explains also the higher amplitude of I(K) in the red case compared to the one

obtained for a blue magnetic field: we have an infrared divergence for small values of Q.

Finally for n = −1.8 we find

Π̃B(K, t) ≃ N2

2π
L̃3(t)ρ̃2

B(t)
(K/40)−3/5

1 + (K/1.4)29/10
. (3.102)

3.6.2.2 GW integrals

To calculate the integrals (3.41) we use Eqs. (3.38), (3.39) for the time evolution of the

magnetic anisotropic stress and we use the integration variable τ

τ =
t′ − tin

t∗L
.

We can then write the GW energy spectrum as

dρGW(k, t)

d log k
≃ 2G

πa4(t)

N2

2π

(ρ̃∗B)2

H2
0Ωrad

(2π)3K3
∗
{

[Ic, I(k) + Ic, II(k)]2

+ [Is, I(k) + Is, II(k)]2
}

, (3.103)

which yields the following expression for the present density parameter of GWs

dΩGW(k, t0)

d log k
≃ 3N2

(Ω̃∗
B)2

Ωrad
IGW(K∗) ,

IGW(K∗) ≡ K3
∗
{

[Ic, I(K∗) + Ic, II(K∗)]
2 + [Is, I(K∗) + Is, II(K∗)]

2
}

. (3.104)

The four integrals above distinguish the two different phases of the inverse cascade, namely

the first one where the magnetic energy density is growing linearly up to its maximum value

ρ̃∗B (t∈ ≤ t < t∗) and the second one where ρ̃B(t) decays as τ−2/3 (t ≥ t∗).
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For the EW phase transition, n = 2 we have for tin ≤ t < t∗

Ic, I(K∗) =

∫ 1

0
dτ

√
0.034 τ2

(

τ + 2vL
ǫ

)

√

1 +
(

K∗τ2/3

12

)4
+
(

K∗τ2/3

6

)7/2
×

cos

[

2πK∗

(

τ

2vL
+

1

ǫ

)]

, (3.105)

Is, I(K∗) =

∫ 1

0
dτ

√
0.034 τ2

(

τ + 2vL
ǫ

)

√

1 +
(

K∗τ2/3

12

)4
+
(

K∗τ2/3

6

)7/2
×

sin

[

2πK∗

(

τ

2vL
+

1

ǫ

)]

, (3.106)

while for t ≥ t∗ the integrals can be written as

Ic, II(K∗) =

∫

tfin
t∗
L

1
dτ

√
0.034 τ1/3

(

τ + 2vL
ǫ

)

√

1 +
(

K∗τ2/3

12

)4
+
(

K∗τ2/3

6

)7/2
×

cos

[

2πK∗

(

τ

vL
+

1

ǫ

)]

, (3.107)

Is, II(K∗) =

∫

tfin
t∗
L

1
dτ

√
0.034 τ1/3

(

τ + 2vL
ǫ

)

√

1 +
(

K∗τ2/3

12

)4
+
(

K∗τ2/3

6

)7/2
×

sin

[

2πK∗

(

τ

2vL
+

1

ǫ

)]

. (3.108)

Secondly we consider a red magnetic field with n = −1.8 < −3/2, that implies A =

−3/5, B = 29/10 and C = 1.4. In this case the four integrals read for tin ≤ t < t∗

Ic, I(K∗) =

∫ 1

0
dτ

τ9/5(K∗/40)−3/10

(

τ + 2vL
ǫ

)

√

1 +
(

K∗τ2/3

1.4

)29/10
×

cos

[

2πK∗

(

τ

2vL
+

1

ǫ

)]

, (3.109)

Is, I(K∗) =

∫ 1

0
dτ

τ9/5(K∗/40)−3/10

(

τ + 2vL
ǫ

)

√

1 +
(

K∗τ2/3

1.4

)29/10
×

sin

[

2πK∗

(

τ

2vL
+

1

ǫ

)]

, (3.110)
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while for t ≥ t∗ the integrals can be written as

Ic, II(K∗) =

∫

tfin
t∗
L

1
dτ

τ2/15(K∗/40)−3/10

(

τ + 2vL
ǫ

)

√

1 +
(

K∗τ2/3

1.4

)29/10
×

cos

[

2πK∗

(

τ

2vL
+

1

ǫ

)]

, (3.111)

Is, II(K∗) =

∫

tfin
t∗
L

1
dτ

τ2/15(K∗/40)−3/10

(

τ + 2vL
ǫ

)

√

1 +
(

K∗τ2/3

1.4

)29/10
×

sin

[

2πK∗

(

τ

2vL
+

1

ǫ

)]

. (3.112)

Inserting typical values for the above quantities we perform a numerical integration, and we

find that the first phase, the ’switching on’ of the inverse cascade, is completely irrelevant

for the final result for most of the spectrum. It does, however affect the peak position and

the decay law as we discuss in Section 3.3.4. The numerical solutions of the integrals are

shown in Figs. 3.6 and 3.7.

3.6.2.3 The fits for the GW spectrum

In deriving the analytical fits to the numerical GW spectra, Eqs. (3.50) and (3.52), we have

been guided by analytic intuition of the behaviour of the integrals given in Eqs. (3.105) to

(3.112) above. Here we give some details for the understanding of the fits.

Let us start with the causal case, n = 2. First of all, the main contribution to the GW

spectrum comes from the integral in Eq. (3.107), i.e. the cosine part in (3.41). For very

small values of K∗, below the characteristic wave number k ≤ 1/tfin, the cosine does not

oscillate: therefore, we expect to inherit directly the slope of the anisotropic stress. For

the causal case this is flat, consequently we expect a K3
∗ behaviour, coming from (3.104).

The constant ǫ1 is fixed by the large wavelength limit of IGW(K∗), given mainly by the

integral of Eq. (3.107) evaluated at the upper boundary tfin:

IGW(K∗ → 0) ≃ 7.73 Π̃(0)

(

T∗
Tfin

2vL

ǫ

)2/3

K3
∗ ≡ ǫ1 K3

∗ .

For higher values of the wave number, the main contribution to the integral comes roughly

from the first oscillation of the cosine in Eq. (3.107) (note that the integrand decays with

time). This can be accounted for by integrating only up to the time t ≃ 1/k, causing a

change of slope of the GW spectrum, which now results in IGW(K∗) ∝ K
7/3
∗ . In the main

text this slope is set to K2
∗ , which corresponds to the best fit result from the numerical

evaluation of the integral (see Fig. 3.6). These analytical considerations are in fact quite

crude and lead to slopes which are not very precise. The parameter ǫ2 is determined by

the matching at the limiting value k = 1/tfin, which is the value of the wave number for

which the cosine starts to oscillate:

ǫ2 ≃ 0.07

(

v2
L ǫ

Tfin

T∗

)1/3

.
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This behaviour continues until k becomes of the order of 1/t∗. Above this value, the time

dependence of the integrand is no longer τ−2/3 but τ1/3 (see Eq. (3.107)). This results in

a further change in the slope of the spectrum, which now becomes IGW(K∗) ∝ K
1/3
∗ . In

the main text this slope is set to
√

K∗, again according to the numerical evaluation of the

integral. By continuity, the paramter ǫ3 in Eq. (3.50) is

ǫ3 ≃ 4 · 10−3

(

v2
L ǫ11/2 Tfin

T∗

)1/3

.

In the inflationary case, the main contribution to the GW spectrum comes again from

the integral in Eq. (3.111). For very small values of K∗, below the characteristic wave

number k ≤ 1/tfin, we expect to inherit the slope of the anisotropic stress. The constant

ǫ4 is given by the large wavelength limit of IGW(K∗):

IGW(K∗ → 0) ≃ 68 Π̃(K∗)

(

T∗
Tfin

)4/15

K3
∗ = ǫ4 K2n+6

∗ . (3.113)

The above formula is valid for n = −1.8. For higher values of the wave number, the same

argument as in the causal case applies, and we integrate only up to t ≃ 1/k: the slope in

wave number of the GW spectrum now results in IGW(K∗) ∝ K
(2n+10)/3
∗ . By continuity,

we obtain (again for n = −1.8) ǫ5 ≃ 619/(2π)4/15 . This behaviour continues until the wave

number for which the final time of turbulence tfin(k), given in Eq. (3.46), becomes smaller

than 1/k: this happens for K∗ ≃ ((2π)5/R9
∗)

1/7, see the first line of Eq. (3.93). For higher

wave numbers, the upper limit of integration has a different k−behaviour which translates

to the slope IGW(K∗) ∝ K
−(2+6n)/5
∗ . By continuity, ǫ6 ≃ 619/R

12/25
∗ ≃ 22 for n = −1.8

and R∗ ≃ 103 for inflation.
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MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY (2011)

The seed magnetic field generated during recombination

Elisa Fenu, Cyril Pitrou and Roy Maartens

Nonlinear dynamics creates vortical currents when the tight-coupling approximation

between photons and baryons breaks down around the time of recombination. This gener-

ates a magnetic field at second order in cosmological perturbations, whose power spectrum

is fixed by standard physics, without the need for any ad hoc assumptions. We present

the fully general relativistic calculation of the magnetic power spectrum, including the

effects of metric perturbations, second-order velocity and photon anisotropic stress, thus

generalizing and correcting previous results. We also show that significant magnetogenesis

continues to occur after recombination. The power spectrum
√

k3PB decays as k4 on large

scales, and grows as k0.5 on small scales, down to the limit of our numerical computations,

∼ 1Mpc. On cluster scales, the created field has strength ∼ 3 × 10−29 Gauss.

DOI: 10.1111/j.1365-2966.2011.18554.x

arXiv:1012.2958v2 [astro-ph.CO]

4.1 Introduction

Evidence is growing for magnetic fields on larger and larger scales in the Universe (see e.g.

the reviews [35, 36]). In galaxies, the fields have strength of order µGauss, ordered on scales

∼ 1− 10 kpc. Fields of strength ∼ 1− 10−2µG on scales ∼ 0.1− 1Mpc have been detected

in galaxy clusters, and there is evidence of magnetic fields in superclusters. Recently, new

evidence has been presented for intergalactic magnetic fields: high energy gamma-rays

from distant sources can initiate electromagnetic pair cascades when interacting with the

extragalactic photon background; the charged component of the cascades will be deflected

by magnetic fields, affecting the images of the sources. Using observations from FERMI,

a lower bound of order 10−16 G has been claimed for the strength of fields in the filaments

and voids of the cosmic web [44, 45, 46, 47].

The origin of these fields is still unclear (see e.g. [48, 49, 50]). They could have been

generated via astrophysical processes during the nonlinear collapse stage of structure for-

mation. There remain unresolved difficulties in explaining how these astrophysical seed

fields lead to fields of the observed strength and coherence scales. Alternatively, the fields

could be primordial seed fields – created in the very early Universe, during inflation, or

during subsequent phase transitions. In principle inflation can generate fields on all scales

– but unknown physics must be invoked to achieve non-minimal coupling of the electro-

magnetic field. The electroweak and QCD transitions can only produce fields on very

small scales, up to the Hubble radius at magnetogenesis (and their amplitude is strongly

constrained by their gravitational wave production before nucleosynthesis [81]).
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Primordial magnetogenesis also takes place in the cosmic plasma after particle/anti-

particle annihilation. This avoids the problem of exotic physics that faces inflationary

magnetogenesis – standard Maxwell theory and standard cosmological perturbations in

the cosmic plasma inevitably lead to magnetic fields. It also avoids the small coherence

scale problem facing electroweak and QCD fields. However, the problem is the weakness of

the fields, since this effect occurs at second and higher order in cosmological perturbations.

The key question is how weak is the field and how does it vary with scale? Differing

qualitative estimates of the field strength have been given by [87, 88, 89, 90, 91, 92]. The

power spectrum was first numerically computed by [93], which differs significantly from

ours. More recently, [94] presented a power spectrum that is closer to our result. We

discuss below the differences between previous results and ours. Our analysis is the first

complete general relativistic computation of the power spectrum, taking into account all

effects.

Our result is shown in Fig. 4.1. The power spectrum behaves as

√

k3PB ∝
{

k4 k ≪ keq

k0.5 k ≫ keq .
(4.1)

On cluster scales the comoving field strength is

B1Mpc ∼ 3 × 10−29 G. (4.2)
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Figure 4.1: Left: Magnetic field spectrum today. Right: Comoving magnetic field strength
today at a given scale.

Thus the field generated around recombination is too weak to act as a seed for the

observed field strength of order µG. Adiabatic contraction of the magnetic flux lines during

nonlinear collapse of structures provides an enhancement of ∼ 103, while the nonlinear

dynamo mechanism has an amplification factor ∼ 108 (with many remaining uncertainties).

Note that hydrodynamical and turbulence effects during nonlinear collapse themselves

generate a field of order 10−20 G – which is also too small to account for the observed

galactic and cluster fields [49].

The field (4.2) is also too weak to imprint detectable effects on the CMB. Nevertheless

it is a real property of the standard cosmological model, and may have some impact on

early structure formation during the ‘dark ages’ if it is the only primordial field. (See e.g.
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[153, 154] for the role of magnetic fields in structure formation during the dark ages.)

As shown below, the magnetic field is given by

(

a2Bi
)′

= −a2ǫijk∂j

[

(1 + Φ − Ψ)Ek

]

, (4.3)

Ei ≈ −4ργσT

3e

(

∆vi
bγ +

2

5
Θi

jv
j
b

)

, (4.4)

where Φ,Ψ are first-order metric perturbations, ∆vi
bγ = vi

b − vi
γ is the photon-baryon

velocity difference, and Θi
j is the photon quadrupole moment, from anisotropic stress.

This leads to three types of source terms for magnetogenesis:

(

a2B
)′

= S1

[

∆v
(2)
bγ

]

+ S2

[{

δ(1)
γ + Φ(1) − Ψ(1)

}

∆v
(1)
bγ

]

+ S3

[

Θ(1)
γ v

(1)
b

]

. (4.5)

The first source term is second-order, while the other two are quadratic in first-order

quantities. The contributions of the source terms to the power spectrum are shown in Fig.

6.1 (left).

Our paper builds on the physical analysis of nonlinear plasma dynamics presented in

[155, 93, 94, 91, 156, 92, 96]. The key features of the dynamics are as follows.

• The electric field ensures that the proton-electron relative velocity is always strongly

suppressed in comparison with the photon-electron relative velocity – even at high

energies when the Compton interaction is stronger than the Coulomb interaction.

• Vorticity induced in the electron fluid is thus transferred almost entirely to the pro-

tons, and the baryon vorticity evolution is determined by the two-fluid dynamics of

photons and baryons, which is very close to the equations of CMB dynamics. We use

the second-order Boltzmann code of [96].

• The limit ve − vγ → 0 and vp − ve → 0 is not equivalent to setting vp = ve = vγ in

the momentum exchange equations, and the limit must be taken consistently.

• At first order, cosmological vector perturbations are zero after inflation, in the stan-

dard model. Magnetogenesis requires vortical currents, and these can therefore only

be generated at second order, via mode-mode coupling of first-order scalar perturba-

tions. This remains true even in the presence of topological defects, which are active

sources for vector perturbations: at first order, the vector perturbations induced by

the defects cannot break vorticity conservation in the cosmic plasma [98].

• On large scales there is some cancellation amongst the source terms in (4.5) (this

is evident from Fig. 6.1). Neglecting any of the effects can thus lead to unreliable

results.

• The magnetic field continues to be created after recombination, due to the residual

nonzero ionization fraction. If the numerical integration is stopped at recombination,

then the comoving field is under-estimated by a factor ∼ 10 (see Fig. 6.1).

The plan of the paper is as follows. In the next section we review and clarify the

magnetic and electric field generation beyond the tight-coupling limit. In Sec. 4.3, we

detail the numerical integration of the differential evolution equations at second order

in cosmological perturbations that we perform in order to solve for the magnetic field

spectrum. We also provide analytical insight into the time and scale behaviors of the

numerical results. We compare our results with previous work in Sec. 4.4. Details of some

calculations are given in the Appendices.
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4.2 Understanding the origin of the magnetic field

4.2.1 Interactions in the cosmic plasma

The stress-energy tensor of a species s satisfies

∇νT
µν
s =

∑

r

Cµ
sr ,

∑

s

∇νT
µν
s = 0 , (4.6)

where Cν
sr(= −Cν

rs) encodes all the effects of interactions with species r. Relative to ob-

servers with 4-velocity uµ, the energy density transfer rate is −uµCµ
sr and the momentum

density transfer rate is Cµ⊥
sr = hµ

νCν
sr, where the projector is hν

µ ≡ δν
µ + uµuν .

The Euler equation for a species s is given in general by

∇νT
νµ⊥
s =

∑

r

Cµ⊥
sr . (4.7)

The kinematics of uµ are described by decomposing its covariant derivative as [155, 157]

∇µuν =
1

3
θhµν + σµν + ωµν − uµu̇ν , (4.8)

where θ is the volume expansion, σµν is the projected (i.e. orthogonal to uµ), symmetric

and tracefree shear, ωµν is the projected antisymmetric vorticity, and u̇µ = uν∇νuµ is the

projected acceleration. The vorticity vector is defined as

ων ≡ ǫµνλωνλ , ǫµνλ ≡ uτ ǫτµνλ , (4.9)

where the totally antisymmetric tensor is defined by ǫ0123 =
√−g. (Note that our sign

convention for ωµν and definition of ωµ recover the Newtonian limit, and differ from [155,

157].)

In the period of interest, from the end of particle/anti-particle annihilation up to now

(Tγ . 500keV, z . 2×109), the relevant species are protons, electrons, photons, and when

recombination occurs, hydrogen atoms. Neutrinos affect only the background dynamics

and the gravitational potentials in the Einstein equations. The Faraday tensor of the

electromagnetic field defines electric and magnetic fields measured by uµ observers:

Eµ = Fµνuν , Bµ =
1

2
ǫµνλFνλ . (4.10)

Protons and electrons couple to the electromagnetic field through the term Cµ
sF = Fµ

νjν
s ,

where s = p, e and jν
s is the electric 4-current. Then ∇νT

µν
F = −∑s Fµ

νjν
s . We have

jµ
s = qsnsu

µ
s , where qs is the particle charge, ns is the number density (in the rest frame)

and the 4-velocity of species s is

uµ
s = γs(u

µ + vµ
s ), uµvµ

s = 0, γs =
(

1 − v2
s

)−1/2
. (4.11)

Here γsv
µ
s is the relative velocity of s measured by uµ. Maxwell’s equations are given in

Appendix 4.6.1.
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The momentum transfer rates are given by

Cµ⊥
pe = −e2nenpηC∆vµ

pe , ∆vµ
pe ≡ γpv

µ
p − γev

µ
e , (4.12)

Cµ⊥
eγ = −4

3
neργσT

(

∆vµ
eγ +

2

5
Θµ

νvν
e

)

, (4.13)

Cµ⊥
pγ = −4

3
β2npργσT

(

∆vµ
pγ +

2

5
Θµ

νvν
p

)

, β ≡ me

mp
, (4.14)

Cµ⊥
sF = qsns

(

Eµ + ǫµντvν
s Bτ

)

, s = e,p . (4.15)

The radiation energy density ργ , the quadrupole of the radiation temperature anisotropy

Θµν , and the number densities ns, are as measured by uµ observers. In the rest frame uµ
s ,

the electrons and protons are well approximated by pressure-free matter, T µν
s = ρrest

s uµ
s uν

s ,

where ρrest
s is the rest-frame density measured by uµ

s . In the uµ frame, there is effective

pressure, momentum density and anisotropic stress: T µν
s = ρsu

µuν +Psh
µν +2q

(µ
s uν) +πµν

s ,

where [155],

ρs ≡ msns = γ2
s ρrest

s , Ps =
1

3
v2
s ρs , (4.16)

qµ
s = ρsv

µ
s , πµν

s = ρs

(

vµ
s vν

s − 1

3
v2
s h

µν
)

. (4.17)

The Thomson cross-section is σT = 8πα2/(3m2
e), and the Coulomb interaction is governed

by the electrical resistivity

ηC =
πe2√me ln Λ

T 3/2
≃ 10−12sec

(

1 + z

103

)−3/2( ln Λ

10

)

, (4.18)

where Λ is the Coulomb logarithm. On cosmological time scales the magnetic field diffuses

below a length scale ∼
√

ηC/H0 ∼ 100AU, so that diffusion can safely be ignored [94].

The characteristic time scales for electrons interacting via the Coulomb and Thomson

interactions are

τC =
me

e2neηC
≃ 20 sec

xe

(

1 + z

103

)−3/2

, xe ≡
ne

ne + nH
, (4.19)

τT =
me

σTργ
≃ 5 × 108sec

(

1 + z

103

)−4

, (4.20)

where ne is the number density of free electrons and xe is the fraction of free electrons. We

used ne0 + nH0 ≃ 3× 10−7 cm−3 [158]. The time scale which characterizes the evolution of

the plasma can be taken as

τevo(z) = min {τS(z), τ1Mpc(z)}

= min
{ 1
√

H(z)σTne(z)
,

1

(1 + z)k1 Mpc

}

. (4.21)

Here τS is the Silk damping time and 1Mpc is taken as the minimum comoving scale on

which we can trust a second-order perturbative analysis up to redshift z = 0.
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4.2.2 Electric field

The Euler equation (4.7) for the proton and electron velocities is given by [155]:

msns

(

v̇µ⊥
s + u̇µ + Kµ

s

)

= Cµ⊥
sr + Cµ⊥

sγ + Cµ⊥
sF , (4.22)

where s, r = p, e and

Kµ
s =

( ṅs

ns
+

4

3
θ + u̇νv

ν
s +

1

ns
vν
s Dνns + Dνv

ν
s

)

vµ
s

+ (σµ
ν − ωµ

ν) vν
s + vν

s Dνvµ
s . (4.23)

The covariant spatial derivative Dµ is defined in (4.84). The first term on the right of (4.23)

describes not only the evolution due to the expansion of the universe which conserves the

particles, but also the evolution of the number density due to recombination which does

not conserve the particles when hydrogen atoms are formed around recombination.

From now on we expand in perturbations around a Friedmann background, up to second

order. The metric in Poisson gauge is

ds2 = a2
[

−(1 + 2Φ)dη2 + 2Sidxidη + (1 − 2Ψ)dx2
]

(4.24)

where Si is a vector perturbation (∂iSi = 0) and enters only at second order. Perturbed

quantities are expanded according to X = X̄ + X(1) + X(2). Only the first order of scalar

perturbations Φ and Ψ will enter the evolution equation of the magnetic field, so we omit

the superscripts for them. The explicit form of the term v̇µ⊥
s + u̇µ + Kµ

s in (4.22) is then

given by (4.95), with ws = 0 = c2
s .

We set ne = np ≡ n, since we find that the final expression of the resulting electric field

is not affected by ne − np, in agreement with [156].

In order to obtain a dynamical equation for the velocity difference ∆vµ
pe = vµ

p − vµ
e , we

use (4.22) to obtain

men
(

∆v̇µ⊥
pe + ∆Kµ

pe

)

= (1 + β)enEµ + Cµ⊥
pe − Cµ⊥

eγ + β
(

Cµ⊥
pe + Cµ⊥

pγ

)

. (4.25)

The Lorentz force term in (4.15) has been neglected since it is higher order. We define the

baryon velocity as the velocity of the centre of mass of the charged particles; then

(mp + me)v
µ
b = mpv

µ
p + mev

µ
e , (4.26)

vµ
p = vµ

b +
β

1 + β
∆vµ

pe , vµ
e = vµ

b − 1

1 + β
∆vµ

pe . (4.27)

In principle, the baryon velocity can be different from the velocity of hydrogen, i.e. of

electrons and protons recombined, but thermal collision ensure that hydrogen atoms follow

closely the electrons and protons.
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Using (4.25)–(4.27) and the explicit forms (4.12)–(4.14) of the collision terms, we obtain

me

(

∆v̇µ⊥
pe + ∆Kµ

pe

)

= (1 + β)eEµ − (1 + β)e2nηC∆vµ
pe

+
4

3
σTργ

[

(1 − β3)
(

∆vµ
bγ +

2

5
Θµ

νvν
b

)

− 1 + β4

1 + β

(

∆vµ
pe +

2

5
Θµ

ν∆vν
pe

)]

.

(4.28)

We show below that the Θµ
ν∆vν

pe term can be neglected, since it is higher order.

Equation (4.28) shows that an electric field can be generated by nonzero velocity differ-

ences ∆vpe and ∆vγb. The Maxwell equation (4.80) shows that then Bµ can be generated,

provided that Eµ is transverse. We will show that the generated electric field keeps elec-

trons and protons more bound together and therefore leads to a decrease in ∆vpe, which

becomes negligible compared to ∆vγe.

Neglecting third order terms, the Maxwell equation (4.81) can be rewritten in terms of

the velocity difference ∆vµ
pe as

∆vµ
pe =

1

en

(

curlBµ − Ėµ⊥ − 2

3
θEµ + σµνEν

)

, (4.29)

where we used (4.83).

In order to estimate the magnitudes of the various contributions in the stationary

regime, we expand all evolving quantities in frequency space:

Mµ(x, η) =

∫ ∞

0
∂ωM̂µ(x, ω)eiωη , (4.30)

where the mode M̂µ has characteristic oscillation frequency ω ≃ τ−1
evo. In terms of the

characteristic timescales (4.19) and (4.20), we find from (4.28) and (4.29) that

Êµ
[

(1 + β) + O
(ηCτC

τ2
evo

+ i
4

3

ηC

τevo
+ i

ηCτC

τevoτT

)]

=

ηC,eff

[

(1 + β) + O
(

i
ηCτC

ηC,effτevo

)]

curl B̂µ − 4me

3eτT
(1 − β3)

[

∆v̂µ
bγ +

2

5
Θµ

ν v̂ν
b

]

,

(4.31)

where we used ∆Kpe = O(∆v̇pe), and we defined [94]

ηC,eff ≡ ηC

[

1 +
4(1 + β4)

3(1 + β)2
τC

τT

]

. (4.32)

Given the hierarchy of the different timescales involved in (4.31), it follows that the

largest contribution to the resulting electric field is given by the velocity difference ∆vµ
bγ .

This can be seen in Fig. 4.2, where we plot the different ratios of typical timescales that

enter in (4.31). Specifically, all the plotted ratios are always well below unity for the period

of interest, from very large redshift until today, even accounting for recombination around

z ≃ 1080. This allows us to write

Eµ ≃ ηC,eff curlBµ − 4me

3eτT

1 − β3

1 + β

(

∆vµ
bγ +

2

5
Θµ

νv
ν
b

)

. (4.33)
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Figure 4.2: Evolution with redshift of different ratios between characteristic times that
arise in (4.31), compared with unity (thick black line): ηCτC/(τ2

evo) (thin solid), ηC/τevo

(thin dashed), ηCτC/(τevoτT) (dotted), ηCτC/(ηC,effτevo) (dot-dashed) and ηC,eff/τevo (thick
dashed). (The jumps in the curves occur at reionization.)

In order to compute the final magnetic field produced by such an electric field, we consider

the curl of the electric field, governed by Maxwell’s equation (4.80). In frequency space

i
B̂µ

τevo
≃ −ηC,eff curl curl B̂µ +

4me

3eτT

1 − β3

1 + β
curl

(

∆v̂µ
bγ +

2

5
Θµ

ν v̂ν
b

)

. (4.34)

Remembering that the magnetic field is divergence free, we can compare the first two terms

of the above equation. Their ratio in Fourier space is of order (τevoηC,effk2)−1 ≃ τevo/ηC,eff .

Therefore, on all scales of interest, we can conclude that the contribution of the ηC,eff curl B̂µ

term in (4.33) is negligible compared to the last term.

The above considerations remain valid once we approach recombination time, as long

as the residual fraction of free electrons xe is not too small. This is to ensure that the

approximations of the ratios of time scales made to obtain (4.33) remain valid. This is

indeed the case, and it can be checked from Fig. 4.2, since xe ∼ 10−3 − 10−4 after last

scattering [159, 158] until reionization.

We are therefore left with the following expression for the electric field produced by the

tiny velocity difference between electrons and protons:

Eµ = −1 − β3

1 + β

4ργσT

3e

(

∆vµ
bγ +

2

5
Θµ

νvν
b

)

. (4.35)

It is important to note that this expression does not contain the number density of free

electrons ne. Therefore the electric field produced by this mechanism before recombination

is still present after last scattering (see also [158]) and can in principle continue to generate

a magnetic field after recombination.

We can now also finally prove that

∆vµ
pe ≪ ∆vµ

eγ . (4.36)

Using (4.35) and (4.34) without the ηC,eff term, and in the Maxwell equation (4.29) leads
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to an estimation of the order of magnitude of velocity differences:

∆vµ
pe ∝

ηCτC

τevoτT
∆vµ

bγ , ∆vµ
pγ ≃ ∆vµ

bγ ≃ ∆vµ
eγ . (4.37)

The order of magnitude of the ratio ∆vµ
pe/∆vµ

bγ is shown in Fig. 4.2 and remains well

below unity for all relevant times, even when Coulomb scattering becomes less efficient

than Compton scattering, that is for z & 106.

It also follows from (4.37) and (4.13) that we can rewrite (4.35) as

e(ne + nH)xeE
µ = Cµ⊥

bγ = ∇νT
µν⊥
b , (4.38)

where we neglect terms of order β and where here the baryon index b encompasses protons,

electrons and hydrogen atoms.

As a conclusion of this section, we stress again that when we assume that electrons and

photons are tightly coupled, as was originally considered in [86], then the electrons and

protons are even more tightly coupled by the electromagnetic field which is generated, so

that the electrons and protons can still be considered, from the point of view of photons,

as a single fluid of baryons. As a consequence, taking ∆vµ
eγ → 0 at early times has to

be performed consistently by keeping ∆vµ
pe ≪ ∆vµ

eγ when taking the limit. For the tight-

coupled limit, this is crucial, since it corresponds exactly to the limit ve = vγ = vp = 0,

and the collision terms cannot be evaluated directly from their expressions (4.12)–(4.15).

4.2.3 Local inertial frame (tetrad)

It is convenient to express all quantities in a local inertial frame, defined by an orthonormal

tetrad ea (a = 0, 1, 2, 3):

ea
µeb

νgµν = ηab, ea
µeb

νg
µν = ηab. (4.39)

The tetrad indices are distinguished from general coordinate indices by underlining, and

i, j, k · · · = 1, 2, 3. We choose a comoving tetrad, so that e0 is the fundamental observer

4-velocity: e0
µ = uµ. In the background, ē0

µ = ūµ = (a−1, 0). The perturbed tetrad is

given in Appendix 4.6.2. Derivatives along the tetrad vectors are defined by

∂a ≡ ea
ν∂ν . (4.40)

Covariant derivatives in the tetrad frame are computed using the affine connections given

in Appendix 4.6.2.

Tetrads make the physical meaning of all nonscalar quantities more transparent. In

linear perturbation theory, it is common practice to decompose perturbed quantities in

a background tetrad. For instance the velocity is often decomposed as ui
(1) ≡ a−1vi

(1),

together with u
(1)
i = av

(1)
i , which means implicitly that v

(1)
i ≡ δijv

j
(1). Thus vi

(1) coincides

with v
i
(1) = ēi

ju
j
(1). Introducing tetrads is the natural generalization of this standard

procedure when considering higher order perturbations, and this has already been used for

example to decompose velocities [160, 161]. The nonlinear evolution of the distribution of

photons is well suited to computation in a tetrad frame [96].
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4.2.4 Magnetic field

The Maxwell equation (4.80) becomes in the tetrad basis

∂0(a
2Bi) = −a2ǫiℓk∂ℓ

[

(1 + Φ − Ψ)Ek

]

, (4.41)

Equivalently we can use derivatives in the coordinate basis:

(

a2Bi
)′

= −a2ǫiℓk∂ℓ

[

(1 + Φ − Ψ)Ek

]

, (4.42)

where we have used the fact that the electric field is at least a first order quantity, and

the magnetic field a second order quantity. The gravitational potentials in this expression

occur only at first order. Equation (4.42) is compatible with [92], which can be seen via

Ek = ek
iEi.

To obtain (4.41), we need

(curlE)i = ǫiℓk∇ℓEk = ǫiℓk∂ℓ

[

(1 − Ψ)Ek

]

, (4.43)

which uses the affine connections up to first order given in Appendix 4.6.2. Also,

ei
µǫµνλu̇νEλ = ǫiℓk u̇ℓEk = −ǫiℓkEℓ∂kΦ , (4.44)

which follows from

u̇i = (uµ∇µuν)ei
ν = (∇0e

0
ν)ei

ν = Ω
0

0 i = ∂iΦ . (4.45)

In addition, we omitted terms like Φǫiℓk∂ℓEk and Ψǫiℓk∂ℓEk in deriving (4.42), since the

electric field contributes only at first order – and at this order, it is curl-free. For the same

reason, we can also replace ∂ℓ by a−1∂ℓ.

In summary, magnetogenesis is governed by (4.42) and (4.38), i.e.

(

a2Bi

)′
= − a2

e(ne + nH)xe
ǫiℓk∂

ℓ
[

(1 + Φ − Ψ)C
k
bγ

]

= − a2

e(ne + nH)xe
ǫiℓk∂

ℓ
[

(1 + Φ − Ψ)∇νT
νk
b

]

, (4.46)

where here, as in (4.38), the baryon index b encompasses electrons, protons and hydrogen

atoms. Finally, note that the value of the magnetic field depends of course on the observer.

Its value in the baryon frame is related to its value (4.42) in the fundamental frame by

B
i
b = Bi − ǫiℓk vb ℓEk . (4.47)

4.2.5 Numerical computation

In order to solve the evolution equation for the magnetic field, we need to solve the Boltz-

mann hierarchy for baryons and photons, to compute the source of the electric field in

(4.35). The basic idea is to decompose the directional dependence of radiation in the local
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inertial frame into multipoles:

Θi1··iℓ(x)ni1 · ·niℓ =

∫

∂3k

(2π)3/2

∑

m

Θm
ℓ (k)Gℓm(k,x,n) (4.48)

Gℓm(k,x,n) = i−ℓ
( 4π

2ℓ + 1

)1/2
eikixi

Y ℓm(ni) . (4.49)

We suppress the time dependence for convenience.

Terms quadratic in first order perturbations appear as convolutions, and we introduce

the notation

K{f1f2}(k) ≡
∫

∂3k1∂
3k2

(2π)3/2
δ3
D(k1 + k2 − k)f1(k1)f2(k2) . (4.50)

A Fourier mode qi is decomposed on the helicity basis of the background spacetime as

qi = δijqj = q(+)ē
i
(+) + q(−)ē

i
(−) + q(0)ē

i
(0) , (4.51)

q(h) = qiē
∗ i
(h) . (4.52)

The background helicity basis vectors ē(h), with helicity h = 0,± are defined in [96]. The

azimuthal direction h = 0 corresponds to scalar perturbations and is aligned with the total

Fourier mode, i.e. ē(0) = k̂, while h = ± correspond to vector perturbations. At first

order, when the mode is aligned with the azimuthal direction since q = k, there are only

scalar perturbations. For vector quantities like the electric field, we need to use a helicity

basis e(h) on the perturbed spacetime, and this is built by the identification of ē(h) with

e(h), i.e. ēi
(h) = e

i
(h). Vector quantities like the electric field Ei are then expanded as

Xi = X(+)e
i
(+) + X(−)e

i
(−) + X(0)e

i
(0) , (4.53)

X(h) = Xie
∗i
(h) . (4.54)

In this basis, the Maxwell equation (4.42) becomes (explicitly giving the perturbative

order of quantities)

[

a2B
(2)
(±)(k)

]′
= ∓ka2

[

E
(2)
(±)(k) + K

{

[

Φ(1) − Ψ(1)
]

E
(1)
(±)

}

(k)
]

. (4.55)

We projected (4.42) along e
(h)∗
i and used

iǫiℓkkℓe
(±)
k = ±ke

i
(±) , ie

(±)∗
i ǫiℓkkℓXk = ±kX(±) . (4.56)

Note that there are only contributions from h = ± and we thus recover that scalar pertur-

bations cannot generate a magnetic field and vortical perturbations are required to source

the magnetic field. Using the multipole decomposition of (4.35), and neglecting β ≪ 1, we
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obtain finally,

[

a2B
(2)
(±)(k)

]′
= ±ka2 4σTρ̄γ

3e

[

V
(2)
(±)(k) + K

{

[

δ(1)
γ + Φ(1) − Ψ(1)

]

V
(1)
(±)

}

(k)

−K
{

∑

h

κ(±1, h)

5
Θ

±1+h(1)
2 v

(1)
b(−h)

}

(k)
]

≡ ±ka2 4σTρ̄γ

3e

[

S
(±)
1 (k) + S

(±)
2 (k) + S

(±)
3 (k)

]

, (4.57)

where V(h) ≡ vb(h) − vγ(h) and δγ = δργ/ρ̄γ . Also,

κ(h, 0) =
√

(4 − h2), κ(h,±1) = −
√

(2 ± h)(3 ± h)

2
. (4.58)

The last equality in (4.57) defines the contribution of each line above: S
(±)
1 is the purely

second order contribution from V (2); S
(±)
2 is the δγV contribution and S

(±)
3 is the Θ2vb

contribution.

Although V
(1)
(±)(k) vanishes at first order since there are no vector perturbations, V

(1)
(±)(k1)

and V
(1)
(±)(k2) do not vanish in general, since the modes k1 and k2 are not necessarily aligned

with the azimuthal direction k̂ = k/k. We first need to obtain their expression when the

modes k1 or k2 are aligned with the azimuthal direction, and then we perform a rotation

of the azimuthal direction [96].

In order to explicitly take into account the symmetry of the convolution products

in (4.57), we can symmetrize the source terms. At first order there are only scalar

perturbations, and all first order tensorial quantities are gradients of scalar functions,

so that X
(1)
i1...in

= X
(1)
i1...in

= ∂i1 . . . ∂inX(1). Most of the source terms are of the form

ǫiℓk∂ℓ (X Yk) = ǫiℓk∂ℓ (X∂kY ), and once projected along e
(±)∗
i they contribute to the gen-

eration of the magnetic field proportionally to

ē∗ i
(±)[X∂iY ](k) =

i

2

∫

∂3q

(2π)3/2
q(±) [X(k − q)Y (q) − X(q)Y (k − q)]. (4.59)

Here X and Y denote δγ , V (1), vb,Φ,Ψ.

This symmetrization, which is always possible, shows that for these types of terms,

the configurations of (k,k1,k2) with k1 = k2 will not contribute in the convolution. Only

couplings from a quadrupolar quantity to gradient terms, which are of the type

ǫiℓk∂ℓ

(

Xk
j∂jY

)

= ǫiℓk∂ℓ

(

∂k∂
jX∂jY

)

, (4.60)

as in the last line of (4.57), can have contributions to the convolution coming from con-

figurations with k1 = k2. The generated magnetic field is thus severely suppressed at

early times for these configurations since the quadrupole of radiation is suppressed in the

tight-coupling regime.
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4.3 Numerical results

4.3.1 Transfer functions

In order to obtain the final magnetic field spectrum produced via this mechanism, we

integrate numerically the evolution equations for cosmological perturbations up to second

order, since we have to take into account even the behavior of the second order velocity

difference between baryons and photons V
(2)
(h) (k, η). We use throughout the cosmological

parameters of WMAP7 [162].

For a variable X, the first order transfer function is X(1)(k, η) = X (1)(k, η)Φin(k),

where Φin is the gravitational potential deep in the radiation era. Because of statistical

isotropy, the first order transfer function depends only on the magnitude of the Fourier

mode and not on its direction. This is however only strictly true for multipoles like Θm
2

and V(h) defined from non-scalar quantities if the azimuthal direction is aligned with k̂,

and considering only scalar perturbations at first order the contributions for h 6= 0 vanish.

However, when using these first order transfer functions in the quadratic terms of the

second order equations, we must rotate these multipoles according to the angles between

k̂1, k̂2 and k̂. This is to ensure that the multipoles remain defined with respect to the total

momentum k̂ [96].

The second order transfer function X (2)(k1,k2, η) is defined by

X(2)(k, η) = K
{

X (2)(k1,k2, η)Φin(k1)Φin(k2)
}

(k). (4.61)

Without loss of generality we enforce X (2)(k1,k2, η) = X (2)(k2,k1, η) in numerical cal-

culations. The transfer functions of the first and second order quantities needed in the

source terms are obtained by a joint solution of the Boltzmann equation (for photons and

neutrinos), the conservation and Euler equations (for baryons and cold dark matter) and

the Einstein equations (for metric perturbations). They are found numerically using the

same techniques as in [163].

The transfer function of the magnetic field can be split into the different contributions

of the S
(±)
i sources defined in (4.57). The transfer functions of these contributions are

related to the transfer functions of the sources through

BSi

(±)(k1,k2, η) =
4σTk

3ea2

∫ η

∂η′a2ρ̄γS(±)
i (k1,k2, η

′) , (4.62)

and this is how we obtain the complete time behavior of the magnetic field. A crucial point

that will turn out to have important consequences is that the final redshift for numerical

integration should be taken after the recombination epoch. The electric field that results

from the small electron-proton velocity difference and that gives rise to a magnetic field is

still present after last scattering, when the fraction of free electrons xe is tiny but still does

not completely vanish (see also [158]).

In order to compute the equal time correlation functions of the magnetic field, we need

the power spectrum of the initial potential, defined by

〈Φin(k)Φ∗
in(q)〉 ≡ δ(k − q)P (k). (4.63)

If the source terms are Gaussian random variables, we can apply Wick’s theorem, and the
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contributions of the two polarizations h = ± add up quadratically:

〈B(k, η)B∗(k′, η)〉 =
2δ3

D(k − k′)

(2π)3

∫

∂3q P (q)P (|k − q|) ×
{

|B(+)(q,k − q, η)|2 + B(+)(q,k − q, η)B∗
(+)(k − q,q, η)

}

=
4δ3

D(k − k′)

(2π)3

∫

∂3q P (q)P (|k − q|)|B(+)(q,k − q, η)|2

≡ δ3
D(k − k′)PB(k, η), (4.64)

where B(±) =
∑

i BSi

(±). In the last line we have defined the power spectrum of the magnetic

field PB . Its value today is plotted in Fig. 6.1.

In order to have a deeper analytical understanding of the resulting magnetic field spec-

trum, we study each contribution Si independently. There are cross correlations in (4.64),

but our aim is to assess the relative importance of the different contributions; the PSi
B are

defined by replacing B(+) with BSi

(+) in (4.64).

4.3.2 δγ∆vbγ contribution

The velocity difference between baryons and photons is severely suppressed in the tight-

coupling limit relative to other perturbations like δγ ; we expand this tiny velocity difference

in terms of the expansion parameter k/τ ′ ≪ 1, where τ ′ = neσTa is the derivative of the

optical depth for Thomson scattering. At first order in k/τ ′, in the radiation-dominated

background on super-Hubble scales,

V
(1)
(0) (k, η) ≃ R

k

τ ′

(

δγ

4
− Hvb(0)

k

)

∝ k3 η5

η2
eq

, (4.65)

δγ(k, η) ≃ const . (4.66)

Using R = 3ρ̄b/(4ρ̄γ) ∝ a, 1/τ ′ ∝ a−2 and a ∝ η, we get

S(+)
2 (|k − q|, q, η) ∝ q̂(+)

(

q3 − |k − q|3
) η5

η2
eq

. (4.67)

Then (4.62) gives the early-time and large-scale behaviour of BS2

(±), and the resulting mag-

netic field power spectrum behaves as

PS2
B (k, η) ∝ k2

∫

∂3q |q̂(+)|2P (q)P (|k − q|)
[

q6 − q3|k − q|3
] η4

η4
eq

. (4.68)

For a scale-invariant initial power spectrum, P (q) ∝ q−3,

PS2
B (λk, η) = λ5PS2

B (k, η), (4.69)

as can be seen just by a change of variable in the integral of (4.68). In [94] it is found

that PS2
B (λk, η) = λ4PS2

B (k, η). The disagreement appears to arise since [94] infer the

dependence on k from the q ≫ k contribution to the integral in (4.68) – but the main

contribution to that integral are also limited to q . k given the argument at the end

of section 4.2.5. We finally find that for the S2 source term, the power spectrum of the
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magnetic field behaves as
√

k3PS2
B (k, η) ∝ k4 η2

η2
eq

. (4.70)

This behaviour in k and η at early times when the mode is still super-Hubble, is confirmed

by numerical integration, as is evident from Fig. 4.3 (left).
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Figure 4.3: Left: Magnetic field spectrum PS2
B (k, η) from only the S2 contribution in

(4.57), for different k/keq, with values increasing from bottom to top. Right: Magnetic
field spectrum PS3

B (k, η) from only the S3 contribution in (4.57).

4.3.3 Θ2vb contribution

Similar analytical arguments apply to the magnetic field generated by the source S3. The

tight coupling expansion of the source is

Θ0
2(k, η) ∝ k

τ ′ v
γ
0 ∝ k2 η3

ηeq
, vb(0)(k, η) ∝ kη, (4.71)

in a radiation background on super-Hubble scales. This implies that the S3 contribution

to the magnetic field power spectrum behaves as

√

k3PS3
B (k, η) ∝ k4 η

ηeq
. (4.72)

It has the same k dependence as (4.70) but a different η dependence. The analytical form

is verified by the numerical output shown in Fig. 4.3 (right).

4.3.4 ∆v
(2)
bγ contribution

For the purely second order part S1, the only way to assess its contribution is to consider

the tight coupling expansion of the evolution equation for the vorticity of baryons. Indeed,

we need to evaluate first the total contribution
∑

i Si at lowest order in tight-coupling, and

the detail of this derivation is given in Appendix 4.6.3.2. It follows that
∑

i Si behaves as
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(k/τ ′)(kη)2 ∝ k3η5/η2
eq, which implies that for the total magnetic field

√

k3PB(k, η) ∝ k4 η2

η2
eq

. (4.73)

This behaviour is confirmed by numerical integration, as shown in Fig. 4.4 (right). Since
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Figure 4.4: Left: Magnetic field spectrum PS1
B (k, η) from only the S1 contribution in

(4.57), for different k/keq, with values increasing from bottom to top. Right: Magnetic
field spectrum PB(k, η) for all contributions.

S2 ∝ k3η5/η2
eq, S3 ∝ k3η4/ηeq, and

∑

i Si ∝ k3η5/η2
eq, we obtain that S1 ∝ k3η4/ηeq. Thus

S3 contributes to the magnetic field power spectrum as

√

k3PS1
B (k, η) ∝ k4 η

ηeq
, (4.74)

which is verified in Fig. 4.4 (left).

4.3.5 Magnetic power spectrum

From these plots it is evident that the magnetic field is still generated after recombination.

This is the reason that it is important, to set the final time of integration after recombi-

nation, since the largest contribution comes from this last period of generation. Indeed,

before reaching the usual ‘final’ stage where the magnetic field is no longer sourced but

only redshifts with time (B ∝ a−2), we observe a bump in the resulting magnetic field spec-

trum, corresponding to the recombination time. This should be interpreted as an increase

in magnetic field generation due to decoupling of photons and baryons.

In the decoupling regime the fluid of photons and baryons is no longer equivalent to

a perfect fluid. The departure from tight coupling may be interpreted via non-adiabatic

pressure perturbations, which can source the total vorticity [91, 164, 97, 165]. It is not a

priori evident that this could lead to an increase in the magnetic field generation. On the

one hand, the total vorticity is sourced when interactions between baryons and photons

are less efficient, but on the other hand, there is less vorticity exchange between photons

and baryons since the collisions are less efficient. In the ideal limit where the decoupling

is complete, the vorticity of photons and baryons is adiabatically evolving according to

(4.100), whereas the total vorticity is sourced by the gradients in the total non-adiabatic
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pressure. This is possible because the vorticities of the different fluids do not add up

linearly to give the total vorticity as can been seen from (4.98).

However, when decoupling occurs, we observe that there is in fact an increased genera-

tion of magnetic field in that phase, and this essentially comes from the factor xe in (4.46),

i.e. from the fact that the magnetic field is generated via the residual ionized fraction.

More precisely, the generation of the magnetic field is proportional to ∂[j∇µT µ
b k]/xe and

not only to ∂[j∇µT µ
b k], so even when ∇µT µ

b k → 0 around decoupling, ∇µT µ
b k/xe can still

have sizeable values. This last significant stage of magnetic field generation is counterbal-

anced and finally stopped by the redshifting of photon energy density (ρ̄γ ∝ a−4). It can

be seen from (4.57) that the background radiation energy density controls the efficiency of

the total magnetic field production after recombination.

The power spectrum of the magnetic field is shown in Fig. 6.1 (left). The behaviour on

large scales (∝ k4) is explained above. The behaviour on small scales is complex, since it

depends mainly on the generation between horizon crossing time and Silk damping time.

During that period, the analysis which we restricted to super-Hubble scales does not apply

– and the adiabatic redshifting does not apply either, since the magnetic field continues to

be generated. For k ≫ keq, a reasonable linear approximation is log
(

√

k3PB

)

∝ 0.5 log k.
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Figure 4.5: Left: Magnetic field spectrum today (solid). Contributions from the different
sources in (4.5) are distinguished: second order velocity term S1 (dot-dashed), quadratic
term S2 in velocity and density (dashed), quadratic term S3 in anisotropic stress and
velocity (dotted). Right: Comoving magnetic field strength at a given scale at times
1 + z = 1, 10, 100, 1000 corresponding respectively to solid, dashed, dotted and dot-dashed
lines. (Dashed and solid lines cannot be distinguished).

4.3.6 Magnetic amplitude

The magnetic field amplitude smoothed over a comoving scale λ is

B2
λ =

1

V

∫

∂3y〈B(x)B∗(x + y)〉 exp

(

− y2

2λ2

)

=
1

2π2

∫ kdamp

0
∂k k2PB(k) exp

(

−k2λ2

2

)

, (4.75)
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where the normalization volume is V =
∫

∂3y exp[−y2/(2λ2)] = λ3(2π)3/2. Note that the

integral is insensitive to the upper cutoff, which may be taken to infinity, since λ ≫ λdamp.

The magnetic field strength is shown in Fig. 6.1 (right).

The field strength at 10Mpc is approximately 10−29 Gauss and three times as much on

cluster scales 1Mpc. Given the slope of the spectrum, this is expected to grow to larger

values for smaller scales. Our numerical integration does not allow us to investigate smaller

scales since the numerical integration time increases dramatically with kmax. In addition,

the results become unreliable on small scales where density perturbations have become

nonlinear by z = 0. On the comoving scale of the Hubble radius at equality, the strength

is ∼ 10−30 G.

4.3.7 Frame dependence

At early times when photons and baryons are tightly coupled, the magnetic field measured

in the baryon-photon fluid is not generated at lowest order in the tight coupling expansion.

This is shown in Appendix 4.6.4.2. Only higher orders in the tight-coupling expansion

contribute to magnetogenesis. However, since most of the magnetic field production occurs

when the tight-coupling expansion breaks down around recombination, this suppression is

only relevant at early times, before recombination, and for modes which remain for the

longest time in the tight-coupled regime, i.e. for large scales. Therefore the difference

between the magnetic field in the fundamental frame and in the baryon frame decreases,

and they are nearly equal today, as shown in Fig. 4.6. This shows that at 1+z = 1000 there

is a suppression for large scales in the baryon frame, but today there is no more suppression

since most of the magnetic field has been generated around recombination time.
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Figure 4.6: Magnetic field strength at a given scale as measured in the fundamental frame
at 1+ z = 1 (continuous) and 1+ z = 1000 (dashed), and as measured in the baryon frame
at 1 + z = 1 (dotted) and 1 + z = 1000 (dot-dashed). Dotted and continuous lines cannot
be distinguished.
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4.4 Discussion and comparison with previous results

Our approach is the first complete analysis of magnetogenesis around recombination, in

the sense that it does not neglect any term in the second order equation for the generation

of the magnetic field – previous work has omitted at least one of the terms. Therefore our

results will necessarily differ from existing partial results and we discuss briefly how some

of these differences arise.

Two general points can be highlighted:

• Numerical computation is essential to obtain the magnetic power spectrum – and even

for a reliable estimate of the magnetic field strength. For example, [92, 91] use similar

analytical methods and incorporate the same source terms, but the two estimated

field strengths on the recombination Hubble scale differ by orders of magnitude. A

full numerical integration is needed, especially to take into account all orders in the

tight-coupling expansion. This was initiated by [94], and we have built on their work.

• Neglecting any of the source terms for magnetogenesis not only leads to inaccurate

predictions – it also misses the fact the separate source terms do not simply add up

linearly. The total of the different contributions is suppressed in the tight-coupling

regime on large scales by a factor (kη)2: the details are given in Appendix 4.6.4.1.

As a consequence, discarding some terms implies that this suppression in the tight-

coupling regime is neglected – which leads to an overestimate of the magnetic field

generated. This is especially critical for the largest scales where tight-coupling is

valid at the latest times.

In [87, 89, 90] the anisotropic stress contribution, S3 in (4.57), and the second-order

velocity contribution, S1, are neglected. It is apparent from the power spectrum plot

in Fig. 6.1 that both of these contributions are substantial and cannot be neglected for

a reliable prediction of the magnetic field. In addition, these references omit the scalar

metric perturbations. Metric perturbations and the second order velocity are included in

[93, 91, 92], but the anisotropic stress is neglected.

In [94] the anisotropic stress is included, but the second order velocity contribution

is neglected. In addition to this difference from our work, we find a different time and

momentum dependence for the large-scale and early-time behaviour of the S2 and S3

contributions. We then find
√

k3PB ∝ k4 while they find ∝ k7/2.

The first numerical prediction of the magnetic power spectrum was given by [93], ne-

glecting anisotropic stress but including second order velocity. However, our power spec-

trum is significantly different from theirs. Part of the difference is due to anisotropic stress,

but there is a further difference arising from the treatment of velocities. The evolution

equation for the magnetic field can be given by (4.46). It is true that in the tight-coupled

regime (see Appendix 4.6.3 for details), the velocities of electrons, protons and photons

can be approximated to be equal. However, it is erroneous to use ǫiℓk∂ℓ∇µT µ
γ k = 0 to

estimate the vorticity evolution. Indeed, in order to cancel the collision term when taking

the tight-coupling limit, we have to consider a combination which uses the action reaction

law and for which the collision terms do not appear. It is given by the total fluid vorticity

conservation equation:

ǫiℓk∂ℓ∇µT µ
γ k + ǫiℓk∂ℓ∇µT µ

b k = 0 . (4.76)

In the tight-coupled limit, the fluid of baryons and the fluid of radiation exchange vorticity,

essentially because the dilution of their energy density is different, and this exchange of
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vorticity is then required to maintain equal velocities at all times. In [93] it is implicitly

assumed that Cµ⊥
γe can be neglected because the velocity of electrons is assumed to be close

to that of photons. However, as we discussed in Sec. 4.2, the limit has to be consistent with

(4.37), and this collision term is precisely responsible for the vorticity exchange between

photons and electrons, and thus between photons and baryons – and it cannot be ignored.

The vorticity evolution in the tight-coupling limit should be computed using (4.107), i.e.

by substituting the tight-coupling solution of velocities and energy densities perturbations

in (4.46).

In [91] it is shown that there can be no generation of magnetic field in the photon frame

at strictly less than the first order in tight coupling (if there is no initial vorticity). Note

that what we call first order in tight-coupling (see also [166]) is called second order in tight

coupling by [91, 92]. In our case, we focus on Cµ
bγ , whereas they focus on (k/τ ′)Cµ

bγ where

τ ′ is the interaction rate and k/τ ′ is the parameter of the tight-coupling expansion. The

result of [91] is compatible with our results in Appendix 4.6.4.2, since in the tight-coupled

regime the photon frame is the baryon frame. Thus the magnetic field in the photon frame

will be generated only starting from the next order, i.e. at first order in the tight-coupling

expansion. Our numerical approach does not rely on a tight-coupling expansion since we

integrate the full system of equations, and in that sense we consider necessarily the full

tight-coupling expansion in our computation. We checked numerically that at early times,

when photon-baryon coupling is efficient, the magnetic field in the baryon frame is severely

suppressed compared to the magnetic field in the fundamental frame.

4.5 Conclusion

We have performed for the first time a full numerical computation of the seed magnetic field

generated by nonlinear dynamics, taking into account all general relativistic effects and all

source terms. We discussed the range of applicability of the mechanism on cosmological

scales and concluded that the generation of the magnetic field is directly related to the

Compton drag by photons on baryons. Even in the tight coupling regime, photons exchange

vorticity with baryons and the magnetic field is created. Since the electric field that sources

the magnetic field does not depend on the fraction of free electrons, the magnetic field is

still generated after recombination, given that there is a relic fraction of charged particles,

and we find that the largest production takes place in this final stage.

Our results are summarized in Fig. 4.1. The power spectrum (left plot) behaves as

√

k3PB ∝
{

k4 k ≪ keq

k0.5 k ≫ keq
(4.77)

On cluster scales the comoving field strength is (right plot)

B1Mpc ∼ 3 × 10−29 G. (4.78)
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4.6 Appendix

4.6.1 Maxwell’s equations

Maxwell’s equations ∇[λFµν] = 0 and ∇νF
µν = jµ in a general spacetime take the form

[91, 157]

DµBµ = −ωµEµ , DµEµ = ωµBµ + ̺ , (4.79)

Ḃ⊥
µ +

2

3
θBµ −

(

σµν − ωµν

)

Bν = −curlEµ − ǫµνλu̇νEλ , (4.80)

Ė⊥
µ +

2

3
θEµ −

(

σµν − ωµν

)

Eν = curlBµ + ǫµνλu̇νBλ − Jµ , (4.81)

where Eµ, Bµ are defined by (4.10). Here the total 4-current is jµ = jµ
e + jµ

p and it is split

as

jµ = ̺uµ + Jµ , ̺ = −uµjµ , Jµ = hµ
ν jν , (4.82)

where ̺, Jµ are the charge density and current measured by uµ observers. By (4.11),

̺ = e(γpnp − γene), Jµ = e(γpnpv
µ
p − γenev

µ
e ). (4.83)

The derivative Dµ is the projected covariant derivative and it defines a covariant curl

[155, 157]:

Dµf = hν
µ∇νf, DµSν = hλ

µhν
τ∇λSτ , (4.84)

curlSµ = ǫµνλDνSλ . (4.85)

We work in Gaussian units so that the fine structure constant is α = e2/(4π) = 1/137.036

and the magnetic field strength is measured in Gauss.

4.6.2 Tetrads

The tetrad basis is given up to second order in scalar perturbations by

e0
µ =

1

a

(

1 − Φ +
3

2
Φ2
)

δµ
0 − 1

a
Siδµ

i , (4.86)

ei
µ =

1

a

(

1 + Ψ +
3

2
Ψ2
)

δµ
i , (4.87)

e0
µ = a

(

1 + Φ − 1

2
Φ2
)

δ0
µ , (4.88)

ei
µ = a

(

1 − Ψ − 1

2
Ψ2
)

δi
µ +

1

a
Siδ0

µ . (4.89)
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This choice of tetrad is discussed in [96] (see also [167, 160, 168]). The covariant derivative

of a tensor in the tetrad basis is given by

∇aX
c

b = eµ
a∂µX

c
b − Ω

d
a bX

c
d + Ω

c
a dX

d
b , (4.90)

where indices are lowered and raised with ηab and ηab. The affine connections in the

background are

Ω̄i0k = −Ω̄ik0 = −H
a

δik , H ≡ a′

a
, (4.91)

and the perturbed forms are

Ω
(1)
00i = −Ω

(1)
0i0 = −1

a
∂iΦ

(1) , Ω
(1)
0ik = 0 , (4.92)

Ω
(1)
i0k = −Ω

(1)
ik0 =

1

a

[

HΦ(1) + Ψ(1)′
]

δik , (4.93)

Ω
(1)
ℓik = −Ω

(1)
ℓki = −2

a
∂[kΨ

(1)δi]ℓ . (4.94)

4.6.3 Euler and vorticity equations

4.6.3.1 Euler equation

For a perfect fluid with equation of state ws ≡ P̄s/ρ̄s and speed of sound c2
s ≡ ∂Ps/∂ρs, the

term on the left of the Euler equation (4.7) is given to second order in the tetrad basis by

[96, 169]:

a∇µT µ
s i

ρ̄s(1 + ws)
= us

i
′ + (1 − 3c2

s )Hus
i +

c2
s

1 + ws
∂iδs + ∂iΦ +

1 + c2
s

1 + ws

[

(δsu
s
i)

′

+H(1 − 3ws)δsu
s
i + δs∂iΦ

]

− 4Ψ′us
i + ∂j(u

s
iu

j
s) − (Φ + Ψ)

[

us
i
′+

H(1 − 3c2
s )u

s
i

]

− ∂i(Φ
2) + Ψ

[

us
i
′ + (1 − 3c2

s )Hus
i +

c2
s

1 + ws
∂iδs + ∂iΦ

]

+
c2
s
′

1 + ws
δsu

s
i −

c2
s
′

3H(1 + ws)2
δs∂iδs. (4.95)

4.6.3.2 Vorticity evolution

The vorticity tensor of species s is

ωs
µν = hs α

µ hs β
ν ∇[αus

β] , (4.96)

and the vorticity vector is given by (4.9). In the tetrad basis, up to second order,

ωs
i = ǫikℓω

kℓ
s (4.97)

aωs
ik = ∂[iu

s
k] + us

[i∂k](Ψ + Φ) + us
[iu

s
k]
′ . (4.98)

The evolution of the vorticity is deduced from (4.7) and (4.95). For a non-interacting

perfect fluid, up to second order [97, 164]

1

ρ̄s(1 + ws)
∂[i∇µT µ

s k] = ωs
ik

′ + (2 − 3c2
s )Hωs

ik = 0 . (4.99)
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This can be recast as
[

ρ̄s(1 + ws)a
5ωs

i

]′
= 0 . (4.100)

For an interacting fluid,

ωs
ik
′ + (2 − 3c2

s )Hωs
ik =

1

a

∑

r

{

us
[iC

sr
k]
′ + ∂[i

(

1 − Ψ − 1 + c2
s

1 + ws
δs

)

Csr
k]

}

. (4.101)

4.6.4 Magnetogenesis in tight-coupling

4.6.4.1 Magnetic field in fundamental frame

In the case where there are only interactions between baryons and photons, Cµ
bγ +Cµ

γb = 0,

and

∂[i∇µT µ
b k] + ∂[i∇µT µ

γ k] = 0 . (4.102)

In the tight-coupled limit where the interaction rate becomes very high, photons and

baryons behave like a single fluid, with

wf =
1

3 + 4R
, c2

s,f =
1

3(1 + R)
, R ≡ 3ρ̄b

4ρ̄γ
. (4.103)

The energy density contrasts at first order are

δ
(1)
f ≃ (1 + wf)δ

(1)
b , δ

(1)
b ≃ 3

4
δ(1)
γ . (4.104)

The velocities of baryons and photons are the same in this regime

ub
i ≃ uγ

i ≃ uf
i ⇒ ω

i
f ≃ ωi

γ ≃ ω
i
b . (4.105)

By (4.99) and (4.102),

0 ≃ ωf
ik
′
+ H(2 − 3c2

f )ω
f
ik =

[ρ̄f(1 + wf)a
5ωf

ik]
′

ρ̄f(1 + wf)a5
. (4.106)

This can be used to infer the source term for magnetogenesis in (4.46). In the tight-

coupled regime, ∂[i∇µT µ
b k] can be estimated by using (4.105) and (4.104) in the baryon

version of (4.95). Then, subtracting ∂[i∇µT µ
f k] = 0, we obtain

1

ρ̄b
∂[i∇µT µ

b k] = 3c2
f Hωf

ik +
c2
f

a

{ 3H
1 + wf

(1 − c2
f + Rc2

f )∂[iδfv
f
k] + 3H∂[i(Ψ − Φ)vf

k]

+∂[i

(

−3Ψ′ + ∂jv
j

f

)

vf
k] −

1

1 + wf
∂[iΨ∂k]δf

}

. (4.107)

From (4.46) it then follows that in the tight-coupled regime, the evolution of the mag-

netic field is given by

exe

mp

(

a2Bi
)′

a2
=

3

2
c2
f Hω

i
f −

c2
f

a
ǫiℓk

{

3H
1 + wf

(1 − c2
f + Rc2

f )∂[ℓδfv
f
k]

+∂[ℓ

(

−3Ψ′ + ∂jv
ℓ
f

)

vf
ℓ] −

1

1 + wf
∂[ℓΦ∂k]δf

}

, (4.108)
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where we used ρb = (mp + me)(ne + nH) ≃ mp(ne + nH). Note that 3c2
f H = ∂ ln[ρ̄b/(ρ̄b +

4/3ρ̄γ)]/∂η. Since the vorticity in the tight-coupled plasma obeys (4.106), the first term on

the right hand side of (4.108), which is linear in the vorticity, can only source the magnetic

field if there is initially vorticity in the plasma. This is the term responsible for the Harrison

mechanism [86, 98]. All other terms which are quadratic can source the magnetic field even

if there is no initial vorticity.

However, on large scales in the radiation era there is a suppression of the total con-

tribution of these quadratic terms. From the large-scale radiation era relations at first

order,

2H∂iv
i
f ≃ ∇2Φ , δf ≃ −2Φ , (4.109)

it follows that at lowest order the quadratic terms are estimated by ∂iX∂jY ∼ ∂iΦ∂jΦ.

Hence the quadratic source terms are suppressed by a factor (kη)2, since at lowest order all

contributions are of the type ∼ ∂[iΦ∂j]Φ = 0. This implies that
√

k3PB(k, η) ∝ k4η2/η2
eq,

that is
∑

i Si ∝ k3η5/η2
eq.

4.6.4.2 Magnetic field in baryon frame

From (4.47) we obtain

B
i
b − Bi = −ǫiℓkvb

ℓ Ek = − 1

e(ne + nH)xe
ǫiℓkvb

ℓ ∇µT µ
b k

=
mp

aexe

c2
f

(1 + wf)
ǫiℓkvf

ℓ∂kδf , (4.110)

where the second equality holds in the tight-coupled regime. Using the first order version

of the Euler equation (4.95) for the plasma, i.e. with ∇µT
µi
f = 0, and using also the first

order evolution equation for the plasma density contrast,

( δf

1 + wf

)′
= 3Ψ′ − ∂iv

i , (4.111)

we deduce that in the tight-coupled regime

exe

mp

(

a2B
i
b

)′

a2
= 3c2

f Hω
i
f = −

(

a2ω
i
f

)′

a2
. (4.112)

At early times in the radiation era we have xe ≃ 1, and then we obtain a conservation

equation up to second order:

[

a2
( e

mp
B

i
b + ω

i
f

)]′
≃ 0 . (4.113)

This is precisely the Harrison mechanism, but up to second order.

In the tight-coupled regime, in the plasma frame, the magnetic field can only be gen-

erated if there is initial vorticity, i.e. through the Harrison mechanism. We recover here

the results in [91, 92]. The magnetic field measured in a different frame is only due to the

contribution of the electric field to this change of frame. In the fundamental frame, this

contribution in the tight-coupled regime is given by the second and third lines of (4.108).

Note that the electric field is generated at first order in cosmological perturbations even in
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the lowest order of the tight-coupling approximation and even in the plasma frame.
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JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS 06, 017 (2011)

A large scale coherent magnetic field:

interactions with free streaming particles and limits

from the CMB

Julian Adamek, Ruth Durrer, Elisa Fenu and Marc Vonlanthen

We study a homogeneous and nearly-isotropic Universe permeated by a homogeneous

magnetic field. Together with an isotropic fluid, the homogeneous magnetic field, which

is the primary source of anisotropy, leads to a plane-symmetric Bianchi I model of the

Universe. However, when free-streaming relativistic particles are present, they generate

an anisotropic pressure which counteracts the one from the magnetic field such that the

Universe becomes isotropized. We show that due to this effect, the CMB temperature

anisotropy from a homogeneous magnetic field is significantly suppressed if the the neutrino

masses are smaller than 0.3 eV.

arXiv:1102.5235v1 [astro-ph.CO]

5.1 Introduction

On very large scales, the observed Universe is well approximated by a homogeneous and

isotropic Friedmann solution of Einstein’s equations. This is best verified by the isotropy of

the Cosmic Microwave Background (CMB). The small fluctuations observed in the CMB

temperature are fully accounted for by the standard model of structure formation from

small initial fluctuations which are generated during an inflationary phase. Nevertheless,

these small fluctuations are often used to limit other processes or components which may

be present in the early Universe, like e.g. a primordial magnetic field.

The generation of the magnetic fields observed in galaxies and clusters [38, 41] is still

unclear. It has been shown that phase transitions in the early Universe, even if they do

generate magnetic fields, have not enough power on large scale to explain the observed

large scale coherent fields [81, 77]. These findings suggest that primordial magnetic fields

must be correlated over very large scales.

In this paper, we discuss limits on fields which are coherent over a Hubble scale and

which we can therefore treat as a homogeneous magnetic field permeating the entire Uni-

verse. We want to derive limits on a homogeneous field from CMB anisotropies. This ques-

tion has been addressed in the past [170, 99, 100] and limits on the order of B <∼ 2 × 10−9

Gauss have been derived from the CMB anisotropies [60]. A similar limit can also be

obtained from Faraday rotation [101, 7].

We show that the limits from the CMB temperature anisotropy actually are invalid if

free streaming neutrinos with masses mν < Tdec are present, where Tdec denotes the photon
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temperature at decoupling. This is the case if the neutrino masses are not degenerate, i.e.

the largest measured mass splitting is of the order of the largest mass, hence mν
<∼ 0.04eV.

The same effect can be obtained from any other massless free streaming particle species,

like e.g. gravitons, if they contribute sufficiently to the background energy density. This is

due to the following mechanism which we derive in detal in this paper: In an anisotropic

Bianchi-I model, free streaming relativistic particles develop an anisotropic stress. If the

geometric anisotropy is due to a magnetic field, which scales exactly like the anisotropic

stress of the massless particles, this anisotropic stress cancels the one from the magnetic

field and the Universe is isotropized. Hence the quadrupole anisotropy of the CMB due to

the magnetic field is erased. This ‘compensation’ of the magnetic field anisotropic stress

by free-streaming neutrinos has also been seen in the study of the effects of stochastic

magnetic fields on the CMB [171, 172, 173, 174] for the large scale modes. In our simple

analysis the mechanism behind it finally becomes clear.

The limits from Faraday rotation are not affected by our arguments.

In the next section we derive the CMB anisotropies in a Bianchi I Universe. In Sec-

tion 5.3 we show that relativistic free streaming neutrinos in a Bianchi I model develop

anisotropic stresses and that these back-react to remove the anisotropy of the Universe if

the latter is due to a massless mode. In Section 5.4 we discuss isotropization due to other

massless free streaming particles, with special attention to a gravitational wave background.

In Section 5.5 we conclude.

5.2 Effects on the CMB from a constant magnetic field in

an ideal fluid Universe

We consider a homogeneous magnetic field in z−direction, ν = Bez in a Universe filled

otherwise with an isotropic fluid consisting, e.g. of matter and radiation. The metric of

such a Universe is of Bianchi type I,

ds2 = −dt2 + a2
⊥(t)(dx2 + dy2) + a2

‖(t) dz2 , (5.1)

where t is cosmic time. The Einstein equations in cosmic time read

2
ȧ‖
a‖

ȧ⊥
a⊥

+

(

ȧ⊥
a⊥

)2

= 8πGρ , (5.2)

ä‖
a‖

+
ä⊥
a⊥

+
ȧ‖
a‖

ȧ⊥
a⊥

= −8πGP⊥ , (5.3)

2
ä⊥
a⊥

+

(

ȧ⊥
a⊥

)2

= −8πGP‖ . (5.4)

The dot denotes the derivative with respect to t. We have introduced the total energy

density ρ = ρB + ρm + ργ + ρν + ρΛ, where ρB = B2/8π is the energy density in the

magnetic field, and ρm, ργ , ρν , ρΛ are as usual the energy densities of matter (assumed to

be baryons and cold dark matter), photons, neutrinos, and dark energy (assumed to be a

cosmological constant), respectively.

All the above constituents of the Universe, except matter (which is assumed to be

pressureless) also contribute to the pressure components P‖, P⊥. The contribution from

142



Effects on the CMB from a constant magnetic field in an ideal fluid Universe

the magnetic field is intrinsically anisotropic and given by

PB,⊥ = −PB,‖ = ρB , (5.5)

as can be read off from the corresponding stress-energy tensor. Note that the magnetic

field B decays as a−2
⊥ , so that ρB scales as a−4

⊥ .

For later reference we define an ‘average’ scale factor

a ≡ a
2/3
⊥ a

1/3
‖ , (5.6)

which is chosen such that it correctly describes the volume expansion.

Let us also introduce the expansion rates H⊥ = ȧ⊥/a⊥ and H‖ = ȧ‖/a‖. The anisotropic

stress of the homogeneous magnetic field sources anisotropic expansion, which can be ex-

pressed as the difference of the expansion rates, ∆H = H⊥ − H‖. We combine eqs. (5.4)

and (5.3) to obtain an evolution equation for ∆H,

˙∆H +
(

2H⊥ + H‖
)

∆H = 8πG
(

P⊥ − P‖
)

. (5.7)

This pressure difference is actually simply the anisotropic stress. More precisely,

Πi
j ≡ Ti

j − Pδi
j , P = T i

i /3 = (2P⊥ + P‖)/3 ,

Π1
1 = Π2

2 = P⊥ − P =
1

3

(

P⊥ − P‖
)

, Π3
3 = P‖ − P = −2

3

(

P⊥ − P‖
)

. (5.8)

At very high temperatures, both photons and neutrinos are tightly coupled to baryons.

Their pressure is isotropic and thus their contribution to the right-hand-side of (5.7) van-

ishes. The collision term in Boltzmann’s equation tends to isotropize their momentum-

space distribution. Under these conditions the only source of anisotropic stress is the

magnetic field. The above equation can then easily be solved to leading order in ∆H, as

will be carried out in section 5.3.

However, as soon as the neutrinos decouple and start to free-stream, their momentum-

space distribution will be affected by the anisotropic expansion caused by the magnetic field

and thus they will develop anisotropic stress. As we will show, the neutrino anisotropic

stress counteracts the one from the magnetic field. This behavior will be maintained until

the neutrinos become non-relativistic, then their pressure decays. For the temperature

anisotropy in the CMB it is relevant whether this happens before or after photon decou-

pling. This depends, of course, on the neutrino masses.

We introduce the energy density parameters

Ωx(t) ≡
8πGρx(t)

3H2(t)
=

ρx(t)

ρc(t)
,

corresponding respectively to the magnetic field, matter and radiation etc., such that e.g.

ΩB = B2/8πρc, Ωm = ρm/ρc and Ωγ = ργ/ρc. Here we define the ‘average’ Hubble

parameter by

H2 ≡ 1

3

[

(

ȧ⊥
a⊥

)2

+ 2
ȧ⊥ȧ‖
a⊥a‖

]

. (5.9)

143



Effects on the CMB from a constant magnetic field in an ideal fluid Universe

With this, eq. (5.2), implies

ΩT ≡ ΩB + Ωγ + Ων + Ωm + ΩΛ = 1 at all times. (5.10)

As an alternative, one could have defined the ‘average’ Hubble parameter as

Ha ≡ 1

3

[

2
ȧ⊥
a⊥

+
ȧ‖
a‖

]

.

It can easily be verified that the difference between these definitions is of the order of the

small quantity ∆H = H⊥ − H‖. More precisely,

H2 = H2
a

[

1 − 2

3

∆H

Ha
− 1

3

(

∆H

Ha

)2
]

. (5.11)

We shall mainly use the definition which yields the constraint (5.10).

The scaling of the energy densities corresponding to every species follows from the stress

energy conservation of every single fluid

ργ = ρ0
γ

(a0

a

)4
, ρm = ρ0

m

(a0

a

)3
, ρB = ρ0

B

[

a⊥(t0)

a⊥

]4

. (5.12)

To obtain the above behavior for radiation, it is important to impose that the fluid is ideal,

i.e. that pressure is isotropic. This is the case if there are sufficiently many collisions, but

does not hold for free streaming particles as we shall see in the next section.

At a fixed initial time one may set a⊥ = a‖ as initial condition. Motivated by observa-

tions, we assume that the scale factor difference always remains small,

a⊥ − a‖
a

≡ δ ≪ 1 . (5.13)

To first order in ∆H ≪ H, as long as the magnetic field is the only anisotropic component,

eq. (5.7) becomes (see also [175])

˙∆H + 3H∆H = 8πG
(

P⊥ − P‖
)

= 6H2ΩB . (5.14)

In the following we consider both ΩB and ∆H as small quantities and want to calculate

effects to first order in them. To first order, ρB ∝ a−4 ∝ ργ . We can therefore introduce

the ratio

r =
ρB

ργ
=

ΩB

Ωγ
, (5.15)

which (to first order) is constant.

In fig. 5.1 we plot the scale factor difference δ0 − δ and ∆H/H as functions of the

temperature in a first stage where neutrinos, photons and baryons are all tightly coupled

and the magnetic field is the only source of anisotropy.

5.2.1 Lightlike geodesics in Bianchi I

Let us now determine the CMB anisotropies in a Bianchi I Universe. We are not interested

in the usual anisotropies from primordial perturbations, which we disregard in our treat-
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Figure 5.1: Temperature evolution of the scale factor difference δ0 − δ and ∆H/H in units
of r = ΩB/Ωγ when no free-streaming particle compensates the anisotropy produced by the
magnetic field anisotropic stress. Here δ0 denotes the scale factor difference δ today. The
evolution of the ‘average’ scale factor a is the one of a ΛCDM Universe. As it is shown in
section 3, ∆H/H is constant during the radiation dominated era and δ is growing. During
the matter dominated era ∆H/H is decaying, ∆H/H ∝ 1/a ∝ T , and δ asymptotes to a
constant.

ment, but we concentrate on the effect of the global anisotropy, which to leading order will

result in a temperature quadrupole.

We choose the tetrad basis e0 = ∂t, ei = a−1
⊥ ∂i for i = 1, 2 and e3 = a−1

‖ ∂3. The dual

basis of 1-forms is given by θ0 = dt, θi = a⊥dxi, for i = 1, 2 and θ3 = a‖dx3. The first

structure equation,

dθa + ωa
b ∧ θb = 0 ,

yields

ωi
0 =

ȧ⊥
a⊥

θ0 , i = 1, 2 , and ω3
0 =

ȧ‖
a‖

θ0 . (5.16)

The other non-vanishing connection 1-forms are determined by anti-symmetry, ωab = −ωba.

After photon decoupling, the photon 4-momentum p = paea satisfies the geodesic equation

dpa

dλ
+ ωa

c(eb) pb pc = 0 . (5.17)

Considering the constraint relation for massless particles pap
a = 0 and setting αT0 ≡ p0 =

p =
√

∑3
i=1(p

i)2, where T0 is a constant with the dimension of energy (or temperature)

that multiplies all the components pa, the above equation is solved by

(pa) = T0

(

α,
n1

a⊥
,
n2

a⊥
,
n3

a‖

)

, (5.18)
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where n is a unit vector in the direction of the particle momentum and α is determined by

the condition pap
a = 0.

n1 = sin θ sinφ , n2 = sin θ cos φ and n3 = cos θ .

The temperature of photons in such an anisotropic Universe for a comoving observer,

u = ∂t, is then given by

T (t, θ) = ηabu
apb = p0 = T0α = T0

√

sin2 θ

a2
⊥

+
cos2 θ

a2
‖

≃ T0

a

[

1 + δ cos2 θ + O(δ2)
]

. (5.19)

We set

T̄ =
1

4π

∫

T (t, θ) sin θdθdφ =
T0

a

[

1 +
1

3
δ + O(δ2)

]

to be the temperature averaged over directions. Note that for δ = 0 and a0 = 1, T0 is

simply the CMB temperature at time t0. For the temperature fluctuations to first order

in δ we obtain

∆T

T
≡ T (t, θ) − T̄

T̄
=

1

3
δ(3 cos2 θ − 1) + O(δ2) = δ

2

3

√

4π

5
Y20(n) + O(δ2) . (5.20)

Hence, to lowest order in δ a homogeneous magnetic field generates a quadrupole which is

given by

C2 =
1

5

2
∑

m=−2

|a2m|2 =
1

5
|a20|2 =

16π

225
δ2 ≃ 0.22 × δ2 . (5.21)

Of course, in principle one can set δ(t1) = 0 at any given moment t1 which then leads

to ∆T
T (t1) = 0. However, for the CMB we know that photons start free-streaming only

at tdec when they decouple from electrons. Before that, scattering isotropizes the photon

distribution and no quadrupole can develop1. In other words, we have to make sure that

the anisotropy-induced quadrupole is fixed to zero at decoupling and only appears as a

result of differential expansion between last scattering and today. This can be taken into

account by simply choosing the initial condition δ(tdec) = 0. Without this initial condition

we have to replace δ(t) by δ(t) − δ(tdec) in eq. (5.21) 2. The general result for the CMB

quadrupole today is therefore

C2 =
16π

225
[δ(t0) − δ(tdec)]

2 . (5.22)

5.2.2 The Liouville equation

At this stage it is straightforward to check that the exact expression found above for the

temperature, eq. (5.19), satisfies the Liouville equation for photons (see, e.g. [168])

paea(fγ) − ωi
b(p)pb ∂fγ

∂pi
= 0 , (5.23)

1This is not strictly true and neglects the slight anisotropy of non-relativistic Thomson scattering.
2More generally, one can say that δ itself is not a quantity with a physical meaning as long as no reference

value is specified. In physical terms, only the difference of δ between two instants of time can be a relevant
quantity.
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when we make the following Ansatz for the distribution function of massless bosonic par-

ticles in our Bianchi I Universe

p⊥ ≡
√

(p1)2 + (p2)2 , p‖ = p3, p =
√

p2
⊥ + p2

‖ = p0 , (5.24)

fγ(t, T ) =
Nγ

(2π)3
1

ep/T − 1
, T = T (t, θ) . (5.25)

Indeed, using eqs. (5.16), we find the following differential equation for the temperature T

∂fγ

∂T

∂T

∂t
− ˙a⊥

a⊥

∂fγ

p⊥
p⊥ −

ȧ‖
a‖

∂fγ

∂p‖
p‖ = 0 . (5.26)

With (5.25) this can be written as

Ṫ

T
+

˙a⊥
a⊥

(

p⊥
p

)2

+
ȧ‖
a‖

(

p‖
p

)2

= 0 . (5.27)

The time behavior of the different components of the photon momentum are given by

eq. (5.18) and one immediately sees that expression (5.19) for the temperature solves the

above differential equation.

Moreover, defining the time dependent unit vectors p̂i ≡ pi/p and the shear tensor

σab ≡ ϑab −
1

3
ϑc

chab , where ϑab ≡
1

2
(∇aub + ∇bua) and hab ≡ ηab + uaub ,

one can rewrite the above Liouville equation as

(p̃)˙ = −p̃σij p̂
ip̂j , (5.28)

where p̃ denotes the redshift-corrected photon energy defined as p̃ ≡ ap. This last expres-

sion agrees with the corresponding equation given in [176].

Using the expression for the distribution function of massless fermions, we can also com-

pute the pressure of neutrinos once they start free-streaming. Indeed, given the fact that

neutrinos can be considered massless before they become non-relativistic, their geodesic

equation has the same solution as the one for photons found above, therefore we immedi-

ately obtain the time behavior of their temperature in an anisotropic Bianchi I background.

Taking also into account the fact that neutrinos are fermions, their distribution function

reads

fν(t, T ) =
Nν

(2π)3
1

ep/T + 1
, with T (t, θ) =

Tν

a

[

1 + δ cos2 θ + O(δ2)
]

. (5.29)

Note that the parameter T appearing in the neutrino distribution function in not a temper-

ature in the thermodynamical sense as the neutrinos are not in thermal equilibrium. It is

simply a parameter in the distribution function and its time evolution has been determined

by requiring the neutrinos to move along geodesics i.e. to free-stream.

This distribution function remains valid also in the case where neutrinos are massive,

i.e. Tν < mν . The only difference is that the relation p0 = p changes to p0 =
√

p2 + (mνa)2

which of course affects the momentum integrals for the neutrino energy density and pres-

sure.
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The energy Tν/a0 is the present neutrino ‘temperature’ in the absence of a homogeneous

magnetic field (δ = 0). The energy density ρν and the pressure Pν,i in direction i with

respect to our orthonormal basis are

ρν = Nν

∫

d3p fν(t, T )p0 (5.30)

Pν,i = Nν

∫

d3p fν(t, T )
p2

i

p0
. (5.31)

Calculating the integral (5.31) for relativistic neutrinos to first order in δ in the direc-

tions perpendicular and parallel to the magnetic field direction, one finds for the neutrino

anisotropic stress in the ultra-relativistic limit

Pν,⊥ − Pν,‖ ≃ − 8

15
ρν (δ − δ∗) , (5.32)

where δ∗ is the value of δ at neutrino decoupling and can be fixed to zero for convenience.

The temperature dependence of the neutrino pressure is shown in fig. 5.2. To leading

order, this also gives the temperature dependence of the neutrino anisotropic stress. From

the plot it is clear how the pressure scales as a−4 as long as the neutrinos are ultra-

relativistic. Once they have become effectively non-relativistic, their pressure decays more

rapidly, as a−5. The break in the power law is not precisely at T = mν , but at a somewhat

lower temperature. Because the neutrinos still have the highly relativistic Fermi-Dirac

distribution from the time of their thermal freeze-out, it takes some additional redshift

until they behave effectively non-relativisic. This will have some effect on the estimates

for the residual CMB quadrupole, as we shall see in sec. 5.3, in particular the discussion

of fig. 5.5.
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Figure 5.2: Temperature evolution of the neutrino pressure Pν,⊥ normalized to the neutrino
energy density ρν . The temperature is given in units of the neutrino mass. Note that the
break in the power law is not at T = m, but at somewhat lower temperature. This is due
to the highly relativistic Fermi-Dirac distribution of the neutrinos, see also the discussion
of fig. 5.5 in sec. 5.3.3.
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5.3 Neutrino free-streaming and isotropization

5.3.1 Massless free-streaming neutrinos

We now calculate the effect of free-streaming neutrinos perturbatively, i.e. to first order

in δ, ∆H/H and ΩB. We linearize eq. (5.7), taking into account the contribution of a

free-streaming relativistic component to the right-hand side. We have shown that this

contribution, to leading order in δ, is given by eq. (5.32). Furthermore, up to O(δ2)

corrections, δ is just the integral of ∆H,

∫ t

t∗

∆H(t′)dt′ = ln
a⊥ (t)

a‖ (t)
− ln

a⊥ (t∗)
a‖ (t∗)

≃ δ − δ∗ , (5.33)

so that to first order we can identify ∆H ≃ δ̇.

Inserting this back into eq. (5.7) we find, to linear order in δ,

δ̈ + 3Hδ̇ +
8

5
H2Ων (δ − δ∗) = 6H2ΩB . (5.34)

Note that, because we are working at linear order, it is not important with respect to which

scale factor H,Ων and ΩB are defined in (5.34). We will now give analytic solutions to this

equation for different regimes in the evolution of the Universe.

Let us begin at very high temperature where the neutrinos are still strongly coupled to

baryons. In this case they do not contribute to eq. (5.34) since their pressure is isotropic

(Pν,⊥ − Pν,‖ ∼ 0) given the high rate of collisions. Furthermore, since we are in the

radiation dominated era (a ∝ t1/2), we have H = 1/2t, and ΩB is constant. The

solution to eq. (5.34) in this case is

δ̇(t) = ∆H(t) =
3ΩB

t
+

C

t3/2
. (5.35)

The dimensionless quantity ∆H/H hence asymptotes to a constant, since the homogeneous

piece decays like a−1:
∆H

H
→ 6ΩB . (5.36)

∆H soon becomes insensitive to the initial conditions and only depends on ΩB. This also

shows that in the absence of an anisotropic source (ΩB = 0), the expanding Universe

isotropizes. Integrating this equation and remembering that ΩB = constant to first order

in a radiation dominated Universe, we obtain

δ(t) − δ(t′) = 3ΩB ln(t/t′) . (5.37)

As the Universe reaches a temperature of roughly 1.4 MeV, the neutrinos decouple and

begin to free-stream, giving rise to the corresponding term in eq. (5.34). In the radiation

dominated era, Ων remains constant as long as neutrinos are ultra-relativistic3. This is

certainly true for temperatures well above a few eV. In this regime, the general solution of

3Actually, Ων changes slightly when electron-positron annihilation takes place, a process which heats up
the photons but not the neutrinos. This happens at a temperature close to the electron mass. After that,
Ων/Ωγ remains constant until the neutrinos become non-relativistic.
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eq. (5.34) is given by

δ(t) − δ∗ =
15

4

ΩB

Ων
+ t−1/4

(

C+ti
√

2Ων/5−1/16 + C−t−i
√

2Ων/5−1/16
)

. (5.38)

For Ων > 5/32, the homogeneous part is oscillating with a damping envelope ∝ t−1/4 ∝
a−1/2. This means that ∆H = δ̇ will decay within a few Hubble times, which is a mat-

ter of seconds at the temperatures we are talking about. After that, δ − δ∗ will remain

constant at the value of (15/4) ΩB/Ων until the neutrinos become non-relativistic. Then

their pressure drops dramatically and so does their anisotropic stress. Until this time,

the Universe expands isotropically, because the anisotropic stress of the magnetic field is

precisely cancelled by the one of the neutrinos. Remember that a constant δ can always be

absorbed in a re-scaling of the coordinates and has no physical effect. Fig. 5.3 shows the

temperature evolution of δ − δ∗ in the radiation dominated era from neutrinos decoupling

until T = 100eV.

This mechanism rests on two important facts. Firstly, as long as neutrinos are ultra-

relativistic, they redshift in the same way as the magnetic field, meaning that ΩB/Ων is

constant. Once the anisotropic stress of the neutrinos has adjusted to the magnetic field,

their sum remains zero independent of the expansion of the Universe which is now in a

Friedmann phase. Secondly, the efficiency of the effect hinges on the absolute value of Ων .

In the radiation dominated era (after positron annihilation), we have Ων ≃ 0.4 so that

Ων > 5/32, and hence the system behaves as an underdamped oscillator with a damping

envelope ∝ t−1/4. Had the density parameter of the free-streaming particles been less

than 5/32, the behavior would be that of an overdamped oscillator. As it is evident from

eq. (5.38), for Ων ≪ 5/32 there would be a mode which decays extremely slowly, roughly as

t−4Ων/5. This is why a strongly subdominant free-streaming component cannot damp the

anisotropy efficiently. As we shall discuss in section 5.4, a primordial gravitational wave

background could play the role of such a free-streaming component if ΩGW & 5/32.

5.3.2 Massive neutrinos

The neutrinos become non-relativistic roughly at the time when their temperature drops

below their mass scale. Current bounds on the neutrino mass [177] are such that the

highest-mass eigenstate is somewhere between ∼ 1 eV and ∼ 0.04 eV. Since the neutrino

mass splitting is much below 1 eV, an eigenstate close to the upper bound would mean that

the neutrinos are almost degenerate and hence become non-relativistic all at the same time.

If this happens before photon decoupling, i.e., if mν > 0.3 eV, the isotropization effect will

not be present and the CMB will be affected by the anisotropic expansion sourced by the

magnetic field. However, if the neutrinos remain ultra-relativistic until long after photon

decoupling, the CMB quadrupole due to anisotropic expansion will be reduced because the

neutrinos maintain expansion isotropic until they become non-relativistic.

In order to quantify this statement, we repeat the above calculations for the matter

dominated era. For our purposes, this is a reasonable approximation for the time between

photon decoupling and today. At decoupling, radiation is already subdominant, and on

the other hand vacuum energy only begins to dominate at redshift z ∼ 0.5. We therefore

expect that both give small corrections only.

For completeness, we also give the solution of eq. (5.34) in a matter dominated Universe

for the case where we ignore any contributions from free-streaming particles (neutrinos
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Figure 5.3: Temperature evolution of δ−δ∗ from neutrinos decoupling to T = 100eV. After
decoupling, δ−δ∗ begins to oscillate with a decreasing amplitude around the constant 15

4
ΩB
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,
as predicted by the analytical solution (5.38). This qualitative behavior is independent of
the initial conditions.

and, after decoupling, also photons). During matter domination we have H = 2/3t and

ΩB ∝ a−1 ∝ t−2/3. The solution to (5.14) hence reads

δ̇(t) = ∆H(t) =
8ΩB(t)

t
+

C

t2
. (5.39)

The homogeneous mode again decays more rapidly than the particular solution, so that

the dimensionless quantity ∆H/H is again asymptotically proportional to ΩB. Instead of

eqs. (5.36), (5.37), we have

∆H

H
→ 12ΩB , δ(t) − δ(teq) =

∫ t

teq

∆Hdt ≃ 12 [ΩB(teq) − ΩB(t)] . (5.40)

Let us now take into account a free-streaming component. We want to estimate the

effect on the photon distribution function caused by anisotropic expansion in two cases.

Case A: the neutrinos become non-relativistic before photon decoupling. Case B: the neu-

trinos become non-relativistic after photon decoupling. As an approximation, we assume

that this happens instantaneously to all neutrino species, such that the contribution of

neutrinos to eq. (5.34) disappears abruptly. We know that the neutrinos are in fact spread

out in momentum space and also have a certain spread in the mass spectrum, so in reality

this will be a gentle transition. However, we only want to estimate the order of magnitude

of the effect and are not interested in these details at this point. More precice numerical

results will be presented in sec. 5.3.3. Let us consider case A first.
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5.3.2.1 Case A: neutrinos become non-relativistic before photon decoupling

We know that ∆H is very nearly zero when the neutrinos become non-relativistic. After

that, ∆H/H will start to grow again to approach the value 6ΩB during radiation domina-

tion and 12ΩB during matter domination. As boundary condition at photon decoupling, we

will hence assume ∆H/H = xΩB with x . 12. This number can in principle be computed

given the neutrino masses and the evolution of the scale factor across matter-radiation

equality. We shall solve the full equations in subsection 5.3.3; here we just want to un-

derstand the results which we obtain there by numerical integration. The free-streaming

component we are interested in now are the photons after decoupling. We therefore iden-

tify δ∗ = δ(tdec), where tdec denotes the instant of photon decoupling. Furthermore, in

eq. (5.34) we replace Ων by Ωγ , our new free-streaming species. With Ωγ ∝ t−2/3 in the

matter dominated era, the (not so obvious) analytic solution to eq. (5.34) is

δ(t) − δ(tdec) =
15

4

ΩB

Ωγ
+ C [f(t) cos f(t) − sin f(t)] + D [f(t) sin f(t) + cos f(t)] , (5.41)

where we have introduced f(t) ≡ 4
√

2Ωγ(t)/5. The time derivative of eq. (5.41) yields

∆H

H
=

16

5
Ωγ [C sin f(t) − D cos f(t)] . (5.42)

Note that the slowly decaying mode has the same asymptotic behavior as (5.40) – in the

matter dominated era, the free-streaming radiation can never catch up to the magnetic field,

since both fade away too quickly. In other words, this means that free-streaming photons

are never able to counteract the magnetic field anisotropy in order to isotropize again

the Universe, even if they represent the main contribution to the background radiation

energy density, and the reason for this is that they decouple only after the end of radiation

dominantion.

In order to estimate the value of δ today (t0), we can simply take the limit of small

Ωγ(t0) ≪ 1 of (5.41). Correction terms are suppressed at least by
√

Ωγ(t0) ∼ 10−2. We

find

δ(t0) − δ(tdec) ≃
15

4

ΩB

Ωγ
+ D . (5.43)

The constant D is fixed by the boundary conditions at decoupling, given by ∆H/H = xΩB

and δ = δ(tdec). These boundary conditions translate to

D =
ΩB(tdec)

Ωγ(tdec)

[

sin f(tdec)

f(tdec)

(

5

16
x − 15

4

)

− 5

16
x cos f(tdec)

]

=
ΩB(tdec)

Ωγ(tdec)

[

−15

4
+

(

4 +
2x

3

)

Ωγ(tdec) + O
(

Ω2
γ(tdec)

)

]

. (5.44)

In order to obtain the essential behavior we have expanded the boundary term as a Taylor

series in Ωγ(tdec) ≪ 1. Our final result is

δ(t0) − δ(tdec) ≃
(

4 +
2x

3

)

ΩB(tdec) . 12ΩB(tdec) , (5.45)

up to corrections suppressed by additional powers of Ωγ(tdec).

In this case, the CMB quadrupole is not affected by the presence of free-streaming

152



Neutrino free-streaming and isotropization

neutrinos and we obtain the same result as when neglecting their presence,

C2 ≃ 16π

225
[δ(t0) − δ(tdec)]

2 ≃ 768π

75
Ω2

B(tdec) ≃ 0.1r2 . (5.46)

5.3.2.2 Case B: neutrinos become non-relativistic after photon decoupling

In this case, the presence of the neutrino anisotropic stress will delay the onset of anisotropic

expansion until a time tm when the neutrinos become effectively non-relativistic. As before,

we will ignore that this is a gradual process and simply assume that one can define some

kind of “effective” tm at which the neutrino anisotropic stress drops to zero. The full

numerical result is given in section 5.3.3. The effect of anisotropic expansion on the photon

distribution function is estimated as follows. We assume there is no anisotropic expansion

between photon decoupling and tm. At later times, neutrino anisotropic stress can be

ignored. The relevant solution (5.41) is hence obtained with boundary condition δ̇(tm) =

0. Working through the steps above once again or simply taking the result (5.45) with

tdec → tm and x → 0, one finds

δ(t0) − δ(tdec) = δ(t0) − δ(tm) ≃ 4ΩB(tm) . (5.47)

Since ΩB decays as a−1, the effect of anisotropic expansion in case B is suppressed by

roughly a factor of a(tdec)/(3a(tm)) with respect to case A. For light neutrinos with a

highest-mass eigenstate close to the current lower bound, this factor can be as small as

∼ 0.03, loosening the constraint on a constant magnetic field from the CMB temperature

anisotropy correspondingly. Constraints coming from Faraday rotation are not affected.

Clearly, the heaviest neutrino becomes massive at redshift zm = mν/Tν
>∼ 0.04eV/Tν ≃

200. One might wonder whether isotropization can be supported even if only one neutrino

remains massless, since its contribution to the energy density is Ων1 ≃ 0.23Ωγ . The problem

is however that, as soon as one neutrino species becomes massive, the equilibrium between

the magnetic field and the neutrino anisotropic stresses is destroyed and, as we have seen

under case A, where one still has free streaming photons, it cannot be fully re-established

in a matter dominated Universe.

5.3.3 Numerical solutions

In order to go beyond the estimates derived so far, we have solved eqs. (5.2-5.4) numerically

with cosmological parameters corresponding to the current best-fit ΛCDM model [178]. We

use cosmological parameters ΩΛ = 0.73, Ωm = 0.27 today, where Ωm includes a contribu-

tion of massive neutrinos4 which we approximate by Ωνh
2 = Nνmν/94eV with Nν ≃ 3.

The contribution to the right-hand side of eq. (5.7) from free-streaming neutrinos is ob-

tained by integrating eq. (5.31) with the full distribution function for massive fermions.

More precisely, we compute the full distribution function to first order in δ and perform

the integration numerically, including the neutrino mass as a parameter. We begin to in-

tegrate deep inside the radiation dominated era, when the neutrinos are still relativistic

but already free-streaming. The asymptotic behavior of solution (5.37) can be used as

4CMB observations actually constrain the matter density at decoupling, such that neutrinos with mν .

0.3eV, which are still relativistic at that time, do not contribute to the measurement of Ωm. However, since
their density parameter today is then also very small, their contribution to the matter density remains
practically irrelevant.
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initial condition at neutrino decoupling. The constraint equation (5.2) provides the re-

maining initial condition. We then integrate until the desired time. We define today t0 by

a(t0) = 1.

In fig. 5.4, we present the results of the numerical integration from neutrino decoupling

until today. We plot both δ − δ∗ and ∆H/H in units of the parameter r = ΩB/Ωγ so

that the plots are valid for arbitrary magnetic field strengths, as long as r ≪ 1. After

neutrino decoupling, δ oscillates and reaches its constant value as in eqs. (5.38), (5.41),

while ∆H = δ̇ oscillates and decays. We choose as initial condition δ = δ∗ = 0 at neu-

trino decoupling. Once the temperature of the Universe reaches the neutrinos mass scale,

neutrino pressure decreases and they become non-relativistic. At this point, they can no

longer compensate the anisotropic pressure of the magnetic field, and both δ and ∆H be-

gin to grow. However, it is clear from fig. 5.4 (left plot) how, once neutrinos become non

relativistic after photon decoupling (case B), the growth of δ is suppressed with respect

to case A, where this happens before photon decoupling. Moreover, the solid black line

in the lower plot represents the temperature evolution of ∆H/H in the case where only

the magnetic field sources the anisotropy: this makes clear how the absence of any free-

streaming particle able to counteract the magnetic anisotropic stress leaves the anisotropy

of the Universe free to grow with respect to its value today.
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Figure 5.4: Temperature evolution of ∆H/H and δ− δ∗ for different neutrinos masses. We
chose the initial conditions to be given by δ∗ = 0 at neutrino decoupling. The black solid
line in the right plot represents the temperature evolution of ∆H/H in the case where
only the magnetic field sources the anisotropy and no free-streaming particle is present to
compensate this effect.

Our quantitative final result is shown in fig. 5.5, where we plot the value of the

quadrupole generated by a constant magnetic field, rescaled by r2, as function of the

neutrino mass. We weight the final C2 with respect to the quadrupole obtained without

considering the isotropization induced by free-streaming particles, in order to underline

the relative importance of this effect. These results clearly show that the CMB quadrupole

is significantly reduced by neutrino free-streaming only if their mass is smaller than the

temperature at photon decoupling, mν < Tdec ≃ 0.26 eV. In fact, for neutrino masses in

the range 0.3eV . mν . 3eV, the quadrupole C2 is reduced by less than a factor 100 from

the result without a free-streaming component, whereas for 0 . mν . 0.3 eV, it decreases

154



A gravitational wave background and other massless free-streaming components in an

anisotropic Universe

by several orders of magnitude. Note, however, that the effect is not negligible even in

the former case with relatively large neutrino masses. Fig. 5.5 also shows our analytical

estimation for the final amplitude of the CMB quadrupole produced by this effect as given

by eq. (5.47). Of course the value of eq. (5.47) depends on the time at which neutrinos

become effectively non-relativistic, tm. Once we choose tm to be given by the time at

which T = mν , we overestimate the final quadrupole amplitude by one order of magnitude

(dashed blue line). This is a consequence of the fact that the neutrino distribution function

is highly relativistic and therefore it takes a further redshift for them to start behaving

effectively as massive pressureless particles. This has been considered in the more elaborate

estimate given by the dashed red line where we fix the time tm to be given by the time

at which d3Pν/d(ln T )3 = 0, i.e. the time at which the pressure reaches the break in the

power law. This is in excellent agreement with the numerical results.
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Figure 5.5: Effect of free-streaming neutrinos with different masses on the quadrupole gen-
erated by a homogeneous magnetic field, weighted on the quadrupole obtained without
considering the effect of any free-streaming particles. The solid black line represents the
result of the numerical integration, the dashed blue and red lines correspond to our an-
alytical prediction given by eq. (5.47) for two different choices of tm, the time at which
neutrinos are effectively non-relativistic (see the text for clarification).

5.4 A gravitational wave background and other massless

free-streaming components in an anisotropic Universe

From our previous discussion it is evident that any massless free-streaming particle species

X can isotropize the Bianchi I model with a constant magnetic field, if present with suf-

ficient contribution ΩX already in the radiation dominated era. This has to be accounted

for if we want to estimate the CMB quadrupole induced by a homogeneous magnetic field.

So far we have discussed the standard model neutrinos as an example of such a particle.

However, also other massless particles can play this role, for instance gravitons, but also
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particle species outside of the spectrum of the standard model. Interestingly, the current

bounds on the number of relativistic degrees of freedom during nucleosynthesis, often

parameterized by the effective number of additional neutrino species ∆Nν , allow for the

possibility that such a species could be sufficiently abundant. The present bound on Nν

from nucleosynthesis is [177]

Nν = 3.2 ± 1.2 ,

g∗ = 2 +
7Nν

4

(

4

11

)4/3

= 3.36 + (Nν − 3) × 0.454

= 3.36 + (0.2 ± 1.2) × 0.454 at 95% confidence. (5.48)

Here we have taken into account that the photon and neutrino temperatures are related by

Tν = (4/11)1/3Tγ [132]. The effective g∗ from γ and three species of neutrino corresponds

to g∗(γ, 3ν) = 3.36. This is equivalent to a limit on an additional relativistic contribution

at nucleosynthesis of ΩX . 0.2. From the solution (5.38) we know that a free-streaming

relativistic species with a density parameter ΩX & 5/32 ≃ 0.156 during the radiation

dominated era will isotropize expansion within a few Hubble times. Since this species will

presumably decouple before the neutrinos (otherwise it should have been discovered in

laboratory experiments), expansion can be isotropic already at neutrino decoupling, and

thus neither the cosmic neutrino background nor the CMB will be affected by anisotropic

expansion. In this case therefore, unless we are able to detect the background of the species

X, we will never find a trace of the anisotropic stress produced by a homogeneous magnetic

field. An interesting example are gravitons, which we now want to discuss.

Inflationary models generically predict a background of cosmological gravitational waves

which are produced from quantum fluctuations during the inflationary phase. The ampli-

tude of this background, usually expressed by the so-called tensor-to-scalar ratio, rT , has

not yet been measured, but for a certain class of inflationary models, forthcoming experi-

ments such as Planck might be able to detect these gravitational waves. This is in contrast

to the cosmic neutrino background, for which there is no hope of direct detection with

current or foreseeable technology. However, this background typically contributes only a

very small energy density,

ΩGW, inf/Ωγ ≃ 10−10rT , nT
<∼ 0 .

Only non-standard inflationary models which allow for nT > 0 can contribute a significant

background, see [179].

Gravitational waves can also be produced during phase transitions in the early Uni-

verse [180, 83], after the end of inflation. Such gravitational wave backgrounds can easily

contribute the required energy density. Let us therefore concentrate on this possibility.

If the highest energy scales of our Universe remain some orders of magnitude below the

Planck scale, gravitational waves are never in thermal equilibrium and can be considered

as free-streaming radiation throughout the entire history. Therefore, if the gravitational

wave background was statistically isotropic at some very early time, then any amount

of anisotropic expansion taking place between this initial time and today will affect the

gravitons in a similar fashion as any other free-streaming component, and therefore our

present gravitational wave background would be anisotropic. Loosely speaking, the in-

tensity of gravitational waves would be larger in those directions which have experienced

less expansion in total since the initial time when the gravitational wave background was
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isotropic.

As we have specified above, with the current limits on ∆Nν , the density parameter of

gravitons ΩGW during nucleosynthesis can be as large as ∼ 0.2. At higher temperatures

(that is, at earlier times), the number of relativistic degrees of freedom increases (more

particle species are effectively massless), such that ΩGW at earlier time can even be larger5.

It is therefore conceivable that gravitons acquire sufficient anisotropic stress to compensate

the magnetic field and hence take over the role which neutrinos have played in section 5.3.

As already pointed out, in this case, neither neutrinos nor photons will ever experience any

significant anisotropic expansion, since the Universe remains in a Friedmann phase after

the gravitons have adjusted to the magnetic field. Of course, gravitons remain relativistic

for all times and the mass effect which we discussed for the neutrinos does not occur.

In order to rule out this scenario, it would be very interesting not only to measure the

background of cosmological gravitational waves but also to determine whether or not it

shows a quadrupole anisotropy compatible with such a compensating anisotropic stress.

Or in other words: just as the smallness of the CMB quadrupole is a direct indication

for isotropic expansion between decoupling of photons and today, the smallness of the

quadrupole of a gravitational wave background would inform us about the isotropy of

expansion between today and a much earlier epoch where this background was generated.

5.5 Conclusions

In this paper we have studied a magnetic field coherent over very large scales so that it

can be considered homogeneous. We have shown that in the radiation dominated era the

well known Bianchi I solution for this geometry is isotropized if a free streaming relativistic

component is present and contributes sufficiently to the energy density, ΩX & 5/32. This

is in tune with the numerical finding [171, 172, 174] that the neutrino anisotropic stresses

‘compensate’ large scale magnetic field stresses. A perturbative explanation of this effect

is attempted in [173]. Here we explain the effect for the simple case of a homogeneous

magnetic field: free streaming of relativistic particles leads to larger redshift, hence smaller

pressure in the directions orthogonal to the field lines where the magnetic field pressure

is positive and to smaller redshift, hence larger pressure in the direction parallel to the

magnetic field, where the magnetic field pressure is negative. To first order in the difference

of the scale factors this effect leads to a build up of anisotropic stress in the free streaming

component until it exactly cancels the magnetic field anisotropic stress. This is possible

since both these anisotropic stresses scale like a−4.

In standard cosmology this free-streaming component is given by neutrinos. However,

as soon as neutrinos become massive, their pressure, Pν ∝ a−5, decays much faster than

their energy density, ρν ∝ a−3, and the effect of compensation is lost. If this happens

significantly after decoupling, there is still a partial cancellation, but if it happens be-

fore decoupling, the neutrinos no longer compensate the magnetic field anisotropic stress.

Furthermore, a component which starts to free-stream only in the matter era (like e.g.

the photons) does not significantly reduce the anisotropic stress. Actually, inserting the

5During a transition from g1 relativistic degrees of freedom to g2 < g1, the temperature changes from
T1 to T2. Since entropy is conserved during the transition we have g1T

3
1 = g2T

3
2 . Hence ρ2 = g2T

4
2 =

g2

»

“

g1

g2

”1/3

T1

–4

=
“

g1

g2

”1/3

ρ1 > ρ1. In other words, the energy density of all species which are still in

thermal equilibrium increases if one reduces the number of degrees of freedom at constant entropy.
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dominant part of the constant D from eq. (5.44) in (5.42) one finds

∆H

H
= 12ΩB , (5.49)

like without a free-streaming component.

This cancellation of anisotropic stresses does not affect Faraday rotation. A constant

magnetic field with amplitude B0
>∼ 10−9Gauss can therefore be discovered either by the

Faraday rotation it induces in the CMB [101], or, if a sufficiently intense gravitational wave

background exists, by the quadrupole (anisotropic stress) it generates in it.

Finally, Planck and certainly future large scale structure surveys like Euclid will most

probably determine the absolute neutrino mass scale. Once this is known, we can infer

exactly by how much the CMB quadrupole from a constant magnetic field is reduced by

their presence.
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Gravitational waves from self-ordering scalar fields

Elisa Fenu, Daniel G. Figueroa, Ruth Durrer and Juan Garćıa-Bellido

Gravitational waves were copiously produced in the early Universe whenever the pro-

cesses taking place were sufficiently violent. The spectra of several of these gravitational

wave backgrounds on subhorizon scales have been extensively studied in the literature.

In this paper we analyze the shape and amplitude of the gravitational wave spectrum on

scales which are superhorizon at the time of production. Such gravitational waves are

expected from the self ordering of randomly oriented scalar fields which can be present

during a thermal phase transition or during preheating after hybrid inflation. We find

that, if the gravitational wave source acts only during a small fraction of the Hubble time,

the gravitational wave spectrum at frequencies lower than the expansion rate at the time

of production behaves as ΩGW(f) ∝ f3 with an amplitude much too small to be observable

by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the

source is active for a much longer time, until a given mode which is initially superhorizon

(kη∗ ≪ 1), enters the horizon, for kη & 1, we find that the gravitational wave energy

density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT

scale scenario turns out to be within the range and sensitivity of BBO and marginally

detectable by LIGO and LISA. This new gravitational wave background can compete with

the one generated during inflation, and distinguishing both may require extra information.

DOI: 10.1088/1475-7516/2009/10/005

6.1 Introduction

Gravitational waves (GWs) are produced in the late Universe via cataclismic astrophysical

events like hypernovae and inspiralling binaries. Because gravity is so weak, it is extremely

difficult to detect directly with present day interferometers [181]. On the other hand,

during the violent processes which we expect took place in the very early Universe, several

stochastic backgrounds of GWs of significant energy may be produced, although their

amplitude today is drastically reduced by the expansion of the Universe, making them

equally difficult to detect [182, 183, 150]. Their discovery may however be possible in the

near future, opening a completely new window into the uncharted territory of the very

early Universe. For this we must determine the detailed GW spectrum, which strongly

depends on the physical processes generating them.

In the last few years there has been significant progress in the experimental prospects for

detecting GWs with interferometers like LIGO and VIRGO and the future satellite mission

LISA. This has stimulated research for sources of primordial GWs from the early Universe,
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either from hypothetical first order phase transitions [184, 185, 116, 149, 186, 187, 82, 117,

118] or from the process of reheating after inflation [108, 109, 110, 111, 112, 113, 114, 115].

The mechanism responsible for GW production during these early Universe phenomena

is typically a causal process, like bubble collisions or turbulence, giving rise to spectra

which peak at wavelengths that are well within the causal horizon during their generation.

Thus, most of past analyses concentrate on contributions of GWs with wavelengths smaller

than the horizon at the time of production, with the exception of those generated during

inflation [188], which are stretched by the inflationary expansion.

In this paper we study the infrared behaviour of the GW spectrum produced either

during preheating or during first order phase transitions, on scales which are superhorizon

at the time of formation, i.e. k < H∗, where k and H∗ are the comoving momentum

and inverse horizon. We want to study a causal process of symmetry breaking like hybrid

preheating [189, 190, 191, 192, 193, 194, 195], where the order parameter has global O(N)

symmetry in the false vacuum and, upon symmetry breaking, the N fields undergo self-

ordering on a given scale as soon as they enter the horizon, in particular on scales much

larger than the inverse mass of the field in the true vacuum.

We consider a multi-component scalar field which obtains a non-zero vacuum expecta-

tion value (vev) v and a mass m, during a symmetry breaking process. We shall assume

that this mass m is much larger than the Hubble parameter H∗ at the time of the tran-

sition, since if the vev in the true vacuum is much smaller than the Planck scale, then

H∗ ∼ m v/Mp ≪ m. Such a model could describe the symmetry breaking process which

triggers the end of hybrid inflation or a thermal phase transition. As long as we are only

interested in superhorizon scales, k ≫ H∗, we can neglect the radial, massive mode and

treat the dynamics within the non-linear sigma-model (NLSM) approximation. On large

scales, the anisotropic stresses are determined by gradient energy and the typical (comov-

ing) scale is simply the time dependent horizon scale H−1. The field self-orders at the

horizon scale, and the source of GWs decays inside the horizon. For scalar metric pertur-

bations this process has been studied e.g. in Ref. [196]. It is very closely related to the

scaling of global topological defects [31] even though for a number of components N > 4

there are no topological defects associated with such a scalar field in 3 + 1 dimensions.

We work in the large N approximation within which the scalar field equation of motion,

for scales larger than the inverse mass, k ≪ m, can be solved analytically. The GW

spectrum will then be estimated by analytical approximations, introducing the anisotropic

stress tensor sourced by the field fluctuations at different scales.

Tensor perturbations from a NLSM in the large N approximation have also been studied

in Ref. [197, 121], see also [198]. There the authors have calculated the tensor perturbation

spectrum for scales which enter the horizon in the matter era and they have compared

this with the inflationary signal in the CMB. Here we shall concentrate on the radiation

dominated era and the detection of the signal in direct gravitational wave experiments like

advanced LIGO [10, 11], LISA [13, 14, 15, 16] and BBO [199, 200, 201].

The paper is organized as follows. In the next section we describe the formalism, derive

the scalar field solutions and calculate the unequal time anisotropic stress correlators which

source GWs. In Section 6.3 we study the production of GWs from long wavelength modes

of this source. We derive a general formula that can be applied to different situations, de-

pending how long the GW source is acting. In Section 6.4 we use this result to determine

the shape and amplitude of the GW spectrum in two situations, first the case of a source

producing GWs only during a small fraction of the Hubble time and, second, the case in
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which the source producing GWs acts for a much longer time, until a given mode which

is initially superhorizon, kη∗ ≪ 1, enters the Hubble radius, kη ≃ 1. In Section 6.5 we

summarize our results and conclude.

Notation Throughout this paper we assume a spatially flat Friedmann Universe with

metric

ds2 = a2(η)
(

−dη2 + δijdxidxj
)

, (6.1)

where η denotes conformal time and we normalize the scale factor to unity today, a(η0) = 1.

The comoving Hubble rate is H = a′/a, while H = a′/a2 is the physical one. The prime

denotes derivative w.r.t. conformal time η.

6.2 Formalism

We first introduce the NLSM and the large N limit of a global O(N) symmetric scalar

field, then we study the physics of the correlators of the anisotropic stress tensor.

6.2.1 The model

We consider an N -component scalar field with a Lagrangian

L = L0 + L1 = −∂µΦT∂µΦ − λ

(

ΦTΦ − v2

2

)2

+ L1 , (6.2)

where ΦT = (φ1, φ2, ..., φN )/
√

2, λ is the dimensionless self-coupling of Φ and v is the vev

in the true vacuum. In the case of a thermal bath at high temperature, the Lagrangian

L0 obtains corrections of the form L1 ∼ −T 2Φ2, so that its minimum is at Φ = 0 which

respects the global O(N) symmetry of the Lagrangian. At low temperature, T < Tc ≃ v,

the thermal corrections are too small to the keep the minimum at Φ = 0 and the global

O(N) symmetry is spontaneously broken to O(N −1). In the context of hybrid preheating,

there is no need for thermal restoration of the symmetry. The field Φ acquires a large mass

during inflation through its coupling to the inflaton χ, L1 = −g2ΦTΦχ2. Above a critical

value, χ > χc ≡
√

λv/g, the effective quadratic mass of Φ is positive and the field is fixed at

Φ = 0. When the quadratic mass becomes negative, χ < χc, a tachyonic instability triggers

the end of inflation and symmetry breaking. Soon after the symmetry is broken, thermal

corrections and tachyonic effects can be neglected, and Φ is closely confined (in most of

space) to the vacuum manifold, given by
∑

a φ2
a(x, η) = v2. Nevertheless, in positions

such that their comoving distance is |x − x′| > H−1, the values Φ(x, η) and Φ(x′, η) are

uncorrelated, which leads to a gradient energy density associated to the N − 1 Goldstone

modes, ρ ∼ (∂iΦ)2. For N > 2, the dynamics of the Goldstone modes is well described by

a NLSM [119, 31] where we force
∑

a φ2
a = v2 by a Lagrange multiplier. This corresponds

to the limit λ → ∞ in the above Lagrangian. This approximation is very good for physical

scales with are much larger than m−1 ≡ 1/(
√

λv). Of course, on small scales the field

fluctuations still oscillates around the true vev, but in this paper we only focus on the

superhorizon modes which are free to wander around in the vacuum manifold, giving rise

to a gradient energy density which will generate GWs on these scales.

Normalizing the symmetry breaking field to its vev, β ≡ Φ/v, each component of the
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field obeys the non-linear sigma model evolution equation [196]

�βa − (∂µβ · ∂µβ)βa = 0 , (6.3)

where (∂µβ ·∂µβ) =
∑

a ηµν∂µβa(x, η)∂νβa(x, η) and
∑

a βa(x, η)βa(x, η) = 1. In the large

N -limit, we assume that the sum over components can be replaced by an ensemble average,

T (x) =
∑

a

ηµν∂µβa∂νβ
a = N〈ηµν∂µβa∂νβa〉 = T̄ (η) . (6.4)

By dimensional considerations, T ∝ H2, or

T̄ (η) = Toη
−2 , (6.5)

with To > 0. Replacing the non-linearity in the sigma-model by this expectation value we

obtain a linear equation which can be solved exactly. In Fourier space it reads

βa ′′

k +
2γ

η
βa ′

k +

(

k2 − To

η2

)

βa
k = 0 , (6.6)

where γ = d log a/d log η and primes denote derivatives w.r.t. η. In a radiation dominated

Universe γ = 1 while in a matter dominated Universe γ = 2. The solution to Eq. (6.6) for

constant γ is given by

βa(k, η) = (kη)
1
2
−γ
[

C1(k)Jν(kη) + C2(k)Yν(kη)
]

, (6.7)

where

ν2 =

(

1

2
− γ

)2

+ To , (6.8)

and C1, C2 are constants of integration. Thus, ν > 1/2 for a radiation dominated Universe

and ν > 3/2 for matter domination. Since in general we have that ν > 0, Yν diverges for

small argument, so we will keep only the regular mode of the solution Jν , which can be

written as

βa(k, η) =
√

A

(

η

η∗

)
1
2
−γ Jν(kη)

(kη∗)ν
βa(k, η∗) , (6.9)

where βa(k, η∗) is the a-th component of the field at the initial time η∗. We assume that β is

initially Gaussian distributed with a scale-invariant spectrum on large scales and vanishing

power on small scales

〈βa(k, η∗)β
∗b(k′, η∗)〉 =

{

(2π)3C δab

N δ(k − k′) , kη∗ ≪ 1
0 , kη∗ > 1 .

(6.10)

This means that the field is aligned on scales smaller than the comoving horizon η∗ and

has arbitrary orientation on scales larger than η∗. The condition that β2 = 1 actually

introduces correlations between the different components of β but these lead to corrections

of order 1/N to the above expression which we will neglect here. We also do not enter into

the details of the decay of this function around kη∗ = 1. The constant C is chosen such
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that the normalization condition is satisfied (up to corrections of order 1/N),

β2(x, η∗) ≡ 〈β2(x, η∗)〉
(

1 + O(1/N)
)

≃
∫

d3k

(2π)3
d3k′

(2π)3
〈βa(k, η∗)β

∗a(k′, η∗)〉eix·(k−k′) ≃ C
6π2η3∗

= 1 . (6.11)

In the large N -limit we neglect the corrections of order 1/N which come from the fluc-

tuations in β2. On large scales this is a very good approximation. However, on small

scales, and in particular, on scales comparable with the inverse of the mass of the symme-

try breaking field, m−1, the fluctuations are certainly not negligible. In our analysis we

consider only large scales, where the above approximation is valid.

In order for 〈β2〉 to be time independent we need that the equal time correlator be fixed

to one:

〈β2(k, η)〉 = A C
∫

d3k

(2π)3

(

η

η∗

)(1−2γ) J2
ν (kη)

(kη∗)2ν

≃ 3A

(

η∗
η

)2(1+γ−ν) ∫ ∞

0
dyy2(1−ν)J2

ν (y) = 1 , (6.12)

where we have substituted C = 6π2η3
∗ and we have set y = kη. Note that the upper limit

is actually η/η∗, but at late times, the (dimensionless) integral is insensitive to the upper

boundary, so we can take it to infinity and thus make the integral free of any time scale.

In order to obtain a time-independent vev, we then just require

ν = γ + 1 . (6.13)

Introducing this relation into Eq. (6.8), one obtains To in terms of γ as

To = 3(γ + 1/4) . (6.14)

The constant A is determined then by the condition

1 = 3A

∫ ∞

0
dyy2(1−ν)J2

ν (y) , hence A =
4Γ(2ν − 1/2)Γ(ν − 1/2)

3Γ(ν − 1)
. (6.15)

Since ν = γ + 1, we can also write the amplitude of the field fluctuations, as

βa(k, η) =
√

A

(

η

η∗

)3/2 Jν(kη)

(kη)ν
βa(k, η∗) . (6.16)

165



The production of gravitational waves

6.2.2 Unequal time correlators

From Eqs. (6.10) and (6.16) we obtain the following expression for the unequal time cor-

relator of the field:

〈

βa(k, η)β∗b(k′, η′)
〉

= A

(

ηη′

η2∗

)3/2 Jν(kη)Jν(k′η′)
(kη)ν(k′η′)ν

〈

βa(k, η∗)β
∗b(k′, η∗)

〉

= (2π)36π2A(ηη′)3/2 Jν(kη)Jν(kη′)
(kη)ν(kη′)ν

δab

N
δ(k − k′)

≡ (2π)3δ(k − k′)Pab
β (k, η, η′) . (6.17)

We assume that the field β is Gaussian distributed initially. As its time evolution

is linear, it will remain a Gaussian field and we can determine higher order correlators

via Wick’s theorem. This will be important in the next section when we determine the

unequal time correlator of the anisotropic stresses which source the production of GWs.

Furthermore, this source is totally coherent [31] in the sense that its unequal time correlator

Pab
β (k, η, η′) is a product of a function of η and η′,

Pab
β (k, η, η′) =

δab

N
6π2A(ηη′)3/2 Jν(kη)Jν(kη′)

(kη)ν(kη′)ν
≡ δab

N
f(k, η)f(k, η′) , (6.18)

with f(k, η) =
√

6π2A k3/2 Jν(kη)

(kη)ν−3/2
.

Note the k3/2 scaling law at horizon crossing (kη ∼ 1) which is characteristic for quantum

fluctuations from de Sitter, i.e. inflation. This already hints to the fact that we will find

a scale-invariant spectrum also in this case.

6.3 The production of gravitational waves

In this section we derive a general formula for the GW power spectrum sourced by super-

horizon modes of a self ordering field. We also comment about the frequency range for the

GW background produced in this way.

Let us consider tensor perturbations (GWs) of the metric,

ds2 = a2(η)(ηµν + 2hµν)dxµdxν , (6.19)

where hij is traceless, hi
i = 0, and divergence free, ∂ihij = 0. Linearizing Einstein’s

equations yields the evolution equation of GWs sourced by the anisotropic stresses of the

scalar fields Φ,

h′′
ij(x, η) + 2H h′

ij(x, η) −∇2hij(x, η) = 8πGΠij(x, η) , (6.20)

where Πij represents the TT part of the (effective) anisotropic stress tensor

Tij(x, η) = ∂iφ
a(x, η)∂jφ

a(x, η) − 1

3
δij [∇φa(x, η)]2 . (6.21)
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Fourier transforming the GW evolution equation (6.20) we obtain

h′′
ij(k, η) + 2H h′

ij(k, η) + k2hij(k, η) = 8πGΛij,lm(k̂)Tlm(k, η) (6.22)

where the projector

Λij,lm(k̂) ≡ Pil(k̂)Pjm(k̂) − 1

2
Pij(k̂)Plm(k̂) ,

Pij(k̂) ≡ δij − k̂ik̂j , k̂ ≡ k/k ,

filters out the TT part of the Fourier transformed effective anisotropic stress tensor

Πij(k, η) = Λij,lm(k̂)

∫

d3q

(2π)3
qlqm φa(q, η)φa(k − q, η) . (6.23)

Note that we are summing over repeated indices both in coordinates and in field compo-

nents.

The 2-point correlation function of the tensorial part of the anisotropic stress-tensor is

of the form
〈

Πij(k, η)Π∗
lm(k′, η′)

〉

≡ (2π)3δ(k − k′)Π2(k, η, η′)Mijlm(k̂) , (6.24)

where

Mijlm(k̂) =
1

4

[

Λij,lm(k̂) + Λij,ml(k̂)
]

. (6.25)

Since the trace Mijij = 1,

〈

Πij(k, η)Π∗
ij(k

′, η′)
〉

≡ (2π)3δ(k − k′)Π2(k, η, η′) . (6.26)

To determine Π2(k, η, η′), we compute
〈

Πij(k, η)Π∗
ij(k

′, η′)
〉

explicitly using Wick’s theo-

rem to reduce 4-point functions of the field to products of 2-point functions

〈

Πij(k, η)Π∗
lm(k′, η′)

〉

=

= Λij,pq(k̂)Λlm,rs(k̂
′)
∫

d3q

(2π)3
d3q′

(2π)3
qpqqq

′
rq

′
s

〈

φa(q, η)φa(k − q, η)φ∗b(q′, η′)φ∗b(k − q, η′)
〉

=

∫

d3q d3q′

(2π)6
(

qTΛq
)

ij

(

q′TΛq′
)

lm

[〈

φa(q, η)φ∗a(q − k, η)〉〈φb(−q′, η′)φ∗b(k′ − q′, η′)
〉

+

+
〈

φa(q, η)φ∗b(q′, η′)
〉〈

φa(k − q, η)φ∗b(k′ − q′, η′)
〉

+

+
〈

φa(q, η)φ∗b(k′ − q′, η′)
〉〈

φa(k− q, η)φ∗b(q′, η′)
〉]

=

∫

d3q d3q′
(

qTΛq
)

ij

(

q′TΛq′
)

lm

[

Paa
φ (|q|, η, η)Pbb

φ (|q′|, η′, η′) δ(k)δ(k′)

+ Pab
φ (|q|, η, η′)Pab

φ (|k − q|, η, η′) δ(q − q′)δ(k − q − k′ + q′)

+ Pab
φ (|q|, η, η′)Pab

φ (|k − q|, η, η′) δ(q′ + q − k′)δ(q′ + q − k)
]

(6.27)
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where we use the notation
(

qTΛq
)

ij
≡ qlΛij,lmqm and we have introduced the reality

condition φ∗(k) = φ(−k) and the unequal time correlator of the field φ which is defined in

the same way as the one for β,

〈φa(k, η)φ∗b(k′, η′)〉 = (2π)3δ(k − k′)Pab
φ (k, η, η′) . (6.28)

The zero-mode of the anisotropic stresses vanishes due to isotropy so that the first term in

the square bracket of the integral (6.27) does not contribute.

We now can compute the unequal time correlator
〈

Πij(k, η)Π∗
ij(k

′, η′)
〉

. Using

(

qTΛq
)

ij

(

qTΛq
)

ij
=

1

2
q4
(

1 − (k̂ · q̂)2
)2

, (6.29)

we obtain

Π2(k, η, η′) =

∫

d3q

(2π)3
q4
[

1 − (k̂ · q̂)2
]2

Pab
φ (|q|, η, η′)Pab

φ (|k − q|, η, η′) . (6.30)

We now relate the GW energy density spectrum to the unequal time anisotropic stress

spectrum of the source, Π2(k, η, η′). For this we first write the GW evolution equation in

momentum space,

h′′
ij + 2

a′

a
h′

ij + k2hij = 8πGΠij . (6.31)

Defining a new variable h̄ij ≡ ahij , one obtains

h̄′′
ij +

(

k2 − a′′

a

)

h̄ij = 8πGaΠij . (6.32)

In a radiation dominated background (a ∝ η) this reduces to

h̄′′
ij + k2h̄ij = 8πGaΠij . (6.33)

The solution of this differential equation with the initial conditions hij = h′
ij = 0 is given

by the convolution of the source with the Green function G(k, η, η′) = sin(kη − kη′),

h̄ij(k, η < ηfin) =
8πG

k2

∫ x

x∗

dy a(y/k)Πij(k, y/k) sin(x − y) , (6.34)

where we have set x ≡ kη and y ≡ kη′. The source of gravity waves is acting for a time

interval δη∗ = (ηfin − η∗) = ǫη∗. If ǫ < 1 we call the process short-lasting. This is the

relevant case for example for GWs produced during a symmetry breaking phase transition

where the source disappears after the phase transition since the latter typically lasts only

for a fraction of the Hubble time. However, the Goldstone modes considered in this work

may very well be long lived as they are not expected to interact with ordinary matter. In

this case therefore a long lasting source may be better motivated. We discuss both cases

below.

After the source has decayed, GWs are freely propagating, and thus described by the

homogeneous solution of Eq. (6.33),

h̄ij(k, η > ηfin) = Aij(k) sin(kη − kηfin) + Bij(k) cos(kη − kηfin) . (6.35)
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The coefficients Aij and Bij are fixed by matching the homogeneous solution to the inho-

mogeneous one at η = ηfin. Matching both h̄ij and its derivative h̄′
ij yields

Aij(k) =
8πG

k2

∫ xfin

x∗

dy a(y/k)Πij(k, y/k) cos(xfin − y) ,

Bij(k) =
8πG

k2

∫ xfin

x∗

dy a(y/k)Πij(k, y/k) sin(xfin − y) . (6.36)

The GW energy density is given by (see e.g. [186, 187, 82])

dρGW

d log k
=

k3|h′|2(k, η)

2(2π)3Ga2
, (6.37)

where the GW power spectrum has been normalized as follows:

〈

h′
ij(k, η)h′∗

ij(q, η)
〉

= 2
〈

h′
+(k, η)h′∗

+(q, η)+h′
×(k, η)h′∗

×(q, η)
〉

= (2π)3δ3(k−q) |h′|2(k, η) .

(6.38)

Here our normalization differs from that of Ref. [121]. Their definition of the power spec-

trum is related to ours by

P(k, η) ≡ 2πk3|h|2(k, η) (6.39)

and they infer dΩGW (k,η0)
d log k = k2P(k,η)

6H2
0

whereas we obtain, with (6.37) and h′ = kh for

sub-horizon modes,
dΩGW (k, η0)

d log k
=

k5|h|2(k, η)

6π2H2
0

=
k2P(k, η)

12π3H2
0

.

This difference in the normalization, which we attribute to an error in Ref. [121], leads to a

reduction of the final result by about a factor 60, which may be relevant for observations.

With the solution for h̄ij above, we obtain for η > ηfin

|h′|2(k, η) =
1

2a2

(

k2 + H2
)(

〈AijA
∗
ij〉 + 〈BijB

∗
ij〉
)

=
k2 + H2

2a2

(

8πG

k2

)2 ∫ xfin

x∗

dy

∫ xfin

x∗

dz a
(y

k

)

a
(z

k

)

cos(z − y)Π2
(

k,
y

k
,
z

k

)

,(6.40)

where we have used Eq. (6.26). The GW energy density at time η is of course well defined

only for waves with a wavelength well within the horizon, k ≫ H. Therefore we shall

approximate k2 + H2 ≃ k2 in the following.

The GWs are sourced by the anisotropic stress of the scalar field φa = vβa. The

correlators are simply related by

Pab
φ = v2Pab

β .

With Eq. (6.30) we obtain the following expression for the GW energy density after the

decay of the source, η > ηfin,

dρGW(k, η)

d log k
=

Gv4

4π4

k3

a4(η)

∫ ηfin

η∗

dτ

∫ ηfin

η∗

dξ a(τ)a(ξ) cos(kξ − kτ)

×
∫

d3p p4 sin4 θ Pab
β (p, τ, ξ)Pab

β (|k − p|, τ, ξ) , (6.41)
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where cos θ ≡ k̂·p̂. Inserting the power spectrum of β in the above expression and summing

over the field components, we find

dρGW(k, η)

d log k
=

Gv4

4π4

k3

a4(η)

36π4A2

N

∫ ηfin

η∗

dτ

∫ ηfin

η∗

dξ a(τ)a(ξ) cos(kξ − kτ)

×
∫

p < 1/η∗

|k − p| < 1/η∗

d3p p4 sin4 θ τ3ξ3 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν .(6.42)

Here the constant A comes from the normalization of β, and it is given by Eq. (6.15). In

the radiation dominated background considered here, we have ν = 1+γ = 2 and A = 5π/4.

Note also that we choose the normalization of the scale factor such that a(η0) = 1. Hence

the comoving wave number k is simply related to the present frequency of the GW by

f =
k

2π
.

In the next section we evaluate the present amplitude and frequency dependence of the

GW spectrum generated in this way explicitly. For this, the following relation between

temperature and time in a radiation dominated Universe are useful [132],

H2(t) =
1

η2 a(η)2
=

8πG

3

π2

30
geff(η)T 4(η) . (6.43)

Assuming an adiabatic expansion, geff(aT )3 = const., one finds

η =
MPl

T (η)T0

(

geff(η)

2

)1/3 ( 45

4π3geff (η)

)1/2

= 1.6 × 107sec

(

GeV

T

)

g
−1/6
eff (T ) . (6.44)

On the other hand, the expression for the temperature associated to a global O(N) sym-

metry breaking is [202]

T∗ =

√

24

N + 2
v , (6.45)

independent of the coupling λ.

Before moving to the evaluation of Eq. (6.42), let us briefly determine the frequencies

for the GW sources discussed in this paper. We are studying the IR modes kη∗ < 1 of the

GW spectrum, corresponding to frequencies smaller than the expansion rate at the time

of production, f∗ = H∗/(2π),

f∗ =
1

2πη∗
≈ 10−8

(

T∗
GeV

)

Hz . (6.46)

For the EW scale this corresponds to fEW
∗ ∼ 10−6 Hz, while for the GUT scale the asso-

ciated frequency is fGUT
∗ ∼ 108 Hz. For a given energy scale M ≃ T∗ at the time of pro-

duction, we are describing one frequency range or another, but always frequencies smaller

than the one corresponding today to that energy scale, f < f∗(M) ∼ 10−8Hz(M/GeV).

Clearly, only processes taking place in the radiation dominated Universe generate GWs

with sufficiently high frequencies such that they can be observed by direct GW detection

experiments. Indeed the frequency associated to the horizon at the matter-radiation equal-

ity is far too small, f eq
∗ ∼ 10−17 Hz, to be observed by direct GW detectors, like LIGO,
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LISA or BBO will be working. Therefore we consider only processes in the radiation

dominated Universe and γ = 1 and ν = 2 are assumed for the rest of the paper.

6.4 The gravitational wave spectrum today

In this section we study two different cases, first the situation in which the source producing

GWs lasts only a small fraction of the Hubble time at the moment of production and,

second, the case in which the GW source acts for a much longer time, until the moment

at which a given mode enters the horizon.

6.4.1 Short lived source

We first estimate the amplitude of the GW spectrum for large wavelengths, k < H∗, from

a short lived source which lasts from η∗ to ηfin, such that (ηfin −η∗)/η∗ ≡ ǫ ≪ 1 (as e.g. for

the radial mode of φ in hybrid preheating [111, 113]). Let us first note the following facts:

1) From Eq. (6.42) we see immediately that for small wavenumbers, kηfin ≪ 1, the result

scales like
dρGW

d log k
∝ k3 .

2) Since the source is short lived, η∗ ≈ ηfin, and we deal with superhorizon modes, kη∗ ≪ 1,

we may set cos(kη− kη′) ≈ 1 and the time integral can be replaced simply by a factor ǫη∗.
3) To estimate the momentum integral, we use that Bessel functions at small arguments,

x ≡ kη < 1, can be approximated by Jν(x) ≈ (x/2)ν/Γ(1 + ν). To obtain the dominant

contribution at large wavelength (i.e. the least blue part) we may also set |k−q|η∗ ≃ qη∗.

Using all the above considerations, we are left with a simple integral for the evaluation

of the spectra of the IR modes (kη∗ ≪ 1) of GWs, at any time η ≫ η∗ for which those

modes have already crossed the horizon

dρGW(η)

d log k

∣

∣

∣

∣

kη∗≪1

≃ Gv4

4π4
36π4A2 k3

a4(η)

2π

N

∫ 1

−1
d cos θ sin4 θ

∫ 1/η∗

0
dp

p6

22νΓ4(ν + 1)

×
(
∫ ηfin

η∗

dτ a(τ)τ3

)2

=
3 · 5π3

7 · 211

Gv4

N

(

a∗
a(η)

)4

ǫ2H2
∗ (kη∗)

3 , (6.47)

where we used A = 5π/4, ν = 2 and we approximated
∫ ηfin

η∗
dτa(τ)τ3 ≈ a(η∗)η3

∗δη∗ =

ǫ a(η∗)η4
∗ , since we have set ηfin − η∗ = δη∗ ≃ ǫη∗.

With this we can now evaluate the ratio of the GW energy density to the critical density

today, for the IR modes kη∗ ≪ 1, as

ΩGW(f) =
1

ρc

dρGW(η0)

d log k
≈ 5π4

7 · 28

(

v

MPl

)4 ǫ2

N
Ωrad(kη∗)

3

∼ 10−5

(

v

MPl

)4 ǫ2

N
(kη∗)

3 , (6.48)

where we used H2
∗ = 8πGρ∗/3, we expressed the radiation density today as ρrad ≈

ρ∗(a∗/a0)
4 and we introduced the the radiation density parameter today as Ωrad ≈ 4.2 ×

10−5. We have also neglected the factors coming from the ratio of the effective relativistic
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degrees of freedom since they appear only with the power 1/3.

Note that this formula is general for the IR spectrum of GWs generated at any process

in which the source, a N -component scalar field, has rapidly acquired its true vev v at η∗
and undergoes a short phase of self-ordering which lasts for a fraction ǫ < 1 of the Hubble

time.

Finally, note also that very generically we have η∗ ∝ T−1
∗ ∝ 1/v so that ΩGW ∝

v4η3
∗k

3 ∝ v k3 and not as v4, as one could naively have concluded from Eq. (6.48).

6.4.1.1 The electroweak phase transition

The comoving horizon size at the electroweak (EW) phase transition is given by the EW

energy scale T∗ ∼ 100 GeV, geff (T∗) = 106.75,

η∗ ≃ 7.5 × 104 sec .

Inserting this above with f = k/(2π), we find

ΩGW(f) ≈ 4.2 × 105 5π4(2π)3

7 · 28
Ωrad

(

v

MPl

)4 ǫ2

N

(

f

mHz

)3

∼ 10−65 ǫ2

N

(

f

mHz

)3

. (6.49)

For the last expression we have used v ≃ T∗. This result is of course unmeasurably small.

6.4.1.2 A GUT scale phase transition

To have any chance to measure this spectrum, we need a vev which is not too many orders

of magnitude below that Planck scale, since the GW energy density is suppressed by a

fourth power of the ratio of the vev to MPl. The best change might be a GUT scale with a

vev of the order of v ≃ 1016GeV. But then of course η∗ will be very small and the dominant

contribution will come from very high frequencies, lower frequencies being suppressed by

the factor (kη∗)3. For T∗ = 1016GeV we have

η∗ ≃ 5 × 10−10 sec ,

leading to

ΩGW(f) ≈ 0.125
5π4(2π)3

7 · 28
Ωrad

(

v

MPl

)4 ǫ2

N

(

f

GHz

)3

∼ 10−16 ǫ2

N

(

f

GHz

)3

. (6.50)

Apart from the fact that this result suffers severe additional suppression at measurable

frequencies which are significantly below 1GHz = 109Hz, the sensitivity of 10−12Ωrad ≃
10−16 cannot be reached with any presently proposed experiment at those frequencies.

Therefore, we can only conclude that the superhorizon GW spectrum generated from

a short lived self ordering scalar field is much below presently proposed experimental sen-

sitivities.
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6.4.2 A long lived source

As we have seen in the previous subsection, short lived Goldstone modes cannot lead to a

significant GW background. But since Goldstone modes are typically non-interacting and

long lived, it is more natural to consider them for a time which is much longer than the

horizon scale η∗. To compute the GW energy density produced by such a self ordering

scalar field, we consider Eq. (6.42) and set ηfin = ηk ≡ 1/k, since the solution (6.16) decays

inside the horizon, when kη > 1. We then have to compute the following integral

dρGW(k, ηk)

d log k
=

Gv4

4π4

k3

a4(ηk)

36π4A2

N

∫ 1/k

η∗

dτ

∫ 1/k

η∗

dξ a(τ)a(ξ) cos(kξ − kτ) ×
∫

pη∗ < 1
|p − k|η∗ < 1

d3p p4 sin4 θ τ3ξ3 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν ,(6.51)

Note that the range of integration of the variable p in the above expression is set to be

{pη∗ < 1, |p − k|η∗ < 1} since the initial two point correlator of the scalar field turns out

to be different from zero only in this range of momenta [c.f. Eq. (6.10)].

In order to obtain an analytical result for the above integral, we perform the following

approximations:

• We are interested in scales k that are superhorizon for all the time of GW production,

namely kτ < 1 and kξ < 1 for times τ, ξ between η∗ and ηfin = 1/k, therefore we

approximate cos(kξ − kτ) ≃ 1 .

• We neglect the angular dependence of |p−k| so that the angular integral reduces to

2π
∫

sin4 θd cos θ = 32π/15.

• In the range of integration where pτ ≫ 1 we substitute |k − p|τ ≃ pτ , while when

pτ ≪ 1 we approximate |k− p|τ ≪ 1.

• The range of momenta for which we can expand the Bessel functions in terms of

small arguments is p < min(1/τ, 1/ξ), while in the range min(1/τ, 1/ξ) < p <

max(1/τ, 1/ξ) we should distinguish between large and small argument expansions of

the Bessel functions. Finally, in the range max(1/τ, 1/ξ) < p < 1/η∗ one can consider

the large argument limit for all the four Bessel functions of the above integral.

Taking into account all the above considerations, we find that the complete integral

becomes

∫ 1/k

η∗

dτ

∫ 1/k

η∗

dξ

∫ ∞

0
dp f(p, τ, ξ) = 2

∫ 1/k

η∗

dτ

∫ τ

η∗

dξ

(

∫ 1/τ

0
dp f +

∫ 1/ξ

1/τ
dp f +

∫ 1/η∗

1/ξ
dp f

)

,

which allows us to separate the integral in p using the asymptotic behaviour of the Bessel

functions,

Jν(x) ≃ xν

2νΓ(ν + 1)
for x ≪ 1 ,

Jν(x) ≃
√

2

xπ
cos

(

x − (2ν + 1)π

4

)

for x ≫ 1 .

We can distinguish three different intervals:
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• The IR contribution, I1(k), for 0 < p < 1/τ , with |k − p|τ < 1 and |k − p|ξ < 1 .

• The mixed (UV+IR) contribution, I2(k), for 1/τ < p < 1/ξ, with |k − p|τ ≃ pτ > 1

but |k − p|ξ ≃ pξ < 1 .

• The UV contribution, I3(k), for 1/ξ < p < 1/η∗, with |k − p|τ ≃ pτ > 1 and

|k − p|ξ ≃ pξ > 1 .

Therefore we can finally write

dρGW(k, ηk)

d log k
= D(k) [I1(k) + I2(k) + I3(k)] , (6.52)

where the pre-factor D(k) contains the coefficients in front of the integral in Eq. (6.51),

the factor coming from the angular integration (32π/15) and the factor 2 that comes from

the symmetry of the double time integration, namely

D(k) ≡ Gv4

4π4

k3

a4(ηk)

36π4A2

N
× 32π

15
× 2 =

Gv4

N

k3

a4(ηk)
15 · 4π3 . (6.53)

The three integrals of Eq. (6.52) are given by

I1(k) ≡
∫ 1/k

η∗

dτ

∫ τ

η∗

dξ a(τ) a(ξ) τ3 ξ3

∫ 1/τ

0
dp p6 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν

≃ H2
0Ωrad

4096

∫ 1/k

η∗

dτ

∫ τ

η∗

dξ τ4 ξ4

∫ 1/τ

0
dp p6

=
H2

0Ωrad

4096 k3

1

35

[

1

3
− 5

6
(kη∗)

3 +
1

2
(kη∗)

5

]

, (6.54)

I2(k) ≡
∫ 1/k

η∗

dτ

∫ τ

η∗

dξ a(τ) a(ξ) τ3 ξ3

∫ 1/ξ

1/τ
dp p6 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν

≃ H2
0Ωrad

32π

∫ 1/k

η∗

dτ

∫ τ

η∗

dξ τ4 ξ4

∫ 1/ξ

1/τ

dp p6

(pτ)5
cos2

(

pτ − 5π

4

)

=
H2

0Ωrad

128π k3

[

2

45
+

1

18
(kη∗)

3 − 1

10
(kη∗)

5 +
(kη∗)3

3
log(kη∗)

]

, (6.55)

and

I3(k) ≡
∫ 1/k

η∗

dτ

∫ τ

η∗

dξ a(τ) a(ξ) τ3 ξ3

∫ 1/η∗

1/ξ
dp p6 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν

≃ 4H2
0Ωrad

π2

∫ 1/k

η∗

dτ

∫ τ

η∗

dξ τ4 ξ4

∫ 1/η∗

1/ξ

dp p6

(pτ)5(pξ)5
cos2

(

pτ − 5π

4

)

cos2

(

pξ − 5π

4

)

=
H2

0Ωrad

3π2 k3

[

1

9
− 1

9
(kη∗)

3 − (kη∗)
3

(

1

2
log2(kη∗) −

1

3
log(kη∗)

)]

. (6.56)

More precisely, in the above computation we substituted each cos2 x by its mean value
〈

cos2 x
〉

= 1/2 averaged over a few oscillations, and we introduced the usual expression
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for the scale factor in a radiation dominated background, a(η) ≃ H0
√

Ωradη, which is

consistent with a0 = 1 today.

All three terms have a scale-invariant spectrum. Actually, the ”UV” contribution given

in Eq. (6.56) is the largest. Summing all the three contribution and considering the dom-

inant part in the limit kη∗ ≪ 1 [hence also (kη∗)3 log(kη∗) ≪ 1], we obtain the following

scale-invariant spectrum

dρGW(k, ηk)

d log k
≃ 5 · 25π4 Ωrad ρc

Na4(ηk)

(

v

MPl

)4( 1

212 · 105 +
1

26π · 45 +
1

27π2

)

≃ 60 × Ωrad ρc

Na4(ηk)

(

v

MPl

)4

, (6.57)

where we have used the Friedmann equation H2
0 = 8πGρc/3. Redshifting the above ex-

pression until today, we obtain for the GW energy density parameter,

ΩGW(k, η0) ≡
dρGW(k, η0)

ρcd log k
=

dρGW(k, ηk)

ρcd log k
a4(ηk) ≃

60

N
Ωrad

(

v

MPl

)4

. (6.58)

This corresponds to a scale-invariant GW spectrum produced by a self-ordering scalar field

in the large N -limit. This result is valid for all wave numbers k which enter the horizon

when the Goldstone modes of our N -component field are still massless and the field has not

yet decayed. Scales which enter the horizon after this time ηfin, i.e. scales with kηfin < 1,

are suppressed by a factor (kηfin)3, as for them the result for a short lived source with η∗
replaced by ηfin applies.

6.4.3 Numerical integration

In order to obtain more accurate results, and to check the validity of our analytical ap-

proximations, we have also performed a numerical evaluation of the integrals in Eq. (6.42).

If we set the final time of integration to be the horizon crossing, ηfin = 1/k, as we did in

the analytical evaluation for the long lasting source (6.51), we obtain the following result

for the final GW density parameter today

ΩGW(k, η0) ≃
22

N
Ωrad

(

v

MPl

)4

, ηfin = 1/k . (6.59)

This suggests that the analytical approximation somewhat overestimates the result. How-

ever, we can continue the integration to later times when the wavelength has already

entered the horizon.

The integral in Eq. (6.51) allows us to compute the GW energy density in the limit

kη∗ ≪ 1, using the change of variables u = cos θ, q = p/k, x = kτ ,

ΩGW(k, η) =
G2v4Ωrad

Na4(η)
75π4

∫ ∞

0
dq q2F (q)

{

[
∫ kη

0
dx cos xJ2

2 (qx)

]2

+

[
∫ kη

0
dx sin xJ2

2 (qx)

]2
}

(6.60)

where the kernel F (q) comes from the integration over angles,

F (q) =

∫ 1

−1

du (1 − u2)2

(q2 + 1 − 2qu)2
=

1

24q5

[

16q + 12q(q2 − 1)2 + 3(q2 − 1)2(q2 + 1) log
(q − 1)2

(q + 1)2

]
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Figure 6.1: The sensitivity of present and future GW experiments are compared with
our results for a long lasting source and inflation. We show, the amplitude of the scale-
invariant GW background expected from a GUT scale inflation (blue, dashed) and from a
self-ordering long lived source as studied in this paper, for a symmetry breaking field with
N = 4 real components and a vev v = 10−2MPl (top, red line), v = 10−3MPl (middle, blue
line, overlying with inflation) and v = 10−4MPl (bottom, green line). The big dot at the
right end of the horizontal lines represents the frequency (6.46) associated to the horizon
at the initial time of production.
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Figure 6.2: The density parameter in gravitational waves as a function of kη. For scales
outside the horizon, kη < π, we observe the (kη)3 dependence (short dashed line), while
for scales that have entered the horizon, kη > π, the GW energy density saturates, at a
normalized value of 511 (long dashed line). This result implies a significant scale-invariant
GW spectrum today.

176



The gravitational wave spectrum today

and we have made the approximation, J2(x
√

q2 + 1 − 2qu) → J2(qx), inside the time

integration. We have checked that for large times the result is correct within 0.1%.

Numerically evaluating (6.60), we find that the GW energy density continues to grow

until horizon crossing, kη ≃ π, and saturates thereafter, see Fig. 6.2. This agrees with the

result of Ref. [121], who find a peak in the power spectrum P(k, η) at approximately this

value, and also explains the 1/a(η)2 dependence of the Power spectrum, P ∝ ΩGW/a2, for

scales that have already entered the horizon.

For kη ≫ 4 the gravitational wave energy density saturates at a value

ΩGW(k, η0) ≃
511

N
Ωrad

(

v

MPl

)4

, (6.61)

where we used again the usual normalization of the scale factor in a radiation dominated

background. These results suggest that the GW spectrum produced by this mechanism

still grows inside the horizon and reaches its final value somewhat after horizon crossing.

This is consistent with the fact that the power of the scalar field that sources these GWs is

not absent inside the horizon, but it is indeed given by the Bessel functions in Eq. (6.18),

which decay rather slowly as functions of kη.

In the following analysis we will consider the numbers arising from the numerical inte-

gration, as given in Eq. (6.61).

6.4.4 Observational constraints

Our result for the amplitude of the GW spectrum (6.61) is inside the range of detectability

of the BBO [199, 200, 201] experiment (ΩGW(k) & 10−17) and is marginally detectable

by LISA [13, 14, 15, 16] or advanced LIGO [10, 11] (ΩGW(k) & 10−10). Indeed, with

Ωrad ≃ 4.2 × 10−5, we find that BBO would detect this signal if the symmetry breaking

scale v satisfies

(

v

MPl

)4

& 4.7 · 10−16N ⇒ v

MPl
& 1.5 · 10−4N1/4 .

Concerning the sensitivity of LIGO or LISA, the signal is detectable if

(

v

MPl

)4

& 4.7 · 10−9N ⇒ v

MPl
& 0.008N1/4 .

In other words, for scales higher or around the GUT scale, v & 1016GeV, the very long

wavelength tail which we have studied here could be observed.

In order to relate the above scale-invariant GW energy density to the GW spectrum

from inflation, we compute the relative tensor-to-scalar ratio r. Following Ref. [203], one

has the following expression for the GW density parameter from inflation

ΩGW(k, η0) = 4.36 × 10−15 r

(

k

k0

)nT

, r ≡ PT(k0)

PS(k0)
, (6.62)

where k0 = 0.002hMpc−1, PT(k) = rPS(k0)(k/k0)
nT and we used the WMAP result,

PS(k0) = 2.21 × 10−9. This concerns only the wavelengths which enter the horizon in the

radiation dominated era, before equality. Comparing the above expression for nT ≃ 0 with
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our Eq. (6.61), we obtain in our case

r ≃ 3

N

( v

1016GeV

)4
. (6.63)

Another usefull comparison with inflation is the relative strength of the GW energy den-

sities produced by the above two different mechanisms. Considering always wavelengths

which enter the horizon in the radiation dominated epoch, we have [150]

Ω
(inf)
GW = 10−13

(

H∗
10−4MPl

)2

= 8.4 × 10−5

(

M

MPl

)4

, (6.64)

where M denotes the energy scale of inflation, H2
∗ ≡ 8πGM4/3. The ratio between the

GW energy density produced by our mechanism and the one from inflation is then

R ≡ ΩGW(k, η0)

Ω
(inf)
GW (k, η0)

≃ 256

N

( v

M

)4
. (6.65)

Comparing these results with those of Ref. [121], where the authors mainly concentrate

on the spectrum of GWs produced in a matter dominated universe, we reproduce perfectly

the amplitude of their spectrum P(k, η) defined as in Eq. (6.39), but their final relative

strength R is nearly 2 orders of magnitude larger than what we find in Eq. (6.65). We

believe this is due to the factor 1/(2π3) missing in their expression for ΩGW(k, η0) which

has to be introduced for consistency with the definition of the power spectrum P(k).

6.5 Conclusions

In this paper we have estimated the contributions to the gravitational wave background

from a symmetry breaking phase transition on large scales, kη∗ < 1. We have concentrated

on the analysis of the Goldstone modes and we obtained the following main conclusions.

If the modes are short lived with duration ǫη∗, ǫ < 1 their contribution is blue and

suppressed by a factor ǫ2(kη∗)3. This result is actually generic, independent of the nature

of the short lived source. Indeed, one typically obtains

ΩGW(k) ≃ (kη∗)
3ΩradΩ

2
Xǫ2 , (6.66)

where ΩX is the density parameter of the source of anisotropic stresses at the moment of

creation. For the Goldstone modes the factor Ω2
X is replaced by (v/MPl)

4. This strong

suppression factor renders GWs from short-lived Goldstone modes entirely unobservable.

The situation is different for long lived Goldstone modes. There the suppression factor

(kη∗)3 is absent. Therefore, if the Goldstone modes remain massless until a time ηfin, for

modes with kηfin
>∼ 1 the spectrum is scale invariant and the amplitude is given by

ΩGW(k) ≃ 511

N
Ωrad

(

v

MPl

)4

, (6.67)

which is marginally detectable with the experimental sensitivity of advanced LIGO or LISA

and is well within the range of BBO for a GUT scale phase transition. The results for the

long-lived source are summarized in Fig. 6.1.
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If the Goldstone modes are still present at decoupling, ηfin
>∼ ηdec, these GWs will also

leave a signature in the cosmic microwave background where they lead to a scale-invariant

contribution very similar to the one of global textures, i.e. a N = 4 global O(N) model [31].

Note that this new GW background from self-ordering fields after inflation (e.g. from

hybrid preheating) has a power spectrum very similar to that coming from inflation, and

therefore it may become important to disentangle both if they are present simultaneously,

that is if the scale of inflation and that of symmetry breaking are related by parameters of

order one, like in hybrid inflation.
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The local B-polarization of the CMB: a very sensitive probe
of cosmic defects

Juan Garćıa-Bellido, Ruth Durrer, Elisa Fenu, Daniel G. Figueroa and Martin Kunz

We present a new and especially powerful signature of cosmic strings and other topo-

logical or non-topological defects in the polarization of the cosmic microwave background

(CMB). We show that even if defects contribute 1% or less in the CMB temperature

anisotropy spectrum, their signature in the local B̃-polarization correlation function at an-

gular scales of tens of arc-minutes is much larger than that due to gravitational waves from

inflation, even if the latter contribute with a ratio as big as r ≃ 0.1 to the temperature

anisotropies. We show that when going from non-local to local B̃-polarization, the ratio of

the defect signal-to-noise with respect to the inflationary value increases by about an order

of magnitude. Proposed B-polarization experiments, with a good sensitivity on arc-minute

scales, may either detect a contribution from topological defects produced after inflation

or place stringent limits on them. Already Planck should be able to improve present con-

straints on defect models by about an order of magnitude, to the level of ǫ = Gv2 < 10−7.

A future full-sky experiment like CMBpol, with polarization sensitivities of the order of

1µK-arcmin, will be able to constrain the defect parameter ǫ to less than a few ×10−9,

depending on the defect model.

DOI: 10.1016/j.physletb.2010.11.031 PACS numbers 98.80.-k, 98.80.Cq, 11.27.+d

7.1 Introduction

Many inflationary models terminate with a phase transition which often also leads to the

formation of cosmic strings and other topological defects [204, 205]. Furthermore, we have

recently argued [120] that the end of hybrid inflation may involve the self-ordering of a

N -component scalar field. Even though for N > 4 it does not lead to the formation

of topological defects, the self-ordering dynamics leads to a scale-invariant spectrum of

fluctuations which leaves a signature on the CMB [196, 31]. It has been shown long ago that

topological defects do not generate acoustic peaks [32] and therefore they cannot provide

the main contribution to the CMB anisotropies. However, they still may provide a fraction

of about 10%, similar to a possible gravitational wave contribution [102, 103, 104, 105] in

the temperature anisotropies of the CMB.

The perturbations from cosmic strings and other topological defects are proportional

to the dimensionless variable ǫ = Gv2 where v is the symmetry breaking scale. For cosmic

strings µ = v2 is the energy per unit length of the string [30]. Present CMB data limit the

contribution from defects [102, 103, 104, 105] such that ǫ < 7 × 10−7. Stronger limits on

ǫ have been derived from the gravitational waves emitted from cosmic string loops [206,

207, 208], but these are quite model dependent and will not be discussed here.
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In this Letter we show that measuring the local B̃-polarization correlation function of

the CMB provides stringent limits on defects or, alternatively, detects them. The physical

reason for this is twofold. First, defects lead not only to tensor but also to even larger

vector perturbations [31]. What is more important, vector modes generate much stronger

B-polarization than tensor modes with the same amplitude, see e.g. [132]. B-polarization is

not only a ‘smoking gun’ for gravitational waves from inflation, but it is also extremely sen-

sitive to the presence of vector perturbations (vorticity). Furthermore, the B-polarization

of the angular power spectrum of topological defects, especially of cosmic strings, peaks on

somewhat smaller scales than the one from tensors due to inflation. The local B̃-correlation

function, which is obtained from the polarization by two additional derivatives, enhances

fluctuations on small angular scales. As we shall see, measuring the local B̃ instead of

the usual non-local B correlation function results in an enhancement of the signal to noise

ratio from defects with respect to the inflationary one by about a factor 10.

7.2 The local B̃-polarization correlation function

Since Thomson scattering is direction dependent, a non-vanishing quadrupole anisotropy

on the surface of last scattering leads to a slight polarization of the CMB [132]. This

polarization is described as a rank-2 tensor field Pab on the sphere, the CMB sky. It is

usually decomposed into Stokes parameters, Pab = (Iσ
(0)
ab + Uσ

(1)
ab + V σ

(2)
ab + Qσ

(3)
ab )/2 =

Iδab/2 + Pab, where σ(µ) are the Pauli matrices [132], and I corresponds to the intensity

of the radiation and contains the temperature anisotropies. Thomson scattering does not

induce circular polarization so we expect V = 0 for the CMB polarization, and hence Pab

to be real. We define an orthonormal frame (e1, e2,n) and the circular polarization vectors

e± = 1√
2

(e1 ± ie2), which allows us to introduce the components P±± = 2ea
±eb

±Pab =

Q ± iU and P+− ∼ V = 0. The second derivatives of this polarization tensor are related

to the local Ẽ- and B̃-polarizations,

∇−∇−P++ + ∇+∇+P−− = 2∇a∇bPab ≡ Ẽ ,

∇−∇−P++ −∇+∇+P−− = 2ǫcdǫab∇c∇aPbd ≡ B̃ .

Here ∇± are the derivatives in the directions e± and ǫcd is the 2-dimensional totally anti-

symmetric tensor. These functions are defined locally. The usual E- and B-modes can

be obtained by applying the inverse Laplacian to the local Ẽ- and B̃-polarizations. Such

inversions of differential operators depend on boundary conditions which can affect the

result for local observations. The B̃-correlation function, CB̃(θ) ≡ 〈B̃(n)B̃(n′)〉n·n′=cos θ,

is measurable locally. It is related to the B-polarization power spectrum CB
ℓ by [132]

CB̃(θ) =
1

4π

∞
∑

ℓ=2

(ℓ + 2)!

(ℓ − 2)!
(2ℓ + 1)Pℓ(cos θ)CB

ℓ . (7.1)

Here Pℓ(x) are the Legendre polynomials. Analogous formulae also hold for CẼ. Note the

additional factor nℓ = (ℓ + 2)!/(ℓ − 2)! = ℓ(ℓ2 − 1)(ℓ + 2) ∼ ℓ4 as compared to the usual

non-local E- and B-polarization correlation functions. At first sight one might argue that

whether one expresses a result in terms of CB
ℓ ’s or CB̃

ℓ = nℓC
B
ℓ should really not make

a difference since both contain the same information. For an ideal full sky experiment

which directly measures the CB
ℓ with only instrumental errors this is true. But a CMB
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experiment usually measures a polarization direction and amplitude with a given resolution

over a patch of sky and with a significant noise level, and this makes a big difference as we

shall show.

7.3 Results

In Fig. 7.1 we show the local B̃-polarization power spectra for tensor perturbations from

inflation, cosmic strings, textures and the large-N limit of the non-linear sigma-model.

All spectra are normalized such that they make up 10% of the temperature anisotropy at

ℓ = 10. Details of how these calculations are done can be found in [31] for global defects

and the large-N limit and in [209] for cosmic strings. A comparison of the non-local

B-polarization power spectra for cosmic strings and inflation can be found in [210].

Figure 7.1: The local B̃-polarization power spectra for tensor perturbations from inflation,
cosmic strings, textures and the large-N limit of the non-linear sigma-model. All spectra
are normalized such that they make up 10% of the temperature anisotropy at ℓ = 10.
The dotted red line corresponds to the inflationary contribution taking into account the
induced power from lensing of E-modes. The different noise levels (dashed brown curves)
precisely mimic the effect of E-lensing. For a definition of the noise amplitude ∆P,eff and
the smoothing scale ℓs see the text.

It had already been noted in Refs. [106] and [30] that the B-polarization power spectra

for defects are larger than those from inflation for the same temperature anisotropy. Defects

peak at somewhat higher ℓ’s than inflationary perturbations, since B-modes from defects

are dominated by their vector (vorticity) modes. This contribution is maximal on scales

that are somewhat smaller than the horizon scale, while gravitational waves truly peak at

the Hubble horizon at decoupling, which corresponds to ℓ ∼ 100. As a consequence, the

local B̃-polarization spectra for defects are even larger than those from inflation because

of the factor nℓ ≃ ℓ4. This is most pronounced for cosmic strings, which have considerable

power on small scales, but it is also true for other defects.

Due to the extra factor nℓ, in the local B̃-power spectra shown in Fig. 7.1, power at small

scales (high ℓ) counts significantly more than power at larger scales (low ℓ). This is the

reason why defect models dominate over the inflationary B-modes of the same amplitude.

185



Observational prospects

This is seen very prominently in the 2-point angular correlation function shown in Fig. 7.2

where we can compare the defect peaks coming from cosmic strings, textures and large-N .

Note the decreasing height but increasing width of the peak as we go from cosmic strings

to large-N models.

For 0.2 < θ < 1o, where the inflationary B̃-polarization is about −2 mK2, that from

cosmic strings is −150 mK2, about a factor 100 larger. For textures and the large-N model,

the difference is somewhat smaller, roughly a factor of 50 and 10 respectively. The very

pronounced peak on very small scales is not visible due to the noise.

Figure 7.2: The local B̃-polarization angular correlation functions for θ < 1o for inflation
and the defect models of Fig. 1, with a smoothing scale ls = 400.

Even though constructed ad hoc, coherent causal seed models (but not topological de-

fects) can have acoustic peaks, see Ref. [211], which thus cannot be used as a differentiating

signature from inflation. But the fact that polarization is generated at the last scattering

surface implies that it cannot have power on scales larger than the horizon at decoupling,

corresponding to about ℓ ∼ 100, or angles θ > 2o, unless something like inflation has taken

place [107]. This can only be circumvented if one allows for acausality, i.e. superluminal

motion, of the seeds [212], however improbable. In Ref. [123] the authors have shown

that this superhorizon signature appears not only in the TE-cross correlation spectrum,

but also in the local B̃-polarization spectrum. We find that this is somewhat weakened

by re-ionization, which adds power on large scales to the B-polarization from defects, see

Fig. 7.1.

7.4 Observational prospects

It is clear from Fig. 7.2 that cosmic defects with equal amplitude as the tensor component

from inflation (note ǫ = 7 × 10−7 is equivalent to r = 0.1) would have a significant peak

in the two-point correlation function of the local B̃-polarization, on angular scales of order

tens of arc-minutes. A relevant issue is whether this peak could be measured with full-sky

probes like Planck [8] or CMBpol [213], or even with small-area experiments. This is diffi-

cult because, although CMB experiments typically have a flat (white) noise power spectrum

for the Stokes parameters, the local nℓ ∼ ℓ4 factor induces a very blue spectrum for the

noise in the local B̃-modes, which erases the significance of the broad defect peak at ℓ ∼ 500
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in the CB̃
ℓ power spectrum. Moreover, in order to extract the cosmological B̃-polarization

signal it is necessary first to clean the map from the contribution coming from gravita-

tionally lensed Ẽ-modes. This induces an extra ‘lensing noise’ ∆P,eff ∼ 4.5µK·arcmin for

uncleaned maps that can be reduced to ∼ (0.1 − 0.7)µK·arcmin by iterative cleaning or

a simple quadratic estimator respectively [214]. Furthermore, CMB experiments have an

angular resolution determined by the microwave horn beam width, θFWHM, which induces

an uncertainty in the Cℓ’s that can be described by an exponential factor exp[ℓ(ℓ + 1)σ2
b ],

with σb = θFWHM/
√

8 log 2. Resolutions of order 10 arcminutes, like those of the Planck

HFI experiment, correspond to multipoles ℓb = 1/σb ∼ 800. Adding the steep polarization

noise, with typical amplitude ∆P,eff = (0.5 − 12)µK·arcmin, would make the signal disap-

pear under the small-scale noise. In order to regulate this divergence, we smooth both the

signal and the noise with a Gaussian smoothing of width σs, corresponding to a smoothing

scale ℓs < ℓb. We choose ℓs = 400 in our analysis.

Figure 7.3: The signal-to-noise ratio as a function of the normalized polarization sensitivity,
for inflation, cosmic strings, textures and the large-N limit of the non-linear sigma-model.
Solid curves: using angular scales up to 1o and dashed curves: using angular scales up to
4o, with 6 arcmin resolution bins.

In order to compute the signal-to-noise ratio S/N for detection of the defect peak in

the local B̃-correlation function, we split the interval θ ∈ [0, 1o] in 10 equal bins 1. We

then evaluate the theoretical correlation function at the center of those bins, Si = CB̃(θi),

and write the covariance matrix of the correlated bins as

Cij =
∑

ℓ

2ℓ + 1

8π2fsky
(CB̃

ℓ )2Pℓ(cos θi)Pℓ(cos θj) ,

where the covariance matrix in ℓ-space is assumed to be diagonal, cov[CB̃
ℓ , CB̃

ℓ′ ] = 2(CB̃
ℓ )2δℓℓ′/(2ℓ+

1)fsky, with CB̃
ℓ = (CB̃

ℓ + Nℓ) exp[−ℓ(ℓ + 1)/ℓ2
s ]. Here fsky is the fraction of the observed

sky which we set to 0.7 for satellite probes. The signal-to-noise ratio for the defect model

1Note that Planck has this resolution only for the higher frequency bands, above 200 GHz, where the
sensitivity is somewhat reduced.
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is S/N =
√

SiC
−1
ij Sj. In Fig. 7.3 we show this ratio as a function of the normalized po-

larization sensitivity for all types of defects as well as for inflation (where 7 × 10−7/ǫ has

to be replaced by
√

0.1/r). The horizontal lines correspond to 3, 5 and 10-σ respectively.

To show why the choice of θmax = 1o is optimal we also plot (dashed lines) the S/N for

θmax = 4o, at fixed resolution (6′). For the latter, the noise level allowed for a 3-σ detection

increases by more than a factor of 2 for inflation while it does not change much for defects.

This behaviour is a telltale sign for defects, and shows that their signal is strongly localised

in the angular correlation function, which distinguishes them e.g. from inflationary tensor

perturbations and lensed E-modes: the S/N curve from defects does not change much for

angles above ∼ 1o, while the one from inflation increases significantly.

In Table 7.1 we give the values of ǫ which are measured at 3σ by Planck (assum-

ing ∆P,eff = 11.2µK·arcmin [123], where the de-lensing error is added in quadrature), a

CMBpol-like experiment with polarization sensitivity ∆P,eff = 0.7µK·arcmin, and a dedi-

cated CMB experiment with ∆P,eff = 0.01µK·arcmin. Note, however, that it is not clear

how to perform the de-lensing of the B-modes to the level of precision needed for the last

case.

In Fig. 7.4 we show the ratio of S/N from defects to the one from inflation for non-

local (dashed) and local B̃-modes (solid curves). Clearly, in the local polarization the

defect signal is substantially enhanced. It is interesting to note that actually textures fare

better than cosmic strings even though they have less power on small scales. The reason

is that the very small scales are dominated by noise and the signal mainly comes from the

intermediate scales around 0.3o where textures dominate, see Fig. 2.

Figure 7.4: The ratio of the signal-to-noise from defects to the one from inflation. Solid
curves: measuring the local B̃ correlation function. Dashed curves: measuring the non-
local B correlation function.

7.5 Conclusions

In this Letter we have shown that measuring the local B̃-polarization correlation function

on small scales, θ . 1o is a superb way to detect topological and non-topological defects,
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Table 7.1: The limiting amplitude, ǫ = Gv2, of various defects, at 3-σ in the range θ ∈
[0, 1o], for Planck (∆P,eff = 11.2µK·arcmin), CMBpol-like exp. (∆P,eff = 0.7µK·arcmin)
and a dedicated CMB experiment with (∆P,eff = 0.01µK·arcmin). We set fsky = 0.7.

S/N = 3 Strings Semi-local Textures Large-N
Planck 1.2 · 10−7 1.1 · 10−7 1.0 · 10−7 1.6 · 10−7

CMBpol 7.7 · 10−9 6.9 · 10−9 6.3 · 10−9 1.0 · 10−8

B̃ exp 1.1 · 10−10 1.0 · 10−10 0.9 · 10−10 1.4 · 10−10

or alternatively to constrain their contribution to the CMB. For simple inflationary models

which lead to defect formation at the end of inflation, a value of ǫ ≃ 10−7 ÷ 10−8 seems

rather natural, hence the achieved limits include the relevant regime. The fact that the local

B̃-polarization from defects is dominated by the vector mode, which peaks on scales smaller

than the horizon, is responsible for a significant enhancement of the local B̃-polarization

correlation function on tens of arc-minute scales.

Even though the Planck satellite is not the ideal probe for constraining these models,

if it finally reaches down to r ≤ 0.025, see Ref. [215], it will either lead to the detection of

a defect contribution, or it will constrain it to ǫ = Gv2 . 10−7, depending on the defect

model (textures being the most constrained and Large-N non-topological defects the least).

Future CMB experiments, with 0.1 arc-minute resolution and sensitivities at the level of

0.1µK in polarization, could in principle reach the bound ǫ < 10−10 for most defect types,

which would rule out a large fraction of present models.

Acknowledgements

We thank Neil Bevis, Mark Hindmarsh and Jon Urrestilla for allowing us to use their Cℓ’s

from cosmic string and texture simulations. D.G.F. acknowledges support from a Marie

Curie Early Stage Research Training Fellowship associated with the EU RTN“UniverseNet”

during his stay at CERN TH-Division. J.G.B. thanks the Institute de Physique Theorique

de l’Universite de Geneve for their generous hospitality during his sabbatical in Geneva.

This work is supported by the Spanish MICINN under project AYA2009-13936-C06-06 and

by the EU FP6 Marie Curie Research and Training Network “UniverseNet” (MRTN-CT-

2006-035863).

189



Conclusions

190



Chapter 8

Conclusions

In this Thesis I have investigate the primordial Universe through the imprints that high

energy mechanisms may have left in the CMB and GWB. This represents one of the most

challenging aspects of modern Cosmology: the new incoming data will reach a level of

precision that allows us to gain a deeper understanding of the processes that characterized

our Universe just after the Big Bang, and Cosmology represents a unique possibility to get

insights and eventually test the Physics at so high temperatures.

In particular, I concentrate my research on two different fundamental features that may

have characterized the early Universe: primordial magnetic fields and cosmological defects.

On one hand, we address the basic question concerning the origin of the MF observed

today in galaxies and clusters: it is still unclear whether this MF is seeded by a primordial

field originated in the early Universe through some high energy physical processes, or it is

the result of charge separation scenarios during late structure formation. Assuming that

the primordial option is the correct one, we might be able to detect the imprints that such

a seed field would have left in the CMB. Through this analysis important constraints on

the initial amplitude that such a primordial MF had before recombination have already

been obtained in the literature.

First we analyze the interaction between MFs and GWs, confirming that this is not a

cause of amplification of none of these two physical quantities. Considering other conse-

quences of this interaction, we follow an idea presented previously in the literature accord-

ing to which this allows us to obtain more stringent upper-bounds than through a CMB

analysis on the amplitude of a primordial MF in case it is produced by causal mechanisms.

Applying the nucleosynthesis limit on the GW energy density produced by a seed field,

we are able to exclude most of the primordial mechanisms proposed to generate MFs in

the early Universe. Indeed, we confirm that causally generated MFs do not have enough

power on large scale even if they present initially an helical component that leads to an

inverse cascade. The limits in the case of helical MFs are relaxed with respect the ones

obtained for standard non-helical fields, but they cannot seed the observed MF in galaxies

and clusters, even considering the most efficient dynamo amplification. Only MFs gener-

ated during inflation with a red spectrum, or the ones produced during a later QCD phase

transition may have enough power to seed the present field.

In order to cover another chapter concerning the generation of a primordial MF in the

early Universe, we study the possibility of producing a small seed field through non-linear
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dynamics that create vortical currents when the tight-coupling approximation between

photons and baryons breaks down near the last scattering surface. This mechanism is nec-

essarily present in the early Universe and it has been already analyzed by several authors.

With the aim of reviewing this process in all its completeness, we take into account for

the first time in the literature all the contributions to the resulting MF power spectrum.

With the help of a numerical computation we obtain as final result a MF amplitude of

10−29 Gauss on a comoving smoothing scale of 1 Mpc. This means that the seed field gen-

erated by magnetogenesis around recombination is too weak to sustain the amplification

mechanisms that can amplify it in order to explain the observed field today.

Another important step concerning the MF puzzle consists in the analysis of the influ-

ence that massless particles free-streaming before recombination have on the imprints that

a constant MF leaves on the CMB anisotropies. While a constant seed field gives mainly

a quadrupole contribution, we observe how this quadrupole can be erased through a com-

pensation of the anisotropic stresses of the MF and of massless particles free-streaming in

an anisotropic Universe. This compensation results in a subsequent isotropization of the

Universe and, in the case where this remains true even during recombination, in a complete

cancelation of the quadrupole generated by the MF alone. Once we consider primordial

neutrinos to have the role of the above free-streaming particles, of course this argument

will depend on their masses and the final cancelation will be more effective the longer they

are relativistic.

Even if no conclusive understanding concerning the origin of the observed MF today

has been reached yet, more clear answers have been provided to some of the fundamental

questions about the option of a primordial origin. Of course more work is needed in order

to fully complete the MF puzzle.

Another aspect of my research is focused on the investigation of the remnants produced

by cosmological defects that may have played a role in the early Universe.

A first study concentrate on the GWs produced by a self-ordering scalar field once

it broke a global symmetry. We underline that the super-horizon tail of such GWs is

characterized by a flat spectrum whose amplitude is, for some value of the true vacuum

expectation, in the range of sensitivity of some GW observers. This means that it is very

similar to the one produced by primordial tensor perturbations generated during inflation.

Therefore, it is important to find an efficient way to disentangle these two spectra in the

case they have also similar amplitudes. This is the motivation that pushes us toward the

analysis of the B-polarization spectrum produced by defects a the second project on this

same topic.

With the aim of detecting or better constraining the defect contribution to CMB

anisotropies, we investigate the local B̃-polarization of the CMB as produced by differ-

ent kind of cosmological defects and by primordial inflationary perturbations. We first

underlined that, since real CMB experiments are not full sky ideal probes of the tempera-

ture anisotropies, the analysis of the local B̃-modes, which do not depend on the boundary

conditions, gives rather big advantages than the standard non-local B-modes. Indeed, in

the local polarization the defect signal is substantially enhanced with respect to the infla-

tionary one, while, if we consider the non-local one, this is not the case, namely the signal

to noise ratios for the two models are almost comparable. Moreover, we also show that

the comparison between the two signal to noise ratios corresponding to different sky patch
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sizes shows that, once we enlarge the patch of the sky that we observe, the inflation signal

to noise ratio increases significantly, while the one for defects does not change much. This

is a consequence of the a-causal nature of inflation, that presents its main features in a

range of angles corresponding to distances bigger than the Hubble size at recombination.

Therefore, once we consider sky patches corresponding to smaller angles we better extract

the signal corresponding to causal processes such as defect perturbation generation. With

our proposed sky analysis, we forecast an improvement on the current upper-bounds on

the defect contribution to the CMB anisotropies by several orders of magnitude.

The research present in this Thesis represents important bricks on the way of building

a more complete and deep understanding of the physical mechanisms the characterized the

first few seconds after the creation of our Universe, a regime of temperatures and energies

that is impossible to access otherwise in a normal laboratory. Moreover, it also underlines

the open questions that still remain unsolved. It is therefore crucial to keep investigating

both on the theoretical and experimental points of view, with the certitude that, for every

answered query, many more new and interesting issues will arise.
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