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077125 Măgurele, Romania; bogdan.mihalcea@inflpr.ro

Abstract: We investigate solutions of the classical Mathieu–Hill (MH) equation that characterizes

the dynamics of trapped ions. The analytical model we introduce demonstrates the equations of

motion are equivalent to those of a harmonic oscillator (HO). Two independent approaches are used,

based on two classes of complex solutions of the MH equation. This paper addresses both a damped

HO and parametric oscillator (PO) for an ion confined in an electrodynamic (Paul) trap, along with

stability and instability regions for the associated periodic orbits.
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1. Introduction

Parametric excitation of second-order nonlinear systems [1,2] has been the subject of in-
tense investigations [3,4], amongst which we mention the method of normal forms. Ref. [5]
uses such a method to investigate the dynamical stability of a nonlinear system charac-
terized by a nonlinear Mathieu–Duffing equation of motion [1,6–11] in case of parametric
excitation [12]. It was demonstrated that the intrinsic nonlinear nature of the system in-
duces a subharmonic region that was not previously reported for systems characterized
by linear MH equations [8,13]. Normal modes analysis is also used in [14] to describe
dynamical stability for trapped ion systems.

Nanoelectromechanical systems (NEMS) enable performing tests on the fundaments
of quantum mechanics by studying the transition from classical to quantum behaviour of a
driven nonlinear Duffing resonator [15]. The numerical solutions of the equations of motion
associated to the resonator demonstrate that the quantum Wigner function slowly deviates
from the corresponding classical phase-space probability density. Thus, nonlinearity is
the cause of such differences which provide experimental evidence that NEMS resonators
are excellent systems for quantum simulation and investigations of nonlinearity. On the
other hand, ion traps are versatile tools that enable interdisciplinary investigations on
nonlinearity [16–19].

Ref. [20] introduces a method to calculate the wave functions and energies of ground
state and low-lying excited states of quantum multibody systems by employing the deep
neural network and the unsupervised machine learning (ML) technique. A simple method
of symmetrization for bosonic systems and antisymmetrization for fermionic systems is
also proposed, in order to perform calculations in case of many-particle systems consisting
of identical particles.

Investigations of the stability of physical systems that undergo periodic parametric
driving [21], such as ions confined by oscillating electric fields (Paul traps) [22], is a subject
of vivid scientific interest. The behaviour of these systems can be better explained based
on an approach that employs the pseudopotential approximation, which explains well
trapping of charged particles within a quadratic potential and resonances that arise out of
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parametric excitation [14]. In the pseudopotential approximation (for large values of the
radiofrequency—RF), both in the classical and quantum cases, the time periodic Hamilton
function that characterizes an ion confined within an electrodynamic trap is replaced by an
autonomous (time-independent) Hamilton function. Furthermore, linear ion traps (LIT)
that operate at two RF values represent a versatile tool to simultaneously confine two ion
species of interest [23]. Parametric excitation is also employed to carry out mass-selective
removal of ions out of an electrodynamic trap [24–26].

It is well established that a single trapped ion can be employed as a paradigm to
test a choice of essential physical models realized as time-dependent (quantum) harmonic
oscillators (QHO) [21,27–42]. A numerical modelling for a segmented Paul trap that ex-
hibits four blade electrodes that generate the trapping field and a pair of two biasing rods,
where the latter are employed to compensate micromotion [43], is performed in ref. [44].
Such an approach delivers enhanced optical access for both fluorescence spectroscopy and
individual ion addressing, a mandatory requirement to achieve ion crystals or perform
quantum engineering and manipulation [45] of trapped ion quantum states [46,47]. Applic-
ations span atomic clocks [48–50], which are excellent tools to search for physics Beyond
the Standard Model (BSM) [51,52] or to test novel quantum technologies (QT) based on
ultracold trapped ions [53,54]. Multipole linear Paul traps (LPTs) are also versatile tools to
investigate cold ion-atom collisions and thus provide new experimental evidence of the
phenomena involved [55–58].

A matter of utmost importance is the issue of quantum-enhanced measurements
that exhibit potential to enhance high-precision sensing. Applications span areas such as
ultraprecise optical clocks [50,59,60], realization of high-fidelity quantum logic gates [61],
many-body quantum enhanced sensors [62,63] or measurements on the time-variations
of the fundamental constants of nature at the cosmological scale [64]. Quantum sensors
suffer from sensitivity loss in the presence of quantum noise [65]. To mitigate such an effect,
different quantum error-correcting codes have been tested and implemented. Ultracold
trapped ions demonstrate to be a promising platform for both quantum sensing and
quantum error correction experiments [39,53,66].

Ref. [2] investigates Hamiltonian dynamics [67] of a single QHO [21,68,69] in the
presence of dissipation and parametric driving, while it establishes that a time-dependent
parametric frequency incessantly drives the system out of its dynamical equilibrium state.
In addition, fine-tuning of the system parameters enables one to control the contention
between dissipation and parametric driving in a similar way to which Ref. [16] investigates
the competition between multipole anharmonicities of the trap electric potential and a
periodic kicking term (laser field), driving the system from a regular motion regime towards
chaotic dynamics [17]. To achieve control of a QHO, a key issue lies in characterizing and
suppressing the inherent noise [70,71]. The intrinsic noise spectrum of a trapped ion can be
characterized and experimental demonstrations of QHO control are recently reported in
literature [39].

The paper is intended as a follow-up of the review paper recently published in Photon-
ics [72]. Section 2 starts from the analytical model introduced in [73]. The paper investigates
the issue of the solutions of the MH equation that explains ion dynamics within an electro-
dynamic ion trap (EIT). We show such an equation can be expressed as a HO equation and
suggest two classes of complex solutions. It is well established that the MH equation solu-
tion can be expressed as a Hill series [74–77] and we analyse such cases. The first method
we use yields a system of linear equations that enables one to determine the constants in
the Fourier series solution. In case of the second method suggested, we derive a recursive
relationship between these coefficients for a particular solution of the MH equation. Both
approaches are original. Section 3 applies the results previously derived in Section 2 and
supplies an analytical model to characterize ion dynamics as bound or unbound. By con-
sidering the residual interaction we supply the solutions of the MH equation. Finally, we
demonstrate the MH equation can be regarded as a HO equation.
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In Appendix A.1 we show a trapped ion can be assimilated with a kicked-damped HO
model and discuss solutions depending on the discriminant of the equation. In Appendix B
we analyse solutions of the MH equation for an ion confined within an electrodynamic (or
RF) trap, assimilated with a parametric oscillator (PO).

The results in the paper apply to electrodynamic traps employed in ultra-high-
resolution spectroscopy, mass spectrometry (MS) and in the domain of quantum tech-
nologies (QT) based on ultracold trapped ions [78–81], with an emphasis on quantum
sensors and quantum metrology.

2. Solutions of the Mathieu–Hill Equation

An iconic paper that reports on an elaborate analysis and discussion of the transition
of a few ion crystals into ion clouds is ref. [73]. The paper demonstrates how the crystalline
phase prevails until the Mathieu stability limit is attained, emphasizing that the corres-
ponding transition cannot be regarded as an order → chaos transition which occurs when a
control parameter reaches a critical value. In addition, in the vicinity of this limit the system
exhibits sensitivity to perturbations, which enables the experimenter to investigate crystal
melting substantially forward the instability limit. The influence of the ion micromotion on
ion crystal stability is also discussed in [73], where numerical modelling is used to charac-
terize dynamical stability and discriminate between four possible regimes. Representations
of large Coulomb crystals composed of trapped ions are reported in [55], where Molecular
Dynamics (MD) numerical modelling is employed to account for cold ion–atom elastic
collisions that occur between Coulomb crystals and very light virtual atoms.

A review of strongly coupled Coulomb systems consisting of ultracold trapped ions is
performed in [82], whereas 2D crystals in zig-zag configurations and structural transitions
are discussed in [83–85]. Recent approaches report direct observation of micromotion for a
many-body Coulomb crystal consisting of ultracold trapped ions, while novel techniques
to measure the micromotion amplitude are implemented [86]. A numerical modelling is
employed to determine phase transitions in small-ion Coulomb crystals confined in an
electrodynamic ion trap (EIT) [87], where the phase transition points are introduced as
extremes of the interpolated functions employed. The novel conceptualization of fractal
quasi-Coulomb crystals is introduced in [88], for the case of surface electrodynamic traps
(SET) characterized by a Cantor Dust electrode configuration. New experimental evidence
of orientational melting that arises in a 2D crystal consisting of up to 15 ions is reported
in [89].

An analytical and numerical modelling focused on dynamical stability in the case of
trapped ion systems is performed in [90] by extending the model introduced in [73,91].
Numerical modelling illustrates that the associated dynamics is either quasiperiodic or
periodic, depending on the initial conditions. The evolution in time for a system of two
coupled oscillators levitated in an RF trap is described using an analytical model that
depends on the chosen control parameters, while ion dynamics is shown to be integrable
only for discrete values of the ratio between the axial and the radial frequencies of the ion
secular motion. A qualitative discussion of the system dynamical stability is then performed
by employing the Morse theory. The results are further applied to many body strongly
coupled Coulomb systems (trapped ions), locally investigated in the vicinity of equilibrium
configurations that designate ordered structures. These equilibrium configurations exhibit
a large interest for Coulomb ion crystals (atomic clocks) or to achieve quantum information
processing (QIP).

For example, the Kibble–Zurek mechanism (KZM) generally describes nonequilibrium
dynamics along with topological defect occurrence for physical systems that undergo
second-order phase transitions. A generalized KZM that explains defect emergence in
trapped ion systems is discussed in [92,93], where the analytical models proposed enable
investigation of KZ physics in the case of inhomogeneous systems.
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We consider the MH equation for an ion confined in an EIT [72,73]

ẍ + f (τ)x = 0 , f (τ) = a + 2q cos(2τ) . (1)

Equation (1) is a linear differential equation with a periodic coefficient, and it is assumed
that f is a periodic function f (τ + T0) = f (τ) with the particular case T0 = π. We introduce







az = −2ax = −2ay = − 8eU0

mΩ2(r2
0+2z2

0)
qz = −2qx = −2qy = 4eV0

mΩ2(r2
0+2z2

0)
,

(2)

where e is the elementary electric charge, m denotes the ion mass, r2 = r2
0 + 2z2

0 with r0

and z0 the trap semiaxes, while U0 stands for the d.c. trapping voltage applied to the
trap endcap electrodes. In addition, ax = −ay and qx = −qy. Because we discuss a Paul
(RF) trap τ = Ωt/2 is the dimensionless time [73,78], whilst Ω is the RF of the oscillating
trapping voltage (denoted as V0) supplied to the cylindrical electrodes in case of a 2D
linear Paul trap, or to the ring electrode for a classical hyperbolic 3D geometry. Moreover,
the function f : R → R is real and continuous for period T0 > 0. We also analyse cases in
which the function f is a Fourier series [72,74,94,95].

f (τ) = A0 + ∑
k>0

Ak cos kτ + ∑
k>0

Bk sin kτ , (3)

where A0 is a known constant, whilst the Ak and Bk coefficients are considered as real

∑
k>0

(

A2
k + B2

k

)

< ∞ , Ak, Bk ∈ R . (4)

The Floquet theory [77] explains the general solution (which is a complex function) can be
cast as [73]

x1 = Q(τ)Φ(τ) , (5)

where the function
Q(τ) = eiµτ , µ ∈ C , (6)

is associated with the slow (or secular) ion motion, while Φ(τ) = Φ(τ + T0) represents
a complex, periodical and twice-differentiable function that characterizes the micromo-
tion [72,96]. In the case of a MH equation ion dynamics is stable as long as the Floquet
exponent is a complex number µ ∈ C [97,98]. Hence, the solution is written as

x = eiµτΦ(τ) + e−iµτΦ∗(τ) ∈ R , (7)

which depends on the coefficients Ak and Bk, with (k > 0) and A0. Φ∗(τ) denotes the
complex conjugate of the previously introduced Φ(τ) function. One can also expand Φ(τ)
as a Fourier series

Φ(τ) = C0 + ∑
k>0

Ck cos kτ + ∑
k>0

Dk sin kτ . (8)

If

∑
k>0

(

A2
k + B2

k

)

≪ A0 ,

then Equation (1) can be expressed as the equation of a harmonic oscillator
(HO) [40–42,99,100]

ẍ + A0x = 0 , (9)

Further on, we illustrate two different methods to solve the MH equation:

1. One chooses a solution expressed as x = x2 + x∗2 , where x∗2 is the complex conjugate
of x2 so that

x2 = eiµτ(C0 + C1 cos τ + D1 sin τ) . (10)
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A double differentiation with respect to τ yields

ẋ2 = eiµτ [iµC0 + cos τ(D1 + iµC1) + sin τ(iµD1 − C1)] , (11)

ẍ2 = eiµτ
{

−µ2C0 + cos τ
[

2iµD1 − C1

(

1 + µ2
)]

− sin τ
[

D1

(

1 + µ2
)

+ 2iµC1

]}

. (12)

We now revert to Equation (1) and introduce the expression f (τ) supplied by
Equation (3)

ẍ2 + (A0 + A1 cos τ + B1 sin τ)x2 = 0 . (13)

Equation (13) is also verified for the complex conjugate x∗2 . Then, one uses
Equations (11) and (12) along with Equation (13) to further derive

− µ2C0 + cos τ
[

2iµD1 − C1

(

1 + µ2
)]

− sin τ
[

D1

(

1 + µ2
)

+ 2iµC1

]

+ (A0 + A1 cos τ + B1 sin τ)(C0 + C1 cos τ + D1 sin τ) = 0 . (14)

Equation (14) can also be cast as

− µ2C0 + A0C0 + A1C1 cos2 τ + B1D1 sin2 τ + (A1D1 + B1C1) sin τ cos τ

+ cos τ
[

A0C1 + A1C0 − C1

(

1 + µ2
)

+ 2iµD1

]

+ sin τ
[

A0D1 + B1C0 − 2iµC1 − D1

(

1 + µ2
)]

. (15)

One uses [101–104]

sin2 τ =
1 − cos 2τ

2
, cos2 τ =

1 + cos 2τ

2
, sin 2τ = 2 sin τ cos τ . (16)

Finally, by performing the calculus in Equation (14) with k > 1, one infers the follow-
ing system of equations:







−µ2C0 + A0C0 +
1
2 A1C1 +

1
2 B1D1 = 0

B1C0 + A0D1 − D1

(

1 + µ2
)

− 2iµC1 = 0
A1C0 + A0C1 + 2iµD1 − C1

(

1 + µ2
)

= 0

(17)

Using this system of equations one can determine the coefficients C0, C1 and D1,
respectively. Hence, one determines the solution x2 from Equation (10) and implicitly
the solution x in Equation (9). Hence, an ion confined within an electrodynamic trap
can be treated as a HO and the method introduced above allows one to derive the
MH equation that characterizes the associated dynamics.

2. As demonstrated in [77] one chooses a solution of the form x2 = eiµτΦ. Therefore,

ẋ2 = eiµτ
(

iµΦ + Φ̇
)

(18)

ẍ2 = eiµτ
(

Φ̈ + 2iµΦ̇ − µ2Φ
)

(19)

We introduce the solution x = x2 + x∗2 in the MH Equation (1) and derive

eiµτ
(

Φ̈ + 2iµΦ̇ − µ2Φ
)

+ e−iµτ
(

Φ̈ − 2iµΦ̇ − µ2Φ
)

+ f (τ)
(

eiµτ + e−iµτ
)

Φ = 0 . (20)

By performing a Fourier series expansion [105] one can write
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Φ = ∑
k∈Z

ckeikτ , f = ∑
k∈Z

akeikτ , a∗k = a−k , (21)

where ak are arbitrary constants and eiµτ = cos µτ + i sin µτ. Consequently, Equation (20)
becomes

∑
k∈Z

ck

[

−k2 − 2µk − µ2
]

ei(µ+k)τ + ∑
k∈Z

(

−k2 + 2µk − µ2
)

ei(k−µ)τ

+ ∑
p∈Z

ap ∑
k∈Z

ckei(k+µ+p) + ∑
p∈Z

ap ∑
k∈Z

ckei(k+p−µ)τ = 0 . (22)

It can be noticed that the equation above contains terms such as eiµτ

(

∑
k+p=n

apck

)

einτ .

One denotes bn = ∑
k+p=n

apck = ∑
p∈Z

apcn−p. As a result, Equation (22) can be recast as

eiµτE + e−iµτE∗ = 0 , (23)

with






E = ∑k∈Z
[

−ck(k + µ)2 + bk

]

eikτ ,

E∗ = ∑k∈Z
[

−ck(k + µ)2 + bk

]

e−ikτ .
(24)

By using Equations (23) and (24) one obtains

ck(k + µ)2 = bk = ∑
p∈Z

ak−pcp , k ∈ Z , (25)

which is amenable to

∑
p∈Z

[

ak−p − (k + µ)2δkp

]

cp = 0 , (26)

where δkp stands for the Kronecker delta function. One further denotes

A =
[

ak−p − (k + µ)2δkp

]

. (27)

Further on we introduce

C =

























...
c−2

c−1

c0

c1

c2
...

























. (28)

Then, A · C = 0 where C is the column matrix introduced above. One further infers

det A = 0 , (29)

which is exactly the MH equation that determines the Floquet exponent µ as a function
of the ak coefficients (particularly as a function of the eigenvalue a and q parameter).
It is assumed that ak = 0 for |k| > 2 (Mathieu case) and a1 = a−1 = 0. In such a case

f (τ) = a0 + a2e2iτ + a−2e−2iτ . (30)

As explained above, one also supposes that a2 = a−2 = q and a0 = a. Then
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f (τ) = a + 2q cos 2τ , (31)

which is exactly the classical MH equation. Based on Equation (25) one derives

ck(k + µ)2 = a0ck + ck−2a2 + a−2ck+2 = ack + q(ck+2 + ck−2) , (32)

with q ̸= 0 and
{

ck+2 = αck + βck−2 , if k > 0 ,
ck−2 = γck + ζck−2 , if k < 0 .

(33)

where α, β, γ, and ζ are known coefficients. When |ck| ∼ 0 and |k| > 2, the column
matrix C [described by Equation (28)] can be recast as

C =

























...
c−2

0
c0

0
c2
...

























, (34)

where it is assumed that c1 = c−1 = 0 is an initial condition (hypothesis). In such case
the function Φ [in Equation (21)] can be expressed as

Φ = c0 − 2c2 cos 2τ , (35)

with c2 = c−2. Then, for k = 0 one finds

c0µ2 = ac0 + 2c2q 7−→ µ2 = a + 2
c2

c0
q . (36)

We consider the initial conditions

{

c0 = x0 ,

2 c2
c0

= q
2 .

(37)

Under these circumstances Equation (36) is recast as

µ2 = a +
q2

2
. (38)

We return to Equation (1) and express f as

f = µ2 + fres . (39)

Then, one uses Equation (38) and the residual interaction function fres is

fres = f − µ2 , fres = 2q cos 2τ − q2

2
, (40)

which we discuss below.

Discussion

When |k| > 1, then ak = 0. In case of the HO [6,8,41,72] a0 > 0, and from Equation (32)
one infers

ck(k + µ)2 = a0ck , (41)

and we distinguish two distinct cases
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(i) k = 0 ⇒ a0 = µ2 with c0 ̸= 0.

(ii) ck ̸= 0 ⇒ (k + µ)2 = µ2 = a0 ⇒ k + µ = ±µ and the two solutions of the
equations are

{

k1 = 0 ,
k2 = −2µ /∈ Z ,

(42)

where the latter case is discarded. Then, Φ = c0 and

x = eiµτc0 + e−iµτc∗0 , (43)

which stands for the equation of the HO for µ ∈ R, while c∗0 stands for the complex
conjugate of c0. Hence, the MH equation turns into the equation of a classical HO

ẍ + µ2x = 0 . (44)

It is demonstrated that one can use the time-dependent variational principle
(TDVP) [106–108] and then express the Hamilton equations of motion for the unidimen-
sional case in order to derive the quantum equation of motion in the Husimi (Q) represent-
ation, for a boson enclosed in a nonlinear ion trap [37,109]. This equation of motion is fully
consistent with the one that portrays a perturbed classical oscillator. Hence, a phase-space
formulation of quantum mechanics, e.g., the Husimi or Wigner representation, discloses the
composition of the corresponding phase-space [36] and establishes a correlation between
classical and quantum dynamics for this class of mesoscopic systems [110,111].

3. Stability Diagram of the MH Equation

The standard (canonical) form of the Mathieu equation for an ion confined within an
electrodynamic trap, characterized by the parameters a and q, is [9,72,74,76,95,112,113]

d2w

dτ2
+ [a − 2q cos 2τ]w = 0 . (45)

We demonstrated in [72] that this is a Sturm–Liouville system [114] characterized by
periodic boundary conditions, while the system exhibits solutions exclusively for particular
values of the eigenvalue a, which depend upon q. It is also established that other solutions
exist for every pair (a, q), but we consider only periodic solutions [105].

In order to characterize ion dynamics, one of the possible approaches is to separate
the ion micromotion from the secular motion [73]. The MH equation can be recast as (see
Equation (1))

ẍ + f x = 0 , where one introduces f = µ2 + fres , (46)

where fres describes the residual interaction that accounts for the ion micromotion.
In addition,

1

T0

∫ T0

0
fresdτ = 0 , T0 = π , (47)

so the micromotion term averages out during a period of the RF drive which leads us
to the case of an autonomous Hamilton function for the trapped ion. By separating the
micromotion Equation (46) changes accordingly

ẍ + µ2x + fresx = 0 , (48)

which stands for the equation of the HO [8,21,36,37,100,115] of period 2π/
√

|µ|, with µ ∈
R, 2µ /∈ Z. It can be observed that ion dynamics is decomposed into a slowly oscillating
part (the secular motion) at frequency µ (see Equation (38)) and a fast parametric drive
(the micromotion) fres at frequency Ω. The secular ion motion (or the macromotion) is
characterized by the equation

ẍ + µ2x = 0 , (49)
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where µ is the Floquet exponent [74,77]. We now revert to Equation (25) and choose k = 0.
Consequently,

µ2 = a0 +
c−2

c0
a2 +

c2

c0
a−2 . (50)

From Equation (46) one derives fres = f − µ2, which we multiply by x. We consider the
solution x = x2 + x∗2 and use Equation (21). Hence,

fresx =

(

∑
k

akeikτ − µ2

)(

eiµτ ∑
p

cpeipτ + e−iµτ ∑
p

cpe−ipτ

)

. (51)

One denotes
φ(τ) = ∑

p

cpeipτ , φ∗(τ) = ∑
p

cpe−ipτ , (52)

where φ∗(τ) stands for the complex conjugate of φ(τ). Because

∫ 2π

0
eikτdτ =

1

ik
eikτ |2π

0 = 0 , when k ̸= 0 , (53)

∫ π

0
eikτdτ =

1

ik

(

eikπ − 1
)

=

{

0, k even
2i/k, k odd

(54)

We revert to Equation (47) and denote

I =

π
∫

0

fresx dτ = ∑
p,k

akcp

[

ei(k+p+µ)π − 1

i(µ + k + p)
− e−i(k+p+µ)π − 1

i(µ + k + p)

]

− µ2 ∑
p

cp
1

i(µ + p)

[

ei(µ+p)π − e−i(µ+p)π
]

= ∑
p,k

akcp
2 sin(µ + k + p)π

µ + k + p
− µ2 ∑

p

2 sin(µ + p)π

µ + p
. (55)

As demonstrated in [72], by choosing a0 = a, a2 = a−2 = 2q, |ak| = 0 for |k| > 2, one
derives [73]

I =

{(

∑
p

cp
2 sin(µ + p)π

µ + p

)

(

a0 − µ2
)

+ 2q ∑
p

cp

[

2 sin(µ + p)π

µ + 2 + p
+

2 sin(µ + p)π

µ − 2 + p

]

}

= 2 ∑
p

cp sin(µ + p)π

[

a0

µ + p
+

2q

µ + 2 + p
+

2q

µ − 2 + p

]

= 0 . (56)

By assuming c1 = c−1 = 0; |ck| = 0 for |k| > 2 and c2 = c−2 for values p = −2, 0, 2,
and the micromotion term averages out (see [73])

c0

[

a0 − µ2

µ
+ q

(

1

µ + 2
+

1

µ − 2

)]

+ c2

[

a0 − µ2

µ
+ q

(

1

µ + 4
+

1

µ

)]

+ c−2

[

a0 − µ2

µ
+ q

(

1

µ − 4
+

1

µ

)]

= 0 , (57)

which is further amenable to

c2

c0
= −

2
(

a2
0 − µ

)

+ 2q
(

2 +
µ

µ+2 +
µ

µ−2

)

a0 − µ2 + 2q
(

µ
µ+2 +

µ
µ−2

) . (58)
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In cases when q is very small [72,73,95]

a0 = µ2 +
q2

2(µ2 − 1)
+

(

5µ2 + 7
)

q4

32(µ2 − 1)
3
(µ2 − 4)

+ . . . , µ ̸= 1, 2, 3 , (59)

and the even solution can be expressed as

c2

c0
=

q

4(µ + 1)
+

(

µ2 + 4µ + 7
)

q3

128(µ + 1)3(µ + 2)(µ − 1)
+ . . . , µ ̸= 1, 2 , (60)

which completely determines the MH equation for an ion confined in a Paul trap, while it
stands as the main result of the paper. In ref. [73] the values used are

a = µ2 − 1

2
q2 ,

c2

c0
=

q

4
, (61)

as the value of the Floquet exponent µ was chosen to be small, and implicitly the character-
istic value (eigenvalue) a and parameter q in the MH equation as well. Both of them are
real-valued, as previously emphasized in Section 1. Nevertheless, this hypothesis does not
coincide with the values used in [73].

It was demonstrated in [72] that for ion trap operating points that lie within the first
stability region of the MH equation and for small values of the eigenvalue a and q parameter,
the coefficients ck rapidly converge to zero. Under such conditions higher harmonics
become insignificant and the fundamental frequency prevails. It was also demonstrated
that the solution of the MH equation is the sum between a shift that corresponds to
the fundamental frequency and a correction due to the occurrence of higher harmonics
associated with ion dynamics. The problem of evaluating the maximum amplitude of stable
oscillations under given initial conditions was approached. The maximum is characterized
by upper bounds determined by the relative position of the electrodes. For optimum trap
operating parameters it is essential to consider all axes for which the equation of motion
is of Mathieu type. A nonzero solution can be expressed as the combination of two linear
dependent functions, which form a fundamental solution of the MH eq. Ion trajectories are
investigated by building a family of ellipses, while the transfer matrix is supplied along
with the maximum amplitude of stable oscillations [72].

The frontiers of the stability diagrams are defined by the equations [75,76,95,112]

a0(q) = − q2

2
+

7q4

128
− 29q6

2304
+

68687q8

18874368
+ . . . , (62)

a1(−q) = b1(q) = 1 − q − q2

8
+

q3

64
− q4

1536
− 11q5

36864
+

49q6

589824

− 55q7

9437184
− 83q8

35389440
+ . . . , (63)

a2(q) = 4 +
5q2

12
− 763q4

13824
+

1002401q6

79626240
− 1669068401q8

458647142400
+ . . . , (64)

b2(q) = 4 − q2

12
+

5q4

13824
− 289q6

79626240
+

21391q8

458647142400
+ . . . . (65)

When a, |q| ≪ 1 and r ≥ 7 (case when ar is approximately equal to br), the characteristic
values of the frontiers of the stability region are described by the following power series
approximation [8,76]

ar, br = r2 +
q2

2(r2 − 1)
+

(

5r2 + 7
)

q4

32(r2 − 1)
3
(r2 − 4)

+

(

9r4 + 58r2 + 29
)

q6

64(r2 − 1)
5
(r2 − 4)(r2 − 9)

+ . . . . (66)
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The analytical modelling performed in this paper is valid for all electrodynamic trap
designs. It is essential to establish whether ion trajectories are stable or unstable depending
on the experimental conditions, as well as whether the boundaries are stable and unstable
regions associated with the ion dynamics. It is established that these limits correspond to
combinations of cosine and sine elliptic series, as shown in [8,72,74,77,94,95]. Such value
solutions of the MH equations are periodic but not bound, while they determine the point
at which the ion trajectory becomes unbound.

4. Results

This paper suggests particular solutions of the classical MH equation with complex
solutions for ions confined in electrodynamic ion traps (EITs) by employing the Floquet
theory [74,77]. We analyse cases when the MH equation for a trapped ion can be cast as a
Fourier series whose coefficients are determined by the analytical model introduced, which
turns it into the equation of a HO. Thus, a system of linear equations is derived that enables
one to determine the constants in the Fourier series solution.

The second method suggested delivers the solution of the MH equation for trapped ion
systems. We derive a recursive relation that yields the Floquet coefficient as a function of the
ak coefficients in the series expansions that we use. Ion dynamics within an electrodynamic
(Paul) trap are shown to be consistent with the equation of motion for a classical HO.
Finally, we apply these methods in Section 3 for an electrodynamic trap and we extend
the model in [73]. Then, we derive the expression for a0 and the coefficients of the even
solution as a function of the Floquet coefficient for very low values of the q parameter.
Hence, we completely determine the solution of the MH equation and the frontiers of the
stability diagram.

The HO with damping is discussed in Appendix A, while the parametric HO is
examined in Appendix B. It is demonstrated the solutions are linearly independent, while
they also establish a fundamental system. We shortly review the Hill method to determine
the Floquet coefficient [72,74,77,116,117] and supply the equation that defines the stability
frontiers for the MH equation. A very short comment on EITs that operate under Standard
Atmospheric Temperature and Pressure (SATP) conditions ends this paper.

The pseudopotential approximation can be safely used when Ω ≫ 1, which means
the time scale of the secular motion is considerably larger than the time scale associated
with the micromotion. In the case of the pseudopotential approximation for a Paul (RF)
trap, the electric potential is described by a polynomial of rank 2. When considering the
micromotion, stability regions result that are qualitatively similar to those of the Mathieu
equation but with frontiers that are shifted depending on the anharmonicity parameter
λ(β), as shown in [72] and in the literature [118].

Applications of the methods used in this paper span MS, high-resolution spectroscopy,
and trapping of ion crystals, where the latter is of extreme importance for optical atomic
clocks, ultra-high-resolution spectroscopy, quantum metrology, and quantum information
processing (QIP) with ultracold ions [42,46,60,119,120].
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Abbreviations

The following abbreviations are used in this manuscript:

2D Two-Dimensional

3D Three-Dimensional

BSM Beyond the Standard Model

DIT Digital Ion Trap

EIT Electrodynamic Ion Trap

ESI-MS Electrospray Mass Spectrometry

HO Harmonic Oscillator

IT Ion Trap

KZ Kibble-Zurek

LIT Linear Ion Trap

LPT Linear Paul Trap

MD Molecular Dynamics

MS Mass Spectrometry

PO Parametric Oscillator

QIP Quantum Information Processing

QT Quantum Technologies

RF Radiofrequency

SATP Standard Atmospheric Temperature and Pressure

TDVP Time Dependent Variational Principle

Appendix A. Harmonic Oscillator (HO)

Appendix A.1. Harmonic Oscillator with Damping

It is generally known that a trapped ion can be assimilated with a kicked-damped HO
model for an ion trap [36,121] or a parametric oscillator [16,69,122].

We consider the equation of motion for a damped HO (unidimensional case) [2,123]

mẍ = −kx − αẋ , (A1)

where k denotes the elastic constant and α > 0 is the damping coefficient. Finally, one derives

ẍ + 2λẋ + ω2
0x = 0 , with

k

m
= ω2

0 , 2λ =
α

m
. (A2)

A solution to this equation is x = ert, where r is either real r ∈ R or complex r ∈ C. Then,
Equation (A2) is cast as

r2 + 2λr + ω2
0 = 0 . (A3)

Further on, we shortly discuss the solutions of Equation (A3).

1. Case 1—Overdamping

We denote
∆ = 4λ2 − 4ω2

0 > 0 , (A4)

Then, a solution of Equation (A2) is

x = C1er1t + C2er2t = C1e

(

−λ+
√

λ2−ω2
0

)

t
+ C2e

−
(

λ+
√

λ2−ω2
0

)

t
, (A5)

which describes damped oscillations that are nonperiodical, with C1, C2 constants
of integration.

2. Case 2—Critical damping

∆ = 0 ⇒ λ = ω0 . (A6)

In such a case the solution is expressed as
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r1 = r2 = −λ ⇒ x = (B + Ct)e−λt , (A7)

with B, C constants.

3. Case 3—Underdamped oscillations ∆ < 0

The solution is cast as

x = C3er1
′t + C4er2

′t = e−λt
(

C3ei
√

ω2
0−λ2t + C4e−i

√
ω2

0−λ2t
)

, (A8)

with C3 = C∗
4 and C∗

4 is the complex conjugate of C4. Considering that

eix = cos x + i sin x ⇒ cos x =
eix + e−ix

2
, sin x =

eix − e−ix

2i
, (A9)

Equation (A8) can be cast as

x = e−λt

(

D3 cos
√

ω2
0 − x2t + D4 sin

√

ω2
0 − x2t

)

, (A10)

with D3, D4 constants.

Appendix B. Parametric Harmonic Oscillator—Floquet’s Coefficient—Hill’s Method

We start from the equation

d2x

dt2
+ ω2(t)x = 0 , ω(t + T) = ω(t) , (A11)

which is a Mathieu–Hill (MH)-type differential equation with periodic coefficients of period
T = π. We choose

ω2(t) = a − 2q cos 2t . (A12)

The Floquet theory [74,75,77] states that Equation (A11) exhibits a solution of the form [113]

x1 = eµtP(t) , (A13)

where P(t) stands for a periodic function of period π, while µ denotes the Floquet charac-
teristic exponent [74,75,77,95]. It is obvious that

x2 = e−µtP(−t) , (A14)

is also a solution of Equation (A11), as the latter is invariant to the change t → −t. Both
functions P(t) and P(−t) are periodic, with period π. Generally, the solutions x1 (described
by Equation (A13) and x2 (described by Equation (A14)) are linearly independent. They
establish a fundamental system of solutions for Equation (A11). There is only one exception,
the case of Mathieu periodic functions when iµ is an integer, which is discussed in [72].
Besides that any solution is expressed as

x = c1x1 + c2x2 , c1, c2 = const , (A15)

with [72,113]

x1 =
∞

∑
n=−∞

cne(µ+2in)t . (A16)

There are several methods to determine the Floquet coefficient µ, amongst which we
distinguish Hill’s method and the Lindemann–Stieltjes method [77,94,95,113,116,117]. Both
of them require an elaborate analysis because µ is not a simple function of q. For example,
one could assign a real value to the q parameter and consider that a varies from −∞ to ∞.
In this case µ switches between real and complex values, while changes occur when the

Hill–Mathieu notation given by Equation (A23), namely △(0) sin2
(

1
2 π

√
a
)

, passes through
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the values of 0 and 1. This is an outcome of the fact that △(0) is a complex expression of a

and q [77].

Appendix B.1. Hill’s Method

By using Hill’s method one derives a homogeneous system of linear equations [72]

cn + γn(cn−1 + cn+1) = 0 , n = 0,±1,±2, . . . . (A17)

with
γn =

q

(2n − iµ)
− a . (A18)

The infinite determinant of the system is [72,77,113,117]

△(µ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. . . . . . . . . . . . . . . . . . . . .

. . . 1 γ−2(µ) 0 0 0 . . .

. . . γ−1(µ) 1 γ−1(µ) 0 0 . . .

. . . 0 γ0(µ) 1 γ0(µ) 0 . . .

. . . 0 0 γ1(µ) 1 γ1(µ) . . .

. . . 0 0 0 γ2(µ) 1 . . .

. . . . . . . . . . . . . . . . . . . . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (A19)

and the Floquet exponent is determined by the equation

△(µ) = 0 . (A20)

The infinite determinant described by Equation (A19) is absolutely convergent and it rep-
resents a meromorphic function [124] of the Floquet exponent µ [74,77,94,116], with simple
poles for µ = ±i

(√
a + 2s

)

, ; s = 0,±1,±2, . . . [72,77]. Therefore,

△(µ)− C

cosh (πµ)− cos
(

π
√

a
) , (A21)

is an even and periodic meromorphic function. If the constant C is determined so that the
function described by Equation (A21) has no pole at µ = i

√
a, hence it will exhibit no other

pole which makes it a constant. Because △(µ) → 1 as µ → ∞, such a constant is equal to 1.
To derive the expression of C one chooses µ = 0 and infers [72,75,113]

△ (µ) = 1 − [1 −△(0)]
[

1 − cos
(

π
√

a
)]

cosh(πµ)− cos
(

π
√

a
)

=
cosh(πµ)− 1 +△(0)

[

1 − cos
(

π
√

a
)]

cosh(µπ)− cos
(

π
√

a
) . (A22)

Because the Floquet exponent is determined by the Equation (A20), one obtains

cosh (πµ) = 1 + 2 △ (0) sin2

(

1

2
π
√

a

)

. (A23)

Equation (A23) defines the stability frontiers of the MH equation when cosh(πµ) = ±1.
A numerical simulation is employed to construct the Mathieu stability plot in [125]

for any arbitrary toroidal ion trap mass analyzer. The toroidal multipole coefficients of
the traps are evaluated and then used to infer the Mathieu eq. parameters, a and q. These
parameters are further used to illustrate the stability plot, predicting the secular frequency
of ion motion and evaluating nonlinear resonances. Ref. [72] analyzes the dynamical
stability of the MH equation for a trapped ion, when the trap operating points a, q ∈ R are
located within the first stability region, focused on the associated dynamics is bounded
or unbounded.
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The issue of stability and instability intervals for the MH equation is very well ex-
plained in [75,95]. Further on, we review the analysis performed in [113]. If a, q ∈ R are
both real, then Equation (A23) shows that cosh (πµ) ∈ R. When −1 < cosh (πµ) < 1, then
µ ∈ C is a complex number, iµ is not an integer and any solution of the MH equation is
bounded along the real axis x. The domains of stability located within the parameter plane

(a, q) are characterized by −1 < cosh (πµ) < 1. When cosh (πµ) > 1 one can consider the
Floquet exponent µ as real and nonzero. On the other hand, if cosh (πµ) < −1 one may
consider µ − i as real and nonzero. In both cases, the solution of the MH equation is not
bounded along the real x axis. Unstable regions of the MH equations are characterized by
cosh (πµ) > 1 or cosh (πµ) < −1. The stable and unstable regions are separated by curves
characterized by cosh (πµ) = ±1, where one solution is bounded and periodic, while the
general solution stays unbounded [113].

One can distinguish among several cases [72,74,94,95]:

• µ ∈ C (pure imaginary) and iµ /∈ Z;
• The frontiers of the stability domains are defined by iµ /∈ Z (not integer);
• The associated dynamics are unstable when µ ∈ R or µ − i ∈ R, with µ = iθ.

The stability of an ion with few crystals is first discussed in [73], based on a well-
established analytical model that is frequently used in the literature to describe regular and
nonlinear ion dynamics in 3D QIT. The numerical modeling of quantum manifestation of
order and chaos for ions confined in a Paul trap is explored in [126], where it is established
that quasienergy state statistics serve to discriminate between integrable and nonintegrable
quantum dynamics. Double-well dynamics for systems made of two trapped ions (in either
a Paul or a Penning trap) are investigated in [91], where the RF trapping voltage effect
towards enhancing or altering quantum transport in the chaotic separatrix layer is also
examined. The dynamical stability of two-ion crystals in a Paul trap is explored in [127],
based on the pseudopotential approximation [79,81,128]. The nonlinear dynamics of ions
confined in a RF trap are reported in [129], where a new deterministic melting region is
reported, along with crystallization in a secondary Mathieu stability region. The irregular
dynamics of single-ion dynamics in an EIT with axial symmetry is approached in [130]
by employing both analytical and numerical modeling.

The dynamics of a trapped ion in a mass spectrometer, which undergoes the action of
both quadrupole RF and dipolar DC excitation, are investigated in ref. [131] for a classical
quadrupole 3D trap that exhibits hyperbolic geometry. It is demonstrated that dipolar
excitation qualitatively changes the associated dynamics. The equation of motion is shown
to be a classical MH equation that is perturbed with a constant inhomogeneous term,
along with a small quadratic nonlinearity. An experimental approach implements motional
parametric excitation and reports coherent spin–motion coupling of ions obtained by
employing a spin-dependent force [62] for 2D crystals consisting of 100 9Be ions confined
in a Penning trap.

Appendix B.2. Electrodynamic Ion Traps (EIT) Operating under SATP Conditions—Damping Case

We shortly discuss the case of an electrodynamic trap that operates under Standard
Atmospheric Temperature and Pressure (SATP) conditions [111,132–135]. The equation of
motion is

d2x

dt2
+ 2λ

dx

dt
+ ω2(t)x = 0 , (A24)

where the second term characterizes friction (damping) in air, while λ stands for the
damping coefficient. A solution to this equation is

x = eρt f ẋ = eρt
(

ρ f + ḟ
)

, ẍ = eρt
(

ρ2 f + 2ρ f + ḟ + f̈
)

, (A25)

where f is a periodic, time-dependent function. By introducing Equations (A25) in
Equation (A24) and choosing ρ = −λ, one derives
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f̈ +
(

ω2 − λ2
)

= 0 , (A26)

which is exactly an MH-type equation.
One of the first papers that reports the trapping of macroscopic dust particles under

SATP conditions and the occurrence of ordered structures is ref. [136], which emphasizes
that friction in air results in an efficient cooling of the trapped particle. Ordered structures
are also reported in [132]. The dynamics of damped single-charged particles levitated in
a Paul trap are investigated in [137] based on an analytical model. The modified stability
diagrams in the (a, q) parameter space are derived, demonstrating that stable regions are
not only enlarged but also shifted [72,118].

A multipole linear RF trap [138] is described in [139], which delivers an effective
potential that characterizes three additional stable quasi-equilibrium points. The trap is
used to levitate a group of charged silicate microspheres under SATP condition. The set-up
exhibits a strong dependence on the RF field modulation and effective potential.
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