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Abstract: Whether an algebraic or a geometric or a phenomenological prescription is applied, the first

fundamental form is unambiguously related to the modeling of the curved spacetime. Accordingly,

we assume that the possible quantization of the first fundamental form could be proposed. For

precise accurate measurement of the first fundamental form ds2 = gµνdxµdxν, the author derived a

quantum-induced revision of the fundamental tensor. To this end, the four-dimensional Riemann

manifold is extended to the eight-dimensional Finsler manifold, in which the quadratic restriction

on the length measure is relaxed, especially in the relativistic regime; the minimum measurable

length could be imposed ad hoc on the Finsler structure. The present script introduces an approach

to quantize the fundamental tensor and first fundamental form. Based on gravitized quantum

mechanics, the resulting relativistic generalized uncertainty principle (RGUP) is directly imposed on

the Finsler structure, F(x̂
µ
0 , p̂ν

0), which is obviously homogeneous to one degree in p̂
µ
0 . The momentum

of a test particle with mass m̄ = m/mp with mp is the Planck mass. This unambiguously results in

the quantized first fundamental form ds̃2 = [1 + (1 + 2β p̂
ρ
0 p̂0ρ)m̄

2(|ẍ|/A)2]gµνdx̂µdx̂ν, where ẍ is

the proper spacelike four-acceleration, A is the maximal proper acceleration, and β is the RGUP

parameter. We conclude that an additional source of curvature associated with the mass m̄, whose

test particle is accelerated at |ẍ|, apparently emerges. Thereby, quantizations of the fundamental

tensor and first fundamental form are feasible.

Keywords: modified theories of gravity; noncommutative geometry; curved spacetime; relativity

and gravitation

1. Introduction

Following the assumption that the additional curvatures related to relativistic eight-
dimensional spacetime tangent bundle TM = M4 ⊗ M4 would be utilized to mimic the
possible quantization on the four-dimensional spacetime M4, the pseudo-Riemann man-
ifold [1–4], this paper aims to introduce various possibilities for quantizing the first fun-
damental form, the line element, of curved spacetime in the relativistic regime. To this
end, we suggest the Finslerian manifold, which is a smooth n-dimensional differentiable
manifold M4 equipped with a continuous non-negative Finsler norm F : TM → [0,+∞)
defined on the tangent bundle. For each point x on M4, whose coordinates are xµ = (ct, xi),
so that (xµ, ẋν) 7→ F(xµ, ẋν), where µ, ν = 0, 1, 2, 3 and ẋν = ∂xν/∂s are tangent vectors
and ẋµ ∈ Tx M, with the tangent bundle Tx M at x and TM := Ux∈MTx M is the tangent
bundle on M, it is conjectured that F(xµ, ẋν) satisfies three properties, namely

• Positive definiteness, i.e., F is smooth on the complement of the zero section on TM,
• Positive homogeneity, i.e., F is positively 1-homogeneous in ẋµ, the relativistic four-

velocity, i.e., F(xµ, λ ẋµ) = λ F(xµ, ẋν), ∀λ ∈ R
+, and

• Subadditivity, i.e., for vectors~v and ~w tangent to M4 at the point x, F fulfills (pointwise)
the triangle inequality F(xµ,~v + ~w) ≤ F(xµ,~v) + F(xµ, ~w).
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The Hessian of F2(xα, ẋβ) determines the Finsler metric,

gAB =
1

2

∂2

∂ẋα∂ẋβ
F2(xα, ẋβ), (1)

with A, B = 0, 1, 2, · · · , 7, while α, β = 0, 1, 2, 3 and the resulting gAB is positive.
Our approach to deriving a quantum-induced revisiting metric tensor shall be outlined

in Section 2. However, before we begin, some comments on the Finsler manifold are now
in order.

• First, the Finsler manifolds characterized by M4 and F2(xµ, ẋν). By this, we mean
that the Finsler manifold is composed of (i) a base space and (ii) a real scalar-valued
function F. The base space is a set of positions in R

4. The real scalar-valued function
R

4 ×R
4 → R

+ captures the additional structure of the space.
• Second, in TM, the covariant derivatives represent the standard operators of the

Heisenberg algebra and the components of the curvature tensor represent the noncom-
mutation relations [5–7].

• Third, the Finsler geometry, which is Riemann geometry but with relaxed quadratic
measure restriction, is also concerned with measuring distances on abstract spaces. In
the context of the present script, we recall that the distance between two points on the
Finsler manifold is defined in a similar manner to the standard Euclidean distance,
i.e., the length of the shortest curve connecting those two points. On the Euclidean
manifold, the length of a curve is a sum over infinitesimal line elements ds. On the
Finsler manifold, on the other hand, the summation over ds is weighted depending
on position and direction. Therefore, the Finsler geometry is formulated with the
directions of the tangent vectors ẋµ, but not with their magnitudes. This leads to two
kinds of affine connections. One is with respect to the infinitesimal changes in the
directional variables. The other one is with respect to the infinitesimal changes in
the coordinates.

A possible discretization of the spacetime manifold is based on qravitized quantum
mechanics, i.e., the relativistic generalized uncertainty principle (RGUP) [8–11]. In Section 2,
we first introduce our approach to manifolds. This is an almost ad hoc imposition of the
minimum measurable length on the continuous Finsler structure.

2. First Fundamental Form on Continuous Finsler Manifold

The proposed approach is based on the existence of a minimum measurable length,
which was proved in loop quantum gravity, doubly special relativity, and string theory, for
instance. The minimum measurable length could be interpreted as a nonvanishing position
uncertainty that emerged from the impacts of finite gravitational fields on the Heisenberg
uncertainty principle, the fundamental theory of quantum mechanics [8–11].

The Finsler structure of the Riemann manifold is conjectured to satisfy

F2(x, ẋ) = gµν(x)ẋµ ẋν, (2)

where gµν(x) is Finsler metric which is apparently distinct from the Riemann metric gµν.
Then, the length of the curve s : [0, L] → M4 is given as

L(s) =
∫ L

0
F

(

s(t),
ṡ(t)

||ṡ(t)||

)

||ṡ(t)||dt, (3)

where ṡ(t) = ds(t)/dt, t 7→ s(t) on M4, and the tangent norm does not need to be induced
by an inner product. The Euclidean length of that curve can be deduced from Equation (3),
at F = 1.

As F at any point (x, ẋ) is positively homogeneous of degree one in ẋ(t),

L(x) =
∫ L

0
F(x(t), ẋ(t))dt, (4)
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so that the function F is locally acting on the first fundamental form ds. The resulting length
of the curve does not depend on the choice of the parameter t along the curve measure.

The Riemannian geometry is obtained as a particular case, namely, F2(xµ, ẋν) =
gµν(x)ẋµ ẋν. Riemann metric gµν and the Finsler metric gµν(x), are equal, especially at
the point x. This is not the case with general Finsler metrics. Both F(xµ, ẋν) and gµν(x)
determine the Finslerian geometry, while the Riemannian geometry is merely derived
from gµν.

With the finite positive minimum measurable length

∆xmin =
√

−|g||β0|ℓp, (5)

where ℓp is the Planck length, g is the fundamental metric and |β0| is a dimensionless
RGUP parameter that can be determined from cosmological observations [11,12] or table-
top laboratory experiments [13], the Finsler structure reads

F(xµ,
√

−|g||β0|ℓp ẋµ) =
√

−|g||β0|ℓp F(xµ, ẋµ), ∀
√

−|g||β0|ℓp ∈ R
+. (6)

Other RGUP approaches have been discussed in the literature [14–16].
As for the RGUP approach proposed by the authors of [17–19],

•
√

−|g| characterizes the relevance to curved spacetime.
• It assigns physical dimensions to the spacetime coordinates of the general theory of

relativity.
• It also ensures physical interpretation is independent of the choices of coordinates,

while |β0| introduces the consequences of gravity to the relativistic Heisenberg uncer-
tainty principle [17–19].

Accordingly, the local coordinates on TM are expressed as

xA =

(

xα,
√

−|g||β0| ẋα

)

, (7)

and the first fundamental form, the infinitesimal distance in the relativistic eight-dimensional
spacetime tangent bundle TM, reads,

ds̃2 = gAB dxA dxB. (8)

Equation (7) introduces a relation between eight- and four-dimensional spaces.
With the eight parametric equations

xA = xA(ζ), (9)

ẋα =
∂xα(ζ)

∂ζµ ζ̇µ, (10)

the four-coordinates xµ on TM are correlated with the parameterization ζ, four-coordinates
parameterizing the four-dimensional spacetime manifold M4 [5], the counterpart first
fundamental form, line element, can be parameterized as

ds̃2 = g̃µν dζµ dζν. (11)

Then, by equating (8) and (11), we get

g̃µν = gAB
∂xA(ζ)

∂ζµ

∂xB(ζ)

∂ζν
. (12)
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Differentiating the eight-dimensional coordinates on TM with respect to the four-
dimensional coordinates ζµ on M4 determines the quantum-induced corrections to the
fundamental tensor

g̃µν =
[

1 +
(

−|gβ0|ℓ
2
p

)

|ẍ|2
]

gµν. (13)

where |ẍ|2 ≡ ẍλ ẍλ = gδγ ẍδ ẍγ with λ, δ, γ are dummy indices and ẍλ = ∂ẋλ/∂ζλ. ẍλ could

be interpreted as proper spacelike four-acceleration [20,21]. Alternatively, ẍλ would be
interpreted as geodesic, related to the additional curvature. To avoid any controversial
discussion about the physical meaning of ẍλ, we suggest normalizing ẍλ to −|gβ0|ℓ

2
p. A

second reason for this normalization would be the conservative representation of the key
results concluded in the present paper, which states that we are presenting quantum-
induced corrections, but not a full quantization.

To summarize the present section, we conclude that the first fundamental form reads

ds̃2 =
[

1 +
(

−|gβ0|ℓ
2
p

)

|ẍ|2
]

gµνdxµdxν. (14)

As discussed, Equation (13) refers to a quantum-induced revisiting metric tensor
derived deduced from the continuous Finsler manifold.

Section 3 introduces an improvement based on proper inclusion of RGUP, not just its
minimum measurable length, within the curved spacetime. This is a profound contribution
of the present study.

3. First Fundamental Form on Discretized Finsler Manifold

In Section 2, we have introduced our approach based on the emergence of an additional
curvature on the relativistic eight-dimensional spacetime tangent bundle TM, which is
equipped with a continuous nonnegative Finsler norm F : TM → [0,+∞). We have also
introduced the assumption that both infinitesimal distances on TM and M4 are identical,
so that

ds̃2 = gAB dxA(ζ) dxB(ζ) = g̃µν dζµ dζν. (15)

We realized the measure of ds̃2 is apparently precise without quantum nature.
In order to endow quantum nature to this measure, we urgently need to

• Express the metric tensor as an operator, especially considering that the 1-form could
be an operator;

• Suggest noncommutative relations for these quantities;
• Integrate probability distributions and quantum superposition.

In this regard, we emphasize that neither the metric tensor nor the 1-form, dxµ, has
noncommutative translations [22]. Alternatively, we might recall noncommutative metric
tensor [23] and noncommutative differential calculus [24,25] to define a noncommutative
line element [26]. This could be performed elsewhere.

To remain within the scope of the present script, we resume with the RGUP approach,
which was introduced in Section 2. Here, we concretely aim at discretizing the eight-
dimensional tangent bundle. For a test particle with mass m normalized to the Planck mass
m̄ = m/mp, the Finsler structure reads

F
(

x̂µ, m̄ ˙̂xν
)

= F(x̂µ, p̂ν), ∀m̄ ∈ R
+, (16)

where x̂µ = xµ = x̂
µ
0 = (x̂0

0, x̂i
0) = (ct, x̂i

0) and p̂ν = −ih̄∂/∂x̂ν = p̂ν
0 = ( p̂0

0, p̂i
0) = (E/c, p̂i

0).
These are the typical definitions in ungravitized QM and most probably remain unchanged
in quantized QM.
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On Finsler manifold with RGUP and the parameterization xA = xA(ζ), Equation (1)
reads

gAB =
1

2

∂2

∂ p̂
µ
0 ∂ p̂ν

0

F2(x̂
µ
0 , p̂ν

0(1 + β p̂
ρ
0 p̂0ρ)) (17)

=
(

1 + β p̂
ρ
0 p̂0ρ

)1

2

∂2

∂ p̂
µ
0 ∂ p̂ν

0

F2
(

x̂
µ
0 , p̂ν

0

)

, (18)

where β = β0G/(c3h̄) = β0(ℓp/h̄)2 is the RGUP parameter, G is the gravitational constant, c
is the speed of light, h̄ is the Planck constant, and ℓp is the Planck length [8–11]. Equation (18)

assumes that F(x̂
µ
0 , p̂ν

0) is homogeneous of degree one in p̂
µ
0 and

(

1 + β p̂
ρ
0 p̂0ρ

)

> 0. Both

x̂α
0 and p̂

β
0 are also parameterized with ζ.

If we limit the discussion on the Finsler structure of Riemann manifold, Equation (2), [27],
we get

F(x̂
µ
0 , ˆ̃pν

0) =







| ˆ̃pν
0|

2 − |x̂
µ
0 |

2| ˆ̃pν
0|

2 +
(

x̂
µ
0 · ˆ̃pν

0

)2

1 − |x̂
µ
0 |

2







1/2

, (19)

where RGUP suggests that ˆ̃pν
0 = ˆ̃pν

0(1 + β p̂
ρ
0 p̂0ρ)) [8,9]. Then, Equations (12) and (13) lead to

g̃µν =
1

2

∂2

∂ p̂
µ
0 ∂ p̂ν

0







∑
3
ν=0( ˆ̃pν

0)
2 − ∑

3
µ=0(x̂

µ
0 )

2 ∑
3
ν=0( ˆ̃pν

0)
2 +

(

∑
3
µ|ν=0 x̂

µ
0

ˆ̃pν
0

)2

1 − ∑
3
µ=0(x̂

µ
0 )

2







[

dx̂
µ
0 (ζ

µ)

dζµ

dx̂ν
0(ζ

ν)

dζν
+

(

1 + 2β p̂
ρ
0 p̂0ρ

)

m̄2 d ˙̂x
µ
0 (ζ

µ)

dζµ

d ˙̂xν
0(ζ

ν)

dζν

]

. (20)

The quantized metric tensor, Equation (20), could be approximated as

g̃µν ≃

[

1 +
(

1 + 2β p̂
ρ
0 p̂0ρ

)

m̄2

(

|ẍ|

A

)2
]

gµν, (21)

where A is the maximal proper acceleration [20,21,28,29].
Relative to Equation (13), Equation (20) refers to a full-quantized version of the funda-

mental tensor, which is obtained when RGUP is properly imposed on the Finster structure.
Then, the first fundamental form reads

ds̃2 =

[

1 +
(

1 + 2β p̂
ρ
0 p̂0ρ

)

m̄2

(

|ẍ|

A

)2
]

gµνdx̂µdx̂ν. (22)

We conclude that finite |ẍ| and m̄ are essential for the quantization of the fundamental
tensor, g̃µν, Equation (21), and first fundamental form, ds̃2, Equation (22). In the relativistic
regime, in which the approach of RGUP and, hence, the spacetime quantization are possible,
an additional source of spacetime curvature emerges. This is the curvature associated with
the mass m̄, whose test particle’s motion has acceleration |ẍ|. Vanishing |ẍ| and m̄ entirely
restore the unquantized versions of the fundamental tensor, gµν, and first fundamental
form, ds2.

As for the relativistic formulation of GUP [17–19], comments on Ref. [30] are now
in order. This script studies the inconsistency in the original HUP approach with special
relativity and characterizes the motion of a particle crossing the worldline. The resulting
minimal measurable length is suggested to be 1/2mc2. Compared to Equation (5) this
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estimation does not seem to manifest various relativity principles; for example, that the
coordinates in GR are fundamentally arbitrary.
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