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A B S T R A C T 

We present a new method to distinguish between different states (e.g. high and low, quiescent and flaring) in astronomical sources 
with count data. The method models the underlying physical process as latent variables following a continuous-space Markov 

chain that determines the expected Poisson counts in observed light curves in multiple passbands. For the underlying state 
process, we consider several autoregressive processes, yielding continuous-space hidden Markov models of varying complexity. 
Under these models, we can infer the state that the object is in at any given time. The continuous state predictions from these 
models are then dichotomized with the help of a finite mixture model to produce state classifications. We apply these techniques 
to X-ray data from the active dMe flare star EV Lac, splitting the data into quiescent and flaring states. We find that a first-order 
v ector autore gressiv e process efficiently separates flaring from quiescence: flaring occurs o v er 30 per cent–40 per cent of the 
observation durations, a well-defined persistent quiescent state can be identified, and the flaring state is characterized by higher 
plasma temperatures and emission measures. 

Key words: methods: data analysis – methods: statistical – stars: coronae – stars: flare – stars: individual: EV Lac – X-rays: stars. 
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 I N T RO D U C T I O N  

he ubiquitous variability of astronomical sources spans large
ynamic ranges in both intensity and time-scale. The intensities
ypically vary differently in different passbands (i.e. they exhibit
pectral variations as well). The causes of such variability are diverse,
anging from nuclear flashes occurring in low-mass X-ray binaries
 v er durations of seconds, to magnetic reconnection flares on stars
nd accretion-driven dipping in compact binaries lasting from a
raction of a ks to tens of ks, to gravitational lensing lasting for
ays, to abrupt changes in accretion levels onto compact objects
hich then persist for long durations ranging from weeks to months,

o cyclic activity on stars that spans a decade, etc. The underlying
hysical processes that lead to such strong variations are not fully
nderstood. In order to model and predict these variations, we first
eed to identify robustly the times when the states of the sources
ppear to change. 

We posit here that when we observe large intermittent variability,
here is some identifiable characteristic in the source system –
odelled as a hidden state – which serves as a predictor to distinguish

etween dif ferent le vels of acti vity. As an example, consider the
aring activity on stars, where we observe short duration bursts
hose profiles show a rapid rise in intensity exceeding the typical

ntensity by several factors, followed by a cooling-dominated ex-
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onential decay. This profile manifests as a stochastic sequence of
lternating active periods with frequent and energetic emissions at
hort time-scales of a few ks, and quiescent periods with periodic
r smaller fluctuations. We aim to build a model that describes the
iming of such flaring, and includes a rudimentary quantification of
he underlying variability. From a statistical point of view, including
 latent process enables us to model observed correlations in the
ight curve and thus to predict and estimate the long-run proportion
f time spent in flaring and quiescent states. 
Previous work on detecting or isolating such variability has

ocused mainly on local statistical significance testing, applying a
et of somewhat ad-hoc rules, using automatic/black-box learning
ethods (e.g. neural networks) to identify flares in observed light

urves, or modelling the intensities as a mixture distribution. In
 study of γ -ray flares in blazars, for example, Nalew ajk o ( 2013 )
sed a simple rule that first identifies the peak flux and then defines
he flare duration as the time interval with flux greater than 50
er cent of that observed in the peak. Robinson et al. ( 1995 ) took
 more statistical approach in their search for microflares in dMe
are stars: they computed the statistical significance of peaks in the
inned data where the null distribution is determined by repeating
heir procedure on light curves where the bins have been randomly
ermuted. Aschwanden & Freeland ( 2012 ) proposed an ‘automated
are detection algorithm’ which is a set of criteria that are applied to
 smoothed light curve; a background/quiescent level is determined
sing the time period before a local minimum in the light curve
nd the flare is associated with the interval starting at this minimum
nd continuing through the first subsequent local minimum that is
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elow a background-dependent threshold. Peck et al. ( 2021 ) adopted 
 similar procedure to detect flares in Geostationary Operational 
nvironmental Satellite (GOES) X-ray light curves. 1 A large sample 
f M-dwarf flares was obtained by Davenport et al. ( 2014 ) using
n iterative smoothing procedure to remove star-spot and then 
dentifying flares as intervals that exhibit a positive flux excursion 
f more than 2 . 5 σ . More recently, supervised learning methods such
s convolutional neural networks (e.g. Feinstein et al. 2020 ) have 
een used, while other researchers have continued to rely on visual 
nspection (e.g. Kashapova et al. 2021 ). Nearly all efforts to date have
ocused on uni v ariate single-band light curv es. A notable e xception
ppears in Fleming et al. ( 2022 ), who combined near -UV (ultra violet)
nd far-UV light curves in a search for flares in M-dwarfs. They
eployed a set of rules whereby a (peak) flare is identified by either
wo consecutive NUV data points above 3 σ or two simultaneous data 
oints abo v e 3 σ , one in each band. 
While these methods include techniques that make use of statistical 

ignificance and standard deviations, they do not take advantage of 
rincipled statistical methods to model or fit features in the observed 
ight curves. More principled statistical methods for identifying 
bursts’ in astrophysical light curves were pioneered by Scargle’s 
ork on Bayesian Blocks (Scargle 1998 ; Scargle et al. 2013 ).
he method assumes a piecewise constant intensity function for a 
oisson process in time, and implements a fully Bayesian strategy 
or estimating the number of breakpoints. The time intervals with 
onstant intensity are called blocks and their number is determined by 
aximizing the Bayes factor or posterior odds. The breakpoints are 

etermined sequentially via their posterior distribution as blocks are 
dded to the model. The Bayesian Blocks method has pro v ed to be an
nvaluable tool for identifying ‘bursts’ in light curves and has recently 
een used to separate the quiescent and active states of γ -ray flaring
lazars (Yoshida et al. 2023 ). Ho we ver, because the adopted model is
iecewise constant, the fit results become difficult to interpret when 
ealing with smoothly increasing or decreasing intensities. 
Large variability in astronomical sources is inevitably accompa- 

ied by spectral changes. In the case of stellar X-ray variability, Wong 
t al. ( 2016 ) proposed using a marked Poisson process for photon
rri v als, treating photon wavelength as a ‘mark’. As with Bayesian
locks, their method, called Automark, assumes a piecewise constant 

ntensity function for the Poisson process that go v erns photon 
rri v als. Spectra are assumed to be constant between the breakpoints,
ut within each block are modelled in a flexible non-parametric 
anner that accounts for spectral lines. The number of breakpoints 

s determined via the minimum description length principle. The 
ethod was extended to include spatial information/images by Xu 

t al. ( 2021 ). 
Neither Bayesian Blocks nor Automark provides a mechanism to 
odel the underlying processes that generate the flares. With solar 

ata the observation of individual flares enables a set of different 
ut also principled statistical approaches. F ocusing e xclusiv ely on 
iming data for solar flares, for example, a number of authors have
sed characteristics of the distribution of waiting times between solar 
ares to better understand the process generating the flares. In this
ay, researchers have concluded that the waiting-time distribution is 

onsistent with a time-varying Poisson process (e.g. Wheatland 2000 ; 
oon et al. 2001 ; Wheatland & Litvinenko 2002 ; Aschwanden 2019 ) 
 See also appendix A of the User’s Guide for GOES-R XRS 
2 Products by Machol, Codrescu, & Peck ( data.ngdc.noaa.gov/ 
latforms/solar- space- observing- satellites/goes/goes16/l2/docs/GOES- 
 XRS L2 Data Users Guide.pdf; July 2024). 
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r have used it to study the memory in this underlying process (e.g.
epreti, Carbone & Veltri 2001 ; Lei et al. 2020 ; Rivera et al. 2022 ).
nfortunately, these techniques do not apply to stars other than the
un because individual flares are not observable. 
In this paper, we consider the specific case of X-ray flares in

tellar coronae, where we seek to model not the individual flares
ut rather the underlying flaring states, allowing us to estimate the
aring fraction and to study the spectra in different states. To this end,
e employ a discrete-time hidden Markov model (HMM; Zucchini, 
acDonald & Langrock 2017 ). This involves formulating a latent 

iscrete-time Markov chain to represent the flaring process and is 
one in discrete time to match the discrete-time nature of the observed
ata. One no v elty of our approach is that it leverages multiband light
urves to identify flaring and quiescent intervals. The flaring process 
volves as a Markov chain over time and in each time interval the
hain’s value determines the distribution of the observed counts, and 
hus influences the evolution of the observed data o v er time. We
onsider both the case where the latent flare process can enter one of
 finite number of states (e.g. a quiescent state and an active state) and
he case of a continuum of states through which the process evolves.

athematically, these two possibilities correspond to discrete and 
ontinuous state spaces of the latent Markov chain. 

We use two EV Lac light curves as a case study for our methods
nd find empirically that the continuous state-space HMM provides 
 better representation of the light curves than does the discrete-
tate-space HMM. Ho we ver, the continuous-space HMM poses a 
omputational challenge because its likelihood is intractable. Thus, 
e introduce an approximation that is based on a truncated and
iscretized state space and that can be made arbitrarily precise. 
e propose three specific formulations of the continuous-space 
MM for flaring stars and a method for choosing among these

ormulation. We then fit the preferred model and use it to estimate
he underlying continuous state variable that inde x es the transition
etween the quiescent and active states. Below, we denote this 
possibly multi v ariate) indexing v ariable as X t . 

The continuous-space HMM does not clearly differentiate between 
he quiescent and active states of the source, instead allowing for
ariability within the states and a smooth transition between them. 
one the less, we aim to estimate the flaring fraction and to study

he spectra within each state. As such, we introduce a two-state
nalysis, where Stage 1 fits a continuous-space HMM and estimates 
he continuous state indexing variable X t and Stage 2 fits a finite

ixture model to X t in order to estimate the actual intervals of
uiescence and activity. The Markov process underlying the HMM 

llows us to model the temporal autocorrelations evident in the light
urves and thus to capture them in the fitted X t . In the second stage,
e ignore these autocorrelations and focus instead on the marginal 
tted values of X t and use them to quantify the source’s transitions
etween quiescence and activity. In this way, we can identify the
ong-run proportion of time spent in quiescence and flaring activity. 
he state predictions also allow us to estimate time intervals of
uiescence and flaring, from which we obtain a comparative spectral 
nalysis of both quiescence and flaring. 

To the best of our knowledge, HMMs were first used to model time-
eries of flare data by Stanislavsky et al. ( 2020 ), who used a two-state
utore gressiv e HMM to model continuous-valued daily solar X-ray 
ux emission data in an effort to study the hidden process underlying
olar flares. They focused primarily on next-day prediction of solar 
are activity. More recently, Esquivel et al. ( 2024 ) used a similar
pproach with three states to model the flaring activity of an M-
warf star, in which the light curve was observed in one optical band
ith the TESS ( Transiting Exoplanet Survey Satellite ) Observatory. 
MNRAS 534, 2142–2167 (2024) 
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Figure 1. Bi v ariate time-series plots of EV Lac count data based on event lists 
where the split is based on counts in soft (0.3–1.5 keV) and hard (1.5–8 keV) 
passbands. Time is discretized into 50 s intervals; for ObsID 01855 (abo v e), 
t = 0 corresponds to 2001 September 19, 19:36:23, and for ObsID 10 679 
(below), t = 0 corresponds to 2009 March 13, 06:47:57. The intermittent 
nature of EV Lac’s flaring behaviour is evident. 
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MMs have also been used in other applications in astrophysics,
uch as distinguishing between noise- and source-dominated states
n strongly variable sources such as Sgr A 

∗ (Meyer et al. 2014 ). 
Our approach here is more general. We use X-ray event lists

ontaining information on photon arri v al times and photon energy to
onstruct light curves in multiple bands with low count rates in the
oisson regime, allowing us to explore short time-scale events as well
s spectral variations. While our method allows for prediction, our
rimary aim is to better understand the underlying physical process
riving stellar flares. 
The remainder of this paper is organized into six sections. We begin

y introducing two EV Lac light curves in Section 2 to moti v ate our
odelling choice. Section 3 consists of a general introduction and

e vie w of HMMs, emphasizing the notation and properties needed
n the current setting. We present our Stage 1 analysis with its three
MMs in Section 4 , emphasizing techniques for quantifying uncer-

ainty and model selection.We turn to the Stage 2 analysis in Section 5
ith a new proposed model-based method for classifying light curves

nto flaring and quiescent intervals. We illustrate the application of
hese models and methods with an analysis of the EV Lac light curves
n Section 6 . Finally, we conclude with a discussion and suggestions
or future work in Section 7 . Several appendices review details of
he algorithms used for maximum-likelihood fitting of discrete-space
MMs, present technical aspects of the discrete approximation that
e use for efficient fitting of continuous-space HMMs, and give

dditional details of our analysis of EV Lac. 

 DATA  

o moti v ate the de velopment of HMMs as a modelling tool for non-
eriodic stochastic variability, we focus on stellar flares in particular,
s those data sets often provide a clean look at a quiescent level
unctuated by large, short-duration flares. Being able to separate
uiescent from flaring states is crucial to understand mechanisms of
tellar coronal heating, as well as the local interplanetary environ-
ent. The latter in particular affects the habitability of exoplanets,
hich has been flagged as an important focus of investigations in

he Astro 2020 Decadal Surv e y (National Academies of Science,
ngineering, and Medicine 2021 ). 

.1 EV Lac 

he nearby (5 pc) active dMe binary EV Lac is a good candidate to
est our HMM modelling. It has displayed consistent flaring across
ecades (at � 0 . 2 − 0 . 4 h −1 during every X-ray observation; see
uenemoerder et al. 2010 , and references therein), and there are
igh-spectral and high-temporal resolution, long-duration data sets
btained using the high-energy transmission gratings (Canizares et al.
005 ) on the Chandra X-ray Observatory (Weisskopf et al. 2002 ). 2 

hese data were previously analysed by Huenemoerder et al. ( 2010 ),
ho detected 25 large individual flares across the data sets, and
bserved clear changes in spectral characteristics during flares, with
enerally higher plasma temperatures ( � 10 6 K) at larger emission
easures; the y e xplicitly demonstrate the value of stacking the data

rom flares (whether short or long) and the quiescent durations. 
Here, we use the combined dispersed events from both the high-

nergy (HEG) and medium-energy (MEG) grating components of
NRAS 534, 2142–2167 (2024) 

 The data sets, obtained on 2001 September 19 (ObsID 01885; 100.02 ks) 
nd 2009 Mar 13 (ObsID 10679; 95.56 ks) are available via the CDC 235 at 
ttps:// doi.org/ 10.25574/ cdc.235 . 

3

p
a
s
f

he first-order photons, extracted from the level-2 event list using the
efault e xtraction re gions in CIAO v4.16 (Fruscione et al. 2006 ). This
llows us to a v oid pileup effects (Da vis 2001 ) on the zeroth-order
ata, especially during strong flares. We show the light curves for
oth epochs in Fig. 1 , with the data split into two passbands, a softer
and co v ering 0.3–1.5 keV and a harder band co v ering 1.5–8.0 keV.
he choice of 1.5 keV as the split threshold is driven by the effective
rea peaking at that value. 3 There are approximately 23 , 600 and
7 , 900 counts in the softer band, and approximately 9 , 800 and 9 , 500
ounts in the harder band for ObsIDs 01885 and 10679, respectively.
he counts are collected into light curves (Fig. 1 ) binned at 50 s (see
ppendix D for a sensitivity analysis for the choice of bins). Because

hese light curves are constructed from dispersed photons, pileup is
ntirely ignorable. The data are not affected by dead time effects,
nd background contamination is small and unvarying, and therefore
lso ignorable. The Advanced CCD Imaging Array - Spectroscopic
etector on Chandra (ACIS-S) contamination build up at low energies
 v er the mission (Plucinsky, Bogdan & Marshall 2022 ) reduces the
ounts in the soft band. 

We discuss the application of our model to this data set and the
ele v ant results in Section 6 . 

 H I D D E N  M A R KOV  M O D E L S  

e begin with a brief re vie w of discrete-time HMMs, in order to
resent the rele v ant theory and notation required to understand the
odels and methods developed in this paper. A readable, but more

omprehensive, introduction to HMMs can be found in Zucchini
 We have also explored the sensitivity of our analysis to the choice of 
assband splitting energy value. We carried out the analysis using other 
strophysically meaningful splits such 0.9 keV – which separates a thermal 
pectrum from being dominated by low- and high-temperature plasma – and 
ound no qualitative effect on the results. 

https://doi.org/10.25574/cdc.235


Separating states using hidden Mark o v models 2145 

Figure 2. A graphical model representing the standard discretized HMM dependence structure. In this graph, open nodes represent observed quantities and 
shaded nodes represent unobserved quantities. Generally, an arrow from node X to node Y indicates that the random variables X and Y are not independent, 
and that the joint distribution of ( X, Y ) is analysed via the factorization f X,Y ( x , y ) = f Y | X ( y | x) · f X ( x) rather than f X,Y ( x, y) = f X| Y ( x | y) · f Y ( y). In the 
unobserv ed Marko v chain X 1 , X 2 , . . . , each X t determines the distribution of its successor X t+ 1 (represented by the forward-pointing arrows). In the observed 
process Y 1 , Y 2 , . . . each X t determines the distribution of each Y t (represented by the do wnward-pointing arro ws), such that, conditional on these determinations, 
the Y t are independent (represented by the lack of arrows between the Y t ). 
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t al. ( 2017 ) while Capp ́e, Moulines & Ryden ( 2005 ) provide a more
dvanced treatment. 

.1 Discrete-time hidden Markov models 

euristically, we employ discrete-time HMMs when we believe that 
here is an unobserved underlying process governing the distribution 
f an observed time-series of data at each discrete observation time. 
 or e xample, we might postulate that a stellar corona is in either
 quiescent state or active state at any given time, and that the
istribution of observed counts differs between these two states. 
he underlying state (quiescent or active) is unobserved but governs 

he distribution of the observed photon counts. Mathematically, the 
nderlying process is modelled as a Markov chain: informally, a 
equence of random variables, X 1 , X 2 , . . . , for which the distribution
f any X t depends on the history of the chain only through the value
f X t−1 . The variables X 1 , X 2 , . . . , determine the o v erall state of the
rocess (e.g. whether the stellar corona is in a quiescent or active
tate); thus we refer to the X t as state variables (or simply states). 

Inferences about the Markov chain, such as the determination 
f its values at any time (a process known as state decoding)
re performed using only the observed data. Domains in which 
MMs commonly appear include meteorology (in which the daily 
ccurrence of rainfall is generated by underlying ‘wet’ and ‘dry’ 
tates of nature; Zucchini et al. 2017 ), animal mo v ement ecology
in which an animal’s behavioural states are inferred from telemetry 
ata capturing its physical mo v ements; Langrock et al. 2012b ), and
nance (in which stock returns are influenced by the underlying state 
f the economy). In astronomy, Stanislavsky et al. ( 2020 ) modelled
olar X-ray flux as being generated by underlying ‘flaring’ and ‘non-
aring’ states of the sun, as discussed in Introduction. 
More formally, the basic discrete-time HMM has tw o k ey com-

onents. The first component is an unobserved Markov chain, 
 1: T = ( X 1 , . . . , X T ), where each X t takes values in a common state

pace X and the chain is subject to the Markov property, 

 ( X t ∈ A | X t−1 = x t−1 , . . . , X t = x 1 ) = P ( X t ∈ A | X t−1 = x t−1 )

(1

or all A ⊆ X (for notational convenience, we start by assuming
he X t are uni v ariate). The second component is a sequence of
bserved data, Y 1: T = ( Y 1 , Y 2 , . . . , Y T ), where each Y t takes values
n a common observation space Y . For EV Lac, we consider soft
nd hard passband counts within each time bin; thus each Y t is
i v ariate (i.e. a two-component vector), Y = R 

2 , and we set Y t in
old throughout the paper. The two components are subject to the
ollowing conditional independence rules: 

(i) Y t and Y s are conditionally independent given the underlying 
arkov chain X 1: T , for any s �= t , and 
(ii) the distribution of Y t depends on X 1: T only through the state, 
 t , at time index t . 

It follows that Y t and Y s are conditionally independent given 
 X t , X s ) for any t �= s. This means that, conditional on the state of
he Markov chain at time index t , the observation Y t is independent 
f all other observations; see Fig. 2 . Note that (ii) implies that the
istribution of each Y t is fully characterized by the underlying state 
 t ; often, the distributions of the individual observations, Y t , all

elong to the same parametric family (such as a normal distribution),
nd the state X t manifests itself in the particular parameters of the
istribution of Y t (such as the mean and variance, in the case of
tate-dependent normal distributions). In most cases, the state space 
 is either finite or a continuum; we describe these cases separately.
he notation used here and elsewhere in this paper is summarized in
able 1 . 

.2 Discrete-space hidden Markov models 

hen the state space X is finite, it is commonly represented as
 = { 1 , . . . , K} for some K ∈ N , where each value in X plays the

ole of a label for an underlying state of nature (e.g. when K = 2,
flaring’ and ‘quiescent’ can simply be represented as ‘1’ and ‘2’,
espectively). In this case, the resulting HMM is referred to as a
iscrete-space HMM. The specification of a (time-homogeneous) 
iscrete-space HMM consists of three ingredients: 

(i) an initial distribution on X , represented by a vector δ =
 δ1 , . . . , δK 

) with δi = P ( X 1 = i ) , 
(ii) a set of transition probabilities, γi,j = P ( X t+ 1 = j | X t = i )

or any t ≥ 1, represented by a K × K transition matrix, � , with
lement ( i, j ) given by γi,j , and 

(iii) a set of state-dependent distributions, each characterized by 
 density or mass function h k ( y | λk ) determining the conditional
istribution of Y t | X t = k for any t . Here λk is a state-specific
istributional parameter, which may consist of several components. 

Let η denote the set of HMM model parameters, including the 
nitial distribution, the transition probabilities, and the parameters 
f the state-dependent distributions, that is, η = ( δ, � , λ1 , . . . , λK 

).
MNRAS 534, 2142–2167 (2024) 
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Table 1. Table of notation used throughout the paper. 

w Time bin width for grouping observations into discrete counts; usually w = 50 s 
t Index of time bin 
Y t, 1 Observed soft band count at time index t 
Y t, 2 Observed hard band count at time index t 
Y t Observed bi v ariate v ector of counts (soft and hard band) at time inde x t (i.e. Y t = ( Y t, 1 , Y t, 2 )) 
Y s : s ′ Collection of observed Y t from t = s to s ′ 
X t State of underlying Markov chain at time index t 
X s : s ′ Collection of underlying states from t = s to s ′ 
X Underlying state-space which each X t takes values within 
δ Initial distribution for a discrete-space Markov chain, represented as a vector 
˜ δ Discrete approximation to an initial distribution to a continuous-space Markov chain 
γi,j Transition probability from state i to state j for a discrete-space Markov chain 
� Transition matrix for a discrete-space Markov chain 
˜ � Discrete approximation to a transition density of a continuous-space Markov chain 
λk, 1 Parameter for kth state-dependent distribution of soft band count 
λk, 2 Parameter for kth state-dependent distribution of hard band count 
λk P arameter v ector for kth state-dependent distribution (i.e. λk = ( λk, 1 , λk, 2 )) 
h k ( · | λk ) State-dependent density or mass function of Y t (i.e. conditional on X t = k) 
η Vector of all unknown parameters in a given model 
L ( η | y 1: T ) Likelihood function (as a function of η) for a given model 
δ( ·) Initial distribution for a continuous-space Markov chain, represented as a density function 
γ ( ·, ·) Transition density for a continuous-space Markov chain 
π Stationary distribution for a given Markov chain 
βh Mean emission rate for band h when X t,h = 0, scaled by 1 /w (for h = 1 , 2) 
φh Autocorrelation parameter for X t,h (for h = 1 , 2) 
� Autocorrelation matrix with ( φ1 , φ2 ) along the diagonal and off-diagonal entries equal to 0 
ε t, 1 Soft band error/innovation at time index t given by X t, 1 − φ1 X t−1 , 1 

ε t, 2 Hard band error/innovation at time index t given by X t, 2 − φ1 X t−1 , 2 

ε t Bi v ariate error/innov ation term at time index t (i.e. ε t = ( ε t, 1 , ε t, 2 )) 
σ 2 

h Variance of ε t,h (for h = 1 , 2) 
ρ Correlation between ε t, 1 and ε t, 2 
0 Vector of zeros of length 2 (i.e. 0 = (0 , 0)) 
� Covariance matrix with ( σ 2 

1 , σ
2 
2 ) along the diagonal and off-diagonal entries equal to σ1 σ2 ρ

N ( μ, σ 2 ) Uni v ariate normal distribution with mean μ and variance σ 2 

N 2 ( 0 , � ) Bi v ariate normal distribution with mean vector 0 and covariance matrix � 

ˆ Y t,h Predicted mean (Poisson rate) of distribution of Y t,h (for h = 1 , 2) 
ˆ X t,h Prediction of X t,h conditional on Y 1: T = y 1: T (for h = 1 , 2) 
R Set of real numbers 
N ≥1 Set of positive integers 
P η( A ) Probability of an event A given distributional parameter values η
E η [ X ] Expectation of a random variable X given distributional parameter values η
A i Subrectangle i used to partition continuous state space in discrete HMM approximation 
c ∗i Representative point within A i used to define states in discrete HMM approximation 
1 Column vector of ones (i.e. 1 = (1 , 1 , . . . , 1) 	 ) 
α Mixing parameter for first component of a two-component finite mixture model 
αj Mixing parameter for j th component of a K-component finite mixture model 
π Vector of parameters π = ( π1 , . . . , πK 

) in density used for semisupervised classification 
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he likelihood function for the discrete-space HMM is given by 

L ( η | y 1: T ) = 

K ∑ 

x 1 = 1 

· · ·
K ∑ 

x T = 1 

( 

δx 1 · h x 1 ( y 1 | λx 1 ) 
T ∏ 

t= 2 

(
γx t−1 ,x t · h x t ( y t | λx t ) 

)) 

. (2) 

he sums in equation ( 2 ) ‘marginalize’ the unknown state sequence
 1: T out of the likelihood by summing o v er all possible state

equences which could have generated the observed data. 
Standard algorithms are available for computing the maximum-

ikelihood estimate of η under equation ( 2 ). While the number of
erms summed in equation ( 2 ) is exponential in T , an efficient
lgorithm known as the forward algorithm allows the likelihood
o be computed in polynomial time; see Appendix A1 for details.
mbedding this algorithm within the E-step of the well-known EM
NRAS 534, 2142–2167 (2024) 
lgorithm (see Appendix C ) produces the Baum–Welch algorithm,
hich allows for fast maximization of equation ( 2 ); see Zucchini et al.

 2017 ) for details. Once the model parameters have been estimated,
he forw ard–backw ard algorithm (detailed in Appendix A2 ) can be
sed to compute posterior state membership probabilities of the
orm ˆ p t,k = P ( X t = k | Y 1: T = y 1: T ) for each t = 1 , . . . , T , and
rom these, the posterior state membership classifications given by
rgmax k ˆ p t,k . 

.3 Continuous-space hidden Markov models 

hen the state space X is a continuum (such as R or, more generally,
 

d for some d ≥ 1), the resulting HMM is called a continuous-space
MM. In this case, the first two ingredients in the discrete-space
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MM specification are replaced by continuous analogues, while the 
hird is essentially unchanged: 

(i) an initial distribution on X , represented by a probability density
unction δ( x) satisfying P ( X 1 ∈ A ) = 

∫ 
A 

δ( x) d x for A ⊆ X , 
(ii) a transition density function, γ : X 

2 → [0 , ∞ ) satisfying
 ( X t+ 1 ∈ A | X t = x ) = 

∫ 
A 

γ ( x , x ′ ) d x ′ for any t ≥ 1 and x ′ ∈ X ,
nd 

(iii) a set of state-dependent distributions, each characterized by 
 density or mass function h x ( y | λx ) determining the conditional
istribution of Y t | X t = x for any t . Here, λx is the parameter 
pecifying the distribution of Y t given that X t = x ; this parameter 
ay consist of several components. 

The likelihood function for the continuous-space HMM is 

L ( η | y 1: T ) = ∫ 
X 

· · ·
∫ 
X 

δ( x 1 ) · h x 1 ( y 1 | λx 1 ) 
T ∏ 

t= 2 

γ ( x t−1 , x t ) · h x t ( y t | λx t ) d x T :1

(3)

here the iterated integrals over X have replaced the sums in equation
 2 ) and d x T :1 = d x T · · · d x 1 . 

In both discrete- and continuous-space Markov chains, the corre- 
ponding transition probabilities or transition density may induce 
 stationary distribution for the underlying Markov chain – a 
istribution π where X t ∼ π implies that X t+ 1 ∼ π (i.e. if one 
terate of the chain is marginally distributed according the stationary 
istribution, all subsequent iterates are also marginally distributed 
ccording to π ). Under broadly realistic assumptions, the stationary 
istribution is equal to the asymptotic distribution of the chain, that 
s, the limiting distribution of X t as t → ∞ (e.g. Resnick 2013 ). 

.4 Approximation to the continuous-space HMM likelihood 

n contrast to the situation for the discrete-space HMM, computing 
he maximum-likelihood estimate under a continuous-space HMM 

y maximizing equation ( 3 ) poses considerable challenges. With the 
ums o v er { 1 , . . . , K} replaced by inte grals o v er X , no efficient
lgorithms are known that can compute equation ( 3 ), let alone
aximize it. Fortunately, ho we ver, we can approximate equation (3 )

o arbitrary high level of accuracy by replacing the continuous-space 
arkov chain with a suitably chosen discrete-space one; this idea 

riginates from the work of Kitagawa ( 1987 ) and was developed for
tate-space models by Langrock ( 2011 ). We provide a brief outline
f the method and its deri v ation here, with additional details in
ppendix B ; see also Langrock ( 2011 ) for a complete exposition in

he uni v ariate case and Langrock, MacDonald & Zucchini ( 2012a )
or several illustrative examples. 

First, we must identify an essential domain A , which is a bounded
ubset of X such that P ( X t ∈ A ) is nearly one for all t (Kitagawa
987 ). Next, A must be partitioned into subsets A 1 , . . . , A m 

and a
epresentative point, c ∗i , chosen for each A i , for example, c ∗i can be
et to the centre of A i . If all of the A i are small, then 

L ( η | y 1: T ) ≈
m ∑ 

i 1 = 1 

· · ·
m ∑ 

i T = 1 

( 

P ( X 1 ∈ A i 1 ) · h c ∗
i 1 

(
y 1 | λc ∗

i 1 

)
·

T ∏ 

t= 2 

(
P 

(
X t ∈ A i t | X t−1 = c ∗i t−1 

)
· h c ∗

i t 

(
y t | λc ∗

i t 

))) 

, (4) 

here the approximation becomes exact as A approaches X and each 
f the A i decrease in size (see Appendix B for details.) Defining the
ector ˜ δ ∈ R 

m and matrix ˜ � ∈ R 

m ×m by the entries 

˜ 
j = P ( X 1 ∈ A j ) and ˜ γi,j = P ( X t ∈ A j | X t−1 = c ∗i ) , (5) 

he approximation ( 4 ) can be written 

L ( η | y 1: T ) ≈
m ∑ 

i 1 = 1 

· · ·
m ∑ 

i T = 1 

( 

˜ δi 1 · h c ∗
i 1 

(
y 1 | λc ∗

i 1 

) T ∏ 

t= 2 

(
˜ γi t−1 ,i t · h c ∗

i t 

(
y t | λc ∗

i t 

))) 

,

(6) 

here η is a vector consisting of the unknown parameters in 
he state-space model, including the state-dependent parameters 

c ∗
i, 1 

, . . . , λc ∗
i,T 

and any parameters associated with the distribution 
f the underlying Markov chain X 1: T . If we replace the initial density
and transition density γ with the discretized functions in equation 

 5 ), the approximation in equation ( 6 ) is precisely of the form of
he discrete-space HMM likelihood given in equation ( 2 ), and so,
p to the renormalization of ˜ δ and the rows of ˜ � , equation ( 6 ) is
he likelihood of an m -state discrete-space HMM in which the chain
eing in ‘state’ i at time index t corresponds to the event that X t ∈ A i .
With all elements in the approximation specified in this way, 

 v aluation of equation ( 6 ) can proceed using the forward algorithm
iscussed in Section 3.2 . When X = R 

d for d > 1 and the size of
he partition m is large, mapping the unordered partition of A to
n ordered set of states { 1 , . . . , m } poses its own challenges. When
 = 2, this mapping can be accomplished by a pairing function – that
s, a bijection from N ≥1 × N ≥1 to N ≥1 . We slightly modify Szudzik’s 
Elegant’ bijection between N × N and N (Szudzik 2006 ) so that the 
riginal function and its inverse have the required domain and range.
he modification and its inverse are respectively given by 

air ( i, j ) = 

{
j 2 − 2 j + i + 1 , i �= max { i, j} 
i 2 + j − i, i = max { i, j} 

nd 

npair ( j ) = 

{(
j − g ( j ) 2 , g ( j ) + 1 

)
, j − g( j ) 2 − 1 < g( j ) (

g( j ) + 1 , j − g( j ) 2 − g( j ) 
)
, j − g( j ) 2 − 1 ≥ g( j ) 

, 

here g( j ) = � √ 

j − 1 � . 
In practice, one can manually verify that the range of the chosen

ssential domain is sufficient for the data at hand by inspecting a
istogram of the predicted states produced by any state decoding 
lgorithm (see Appendix A2 ) after the model has been fit (Zucchini
t al. 2017 ). 

 STAG E  1 :  H M M S  F O R  FLARI NG  S O U R C E S  

n this section, we propose three new HMMs which are well suited
o model flares in stellar coronae. These models are more generally
pplicable, but because we focus on data sets of flaring stellar
ight curves (see Section 2 ), and because other model choices are
ossible, we caution that it is necessary to consider carefully the
articular scenario before adopting these models without suitable 
odifications. Indeed, we are actively engaged in applying the 
odels to flaring sources other than stars and exploring what gener-

lizations to the models might be appropriate for these application; 
ee Section 7.2 for discussion. All of the models consider photon
ounts recorded in a sequence of time intervals inde x ed by t and
abulated into soft passband counts, Y t, 1 , and hard passband counts,
 t, 2 , for t = 1 , . . . , T . We start by considering the relative merits of
iscrete and continuous state spaces as the basis for modelling the
aring behaviour of stars. 
MNRAS 534, 2142–2167 (2024) 
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Figure 3. Soft band ObsID 01885 light curve coloured with classifications 
based on two-state (abo v e) and three-state (below) HMMs fit directly to the 
observed data Y 1: T . 
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4 The term ‘state-space model’ – unlike ‘HMM’ – is not consistently defined 
in the literature. Here, we simply regard state-space models as those with 
observation processes (partially) driven by some hidden linear state process 
defined on a continuous state space. In other domains such as control theory, 
this term commonly refers to more specific models in which the observation 
process is itself a linear function of the state process. 
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.1 Discrete-space HMMs for flaring stellar coronae 

ith a discrete state space, a state-dependent bi v ariate Poisson
istribution can be written 

 t | X t = k ∼ Poisson ( λk, 1 ) · Poisson ( λk, 2 ) , (7) 

or t = 1 , . . . , T and k = 1 , . . . , K , where here and below the
otation Y t | X t = k ∼ Poisson ( λk, 1 ) · Poisson ( λk, 2 ) indicates that
he Poisson distributions of the passbands Y t, 1 and Y t, 2 , conditional on
he event X t = k, are independent for all t . There are many possible
lternatives to equation (7) for count data, including combinations
f v arious bi v ariate Poisson and negati ve binomial distributions
see Johnson, Kotz & Balakrishnan 1997 , for examples) and state-
ependent copulas (see Zimmerman, Craiu & Leos-Barajas 2023 ),
ll of which induce dependence structures between Y t, 1 and Y t, 2 . In
rinciple, a two-state HMM could be used to model a star’s states as
quiescent’ and ‘flaring’, roughly in the manner of Stanislavsky et al.
 2020 ). Alternatively, a three-state HMM might split the ‘flaring’
tate into states of rising and falling flaring acti vity (Esqui vel et al.
024 ). 
We fit the model specified in equation ( 7 ) to ObsID 01885 light

urve for both K = 2 and 3 via maximum likelihood as described
n Section 3.2 . Fig. 3 illustrates the fitted predicted classifications
or each time interval, computed as argmax k ˆ p t,k , again as described
n Section 3.2 . Inspection of Fig. 3 (or indeed of Fig. 1 ) reveals
 theoretical defect of using a discrete-space HMM to model the
tellar flare process of EV Lac. Under the conditional independence
ules of Section 3.1 , all observations generated by the same state
re independent and identically distributed. Indeed, this implies that
he red observations in Fig. 3 must be independent and identically
istributed, as are the green and blue ones. This implication is
ontradicted by the clear temporal trend of the red observations, as
ell as the sharp rise and fall of the blue ones. Thus, the conditional

ndependence rule is not satisfied and the standard discrete-space
MM is not directly suitable for our data. 
This time-series is comprised of jumps between two clearly

istinguished levels, pushed by a gradual trend o v er time (see figs 1
nd 2 of Stanislavsky et al. 2020 ). 
NRAS 534, 2142–2167 (2024) 
.2 Continuous-space HMMs for flaring stellar coronae 

here is no reason to assume that the underlying physical process
enerating stellar flare activity is binary and is either ‘on’ or ‘off’.
ere, we consider a more realistic model that allows the expected
hoton count at time index t to depend on a continuous underlying
rocess. This enables us to model gradual and/or smooth transitions
etween a quiescent and an active corona (e.g. with long periods of
uiescence interrupted by more intense signals at random intervals).
e also weaken the assumption that a single underlying uni v ariate

rocess X t drives both the hard and soft band photon counts. Specif-
cally, we replace X t with a bi v ariate vector X t whose components
 t, 1 and X t, 2 may be correlated with each other. We maintain the
arkov assumption expressed as a bi v ariate version of ( 1 ). 
We specify a Poisson state-space model 4 that satisfies these

equirements. First, the state-dependent distribution models flux
easurement (i.e. the counts in two passbands) via a Poisson (error)

istribution conditional on the underlying R 

2 -valued state-space
ariable X t : 

 t | X t ∼ Poisson 
(
w · β1 · e X t, 1 

) · Poisson 
(
w · β2 · e X t, 2 

)
. (8) 

econd, the astrophysical source variability or signal is modelled via
n autore gressiv e process for X t , specified as 

X t = � X t−1 + ε t , (9a) 

 = 

[
φ1 0 
0 φ2 

]
, (9b) 

 t 

iid ∼ N 2 ( 0 , � ) , and (9c) 

 = 

[
σ 2 

1 σ1 σ2 ρ

σ1 σ2 ρ σ 2 
2 

]
. (9d) 

he ε t term in equation ( 9a ) does not represent observational noise;
ather, it represents the random innovation in the underlying source
r signal v ariability. Observ ational uncertainty, on the other hand, is
aptured implicitly by the Poisson distribution in equation ( 8 ), and
ot by an y e xplicit additiv e term in the model. Fitting this Poisson
tate-space model allows us to go beyond simply fitting the raw
ight curves. Ultimately, this will allow us to identify time intervals
ith different statistical behaviours (e.g. quiescence and flaring); see
ection 5 . Note that the notation N 2 ( 0 , � ) in equation ( 9c ) represents
 bi v ariate Gaussian distribution with mean vector equal to 0 and
ovariance matrix equal to � . 

The parameters to be estimated in equations ( 8 )–( 9d ) are β1 , β2 >

, the coefficient matrix � with diagonal entries φ1 , φ2 ∈ ( −1 , 1),
nd the covariance matrix � built up of components σ1 , σ2 > 0 and
∈ ( −1 , 1). The remaining term, w, is the time bin used to group the

riginal photon event list into discrete counts; including w facilitates
he study of dependence on bin size (see Appendix D ) and also helps
o a v oid numerical underflow in the estimation process. 

Under the model in equations ( 8 )–( 9d ), the expected photon counts
 

[
Y t, 1 

]
and E 

[
Y t, 2 

]
at time index t in the soft and hard bands are

onotone increasing functions of X t, 1 and X t, 2 , respectively. The
arameter βh is proportional to the expected Poisson photon count
hen X t,h = 0. (Since X t,h can take on ne gativ e values, X t,h = 0
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5 This is a reasonable choice for a steadily flaring star like EV Lac, which 
has not shown evidence of drastic changes in X-ray luminosity during 
observations o v er the past sev eral decades (Huenemoerder et al. 2010 ). This 
choice is also supported by the steadiness of the spectra in the quiescent and 
flaring states that we find post facto across epochs (see Section 6.2.3 ). 
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oes not necessarily correspond to a state of particularly low or high
aring activity.) The coefficient matrix � determines the extent to 
hich each X t,h is correlated with its predecessor, X t−1 ,h . A slight
eneralization of equation ( 9b ) allows the off-diagonal entries of �
o be nonzero, thereby allowing X t, 1 to depend on X t−1 , 2 and vice
ersa (see Section 7 ). 

The state process X t of the model described by equations ( 9a )–( 9d )
s a first-order v ector autore gressiv e process, denoted as a VAR(1)
rocess in the statistical literature. VAR models are commonly 
pplied in areas such as mathematical finance, where they play im-
ortant roles in stochastic volatility modelling (e.g. Primiceri 2005 ). 
To compute the (approximate) maximum-likelihood estimate un- 

er the model in equations ( 8 )–( 9d ), we maximize the discrete-state-
pace approximation to the likelihood; see equation ( 6 ). Because the
tate space is R 

2 , it is convenient – although not strictly necessary 
to choose the essential domain A to be a rectangle. Similarly, we

artition A into a large number of subrectangles, A 1 , . . . , A m 

, and
et the representative point, c ∗i , of each to be its centre. 

To numerically optimize equation ( 6 ), we use a parallelized version
f the popular limited-memory Bro yden–Fletcher–Goldf arb–Shanno 
lgorithm (L-BFGS) routine as implemented in the OPTIMPARALLEL 

ackage (Gerber & Furrer 2019 ) within R . We prefer to use uncon-
trained optimization to a v oid numerical issues caused by parameter 
nputs lying on the boundaries of their respective domains; thus 
nstead of optimizing the parameters φ1 , φ2 and ρ in the approximate 
ikelihood o v er ( −1 , 1), we optimize tanh −1 ( φ1 ), tanh −1 ( φ2 ), and
anh −1 ( ρ) o v er R , and then transform the optimizing values back to
heir natural domain via the inverse function x �→ tanh ( x). Similarly,
e optimize log β1 , log β2 , log σ1 , and log σ2 o v er R , and replace the

esults with their exponentiated values. 
The (approximate) maximum-likelihood estimates may be slightly 

iased due to small sample sizes. (Maximum-likelihood estimates are 
symptotically unbiased for most ‘smooth’ models, but are generally 
ot unbiased with finite samples.) Similarly, with a small sample 
ize the ne gativ e Hessian matrix of the log-likelihood function eval-
ated at the maximum-likelihood estimate may yield an inadequate 
pproximation to the Fisher information matrix, which is normally 
sed to produce confidence intervals. In order to remedy both issues,
e appeal to the parametric bootstrap, which allows us to estimate 

imultaneously the standard errors of parameter estimates and their 
iases (Efron & Tibshirani 1993 ). 
Specifically, after computing the maximum-likelihood estimate of 

he parameters, ˆ ηmle , using the actual data, Y 1: T , we independently 
enerate B replicate data sets, Y 

(1) 
1: T , . . . , Y 

( B) 
1: T , under the model, each

ith parameter fixed at ˆ ηmle . In the context of an HMM, this requires
rst simulating the underlying state sequences, X 

(1) 
1: T , . . . , X 

( B) 
1; T , 

nd then generating each Y 

( b) 
t | X 

( b) 
t according to the conditional 

istribution ( 8 ). For each b = 1 , . . . , B, we then refit the model using
 

( b) 
1: T to produce a replicate estimate, ˆ η( b) 

bs . Next, we estimate the bias 
 and covariance matrix C of the maximum-likelihood estimator via 

ˆ 
 bs = 

¯̂
 ηbs − ˆ ηmle (10) 

nd 

ˆ 
 bs = 

1 

B − 1 

B ∑ 

b= 1 

(
ˆ η( b) 

bs − ¯̂
 ηbs 

)(
ˆ η( b) 

bs − ¯̂
 ηbs 

)	 

, (11) 

here 

¯̂
 bs = 

1 

B 

B ∑ 

b= 1 

ˆ η( b) 
bs (12) 
s the mean of the bootstrap replicate estimates. Finally, the bootstrap- 
orrected estimate is ˆ ηcorr = 

ˆ ηmle − ˆ b bs , and standard errors for the 
omponents of ˆ ηcorr are equal to the square roots of the diagonal
lements of ˆ C bs . Approximate 95 per cent confidence intervals for 
he components are computed with these standard errors. 

We conducted a brief simulation study to confirm the veracity of
he bootstrap estimates and errors. We simulated data under Model 2
see Section 4.3.2 below) with a pre-specified η = ( φ1 , σ1 , σ2 , β1 , β2 )
hosen relatively close to the values given in the second column of
able 3 . Choosing B = 100, we independently repeated the boot-
trapping procedure 100 times, producing 100 bootstrap 95 per cent 
onfidence intervals centred around 100 bias-corrected maximum- 
ikelihood estimates. The co v erage probabilities for the five param-
ters (i.e. the number of times each true parameter φ1 , . . . , β2 fell
nside the bootstrap confidence interv als, di vided by 100) were 0.93,
.97, 0.92, 0.92, and 0.91, respectively, which all agree with the
xpected value of 0.95 at the 95 per cent confidence level. 

.3 Three state-space models for flaring stellar coronae 

hile the Poisson state-space model in equations ( 8 )–( 9d ) includes
eatures well suited to stellar flare data, it may be more general
han necessary; for example, it is not immediately clear that separate
nderlying processes, X t, 1 and X t, 2 , are necessary for the hard and
oft bands. We therefore consider two special cases of the model, the
rst itself a special case of the second, before considering the model

n equations ( 8 )–( 9d ) in its full generality as a third model. Thus,
he three models we consider form a nested sequence. For each

odel, we first provide a stochastic representation, and then give 
he initial distribution (as characterized by ˜ δj , for j ∈ { 1 , . . . , m } )
nd transition probabilities (as characterized by ˜ γi,j , for i, j ∈
 1 , . . . , m } ) of the associated discrete-space HMM approximation
o the continuous-space model. This involv es e xpressing both the
˜ 
j and the ˜ γi,j as functions of the parameters involved with the 
tochastic representation of the underlying state process. 

Note that the initial density plays a relatively minor role in
he likelihood, and that its impact diminishing as T grows. We
ollow Langrock ( 2011 ) and use the stationary distribution of the
tate process, X 1: T , for the initial distribution ˜ δj . Statistically, this 
s tantamount to assuming that the distribution of the states that
he star inhabits is in equilibrium, and is not evolving o v er time. 5 

he transition probabilities ˜ γi,j are derived from the stochastic 
epresentation of the model. 

.3.1 Model 1: AR(1) process 

o reduce the underlying state process to one dimension, we set
 t, 1 = X t, 2 = : X t for all t , in which case the latent process reduces

o a uni v ariate first-order autore gressiv e process, denoted as an AR(1)
rocess for short. The entire state-space model can be written in the
implified form 

 t | X t ∼ Poisson 
(
w · β1 · e X t 

) · Poisson 
(
w · β2 · e X t 

)
, 

X t = φX t−1 + ε t , and 

ε t 
iid ∼ N 

(
0 , σ 2 

)
. (13) 
MNRAS 534, 2142–2167 (2024) 
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he vector of unknown parameters for Model 1, ηM1 = ( φ, σ, β1 , β2 ),
s fit to the data. 

Under Model 1, X t = φX t−1 + ε t with ε t ∼ N (0 , σ 2 ), and it can
e shown that this process admits a stationary distribution if and
nly if φ ∈ ( −1 , 1), whence the stationary distribution is given by
he N 

(
0 , σ 2 / (1 − φ2 ) 

)
distribution. Thus, if A j = [ a j , b j ], then the

nitial distribution for the discrete-space HMM approximation of
odel 1 is taken to be the vector ˜ δ comprised of entries 

˜ 
j = P ( X t ∈ A j ) = G X ( b j ) − G X ( a j ) , (14) 

here 

 X ( x) = 

∫ x 

−∞ 

√ 

1 − φ2 

2 πσ 2 
exp 

{ 

− t 2 
(
1 − φ2 

)
2 σ 2 

} 

d t (15) 

s the cumulative distribution function (cdf) of the
 

(
0 , σ 2 / (1 − φ2 ) 

)
distribution. 

The transition density γ ( x t−1 , ·) for Model 1 is defined as the
onditional density of X t | ( X t−1 = x t−1 ). Under this model, it can
e shown that X t | ( X t−1 = x t−1 ) ∼ N ( φx t−1 , σ

2 ), and so, if c ∗i is
he representative point chosen within the interval A i , then the tran-
itions probabilities between states γi,j = P ( X t ∈ A j | X t−1 ∈ A i )
re approximated by 

˜ i,j = P ( X t ∈ A j | X t−1 = c ∗i ) = F X,i ( b j ) − F X,i ( a j ) , (16) 

here 

 X,i ( x) = 

∫ x 

−∞ 

1 √ 

2 πσ 2 
exp 

{
− ( t − φc ∗i ) 

2 

2 σ 2 

}
d t (17) 

s the cdf of the N 

(
φc ∗i , σ

2 
)

distribution. The ˜ γi,j are then taken
s the entries of the transition matrix in the discrete-space HMM
pproximation of the model. 

.3.2 Model 2: VAR(1) process on a line 

odel 1 can be viewed as a special case of the general Poisson state-
pace model ( 8 )–( 9d ), where X t, 1 is forced to be equal to X t, 2 with
robability 1 for all t . In Model 2, we relax this restriction and allow
 t, 2 to depend positively and linearly on X t, 1 ; specifically, we set
 t, 2 = σ2 X t, 1 /σ1 with probability 1, where each σh > 0 is given by
2 
h = Var 

(
X t,h | X t−1 ,h 

)
for all t . (The assumption of stationarity

mplies that this variance does not depend on t .) Formally, this can
e written as a bi v ariate state-space model where the X t follow the
egenerate distribution implied by 

X t = � X t−1 + ε t , 

� = 

[
φ 0 
0 φ

]
, and 

ε t 
iid ∼ lim 

ρ→ 1 
N 2 

(
0 , 
[

σ 2 
1 σ1 σ2 ρ

σ1 σ2 ρ σ 2 
2 

])
. (18) 

he bi v ariate distribution for ε t lacks a density with respect to
ebesgue measure on R 

2 , but admits a density on the line y =
2 x/σ1 . Ho we ver, it is more convenient to write the state-space
odel entirely in terms of the uni v ariate state process X t : = X t, 1 

s 

 t | X t ∼ Poisson 
(
w · β1 · e X t 

) · Poisson 
(
w · β2 · e σ2 X t /σ1 

)
, 

X t = φX t−1 + ε t , and 

ε t 
iid ∼ N 

(
0 , σ 2 

1 

)
. (19) 

he vector of unknown parameters for Model 2, ηM2 =
 φ, σ1 , σ2 , β1 , β2 ), is fit to the data. 
NRAS 534, 2142–2167 (2024) 
In the bi v ariate formulation ( 18 ), X t, 1 lies within the interval
 a, b] ⊂ R if and only if X t, 2 lies within [ σ2 a/σ1 , σ2 b/σ1 ] with
robability 1. Thus, the transition probabilities for X t, 2 are deter-
ined by those of X t, 1 alone, as is the initial distribution of X t, 2 

since we assume X t, 1 – and therefore X t, 2 – is stationary). It follows
hat the initial distribution ˜ δ and the transition probabilities ˜ γi,j 

or Model 2 are exactly the same as those in Model 1, but with
replaced by σ1 ; ef fecti vely, the only dif ference between Models

 and 2 is the inclusion of σ2 /σ1 in the state-dependent Poisson
istribution corresponding to the hard-band photons. For the process
 t = φX t−1 + ε t to be stationary, we again require that φ ∈ ( −1 , 1).

.3.3 Model 3: uncorrelated VAR(1) process 

odel 3 further generalizes Model 2 by removing the restriction that
 1 ,t and X 2 ,t depend on each other linearly. In particular, Model
 allows X 1 ,t and X 2 ,t to mo v e freely in their own ‘directions’,
ut ensures dependence between them by way of correlated errors.
pecifically, 

 t | X t ∼ Poisson 
(
w · β1 · e X t, 1 

) · Poisson 
(
w · β2 · e X t, 2 

)
, 

X t = � X t−1 + ε t , 

� = 

[
φ1 0 
0 φ2 

]
, 

ε t 
iid ∼ N 2 ( 0 , � ) , and 

� = 

[
σ 2 

1 σ1 σ2 ρ

σ1 σ2 ρ σ 2 
2 

]
. (20) 

he vector of unknown parameters for Model 3, ηM3 =
 φ1 , φ2 , σ1 , σ2 , β1 , β2 , ρ), is fit to the data. 

Model 3 includes two more parameters than Model 2, namely,
∈ ( −1 , 1) and φ2 > 0. In contrast to Model 2, here densities
ith respect to R 

2 exist for the bi v ariate conditional and stationary
istributions of the X t . Since X t can lie within any open set of
 

2 with positive probability, the resulting initial distribution and
ransition probabilities in the discrete-space HMM approximation to
he model must be derived anew. 

Under Model 3, the existence of a stationary distribution for
he process X t = � X t−1 + ε t requires that φ1 , φ2 ∈ ( −1 , 1). The
orresponding distribution is well known (e.g. Hamilton 2020 ) and
s given by the N 2 ( 0 , � ) distribution, where vec ( � ) = ( I − � ⊗
 ) −1 vec ( � ) , I is the 4 × 4 identity matrix, ⊗ is the Kronecker

roduct between matrices, and vec ( ·) is the vectorization operator
hat stacks the columns of an m × n matrix into a mn × 1 vector.
hus, if A j = [ a j, 1 , b j, 1 ] × [ a j, 2 , b j, 2 ] which, rather than an interval

n R as in Models 1 and 2, is now a rectangle in R 

2 , then the initial
istribution for the discrete-space HMM approximation of Model 3
s taken to be the vector ˜ δ comprised of entries 

˜ 
j = P ( X t ∈ A j ) 

= G X ( a j, 2 , b j, 2 ) − G X ( a j, 2 , b j, 1 ) − G X ( a j, 1 , b j, 2 ) 

+ G X ( a j, 1 , b j, 1 ) , (21) 

here 

 X ( x 1 , x 2 ) = 

∫ x 1 

−∞ 

∫ x 2 

−∞ 

1 

2 π
√ | det � | exp 

{
t 	 � 

−1 t 
}

d t (22) 

s the cdf of the N 2 ( 0 , � ) distribution. 
The transition density γ ( x t−1 , ·) for Model 3 is now defined as

he conditional density of X t | ( X t−1 = x t−1 ). Under this model,
t can be shown that X t | ( X t−1 = x t−1 ) ∼ N 2 ( � x t−1 , � ) and so,
f c ∗i is the representative point chosen within the rectangle A i ,
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hen the transitions between states γi,j = P ( X t ∈ A j | X t−1 ∈ A i )
re approximated by 

˜ i,j = P ( X t ∈ A j | X t−1 = c ∗i ) 

= F X ,i ( a j, 2 , b j, 2 ) − F X ,i ( a j, 2 , b j, 1 ) − F X ,i ( a j, 1 , b j, 2 ) 

+ F X ,i ( a j, 1 , b j, 1 ) , (23) 

here 

F X ,i ( x 1 , x 2 ) = ∫ x 1 

−∞ 

∫ x 2 

−∞ 

1 

2 π
√ | det � | exp 

{ (
t − � c ∗i 

)	 

� 

−1 
(

t − � c ∗i 
)} 

d t (24) 

s the N 2 ( � c ∗i , � ) cdf. The bi v ariate normal cdfs ( 22 ) and ( 24 ) can
e computed efficiently using any statistical software package. 

.4 State-space model selection 

he three models discussed in Section 4.3 are nested within each 
ther: Model 1 is a special case of Model 2 subject to the constraint
1 = σ2 , and Model 2 is a special case of Model 3 subject to the
onstraints φ1 = φ2 and ρ = 1. Thus, any two of these models 
an, at least in principle, be compared using a likelihood ratio test
LRT). Under certain conditions, if the data are generated under 
he ‘simpler’ of the two models being compared (i.e. the model 
ith fewer parameters), the LRT statistic is asymptotically 6 model 
istributed χ2 

( ν) with degrees of freedom ν equal to the difference in 
he number of parameters between the two models. Under certain 
onditions (e.g. Protassov et al. 2002 ), this result allows a p-value to
e computed; when the LRT statistic is sufficiently large relative to its
symptotic χ2 

( ν) distribution, a small p-value is obtained and we can 
onclude that the data are inconsistent with the simpler model. The 
RT statistic is equal to −2 times the difference of the maximized log-

ikelihood functions of the two models under comparison. Thus, we 
eject the smaller model when the larger model sufficiently impro v es
he fit to a degree as measured by the log-likelihood function. 

Among the conditions required for the LRT’s asymptotic χ2 
( ν) 

istribution are that (i) the models under comparison are nested and 
ii) the parameters of the smaller model are not constrained to be on
he boundary of the set of possible parameter values under the larger

odel. These conditions are met for Models 1 and 2 and the standard
RT is thus a suitable means of comparing them. Unfortunately, the 
omparison of Models 2 and 3 does not satisfy the second of these
onditions because one parameter in the smaller Model 2 lies on the
oundary of the parameter space of the larger Model 3 (i.e. ρ = 1).
n fact, the asymptotic distribution of the LRT statistic is not known
n this case. While Self & Liang ( 1987 ) provided a generalized LRT
tatistic that helps to account for such situations, its implementation 
an be computationally difficult. 

When the choice between Models 2 and 3 is not clear from the
esults of the model estimation procedure (as is the case for the
V Lac data; see Section 6.1 ), one can again use the parametric
ootstrap, this time to approximate the finite-sample distribution 
f the LRT statistic by way of simulations. Assuming that model 
tting produces the MLEs ˆ ηM2 for Model 2 and ˆ ηM3 for Model 3, 

his bootstrap procedure generates a large number B of independent 
 The distribution function of the LRT statistic converges pointwise to that of 
 χ2 

( ν) random variable as the size of the data set increases (e.g. as the total 
ime duration of the light curve increases). It is in this sense that the LRT 

tatistic is asymptotically χ2 
( ν) -distributed. This assumes that the necessary 

heoretical conditions are met (e.g. Protassov et al. 2002 ) and that the data 
re generated under the simpler 

a
c  

a  

t

p  

a  
eplicate data sets Y 

(1) 
1: T , . . . , Y 

( B) 
1: T under Model 2 with parameter ̂  ηM2 .

or each b = 1 , . . . , B, both Models 2 and 3 are fit to Y 

( b) 
1: T , producing

he respective MLEs ˆ η( b) 
M2 and ˆ η( b) 

M3 . The bootstrapped LRT statistics 
ˆ 
 

( b) = −2( � M2 ( ̂ η
( b) 
M2 ) − � M3 ( ̂ η

( b) 
M3 )) are computed, where � M2 and � M3 

re the log-likelihood functions for Models 2 and 3, respectively. The
tatistics ˆ ψ 

(1) , . . . , ˆ ψ 

( B) are then used to construct an approximate 
istribution ˆ F ψ , perhaps using a kernel density estimate (KDE; see 
ection 5.1 ). This distribution is used in place of the χ2 

( ν) distribution
o compute a p-value. Specifically, Model 2 can be rejected in fa v our
f Model 3 at the 95 per cent confidence level if the LRT statistic
roduced from the original data, ˆ ψ = −2( � M2 ( ̂ ηM2 ) − � M3 ( ̂ ηM3 )), is
uch that 1 − ˆ F ψ ( ̂  ψ ) < 0 . 05. 

In addition to o v ercoming theoretical roadblocks associated with 
he standard LRT approach, the bootstrap technique helps to ac- 
ount for potential numerical inaccuracies (e.g. stemming from the 
iscrete-space HMM approximation of the state-space likelihood or 
ts optimization, which is especially rele v ant when the dimension
f state space X is greater than 1). Because the same numerical
naccuracies affect the LRT statistic as computed on the data and as
omputed on the bootstrap replicates, the bootstrap provides the null 
istribution of the LRT statistic as it is computed. This allows us to
efine the statistic to be as computed (including potential numerical 
naccuracies) and correctly calibrate its null distribution and the 
 -value. Specifically, the Monte Carlo nature of the bootstrapped 
-values takes the entire approximation procedure into account, 
hereas the standard LRT approach assumes the use of genuine log-

ikelihood functions which are perfectly optimized in the involved 
alculations. 

Having fit the state-space model, standard HMM algorithms (see 
ppendix A ) allow one to decode the observations, that is, to make
redictions, ˆ X 1 , . . . , ˆ X T , of the underlying states, X 1 , . . . , X T . With
 continuous-space HMM, predictions take values in the set of rep-
esentative points { c ∗1 , . . . , c ∗m 

} defined in the discrete approximation
o the continuous-space likelihood, see Section 3.4 . 

 STAG E  2 :  CLASSIFYING  L I G H T  C U RV E S  

N TO  FLARI NG  A N D  QU I ESCENT  I NTERVALS  

ur Stage 1 HMMs use continuous underlying processes to model 
tellar flare activity (see Section 4.2 ). In practice, however, we also
ish to identify those time intervals when the star is in its quiescent

tate and those when it is in its flaring state. In this section, we
ntroduce our Stage 2 analysis, which uses a finite mixture model
o classify the ˆ X 1 , . . . , ˆ X T fitted in Stage 1 into the quiescent and
aring states. 
We consider two scenarios: semisupervised and unsupervised 

lassification. The semisupervised scenario applies in cases where 
e are able to identify a subsample of size m of the predicted states,
 q = { ̂  X t 1 , . . . , 

ˆ X t m } , where m is reasonably large and the subsample
s assumed to arise from a period of quiescence. Identifying a
uiescent subsample in variably in volves a degree of subjectivity (e.g.
hrough visual inspection). We refer to this scenario as semisuper- 
ised because some, but not all, of the data is assumed to be classified
 priori. If there is a clearly identifiable interval of quiescence, A q 

an be selected using a range of time bins where the light curves
ppear to be in equilibrium and do not exhibit flaring behaviour. In
he unsupervised scenario, we do not have such a subsample. 

In both the semisupervised and unsupervised scenarios, we pro- 
ose to model the full set of Stage 1 predicted states, ˆ X 1 , . . . , ˆ X T ,
s a mixture of two distributions, one corresponding to the quiescent
MNRAS 534, 2142–2167 (2024) 
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tate and the other corresponding to the flaring state. 7 This modelling
pproach is corroborated by the histogram of the EV Lac state
redictions shown in Section 6.2 . Formally, we assign the label ‘1’
o the quiescent distribution and ‘2’ to the flaring distribution, and
or the purpose of classification, suppose 

ˆ X 1 , . . . , ˆ X T 

iid ∼ α · F 1 + (1 − α) · F 2 , (25) 

here F 1 and F 2 are cdfs and α ∈ (0 , 1) is a mixing parameter, all to
e inferred from the data. The mixing parameter corresponds to the
roportion of time that the star spent in the quiescent state. Model
 25 ) can be equi v alently represented by introducing a sequence of

atent variables, Z 1 , . . . , Z T 

iid ∼ Bernoulli ( α) and declaring 

ˆ X t | Z t = k ∼ F k , for each t and for k ∈ { 1 , 2 } . 
(26) 

ote that neither of these model representations accounts for the auto-
orrelation (or more generally, the time-series nature) of ˆ X 1 , . . . , ˆ X T 

mplied by the Stage 1 HMMs (e.g. equations 9d , 13 , 19 , and 20 )
nd observed in the actual EV Lac fits (see e.g. Fig. 5 ). Instead,
e assume that temporal characteristics are captured by the Stage
 HMM fit, and here we merely aim to classify the light curve into
aring and quiescent intervals. 
For simplicity, we assume henceforth that as for Models 1 and 2,

he predicted states are uni v ariate, although our theory generalizes
o higher dimensional state predictions (as in Model 3). While

ixture models often involve component distributions belonging
o the same parametric family – normal distributions or other
xponential family distributions are especially popular – we consider
 less rigid approach to the choices of F 1 and F 2 . Ultimately, the
stimated probability that the star is in a flaring state depends on
he relative size of f 1 ( x) and f 2 ( x) at each value of x, where f 1 
nd f 2 are the probability density functions corresponding to F 1 and
 2 , respectively. The choice of f 1 and f 2 is particularly influential

or ranges of x at the transition between states, where f 1 ( x) and
 2 ( x) are both moderate and are both well abo v e zero; thus, the
hoice of densities is important, and poor approximations using
tandard parametric families can potentially yield inaccurate flaring
tate probabilities for such x. 

Note that in both the semisupervised and unsupervised procedures,
e are not concerned with o v erfitting the rele v ant mixture distribu-

ions to the data, as each fitted distribution pertains specifically to the
redicted states output by a particular fitted state-space model and
re not intended to be used elsewhere. 
NRAS 534, 2142–2167 (2024) 

 In the unsupervised scenario, one could, in principle, apply a non-parametric 
nsupervised clustering method such as k-means (with k = 2) to the ˆ X t 

o classify observations into quiescent and flaring intervals. Such methods 
ave the benefit of being fully automatic, and are easy to implement 
sing built-in routines within any statistical software package. Ho we ver, 
uantification of uncertainty for the classifications produced by these ‘black- 
ox’ algorithms are difficult to interpret (and are often not available at all), 
articularly when there is not a probabilistic model underlying the algorithm. 
urthermore, different unsupervised clustering algorithms (e.g. k-means, 
-medians, DBSCAN, etc.) use different loss/objective functions and can 
ield different classifications of the same data; aside from computational 
omplexity, there are few clear reasons for choosing one clustering algorithm 

 v er another. Thus, we deploy a more statistical approach, using a likelihood- 
ased finite mixture model. 
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.1 Semisupervised classification 

here is a distinct advantage in the semisupervised scenario where
 q can be used to form a robust non-parametric estimate of f 1 ( x).
nder the mixture model, we have ˆ X t j ∼ F 1 for j = 1 , . . . , m (i.e.

or ˆ X t j ∈ A q ) and we can use a KDE, ˆ f 1 ( x), to approximate f 1 ( x).
he KDE essentially traces out a smoothed version of the histogram
f the sample A q . 
The flaring component density f 2 ( x), on the other hand, does not

ield as easily to a KDE because an analogous subsample of data
nown to be from the flaring state is usually unavailable. Instead, we
pproximate f 2 ( x) by a step function ˆ f 2 ( x; π) parametrized by the
onstant value πk that it takes within a pre-specified bounded interval
 b k−1 , b k ) for a fixed number K of intervals; that is, 

ˆ 
 2 ( x; π) = 

K ∑ 

k= 1 

πk 

b k − b k−1 
· 1 x∈ [ b k−1 ,b k ) , (27) 

here the πk are unkno wn non-negati ve parameters subject to
 K 

k= 1 πk = 1. When the intervals [ b k−1 , b k ) are evenly spaced, ˆ f 2 
s essentially a histogram function. We choose b K 

= sup A , where
 is the essential domain used to approximate the domain of the X t 

see Section 3.4 ). This is because the values of ˆ X t produced by the
ocal decoding algorithm (see Appendix A2 ) take values in the set
f representative points { c ∗1 , . . . , c ∗m 

} ⊆ A ; thus ˆ X t ∈ A for all t . On
he other hand, we assume that the smallest values of X t are reserved
or the quiescent state and thus we choose b 0 as the median of ˆ f 1 ( x),
lthough other choices are possible. 

The unknown parameters in the model ( 25 ) , namely α and π, can
e estimated using the EM algorithm, which is a standard tool for
omputing maximum-likelihood estimates in finite mixture models
see Dempster, Laird & Rubin 1977 ) and is easily derived for equation
 25 ) (see Appendix C1 ). We run the EM algorithm on the subset
 r = { ̂  X 1 , . . . , ˆ X T } \ A q of predicted states not used to fit ˆ f 1 ( x), so

s not to use A q twice in the estimation process; this requires a minor
djustment to the mixing parameter α to account for the proportion
f quiescent state data remo v ed (see Appendix C1 ). 
Once the estimation of equation ( 25 ) is complete, the estimated

osterior probability that each X t is in a flaring state (i.e. state ‘2’) can
e derived using the representation in equation ( 26 ), which yields 

 ( Z t = 2 | ˆ X t = ˆ x t ) = 

(1 − ˆ α) · ˆ f 2 ( ̂  x t ; ˆ π) 

ˆ α · ˆ f 1 ( ̂  x t ) + (1 − ˆ α) · ˆ f 2 ( ̂  x t ; ˆ π) 
, (28) 

here ̂  α and ˆ π are the maximum-likelihood estimates computed with
he EM algorithm. 

.2 Unsupervised classification 

n situations, where there is no subsample of the data that can
easonably be assumed to have arisen from the quiescent state,
nference must be fully unsupervised and there is no immediate way
o use KDE to approximate f 1 ( x). In this case, we have found that
or the EV Lac data a mixture of three normal distributions provides
 reasonable approximation to the distribution of the ˆ X t : that is, 

ˆ 
 1 , . . . , ˆ X T 

iid ∼ α1 · N 

(
μ1 , τ

2 
1 

) + α2 · N 

(
μ2 , τ

2 
2 

) + α3 · N 

(
μ, τ 2 

3 

)
, (29) 

here α1 , α2 , and α3 are non-ne gativ e mixing parameters subject to
 3 
k= 1 αk = 1 and each μk and τ 2 

k are mean and variance parameters
respectively), all to be estimated. This distribution is also fit using
he EM algorithm (see Appendix C2 ). 

In this instance, we assume that one component of the model
orresponds to the flaring state, while the remaining two components
ogether correspond to the quiescent state (see Section 6.2.2 for
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Figure 4. Uni v ariate (top panel) and bi v ariate (bottom panel) histograms of 
predicted states ˆ X t based on an initial fits of Models 2 and 3 to ObsID 01885; 
abo v e, the dashed lines enclose the essential domain A = [ −1 . 25 , 2 . 65] 
chosen for the discrete-space approximation of Model 2, and below, they 
enclose the essential domain A = [ −1 . 25 , 2 . 56] × [ −1 . 75 , 3 . 6] chosen for 
Model 3. 

Table 2. Bias-corrected parameter estimates for Model 1 fit to ObsID 01885, 
with bias correction and standard errors obtained via the parametric bootstrap. 

Parameter Estimate Standard error CI (lower) CI (upper) 

φ1 0.987235 0.004579 0.978260 0.996209 
σ1 0.128329 0.006212 0.116155 0.140504 
β1 0.184642 0.045141 0.096165 0.273119 
β2 0.075158 0.018178 0.039529 0.110788 

Table 3. Bias-corrected parameter estimates for Model 2 fit to ObsID 01885, 
with bias correction and standard errors obtained via the parametric bootstrap. 

Parameter Estimate Standard error CI (lower) CI (upper) 

φ1 0.979644 0.006456 0.966991 0.992297 
σ1 0.100712 0.004811 0.091282 0.110142 
σ2 0.161689 0.007409 0.147168 0.176210 
β1 0.193817 0.022021 0.150656 0.236978 
β2 0.062417 0.010696 0.041453 0.083380 

Table 4. Bias-corrected parameter estimates for Model 3 fit to ObsID 01885, 
with bias correction and standard errors obtained via the parametric bootstrap. 

Parameter Estimate Standard error CI (lower) CI (upper) 

φ1 0.981721 0.008663 0.964742 0.998700 
φ2 0.976232 0.007997 0.960558 0.991906 
σ1 0.096086 0.006253 0.083829 0.108342 
σ2 0.171667 0.008918 0.154188 0.189147 
β1 0.206301 0.021047 0.165048 0.247554 
β2 0.066548 0.009203 0.048510 0.084585 
ρ 1.000000 0.000000 1.000000 1.000000 
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urther discussion in the context of EV Lac). We may assume 
ithout loss of generality that μ1 < μ2 < μ3 , and since a lower
 t corresponds to a lower Poisson intensity for the emission Y t, 1 

see equation 8), we regard the first two normal distributions in 
quation ( 29 ) as those corresponding to quiescence, with α1 + α2 

epresenting the proportion of time spent in that state. By using two
ormal distributions, we are able to better represent the skew in 
he quiescent distribution. Once equation ( 29 ) has been fitted, the
osterior probability that each X t is in a flaring state is given by 

 ( Z t �= 1 | ˆ X t = ˆ x t ) = 

ˆ α3 · f 
(

ˆ x ; ˆ μ3 , ̂  τ 2 
3 

)
∑ 3 

k= 1 ˆ αk · f 
(

ˆ x t ; ˆ μk , ̂  τ 2 
k 

) , (30) 

here f ( ·; μ, τ 2 ) is the density of the N ( μ, τ 2 ) distribution. 

 ANA LY SIS  O F  EV  LAC  

n this section, we illustrate the statistical methods developed in 
he Sections 3 –5 by applying them to the EV Lac data described in
ection 2 . In particular, we derive a classification of the light curves

n Fig. 1 into quiescent and flaring intervals. 

.1 Stage 1: HMM selection and fit for EV Lac 

e analysed the two long-duration Chandra observations of EV Lac, 
bsID 01885 obtained in 2001 and ObsID 10 679 obtained in 2009.
or both observations, we used the dispersed data from the combined 
EG and MEG arms, and from the combined positive and ne gativ e
rders, which a v oids pileup effects seen during the stronger flares in
he zeroth order. We split the data into soft (0.3–1.5 keV) and hard
1.5–8 keV) passbands, and binned them into time bins of w = 50 s
see Fig. 1 ). We also tested the sensitivity of our model fits to these
inning schemes by replicating the results using other passbands (i.e. 
.3–0.9 and 0.9–8 keV) and changing the binning phase by 25 s, and
ound no qualitative differences; see Appendix D for details. 

We fit the three state-space models described in Section 4.3 to 
oth observations. For brevity, we present only the fitted models for
bsID 01885; classifications into flaring and quiescent intervals are 
resented for both observations in Section 6.2 . We employed visual 
iagnostics to determine the parameters of the discretizations of the 
ontinuous state spaces. For Model 2, for example, we chose the 
ssential domain A = [ −1 . 25 , 2 . 65] and partitioned A into m = 40
venly spaced subintervals and chose the representative points 
 c ∗1 , . . . , c 

∗
40 } as the mid-points of these subintervals; a histogram

f the states ˆ X t predicted by the model via local decoding shows
hat this choice of essential domain was conserv ati ve in that it easily
o v ers the range of the ˆ X t (see the upper panel of Fig. 4 ). The
stimates can be sensitive to the choice of m when m is small
nd we chose m = 40 because this is the approximate number of
ubintervals at which the parameter estimates and maximized log- 
ikelihood stabilized. Similarly, for Model 3 we chose the essential 
omain A = [ −1 . 25 , 2 . 56] × [ −1 . 75 , 3 . 6] (see the lower panel of
ig. 4 ) and m = 40 2 . 
Bias-corrected parameter estimates and confidence intervals com- 

uted using the parametric bootstrap (see Section 4.2 ) under Models
, 2, and 3 appear in Tables 2 , 3 , and 4 , respectively. The estimates
f the parameters common to the models are broadly consistent with 
ach other, as are their standard errors. The estimates are also very
imilar to those produced with a passband split at 0.9 keV (omitted
or brevity), demonstrating robustness to that choice. 

As a byproduct of the optimization procedure used to fit the 
odels, we extracted the values of the maximized log-likelihood 
MNRAS 534, 2142–2167 (2024) 
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Table 5. Maximized log-likelihoods for all three models based on ObsID 

01885. 

Model Maximized log-likelihood 

Model 1: AR(1) process −9914 . 53 
Model 2: VAR(1) process on a line −9455 . 21 
Model 3: Uncorrelated VAR(1) process −9424 . 47 

Figure 5. Predicted soft band states ˆ X 1 , . . . , ˆ X 2027 for ObsID 01885. 
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Figure 6. Fitted component densities (top panel) and mixture density 
(bottom panel) for ObsID 01885; the densities are o v erlaid on a histogram of 
{ ̂  X 1 , . . . ˆ X 2027 } . 

Figure 7. Posterior flaring state probabilities used to colour the pre- 
dicted states ˆ X 1 , . . . , ˆ X t (top panel) and the observed soft-band counts 
Y 1 , 1 , . . . , Y T , 1 (bottom panel) for ObsID 01885. 
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unction ( 6 ) for each model (shown in Table 5 ). The standard LRT
ecisively rejected Model 1 in fa v our of Model 2, with a test statistic
f 918.64 far exceeding the asymptotic χ2 

(1) distribution at the 95
er cent significance lev el. F or a comparison between Models 2 and
, we turned to the bias-corrected parameter estimates and their
orresponding bootstrap standard errors shown in Tables 3 and 4 ,
espectively. These tables show that the correlation parameter ρ in

odel 3 is estimated at 1 – precisely its value fixed by Model 2 – with
irtually no uncertainty in the estimate (all values have been rounded
o six significant figures). Moreo v er, the remaining parameters shared
y Models 2 and 3 are estimated very consistently between the two
odels, as are their standard errors, and the Model 3 estimates of

1 = Cor ( X t, 1 , X t−1 , 1 ) and φ2 = Cor ( X t, 2 , X t−1 , 2 ) are very close.
e thus have substantial evidence that the additional structure of
odel 3 is unnecessary for the EV Lac data, and we proceed with an

nalysis of Model 2. 

.2 Stage 2: flaring/quiescent inter v al estimates for EV Lac 

n this section, we demonstrate our Stage 2 methods for classifying
he light curve, Y 1: T , into flaring and quiescent intervals by fitting
nite mixture distributions to the predicted states ˆ X 1 , . . . , ˆ X T . All
alculations in this section are under the preferred Model 2. 

.2.1 Semisupervised classification for ObsID 01885 

he predicted state variables, given by 

ˆ 
 t = argmax 

x∈ X 

P ˆ η ( X t = x | Y 1: T = y 1: T ) , t = 1 , . . . , T (31) 

ith T = 2027 are computed using the local decoding procedure
escribed in Appendix A and plotted for ObsID 01185 in Fig. 5 . 
A visual inspection of the ObsID 01185 light curve in Fig. 1

nd its predicted states in Fig. 5 reveals a clear period of quiescent
quilibrium o v er the first 750 time bins. Thus, we could apply the
emisupervised approach of Section 5.1 to model the distribution
f the ˆ X t . After fitting the KDE 

ˆ f 1 to { ̂  X 1 , . . . , ˆ X 750 } , we chose
 = 25 ‘steps’ for the step function in equation ( 27 ), setting the

ntervals [ b k−1 , b k ) to be 25 evenly spaced subintervals in [ b 0 , b K 

],
here b 0 ≈ −0 . 35 is the median of ˆ f 1 and b K 

= sup A = 2 . 65. (We
ssume that the lowest levels of activity correspond to quiescence.)
NRAS 534, 2142–2167 (2024) 
e fit the mixture in equation ( 25 ) to { ̂  X 751 , . . . , ˆ X 2027 } using
he EM algorithm described in Appendix C1 , which yielded a

ixing parameter estimate ˆ α = 0 . 5528, indicating that the estimated
roportion of time that EV Lac spends in a flaring state based on the
bsID 01885 time bin is 1 − ˆ α ≈ 0 . 45. The resulting component
ensities and mixture density are illustrated in Fig. 6 . 
Using equation ( 28 ), we computed the posterior flaring state

robability for each ˆ X t ; these are shown on a colour gradient in
ig. 7 , both for the predicted states and the original soft-band
ounts, Y 1 , 1: T (Fig. D1 in Appendix D shows the soft and hard
and counts coloured by the same probabilities.) From the poste-
ior flaring state probabilities, we created binary quiescent/flaring
lassifications ˆ z 1 , . . . , ̂  z T ∈ { 1 , 2 } using a simple classification rule,
hich is the basis for the results given in Section 6.2.3 below: letting
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Figure 8. Predicted soft-band states ˆ X 1 , . . . ˆ X 2027 for ObsID 10679. 

Figure 9. Fitted component densities (abo v e) and mixture density (below) 
for ObsID 10697; the densities are o v erlaid on a histogram of { ̂  X 1 , . . . ˆ X 1937 } . 
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Figure 10. Posterior flaring state probabilities used to colour the predicted 
states ˆ X 1 , . . . , ˆ X t (abo v e) and the observed soft-band data Y 1 , 1 , . . . , Y T , 1 
(below) for ObsID 10697. 
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corresponds to the transition between the two states. Thus, ˆ α3 may slightly 
underestimate the proportion of time that EV Lac spends in its flaring state. 
Of course, the mixture model is completely agnostic to our own astrophysical 
interpretations of its components. Possibly, both the second and the third 
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ˆ  t = P ( Z t = 2 | ˆ X t = ˆ x t ) as in equation ( 28 ), EV Lac was classified
s being in a flaring state at time index t if and only if ˆ p t > 0 . 5;
qui v alently 

ˆ  t = 1 · 1 ˆ p t ≤0 . 5 + 2 · 1 ˆ p t > 0 . 5 . (32) 

.2.2 Unsupervised classification for ObsID 10679 

or the light curves in ObsID 10679, there is no clear period of
uiescence (see the lower panel of Fig. 1 ). The soft-band predicted
tate variables, ˆ X 1 , . . . , ˆ X 1937 , under Model 2 are plotted in Fig. 8 ,
gain illustrating the lack of a clearly sustained period of quiescence. 
hus, we used this data to demonstrate the unsupervised classification 
ethod described in Section 5.2 , fitting a mixture of three normal

istributions to the complete set of predicted state variables. 
The estimated parameters of the mixture components are given 

n Table 6 and the estimated component densities and mixture 
ensity are shown in Fig. 9 . Under the assumption that the third
omponent corresponds strictly to the flaring state, the estimated 
roportion of time that EV Lac spends in a flaring state based on
he ObsID 10 679 data is ˆ α3 ≈ 0 . 27. 8 Corresponding posterior flare
 We associate the first two components of the mixture distribution with 
uiescence because the fitted density shown in Fig. 9 indicates considerable 
 v erlap between these two components. Alternatively, one could postulate that 
he second component is composed of both flaring and quiescent states and/or 

c
e
t
b
o
p

robabilities, which associate the third component of the mixture 
odel ( 29 ) to the flaring state, are shown in Fig. 10 (and in Fig. D1

or counts in both bands). A binary classification rule nearly identical
o that described in Section 6.2.1 was created, the only difference
eing that now ˆ p t = P ( Z t = 3 | ˆ X t = ˆ x t ); binary quiescent/flaring
lassifications were again constructed according to ( 32 ). 

.2.3 The quiescent and flaring states of EV Lac 

e also carried out sensitivity checks on the flaring intervals 
etermined as abo v e in Sections 6.2.1 and 6.2.2 by jittering the
hase of the binning by ±25 s, changing the passband intervals
using 0.3–0.9 keV for the softer and 0.9–8.0 keV for the harder
ands), and checking different time bin widths (see Appendix D ).
e found that the flaring intervals thus determined remain stable and

epeatable to within 2–3 time bin widths in all cases. We thus adopted
 3 × time bin width as a nominal systematic uncertainty on the
ntervals, and merged all gaps smaller than that. We further inflated
he intervals by adding 25 s (half the width w of the adopted time
ins) both before and after the ends of each interval. This resulted
n 15 distinct intervals for ObsID 01885 and 11 intervals for ObsID
0 679 (see Tables 7 and 8 , respectively). The durations of the interval
orrespond to approximately 30 per cent and 40 per cent of the total
bserv ation interv al for the first and second epochs, respectively.
his is consistent with the expected flare rates seen on EV Lac
efore: flares occurring at rates of 0.2–0.4 h −1 (Huenemoerder et al.
010 ) lasting approximately 5 ks co v er a fraction of 0.28–0.55 of
MNRAS 534, 2142–2167 (2024) 

omponents together correspond to a flaring state; under this assumption, the 
stimated proportion of time spent in this state is ˆ α2 + ˆ α3 ≈ 0 . 60. In general, 
he interpretation of the distinction between quiescent and flaring states must 
e done on a case by case basis, as it can depend on the source, the epoch of 
bservation, and the instrument being used. The spectral variability analysis 
resented in Section 6.2.3 strongly supports our interpretation in this case. 
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Table 6. Parameter estimates for the three-component mixture of normal 
distributions. 

Component k ˆ αk ˆ μk ˆ τ 2 
k 

1 0.3988 −0 .2294 0.0255 
2 0.3328 0 .5608 0.2202 
3 0.2683 −0 .4764 0.0277 

Table 7. Flaring time intervals for ObsID 1885, in spacecraft clock time. 
The times are offset from the observation start time of 117315383.3 s, 
corresponding to a calendar time of 2001 September 19, 19:36:23. 

Interval Duration [s] Start time [s] Stop time [s] 

1 4000 41624 .1 45624 .1 
2 950 46224 .1 47174 .1 
3 700 50474 .1 51174 .1 
4 4900 52724 .1 57624 .1 
5 100 58124 .1 58224 .1 
6 2100 61774 .1 63874 .1 
7 100 64474 .1 64574 .1 
8 150 65324 .1 65474 .1 
9 100 66874 .1 66974 .1 
10 100 67174 .1 67274 .1 
11 3000 67474 .1 70474 .1 
12 300 71724 .1 72024 .1 
13 23 250 76674 .1 99924 .1 
14 600 100724 .1 101324 .1 
15 100 101524 .1 101624 .1 

Table 8. Flaring time intervals for ObsID 10679, in spacecraft clock time. 
The times are offset from the observation start time of 353314077.3 s, 
corresponding to a calendar time of 2009 March 13, 06:47:57. 

Interval Duration [s] Start time [s] Stop time [s] 

1 19 850 1742.7 21592.7 
2 250 21792.7 22042.7 
3 150 22742.7 22892.7 
4 600 35792.7 36392.7 
5 4300 43192.7 47492.7 
6 100 47892.7 47992.7 
7 1800 51842.7 53642.7 
8 150 56142.7 56292.7 
9 450 64392.7 64842.7 
10 100 70392.7 70492.7 
11 1000 79692.7 80692.7 
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he exposure durations, assuming no o v erlaps. Note that our method
oes not distinguish the number of flares within a flare state (e.g. the
rst interval in ObsID 10 679 co v ers a duration that clearly includes
 smaller flare that o v erlaps another with a longer decay time-scale).

This separation between flaring and quiescent states allows us
o explore changes in the energy spectrum of the star. The o v erall
pectrum is well fitted with a two-temperature component XSAPEC

odel in CIAO / SHERPA v4.16 (Refsdal et al. 2009 ) with similar
emperature, abundance, and normalizations for both epochs (see
able 9 ). 
Fig. 11 shows the changes in spectral colour for each of the

are intervals (marked in blue) compared to the combined quiescent
nterval (marked in red); all error bars were computed using Bayesian
stimation of Hardness Ratios (BEHR; Park et al. 2006 ). The
olours were computed as log-ratios of counts in the soft ( S: 0.3–
.9 keV) to medium ( M: 0.9–2.0 keV) and medium to hard ( H :
NRAS 534, 2142–2167 (2024) 
.0–8.0 keV) bands. It is clear that all of the flaring intervals have
arder spectra than the quiescent spectrum. The underlying grid,
onstructed for a two-temperature APEC model as for the full spectra
see Table 9 ) but with varying normalization and temperature for the
igh-temperature component, also demonstrates this quantitatively.
he flaring intervals include the low-temperature component because

he flares are likely confined to small regions in the corona, so that
he quiescent corona continues to contribute to the emission, even
s the emission is dominated by the flare. Note that the grids shift
eftwards from the earlier epoch to the later, which is a consequence
f the increased contamination buildup on the ACIS detector which
educes the soft ef fecti ve area. 

Finally, we show in Fig. 12 the full resolution combined
EG + MEG first-order spectra separately for the quiescent (upper
anels) and flaring states (lower panels). Spectra from both epochs
re o v erplotted, and deviations where the counts from one epoch
xceed the other are marked in different shades. As is expected
rom the evolution in the soft effective area, the earlier epochs
ave systematically higher counts at longer wavelengths. The spectra
re dominated by several prominent lines, such as those from Ne X
12.15 Å), Fe XVII (15.01 and 17.05 Å), and O VIII (18.96 Å) (see
iddle panels of Fig. 12 ). The density- and temperature-sensitive
e-like O VII triplet (21.6, 21.8, and 22.1 Å of the resonance,

ntercombination, and forbidden lines) is visible in the right panels;
igher density plasma is present in the flaring state, as shown by the
igher ratio of the intercombination to forbidden lines. In the left
anels, several high-temperature lines appear during the flaring state
t short wavelengths (Ar XVIII 2.92 Å, Ar XVII 3.95 Å, S XVI 4.73 Å,
nd S XV 5.0 Å). The ratios of the temperature sensitive resonance
ines of Si XIV (6.2 Å) and Si XIII (6.74 Å), and Mg XII (8.4 Å) and

g XI (9.2 Å) change to fa v our the higher temperature species and
he continuum becomes more prominent, all indicating the presence
f higher temperature plasma, and thus supporting the conclusions
f Huenemoerder et al. ( 2010 ). 
In addition, the Ne X /O VIII counts ratio increases from 2.1 during

uiescence to 3 . 5 ± 0 . 2 in the first epoch, and from 2.6 to 3 . 4 ± 0 . 3
uring the second epoch. The Ne X /Fe XVII counts ratio also in-
reases, from approximately 2.8 during quiescence to approximately
.5–4.0 during flaring in both epochs, indicating that there could
e an increase in Ne abundance during flaring. In contrast, the
 VIII /Fe XVII counts ratio decreases by approximately 10 per cent
uring flaring in both epochs; detailed modelling is necessary to
stablish whether this decrease is simply a temperature effect or
hether oxygen abundance variations are also required to explain it.
Crucially, the differences between epochs for each state are
inuscule compared to the changes seen between the quiescent and
aring states. This is a strong indication that our method can clearly

dentify and separate these states. Furthermore, the similarity in the
pparent thermal characteristics in both states, as evidenced by the
imilar shapes of the continuum, shows that the two states are strongly
ifferentiated: that is, the star has a very well-defined quiescent
tate, suggesting that there may be a distinct heating mechanism
hat operates during quiescence. 

 DI SCUSSI ON  A N D  F U T U R E  WO R K  

his paper combines state-space models and finite mixture models as
 means of classifying periods of quiescence and flaring in multiband
stronomical light curves. Specifically, we apply our models to high-
nergy X-ray data of the active binary EV Lac, grouping the photons
nto two passbands and classifying the light curves into flaring and
uiescent states. In Stage 1 of our analysis, our state-space models
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Table 9. SHERPA two-temperature APEC model fits to the full spectra. 

ObsID T low T high Metallicity Norm low Norm high CSTAT /dof 
[keV] Z � [ ×10 14 cm 

−5 ] 

01885 0 . 35 ±0 . 0024 1 . 26 ±0 . 007 0 . 17 ±0 . 004 0 . 016 ±0 . 0004 0 . 0099 ±0 . 0001 24850.1/24980 
10 679 0 . 35 ±0 . 003 1 . 35 ±0 . 009 0 . 17 ±0 . 005 0 . 015 ±0 . 0005 0 . 0095 ±0 . 0001 21668.7.1/24980 

Figure 11. Spectro-temporal treatment of flaring. For both EV Lac data sets, the panels show the hardness ratio colours C SM 

= log ( S /M), C M H = log ( M/H ), 
where S, M , and H are counts in passbands 0.3–0.9, 0.9–1.2, and 1.2–8.0 keV, respectively. The colours during each distinct flaring interval (crosses with error 
bars) are compared to the quiescent interval (sole round point with error bars). The curved grid in the background shows the predicted colours for spectra with 
two temperature components: a low-temperature plasma at T low = 0 . 35 keV ( ≈4 MK), and a high-temperature component with a variety of temperatures T high 

ranging from 1 keV ( ≈12 MK) to 4 keV ( ≈46 MK), with the relative emission measure of the high-temperature component ranging between 0.1 to 8.9 times 
that of the low-temperature component. We adopt a metallicity of 0.16, commensurate with a two-temperature APEC fit to the spectra. Note that in both epochs, 
the quiescent interval has a softer spectrum than any of the flaring intervals. The shift in the grid is due to changes in ACIS effective area between the epochs. 
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HMMs) assume that the underlying physical process driving the 
aring activity can be represented by a Markov chain defined on 
 continuous multidimensional state space. When the component 
f the Markov chain corresponding to a particular energy band 
igrates to higher or lower values, the rate of photon emissions
ithin that band tends to increase or decrease in kind. We propose
 series of nested HMMs to capture this underlying process with 
ncreasing levels of generality. We tabulate emissions in the soft and 
ard energy bands separately in order to capture the more complete 
nformation contained in the bi v ariate data. The state-space models 
llow us to predict the individual states of the underlying chain that
re most likely to have generated the observed data. Using finite 
ixture models in Stage 2, we devise two situation-specific schemes 

o classify the predictions and ultimately dichotomize the observed 
ime periods into flaring and quiescent intervals. 

.1 Quiescence 

e demonstrate our method on two sets of observations of the 
Me star EV Lac, leading to a clear separation of flaring activity
nd quiescence, as well as to the disco v ery of a well-defined and
ersistent quiescent state. The presence of such persistent quiescent 
mission in counterpoint to flaring has been recognized and analysed 
biquitously in astronomical literature. Exemplar treatments include 
hat of the Sun by Argiroffi et al. ( 2008 ) and of an active M dwarf
Z CMi by Raassen, Mitra-Kraev & G ̈udel ( 2007 ); see also a review
y G ̈udel ( 2004 ). The possibility of a persistent quiescent state has
lso been suggested for the active binary AR Lac (Drake et al. 2014 ),
nd for the young stellar binary XZ Tau (Silverberg et al. 2023 ).
ur analysis of spectral variability supports the idea that steady and 
ersistent non-flaring emission is present even on active stars. 
The continuous-space HMMs that we propose in our Stage 1 

nalysis (Section 3 ) do not alone clearly differentiate between 
he quiescent and active states of the source, instead allowing 
or variability within the states and a smooth transition between 
hem. The time intervals during which flaring emission dominates 
re identified from the distribution of the fitted HMM states in
ur Stage 2 analysis (Section 5 ). Alternatively, we could posit a
odel where the quiescent emission is present at all times, with

he intermittent and variable flaring emission (presumably arising in 
ocalized activ e re gions on the star) superposed o v er it. F or e xample,
he observed counts could be modelled as the sum of two Poisson
rocesses, the first an iid process representing quiescence and the 
econd representing the flare state alone. Such a model would be
ore complex than the HMMs we consider here in that its second
oisson process (for the flaring state) would be as complex as the
MMs we propose in Section 4 . As we expect that the flexibility
f the continuous-space HMM may render the more complex model 
nidentifiable or only weakly identifiable, we leave its study for 
uture research. 

.2 Futur e dir ections 

e propose several avenues for future modifications and general- 
zations of our HMMs. The discrete-space HMM approximation to 
he state-space likelihood developed by Langrock ( 2011 ) is, in the
nd, only an approximation, which can potentially be made more 
ccurate using adaptive binning (Borowska & King 2023 ) or other
rocedures that further refine the discretization of the continuum 

i.e. the choice of essential domain and the partition thereof). From
 computational perspective, it would also be desirable to eliminate 
he need for manual verification that the essential domain adequately 
o v ers the distribution of the underlying Markov chain. 

The state-space models themselves can be modified or augmented 
ith additional features. In Section 4.2 , for example, we discuss

he use of state-dependent bi v ariate distributions for the observed
ata. In the general case, this a v oids a conditional independence
ssumption for the hard and soft energy bands, and allows for
MNRAS 534, 2142–2167 (2024) 
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M

Figure 12. Comparing high-resolution spectra of quiescent (top) and flaring (bottom) states of active dMe star EV Lac. The quiescent spectra are subtracted 
out from the corresponding spectra obtained during the flaring state. Each state is split into three panels in order to better show weak lines. Spectra from the 
two epochs are shown superposed for both cases; the difference between the epochs is marked in different shades depending on which epoch had more counts 
within a given bin (see the ObsID labels in the middle panels). Prominent lines from several species are visible in both spectra, with some resonance line ratios 
changing from quiescence to a flaring state fa v ouring the higher ionization state (see especially Si XIV /Si XIII at 6.2 and 6.7 Å, Mg XII /Mg XI at 8.4 and 9.2 
Å). The o v erall brightness is higher, and the continuum is stronger and more prominent during the flaring state, signifying a different thermal signature. The 
differences between the quiescent and flaring states are greater than the differences between epochs for the same state, which suggests that there are distinct 
quiescent and flaring states present on the star. 
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ore involved bi v ariate distributions capable of capturing potential
ependence between the bands at the observed data level. Even
ore generally, one could split the counts into any number d of

ands (the hard and soft bands we used for EV Lac correspond to
 = 2). The d-band generalization of Model 2 is straightforward:
or each additional band h , we introduce one new parameter βh 

ontrolling the Poisson rate for Y t,h , as well as a rescaling parameter
h so that X t,h = σh X t, 1 /σ1 . The generalization of Model 3 is more
hallenging due to the increased complexity of the (non-diagonal)
ovariance matrix � in the error terms: in addition to new parameters
h , φh , and σh , each band h requires pairwise correlation terms with
very other dimension, resulting in a d × d covariance matrix � .
epending on the covariance structure selected for the model, � can

nclude as few as two free parameters (for a first-order autore gressiv e
ovariance) or as many as ( d 2 + d) / 2 (for a completely unstructured
o variance). F or large d , this would ef fecti vely model the e volution of
he spectrum o v er time. This model is in contrast to Automark, which
ooks for breakpoints in the spectrum but assumes the spectrum is
nchanging between breakpoints (Wong et al. 2016 ). 
It is also possible to generalize the distribution of the state

rocess X 1: T by replacing the multi v ariate normal distributions with
ther multi v ariate distributions. For instance, one could account for
NRAS 534, 2142–2167 (2024) 
otentially heavier tails in the distribution of X t | X t−1 by assuming
 multi v ariate t-distribution; alternati vely, one could assume that

X t | X t−1 follows a mixture of conditional multi v ariate normal
istributions with common mean X t−1 but differing variances, which
ould potentially model a discrete latent process taking place in
ome physical process within the star itself. Both of these generalize
he multi v ariate normal distribution, and their associated stationary
istrib utions are a v ailable (e.g. Meitz, Pre ve & Saikkonen 2023 );
o we ver, stationary distributions corresponding to other choices of
he distribution of X t | X t−1 may not be known, and therefore a
ifferent distribution would be needed for the initial state X 0 . The
ffect of this choice is likely small with large data sets. 

Even when adhering to multi v ariate normal conditional distribu-
ions for the state process, our models can be generalized in several
ther ways. For example, the VAR (1) model ( 20 ) can be generalized
o allow � to be a generic asymmetric non-diagonal matrix; in this
ase, stationarity is characterized by a rather complex set of nonlinear
onstraints on the entries of � . This generalization would allow for
ependence of X t, 1 on X t−1 , 2 , and vice versa. Such dependencies
an be used to capture physical processes where hot coronal plasma
n a magnetic flux tube cools sequentially from higher to lower
emperatures (e.g. Viall & Klimchuk 2012 ). One can also consider
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ore general VAR ( p) processes (i.e. where the distribution of X t 

epends linearly on X t−1 , . . . , X t−p ). Any discrete-time stochastic 
rocess ( X t ) t on a state-space X for which the distribution of X t 

epends on the history of the chain through X t−1 , . . . , X t−p (a so-
alled higher-order Markov chain) induces a standard vector-valued 
arkov chain ( X 

′ 
t ) t on X 

p , and so, in principle, a VAR ( p) process on
 

d can be recast as a first-order matrix (or ‘tensor’) autore gressiv e
rocess on X 

d×p for which the discrete-space HMM approximation 
an be applied. Ho we ver, the calculations required for the initial
istribution and transition probabilities would involve the so-called 
atrix normal distribution, which can be quite computationally 

nvolved. 
Additionally, rather than binning the photon counts into discrete 

ntervals, one could model the series of photon counts directly in 
ontinuous time. This would involve modelling the exponentially 
istributed waiting time between the Poisson process of photon 
rri v als. The underlying state process would evolve in continuous 
ime and could be modelled as an Ornstein–Uhlenbeck (OU) process, 
he continuous-time analogue of the AR (1) process. The OU process 
as been applied in astrophysical settings by Kelly, Bechtold & 

iemigino wska ( 2009 ), K elly et al. ( 2014 ), and Meyer et al. ( 2023 );
uch processes generalize fairly naturally to the multi v ariate case 
Gardiner 2004 ). Perhaps the most natural continuous-time analogue 
f our state-space model is a bi v ariate time-heterogeneous Poisson
rocess (Cox & Lewis 1972 ) whose parameters are driven by 
omponents of the aforementioned OU process. 

Finally, our methods can also be generalized to apply to sources
ther than stars that also exhibit intermittent or episodic flaring 
e.g. Sgr A ∗, the jet of M87, or dipping sources such as LMXBs).
uch generalizations would require our underlying HMMs to be 
xtended in order to model additional passbands and their possible 
orrelations. 
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PPENDIX  A :  A L G O R I T H M S  F O R  DISCRE TE-SP

ikelihood computation and state decoding for discrete-space HM
lgorithm, the backward algorithm, and the forw ard–backw ard algo
e succinctly described by an iterated sequence of matrix multiplic
btained in the previous step by a new matrix, yielding in the end
nterest, such as the value of the likelihood function. The algorithms
 xample, a na ̈ıv e computation of equation ( 2 ) via direct summation w
lgorithm reduces the computation to being only polynomial in T .
ypically expressed in terms of quantities known as forward and back
quations can be succinctly expressed in terms of matrices alone. Nev
f HMMs; interested readers may consult Rabiner ( 1989 ), Capp ́e et 
To simplify notation, we assume that the y t are discrete in our deri

he less, our calculations carry through verbatim for continuous ob
ensity functions. 

1 Likelihood computation via the forward algorithm 

he forward algorithm for discrete-space HMMs e v aluates the HMM
f the right-hand side of the identity 

 ( η | y 1: T ) = P η( Y 1: T = y 1: T ) . 

or the remainder of this section, we drop the subscript η from P η( ·)
s being taken with respect to the model with parameter η. 

Define the matrix-valued function P : Y → [0 , ∞ ) K×K by 

P ( y ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

h 1 ( y | λ1 ) 0 · · · 0 
0 h 2 ( y | λ2 ) · · · 0 
. . . 

. . . 
. . . 

. . . 
0 0 · · · h K 

( y | λK 

) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

; 

hat is, P ( y ) is a diagonal matrix with the state-dependent mass/dens
 k ( y | λk ) = P ( Y t = y | X t = k) for any t we have 

	 P ( y 1 ) = 

⎡ 

⎢ ⎣ 

P ( X 1 = 1) · P ( Y 1 = y 1 | X 1 = 1) 
. . . 

⎤ 

⎥ ⎦ 

	 

= 

⎡ 

⎢ ⎣ 

P ( Y 1 = y
NRAS 534, 2142–2167 (2024) 
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. Here, we briefly derive these three algorithms, each of which can
s; each step of the algorithms thus involves multiplying the matrix
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 require a number of operations exponential in T , while the forward
e HMM literature (e.g. Zucchini et al. 2017 ), these algorithms are
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less, the forward and backward variables play key roles in the theory
05 ), and Zucchini et al. ( 2017 ). 
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and 

δ	 P ( y 1 ) � P ( y 2 ) = 

⎡ 

⎢ ⎣ 

∑ K 

k= 1 P ( Y 1 = y 1 , X 1 = k) · P ( X 2 = k | X 1 = 1) · P ( Y 2 = y 2 | X 2 = k) 
. . . ∑ K 

k= 1 P ( Y 1 = y 1 , X 1 = k) · P ( X 2 = k | X 1 = K) · P ( Y 2 = y 2 | X 2 = k) 

⎤ 

⎥ ⎦ 

	 

= 

⎡ 

⎢ ⎣ 

P ( Y 1 = y 1 , Y 2 = y 2 , X 2 = 1) 
. . . 

P ( Y 1 = y 1 , Y 2 = y 2 , X 2 = K) 

⎤ 

⎥ ⎦ 

	 

. (A4) 

The forward algorithm iterates this matrix multiplication, and by induction at iteration t ≥ 2, the algorithm returns 

δ	 P ( y 1 ) 
t ∏ 

s= 2 

� P ( y s ) = 

⎡ 

⎢ ⎣ 

P ( Y 1 = y 1 , Y 2 = y 2 , · · · , Y t = y t , X t = 1) 
. . . 

P ( Y 1 = y 1 , Y 2 = y 2 , · · · , Y t = y t , X t = K) 

⎤ 

⎥ ⎦ 

	 

= 

⎡ 

⎢ ⎣ 

P ( Y 1: t = y 1: t , X t = 1) 
. . . 

P ( Y 1: t = y 1: t , X t = K) 

⎤ 

⎥ ⎦ 

	 

. (A5) 

Finally, the likelihood in equation ( 2 ) can be computed as ( 

δ	 P ( y 1 ) 
T ∏ 

s= 2 

� P ( y s ) 

) 

1 = 

K ∑ 

k= 1 

P ( Y 1: T = y 1: T , X T = k) = P ( Y 1: T = y 1: T ) = L ( η | y 1: T ) . (A6) 

Thus, the forward algorithm computes the likelihood via the left-hand side of equation ( A6 ). (In practice, one must usually rescale the 
probabilities with each additional matrix product to prevent numerical underflow.) This computation has a time complexity of O( T K 

2 ). Note 
that as a byproduct of the likelihood computations, the forward algorithm also yields the joint probabilities P ( Y 1: t = y 1: t , X t = k) for any 
t ∈ { 1 , . . . , T } , which are used in the local decoding algorithm (see Appendix A2 ). 

A2 Local decoding via the forward–backward algorithm 

The forw ard–backw ard algorithm for discrete-space HMMs e v aluates the conditional state-membership probabilities gi ven the full data set 
(i.e. P ( X t = k | Y 1: T = y 1: T ), for each k ∈ X and each t ≥ 1); these are then used to predict the state variables via equation ( 31 ), as we 
describe below. The forw ard–backw ard algorithm itself comprises of two subalgorithms – the forward algorithm, which computes the joint 
probabilities P ( Y 1: t = y 1: t , X t = k), and the backward algorithm, which computes the conditional probabilities P ( Y t : T = y t : T | X t−1 = k) 
for each t ≥ 2. A final combination of the forward and backward algorithms yields the desired conditional state-membership probabilities 
(i.e. P ( X t = k | Y 1: T = y 1: T )). The forward algorithm, which also outputs the HMM likelihood L ( η | y 1: T ) = P ( Y 1: T = y 1: T ), is detailed in 
Appendix A1 ; we present the backward algorithm and the final combination step here. 

Using the same notation as in Appendix A1 , we first note that 

( � P ( y T ) ) 1 = 

⎡ 

⎢ ⎣ 

∑ K 

k= 1 P ( X T = k | X T −1 = 1) · P ( Y T = y T | X T = k) 
. . . ∑ K 

k= 1 P ( X T = k | X T −1 = K) · P ( Y T = y T | X T = k) 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

P ( Y T = y T | X T −1 = 1) 
. . . 

P ( Y T = y T | X T −1 = K) 

⎤ 

⎥ ⎦ 

(A7) 

and 

( � P ( y T −1 ) � P ( y T ) ) 1 

= 

⎡ 

⎢ ⎣ 

∑ K 

k= 1 P ( X T −1 = k | X T −2 = 1) · P ( Y T −1 = y T −1 | X T −1 = k) · P ( Y T = y T | X T −1 = k) 
. . . ∑ K 

k= 1 P ( X T −1 = k | X T −2 = K) · P ( Y T −1 = y T −1 | X T −1 = k) · P ( Y T = y T | X T −1 = k) 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

P ( Y T −1 = y T −1 , Y T = y T | X T −2 = 1) 
. . . 

P ( Y T −1 = y T −1 , Y T = y T | X T −2 = K) 

⎤ 

⎥ ⎦ 

. (A8) 

It then follows by induction that for any t ∈ { 2 , . . . , T } , 
( 

T ∏ 

s= t 

� P ( y s ) 

) 

1 = 

⎡ 

⎢ ⎣ 

P ( Y t = y t , . . . , Y T = y T | X t−1 = 1) 
. . . 

P ( Y t = y t , . . . , Y T = y T | X t−1 = K) 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

P ( Y t : T = y t : T | X t−1 = 1) 
. . . 

P ( Y t : T = y t : T | X t−1 = K) 

⎤ 

⎥ ⎦ 

. (A9) 

The backward algorithm computes the conditional probabilities P ( Y t : T = y t : T | X t−1 = k) for each t ≥ 2, via the left-hand side of equation 
( A9 ). The time complexity of this algorithm is also O( T K 

2 ). 
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With the quantities P ( Y 1: t = y 1: t , X t = k) and P ( Y t : T = y t : T | X t−1 = k) in hand for each t ∈ { 2 , . . . , T } , we have that for any t ∈ 

{ 2 , . . . , T − 1 } , 

1 ∑ K 

k= 1 P ( Y 1: T = y 1: T , X T = k) 

⎡ 

⎢ ⎣ 

P ( Y 1: t = y 1: t , X t = 1) · P ( Y ( t+ 1): T = y ( t+ 1): T | X t = 1) 
. . . 

P ( Y 1: t = y 1: t , X t = 1) · P ( Y ( t+ 1): T = y ( t+ 1): T | X t = K) 

⎤ 

⎥ ⎦ 

= 

1 

P ( Y 1: T = y 1: T ) 

⎡ 

⎢ ⎣ 

P ( X t = 1) · P ( Y 1: T = y 1: T | X t = 1) 
. . . 

P ( X t = K) · P ( Y 1: T = y 1: T | X t = K) 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

P ( X t = 1 | Y 1: T = y 1: T ) 
. . . 

P ( X t = K | Y 1: T = y 1: T ) 

⎤ 

⎥ ⎦ 

, (A10) 

which is now a vector consisting of the desired conditional state-membership probabilities. Replacing the terms in the first expression of 
equation ( A10 ) by equi v alent quantities computed efficiently using the forward and backward algorithms, the o v erall forw ard–backw ard 
algorithm can itself be summarized concisely by the equi v alent identity 

1 (
δ	 P ( y 1 ) 

∏ T 

s= 2 � P ( y s ) 
)

1 

( 

δ	 P ( y 1 ) 
t ∏ 

s= 2 

� P ( y s ) 

) 	 

�
( ( 

T ∏ 

s= t+ 1 

� P ( y s ) 

) 

1 

) 

= 

⎡ 

⎢ ⎣ 

P ( X t = 1 | Y 1: T = y 1: T ) 
. . . 

P ( X t = K | Y 1: T = y 1: T ) 

⎤ 

⎥ ⎦ 

, (A11) 

where � refers to the element-wise (i.e. Hadamard) product of two matrices of equal dimension. The forw ard–backw ard algorithm refers to the 
computation of the conditional state-membership probabilities via one pass each of the forward and backward algorithms in order to compute 
equation ( A10 ) for each t ≥ 2. The time complexity of the forw ard–backw ard algorithm remains O( T K 

2 ). 
After running the forw ard–backw ard algorithm, the local decoding procedure computes the most likely state of the Markov chain at each 

time index t given the observed data Y 1: T by simply selecting the coordinate corresponding to the largest entry in equation ( A11 ). That is, we 
select 

ˆ X t = argmax 
k∈ X 

P ( X t = k | Y 1: T = y 1: T ) (A12) 

for each t = 1 , . . . , T , as required in equation (31). 

APPENDIX  B:  L I K E L I H O O D  APPROX IMATION  BY  DISCRETE-SPAC E  H M M S  

In this appendix, we sho w ho w the continuous-space HMM likelihood ( 3 ), which involves T iterated inte grals o v er the state space X , can be 
approximated by a quantity which is essentially of the form ( 2 ) and can be computed efficiently via the forward algorithm (see Appendix A1 ). 
Our presentation is based closely on the deri v ation of the uni v ariate case in Langrock et al. ( 2012a ), but applies to all three state-space models 
presented in Section 4.3 , including the bi v ariate process described in Section 4.3.3 . For generality, we present the approximation for an arbitrary 
continuous state space X ; for Models 1 and 2, X = R , and for Model 3, X = R 

2 . In the former case, each X -valued vector below (e.g. x t , c ∗i , 
etc.) is a uni v ariate quantity. 

The first step of the approximation is to identify an ‘essential domain’ A ⊂ X (Kitagawa 1987 ) for the X t , such that A is bounded and 
P ( X t �∈ A ) = P ( X t ∈ A 

c ) is small for each t . We then partition A into a large number of subregions, A 1 , . . . , A m 

; when X = R it is convenient 
to use intervals and when X = R 

2 we can use rectangles, possibly of different lengths and widths. We choose within each A i a representative 
point c ∗i , such as its centre. If the area of each A i comprises a sufficiently small proportion of the total area of A = ∪ 

m 

i= 1 A i , then 

∫ 
X 

γ ( x T −1 , x T ) · h x T 

(
y T | λx T 

)
d x T = 

∫ 
A 

γ ( x T −1 , x T ) · h x T 

(
y T | λx T 

)
d x T + 

∫ 
A c 

γ ( x T −1 , x T ) · h x T 

(
y T | λx T 

)
d x T 

≈
∫ 

A 

γ ( x T −1 , x T ) · h x T 

(
y T | λx T 

)
d x T since the integral over A 

c is assumed small 

= 

m ∑ 

i T = 1 

∫ 
A i T 

γ ( x T −1 , x T ) · h x T 

(
y T | λx T 

)
d x T 

≈
m ∑ 

i T = 1 

∫ 
A i T 

γ ( x T −1 , x T ) d x T · h c ∗
i T 

(
y T | λc ∗

i T 

)
since x T ≈ c ∗i T when x T ∈ A i 

= 

m ∑ 

i T = 1 

P 

(
X T ∈ A i T | X T −1 = x T −1 

) · h c ∗
i T 

(
y T | λc ∗

i T 

)
. (B1) 
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Thus, as A → X and each A i → { c ∗i } (i.e. as the essential domain becomes larger and its partition becomes finer), the approximations abo v e 
become more exact. Applying the same reasoning, ∫ 

X 

∫ 
X 

γ ( x T −2 , x T −1 ) · h x T −1 

(
y T −1 | λx T −1 

) · γ ( x T −1 , x T ) · h x T 

(
y T | λx T 

)
d x T d x T −1 

= 

∫ 
X 

γ ( x T −2 , x T −1 ) · h x T −1 

(
y T −1 | λx T −1 

) ·
(∫ 

X 

γ ( x T −1 , x T ) · h x T 

(
y T | λx T 

)
d x T 

)
d x T −1 

≈
∫ 
X 

γ ( x T −2 , x T −1 ) · h x T −1 

(
y T −1 | λx T −1 

) ·
( 

m ∑ 

i T = 1 

P 

(
X T ∈ A i T | X T −1 = x T −1 

) · h c ∗
i T 

(
y T | λc ∗

i T 

)) 

d x T −1 

approximating the inner integral by (B1) 

≈
∫ 

A 

γ ( x T −2 , x T −1 ) · h x T −1 

(
y T −1 | λx T −1 

) ·
( 

m ∑ 

i T = 1 

P 

(
X T ∈ A i T | X T −1 = x T −1 

) · h c ∗
i T 

(
y T | λc ∗

i T 

)) 

d x T −1 

since the integral over A 

c is assumed small 

= 

m ∑ 

i T −1 = 1 

∫ 
A i T −1 

γ ( x T −2 , x T −1 ) · h x T −1 

(
y T −1 | λx T −1 

) ·
( 

m ∑ 

i T = 1 

P 

(
X T ∈ A i T | X T −1 = x T −1 

) · h c ∗
i T 

(
y T | λc ∗

i T 

)) 

d x T −1 

≈
m ∑ 

i T −1 = 1 

∫ 
A i T −1 

γ ( x T −2 , x T −1 ) · h c ∗
i T −1 

(
y T −1 | λc ∗

i T −1 

)
·
( 

m ∑ 

i T = 1 

P 

(
X T ∈ A i T | X T −1 = c ∗i T −1 

)
· h c ∗

i T 

(
y T | λc ∗

i T 

)) 

d x T −1 

since x T −1 ≈ c ∗i T −1 
when x T −1 ∈ A i 

= 

m ∑ 

i T −1 = 1 

[ ∫ 
A i T −1 

γ ( x T −2 , x T −1 ) d x T −1 · h c ∗
i T −1 

(
y T −1 | λc ∗

i T −1 

)
·
( 

m ∑ 

i T = 1 

P 

(
X T ∈ A i T | X T −1 = c ∗i T −1 

)
· h c ∗

i T 

(
y T | λc ∗

i T 

)) ] 

= 

m ∑ 

i T −1 = 1 

m ∑ 

i T = 1 

(
P 

(
X T −1 ∈ A i T −1 | X T −2 = x T −2 

) · h c ∗
i T −1 

(
y T −1 | λc ∗

i T −1 

)
· P 

(
X T ∈ A i T | X T −1 = c ∗i T −1 

)
· h c ∗

i T 

(
y T | λc ∗

i T 

))
. (B2) 

Proceeding inductively and handling the edge case of X 1 similarly, we obtain the approximation 

L ( η | y 1: T ) ≈
m ∑ 

i 1 = 1 

· · ·
m ∑ 

i T = 1 

( 

P 

(
X 1 ∈ A i 1 

) · h c ∗
i 1 

(
y 1 | λc ∗

i 1 

) T ∏ 

t= 2 

(
P 

(
X t ∈ A i t | X t−1 = c ∗i t−1 

)
· h c ∗

i t 

(
y t | λc ∗

i t 

))) 

, (B3) 

which is exactly equation ( 4 ). 

APPEN D IX  C :  EM  A L G O R I T H M S  

The EM algorithm (Dempster et al. 1977 ) is a popular tool used to fit statistical models in the presence of latent (or unobserved) data. 
Latent data may have a natural interpretation within the context of the problem (e.g. the X 1: T in equation ( 9a ) representing the underlying 
physical process driving flaring activity is unobserved), or it may arise purely as a mathematical convenience to aid in inference (e.g. the Z t 

in equation ( 26 ) representing component membership when a finite mixture distribution is used for non-parametric density estimation). The 
essential idea is to augment the observed data, x , with ‘missing’ data, Z , to form a complete data set, ( x , Z ), which induces a complete-data 
log-likelihood function � com 

( η | x , Z ). Similar to the ordinary log-likelihood function, � com 

( η | x , Z ) is simply the logarithm of the joint 
density of ( X , Z ), but viewed as a function of the underlying model parameter η. The missing data, Z , is user-selected and chosen to make 
� com 

( η | x , Z ) more analytically tractable than the ordinary observed-data log-likelihood � ( η | x ). The EM algorithm is designed to compute 
the maximum-likelihood estimate – that is, the value of η that maximizes � ( η | x ) – by iteratively maximizing the conditional expectation of 
� com 

( η | x , Z ), conditioned on the observ ed data x . More formally, giv en a starting value of the parameter η(0) , the algorithm iterates between 
the following two steps, 

E-step: Compute Q ( η | η( r) ) = E η( r) [ � com 

( η | X , Z ) | X = x ] 
M-step: Set η( r+ 1) = argmax 

η

Q 

(
η | η( r) 

)
for r = 1 , 2 , . . . until conv ergence is achiev ed. In practice, if the equations in the E- and M-step admit closed-form solutions, the resulting 

algorithm can be specified as a set of recursive updates for the components of η( r+ 1) in terms of η( r) . 
The convergence properties of the EM algorithm have been well studied. One primary benefit of the EM algorithm is that at each step of 

the algorithm, the maximizing value produced by the M-step can never decrease the observed-data log-likelihood � ( · | x ) from its value at the 
previous iteration. Thus, the EM algorithm can only converge to a stationary point of the likelihood function (assuming such a point exists), 
and under broad regularity conditions this guarantees convergence to the MLE when the likelihood is unimodal. There is a rich literature on 
the EM algorithm and the numerous algorithms related to it; for more information, we refer the reader to the seminal paper by Dempster et al. 
( 1977 ), the monograph by McLachlan & Krishnan ( 2007 ), and the re vie w paper by van Dyk & Meng ( 2010 ). 

In the following subsections, we briefly derive the EM algorithms used to fit the finite mixture models described in Section 6.2 . 
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C1 For semisupervised classification 

Here, the observed data X 1: T = ( X 1 , . . . , X T ) is assumed to be an independent and identically distributed sample from the mixture distribution 

F = α · F 1 + (1 − α) · F 2 ( ·; π) , (C1) 

where F 1 is a known distribution and F 2 ( ·; π) is a distribution with density 

f 2 ( x; π) = 

K ∑ 

k= 1 

πk 

b k − b k−1 
· 1 x∈ [ b k−1 ,b k ) = 

K ∏ 

k= 1 

(
πk 

b k − b k−1 

)1 x∈ [ b k−1 ,b k ) 

. (C2) 

Here b 0 , · · · , b K 

are known with b 0 < b 1 < · · · < b K 

, while α ∈ (0 , 1) and π = ( π1 , . . . , πK 

) are parameters to be estimated, with 
∑ K 

k= 1 πk = 1 
and πk ∈ (0 , 1) for each k = 1 , . . . , K . We define the independent and identically distributed latent variables, Z 1: T = ( Z 1 , . . . , Z T ), such that 
Z t ∼ Bernoulli ( α) and X t | ( Z t = k − 1) ∼ F k , for k = 1 , 2. It is easy to verify that equation ( C1 ) gives the marginal distribution of the X t . 
The complete-data log-likelihood is 

� com 

( π, α | x 1: T , Z 1: T ) = log 

( 

T ∏ 

t= 1 

( α · f 1 ( x t )) 
Z t · ((1 − α) · f 2 ( x t ; π)) 1 −Z i 

) 

= 

T ∑ 

t= 1 

{
Z t ·

[
log 

(
α

1 − α

)
+ log ( f 1 ( x t )) − log ( f 2 ( x t ; π)) 

]
+ log (1 − α) + log ( f 2 ( x t ; π)) 

}
, (C3) 

where 

log ( f 2 ( x t ; π)) = 

K ∑ 

k= 1 

( log ( πk ) − log ( b k − b k−1 ) ) · 1 x t ∈ [ b k−1 ,b k ) (C4) 

The E-step requires the computation of E η( r) [ � com 

( π, α; X 1: T , Z 1: T ) | X 1: T = x 1: T ], which by linearity requires only E η( r) [ Z t | X 1: T = x 1: T ] = 

P η( r) ( Z t = 1 | X t = x t ). Using Bayes’ rule and the law of total probability, we find that 

P η( r) ( Z t = 1 | X t = x t ) = 

α( r) · f 1 ( x t ) 

α( r) · f 1 ( x t ) + 

(
1 − α( r) 

) · f 2 
(
x t ; π( r) 

) = : γ1 

(
x t ; π

( r) , α( r) 
)
. (C5) 

The M-step requires that we maximize 

E η( r) [ � com 

( π, α; X 1: T , Z 1: T ) | X 1: T = x 1: T ] 

= 

T ∑ 

t= 1 

{
γ1 

(
x t ; π

( r) , α( r) 
) ·
[

log 

(
α

1 − α

)
+ log ( f 1 ( x t )) − log ( f 2 ( x t ; π)) 

]
+ log (1 − α) + log ( f 2 ( x t ; π)) 

}
(C6) 

with respect to both α and π; these optimizations can be carried out separately because these parameters are functionally independent in 
equation ( C6 ). Basic calculus shows that the maximizing value of α is 

ˆ α = 

1 

T 

T ∑ 

t= 1 

γ1 

(
x t ; π

( r) , α( r) 
)
. (C7) 

Optimizing π is only slightly more complicated due to the constraint 
∑ K 

k= 1 πk = 1, for which the method of Lagrange multipliers is particularly 
suitable. Applying this technique shows that πk is maximized by 

ˆ πk = 

∑ T 

t= 1 γ2 

(
x t ; π( r) , α( r) 

) · 1 x t ∈ [ b k−1 ,b k ] ∑ K 

l= 1 

∑ T 

t= 1 γ2 

(
x t ; π( r) , α( r) 

) · 1 x t ∈ [ b l−1 ,b l ] 

, (C8) 

where γ2 

(
x t ; π( r) , α( r) 

) = 1 − γ1 

(
x t ; π( r) , α( r) 

)
. The EM algorithm to estimate equation ( C1 ) then simply amounts to repeating the following 

two steps for r = 1 , 2 , . . . until convergence is reached, starting with initial values α(0) and π(0) : 

(i) Set 

α( r+ 1) = 

1 

T 

T ∑ 

t= 1 

γ1 

(
x t ; π

( r) , α( r) 
)
. (C9) 

(ii) Set 

π( r+ 1) = 

( ∑ T 

t= 1 γ2 

(
x t ; π( r) , α( r) 

) · 1 X t ∈ [ b k−1 ,b k ] ∑ K 

l= 1 

∑ T 

t= 1 γ2 

(
x t ; π( r) , α( r) 

) · 1 X t ∈ [ b l−1 ,b l ] 

, . . . , 

∑ T 

t= 1 γ2 

(
x t ; π( r) , α( r) 

) · 1 X t ∈ [ b k−1 ,b k ] ∑ K 

l= 1 

∑ T 

t= 1 γ2 

(
x t ; π( r) , α( r) 

) · 1 X t ∈ [ b l−1 ,b l ] 

) 

. (C10) 
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C2 For unsupervised classification 

For full generality, we assume the data X 1: T = ( X 1 , . . . , X T ) is an independent and identically distributed sample from a mixture of K 

multi v ariate normal distributions 

F = 

K ∑ 

k= 1 

αk · N d ( ·; μk , � k ) , (C11) 

where α1 , . . . , αK 

∈ (0 , 1) with 
∑ K 

k= 1 αk = 1. We define the independent and identically distributed latent variables Z 1: T = ( Z 1 , . . . , Z T ) 
such that Z t ∼ Categorical ( K; α) (i.e. each Z t is a discrete { 1 , . . . , K} -valued random variable with P ( X t = k) = αk ) and X t | ( Z t = k) ∼
N d ( μk , � k ). Writing η = ( μ1 , . . . , μK 

, � 1 , . . . , � K 

, α), the complete-data log-likelihood is then 

� com 

( η | x , Z 1: T ) = log 

[ ∏ T 

t= 1 

∏ K 

k= 1 

(
αk √ 

(2 π) d | � k | 
· exp 

(− 1 
2 ( x t − μk ) 	 � 

−1 
k ( x t − μk ) 

))1 Z t = k 
] 

(C12) 

= 

∑ T 

t= 1 

∑ K 

k= 1 1 Z t = k ·
[
log ( αk ) − 1 

2 

(
d log ( 2 π) + log ( | � k | ) + ( x t − μk ) 	 � 

−1 
k ( x t − μk ) 

)]
. (C13) 

The E-step requires the computation of E η( r) [ � com 

( η | X 1: T , Z 1: T ) | X 1: T = x 1: T ], which this time requires E η( r) [ 1 Z t = k | X 1: T = x 1: T ] = 

P η( r) ( Z t = k | X t = x t ) to be computed. Again, Bayes’ rule and the law of total probability yield 

P η( r) ( Z t = k | X t = x t ) = 

α
( r) 
k · φd 

(
x t ; μ

( r) 
k , � 

( r) 
k 

)
∑ K 

l= 1 α
( r) 
l · φd 

(
x t ; μ

( r) 
l , � 

( r) 
l 

) = : γk 

(
x t ; η( r) 

)
, (C14) 

where φd ( ·; μ, � ) is the N d ( μ, � ) density function. The M-step thus requires the maximization of 

E η( r) [ � com 

( η | X 1: T , Z 1: T ) | X 1: T = x 1: T ] = 

T ∑ 

t= 1 

K ∑ 

k= 1 

γk 

(
x t ; η( r) 

) ·
[

log ( αk ) − 1 

2 

(
d log ( 2 π) + log ( | � k | ) + ( x t − μk ) 

	 � 

−1 
k ( x t − μk ) 

)]
(C15) 

with respect to each μk , � k , and α. It is straightforward to show that the maximizing value of αk is 

ˆ αk = 

1 

T 

T ∑ 

t= 1 

γk 

(
x t ; η( r) 

)
. (C16) 

The remaining parameters are most easily optimized using matrix calculus (we omit details but see e.g. Muirhead 2009 ), which yield the 
optima 

ˆ μk = 

1 ∑ T 

t= 1 γk 

(
x t ; η( r) 

) T ∑ 

t= 1 

γk 

(
x t ; η( r) 

)
x t (C17) 

and 

ˆ � k = 

1 ∑ T 

t= 1 γk 

(
x t ; η( r) 

) T ∑ 

t= 1 

γk 

(
x t ; η( r) 

)
( x t − ˆ μk )( x t − ˆ μk ) 

	 . (C18) 

The EM algorithm to estimate ( C1 ) then simply amounts to repeating the following two steps for r = 1 , 2 , . . . until convergence is reached, 
starting with initial values α(0) and μ(0) 

1 , . . . , μ(0) 
K 

, � 

(0) 
1 , . . . , � 

(0) 
K 

: 

(i) Set 

α( r+ 1) = 

( 

1 

T 

T ∑ 

t= 1 

γ1 

(
x t ; η( r) 

)
, . . . , 

1 

T 

T ∑ 

t= 1 

γK 

(
x t ; η( r) 

)) 

. (C19) 

(ii) Set 

μ( r+ 1) 
k = 

1 ∑ T 

t= 1 γk 

(
x t ; η( r) 

) T ∑ 

t= 1 

γk 

(
x t ; η( r) 

)
x t , k = 1 , . . . , K. (C20) 

(iii) Set 

� 

( r+ 1) 
k = 

1 ∑ T 

t= 1 γk 

(
x t ; η( r) 

) T ∑ 

t= 1 

γk 

(
x t ; η( r) 

) (
x t − μ( r+ 1) 

k 

)(
x t − μ( r+ 1) 

k 

)	 

, k = 1 , . . . , K. (C21) 

The initial values for mixture models such as equation ( C11 ) are typically obtained using the k-means algorithm. In the present case, one 
can run this algorithm (available in any statistical software package) on X 1: T with the number of centres specified as K , which partitions the 
data into K distinct subsets; for each mixture component k ∈ { 1 , . . . , K} , μ(0) 

k and � 

(0) 
k are respectively set to the sample mean and covariance 

matrix from subset k, while α(0) 
k is set to the proportion of X 1: T that comprises subset k. 
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Table D1. Maximum-likelihood estimates for Model 1 fit using ObsID 01885 
with w ∈ { 25 , 50 , 75 , 100 } . 

w = 25 w = 50 w = 75 w = 100 

φ1 0.9874 0.9755 0.9636 0.9563 
σ1 0.0794 0.1161 0.1383 0.1576 
β1 0.1769 0.1787 0.1861 0.1823 
β2 0.0726 0.0733 0.07636 0.0748 

Table D2. Maximum-likelihood estimates for Model 2 fit using ObsID 01885 
with w ∈ { 25 , 50 , 75 , 100 } . 

w = 25 w = 50 w = 75 w = 100 

φ1 0.9883 0.9773 0.9672 0.9591 
σ1 0.0667 0.0961 0.1147 0.1309 
σ2 0.1069 0.1539 0.1843 0.2099 
β1 0.1872 0.1864 0.1921 0.1869 
β2 0.0597 0.0593 0.0622 0.0596 

Table D3. Maximum-likelihood estimates for Model 3 fit using ObsID 01885 
with w ∈ { 25 , 50 , 75 , 100 } . 

w = 25 w = 50 w = 75 w = 100 

φ1 0.9884 0.9768 0.9693 0.9612 
φ2 0.9878 0.9744 0.9647 0.9549 
σ1 0.0711 0.0987 0.1143 0.1305 
σ2 0.1064 0.1568 0.1905 0.2152 
β1 0.1865 0.1860 0.1877 0.1836 
β2 0.0596 0.0591 0.0594 0.0580 
ρ 1.0000 1.0000 1.0000 1.0000 

Note that when a mixture model involves all component distributions within the same parametric family (such as equation C11 , but not 
equation C1 ), any permutation of the component ‘labels’ 1 , . . . , K produces the same value of the ordinary log-likelihood function, in the 
sense that 

� ( λ1 , . . . , λK 

| X 1: T ) = � ( λσ (1) , . . . , λσ ( K) | X 1: T ) , (C22) 

where λk is the set of parameters associated with the kth component distribution (including the mixing parameter αk ) and σ is any permutation 
of (1 , . . . , K). This is an example of a phenomenon known as unidentifiability, which results in K modes in the log-likelihood surface; the value 
of the log-likelihood at each such mode is the same, and so the EM algorithm can converge to any one of them. Thus, from a computational 
perspective, one cannot a priori associate any particular physical state (such as quiescence) to a specific component distribution of equation 
( C11 ). 

When the λ1 , . . . , λK 

can be ordered in some way, any particular ordering of the ‘labels’ can be imposed on the likelihood function; 
for example, if equation ( C11 ) comprises of K uni v ariate normal distributions and one desires the component distributions to be ordered 
increasingly with respect to their means, then one can set the log-likelihood to −∞ whenever μ1 < μ2 < · · · < μK 

fails to hold. Alternatively, 
the EM algorithm can sometimes be coaxed towards a particular labelling by judiciously choosing initial values. When K is small, however, one 
may assign meaning to the components settled on by the algorithm following estimation. If one desires a specific ordering of the components, 
the labels of the estimated parameters can simply be permuted. 

APPENDIX  D :  A D D I T I O NA L  RESULTS  F O R  EV  LAC  

D1 Model estimates for varying time bins 

In this section, we provide maximum-likelihood estimates from the first stage of the model estimation procedure (prior to the bootstrap-based 
de-biasing procedure) for each of the three models described in Section 4.3 fit to ObsID 01885, as the time bin w (in seconds) varies among 
{ 25 , 50 , 75 , 100 } . The estimates are given in Tables D1 , D2 , and D3 , respectively and do not vary materially with w. Our experiments show 

that the de-biased estimates are similarly stable. 
We do observe that in general, the σ1 and σ2 increase steadily as w increases. This behaviour is expected, because these parameters control 

the step size (per unit time) of the underlying Markov chain. Heuristically, suppose that X 1: T is the underlying soft-band process associated 
with the original time bin w , and X 

′ 
1: T ′ is that associated with a larger time bin w 

′ , where T ′ < T . Then the resolution of X 

′ 
1: T ′ is lower than 

that of X 1: T , and so within each time bin of length w 

′ , X 1: T takes several independent steps (say s of them, where s > 1) while X 

′ 
1: T ′ takes a 

single step; that is, X t 1 : t s occur at the same time as X 

′ 
t , and the error of the latter is approximately the sum of the errors of each component 
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Figure D1. Posterior flaring state probabilities computed via equation ( 28 ) for ObsID 01885 and via equation ( 30 ) for ObsID 10679. The probabilities are 
plotted as a function of the observed soft-band counts Y 1 , 1 , . . . , Y T , 1 and the observed hard-band counts Y 1 , 2 , . . . , Y T , 2 for ObsID 01885 (left) and ObsID 10679 
(right). Colour represents the posterior probability of the flaring state. It would not be possible for a flux threshold to reproduce these probabilities. 

of X t 1 : t s . If σ1 and σ ′ 
1 are the parameters associated with X 1: T and X 

′ 
1: T ′ , respectively, then σ ′ 

1 ≈
√ 

s σ1 > σ1 . (This argument makes several 
simplifying assumptions, but can be made rigorous.) 

D2 Scatterplots of hard and soft counts 

Scatterplots of the hard and soft counts coloured according to their posterior probabilities of being associated with the flaring state of EV Lac 
(ObsID 01885 and ObsID 10679) appear in Fig. D1 . The scatterplots confirm that these probabilities could not be obtained with a threshold 
on the observed counts. 
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