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ABSTRACT

We present a new method to distinguish between different states (e.g. high and low, quiescent and flaring) in astronomical sources
with count data. The method models the underlying physical process as latent variables following a continuous-space Markov
chain that determines the expected Poisson counts in observed light curves in multiple passbands. For the underlying state
process, we consider several autoregressive processes, yielding continuous-space hidden Markov models of varying complexity.
Under these models, we can infer the state that the object is in at any given time. The continuous state predictions from these
models are then dichotomized with the help of a finite mixture model to produce state classifications. We apply these techniques
to X-ray data from the active dMe flare star EV Lac, splitting the data into quiescent and flaring states. We find that a first-order
vector autoregressive process efficiently separates flaring from quiescence: flaring occurs over 30 per cent—40 per cent of the
observation durations, a well-defined persistent quiescent state can be identified, and the flaring state is characterized by higher
plasma temperatures and emission measures.

Key words: methods: data analysis — methods: statistical — stars: coronae — stars: flare —stars: individual: EV Lac — X-rays: stars.

1 INTRODUCTION

The ubiquitous variability of astronomical sources spans large
dynamic ranges in both intensity and time-scale. The intensities
typically vary differently in different passbands (i.e. they exhibit
spectral variations as well). The causes of such variability are diverse,
ranging from nuclear flashes occurring in low-mass X-ray binaries
over durations of seconds, to magnetic reconnection flares on stars
and accretion-driven dipping in compact binaries lasting from a
fraction of a ks to tens of ks, to gravitational lensing lasting for
days, to abrupt changes in accretion levels onto compact objects
which then persist for long durations ranging from weeks to months,
to cyclic activity on stars that spans a decade, etc. The underlying
physical processes that lead to such strong variations are not fully
understood. In order to model and predict these variations, we first
need to identify robustly the times when the states of the sources
appear to change.

We posit here that when we observe large intermittent variability,
there is some identifiable characteristic in the source system —
modelled as a hidden state — which serves as a predictor to distinguish
between different levels of activity. As an example, consider the
flaring activity on stars, where we observe short duration bursts
whose profiles show a rapid rise in intensity exceeding the typical
intensity by several factors, followed by a cooling-dominated ex-
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ponential decay. This profile manifests as a stochastic sequence of
alternating active periods with frequent and energetic emissions at
short time-scales of a few ks, and quiescent periods with periodic
or smaller fluctuations. We aim to build a model that describes the
timing of such flaring, and includes a rudimentary quantification of
the underlying variability. From a statistical point of view, including
a latent process enables us to model observed correlations in the
light curve and thus to predict and estimate the long-run proportion
of time spent in flaring and quiescent states.

Previous work on detecting or isolating such variability has
focused mainly on local statistical significance testing, applying a
set of somewhat ad-hoc rules, using automatic/black-box learning
methods (e.g. neural networks) to identify flares in observed light
curves, or modelling the intensities as a mixture distribution. In
a study of y-ray flares in blazars, for example, Nalewajko (2013)
used a simple rule that first identifies the peak flux and then defines
the flare duration as the time interval with flux greater than 50
percent of that observed in the peak. Robinson et al. (1995) took
a more statistical approach in their search for microflares in dMe
flare stars: they computed the statistical significance of peaks in the
binned data where the null distribution is determined by repeating
their procedure on light curves where the bins have been randomly
permuted. Aschwanden & Freeland (2012) proposed an ‘automated
flare detection algorithm’ which is a set of criteria that are applied to
a smoothed light curve; a background/quiescent level is determined
using the time period before a local minimum in the light curve
and the flare is associated with the interval starting at this minimum
and continuing through the first subsequent local minimum that is
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below a background-dependent threshold. Peck et al. (2021) adopted
a similar procedure to detect flares in Geostationary Operational
Environmental Satellite (GOES) X-ray light curves.' A large sample
of M-dwarf flares was obtained by Davenport et al. (2014) using
an iterative smoothing procedure to remove star-spot and then
identifying flares as intervals that exhibit a positive flux excursion
of more than 2.5¢. More recently, supervised learning methods such
as convolutional neural networks (e.g. Feinstein et al. 2020) have
been used, while other researchers have continued to rely on visual
inspection (e.g. Kashapova et al. 2021). Nearly all efforts to date have
focused on univariate single-band light curves. A notable exception
appears in Fleming et al. (2022), who combined near-UV (ultraviolet)
and far-UV light curves in a search for flares in M-dwarfs. They
deployed a set of rules whereby a (peak) flare is identified by either
two consecutive NUV data points above 3o or two simultaneous data
points above 3¢, one in each band.

While these methods include techniques that make use of statistical
significance and standard deviations, they do not take advantage of
principled statistical methods to model or fit features in the observed
light curves. More principled statistical methods for identifying
‘bursts’ in astrophysical light curves were pioneered by Scargle’s
work on Bayesian Blocks (Scargle 1998; Scargle et al. 2013).
The method assumes a piecewise constant intensity function for a
Poisson process in time, and implements a fully Bayesian strategy
for estimating the number of breakpoints. The time intervals with
constant intensity are called blocks and their number is determined by
maximizing the Bayes factor or posterior odds. The breakpoints are
determined sequentially via their posterior distribution as blocks are
added to the model. The Bayesian Blocks method has proved to be an
invaluable tool for identifying ‘bursts’ in light curves and has recently
been used to separate the quiescent and active states of y-ray flaring
blazars (Yoshida et al. 2023). However, because the adopted model is
piecewise constant, the fit results become difficult to interpret when
dealing with smoothly increasing or decreasing intensities.

Large variability in astronomical sources is inevitably accompa-
nied by spectral changes. In the case of stellar X-ray variability, Wong
et al. (2016) proposed using a marked Poisson process for photon
arrivals, treating photon wavelength as a ‘mark’. As with Bayesian
Blocks, their method, called Automark, assumes a piecewise constant
intensity function for the Poisson process that governs photon
arrivals. Spectra are assumed to be constant between the breakpoints,
but within each block are modelled in a flexible non-parametric
manner that accounts for spectral lines. The number of breakpoints
is determined via the minimum description length principle. The
method was extended to include spatial information/images by Xu
et al. (2021).

Neither Bayesian Blocks nor Automark provides a mechanism to
model the underlying processes that generate the flares. With solar
data the observation of individual flares enables a set of different
but also principled statistical approaches. Focusing exclusively on
timing data for solar flares, for example, a number of authors have
used characteristics of the distribution of waiting times between solar
flares to better understand the process generating the flares. In this
way, researchers have concluded that the waiting-time distribution is
consistent with a time-varying Poisson process (e.g. Wheatland 2000;
Moon et al. 2001; Wheatland & Litvinenko 2002; Aschwanden 2019)

ISee also appendix A of the User’s Guide for GOES-R XRS
L2 Products by Machol, Codrescu, & Peck (data.ngdc.noaa.gov/
platforms/solar-space-observing-satellites/goes/goes 16/12/docs/GOES-
R_XRS_L2_Data_Users_Guide.pdf; July 2024).
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or have used it to study the memory in this underlying process (e.g.
Lepreti, Carbone & Veltri 2001; Lei et al. 2020; Rivera et al. 2022).
Unfortunately, these techniques do not apply to stars other than the
Sun because individual flares are not observable.

In this paper, we consider the specific case of X-ray flares in
stellar coronae, where we seek to model not the individual flares
but rather the underlying flaring states, allowing us to estimate the
flaring fraction and to study the spectra in different states. To this end,
we employ a discrete-time hidden Markov model (HMM; Zucchini,
MacDonald & Langrock 2017). This involves formulating a latent
discrete-time Markov chain to represent the flaring process and is
done in discrete time to match the discrete-time nature of the observed
data. One novelty of our approach is that it leverages multiband light
curves to identify flaring and quiescent intervals. The flaring process
evolves as a Markov chain over time and in each time interval the
chain’s value determines the distribution of the observed counts, and
thus influences the evolution of the observed data over time. We
consider both the case where the latent flare process can enter one of
a finite number of states (e.g. a quiescent state and an active state) and
the case of a continuum of states through which the process evolves.
Mathematically, these two possibilities correspond to discrete and
continuous state spaces of the latent Markov chain.

We use two EV Lac light curves as a case study for our methods
and find empirically that the continuous state-space HMM provides
a better representation of the light curves than does the discrete-
state-space HMM. However, the continuous-space HMM poses a
computational challenge because its likelihood is intractable. Thus,
we introduce an approximation that is based on a truncated and
discretized state space and that can be made arbitrarily precise.
We propose three specific formulations of the continuous-space
HMM for flaring stars and a method for choosing among these
formulation. We then fit the preferred model and use it to estimate
the underlying continuous state variable that indexes the transition
between the quiescent and active states. Below, we denote this
(possibly multivariate) indexing variable as X.

The continuous-space HMM does not clearly differentiate between
the quiescent and active states of the source, instead allowing for
variability within the states and a smooth transition between them.
None the less, we aim to estimate the flaring fraction and to study
the spectra within each state. As such, we introduce a two-state
analysis, where Stage 1 fits a continuous-space HMM and estimates
the continuous state indexing variable X, and Stage 2 fits a finite
mixture model to X, in order to estimate the actual intervals of
quiescence and activity. The Markov process underlying the HMM
allows us to model the temporal autocorrelations evident in the light
curves and thus to capture them in the fitted X,. In the second stage,
we ignore these autocorrelations and focus instead on the marginal
fitted values of X, and use them to quantify the source’s transitions
between quiescence and activity. In this way, we can identify the
long-run proportion of time spent in quiescence and flaring activity.
The state predictions also allow us to estimate time intervals of
quiescence and flaring, from which we obtain a comparative spectral
analysis of both quiescence and flaring.

To the best of our knowledge, HMMs were first used to model time-
series of flare data by Stanislavsky et al. (2020), who used a two-state
autoregressive HMM to model continuous-valued daily solar X-ray
flux emission data in an effort to study the hidden process underlying
solar flares. They focused primarily on next-day prediction of solar
flare activity. More recently, Esquivel et al. (2024) used a similar
approach with three states to model the flaring activity of an M-
dwarf star, in which the light curve was observed in one optical band
with the TESS (Transiting Exoplanet Survey Satellite) Observatory.

MNRAS 534, 2142-2167 (2024)
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HMMs have also been used in other applications in astrophysics,
such as distinguishing between noise- and source-dominated states
on strongly variable sources such as Sgr A* (Meyer et al. 2014).

Our approach here is more general. We use X-ray event lists
containing information on photon arrival times and photon energy to
construct light curves in multiple bands with low count rates in the
Poisson regime, allowing us to explore short time-scale events as well
as spectral variations. While our method allows for prediction, our
primary aim is to better understand the underlying physical process
driving stellar flares.

The remainder of this paper is organized into six sections. We begin
by introducing two EV Lac light curves in Section 2 to motivate our
modelling choice. Section 3 consists of a general introduction and
review of HMMs, emphasizing the notation and properties needed
in the current setting. We present our Stage 1 analysis with its three
HMMs in Section 4, emphasizing techniques for quantifying uncer-
tainty and model selection. We turn to the Stage 2 analysis in Section 5
with a new proposed model-based method for classifying light curves
into flaring and quiescent intervals. We illustrate the application of
these models and methods with an analysis of the EV Lac light curves
in Section 6. Finally, we conclude with a discussion and suggestions
for future work in Section 7. Several appendices review details of
the algorithms used for maximum-likelihood fitting of discrete-space
HMMs, present technical aspects of the discrete approximation that
we use for efficient fitting of continuous-space HMMs, and give
additional details of our analysis of EV Lac.

2 DATA

To motivate the development of HMMs as a modelling tool for non-
periodic stochastic variability, we focus on stellar flares in particular,
as those data sets often provide a clean look at a quiescent level
punctuated by large, short-duration flares. Being able to separate
quiescent from flaring states is crucial to understand mechanisms of
stellar coronal heating, as well as the local interplanetary environ-
ment. The latter in particular affects the habitability of exoplanets,
which has been flagged as an important focus of investigations in
the Astro 2020 Decadal Survey (National Academies of Science,
Engineering, and Medicine 2021).

2.1 EV Lac

The nearby (5 pc) active dMe binary EV Lac is a good candidate to
test our HMM modelling. It has displayed consistent flaring across
decades (at > 0.2 — 0.4 h™! during every X-ray observation; see
Huenemoerder et al. 2010, and references therein), and there are
high-spectral and high-temporal resolution, long-duration data sets
obtained using the high-energy transmission gratings (Canizares et al.
2005) on the Chandra X-ray Observatory (Weisskopf et al. 2002).2
These data were previously analysed by Huenemoerder et al. (2010),
who detected 25 large individual flares across the data sets, and
observed clear changes in spectral characteristics during flares, with
generally higher plasma temperatures (3> 10° K) at larger emission
measures; they explicitly demonstrate the value of stacking the data
from flares (whether short or long) and the quiescent durations.
Here, we use the combined dispersed events from both the high-
energy (HEG) and medium-energy (MEG) grating components of

2The data sets, obtained on 2001 September 19 (ObsID 01885; 100.02 ks)
and 2009 Mar 13 (ObsID 10679; 95.56 ks) are available via the CDC 235 at
https://doi.org/10.25574/cdc.235.
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Figure 1. Bivariate time-series plots of EV Lac count data based on event lists
where the split is based on counts in soft (0.3-1.5 keV) and hard (1.5-8 keV)
passbands. Time is discretized into 50 s intervals; for ObsID 01855 (above),
t = 0 corresponds to 2001 September 19, 19:36:23, and for ObsID 10679
(below), t = 0 corresponds to 2009 March 13, 06:47:57. The intermittent
nature of EV Lac’s flaring behaviour is evident.

the first-order photons, extracted from the level-2 event list using the
default extraction regions in CIAO v4.16 (Fruscione et al. 2006). This
allows us to avoid pileup effects (Davis 2001) on the zeroth-order
data, especially during strong flares. We show the light curves for
both epochs in Fig. 1, with the data split into two passbands, a softer
band covering 0.3—1.5 keV and a harder band covering 1.5-8.0 keV.
The choice of 1.5 keV as the split threshold is driven by the effective
area peaking at that value.> There are approximately 23,600 and
17,900 counts in the softer band, and approximately 9,800 and 9,500
counts in the harder band for ObsIDs 01885 and 10679, respectively.
The counts are collected into light curves (Fig. 1) binned at 50 s (see
Appendix D for a sensitivity analysis for the choice of bins). Because
these light curves are constructed from dispersed photons, pileup is
entirely ignorable. The data are not affected by dead time effects,
and background contamination is small and unvarying, and therefore
also ignorable. The Advanced CCD Imaging Array - Spectroscopic
detector on Chandra (ACIS-S) contamination build up at low energies
over the mission (Plucinsky, Bogdan & Marshall 2022) reduces the
counts in the soft band.

We discuss the application of our model to this data set and the
relevant results in Section 6.

3 HIDDEN MARKOV MODELS

We begin with a brief review of discrete-time HMMs, in order to
present the relevant theory and notation required to understand the
models and methods developed in this paper. A readable, but more
comprehensive, introduction to HMMs can be found in Zucchini

3We have also explored the sensitivity of our analysis to the choice of
passband splitting energy value. We carried out the analysis using other
astrophysically meaningful splits such 0.9 keV — which separates a thermal
spectrum from being dominated by low- and high-temperature plasma — and
found no qualitative effect on the results.
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Figure 2. A graphical model representing the standard discretized HMM dependence structure. In this graph, open nodes represent observed quantities and
shaded nodes represent unobserved quantities. Generally, an arrow from node X to node Y indicates that the random variables X and Y are not independent,
and that the joint distribution of (X, Y) is analysed via the factorization fy y(x,y) = fy;x(y | x) - fx(x) rather than fx y(x,y) = fxjy(x | y)- fr(»). In the

unobserved Markov chain X, X3, ..

., each X; determines the distribution of its successor X4 (represented by the forward-pointing arrows). In the observed

process Y1, Y, ... each X; determines the distribution of each Y, (represented by the downward-pointing arrows), such that, conditional on these determinations,

the Y, are independent (represented by the lack of arrows between the Y ;).

et al. (2017) while Cappé, Moulines & Ryden (2005) provide a more
advanced treatment.

3.1 Discrete-time hidden Markov models

Heuristically, we employ discrete-time HMMs when we believe that
there is an unobserved underlying process governing the distribution
of an observed time-series of data at each discrete observation time.
For example, we might postulate that a stellar corona is in either
a quiescent state or active state at any given time, and that the
distribution of observed counts differs between these two states.
The underlying state (quiescent or active) is unobserved but governs
the distribution of the observed photon counts. Mathematically, the
underlying process is modelled as a Markov chain: informally, a
sequence of random variables, X, X5, ..., for which the distribution
of any X, depends on the history of the chain only through the value
of X,_;. The variables X, X», ..., determine the overall state of the
process (e.g. whether the stellar corona is in a quiescent or active
state); thus we refer to the X, as state variables (or simply states).

Inferences about the Markov chain, such as the determination
of its values at any time (a process known as state decoding)
are performed using only the observed data. Domains in which
HMMs commonly appear include meteorology (in which the daily
occurrence of rainfall is generated by underlying ‘wet’ and ‘dry’
states of nature; Zucchini et al. 2017), animal movement ecology
(in which an animal’s behavioural states are inferred from telemetry
data capturing its physical movements; Langrock et al. 2012b), and
finance (in which stock returns are influenced by the underlying state
of the economy). In astronomy, Stanislavsky et al. (2020) modelled
solar X-ray flux as being generated by underlying ‘flaring’ and ‘non-
flaring’ states of the sun, as discussed in Introduction.

More formally, the basic discrete-time HMM has two key com-
ponents. The first component is an unobserved Markov chain,
Xi1.7 = (X4, ..., X7), where each X, takes values in a common state
space X" and the chain is subject to the Markov property,

PX;e Al Xii=x1,.... X =x)=PX, € A| X;o1 =x-1),

ey

for all A € X (for notational convenience, we start by assuming
the X, are univariate). The second component is a sequence of
observeddata, Y .7 = (Y, Y,, ..., Y7), where each Y, takes values
in a common observation space ). For EV Lac, we consider soft
and hard passband counts within each time bin; thus each Y, is
bivariate (i.e. a two-component vector), Y = R?, and we set Y, in

bold throughout the paper. The two components are subject to the
following conditional independence rules:

(1) Y, and Y are conditionally independent given the underlying
Markov chain X.r, for any s # ¢, and

(ii) the distribution of Y, depends on X .7 only through the state,
X, at time index ¢.

It follows that Y, and Y, are conditionally independent given
(X, Xy) for any t # s. This means that, conditional on the state of
the Markov chain at time index ¢, the observation Y, is independent
of all other observations; see Fig. 2. Note that (ii) implies that the
distribution of each Y, is fully characterized by the underlying state
X;; often, the distributions of the individual observations, Y,, all
belong to the same parametric family (such as a normal distribution),
and the state X, manifests itself in the particular parameters of the
distribution of Y, (such as the mean and variance, in the case of
state-dependent normal distributions). In most cases, the state space
X is either finite or a continuum; we describe these cases separately.
The notation used here and elsewhere in this paper is summarized in
Table 1.

3.2 Discrete-space hidden Markov models

When the state space X' is finite, it is commonly represented as
X ={1,..., K} for some K € N, where each value in X plays the
role of a label for an underlying state of nature (e.g. when K = 2,
‘flaring’ and ‘quiescent’ can simply be represented as ‘1’ and 2°,
respectively). In this case, the resulting HMM is referred to as a
discrete-space HMM. The specification of a (time-homogeneous)
discrete-space HMM consists of three ingredients:

(i) an initial distribution on X, represented by a vector § =
G1,...,8x)withg, =P (X, =),

(ii) a set of transition probabilities, y; ; = P(X,;11 = j | X, =1)
for any ¢ > 1, represented by a K x K transition matrix, I', with
element (i, j) given by y; ;, and

(iii) a set of state-dependent distributions, each characterized by
a density or mass function /;(y | A;) determining the conditional
distribution of Y, | X, = k for any ¢. Here X\, is a state-specific
distributional parameter, which may consist of several components.

Let n denote the set of HMM model parameters, including the
initial distribution, the transition probabilities, and the parameters
of the state-dependent distributions, thatis, n = (8, T, Ay, ..., Ag).

MNRAS 534, 2142-2167 (2024)
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Table 1. Table of notation used throughout the paper.

w Time bin width for grouping observations into discrete counts; usually w = 50 s

t Index of time bin

Yia Observed soft band count at time index ¢

Yo Observed hard band count at time index ¢

Y; Observed bivariate vector of counts (soft and hard band) at time index ¢ (i.e. Y, = (¥;,1, Yy 2))
Y. Collection of observed Y, from = s to s’

X State of underlying Markov chain at time index ¢

p. o Collection of underlying states from 7 = s to s’

X Underlying state-space which each X, takes values within

4] Initial distribution for a discrete-space Markov chain, represented as a vector

) Discrete approximation to an initial distribution to a continuous-space Markov chain

Vi,j Transition probability from state i to state j for a discrete-space Markov chain

r Transition matrix for a discrete-space Markov chain

T Discrete approximation to a transition density of a continuous-space Markov chain

A1 Parameter for kth state-dependent distribution of soft band count

Ak2 Parameter for kth state-dependent distribution of hard band count

Ak Parameter vector for kth state-dependent distribution (i.e. Ay = (Ak,1, Ax.2))

I ] ) State-dependent density or mass function of Y, (i.e. conditional on X, = k)

n Vector of all unknown parameters in a given model

L |yi.r) Likelihood function (as a function of ») for a given model

8() Initial distribution for a continuous-space Markov chain, represented as a density function
y(, ) Transition density for a continuous-space Markov chain

b4 Stationary distribution for a given Markov chain

Bn Mean emission rate for band 42 when X, , = 0, scaled by 1/w (forh =1, 2)

bn Autocorrelation parameter for X; , (for h = 1,2)

[ ] Autocorrelation matrix with (¢1, ¢) along the diagonal and off-diagonal entries equal to 0
&1 Soft band error/innovation at time index ¢ given by X; | — ¢1X;—11

&2 Hard band error/innovation at time index ¢ given by X, » — ¢1X,_12

&; Bivariate error/innovation term at time index ¢ (i.e. &, = (&/,1, &,2))

(rﬁ Variance of &, (forh =1, 2)

P Correlation between ¢; | and & >

0 Vector of zeros of length 2 (i.e. 0 = (0, 0))

X Covariance matrix with (012, 0‘22) along the diagonal and off-diagonal entries equal to o102 p
N, o?) Univariate normal distribution with mean x and variance o2

N> (0, X) Bivariate normal distribution with mean vector 0 and covariance matrix X

Y,J, Predicted mean (Poisson rate) of distribution of ¥; ;, (for h = 1, 2)

}?,,h Prediction of X, j conditional on Y .7 = y;.7 (forh =1, 2)

R Set of real numbers

N> Set of positive integers

Py(A) Probability of an event A given distributional parameter values 5

L, [X] Expectation of a random variable X given distributional parameter values 5

A; Subrectangle i used to partition continuous state space in discrete HMM approximation
ct Representative point within A; used to define states in discrete HMM approximation

1 Column vector of ones (i.e. 1= (1,1,..., 1))

o Mixing parameter for first component of a two-component finite mixture model

aj Mixing parameter for jth component of a K-component finite mixture model

™ Vector of parameters 7w = (71, ..., g ) in density used for semisupervised classification

The likelihood function for the discrete-space HMM is given by

Ly | yir)=

K K T

Z e Z <8X1 “ha (y1 ] AXI)H (th—l.xr “hy (yi | >\x,))> .(2)
x1=1 xr=1 =2

The sums in equation (2) ‘marginalize’ the unknown state sequence
X7 out of the likelihood by summing over all possible state
sequences which could have generated the observed data.

Standard algorithms are available for computing the maximum-
likelihood estimate of n under equation (2). While the number of
terms summed in equation (2) is exponential in 7', an efficient
algorithm known as the forward algorithm allows the likelihood
to be computed in polynomial time; see Appendix Al for details.
Embedding this algorithm within the E-step of the well-known EM

MNRAS 534, 21422167 (2024)

algorithm (see Appendix C) produces the Baum—Welch algorithm,
which allows for fast maximization of equation (2); see Zucchini et al.
(2017) for details. Once the model parameters have been estimated,
the forward—backward algorithm (detailed in Appendix A2) can be
used to compute posterior state membership probabilities of the
form p, =P (X, =k |Yyr = yi.r) for each t =1,...,T, and
from these, the posterior state membership classifications given by
argmax, p; k.

3.3 Continuous-space hidden Markov models

When the state space X is a continuum (such as R or, more generally,
R for some d > 1), the resulting HMM is called a continuous-space
HMM. In this case, the first two ingredients in the discrete-space
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HMM specification are replaced by continuous analogues, while the
third is essentially unchanged:

(i) aninitial distribution on X', represented by a probability density
function §(x) satisfying P(X; € A) = fA d(x)dx for A C X,

(ii) a transition density function, y : X2 — [0, 0co) satisfying
PX;s1 €Al X, =x)= fA y(x,x’)dx' forany r > 1l and x’ € X,
and

(iii) a set of state-dependent distributions, each characterized by

Separating states using hidden Markov models 2147
vector § € R™ and matrix I' € R™*™ by the entries
5, =P(X,€A;) and 7, =PX,€A;| X, =c) 5)
the approximation (4) can be written
L(" I yl:T) ~
m m T
D (a e (7013 ) T (s, (o0 M))) ,
i=1 ir=1 =2
(6)

a density or mass function &y (y | Ax) determining the conditional
distribution of Y, | X, = x for any ¢. Here, A\ is the parameter
specifying the distribution of Y, given that X, = x; this parameter
may consist of several components.

The likelihood function for the continuous-space HMM is

L(" I yl:T) =
T
[ 80 e 1 A TG0 e 01 As e
X X =2
3

where the iterated integrals over X have replaced the sums in equation
(2)and dx7. = dx7 ---dx;.

In both discrete- and continuous-space Markov chains, the corre-
sponding transition probabilities or transition density may induce
a stationary distribution for the underlying Markov chain — a
distribution # where X; ~ 7 implies that X,;;; ~ 7 (i.e. if one
iterate of the chain is marginally distributed according the stationary
distribution, all subsequent iterates are also marginally distributed
according to ). Under broadly realistic assumptions, the stationary
distribution is equal to the asymptotic distribution of the chain, that
is, the limiting distribution of X, as t — oo (e.g. Resnick 2013).

3.4 Approximation to the continuous-space HMM likelihood

In contrast to the situation for the discrete-space HMM, computing
the maximum-likelihood estimate under a continuous-space HMM
by maximizing equation (3) poses considerable challenges. With the
sums over {1, ..., K} replaced by integrals over X, no efficient
algorithms are known that can compute equation (3), let alone
maximize it. Fortunately, however, we can approximate equation (3)
to arbitrary high level of accuracy by replacing the continuous-space
Markov chain with a suitably chosen discrete-space one; this idea
originates from the work of Kitagawa (1987) and was developed for
state-space models by Langrock (2011). We provide a brief outline
of the method and its derivation here, with additional details in
Appendix B; see also Langrock (2011) for a complete exposition in
the univariate case and Langrock, MacDonald & Zucchini (2012a)
for several illustrative examples.

First, we must identify an essential domain A, which is a bounded
subset of X such that P(X, € A) is nearly one for all ¢ (Kitagawa
1987). Next, A must be partitioned into subsets A;, ..., A, and a
representative point, ¢}, chosen for each A;, for example, ¢} can be
set to the centre of A;. If all of the A; are small, then

m

Lo yir) =Y > (fP(Xl € Ai)-he (y1 | Ac,.*]) :

i1=1 ir=1
T
T1(F (X et iXi=c ) he (3 *«t))) @
=2

where the approximation becomes exact as A approaches X and each
of the A; decrease in size (see Appendix B for details.) Defining the

where 5 is a vector consisting of the unknown parameters in
the state-space model, including the state-dependent parameters
)‘“?,1’ ey )‘“7,7- and any parameters associated with the distribution
of the underlying Markov chain X.7. If we replace the initial density
& and transition density y with the discretized functions in equation
(5), the approximation in equation (6) is precisely of the form of
the discrete-space HMM likelihood given in equation (2), and so,
up to the renormalization of & and the rows of T, equation (6) is
the likelihood of an m-state discrete-space HMM in which the chain
being in ‘state’ i at time index ¢ corresponds to the event that X, € A;.

With all elements in the approximation specified in this way,
evaluation of equation (6) can proceed using the forward algorithm
discussed in Section 3.2. When X = R? for d > 1 and the size of
the partition m is large, mapping the unordered partition of A to
an ordered set of states {1, ..., m} poses its own challenges. When
d = 2, this mapping can be accomplished by a pairing function — that
is, a bijection from N>; x N-; to Ns;. We slightly modify Szudzik’s
‘Elegant’ bijection between N x N and N (Szudzik 2006) so that the
original function and its inverse have the required domain and range.
The modification and its inverse are respectively given by

JE=2j+i+1,
i+ j—i,

i # max{i, j}
i = max{i, j}

pair(i, j) = {

and

(j—g()P. g +1), J—g()*—1<g()
(gh+1,j—g(*—g()), j—g(Y—1=g()’

where g(j) = [vJj — 1].

In practice, one can manually verify that the range of the chosen
essential domain is sufficient for the data at hand by inspecting a
histogram of the predicted states produced by any state decoding
algorithm (see Appendix A2) after the model has been fit (Zucchini
etal. 2017).

unpair(j) = {

4 STAGE 1: HMMS FOR FLARING SOURCES

In this section, we propose three new HMMs which are well suited
to model flares in stellar coronae. These models are more generally
applicable, but because we focus on data sets of flaring stellar
light curves (see Section 2), and because other model choices are
possible, we caution that it is necessary to consider carefully the
particular scenario before adopting these models without suitable
modifications. Indeed, we are actively engaged in applying the
models to flaring sources other than stars and exploring what gener-
alizations to the models might be appropriate for these application;
see Section 7.2 for discussion. All of the models consider photon
counts recorded in a sequence of time intervals indexed by 7 and
tabulated into soft passband counts, Y, ;, and hard passband counts,
Yo, fort =1,..., T. We start by considering the relative merits of
discrete and continuous state spaces as the basis for modelling the
flaring behaviour of stars.

MNRAS 534, 2142-2167 (2024)
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Figure 3. Soft band ObsID 01885 light curve coloured with classifications
based on two-state (above) and three-state (below) HMMs fit directly to the
observed data Y 1.7.

4.1 Discrete-space HMM:s for flaring stellar coronae

With a discrete state space, a state-dependent bivariate Poisson
distribution can be written

Y, | X, = k ~ Poisson(A; ;) - Poisson(Ax 2), (@)

for t=1,...,T7 and k=1,..., K, where here and below the
notation Y, | X; = k ~ Poisson(Ax, 1) - Poisson(Ax ) indicates that
the Poisson distributions of the passbands Y; ; and Y, », conditional on
the event X, = k, are independent for all . There are many possible
alternatives to equation (7) for count data, including combinations
of various bivariate Poisson and negative binomial distributions
(see Johnson, Kotz & Balakrishnan 1997, for examples) and state-
dependent copulas (see Zimmerman, Craiu & Leos-Barajas 2023),
all of which induce dependence structures between Y; ; and Y; ,. In
principle, a two-state HMM could be used to model a star’s states as
‘quiescent’ and ‘flaring’, roughly in the manner of Stanislavsky et al.
(2020). Alternatively, a three-state HMM might split the ‘flaring’
state into states of rising and falling flaring activity (Esquivel et al.
2024).

We fit the model specified in equation (7) to ObsID 01885 light
curve for both K =2 and 3 via maximum likelihood as described
in Section 3.2. Fig. 3 illustrates the fitted predicted classifications
for each time interval, computed as argmax, p, x, again as described
in Section 3.2. Inspection of Fig. 3 (or indeed of Fig. 1) reveals
a theoretical defect of using a discrete-space HMM to model the
stellar flare process of EV Lac. Under the conditional independence
rules of Section 3.1, all observations generated by the same state
are independent and identically distributed. Indeed, this implies that
the red observations in Fig. 3 must be independent and identically
distributed, as are the green and blue ones. This implication is
contradicted by the clear temporal trend of the red observations, as
well as the sharp rise and fall of the blue ones. Thus, the conditional
independence rule is not satisfied and the standard discrete-space
HMM is not directly suitable for our data.

This time-series is comprised of jumps between two clearly
distinguished levels, pushed by a gradual trend over time (see figs 1
and 2 of Stanislavsky et al. 2020).

MNRAS 534, 21422167 (2024)

4.2 Continuous-space HMM:s for flaring stellar coronae

There is no reason to assume that the underlying physical process
generating stellar flare activity is binary and is either ‘on’ or ‘off’.
Here, we consider a more realistic model that allows the expected
photon count at time index ¢ to depend on a continuous underlying
process. This enables us to model gradual and/or smooth transitions
between a quiescent and an active corona (e.g. with long periods of
quiescence interrupted by more intense signals at random intervals).
We also weaken the assumption that a single underlying univariate
process X, drives both the hard and soft band photon counts. Specif-
ically, we replace X; with a bivariate vector X; whose components
X;1 and X, , may be correlated with each other. We maintain the
Markov assumption expressed as a bivariate version of (1).

We specify a Poisson state-space model* that satisfies these
requirements. First, the state-dependent distribution models flux
measurement (i.e. the counts in two passbands) via a Poisson (error)
distribution conditional on the underlying R>-valued state-space
variable X, :

Y, | X, ~ Poisson (w - B; - e¥"1) - Poisson (w - B, - €*12) . 8)

Second, the astrophysical source variability or signal is modelled via
an autoregressive process for X, specified as

X, =®X, | +e, (92)
b1 0]
¢ = s 9b
{0 . (9b)
& ™ N3(0, %), and (9¢)
_ |: 0'12 0‘10’2,0:| (9d)
T oo 0F |

The &, term in equation (9a) does not represent observational noise;
rather, it represents the random innovation in the underlying source
or signal variability. Observational uncertainty, on the other hand, is
captured implicitly by the Poisson distribution in equation (8), and
not by any explicit additive term in the model. Fitting this Poisson
state-space model allows us to go beyond simply fitting the raw
light curves. Ultimately, this will allow us to identify time intervals
with different statistical behaviours (e.g. quiescence and flaring); see
Section 5. Note that the notation N>(0, X) in equation (9c) represents
a bivariate Gaussian distribution with mean vector equal to 0 and
covariance matrix equal to X.

The parameters to be estimated in equations (8)—(9d) are 8, B, >
0, the coefficient matrix ¢ with diagonal entries ¢;, ¢, € (—1, 1),
and the covariance matrix X built up of components oy, 0, > 0 and
p € (—1, 1). The remaining term, w, is the time bin used to group the
original photon event list into discrete counts; including w facilitates
the study of dependence on bin size (see Appendix D) and also helps
to avoid numerical underflow in the estimation process.

Under the model in equations (8)—(9d), the expected photon counts
E [Y,Yl] and E [Yt.z} at time index ¢ in the soft and hard bands are
monotone increasing functions of X, ; and X, ,, respectively. The
parameter 3, is proportional to the expected Poisson photon count
when X, , = 0. (Since X, can take on negative values, X,, =0

4The term ‘state-space model’ — unlike ‘HMM” — is not consistently defined
in the literature. Here, we simply regard state-space models as those with
observation processes (partially) driven by some hidden linear state process
defined on a continuous state space. In other domains such as control theory,
this term commonly refers to more specific models in which the observation
process is itself a linear function of the state process.
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does not necessarily correspond to a state of particularly low or high
flaring activity.) The coefficient matrix ® determines the extent to
which each X, ; is correlated with its predecessor, X,_; ;. A slight
generalization of equation (9b) allows the off-diagonal entries of ®
to be nonzero, thereby allowing X, ; to depend on X,_;, and vice
versa (see Section 7).

The state process X, of the model described by equations (92)—(9d)
is a first-order vector autoregressive process, denoted as a VAR(1)
process in the statistical literature. VAR models are commonly
applied in areas such as mathematical finance, where they play im-
portant roles in stochastic volatility modelling (e.g. Primiceri 2005).

To compute the (approximate) maximum-likelihood estimate un-
der the model in equations (8)—(9d), we maximize the discrete-state-
space approximation to the likelihood; see equation (6). Because the
state space is R?, it is convenient — although not strictly necessary
— to choose the essential domain A to be a rectangle. Similarly, we
partition A into a large number of subrectangles, A, ..., A,, and
set the representative point, ¢}, of each to be its centre.

To numerically optimize equation (6), we use a parallelized version
of the popular limited-memory Broyden—Fletcher—Goldfarb—Shanno
algorithm (L-BFGS) routine as implemented in the OPTIMPARALLEL
package (Gerber & Furrer 2019) within R. We prefer to use uncon-
strained optimization to avoid numerical issues caused by parameter
inputs lying on the boundaries of their respective domains; thus
instead of optimizing the parameters ¢;, ¢, and p in the approximate
likelihood over (—1, 1), we optimize tanh~!(¢;), tanh~'(¢), and
tanh~!(p) over R, and then transform the optimizing values back to
their natural domain via the inverse function x + tanh(x). Similarly,
we optimize log B, log 8,, log o1, and log 0, over R, and replace the
results with their exponentiated values.

The (approximate) maximum-likelihood estimates may be slightly
biased due to small sample sizes. (Maximum-likelihood estimates are
asymptotically unbiased for most ‘smooth’ models, but are generally
not unbiased with finite samples.) Similarly, with a small sample
size the negative Hessian matrix of the log-likelihood function eval-
uated at the maximum-likelihood estimate may yield an inadequate
approximation to the Fisher information matrix, which is normally
used to produce confidence intervals. In order to remedy both issues,
we appeal to the parametric bootstrap, which allows us to estimate
simultaneously the standard errors of parameter estimates and their
biases (Efron & Tibshirani 1993).

Specifically, after computing the maximum-likelihood estimate of
the parameters, )., using the actual data, Y .7, we independently
generate B replicate data sets, Y(II)T R Y(fT), under the model, each
with parameter fixed at #},,.. In the context of an HMM, this requires

first simulating the underlying state sequences, X(II)T, . ..,X(,?T),
and then generating each ng) | X fh) according to the conditional
distribution (8). Foreachb = 1, ..., B, we then refit the model using

Y(lb)T to produce a replicate estimate, ﬁl(f;). Next, we estimate the bias
b and covariance matrix C of the maximum-likelihood estimator via

bbs = 7;7bs - ﬁmle (10)
and
1 < T
Com o > (0 =) () — ) an
b=l
where

1

I

bs =

|

B
> iy (12)
b=1
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is the mean of the bootstrap replicate estimates. Finally, the bootstrap-
corrected estimate is oo, = e — bys, and standard errors for the
components of i, are equal to the square roots of the diagonal
elements of Cy,. Approximate 95 per cent confidence intervals for
the components are computed with these standard errors.

We conducted a brief simulation study to confirm the veracity of
the bootstrap estimates and errors. We simulated data under Model 2
(see Section 4.3.2 below) with a pre-specified n = (¢, o1, 02, B1, B2)
chosen relatively close to the values given in the second column of
Table 3. Choosing B = 100, we independently repeated the boot-
strapping procedure 100 times, producing 100 bootstrap 95 per cent
confidence intervals centred around 100 bias-corrected maximum-
likelihood estimates. The coverage probabilities for the five param-
eters (i.e. the number of times each true parameter ¢y, ..., B, fell
inside the bootstrap confidence intervals, divided by 100) were 0.93,
0.97, 0.92, 0.92, and 0.91, respectively, which all agree with the
expected value of 0.95 at the 95 per cent confidence level.

4.3 Three state-space models for flaring stellar coronae

While the Poisson state-space model in equations (8)—(9d) includes
features well suited to stellar flare data, it may be more general
than necessary; for example, it is not immediately clear that separate
underlying processes, X, ; and X, ,, are necessary for the hard and
soft bands. We therefore consider two special cases of the model, the
first itself a special case of the second, before considering the model
in equations (8)—(9d) in its full generality as a third model. Thus,
the three models we consider form a nested sequence. For each
model, we first provide a stochastic representation, and then give
the initial distribution (as characterized by 5 i, for je{l,...,m})
and transition probabilities (as characterized by ¥ ;, for i, j €
{1,...,m}) of the associated discrete-space HMM approximation
to the continuous-space model. This involves expressing both the
§; and the 7;; as functions of the parameters involved with the
stochastic representation of the underlying state process.

Note that the initial density plays a relatively minor role in
the likelihood, and that its impact diminishing as 7 grows. We
follow Langrock (2011) and use the stationary distribution of the
state process, X .7, for the initial distribution § ;- Statistically, this
is tantamount to assuming that the distribution of the states that
the star inhabits is in equilibrium, and is not evolving over time.
The transition probabilities ¥ ; are derived from the stochastic
representation of the model.

4.3.1 Model 1: AR(1) process

To reduce the underlying state process to one dimension, we set
X:1 = X;, =t X, for all ¢, in which case the latent process reduces
to a univariate first-order autoregressive process, denoted as an AR(1)
process for short. The entire state-space model can be written in the
simplified form

Y, | X, ~ Poisson (w - B; - €**) - Poisson (w - B - €*') ,
X, = ¢X;—1 +¢&, and
& N (0,0%). (13)

SThis is a reasonable choice for a steadily flaring star like EV Lac, which
has not shown evidence of drastic changes in X-ray luminosity during
observations over the past several decades (Huenemoerder et al. 2010). This
choice is also supported by the steadiness of the spectra in the quiescent and
flaring states that we find post facto across epochs (see Section 6.2.3).

MNRAS 534, 2142-2167 (2024)
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The vector of unknown parameters for Model 1, g\ = (¢, o, B1, B2),
is fit to the data.

Under Model 1, X, = ¢X,_, + & with g, ~ N(0, 0?), and it can
be shown that this process admits a stationary distribution if and
only if ¢ € (—1, 1), whence the stationary distribution is given by
the N (0, 0% /(1 — ¢?)) distribution. Thus, if A; = [a;, b;], then the
initial distribution for the discrete-space HMM approximation of
Model 1 is taken to be the vector § comprised of entries

S_]' = ”)(Xt € A,) = Gx(b/) — Gx(aj), (14)

where

X 1 — o2 2 1— 2
Gx(x)z/ 1/ 27_[:)2 exp{—t (202¢)}dt (15)

function (cdf) of the

is the cumulative distribution
N (0,0%/(1 — ¢?)) distribution.

The transition density y(x,_;, -) for Model 1 is defined as the
conditional density of X, | (X,_; = x,_1). Under this model, it can
be shown that X, | (X,_; = x,_1) ~ N(¢x,_1, 0%), and so, if cfis
the representative point chosen within the interval A;, then the tran-
sitions probabilities between states y; ; = P(X; € A; | X,—; € Aj)
are approximated by

Vij = P(X; € Aj | X;o1 = C;‘) = FX.i(bj) - FX,i(aj)» (16)
where
* 1 (t — ¢pct)?
Fy i (x) = -t b dr 17
x,i (%) /_OO s exp{ 3072 } 17)

is the cdf of the N (q)cf, 02) distribution. The y; ; are then taken
as the entries of the transition matrix in the discrete-space HMM
approximation of the model.

4.3.2 Model 2: VAR(1) process on a line

Model 1 can be viewed as a special case of the general Poisson state-
space model (8)—(9d), where X, ; is forced to be equal to X, , with
probability 1 for all 7. In Model 2, we relax this restriction and allow
X » to depend positively and linearly on X, ;; specifically, we set
X,» = 0,X,1/01 with probability 1, where each o, > 0 is given by
of = Var (X, | X;—1,) for all 7. (The assumption of stationarity
implies that this variance does not depend on ¢.) Formally, this can
be written as a bivariate state-space model where the X, follow the
degenerate distribution implied by

X, =®X, | te,

_ |90
¢ = {O ¢], and
. 2
%‘ . o 01020
& /171_1}11 N> (0, {0102,0 o2 }) . (18)

The bivariate distribution for &, lacks a density with respect to
Lebesgue measure on R”, but admits a density on the line y =
oyx/o1. However, it is more convenient to write the state-space
model entirely in terms of the univariate state process X, := X,
as
Y, | X, ~ Poisson (w - B; - ¢*") - Poisson (w - B, - e?*/1) |

X, =¢X,_1+¢&, and

iid
g~ N (0,07). (19)

The vector of unknown parameters for Model 2, mp =
(¢, 01, 02, B1, B2), is fit to the data.

MNRAS 534, 2142-2167 (2024)

In the bivariate formulation (18), X, ; lies within the interval
[a,b] C R if and only if X,, lies within [02a/0}, 0ub/0] with
probability 1. Thus, the transition probabilities for X, , are deter-
mined by those of X, alone, as is the initial distribution of X,
(since we assume X, | — and therefore X, , —is stationary). It follows
that the initial distribution § and the transition probabilities 7;. j
for Model 2 are exactly the same as those in Model 1, but with
o replaced by oy; effectively, the only difference between Models
1 and 2 is the inclusion of o,/0; in the state-dependent Poisson
distribution corresponding to the hard-band photons. For the process
X; = ¢X,_1 + & to be stationary, we again require that ¢ € (—1, 1).

4.3.3 Model 3: uncorrelated VAR(1) process

Model 3 further generalizes Model 2 by removing the restriction that
X1, and X,, depend on each other linearly. In particular, Model
3 allows X;, and X, to move freely in their own ‘directions’,
but ensures dependence between them by way of correlated errors.
Specifically,

Y, | X; ~ Poisson (w - B; - e**') - Poisson (w - B, - €*12) ,

X =®X, | +e,

ol 0}
® = ,
%
e " N30, %), and
(72 0'102,0:|
y=| 7 . 20
[0102,0 022 20)

The vector of unknown parameters for Model 3, ny3 =
(¢1, b2, 01, 02, B1, B2, ), is fit to the data.

Model 3 includes two more parameters than Model 2, namely,
p € (—1,1) and ¢, > 0. In contrast to Model 2, here densities
with respect to R? exist for the bivariate conditional and stationary
distributions of the X,. Since X, can lie within any open set of
R* with positive probability, the resulting initial distribution and
transition probabilities in the discrete-space HMM approximation to
the model must be derived anew.

Under Model 3, the existence of a stationary distribution for
the process X, = ®X,_; + &, requires that ¢, ¢, € (—1, 1). The
corresponding distribution is well known (e.g. Hamilton 2020) and
is given by the N3(0, A) distribution, where vec(A) = (I — ® ®
®)"'vec(X), I is the 4 x 4 identity matrix, ® is the Kronecker
product between matrices, and vec (-) is the vectorization operator
that stacks the columns of an m x n matrix into a mn x 1 vector.
Thus, if A; = [a; 1, b;1] x [a; 2, bj 2] which, rather than an interval
in R as in Models 1 and 2, is now a rectangle in [Rz, then the initial
distribution for the discrete-space HMM approximation of Model 3
is taken to be the vector § comprised of entries

§; =P(X, €A
= Gx(ajz,bj2)—Gx(ajr,bj1)— Gx(aj, bjn)
+ Gx(ajq1,bj 1), 21

where

X1 X2 1
Gx(x1,x2) = P — tTA 't  de 22
x(x1, X2) [w [m 27 JTdet A exp{ } (22)

is the cdf of the NV>(0, A) distribution.

The transition density y(x,_i, -) for Model 3 is now defined as
the conditional density of X, | (X;—; = x,—1). Under this model,
it can be shown that X, | (X,_; = x,_1) ~ Na(®x;_;, X) and so,
if ¢} is the representative point chosen within the rectangle A;,
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then the transitions between states y; ; = P(X, € A; | X, € A;)
are approximated by

Vij=PX,€A; | Xioy=¢))

= Fxi(aj2,bj) — Fxi(aj2, bj1) — Fxi(aj1,bj2)
+ Fxi(a;j 1, bj1), (23)
where
Fy i(x1,x2) =

X1 X0 1
/_oo /_m 2 /[de T exp { (¢

is the Ma(®c}, X) cdf. The bivariate normal cdfs (22) and (24) can
be computed efficiently using any statistical software package.

T (- @c)) fdr 24)

4.4 State-space model selection

The three models discussed in Section 4.3 are nested within each
other: Model 1 is a special case of Model 2 subject to the constraint
o) = 0y, and Model 2 is a special case of Model 3 subject to the
constraints ¢; = ¢, and p = 1. Thus, any two of these models
can, at least in principle, be compared using a likelihood ratio test
(LRT). Under certain conditions, if the data are generated under
the ‘simpler’ of the two models being compared (i.e. the model
with fewer parameters), the LRT statistic is asymptotically® model
distributed X(zu) with degrees of freedom v equal to the difference in
the number of parameters between the two models. Under certain
conditions (e.g. Protassov et al. 2002), this result allows a p-value to
be computed; when the LRT statistic is sufficiently large relative to its
asymptotic X(zv) distribution, a small p-value is obtained and we can
conclude that the data are inconsistent with the simpler model. The
LRT statistic is equal to —2 times the difference of the maximized log-
likelihood functions of the two models under comparison. Thus, we
reject the smaller model when the larger model sufficiently improves
the fit to a degree as measured by the log-likelihood function.

Among the conditions required for the LRT’s asymptotic x(zv)
distribution are that (i) the models under comparison are nested and
(ii) the parameters of the smaller model are not constrained to be on
the boundary of the set of possible parameter values under the larger
model. These conditions are met for Models 1 and 2 and the standard
LRT is thus a suitable means of comparing them. Unfortunately, the
comparison of Models 2 and 3 does not satisfy the second of these
conditions because one parameter in the smaller Model 2 lies on the
boundary of the parameter space of the larger Model 3 (i.e. p = 1).
In fact, the asymptotic distribution of the LRT statistic is not known
in this case. While Self & Liang (1987) provided a generalized LRT
statistic that helps to account for such situations, its implementation
can be computationally difficult.

When the choice between Models 2 and 3 is not clear from the
results of the model estimation procedure (as is the case for the
EV Lac data; see Section 6.1), one can again use the parametric
bootstrap, this time to approximate the finite-sample distribution
of the LRT statistic by way of simulations. Assuming that model
fitting produces the MLEs fjy, for Model 2 and ),;; for Model 3,
this bootstrap procedure generates a large number B of independent

The distribution function of the LRT statistic converges pointwise to that of
a X(z‘,) random variable as the size of the data set increases (e.g. as the total
time duration of the light curve increases). It is in this sense that the LRT
statistic is asymptotically xﬁ,)—distributed. This assumes that the necessary
theoretical conditions are met (e.g. Protassov et al. 2002) and that the data
are generated under the simpler
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replicate data sets Y(II)T, .. Y(IBT) under Model 2 with parameter Mo
Foreachb=1,..., B, both Models 2 and 3 are fit to Yl .7» producing
the respective MLEs fyg’[)z and 17%. The bootstrapped LRT statistics
VO = 26 B)) — Ly (i))) are computed, where £y, and £y
are the log-likelihood functions for Models 2 and 3, respectively. The
statistics ¥, ..., ¥® are then used to construct an approximate
distribution 17‘1/,, perhaps using a kernel density estimate (KDE; see
Section 5.1). This distribution is used in place of the x7, distribution
to compute a p-value. Specifically, Model 2 can be rejected in favour
of Model 3 at the 95 per cent confidence level if the LRT statistic
produced from the original data, ¥ = —2(Uva(fpn) — Ems(fy3))s 1S
such that 1 — F, (¢) < 0.05.

In addition to overcoming theoretical roadblocks associated with
the standard LRT approach, the bootstrap technique helps to ac-
count for potential numerical inaccuracies (e.g. stemming from the
discrete-space HMM approximation of the state-space likelihood or
its optimization, which is especially relevant when the dimension
of state space X is greater than 1). Because the same numerical
inaccuracies affect the LRT statistic as computed on the data and as
computed on the bootstrap replicates, the bootstrap provides the null
distribution of the LRT statistic as it is computed. This allows us to
define the statistic to be as computed (including potential numerical
inaccuracies) and correctly calibrate its null distribution and the
p-value. Specifically, the Monte Carlo nature of the bootstrapped
p-values takes the entire approximation procedure into account,
whereas the standard LRT approach assumes the use of genuine log-
likelihood functions which are perfectly optimized in the involved
calculations.

Having fit the state-space model, standard HMM algorithms (see
Appendix A) allow one to decode the observations, that is, to make
predictions, X Iy . X 1, of the underlying states, X, ..., X7. With
a continuous-space HMM, predictions take values in the set of rep-
resentative points {c7, ..., ¢;,} defined in the discrete approximation
to the continuous-space likelihood, see Section 3.4.

5 STAGE 2: CLASSIFYING LIGHT CURVES
INTO FLARING AND QUIESCENT INTERVALS

Our Stage 1 HMMs use continuous underlying processes to model
stellar flare activity (see Section 4.2). In practice, however, we also
wish to identify those time intervals when the star is in its quiescent
state and those when it is in its flaring state. In this section, we
introduce our Stage 2 analysis, which uses a finite mixture model
to classity the X Ly e X 7 fitted in Stage 1 into the quiescent and
flaring states.

We consider two scenarios: semisupervised and unsupervised
classification. The semisupervised scenario applies in cases where
we are able to identify a subsample of size m of the predicted states,
Ag = (X PR b6 1 }» Where m is reasonably large and the subsample
is assumed to arise from a period of quiescence. Identifying a
quiescent subsample invariably involves a degree of subjectivity (e.g.
through visual inspection). We refer to this scenario as semisuper-
vised because some, but not all, of the data is assumed to be classified
a priori. If there is a clearly identifiable interval of quiescence, Aq
can be selected using a range of time bins where the light curves
appear to be in equilibrium and do not exhibit flaring behaviour. In
the unsupervised scenario, we do not have such a subsample.

In both the semisupervised and unsupervised scenarios, we pro-
pose to model the full set of Stage 1 predicted states, X .. X T
as a mixture of two distributions, one corresponding to the quiescent
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state and the other corresponding to the flaring state.” This modelling
approach is corroborated by the histogram of the EV Lac state
predictions shown in Section 6.2. Formally, we assign the label ‘1’
to the quiescent distribution and ‘2’ to the flaring distribution, and
for the purpose of classification, suppose

.. .85 e F+(-a) B, (25)
where F| and F, are cdfs and o € (0, 1) is a mixing parameter, all to
be inferred from the data. The mixing parameter corresponds to the
proportion of time that the star spent in the quiescent state. Model
(25) can be equivalently represented by introducing a sequence of

latent variables, Z;, ..., Zr X Bernoulli(e) and declaring

X.1Z =k~ F,, foreachrandfork e {1,2}.

(26)

Note that neither of these model representations accounts for the auto-
correlation (or more generally, the time-series nature) of X Ly e X T
implied by the Stage 1 HMMs (e.g. equations 9d, 13, 19, and 20)
and observed in the actual EV Lac fits (see e.g. Fig. 5). Instead,
we assume that temporal characteristics are captured by the Stage
1 HMM fit, and here we merely aim to classify the light curve into
flaring and quiescent intervals.

For simplicity, we assume henceforth that as for Models 1 and 2,
the predicted states are univariate, although our theory generalizes
to higher dimensional state predictions (as in Model 3). While
mixture models often involve component distributions belonging
to the same parametric family — normal distributions or other
exponential family distributions are especially popular — we consider
a less rigid approach to the choices of F| and F,. Ultimately, the
estimated probability that the star is in a flaring state depends on
the relative size of fi(x) and f>(x) at each value of x, where f;
and f, are the probability density functions corresponding to F; and
F,, respectively. The choice of f; and f; is particularly influential
for ranges of x at the transition between states, where fi(x) and
f2(x) are both moderate and are both well above zero; thus, the
choice of densities is important, and poor approximations using
standard parametric families can potentially yield inaccurate flaring
state probabilities for such x.

Note that in both the semisupervised and unsupervised procedures,
we are not concerned with overfitting the relevant mixture distribu-
tions to the data, as each fitted distribution pertains specifically to the
predicted states output by a particular fitted state-space model and
are not intended to be used elsewhere.

7In the unsupervised scenario, one could, in principle, apply a non-parametric
unsupervised clustering method such as k-means (with kK = 2) to the X
to classify observations into quiescent and flaring intervals. Such methods
have the benefit of being fully automatic, and are easy to implement
using built-in routines within any statistical software package. However,
quantification of uncertainty for the classifications produced by these ‘black-
box’ algorithms are difficult to interpret (and are often not available at all),
particularly when there is not a probabilistic model underlying the algorithm.
Furthermore, different unsupervised clustering algorithms (e.g. k-means,
k-medians, DBSCAN, etc.) use different loss/objective functions and can
yield different classifications of the same data; aside from computational
complexity, there are few clear reasons for choosing one clustering algorithm
over another. Thus, we deploy a more statistical approach, using a likelihood-
based finite mixture model.
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5.1 Semisupervised classification

There is a distinct advantage in the semisupervised scenario where
Aq can be used to form a robust non-parametric estimate of f;(x).
Under the mixture model, we have )A(,] ~F forj=1,...,m(.e.
for )A(,j € Agy) and we can use a KDE, fl(x), to approximate fi(x).
The KDE essentially traces out a smoothed version of the histogram
of the sample A,.

The flaring component density f>(x), on the other hand, does not
yield as easily to a KDE because an analogous subsample of data
known to be from the flaring state is usually unavailable. Instead, we
approximate f»(x) by a step function f5(x;7r) parametrized by the
constant value iy, that it takes within a pre-specified bounded interval
[br_1, by) for a fixed number K of intervals; that is,

K
N TTj
Alsm) = e (2
2 par by — by €lbr—1,b1)

where the m; are unknown non-negative parameters subject to
E,le 7 = 1. When the intervals [by_,, by) are evenly spaced, fg
is essentially a histogram function. We choose bx = sup A, where
A is the essential domain used to approximate the domain of the X,
(see Section 3.4). This is because the values of X, produced by the
local decoding algorithm (see Appendix A2) take values in the set
of representative points {c}, ..., c;} € A; thus X, € A forall t. On
the other hand, we assume that the smallest values of X, are reserved
for the quiescent state and thus we choose by as the median of fl (x),
although other choices are possible.

The unknown parameters in the model (25) , namely « and 7, can
be estimated using the EM algorithm, which is a standard tool for
computing maximum-likelihood estimates in finite mixture models
(see Dempster, Laird & Rubin 1977) and is easily derived for equation
(25) (see Appendix C1). We run the EM algorithm on the subset
A= {)A(I, ol XT} \ A4 of predicted states not used to fit fl (x), so
as not to use A, twice in the estimation process; this requires a minor
adjustment to the mixing parameter « to account for the proportion
of quiescent state data removed (see Appendix C1).

Once the estimation of equation (25) is complete, the estimated
posterior probability that each X, is in a flaring state (i.e. state ‘2’) can
be derived using the representation in equation (26), which yields

(1-8)- S #)
& i@+ =a)- o)
where & and 7 are the maximum-likelihood estimates computed with
the EM algorithm.

P(Z,=21X =%)= (28)

5.2 Unsupervised classification

In situations, where there is no subsample of the data that can
reasonably be assumed to have arisen from the quiescent state,
inference must be fully unsupervised and there is no immediate way
to use KDE to approximate f;(x). In this case, we have found that
for the EV Lac data a mixture of three normal distributions provides
a reasonable approximation to the distribution of the X;: that is,

R X By N (1) +n N (2, 7)o N (1,72 (29)
where o, oz, and a3 are non-negative mixing parameters subject to
Zizl o = 1 and each p; and 72 are mean and variance parameters
(respectively), all to be estimated. This distribution is also fit using
the EM algorithm (see Appendix C2).

In this instance, we assume that one component of the model
corresponds to the flaring state, while the remaining two components
together correspond to the quiescent state (see Section 6.2.2 for
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further discussion in the context of EV Lac). We may assume
without loss of generality that u; < u, < 3, and since a lower
X, corresponds to a lower Poisson intensity for the emission Y; |
(see equation 8), we regard the first two normal distributions in
equation (29) as those corresponding to quiescence, with o) + o,
representing the proportion of time spent in that state. By using two
normal distributions, we are able to better represent the skew in
the quiescent distribution. Once equation (29) has been fitted, the
posterior probability that each X, is in a flaring state is given by

as - f (%03, t3)
S f (R )

where f(-; u, T2) is the density of the (i, t2) distribution.

P(Z #1]|X =%)=

(30)
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6 ANALYSIS OF EV LAC

In this section, we illustrate the statistical methods developed in
the Sections 3-5 by applying them to the EV Lac data described in
Section 2. In particular, we derive a classification of the light curves
in Fig. 1 into quiescent and flaring intervals.

6.1 Stage 1: HMM selection and fit for EV Lac

We analysed the two long-duration Chandra observations of EV Lac,
ObsID 01885 obtained in 2001 and ObsID 10 679 obtained in 2009.
For both observations, we used the dispersed data from the combined
HEG and MEG arms, and from the combined positive and negative
orders, which avoids pileup effects seen during the stronger flares in
the zeroth order. We split the data into soft (0.3—1.5 keV) and hard
(1.5-8 keV) passbands, and binned them into time bins of w = 50 s
(see Fig. 1). We also tested the sensitivity of our model fits to these
binning schemes by replicating the results using other passbands (i.e.
0.3-0.9 and 0.9-8 keV) and changing the binning phase by 25 s, and
found no qualitative differences; see Appendix D for details.

We fit the three state-space models described in Section 4.3 to
both observations. For brevity, we present only the fitted models for
ObsID 01885; classifications into flaring and quiescent intervals are
presented for both observations in Section 6.2. We employed visual
diagnostics to determine the parameters of the discretizations of the
continuous state spaces. For Model 2, for example, we chose the
essential domain A = [—1.25, 2.65] and partitioned A into m = 40
evenly spaced subintervals and chose the representative points
{cT, ..., i) as the mid-points of these subintervals; a histogram
of the states X, predicted by the model via local decoding shows
that this choice of essential domain was conservative in that it easily
covers the range of the X, (see the upper panel of Fig. 4). The
estimates can be sensitive to the choice of m when m is small
and we chose m = 40 because this is the approximate number of
subintervals at which the parameter estimates and maximized log-
likelihood stabilized. Similarly, for Model 3 we chose the essential
domain A = [—1.25,2.56] x [—1.75, 3.6] (see the lower panel of
Fig. 4) and m = 40%.

Bias-corrected parameter estimates and confidence intervals com-
puted using the parametric bootstrap (see Section 4.2) under Models
1, 2, and 3 appear in Tables 2, 3, and 4, respectively. The estimates
of the parameters common to the models are broadly consistent with
each other, as are their standard errors. The estimates are also very
similar to those produced with a passband split at 0.9 keV (omitted
for brevity), demonstrating robustness to that choice.

As a byproduct of the optimization procedure used to fit the
models, we extracted the values of the maximized log-likelihood
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Figure 4. Univariate (top panel) and bivariate (bottom panel) histograms of
predicted states X, based on an initial fits of Models 2 and 3 to ObsID 01885;
above, the dashed lines enclose the essential domain A = [—1.25, 2.65]
chosen for the discrete-space approximation of Model 2, and below, they
enclose the essential domain A = [—1.25, 2.56] x [—1.75, 3.6] chosen for
Model 3.

Table 2. Bias-corrected parameter estimates for Model 1 fit to ObsID 01885,
with bias correction and standard errors obtained via the parametric bootstrap.

Parameter Estimate Standard error  CI (lower) CI (upper)
Lo 0.987235 0.004579 0.978260 0.996209
o] 0.128329 0.006212 0.116155 0.140504
Bi 0.184642 0.045141 0.096165 0.273119
B2 0.075158 0.018178 0.039529 0.110788

Table 3. Bias-corrected parameter estimates for Model 2 fit to ObsID 01885,
with bias correction and standard errors obtained via the parametric bootstrap.

Parameter Estimate Standard error  CI (lower) CI (upper)
b1 0.979644 0.006456 0.966991 0.992297
o] 0.100712 0.004811 0.091282 0.110142
09 0.161689 0.007409 0.147168 0.176210
Bi 0.193817 0.022021 0.150656 0.236978
Ba 0.062417 0.010696 0.041453 0.083380

Table 4. Bias-corrected parameter estimates for Model 3 fit to ObsID 01885,
with bias correction and standard errors obtained via the parametric bootstrap.

Parameter Estimate Standard error  CI (lower) CI (upper)
b1 0.981721 0.008663 0.964742 0.998700
0% 0.976232 0.007997 0.960558 0.991906
o1 0.096086 0.006253 0.083829 0.108342
07 0.171667 0.008918 0.154188 0.189147
Bi 0.206301 0.021047 0.165048 0.247554
B 0.066548 0.009203 0.048510 0.084585
P 1.000000 0.000000 1.000000 1.000000
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Table 5. Maximized log-likelihoods for all three models based on ObsID
01885.

Model Maximized log-likelihood
Model 1: AR(1) process —9914.53
Model 2: VAR(1) process on a line —9455.21
Model 3: Uncorrelated VAR(1) process —9424.47
2

0 500 1000 1500 2000
Iime bin index ¢ (At =50 s)

Figure 5. Predicted soft band states X1, ..., X027 for ObsID 01885.

function (6) for each model (shown in Table 5). The standard LRT
decisively rejected Model 1 in favour of Model 2, with a test statistic
of 918.64 far exceeding the asymptotic X(zl) distribution at the 95
per cent significance level. For a comparison between Models 2 and
3, we turned to the bias-corrected parameter estimates and their
corresponding bootstrap standard errors shown in Tables 3 and 4,
respectively. These tables show that the correlation parameter p in
Model 3 is estimated at 1 — precisely its value fixed by Model 2 — with
virtually no uncertainty in the estimate (all values have been rounded
to six significant figures). Moreover, the remaining parameters shared
by Models 2 and 3 are estimated very consistently between the two
models, as are their standard errors, and the Model 3 estimates of
¢1 = Cor(X; 1, X;—1,1) and ¢, = Cor(X, >, X;_1,) are very close.
We thus have substantial evidence that the additional structure of
Model 3 is unnecessary for the EV Lac data, and we proceed with an
analysis of Model 2.

6.2 Stage 2: flaring/quiescent interval estimates for EV Lac

In this section, we demonstrate our Stage 2 methods for classifying
the light curve, Y .7, into flaring and quiescent intervals by fitting
finite mixture distributions to the predicted states X Ly ones X r. All
calculations in this section are under the preferred Model 2.

6.2.1 Semisupervised classification for ObsID 01885
The predicted state variables, given by

)A(,zargmax[Pﬁ(thx|Y1:T=y1:T), t=1,...,T (€28)
xex

with T = 2027 are computed using the local decoding procedure

described in Appendix A and plotted for ObsID 01185 in Fig. 5.

A visual inspection of the ObsID 01185 light curve in Fig. 1
and its predicted states in Fig. 5 reveals a clear period of quiescent
equilibrium over the first 750 time bins. Thus, we could apply the
semisupervised approach of Section 5.1 to model the distribution
of the }A(,. After fitting the KDE fl to {)A(I, el X750}, we chose
K =25 ‘steps’ for the step function in equation (27), setting the
intervals [by_1, by) to be 25 evenly spaced subintervals in [bg, bk ],
where by ~ —0.35 is the median of _fl and by = sup A = 2.65. (We
assume that the lowest levels of activity correspond to quiescence.)
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Figure 6. Fitted component densities (top panel) and mixture density
(bottom panel) for ObsID 01885; the densities are overlaid on a histogram of
{X1, .. X027}
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Figure 7. Posterior flaring state probabilities used to colour the pre-
dicted states X,..., X, (top panel) and the observed soft-band counts
Yi.1,..., Yr.1 (bottom panel) for ObsID 01885.

We fit the mixture in equation (25) to {)?751, ...,}?2027} using
the EM algorithm described in Appendix CI1, which yielded a
mixing parameter estimate & = 0.5528, indicating that the estimated
proportion of time that EV Lac spends in a flaring state based on the
ObsID 01885 time bin is 1 — & ~ 0.45. The resulting component
densities and mixture density are illustrated in Fig. 6.

Using equation (28), we computed the posterior flaring state
probability for each X,; these are shown on a colour gradient in
Fig. 7, both for the predicted states and the original soft-band
counts, Y; 1.7 (Fig. D1 in Appendix D shows the soft and hard
band counts coloured by the same probabilities.) From the poste-
rior flaring state probabilities, we created binary quiescent/flaring
classifications 2, ..., 27 € {1, 2} using a simple classification rule,
which is the basis for the results given in Section 6.2.3 below: letting
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Figure 8. Predicted soft-band states Xi,... X 2027 for ObsID 10679.
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Figure 9. Fitted component densities (above) and mixture density (below)
for ObsID 10697, the densities are overlaid on a histogram of {)A(l - )2'1937}.

pr=P(Z, =2 )?, = X,) as in equation (28), EV Lac was classified
as being in a flaring state at time index ¢ if and only if p, > 0.5;
equivalently

Zi=1-1p5<05+2-1p-05. (32)

6.2.2 Unsupervised classification for ObsID 10679

For the light curves in ObsID 10679, there is no clear period of
quiescence (see the lower panel of Fig. 1). The soft-band predicted
state variables, X Ly enes X 1937, under Model 2 are plotted in Fig. 8,
again illustrating the lack of a clearly sustained period of quiescence.
Thus, we used this data to demonstrate the unsupervised classification
method described in Section 5.2, fitting a mixture of three normal
distributions to the complete set of predicted state variables.

The estimated parameters of the mixture components are given
in Table 6 and the estimated component densities and mixture
density are shown in Fig. 9. Under the assumption that the third
component corresponds strictly to the flaring state, the estimated
proportion of time that EV Lac spends in a flaring state based on
the ObsID 10679 data is &3 ~ 0.27.% Corresponding posterior flare

8We associate the first two components of the mixture distribution with
quiescence because the fitted density shown in Fig. 9 indicates considerable
overlap between these two components. Alternatively, one could postulate that
the second component is composed of both flaring and quiescent states and/or
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Figure 10. Posterior flaring state probabilities used to colour the predicted
states X Tyvvns X ; (above) and the observed soft-band data Y i, ..
(below) for ObsID 10697.

LY

probabilities, which associate the third component of the mixture
model (29) to the flaring state, are shown in Fig. 10 (and in Fig. D1
for counts in both bands). A binary classification rule nearly identical
to that described in Section 6.2.1 was created, the only difference
being that now p, = P(Z, =3 | X, = %), binary quiescent/flaring
classifications were again constructed according to (32).

6.2.3 The quiescent and flaring states of EV Lac

We also carried out sensitivity checks on the flaring intervals
determined as above in Sections 6.2.1 and 6.2.2 by jittering the
phase of the binning by +25 s, changing the passband intervals
(using 0.3-0.9 keV for the softer and 0.9-8.0 keV for the harder
bands), and checking different time bin widths (see Appendix D).
We found that the flaring intervals thus determined remain stable and
repeatable to within 2-3 time bin widths in all cases. We thus adopted
a 3x time bin width as a nominal systematic uncertainty on the
intervals, and merged all gaps smaller than that. We further inflated
the intervals by adding 25 s (half the width w of the adopted time
bins) both before and after the ends of each interval. This resulted
in 15 distinct intervals for ObsID 01885 and 11 intervals for ObsID
10679 (see Tables 7 and 8, respectively). The durations of the interval
correspond to approximately 30 per cent and 40 per cent of the total
observation interval for the first and second epochs, respectively.
This is consistent with the expected flare rates seen on EV Lac
before: flares occurring at rates of 0.2-0.4 h~! (Huenemoerder et al.
2010) lasting approximately 5 ks cover a fraction of 0.28-0.55 of

corresponds to the transition between the two states. Thus, &3 may slightly
underestimate the proportion of time that EV Lac spends in its flaring state.
Of course, the mixture model is completely agnostic to our own astrophysical
interpretations of its components. Possibly, both the second and the third
components together correspond to a flaring state; under this assumption, the
estimated proportion of time spent in this state is & + &3 = 0.60. In general,
the interpretation of the distinction between quiescent and flaring states must
be done on a case by case basis, as it can depend on the source, the epoch of
observation, and the instrument being used. The spectral variability analysis
presented in Section 6.2.3 strongly supports our interpretation in this case.
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Table 6. Parameter estimates for the three-component mixture of normal
distributions.

Component k [+7% I sz

1 0.3988 —0.2294 0.0255
0.3328 0.5608 0.2202

3 0.2683 —0.4764 0.0277

Table 7. Flaring time intervals for ObsID 1885, in spacecraft clock time.
The times are offset from the observation start time of 117315383.3 s,
corresponding to a calendar time of 2001 September 19, 19:36:23.

Interval Duration [s] Start time [s] Stop time [s]
1 4000 41624.1 45624.1
2 950 46224.1 47174.1
3 700 50474.1 51174.1
4 4900 52724.1 57624.1
5 100 58124.1 58224.1
6 2100 61774.1 63874.1
7 100 64474.1 64574.1
8 150 65324.1 65474.1
9 100 66874.1 66974.1
10 100 67174.1 67274.1
11 3000 67474.1 70474.1
12 300 71724.1 72024.1
13 23250 76674.1 99924.1
14 600 100724.1 101324.1
15 100 101524.1 101624.1

Table 8. Flaring time intervals for ObsID 10679, in spacecraft clock time.
The times are offset from the observation start time of 353314077.3 s,
corresponding to a calendar time of 2009 March 13, 06:47:57.

Interval Duration [s] Start time [s] Stop time [s]
1 19850 1742.7 21592.7
2 250 21792.7 22042.7
3 150 22742.7 22892.7
4 600 35792.7 36392.7
5 4300 43192.7 47492.7
6 100 47892.7 47992.7
7 1800 51842.7 53642.7
8 150 56142.7 56292.7
9 450 64392.7 64842.7
10 100 70392.7 70492.7
11 1000 79692.7 80692.7

the exposure durations, assuming no overlaps. Note that our method
does not distinguish the number of flares within a flare state (e.g. the
first interval in ObsID 10679 covers a duration that clearly includes
a smaller flare that overlaps another with a longer decay time-scale).

This separation between flaring and quiescent states allows us
to explore changes in the energy spectrum of the star. The overall
spectrum is well fitted with a two-temperature component XSAPEC
model in CIAO/SHERPA v4.16 (Refsdal et al. 2009) with similar
temperature, abundance, and normalizations for both epochs (see
Table 9).

Fig. 11 shows the changes in spectral colour for each of the
flare intervals (marked in blue) compared to the combined quiescent
interval (marked in red); all error bars were computed using Bayesian
Estimation of Hardness Ratios (BEHR; Park et al. 2006). The
colours were computed as log-ratios of counts in the soft (S: 0.3—
0.9 keV) to medium (M: 0.9-2.0 keV) and medium to hard (H:
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2.0-8.0 keV) bands. It is clear that all of the flaring intervals have
harder spectra than the quiescent spectrum. The underlying grid,
constructed for a two-temperature APEC model as for the full spectra
(see Table 9) but with varying normalization and temperature for the
high-temperature component, also demonstrates this quantitatively.
The flaring intervals include the low-temperature component because
the flares are likely confined to small regions in the corona, so that
the quiescent corona continues to contribute to the emission, even
as the emission is dominated by the flare. Note that the grids shift
leftwards from the earlier epoch to the later, which is a consequence
of the increased contamination buildup on the ACIS detector which
reduces the soft effective area.

Finally, we show in Fig. 12 the full resolution combined
HEG + MEG first-order spectra separately for the quiescent (upper
panels) and flaring states (lower panels). Spectra from both epochs
are overplotted, and deviations where the counts from one epoch
exceed the other are marked in different shades. As is expected
from the evolution in the soft effective area, the earlier epochs
have systematically higher counts at longer wavelengths. The spectra
are dominated by several prominent lines, such as those from Ne X
(12.15 A), FexvI (15.01 and 17.05 A), and O v (18.96 A) (see
middle panels of Fig. 12). The density- and temperature-sensitive
He-like O v triplet (21.6, 21.8, and 22.1 A of the resonance,
intercombination, and forbidden lines) is visible in the right panels;
higher density plasma is present in the flaring state, as shown by the
higher ratio of the intercombination to forbidden lines. In the left
panels, several high-temperature lines appear during the flaring state
at short wavelengths (Arxvim 2.92 A, Arxvi3.95 A, Sxvi4.73 A,
and SXVv 5.0 A). The ratios of the temperature sensitive resonance
lines of SiXIv (6.2 A) and Sixm (6.74 A), and Mg (8.4 A) and
Mg x1 (9.2 A) change to favour the higher temperature species and
the continuum becomes more prominent, all indicating the presence
of higher temperature plasma, and thus supporting the conclusions
of Huenemoerder et al. (2010).

In addition, the Ne X/O VIII counts ratio increases from 2.1 during
quiescence to 3.5 &= 0.2 in the first epoch, and from 2.6 to 3.4 £ 0.3
during the second epoch. The Ne X/Fe XVIl counts ratio also in-
creases, from approximately 2.8 during quiescence to approximately
3.5-4.0 during flaring in both epochs, indicating that there could
be an increase in Ne abundance during flaring. In contrast, the
O vIi/Fe XVII counts ratio decreases by approximately 10 percent
during flaring in both epochs; detailed modelling is necessary to
establish whether this decrease is simply a temperature effect or
whether oxygen abundance variations are also required to explain it.

Crucially, the differences between epochs for each state are
minuscule compared to the changes seen between the quiescent and
flaring states. This is a strong indication that our method can clearly
identify and separate these states. Furthermore, the similarity in the
apparent thermal characteristics in both states, as evidenced by the
similar shapes of the continuum, shows that the two states are strongly
differentiated: that is, the star has a very well-defined quiescent
state, suggesting that there may be a distinct heating mechanism
that operates during quiescence.

7 DISCUSSION AND FUTURE WORK

This paper combines state-space models and finite mixture models as
ameans of classifying periods of quiescence and flaring in multiband
astronomical light curves. Specifically, we apply our models to high-
energy X-ray data of the active binary EV Lac, grouping the photons
into two passbands and classifying the light curves into flaring and
quiescent states. In Stage 1 of our analysis, our state-space models
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Table 9. SHERPA two-temperature APEC model fits to the full spectra.

ObsID Tiow Thigh Metallicity Normyoy Normpigh CSTAT/dof
[keV] Zo [x10'% cm™3]
01885 0.354+0.0024  1.26+0.007  0.174+0.004  0.016+0.0004  0.0099+0.0001 24850.1/24980
10679 0.3540.003 1.354+0.009  0.17£0.005 0.015+0.0005  0.0095+0.0001 21668.7.1/24980
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Figure 11. Spectro-temporal treatment of flaring. For both EV Lac data sets, the panels show the hardness ratio colours Csy = log(S/M), Cyyg = log(M/H),
where S, M, and H are counts in passbands 0.3-0.9, 0.9—-1.2, and 1.2-8.0 keV, respectively. The colours during each distinct flaring interval (crosses with error
bars) are compared to the quiescent interval (sole round point with error bars). The curved grid in the background shows the predicted colours for spectra with
two temperature components: a low-temperature plasma at Tjow = 0.35 keV (=4 MK), and a high-temperature component with a variety of temperatures Thign
ranging from 1 keV (*12 MK) to 4 keV (=46 MK), with the relative emission measure of the high-temperature component ranging between 0.1 to 8.9 times
that of the low-temperature component. We adopt a metallicity of 0.16, commensurate with a two-temperature APEC fit to the spectra. Note that in both epochs,
the quiescent interval has a softer spectrum than any of the flaring intervals. The shift in the grid is due to changes in ACIS effective area between the epochs.

(HMMs) assume that the underlying physical process driving the
flaring activity can be represented by a Markov chain defined on
a continuous multidimensional state space. When the component
of the Markov chain corresponding to a particular energy band
migrates to higher or lower values, the rate of photon emissions
within that band tends to increase or decrease in kind. We propose
a series of nested HMMs to capture this underlying process with
increasing levels of generality. We tabulate emissions in the soft and
hard energy bands separately in order to capture the more complete
information contained in the bivariate data. The state-space models
allow us to predict the individual states of the underlying chain that
are most likely to have generated the observed data. Using finite
mixture models in Stage 2, we devise two situation-specific schemes
to classify the predictions and ultimately dichotomize the observed
time periods into flaring and quiescent intervals.

7.1 Quiescence

We demonstrate our method on two sets of observations of the
dMe star EV Lac, leading to a clear separation of flaring activity
and quiescence, as well as to the discovery of a well-defined and
persistent quiescent state. The presence of such persistent quiescent
emission in counterpoint to flaring has been recognized and analysed
ubiquitously in astronomical literature. Exemplar treatments include
that of the Sun by Argiroffi et al. (2008) and of an active M dwarf
YZ CMi by Raassen, Mitra-Kraev & Giidel (2007); see also a review
by Giidel (2004). The possibility of a persistent quiescent state has
also been suggested for the active binary AR Lac (Drake et al. 2014),
and for the young stellar binary XZ Tau (Silverberg et al. 2023).
Our analysis of spectral variability supports the idea that steady and
persistent non-flaring emission is present even on active stars.

The continuous-space HMMs that we propose in our Stage 1
analysis (Section 3) do not alone clearly differentiate between
the quiescent and active states of the source, instead allowing

for variability within the states and a smooth transition between
them. The time intervals during which flaring emission dominates
are identified from the distribution of the fitted HMM states in
our Stage 2 analysis (Section 5). Alternatively, we could posit a
model where the quiescent emission is present at all times, with
the intermittent and variable flaring emission (presumably arising in
localized active regions on the star) superposed over it. For example,
the observed counts could be modelled as the sum of two Poisson
processes, the first an iid process representing quiescence and the
second representing the flare state alone. Such a model would be
more complex than the HMMs we consider here in that its second
Poisson process (for the flaring state) would be as complex as the
HMMs we propose in Section 4. As we expect that the flexibility
of the continuous-space HMM may render the more complex model
unidentifiable or only weakly identifiable, we leave its study for
future research.

7.2 Future directions

We propose several avenues for future modifications and general-
izations of our HMMs. The discrete-space HMM approximation to
the state-space likelihood developed by Langrock (2011) is, in the
end, only an approximation, which can potentially be made more
accurate using adaptive binning (Borowska & King 2023) or other
procedures that further refine the discretization of the continuum
(i.e. the choice of essential domain and the partition thereof). From
a computational perspective, it would also be desirable to eliminate
the need for manual verification that the essential domain adequately
covers the distribution of the underlying Markov chain.

The state-space models themselves can be modified or augmented
with additional features. In Section 4.2, for example, we discuss
the use of state-dependent bivariate distributions for the observed
data. In the general case, this avoids a conditional independence
assumption for the hard and soft energy bands, and allows for
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Figure 12. Comparing high-resolution spectra of quiescent (top) and flaring (bottom) states of active dMe star EV Lac. The quiescent spectra are subtracted
out from the corresponding spectra obtained during the flaring state. Each state is split into three panels in order to better show weak lines. Spectra from the
two epochs are shown superposed for both cases; the difference between the epochs is marked in different shades depending on which epoch had more counts
within a given bin (see the ObsID labels in the middle panels). Prominent lines from several species are visible in both spectra, with some resonance line ratios
changing from quiescence to a flaring state favouring the higher ionization state (see especially SiXIv/Sixim at 6.2 and 6.7 A, Mg x1/Mg X1 at 8.4 and 9.2
A). The overall brightness is higher, and the continuum is stronger and more prominent during the flaring state, signifying a different thermal signature. The
differences between the quiescent and flaring states are greater than the differences between epochs for the same state, which suggests that there are distinct

quiescent and flaring states present on the star.

more involved bivariate distributions capable of capturing potential
dependence between the bands at the observed data level. Even
more generally, one could split the counts into any number d of
bands (the hard and soft bands we used for EV Lac correspond to
d = 2). The d-band generalization of Model 2 is straightforward:
for each additional band h, we introduce one new parameter S,
controlling the Poisson rate for Y; , as well as a rescaling parameter
oy, so that X, , = 03, X, 1/01. The generalization of Model 3 is more
challenging due to the increased complexity of the (non-diagonal)
covariance matrix X in the error terms: in addition to new parameters
B, ¢n, and oy, each band / requires pairwise correlation terms with
every other dimension, resulting in a d x d covariance matrix X.
Depending on the covariance structure selected for the model, X can
include as few as two free parameters (for a first-order autoregressive
covariance) or as many as (d” + d)/2 (for a completely unstructured
covariance). For large d, this would effectively model the evolution of
the spectrum over time. This model is in contrast to Automark, which
looks for breakpoints in the spectrum but assumes the spectrum is
unchanging between breakpoints (Wong et al. 2016).

It is also possible to generalize the distribution of the state
process X 1.7 by replacing the multivariate normal distributions with
other multivariate distributions. For instance, one could account for
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potentially heavier tails in the distribution of X, | X,_; by assuming
a multivariate z-distribution; alternatively, one could assume that
X, | X,_; follows a mixture of conditional multivariate normal
distributions with common mean X,_; but differing variances, which
could potentially model a discrete latent process taking place in
some physical process within the star itself. Both of these generalize
the multivariate normal distribution, and their associated stationary
distributions are available (e.g. Meitz, Preve & Saikkonen 2023);
however, stationary distributions corresponding to other choices of
the distribution of X, | X,_; may not be known, and therefore a
different distribution would be needed for the initial state X. The
effect of this choice is likely small with large data sets.

Even when adhering to multivariate normal conditional distribu-
tions for the state process, our models can be generalized in several
other ways. For example, the VAR(1) model (20) can be generalized
to allow @ to be a generic asymmetric non-diagonal matrix; in this
case, stationarity is characterized by a rather complex set of nonlinear
constraints on the entries of ®. This generalization would allow for
dependence of X, ; on X,_;,, and vice versa. Such dependencies
can be used to capture physical processes where hot coronal plasma
in a magnetic flux tube cools sequentially from higher to lower
temperatures (e.g. Viall & Klimchuk 2012). One can also consider
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more general VAR(p) processes (i.e. where the distribution of X,
depends linearly on X,_;, ..., X,_,). Any discrete-time stochastic
process (X,), on a state-space X for which the distribution of X,
depends on the history of the chain through X, _y, ..., X,_, (a so-
called higher-order Markov chain) induces a standard vector-valued
Markov chain (X7), on X7, and so, in principle, a VAR(p) process on
X7 can be recast as a first-order matrix (or ‘tensor’) autoregressive
process on X'¥*? for which the discrete-space HMM approximation
can be applied. However, the calculations required for the initial
distribution and transition probabilities would involve the so-called
matrix normal distribution, which can be quite computationally
involved.

Additionally, rather than binning the photon counts into discrete
intervals, one could model the series of photon counts directly in
continuous time. This would involve modelling the exponentially
distributed waiting time between the Poisson process of photon
arrivals. The underlying state process would evolve in continuous
time and could be modelled as an Ornstein—Uhlenbeck (OU) process,
the continuous-time analogue of the AR(1) process. The OU process
has been applied in astrophysical settings by Kelly, Bechtold &
Siemiginowska (2009), Kelly et al. (2014), and Meyer et al. (2023);
such processes generalize fairly naturally to the multivariate case
(Gardiner 2004). Perhaps the most natural continuous-time analogue
of our state-space model is a bivariate time-heterogeneous Poisson
process (Cox & Lewis 1972) whose parameters are driven by
components of the aforementioned OU process.

Finally, our methods can also be generalized to apply to sources
other than stars that also exhibit intermittent or episodic flaring
(e.g. Sgr Ax, the jet of M87, or dipping sources such as LMXBs).
Such generalizations would require our underlying HMMs to be
extended in order to model additional passbands and their possible
correlations.
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APPENDIX A: ALGORITHMS FOR DISCRETE-SPACE HMMS

Likelihood computation and state decoding for discrete-space HMMs generally rely on several related algorithms, including the forward
algorithm, the backward algorithm, and the forward—backward algorithm. Here, we briefly derive these three algorithms, each of which can
be succinctly described by an iterated sequence of matrix multiplications; each step of the algorithms thus involves multiplying the matrix
obtained in the previous step by a new matrix, yielding in the end a product of matrices which we show to be equivalent to a quantity of
interest, such as the value of the likelihood function. The algorithms use dynamic programming to efficiently compute certain quantities; for
example, a naive computation of equation (2) via direct summation would require a number of operations exponential in 7, while the forward
algorithm reduces the computation to being only polynomial in 7. In the HMM literature (e.g. Zucchini et al. 2017), these algorithms are
typically expressed in terms of quantities known as forward and backward variables, but these are unnecessary for our purposes as the relevant
equations can be succinctly expressed in terms of matrices alone. Nevertheless, the forward and backward variables play key roles in the theory
of HMMs; interested readers may consult Rabiner (1989), Cappé et al. (2005), and Zucchini et al. (2017).

To simplify notation, we assume that the y, are discrete in our derivations, as is the case in the Poisson models developed in Section 4. None
the less, our calculations carry through verbatim for continuous observations, with probability mass functions replaced by their analogous
density functions.

A1 Likelihood computation via the forward algorithm

The forward algorithm for discrete-space HMMs evaluates the HMM likelihood L(7 | y,.7) given by equation (2) via an efficient computation
of the right-hand side of the identity

L(" | yl:T) = [PW(YI:T = yI:T)- (A1)

For the remainder of this section, we drop the subscript y from P, (-) for notational simplicity; however, all probabilities should be understood
as being taken with respect to the model with parameter 7.
Define the matrix-valued function P : ) — [0, 00)X*X by

hi(y | ) 0 e 0
0 ha(ylA)-- 0
Py =| . N E (A2)
0 0 < hg(y | Ag)
that is, P(y) is a diagonal matrix with the state-dependent mass/density functions %, ..., hg evaluated at y along its diagonal. Recalling that
he(y | M) =P(Y,; =y | X, = k) for any t we have

T T

PXy=1)-P¥ =y | X1 =1) PYi =y, Xi=1
8TP(y)) = : = : (A3)
P(X; =K)-P(Y1 =y | X1 =K) PY, =y, X1 =K)
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and

[SK P =y, X, =k) -P(Xa=k | X, =1)-P(Y, =y, | Xa=k)
8" P(y)TP(yy) = :
_Zf:1 PY 1=y, X1 =k)-PXo=k | X1 =K)-P(Y2=y2| X2 =k)
[PY1=y,Y,=y,X2=1)

= : . (Ad)
LP(Y1=y1,Y2 =y, Xo =K)
The forward algorithm iterates this matrix multiplication, and by induction at iteration ¢ > 2, the algorithm returns
, P =y .Ys=y1 .Y, =y. X, =D  [P¥u=y..X=D]"
TPy ][rePHn = : = : : (AS)
= PYi=yi.Y2=y2 Y=y X, = K) P(Y 1 = Y, Xi = K)
Finally, the likelihood in equation (2) can be computed as
T K
(6TP(y1)H rP(yn) 1= P(Yir =yur, Xr =k)=P(Y1.r = y11) = L(n | y1.7). (A6)
5=2 k=1

Thus, the forward algorithm computes the likelihood via the left-hand side of equation (A6). (In practice, one must usually rescale the
probabilities with each additional matrix product to prevent numerical underflow.) This computation has a time complexity of O(T K?). Note
that as a byproduct of the likelihood computations, the forward algorithm also yields the joint probabilities P(Y, = y;.,, X, = k) for any
t € {1,..., T}, which are used in the local decoding algorithm (see Appendix A2).

A2 Local decoding via the forward-backward algorithm

The forward—backward algorithm for discrete-space HMMs evaluates the conditional state-membership probabilities given the full data set
(.e. P(X;, =k | Y.y = y1.1), for each k € X and each t > 1); these are then used to predict the state variables via equation (31), as we
describe below. The forward—backward algorithm itself comprises of two subalgorithms — the forward algorithm, which computes the joint
probabilities P(Y ., = y1., X; = k), and the backward algorithm, which computes the conditional probabilities P(Y,r = y,.7 | X;,—1 = k)
for each + > 2. A final combination of the forward and backward algorithms yields the desired conditional state-membership probabilities
(.e. P(X, =k | Yi.r = y1.7)). The forward algorithm, which also outputs the HMM likelihood L(n | y1.7) = P(Y 1.7 = y1.7), is detailed in
Appendix Al; we present the backward algorithm and the final combination step here.
Using the same notation as in Appendix Al, we first note that

S PXr =k | Xr1=1)-PYr=yr | Xy =k) PYr=yr | Xso1=1)
(TP(yr)l= : = : (AT)
S PXr =k | Xp =K)-P(Yy = yr | Xp = k) P(Yr = yr | Xr_1 = K)

and

(TP(yr_)TP(yr)1
(S PXr =k | Xra=1)-PYr o =yr 1 | Xeo1 =k)-PY 7 =yr | X1 = k)

_Z;il PXro1 =k | Xr2=K)-PXr_1 =yro1 | Xro1 =k)-PYr =yr | X7 =k)
[(PX 7o =yr—1, Yr=yr | Xr2=1)

= : . (A8)
LPX o1 =yr-1,Yr = y7 | X7—2 = K)
It then follows by induction that for any r € {2, ..., T},
- PY, =y,,....Yr=yr | X;-1=1) PYir =yur | X, =1)
(H l"P(yS)) 1= : = : . (A9)
= P, =yi,....Yr=yr | Xis1 = K) PYrr =yur | Xio1 = K)
The backward algorithm computes the conditional probabilities P(Y,.;r = y;.7 | X,—1 = k) for each t > 2, via the left-hand side of equation

(A9). The time complexity of this algorithm is also O(T K?).
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2162  R. Zimmerman et al.

With the quantities P(Y, = y,, X, =k) and P(Y,.7 = y.r | X,—; = k) in hand for each ¢t € {2,..., T}, we have that for any ¢
{2,..., T —1},

| Py =y, Xie = 1) - PX gy1yr = Yyosrr | Xe =1

Z;le PYrr =yur. Xr =k)

PY iy =y, Xie = 1) - PY g1yr = Yosr | Xe = K)
PX, =1 -PXir=yrr | X, =1

PY1.r =yuir) :

P(X, =K)-P(Yir =yur | X =K)

P(X; =1|Yrr =yur)

: ’ (A10)
PX; =K |Yir = yur)
which is now a vector consisting of the desired conditional state-membership probabilities. Replacing the terms in the first expression of

equation (A10) by equivalent quantities computed efficiently using the forward and backward algorithms, the overall forward—backward
algorithm can itself be summarized concisely by the equivalent identity

P(X,=1|Yyrr =yir)

t T T
1
(6TP(y|>HrP(ys)> © (( 11 rP(y») 1) = : , (A1)

(6TPGHITL, TPOH) 1 o el PO, — K | Yrr — yim)

where © refers to the element-wise (i.e. Hadamard) product of two matrices of equal dimension. The forward—backward algorithm refers to the
computation of the conditional state-membership probabilities via one pass each of the forward and backward algorithms in order to compute
equation (A10) for each ¢ > 2. The time complexity of the forward—backward algorithm remains O(T K?).

After running the forward—backward algorithm, the local decoding procedure computes the most likely state of the Markov chain at each
time index ¢ given the observed data Y ;.7 by simply selecting the coordinate corresponding to the largest entry in equation (A11). That is, we
select

X, = argmaxP(X, =k | Yi.r = y1.7) (A12)
keXx
foreachr =1, ..., T, as required in equation (31).

APPENDIX B: LIKELIHOOD APPROXIMATION BY DISCRETE-SPACE HMMS

In this appendix, we show how the continuous-space HMM likelihood (3), which involves T iterated integrals over the state space X', can be
approximated by a quantity which is essentially of the form (2) and can be computed efficiently via the forward algorithm (see Appendix A1l).
Our presentation is based closely on the derivation of the univariate case in Langrock et al. (2012a), but applies to all three state-space models
presented in Section 4.3, including the bivariate process described in Section 4.3.3. For generality, we present the approximation for an arbitrary
continuous state space X’; for Models 1 and 2, X = R, and for Model 3, X = R2. In the former case, each X-valued vector below (e.g. x;, ¢,
etc.) is a univariate quantity.

The first step of the approximation is to identify an ‘essential domain’ A C X (Kitagawa 1987) for the X/, such that A is bounded and
P(X, &€ A) = P(X, € A°)is small for each 7. We then partition A into a large number of subregions, Ay, ..., A,; when X = Ritis convenient
to use intervals and when X = R* we can use rectangles, possibly of different lengths and widths. We choose within each A; a representative
point ¢, such as its centre. If the area of each A; comprises a sufficiently small proportion of the total area of A = UL A;, then

/ Y @ro1.x7) - hey (y7 | Axp) dxp = / Y @ero1.%7) - hep (31| Axp) dxy +/ Y @ro1.x7) - hyy (y7 | Axy) dxr
X A A€

~ / Y 71, X7) - hyy (¥7 | Asy) dx7  since the integral over A¢ is assumed small
A

= Z/ V(xT—l»xT)'th (.YT | Axr)de
Ay

ir=1

m
~ / y(xp_1,x7)dX7 - hex (yT | Aex ) since x7 ~ c,’-‘Twhen X7 € A;
E ,,,. e
Aig

ir=1

m

=3 P(Xre Ay | Xra=xr1) he (yr1A ). (B1)
ir=1
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Thus, as A — X and each A; — {c}} (i.e. as the essential domain becomes larger and its partition becomes finer), the approximations above
become more exact. Applying the same reasoning,

/ / Y (X7r—2, X7-1) * hyp (J’T—l | AX']'_I) sy (X7—1,X7) - hyp (J’T | )\xr) dxrdxr_;

xJx

= / Y (X712, X7-1) - hyyp (yT—l | )\xr,.) : (/ Y (Xr_1,X7) - hyp ()’T | Axr) de) dxr_;
X x

“/ Y (Xr—2, X7-1) - hyyp, (yT—I | )\xr,l) . <Z[P (XT € Ai; | X1y :xT—l) 'hc,.*T (yT | )\c,.*T)> dxr_
x ir=1

approximating the inner integral by (B1)

~ / Y (X702, X7-1) - By, (yT—l | )\xT,]) : (Z P (XT €Ay, | Xy =XT71) 'hci*T (_YT | )\ci*r)> dxr_;
A ir=1

since the integral over A¢ is assumed small

= Z /A. Y (Xxr_2, X7-1) - hyp (yr—l | )\xr,l) . (Z[P (XT €A | X7y =xr—1) 'hc,.*T (yT | )\c,.*T)) dxr_

ir_1=1 71 ir=1
m
~ .ZP/A V(foz,fol)"hc;‘Fl (yT—l | AETT—I) : (Zl P (XT €Ay | X7 = C;FT,I) 'hc;} (yT | >\ch)> dxr_
iT—1= IT—1 irT=

since x7_1 ~ ¢; whenxr_| € A;

v (o, Xr_)dxr—y - he (yT—l | chm) ‘ (Z P (XT €A | X7 = C?H) “hep, (.YT | )\c77_)>]
ir_1=1 ir=1
m m

S (P(Xr ey 1 Xra=xr0) g (yraixe ) P(Xred 1 Xri=c, ) by (yr1Ag)). B2

ir—1=lir=1

iT—1

Proceeding inductively and handling the edge case of X similarly, we obtain the approximation

m

Lainn~Y Y (P (X1 € an) he, (311 I (P (X e Xia=c,) he (] A))) : (B3)
=2

=1 ir=1

which is exactly equation (4).

APPENDIX C: EM ALGORITHMS

The EM algorithm (Dempster et al. 1977) is a popular tool used to fit statistical models in the presence of latent (or unobserved) data.
Latent data may have a natural interpretation within the context of the problem (e.g. the X .7 in equation (9a) representing the underlying
physical process driving flaring activity is unobserved), or it may arise purely as a mathematical convenience to aid in inference (e.g. the Z,
in equation (26) representing component membership when a finite mixture distribution is used for non-parametric density estimation). The
essential idea is to augment the observed data, x, with ‘missing’ data, Z, to form a complete data set, (x, Z), which induces a complete-data
log-likelihood function £.on(n | X, Z). Similar to the ordinary log-likelihood function, €¢onm(n | X, Z) is simply the logarithm of the joint
density of (X, Z), but viewed as a function of the underlying model parameter . The missing data, Z, is user-selected and chosen to make
Leom(n | X, Z) more analytically tractable than the ordinary observed-data log-likelihood €(# | x). The EM algorithm is designed to compute
the maximume-likelihood estimate — that is, the value of » that maximizes (5 | x) — by iteratively maximizing the conditional expectation of
Leom(n | X, Z), conditioned on the observed data x. More formally, given a starting value of the parameter 5©, the algorithm iterates between
the following two steps,

E-step: Compute (1 | 1) = Ey0) [€eom(n | X, Z) | X = x]
M-step: Set §" ! = argmax Q (77 | ﬂ(r))
"

forr = 1,2, ... until convergence is achieved. In practice, if the equations in the E- and M-step admit closed-form solutions, the resulting
algorithm can be specified as a set of recursive updates for the components of 7+ in terms of .

The convergence properties of the EM algorithm have been well studied. One primary benefit of the EM algorithm is that at each step of
the algorithm, the maximizing value produced by the M-step can never decrease the observed-data log-likelihood £(- | x) from its value at the
previous iteration. Thus, the EM algorithm can only converge to a stationary point of the likelihood function (assuming such a point exists),
and under broad regularity conditions this guarantees convergence to the MLE when the likelihood is unimodal. There is a rich literature on
the EM algorithm and the numerous algorithms related to it; for more information, we refer the reader to the seminal paper by Dempster et al.
(1977), the monograph by McLachlan & Krishnan (2007), and the review paper by van Dyk & Meng (2010).

In the following subsections, we briefly derive the EM algorithms used to fit the finite mixture models described in Section 6.2.
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C1 For semisupervised classification

Here, the observed data X .7 = (X1, ..., Xr)is assumed to be an independent and identically distributed sample from the mixture distribution
F=a Fi+(—a) F(;m), (&)

where F is a known distribution and F5(-; 7r) is a distribution with density

K K Lrelby_y.bg)
flx;m) = Z aelbr by = H( bkl) : (€2)

k=1 71 k=1

Here by, - - - , bg areknownwithby < b; < --- < bg,whilea € (0, 1)and 7™ = (4, ..., wg) are parameters to be estimated, with 21511 =1
and r; € (0, 1) foreach k = 1, ..., K. We define the independent and identically distributed latent variables, Z,.; = (Z, ..., Zr), such that
Z, ~ Bernoulli(e) and X, | (Z;, =k — 1) ~ F, for k = 1, 2. It is easy to verify that equation (C1) gives the marginal distribution of the X,.
The complete-data log-likelihood is

T

Leom(T, @ | X1.7, Z1.7) = log (H(a i) (1 —a)- fz<x,;7r>)‘zf>
t=1

T

=> {z, {bg ( ) + log(fi(x:) — 10g(f2(xz,ﬂ'))} +log(l — &) + log(fz(x,,vr))} (€3)

t=1

where

K

log(falx; ™) = Y (log(me) — log(bx — bi—1)) * Luyeiby_ by (C4)
k=1

The E-step requires the computation of £y [€com (7, @5 X1.7, Z1.7) | X1.7 = x1.7], which by linearity requires only b, [Z; | X1.r = x1.7] =
P,»(Z; =11 X, = x,). Using Bayes’ rule and the law of total probability, we find that

o fi(x)
P(Z=1]X, =x)= = ;). Cs
= = = e (1= a0 () 7 () )
The M-step requires that we maximize
Eyo eom(m, a; X1r, Zir) | X1r = x1:7]
T
o
=> {yl (x; 7, ) - [log ( ) + log(f1(x))) — log(fo(xi; ™)) | + log(l — @) + log(fz<x,,7r>)} (C6)

t=1

with respect to both o and 7r; these optimizations can be carried out separately because these parameters are functionally independent in
equation (C6). Basic calculus shows that the maximizing value of « is

|7
G = ?Zyl (xl;ﬂ'(’),a(’)) . (€7
=1

Optimizing 7r is only slightly more complicated due to the constraint Zle 7, = 1, for which the method of Lagrange multipliers is particularly
suitable. Applying this technique shows that 7} is maximized by

5 S v2 (7, a”) e
.=
EIK:I ZzT:l V2 (xt; ), a(r)) : ]1X1€[b17|.b11

where y, (x;; 7", a”) = 1=y (x,; 7", ). The EM algorithm to estimate equation (C1) then simply amounts to repeating the following

; (C8)

two steps for r = 1, 2, ... until convergence is reached, starting with initial values «® and 7= (©:

(i) Set

| T
1 .

ot = - ; n (7, o). (C9)

(i) Set

T . g T . g
2D S 2 (7 a) Ly e Y1 72 (T, a”) - Lxetp g C10)
= K ~~T 1ot SRR T ‘
Sm i V2 (T, a0) Ly S i V2 (T, a0) - Lyeqp
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C2 For unsupervised classification

For full generality, we assume the data X,.;7 = (X, ..., Xr) is an independent and identically distributed sample from a mixture of K
multivariate normal distributions

K
F =" o NaCs e, Ze), (C11)

k=1
where a4, ..., ax € (0, 1) with Zle o, = 1. We define the independent and identically distributed latent variables Zy.r = (Zy, ..., Z7)
such that Z, ~ Categorical(K; ) (i.e. each Z, is a discrete {1, ..., K }-valued random variable with P(X, = k) = o) and X, | (Z;, = k) ~
Na(pi, ). Writing 9 = (wq, ..., pg, 21, ..., Xk, &), the complete-data log-likelihood is then

17,k

Leom(n | X, Z1.7) = log {H, T (W exp (=50 — )" (x, - uk))) ] (C12)
=3 Yt Lz - [loglew) — § (d log(2m) +log(1Ze]) + (¢, — ) T (0 — )] - (C13)

The E-step requires the computation of ¢ [Leom(® | X1.7, Z1.7) | X1:7 = X1.7], which this time requires By [1z,— | X1.r = x1.7] =
P,»n(Z; =k | X, = x,) to be computed. Again, Bayes’ rule and the law of total probability yield

o (x . E/(f))
Pn(Z =k| X, =x,)= =y (x:07), (C14)
Zz 1“(r) (x ,u,;’), Z;r))

where ¢4(-; i, X) is the Ny (u, X) density function. The M-step thus requires the maximization of

T K
1
Eyor leom@ | Xir Zir) | X = %101 = Y v (x50 - {log(ak) — 5 (d10gQ2m) +log(IZe) + (¥, — ) T (e — )| (C15)

t=1 k=1

with respect to each p;, Xy, and a. It is straightforward to show that the maximizing value of ¢y is

1 T
=7 > v (xin®). (C16)
t=1

The remaining parameters are most easily optimized using matrix calculus (we omit details but see e.g. Muirhead 2009), which yield the
optima

T
~ (r)
== X0 (C17)
S PO
and
Si=m o 2 v (™) G = o — Ao T (C18)
Z[ 1yk (x,, ﬂ(r) Z
The EM algorithm to estimate (C1) then simply amounts to repeating the following two steps for r = 1, 2, ... until convergence is reached,
starting with initial values @ and p\”, ..., p'? =0 . 2@
(i) Set
T T
(ii) Set
T
r+D _
Hy —_—— x,, 0 k=1,...,K. (C20)
Zr 1 Yk (xt, ﬂ(r) Z=:
(iii) Set
oy L SR Y PP ( p('H)) ( ,45{*”) . k=1,.. K. (C21)
S e (x30®) Z

The initial values for mixture models such as equation (C11) are typically obtained using the k-means algorithm. In the present case, one
can run this algorithm (available in any statistical software package) on X .7 with the number of centres specified as K, which partitions the
data into K distinct subsets; for each mixture component k € {1, ..., K}, ;1,5{0) and )3,((0) are respectively set to the sample mean and covariance
matrix from subset k, while a( ) is set to the proportion of X .7 that comprises subset k.
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Table D1. Maximum-likelihood estimates for Model 1 fit using ObsID 01885
with w € {25, 50, 75, 100}.

w =25 w =50 w="75 w = 100
b1 0.9874 0.9755 0.9636 0.9563
o] 0.0794 0.1161 0.1383 0.1576
Bi 0.1769 0.1787 0.1861 0.1823
B 0.0726 0.0733 0.07636 0.0748

Table D2. Maximum-likelihood estimates for Model 2 fit using ObsID 01885
with w € {25, 50, 75, 100}.

w =25 w =50 w=75 w = 100
b1 0.9883 0.9773 0.9672 0.9591
o] 0.0667 0.0961 0.1147 0.1309
[ep) 0.1069 0.1539 0.1843 0.2099
Bi 0.1872 0.1864 0.1921 0.1869
B 0.0597 0.0593 0.0622 0.0596

Table D3. Maximum-likelihood estimates for Model 3 fit using ObsID 01885
with w € {25, 50, 75, 100}.

w =25 w =50 w="75 w = 100
1 0.9884 0.9768 0.9693 0.9612
023 0.9878 0.9744 0.9647 0.9549
o] 0.0711 0.0987 0.1143 0.1305
[ep) 0.1064 0.1568 0.1905 0.2152
Bi 0.1865 0.1860 0.1877 0.1836
B 0.0596 0.0591 0.0594 0.0580
o 1.0000 1.0000 1.0000 1.0000

Note that when a mixture model involves all component distributions within the same parametric family (such as equation C11, but not

equation C1), any permutation of the component ‘labels’ 1, ..., K produces the same value of the ordinary log-likelihood function, in the
sense that
CAL - Ak [ X ) = Loy -5 Aoy | Xiir), (C22)

where X, is the set of parameters associated with the kth component distribution (including the mixing parameter o;) and o is any permutation
of (1, ..., K). This is an example of a phenomenon known as unidentifiability, which results in K modes in the log-likelihood surface; the value
of the log-likelihood at each such mode is the same, and so the EM algorithm can converge to any one of them. Thus, from a computational
perspective, one cannot a priori associate any particular physical state (such as quiescence) to a specific component distribution of equation
(C11).

When the Ay, ..., Ax can be ordered in some way, any particular ordering of the ‘labels’ can be imposed on the likelihood function;
for example, if equation (C11) comprises of K univariate normal distributions and one desires the component distributions to be ordered
increasingly with respect to their means, then one can set the log-likelihood to —oo whenever ) < p, < - -+ < g fails to hold. Alternatively,
the EM algorithm can sometimes be coaxed towards a particular labelling by judiciously choosing initial values. When K is small, however, one
may assign meaning to the components settled on by the algorithm following estimation. If one desires a specific ordering of the components,
the labels of the estimated parameters can simply be permuted.

APPENDIX D: ADDITIONAL RESULTS FOR EV LAC

D1 Model estimates for varying time bins

In this section, we provide maximum-likelihood estimates from the first stage of the model estimation procedure (prior to the bootstrap-based
de-biasing procedure) for each of the three models described in Section 4.3 fit to ObsID 01885, as the time bin w (in seconds) varies among
{25, 50, 75, 100}. The estimates are given in Tables D1, D2, and D3, respectively and do not vary materially with w. Our experiments show
that the de-biased estimates are similarly stable.

We do observe that in general, the o) and o, increase steadily as w increases. This behaviour is expected, because these parameters control
the step size (per unit time) of the underlying Markov chain. Heuristically, suppose that X .7 is the underlying soft-band process associated
with the original time bin w, and X /., is that associated with a larger time bin w’, where T’ < T'. Then the resolution of X.,, is lower than
that of X .7, and so within each time bin of length w’, X .7 takes several independent steps (say s of them, where s > 1) while X|.;., takes a
single step; that is, X, ., occur at the same time as X, and the error of the latter is approximately the sum of the errors of each component
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Figure D1. Posterior flaring state probabilities computed via equation (28) for ObsID 01885 and via equation (30) for ObsID 10679. The probabilities are
plotted as a function of the observed soft-band counts Y i, ..., Y7 1 and the observed hard-band counts Y », ..., Y7 2 for ObsID 01885 (left) and ObsID 10679
(right). Colour represents the posterior probability of the flaring state. It would not be possible for a flux threshold to reproduce these probabilities.

of X,.,. If o and o are the parameters associated with X .7 and X|.;., respectively, then o] ~ /501 > o1. (This argument makes several

simplifying assumptions, but can be made rigorous.)

D2 Scatterplots of hard and soft counts

Scatterplots of the hard and soft counts coloured according to their posterior probabilities of being associated with the flaring state of EV Lac
(ObsID 01885 and ObsID 10679) appear in Fig. D1. The scatterplots confirm that these probabilities could not be obtained with a threshold
on the observed counts.
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