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Abstract

The central theme in this thesis is compactifications: reductions of higher dimensional

theories to lower dimensions and how the geometry of the compactification manifold deter-

mines features of the low energy physics. This is studied in the context of non-perturbative

string theory in the framework of M-theory and F-theory.

Supersymmetry requires the compactification manifold in F-theory to be an elliptically

fibered Calabi–Yau, where the complex structure of the elliptic fibration is identified with

the complexified coupling constant in type IIB string theory. The non-perturbative nature

of the theory originates from the strong-weak duality of type IIB, which manifests itself

as the SL(2,Z) modular transformation of the complex structure. Non-abelian gauge

symmetries arise naturally in this framework and engineering Grand Unified Theories

within F-theory has been an active area of research. Compactifications on Calabi–Yau

four-folds give rise to gauge theories with N = 1 supersymmetry in four dimensions

coupled to gravity.

In the first part of this thesis we focus on abelian gauge symmetries in F-theory, which are

essential in SU(5) GUTs for forbidding couplings which result in fast proton decay. These

arise from rational sections in the elliptic fibration and from the geometric constraints

on these sections one can determine the set of possible U(1) charges of GUT matter

representations. Armed with this constrained set of charges we then proceed to study the

phenomenology of these abelian gauge symmetries in the context of SU(5) GUT models.

We analyse their effectiveness at suppressing proton decay operators and explore the types

of realistic flavour textures that can be generated using the Froggatt–Nielsen mechanism.

In the latter part of this thesis the focal point changes to M5-branes, one of the two

fundamental objects of M-theory. The theory of multiple M5-branes is known to be a

6d N = (2, 0) superconformal field theory, of which only the space-time symmetries and

abelian equations of motion have been determined. In spite of this, fascinating corre-

spondences have been shown to arise from the reduction of the M5-brane theory to lower

dimensions. In particular, supersymmetric observables in the reduced theories capture

non-trivial aspects of the geometry of the compactification manifold. The final chapter of

this thesis studies the compactification of the 6d N = (2, 0) theory on the two-sphere as

a step towards deriving a correspondence related to four-manifolds.
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Chapter 1

Introduction

In 1921 Kaluza considered General Relativity extended to five space-time dimensions and

showed that the dimensional reduction of the equations of motion to four dimensions yields

both Einstein and Maxwell’s equations, unifying gravity and electromagnetism into one

theory [1]. In obtaining the four-dimensional equations of motion Kaluza made the crucial

assumption,“the cylinder condition”, that the five-dimensional metric is independent of

the fifth dimension. This was later justified physically by Klein in 1926 using the recent

developments in quantum mechanics at the time. By considering the fifth dimension to

be compact and microscopic the momentum of components of the five-dimensional metric

become quantised and the lowest lying states are exactly those satisfying the cylinder

condition [2].

Since the introduction of Kaluza–Klein theory the number of compact dimensions has

become greater, and therefore also the has complexity and richness. This is never more

true than in the context of string theory. Born from models [3] constructed to explain

hadrons and mesons, which we now know to be the theory of Quantum Chromodynamics,

string theory has become the leading candidate for unifying the fundamental forces and

has led to remarkable developments in mathematics. In its most elemental form it is a

theory whose fundamental objects are one-dimensional strings instead of point particles.

This however has remarkable consequences, one of which is the natural appearance of a

massless spin-2 particle identified as the graviton.

The five string theories, which can all be unified under the umbrella of M-theory, are ten-

dimensional. The existence of compact dimensions is then a requisite if the interactions

we observe in nature, which are confined to four dimensions, are to have a UV completion

in string theory. However, this is not the only basis to study compactifications in string

theory and from a purely field theoretic perspective dimensions both larger and smaller

than four are also of interest.

18
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Types of strings No. of supercharges Chiral/Non-chiral

Type I Open+closed 16 Chiral

Type IIA Open+closed 32 Non-chiral

Type IIB Open+closed 32 Chiral

Heterotic SO(32) Oriented closed 16 Chiral

Heterotic E8 × E8 Oriented closed 16 Chiral

Table 1.1: The five supersymmetric string theories.

1.1 Theories of Superstrings

In the perturbative expansion of gravity as a quantum field theory one encounters an

infinite number of divergences and the theory can not be regularised with a finite number

of counter-terms i.e. it is non-renormalisable. This should be contrasted with Yang-Mills

theories in dimensions d ≤ 4, where the number of counter-terms required is finite. These

divergences can be cured by the introduction of new physics appearing at high energies.

In string theory this is the scale at which one can resolve the string and is related to the

string tension. Below this scale the different modes of the string manifest themselves as

point particles with different properties, such as spin. Of great consequence is of course

the existence of a spin two particle among the massless states of the theory, which can

play the role of the graviton.

String theory originated from models for the strong interactions and it was not until the

work of Green and Schwarz [4] on anomaly cancellation in string theory that it gained

stature as a possible candidate for being the fundamental description of nature. At the

time only three of the five supersymmetric string theories had been discovered: type I,

type IIA and type IIB [5]. The heterotic string was later derived by Gross, Harvey,

Martinec and Rohm in [6], uncovering the two remaining supersymmetric string theories.

The distinguishing features of the five supersymmetric string theories are summarised in

table 1.1. They are determined by two conditions: consistency of the conformal field

theory (CFT) on the worldsheet of the string and the absence of tachyons, which lead to

an unstable vacuum1. String theories contain two parameters in which one can perform

a perturbative expansion, the string tension and the string coupling, where the latter is

associated to the quantum loop expansion. The low energy description is obtained by

keeping only the massless modes in the full theory, and the presence of a graviton in the

massless spectrum implies the effective action to the lowest order in the string tension and

coupling is ten-dimensional supergravity.

1For the derivations we refer to the original papers [5, 6] and [7].
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In 1995 Polchinksi realised that Dp-branes, (p + 1)-dimensional hypersurfaces in space-

time on which open strings can end, are in fact dynamical objects [8]. They arise as non-

perturbative BPS solitons carrying Ramond-Ramond (RR) charge and couple electrically

to the RR (p+ 1)-form in the string theory. The Dp-branes in each string theory are

String Theory Dp-branes

Type I p = 1, 5, 9

Type IIA p even

Type IIB p = −1, odd

(1.1)

The two heterotic string theories have no RR potentials and therefore no Dp-branes. The

presence of open strings in type II string theory is in fact a consequence of D-branes. In

the type II string theories there only closed string fluctuations around the vacuum and the

open strings arise as excitations around the non-perturbative D-branes. This should be

contrasted with type I string theory which has both open and closed strings perturbations

around the vacuum.

The five supersymmetric string theories are related by various dualities [9]. S-duality,

which is a strong-weak duality between two theories, is a self-duality symmetry of type

IIB string theory which relates the weak coupling and strong coupling regimes. S-duality

forms part of the SL(2,Z) symmetry of type IIB string theory, and is fundamental in

the construction of F-theory, which is reviewed in section 2. In essence F-theory makes

the action of SL(2,Z) on the string coupling manifest in the compactification geometry,

and is thereby able to capture non-perturbative aspects of type IIB string theory. Type

IIA and type IIB are mapped into each other under the action of T-duality. A T-duality

transformation of type IIA on a circle of radius R gives type IIB on a circle of radius

proportional to 1/R. Analogously, the two heterotic string theories are also exchanged

under T-duality. For more details on the network of dualities see, for example, [10].

Analogous to the unification of gravity and electromagnetism in Kaluza–Klein theory, the

five supersymmetric string theories can be unified in one dimension higher and obtained as

perturbative limits of M-theory. M-theory, which first arose with the supermembrane [11],

was discovered to be the non-perturbative limit of type IIA string theory in [12, 13] with

the surprising feature that its low energy description is eleven-dimensional supergravity.

The appearance of the additional dimension at the strong coupling limit of type IIA is

very natural in the context of Kaluza–Klein reductions where the size of the compact

dimensions often descends as the coupling constant in the lower dimensional theory. In

this context the compact direction is a circle and the exact relation is given by

R10 = gIIAls , (1.2)
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where R10 is the radius of the M-theory circle, gIIA is the type IIA string coupling and ls

is the string length. From this we observe that the radius of the circle decompactifies in

the limit gIIA →∞.

Through the various dualities between the ten-dimensional string theories Witten was

able show that type IIB, type I and Heterotic SO(32) string theory also arise as different

compactification limits of M-theory. The connection to Heterotic E8×E8 was later made

in [14] completing the evidence for M-theory being the overarching non-perturbative theory

from which the known string theories can be derived. However, due to the lack of a

dimensionless coupling constant the theory does not admit a perturbative expansion and

as a result not a great deal is known about M-theory itself. In chatper 5 we shall discuss

its low energy description and the two fundamental objects in M-theory; M2-branes and

M5-branes.

1.2 Supersymmetry and the MSSM

If string theory is to be a UV complete description of nature then it must incorporate the

Standard Model which has been, both theoretically and experimentally, very successful

[15]. Despite this great achievement the Standard Model is not an entirely satisfactory

description and supersymmetry, which is naturally integrated into string theory, is a highly

favoured extension of the Standard Model. One of the most prominent reasons for its

popularity is that it provides a natural solution to the hierarchy problem, or the fine-

tuning problem of the mass of the Higgs boson [16–19].

The observed mass of the Higgs boson, approximately 125GeV [20, 21], is a combination

of the tree level mass and quantum loop corrections. It can be shown that the latter is

proportional to the cut-off scale, the energy scale up to which the Standard Model remains

an accurate description of fundamental interactions. In order to achieve the observed value

of the Higgs mass one needs to cancel the quantum corrections with the tree level mass,

which requires extreme fine-tuning. This problem can be resolved by the introduction

of scalar superpartners for the fermions participating in the loop interactions. The loop

contributions from the fermions and their superpartners cancel and the Higgs mass is

protected from quantum corrections.

Despite all its theoretical favour there has been no evidence for supersymmetry at the

first run of the Large Hadron Collider (LHC), which probed energies up to 8TeV. These

searches have resulted in tighter constraints on the supersymmetry parameter space [22],

which will be probed in the second run of the LHC with center of mass energies 13TeV.
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Under the constraints of the current results the minimal supersymmetric extension of the

Standard Model (MSSM) is not under pressure but other more constrained supersym-

metric extensions have become highly disfavoured [23]. Irrespective of the final verdict

on the phenomenological advantages of supersymmetry, supersymmetric gauge theories

are irrefutably an interesting class of gauge theories in their own right, and we will only

consider compactifications preserving supersymmetry in this thesis.

In order for a compactification to preserve supersymmetry the compactification manifold,

X, must admit covariantly constant spinors, which satisfy (in the absence of flux)

∇Xε = 0 , (1.3)

where ε is a spinor. The existence of solutions to (1.3) means the manifold admits spinors

which transform as scalars under the holonomy group of X. This is not possible for

a manifold with general holonomy SO(d), where d = dimX, and therefore X must be

a special holonomy manifold i.e. Hol(X) ⊂ SO(d). One class of such manifolds with

holonomy contained in SU(n) are the Calabi–Yau n-manifolds, Yn, which can be specified

by the topological condition of having trivial canonical bundle [24,25]. It was shown in [26]

that compactifications of type I and heterotic string theories to four dimensions preserving

at least N = 1 supersymmetry required X to have holonomy SU(3), i.e. a Calabi–

Yau three-fold. Since the type II string theories have twice the number of supercharges

in ten dimensions, they preserve 4d N = 2 supersymmetry on Calabi–Yau three-folds.

Reductions preserving N = 1 in 4d can be obtained by taking orientifold quotients of

Calabi–Yau three-fold compactifications.

The MSSM introduces, in addition to a superpartner for every particle in the Standard

Model, two Higgs fields. These are referred to has the Higgs up, Hu, and Higgs down, Hd,

and transform in the representations

Field GSM = SU(3)× SU(2)× U(1)Y

Hu (1,2)+ 1
2

Hd (1,2)− 1
2

(1.4)

The introduction of a second Higgs field is required for the masses of the up-type and down-

type quarks to be supersymmetric [27, 28]. The allowed couplings in the superpotential

consist of the Yukawa couplings, the µ-term

WMSSM ⊃ µHuHd , (1.5)

and also dangerous proton decay couplings. These undesirable couplings are forbidden by

assigning the R-symmetry charges of the fields such that these couplings are not consistent
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with the U(1) R-symmetry transformation of the superpotential. These assignments also

forbid the µ-term and only the Yukawa couplings remain.

One theoretical motivation for considering the MSSM is that it exhibits precision unifica-

tion of gauge coupling constants around 1016GeV [29] hinting at the presence of some

higher rank unification group. The lowest rank Lie groups in which one can embed

the MSSM are SU(5), SO(10) and E6, which all which have a simple realisation in F-

theory [30, 31]. In this thesis we focus on SU(5) GUT models in which one generation of

quark and lepton representations in the MSSM fit exactly into one 5 and 10 representation

of SU(5). The gauge bosons are obtained from the decomposition of the adjoint of SU(5)

SU(5)→ GSM = SU(3)× SU(2)× U(1)Y

24→ (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)−5 ⊕ (3,2)+5 .
(1.6)

The first three representations correspond to the gauge bosons for the strong and elec-

troweak interactions whereas the latter two representations are known as the XY bosons.

These bosons are referred to as exotics as they do not appear in the matter spectrum of

the MSSM.

The spectrum of quarks and leptons is obtained from the decompositions

10→ (3,2)1/6 ⊕ (3,1)−2/3 ⊕ (1,1)1

5→ (3,1)1/3 ⊕ (1,2)−1/2 .
(1.7)

The Higgs sector in the MSSM also arises from decompositions of the (anti-)fundamental

representation, however we also obtain exotic representations in the form of Higgs triplets.

These representations can be seen in (1.7) and the issue of how the Higgs triplets become

massive such that they do not appear in the spectrum after GUT breaking is the doublet-

triplet splitting problem. In fact, as will be discussed in section 2.4, the resolution to this

problem and the removal of the XY bosons can be built into the GUT breaking mechanism

itself.

A pure SU(5) GUT model is however not feasible as it predicts a proton lifetime much

shorter than the lower bound of 1034 years [15]. Additional abelian symmetries which

commute with the GUT group can be used to forbid dangerous proton decay operators,

for example the dimension four coupling

λ(4)5510 , (1.8)

if the 10 and 5 representations are charged appropriately under the additional U(1) sym-

metries. In the chapters 3 and 4 we shall determine the types of U(1) symmetries which are

realisable in the framework of F-theory and study the phenomenology of these additional

symmetries with respect to constraints of proton decay in SU(5) GUT models.
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1.3 Outline of the Thesis

Following this short introduction to string theory the remainder of this thesis is structured

as follows.

The first part of this thesis is centred on the study of abelian gauge symmetries in the

context of GUT model building in F-theory. In chapter 2 we introduce F-theory as a

framework for studying non-perturbative type IIB string theory in the presence of 7-branes.

Of utmost importance will be the geometry of the compactification manifold, which is

taken to be elliptically fibered Calabi–Yau three-folds and four-folds in this thesis. The

mathematical implements required to extract the low energy physics from the geometry

of the elliptic Calabi–Yau will be presented in this chapter with a focus on SU(5) GUT

models.

Using the dictionary between aspects of the elliptic Calabi–Yau and the lower dimensional

theory discussed in chapter 2 we explore in chapter 3 how the U(1) charges of GUT

matter representations are constrained by the geometry. Additional U(1) symmetries are

engineered by additional rational sections in the elliptic fibration. By understanding the

behaviour of the sections over loci where matter is localised we determine the possible

charges of GUT matter under these additional abelian symmetries.

In chapter 4 the results from chapter 3 are used to study phenomenological aspects of

SU(5) GUT models with one and two additional U(1) symmetries. The primary motiva-

tion for incorporating abelian symmetries into the low energy theory is for the prevention

of proton decay couplings which plague SU(5) GUT models. In this chapter we survey

the effectiveness of the U(1) charges determined in chapter 3 in suppressing proton decay

and the feasibility of also generating favourable Yukawa textures via the Froggatt–Nielsen

mechanism.

The final two chapters of this thesis change gear to the study of M5-branes in M-theory.

The six-dimensional theory which describes the dynamics of multiple M5-branes has re-

mained largely elusive. Chapter 5 begins with a review of what is currently known about

these objects and then proceeds to describe their compactification to lower dimensions and

the related correspondences which arise. It ends with a brief section on the subsequent

derivation of these correspondences.

Chapter 6 discusses the compactification of a stack of k M5-branes on a two-sphere. The

reduction is carried out by coupling the free theory to off-shell conformal supergravity in

order to preserve supersymmetry. We proceed by first compactifying on a circle to five

dimensions where a non-abelian action is obtained. The final result is a four-dimensional
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topological sigma-model into the moduli space of Nahm’s equations, or equivalently the

moduli space of k SU(2) monopoles, and the action for cases of one and two monopoles

is obtained.

The material in chapters 3,4 and 6 are based on the papers [32–34]. The work [35] is not

featured in this thesis but was also conducted during the course of the author’s PhD.



Chapter 2

F-theory and Elliptic Fibrations

The twelve-dimensional theory describing non-perturbative type IIB string theory known

as F-theory was constructed by Vafa in [36]. While dualities with heterotic string theory

and related phenomenological aspects were explored in the early days of its discovery

[36–44] , it was not until the three seminal papers [30,31,45] that F-theory started gathering

attention as a powerful framework for constructing supersymmetric GUTs within type IIB

string theory.

More recently, compactifications to six-dimensions have seen revived interest since the

classification of 6d superconformal field theories (SCFTs) using F-theory [46,47]. Genuine

4d N = 3 SCFTs were also obtained in [48] by considering D3-branes probing F-theory

singularities. The general framework of F-theory has therefore been shown to have far

reaching applications not solely limited to string phenomenology, however in this thesis

we will only discuss the latter.

In this chapter F-theory is motivated by considering type IIB string theory in the presence

of 7-branes. The mathematical framework of F-theory, centred around the geometry of

elliptic fibrations, is introduced and a connection is made between various aspects of the

geometry of the compactification manifold and features of the low energy physics. By

employing the duality between M-theory and F-theory, non-abelian gauge symmetries can

be seen to arise from singularities in the elliptic fibration. In addition matter multiplets

and Yukawa couplings appear naturally from enhancements in the singularity.

In relation to F-theory, the primary focus of this thesis is the phenomenology of SU(5)

GUT models in the presence of additional U(1) symmetries. Geometrically additional

U(1) symmetries are realised differently to the aspects of the low energy theory described

above, and it is exactly the interaction between these different aspects of the geometry

that is studied in chapter 3. The final ingredient we will be considering is fluxes, which

26
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are essential for obtaining a chiral matter spectrum and for breaking the GUT group to

the MSSM.

2.1 Type IIB String Theory and 7-branes

To motivate the F-theory construction we start in ten-dimensional type IIB string theory.

The field content of type IIB contains the Neveu–Schwartz-Neveu–Schwartz (NSNS) and

Ramond-Ramond fields (RR) [5]

NSNS RR

Metric, g Axion, C0

Dilaton, φ Two-form potential, C2

Kalb–Ramond two-form, B2 Four-form potential, C4

(2.1)

where the dilaton is related to the string coupling by gs = eφ. The ten-dimensional action

has classical SL(2,R) invariance, which is broken to SL(2,Z) at the quantum level. The

action of this duality symmetry on the fields takes a more compact form when the axion

is combined with the string coupling into the axio-dilaton

τ = C0 +
i

gs
. (2.2)

The action of SL(2,Z) then takes the form

τ → aτ + b

cτ + d
,

(
C2

B2

)
→

(
aC2 + bB2

cC2 + dB2

)
, C4 → C4 , (2.3)

where ad−bc = 1. From the action of this symmetry we observe it contains the strong-weak

duality, S-duality, which maps τ → −1/τ as mentioned in the introduction.

In [36] the transformation of the axio-dilaton under the duality symmetry of type IIB

string theory was identified with the SL(2,Z) modular transformations on the complex

structure of a two-torus. This presented a natural way to encode the variation of the string

coupling into the geometry of the compactification manifold. By considering a fibration of

a two-torus over the compactification manifold the variation of the coupling is tracked by

the complex structure of the T 2 1. In this way one is able to capture the non-perturbative

regime of type IIB and the perturbative physics is recovered by taking the fibration to

be trivial, so that the string coupling is constant, and taking gs to be small. In generic

fibrations the fiber can become singular and over these loci the complex structure can

1We will in fact be interested in fibrations where the fiber is an elliptic curve, which is a T 2 with a
marked point. The resulting fibrations are known as elliptic fibrations and will be discussed in more detail
in section 2.2.



Chapter 2. F-theory and Elliptic Fibrations 28

Base, B

Figure 2.1: Over generic points on the base, B, the fiber is a smooth T 2. However the
fiber can also become singular over special loci on the base where one of the 1-cycles on
the T 2 shrinks to a point.

diverge. These singularities occur when one of the 1-cycles in the torus shrinks to a point

as shown in figure 2.1. The physics of theses divergences can be understood by considering

the coupling of the axio-dilaton to D7-branes.

The field strengths in the theory are given by

H3 = dB2 , Fn+1 = dCn , where n = 0, 2, 4 . (2.4)

In additional one has the hodge dual of each field strength,

∗ Fn+1 = F9−n = dC8−n . (2.5)

The potentials Cp+1 and C7−p couple electrically and magnetically, respectively, to Dp-

branes, for p odd2. In this way we see that the axio-dilaton couples magnetically to

D7-branes. In the presence of a D7-brane the equation of motion for the field strength F9

takes the form

d ∗ F9 = δ(2)(z − z0) , (2.6)

where z is a complex coordinate parametrising the plane transverse to the world-volume

of the brane and z0 is the location of the D7-brane.

The profile of the axio-dilaton which solves this equation of motion takes the form

τ = τ0 +
1

2πi
ln(z − z0) , (2.7)

where τ0 is a constant and holomorphicity is imposed by its equation of motion. From

this we observe that the axio-dilaton diverges logarithmically at the location of D7-branes,

this is the physical interpretation of singularities in the fiber. Note that this solution for

τ also means that the potential does not fall off to zero asymptotically far away from the

2This does not hold for the D9-brane in type IIB string theory, which couples to a ten-form potential.
This ten-form does not appear in (2.1) as it is non-dynamical.
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brane, as is the case for the other branes with p < 7. This means that the backreaction of

the brane on the geometry is not negligible and in fact results in a deficit angle at infinity.

This framework allows for more general types of 7-branes known as (p, q)-7-branes on which

(p, q)-strings end. In type IIB there are F1-strings and D1-strings which are charged under

B2 and C2, respectively. As B2 and C2 are mixed by SL(2,Z) transformations there exists

(p, q)-strings which are charged under both two-form potentials where the fundamental

string has charges (1, 0) and the D1-string has charges (0, 1). The existence of these

strings means there is a corresponding generalisation of the objects on which the strings

can end resulting in (p, q)-7-branes. The standard D7-brane on which fundamental strings

end corresponds to a (1,0)-7-brane. The (p, q)-type of the brane changes under the action

of SL(2,Z), however it is not always possible in the presence of multiple (p, q)-7-branes to

perform a transformation such that they are all of D7-type.

In this section we have motivated the study of elliptic fibrations in type IIB string theory.

They provide a framework in which the variation of the axio-dilaton in the presence of

7-branes can be encoded into the compactification manifold and allow for the study of non-

perturbative physics in type IIB. In the following sections we shall look at the geometry

of these fibrations in more detail and how the low energy physics is dictated by various

aspects of the geometry.

2.2 The F-theory Framework

As mentioned in the introduction, supersymmetry is preserved in compactifications of

perturbative type IIB string theory on some manifold, B, when B admits covariantly

constant spinors. Compactifying on a Calabi–Yau three-fold preserves N = 2 in four

dimensions. However, we now allow the axio-dilaton to vary over B as the complex

structure of an elliptic curve, Eτ , fibered over B

Eτ ↪→ Yn

↓ π

Bn−1

(2.8)

In this framework one extends the ten dimensions of type IIB by two additional direc-

tions coming from the elliptic curve and F-theory is defined in twelve dimensions. The

requirement for preserving supersymmetry in an F-theory compactification is that Yn is

a Calabi–Yau n-fold of real dimension 2n. In particular this means that the base of the

fibration Bn−1 must be Kähler but not in general Ricci-flat. In fact only when the fibration

is trivial is Bn−1 a Calabi–Yau manifold.
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In this thesis we shall only discuss elliptically fibered Calabi–Yau three-folds and four-folds

relevant for constructing supersymmetric 6d and 4d vacua, respectively, of F-theory3

An elliptic curve is a non-singular genus one projective curve with a rational point. It can

be written in Weierstrass form [52,53]

PW = wy2 − x3 − fxw2 − gw3 = 0 , (2.9)

where [w : x : y] are projective coordinates in P2 and f, g are constants. The Weiestrass

equation (2.9) has a rational point given by [w : x : y] = [0 : 0 : 1].

To obtain an elliptic fibration in Weierstrass form we promote the constants f and g to

sections of line bundles O(−4KB) and O(−6KB), respectively, where KB is the canonical

class of the the base. The constants f, g are chosen to be sections of these particular line

bundles so that the resulting fibration is Calabi–Yau. In this way, f, g become functions of

coordinates on the base. The projective coordinates also become sections of line bundles

with classes
Section Class

w H

x H − 2KB

y H − 3KB

, (2.10)

where H is the hyperplane class of P2. The marked point of the elliptic curve defines

a holomorphic section, σ0, of the fibration, which is a map from the base to the fiber

satisfying π ◦ σ0 = id. The Weierstrass equation (2.9) now cuts out a hypersurface in the

ambient space

X = P(O ⊕K−2
B ⊕K

−3
B ) , (2.11)

where O is structure sheaf of B, which contains the data of all regular functions on open

sets of B.

The fiber becomes singular when the discriminant, ∆, is zero,

∆ = 4f3 + 27g2 = 0 . (2.12)

As the discriminant is also a section of some line bundle it generically vanishes over

codimension one loci in the base. There can be many divisors4 in the base, Σx, over

which the discriminant vanishes. We shall denote the order to which the discriminant

vanishes over Σx by δx. Recall from section 2.1 the complex structure diverges when the

fiber is singular and this is associated with the presence of 7-branes. The 7-branes are

3Compactifications on Calabi–Yau five-folds, which gives rise to 2d N = (0, 2) gauge theories, were
recently studied in [49–51].

4A (Weil) divisor on a normal variety X is a finite formal linear combination of integral hypersurfaces
of X with integral coefficients [54].
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wrapped on the codimension one loci Σx over which the discriminant vanishes with their

remaining directions lying transverse to the elliptic Calabi–Yau. The number of 7-branes

in the compactification and the types of singularities which can appear are constrained

by requiring the elliptic fibration to be Calabi–Yau. The first chern class of Y can be

expressed as [37]

c1(Y ) ' π∗
(
c1(B)− 1

12

∑

x

δxωx

)
, (2.13)

where c1(B) is the first chern class of the base and ωx is the two-form Poincaré dual to

Σx in the base. Vanishing of the first chern class requires

12c1(B) =
∑

x

δxωx , (2.14)

which constrains, for a particular choice of base, the types and number of singularities

that can arise.

2.2.1 Singularities and Resolutions

From the discussion in the previous section singularities in the fiber indicate the presence

of 7-branes. We are therefore interested in the types of singular fibers which can arise

in elliptic fibrations. In all cases, with the exception of two, singularities in the fiber

result in the total space of the fibration Y to also be singular. Recall that our Calabi–

Yau is described by the hypersurface equation (2.9). The conditions for the Calabi–Yau

to be singular are the vanishing of the first derivatives of (2.9) as this corresponds to a

degeneration in the tangent space of Y . In this section we shall introduce the concept of

a resolution or blow-up of singularities which will feature prominently in the upcoming

sections.

Given an algebraic variety X, a resolution of singularities is a variety X̃ together with a

projective morphism f : X̃ → X such that

(1) X̃ is smooth and f is birational

(2) f : f−1(Xns)→ Xns is an isomorphism, and

(3) f−1(Sing X) is a divisor with simple normal crossings5,

where Sing X is the set of singular points on X and Xns := X \Sing X is the set of smooth

points [55]. As we are concerned with Calabi–Yau manifolds we require the resolution to

be crepant. Crepant resolutions preserve the canonical class of the manifold such that

5Let X be a smooth variety. A divisor D ⊂ X is a simple normal crossings divisor if each irreducible
component of D is smooth and all intersections are transverse.
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Y

C⊂Y
~

^
g g~

Y'⊃C~~

Figure 2.2: Two minimal resolution of singularities Ỹ and Ỹ ′ blow-down under g and g̃,
respectively, to the singular space Y̌ . Each blow-down contracts the contractible curve C
and C̃ to a point in Y̌ .

KX = KX̃ . We can expand the divisor f−1(Sing X) into its irreducible components Dα

as

f−1(Sing X) =
∑

α

Dα . (2.15)

Often the divisors Dα are referred to as the exceptional divisors. An explicit example of

a resolution of a singular elliptic fibration will be discussed in section 2.2.3.

A resolution of singularities can be obtained by a sequence of blow-ups, which is defined

as follows: the blow-up of a variety X along some subvariety Z is a regular birational map

g : X ′ → X associated to a subvariety Z ⊂ X that is an isomorphism away from Z but

may contain non-trivial fibers over Z. The exceptional divisor E is defined as

E = g−1(Z) ⊂ X ′ . (2.16)

Given a resolution of singularities X̃, one can obtain another resolution of singularities

by blowing up a point of the exceptional divisor of X̃ [56]. One important class of such

resolutions are the minimal ones, through which all other resolution of singularities factor.

For singular varieties with complex dimension d > 2 there does not exist a unique minimal

resolution as is true for the case of singular surfaces. The different minimal resolutions

are connected by birational transformations called flips and flops [57,58].

For Calabi–Yau varieties the relevant birational transformations are flops. Consider two

minimal resolutions Ỹ and Ỹ ′ where each contains a contractible curve C ⊂ Ỹ and C̃ ⊂ Ỹ ′,
respectively, such that the blow-down of the contractible curve gives the singular space

Y̌ . This set-up is depicted in figure 2.2. The flop transition from Ỹ to Ỹ ′ is given by the

composition g ◦ g̃−1, which has the effect of blowing down the curve C and performing a

different blow-up of Y̌ , which introduces the curve C̃.

2.2.2 Classification of Singular Fibers and Tate’s Algorithm

Kodaira and Néron classified the singular fibers for elliptic surfaces [59–61]. In their

classification each singularity is specified by the vanishing orders of (f, g,∆). Their results
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showed that the intersection matrix of the exceptional curves, obtained from the resolution,

can only take the form of the zero matrix or one of the Cartan matrices of the simply laced

affine Lie algebras. This classification can be generalised to codimension one singularities

over higher dimensional bases [62].

Below are the fiber types and groups that will appear in this thesis, in particular I5

singularities will feature prominently, where the exceptional curves in this case intersect

in the affine Dynkin diagram of su(5).

Fiber Type Algebra Vanishing Order of (f, g,∆)

I1 − (0, 0, 1)

In>2 su(n) (0, 0, n)

I∗1 so(10) (2, 3, 7)

(2.17)

The classification by Kodaira and Néron [59–61] was however not constructive and did

not give the forms of f, g required to realise a singularity of a particular type. This

was done for elliptic surfaces by Tate [62] who constructed an algorithm for determining

the hypersurface equation required for a specific singularity. The work of [63, 64] then

generalised this to higher dimensional bases. The algorithm, for an elliptic fibration with

a section, is carried out by writing the hypersurface equation in Tate form

wy2 + a1wxy + a3w
2y − x3 − a2wx

2 − a4w
2x− a6w

3 = 0 , (2.18)

where [w : x : y] are coordinates in P2. The coefficients ai are appropriate sections of line

bundles over B. One then expands each of the coefficients as

ai =

∞∑

j=1

ai,jz
j , (2.19)

where z is a coordinate on the base and the ai,j are arbitrary coefficients independent of

z. The discriminant then takes the form

∆ = p0 + p1z + p1z
2 +O(z3) , (2.20)

where p0, p1, p2 are some polynomials in the coefficients ai,j . Solving these to vanish order

by order increases the vanishing order of the discriminant over z = 0. In the simplest

cases this can be achieved by specifying a set of vanishing orders, nai , for the coefficients

ai such that (2.19) becomes

ai =

∞∑

j=nai

ai,jz
j . (2.21)
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2.2.3 SU(5) Example

In this section we shall give an example resolution of an I5 singularity in a Calabi–Yau

four-fold and discuss how intersections between divisors in the Calabi–Yau are computed.

These intersections are relevant for determining key features of the low energy effective

theory, as shall be made apparent in sections 2.2.4 and 2.2.5.

The hypersurface equation for the I5 singularity is specified by the vanishing orders

(0, 1, 2, 3, 5) [63,64] such that the Tate form is given by

wy2 + a1wxy + a3z
2w2y − x3 − a2zwx

2 − a4z
3w2x− a6z

5w3 = 0 , (2.22)

where the class of z is denoted SG. The discriminant vanishes as

∆ = O(z5) , (2.23)

over the divisor z = 0 in the base. From the projective relation between the coordinates

(w, x, y), the associated divisors can not intersect in the ambient five-fold. This implies

an intersection relation on the homology classes of the divisors

H · (H − 2KB) · (H − 3KB) = 0 . (2.24)

Keeping track of these intersection relations is important for computing intersections be-

tween curves and divisors in the Calabi–Yau.

To see that this is an I5 singularity we need to resolve the singularity and determine how

the exceptional divisors from the resolution intersect. We will work in the patch w = 1.

The hypersurface (2.22) is singular over x = y = z = 0, and we can perform a resolution

where the coordinates x, y, z are replaced by,

x = x̂ζ1, y = ŷζ1, z = ẑζ1 , (2.25)

where the new coordinates [x̂ : ŷ : ẑ] can not vanish simultaneously. The singular locus

x = y = z = 0 has been replaced with an exceptional divisor whose polynomial equation

is ζ1 = 0. Denoting the class of the exception divisor as by [ζ1] = E1, the classes of the

new coordinates are given by

[x̂] = H − 2KB − E1 , [ŷ] = H − 3KB − E1 , [ẑ] = SG− E1 . (2.26)

The intersection relation between the new projective coordinates is given by

(H − 2KB − E1) · (H − 3KB − E1) · (SG− E1) = 0 . (2.27)
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The hypersurface equation after the blow-up takes the form

ζ2
1 (ŷ2 + a1x̂ŷ + a3ŷẑ

2ζ1 − x̂3ζ1 − a2x̂
2ẑζ1 − a4x̂ẑ

3ζ2
1 − a6ẑ

5ζ3
1 ) = 0 . (2.28)

However, this equation does not define a Calabi–Yau anymore as the resolution was not

crepant. In order for this to be a crepant resolution we need to take the proper transform,

which requires dividing by ζ2
1 leaving us with only the irreducible component. The space

is still singular after this resolution and in order to reach a fully resolved space we must

perform three further blow-ups. The final two blow-ups are small resolutions, which resolve

codimension two, and are not unique. The distinct smooth Calabi–Yau varieties which

arise from each choice of small resolutions are related by the flop transitions [65] discussed

in section 2.2.1.

One choice of resolutions is given by,

Res2: x = xζ2, y = yζ2, z = zζ2

Res3: y = yζ3, ζ1 = ζ1ζ3

Res4: y = yζ4, ζ2 = ζ2ζ4 ,

(2.29)

where we have dropped the hat notation on the coordinates and instead keep track of

the intersection relations. Introducing the classes Em for the exceptional divisors DFm ,

defined by ζm = 0, the additional relations are

(H − 2KB − E1 − E2) · (H − 3KB − E1 − E2) · (SG− E1 − E2) = 0

(H − 3KB − E1 − E2 − E3) · (E1 − E3) = 0

(H − 3KB − E1 − E2 − E3 − E4) · (E2 − E4) = 0 .

(2.30)

Each of the four resolutions required to resolve the singularity introduces a new exceptional

divisor DFm in Y . These divisors are of the form,

P1

↓

SGUT

(2.31)

where SGUT is the divisor in the base defined by z = 0. We denote the rational curves (the

P1s) by Fm, wherem = 1, · · · , 4. These are sometimes referred to as the exceptional curves.

The associated exceptional divisors DFm are obtained by fibering Fm over the singularity

locus, SGUT . The fiber is there a collection of curves consisting of the exceptional curves

and the curve, F0, distinguished by its non-trivial intersection with the section of the

fibration. Together these are referred to as fibral curves, denoted by Fi where i = (0,m),

and the associated divisors are fibral divisors.
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We would now like to compute the intersection of the fibral divisors to confirm that they

intersect in the affine Dynkin diagram of su(5). In order to do so we note that the

intersection relations (2.24), (2.27) and (2.30) allow us to replace triple intersections of

H, E1 and E2 with lower powers of each. A similar statement is true for the double

intersections of E3 and E4. The only non-trivial intersections in the ambient five-fold are

then of the form

H2 ·D1 ·D2 ·D3 , (2.32)

where D1,2,3 are pullbacks of divisors in the base. The intersections computed in chapters

3 and 4 were carried out using the Mathematica package Smooth [66]. One can check

explicitly that the fibral curves intersect to give the affine Dynkin diagram of su(5), where

the curve F0 corresponds to the affine node.

The Kodaira-Nerón classification allows us to determine the singularity type by resolving

the singularity and computing the intersection matrix of the exceptional divisors. However

we note that the resolved space is not the relevant one for F-theory compactifications. The

relevant space is obtained by taking the F-theory singular limit [37] of the smooth elliptic

Calabi–Yau, which contracts all curves in the fiber which do not intersect the section σ0 i.e.

the Fm’s. The remaining singular fibration has only a single Kähler parameter associated

with the volume of the component which remains large in the singular limit F0.

2.2.4 M/F-duality and Non-abelian Gauge Symmetries

There is a correspondence between the Lie algebra of ADE type associated with the

singularities in the fiber and the gauge group living on the stack of 7-branes wrapping the

discriminant locus. To see how these are related we will need to make use of the duality

between M-theory and F-theory [67].

The duality proceeds as follows. We begin in M-theory, which is eleven-dimensional, com-

pactified on a T 2 = S1
A×S1

B. Taking S1
A to be the M-theory circle we obtain perturbative

type IIA on S1
B by shrinking the radius rA → 0. T-dualising type IIA on S1

B gives type IIB

on S̃1
B where the radii of the two S1

B and S̃1
B are inversely proportional. The decompactifi-

cation limit is given by r̃B →∞ which corresponds to shrinking the remaining cycle in the

M-theory T 2 to zero size. As the volume of the T 2 is now zero there are no Kähler moduli,

however there is still the complex structure τ = iRA/RB which is related to the string

coupling gs in type IIB. This is extended to a duality between M-theory and F-theory by

taking the T 2 in M-theory to be fibered over some base B and then performing the above

steps fiberwise.
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Armed with the understanding of the relation between M-theory and F-theory we return

to the question of how gauge degrees of freedom arise from the singularities in the fiber.

Let us consider M-theory compactified on an elliptic four-fold, Y4. This preserves N = 2

supersymmetry in three dimensions. If the fibration is singular one needs to resolve the

Calabi–Yau as described in section 2.2.1. The divisors DFm obtained from the resolutions

are Poincaré dual in Y4 to (1, 1)-forms, wm, and the reduction of the M-theory C3 potential

gives one-forms Am,

C3 = Am ∧ wm . (2.33)

These one-forms are associated with the degrees of freedom from the Cartan subalgebra of

the gauge group. The remaining generators come from M2-branes wrapping chains of P1s

in the fiber, which become massless when the volume of the fiber is taken to zero. Using

M/F-duality, the singular limit decompactifies the circle in type IIB and the low energy

theory is four-dimensional. The number of supercharges remains the same so we obtain

N = 1 supersymmetry.

We should note that U(1) symmetries in the low energy effective theory are not engineered

from singularities in the fiber. Although single 7-branes correspond to I1 singularities in

the fiber the total space of the fibration is not singular. One can see this explicitly by

looking at the Tate form for an I1 singularity [64]

TI1 = y2 + a1xy + a3yz − x3 − a2x
2 − a4xz − a6z = 0 . (2.34)

In order for the total space to be singular the Tate form and its first derivatives need to

vanish. The obstruction to the space being singular is the derivative with respect to z

∂zTI1 = a3y − a4x− a6 , (2.35)

which is non-vanishing for a6 6= 0. Forcing a6 to vanish to a higher order in z increases the

vanishing order of the discriminant and one obtains an I2 singularity. Since the Calabi–

Yau is smooth there is no need to resolve and one obtains no new divisors in the geometry.

In fact abelian gauge symmetries arise geometrically in a different way, which is the topic

of section 2.3.

2.2.5 Appearance of Matter and Yukawa Couplings

We have just seen how codimension one singularities in the fiber determine the non-abelian

gauge symmetries on the stack of 7-branes wrapping the discriminant locus. As the bases

we consider are either complex two- or three-dimensional one can consider what happens

over higher codimension. Over codimension two loci in the base the vanishing order of the
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F2 = C++C-

C+

C-

F1
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F2F3
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F4

Figure 2.3: One possible splitting of the curves in the I5 fiber over a codimension two
enhancement to I6 [69, 65].

discriminant can increase which corresponds to an enhancement in the singularity. These

loci are associated with matter [68] transforming in some representation, R, of the gauge

group.

To illustrate this let us consider an I5 singularity. Over codimension two the singularity

can enhance generically in one of two ways, evident from the discriminant

∆ = P5P10z
5 + P10z

6 + z7 + · · · . (2.36)

The singularity enhances to I6 and I∗1 over P5 = 0 and P10 = 0, respectively. Over

these loci it was observed in [69] that the curves in the I5 fiber become reducible. Let us

consider the enhancement over P5 = 0. In this case one of the fibral curves splits into two

irreducible curves

Fi → C+ + C− . (2.37)

We shall consider the splitting depicted in figure 2.3. One can compute the intersection

of C± with the exceptional divisors

DF1 DF2 DF3 DF4

C+ 0 −1 1 0

C− 1 −1 0 0

(2.38)

and we obtain weights of the 5 and 5 representation of su(5). The new set of irreducible

curves (F0, F1, C
+, C−, F3, F4) intersect in the affine Dynkin diagram of su(6), the Lie

algebra associated to an I6 singularity.

The matter representations can be determined from the group theoretic decomposition of

the adjoint representation of su(6) into su(5)

35→ 240 + 5−6 + 56 + 10 , (2.39)

which gives the adjoint of su(5) as well as the fundamental and anti-fundamental repre-

sentations. Analogously, the enhancement over P10 = 0 gives rise to the antisymmetric

representation from the decomposition of adjoint of the associated Lie algebra so(10)

45→ 240 + 10−4 + 104 + 10 . (2.40)
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In order to understand how these additional curves arising from the splitting of codimen-

sion one fiber components correspond to massless matter we employ M/F-Theory duality.

Consider M-theory compactified on the same elliptic Calabi–Yau. The massless modes

transforming in some representation R under g arise from M2-branes wrapping these ad-

ditional curves in the fiber over codimension two. Matter is therefore localised to the

codimension two loci over which the discriminant enhances. The additional curves in the

fiber arising from the splitting of the fibral curves will be referred to as matter curves.

The possible splittings of the fibral curves over codimension two were studied in [70]. These

splittings were determined by analysing the phases of the classical Coulomb branch of the

3d N = 2 gauge theory arising from the compactification of M-theory on a Calabi–Yau

four-fold. The presence of matter charged under the gauge group subdivides the Coulomb

branch giving rise to the different phases which correspond to different resolutions of the

singular Calabi–Yau three-fold. The different phases/resolutions were encoded in the so-

called decorated box graphs associated to each codimension two fiber. The splitting for

a codimension one singularity, with associated Lie algebra g, follows the rules for the

decomposition of the simple roots of g into the weights of the representation R of g [71].

In elliptic four-folds the discriminant can enhance further over codimension three loci,

which are points in the base. These special points are the intersections of curves in the base

over which matter is localised and correspond to Yukawa couplings between the matter

representations. For an I5 singularity these enhancements produce couplings between 5,

5 and 10 representations producing the usual top and bottom Yukawa couplings

λtiab5i10a10b

λbija5i5j10a .
(2.41)

2.3 The Mordell–Weil Group and U(1) Symmetries

Abelian gauge symmetries arise from the presence of additional rational sections in the

elliptic fibration [37,38]. A rational point on an elliptic curve, a solution to the Weierstrass

equation where the coordinates take rational values, lifts to a rational section for an elliptic

fibration. This a map from the base to the fiber, which defines a Q-divisor in the Calabi–

Yau. The explicit fibrations we have considered so far have only a single holomorphic

section called the zero-section, σ0. One can also consider fibrations with rational sections,

in addition to the zero-section, and these give rise to abelian gauge symmetries.

The rational sections of an elliptic fibration form a group, the Mordell–Weil group which

is a finitely generated abelian group [72, 73]. The group law is given by the group law
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of rational points on elliptic curves, where the zero-section plays the role of the identity.

In order to generate a rank 1 Mordell–Weil group one must have in addition to the zero-

section an additional rational section. For each rational section, σα, one can define the

Shioda map,

S(σα) = σ0 − σα + Sf (2.42)

where Sf is a linear combination of the exceptional divisors DFm and pullbacks of divisors

in the base. It is determined by the condition

S(σα) ·Y Fi = 0 , where i = 0, · · · , 4 , (2.43)

where ·Y denotes an intersection in the Calabi–Yau. The Shioda map defines an addi-

tional divisor in Y with dual (1, 1)-form, wα. Using M/F-theory duality the dimensional

reduction of the C3−form along this (1, 1)-form by (2.33) gives an additional gauge field

Aα associated to an abelian gauge factor [38]. The condition (2.43) ensures that the

non-abelian gauge bosons are uncharged under these additional U(1) symmetries.

In codimension one both holomorphic and rational sections intersect the fiber transversely

in a point. They are distinguished over codimension two matter loci where rational sections

exhibit two types of behaviours

(1) Intersects the fiber transversely in a point.

(2) Contains curves in the fiber.

In comparison a holomorphic section can only continue to intersect the fiber in a point. It

is exactly this feature of rational sections that will be exploited in the analysis in chapter

3 to obtain the possible U(1) charges for 5 and 10 matter. The U(1) charges of the matter

representations are computed by intersecting the Shioda map with the matter curves which

arise from the splitting of codimension one fiber components. For the example considered

in section 2.2.5, where the splitting was given by F2 → C+ +C−, the U(1) charges of the

corresponding 5 and 5 matter are determined by

qα(C±) = S(σα) ·Y C± . (2.44)

We note that discrete gauge symmetries also play an important role in GUT model building

and can be used to prevent fast proton decay in SU(5) GUT models. Examples of such

discrete symmetries include R-parity and baryon triality [74]. In this thesis we will not

consider abelian or non-abelian discrete symmetries beyond commenting on how they can

be obtained by Higgsing additional U(1) symmetries. Discrete symmetries arise from

genus one fibrations, elliptic fibrations without a section, which are beyond the scope of

this thesis. These have been studied in [75–82].
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2.4 GUT Breaking and Fluxes

We have now seen how GUT groups and matter representations arise from singularities

in the elliptic fibration. However, in order arrive at the MSSM a mechanism for breaking

the GUT group needs to be employed. In addition the matter representations arising

from codimension two enhancements come in pairs R ⊕ R for some representation R,

which means that the spectrum has no chirality. An additional ingredient is required for

obtaining a chiral spectrum, which is G4-flux [30, 31, 83]. In this section we shall review

how fluxes can be employed to break the GUT group as well as generate chirality in the

matter spectrum.

There are three main mechanisms for breaking the GUT group in string theory, sum-

marised in [30]. We will briefly review them here focussing on SU(5) GUT models in

Calabi–Yau four-fold compactifications breaking to the MSSM.

• Higgs Field

In this scenario the GUT group is broken by giving a vacuum expectation value to a

Higgs field transforming in the adjoint representation of the GUT group. Engineering

this is possible in F-theory, however this mechanism suffers from the doublet-triplet

splitting problem. Recall the decomposition of the fundamental of SU(5) into the

representations of the MSSM is

SU(5)→ GSM = SU(3)× SU(2)× U(1)Y

5→ (3,1)− 1
3
⊕ (1,2) 1

2
,

(2.45)

with a similar decomposition for the anti-fundamental representation. The doublet

we obtain has the correct transformation for the Higgs up, Hu, however the triplet

is an exotic. The existence of the triplet is problematic as it participates in proton

decay couplings and in order for these to be sufficiently suppressed the mass of the

triplet has to be large. The double-triplet problem is therefore a question of how to

make the triplet representations sufficiently massive while keeping the masses of the

doublets of the order of the electroweak scale.

• Wilson Line Breaking

This mechanism has been used heavily in Heterotic GUT model building as it has the

virtue of splitting the Higgs doublet and triplets providing a natural solution to the

doublet-triplet splitting problem. GUT breaking in F-theory using Wilson lines (flat

line bundles) was first proposed in [30, 45] while a more detailed study was carried

out in [84, 85]. These models require the surface SGUT wrapped by the 7-branes in

the Calabi–Yau four-fold to have non-trivial fundamental group. Models obtained



Chapter 2. F-theory and Elliptic Fibrations 42

from Wilson line breaking in the hypercharge direction U(1)Y , the commutant of

GSM inside SU(5), are however also not phenomenologically ideal as they contain

light exotic matter in the form of the XY bosons [30]. These are states arising from

the decomposition of the adjoint of SU(5)

SU(5)→ GSM = SU(3)× SU(2)× U(1)Y

24→ (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)−5 ⊕ (3,2)+5 ,
(2.46)

where the latter two representations are the exotic XY bosons. When the line bundle

is not flat the reasoning in [30] is no longer valid, however in these scenarios there

is a tension between engineering a massless photon and gauge coupling unification,

which was studied in [86].

• U(1) Fluxes

Lastly, one can consider turning on fluxes for a U(1) factor inside the GUT group

which commutes with the standard model gauge group. In the case of SU(5) GUT

models the commutant is U(1)Y , which breaks SU(5) to GSM . This line of study

was initiated in [87, 84, 45]. In order for the hypercharge gauge field to be massless

there is a topological constraint on the associated line bundle LY : the 2-cycle, Ξ,

Poinaré dual to c1(LY ) inside SGUT must be a non-trivial two-cycle in the GUT

surface but trivial in the base. Formally this means that there is a 3-chain in the

base with boundary Ξ. The advantage of this method is that it does not lead to a

double-triplet splitting problem and can avoid massless XY bosons.

In chapter 4, hypercharge flux will be used for decomposing SU(5) GUT models with

additional U(1) symmetries to the MSSM. In order to obtain a chiral spectrum we also

need non-trivial G4-flux. The flux quantisation condition for the four-form flux G4 was

determined by Witten in [88] and reads

G4 +
1

2
c2(Y ) ∈ H4(Y,Z) , (2.47)

where c2(Y ) is the second Chern class of the smooth Calabi–Yau. For Calabi–Yau three-

folds the second Chern class is always divisible by two [89, 90] and the flux quantisation

condition reduces to a constraint on G4 only. In the Calabi–Yau four-fold case the im-

plication of (2.47) is that depending on the topology of the Calabi–Yau the G4-flux may

necessarily be non-vanishing.

The chirality of a representation R of the MSSM, denoted χ(R), induced from the presence

of non-trivial G4-flux and hypercharge flux is given by [45,84]

χ(R) =

∫

Σ
c1(VΣ ⊗ L

qYR
Y ) , (2.48)
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where Σ is the codimension two curve in the base over which matter is localised, VΣ is the

vector bundle associated with the G4-flux, LY is the line bundle for the U(1) hypercharge

flux and qYR is the U(1)Y charge of the representation R. The chirality can be expressed

in terms of two parameters

χ(R) =MΣ + qYRNΣ , (2.49)

whereMΣ and NΣ are the contributions to the chirality from the G4-flux and hypercharge

flux, respectively. They are the same for all MSSM representations which originate from

the same GUT matter representation and from these we can define the chirality of the

MSSM spectrum to be

SU(5) representation MSSM representation Particle Chirality

(3,2)1/6 Q Ma

10a (3̄,1)−2/3 ū Ma −Na

(1,1)1 ē Ma +Na

5i
(3̄,1)1/3 d̄ Mi

(1̄,2)−1/2 L Mi +Ni

(2.50)

where Ma,Mi, Na, Ni can be expressed in terms of MΣ,NΣ.

Various constraints on the parameters determining the chirality of each MSSM representa-

tion arise from the cancellation of anomalies and the absence of exotics. From the absence

of MSSM anomalies the the chiralities are required to satisfy

∑

a

Ma =
∑

i

Mi ,
∑

a

Na =
∑

i

Ni = 0 . (2.51)

In pure SU(5) GUT models, i.e. no additional U(1) symmetries, there only exists a single

curve in the base over which 10 and 5 representations are localised i.e. a = i = 1 and the

absence of exotics requires M10 = M5 = 3 and N10 = N5 = 0. However, in the presence

of additional U(1) symmetries there can be multiple codimension two loci with matter in

the 10 and 5 representations with different U(1) charges. Mixed anomalies between the

additional abelian symmetries and the MSSM gauge groups must now be cancelled which

leads to constraints on the chirality parameters and the U(1) charges of GUT matter.

These will be discussed in detail in chapter 4.



Chapter 3

F-theory and All Things Rational:
Surveying U(1) Symmetries with
Rational Sections

3.1 Introduction

Recent years have seen much progress towards refining F-theory compactifications, in-

cluding the realisation of symmetries of the low energy effective theory that allow more

realistic model building. These developments have been fuelled by increasingly sophisti-

cated mathematical techniques that are required to construct the geometries underlying

such F-theory compactifications. In lockstep with this, there has been a definite trend

towards characterizing universal aspects of string compactifications, with a view to going

beyond an example-driven approach. One of the areas where a universal characterisa-

tion would be particularly bountiful is that of additional symmetries, such as abelian and

discrete gauge symmetries, due to the direct phenomenological impact.

The main result of this chapter is to provide such a universal characterisation of possible

U(1) symmetries and associated matter charges in F-theory. Furthermore, we obtain a

characterisation of U(1)-charged singlets, which in turn can be used to Higgs abelian gauge

groups to discrete symmetries.

The framework we are working within is F-theory compactifications on elliptically fibered

Calabi–Yau three- and four-folds, where non-abelian gauge groups are modelled in terms

of singularities above codimension one loci in the base of the fibration [36]. Applications

include the modelling of six-dimensional N = (1, 0) or four-dimensional N = 1 super-

symmetric gauge theories, whose gauge group is determined by the Kodaira type of the

singularity [60, 59, 61]. Matter is engineered from codimension two singularities, whose

44
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fibers are characterised in terms of representation theoretic data, associated to the repre-

sentation graph of the matter multiplet [70]. Abelian symmetries, which for instance are

important model building tools for four-dimensional GUT models in F-theory [30,31,45],

are realised mathematically in terms of rational sections of the elliptic fibrations, i.e. maps

from the base to the fiber [38]. The rational sections, under the elliptic curve group law,

form an abelian group, the Mordell–Weil group, Zr ⊕ Γ, where Γ is a discrete group, the

origin of which is the zero-section σ0. Such a rank r Mordell–Weil group gives rise to r

abelian gauge factors in the low energy effective theory, by reducing the M-theory C3-form

upon the (1, 1)-cycles that are dual to the rational sections.

Numerous examples of F-theory compactifications with U(1) symmetries are by now

well-studied starting with the general theory of realising the elliptic fiber with one [91],

two [92–95] and three [96] rational sections, toric constructions of various kinds [97–100],

models based on refined Weierstrass fibrations [101–103,76], as well as a survey of all local

spectral cover constructions [104] or from Higgsing of E8 [105]. Unfortunately, none of

these approaches are both comprehensive, i.e. explore the complete set of possible U(1)

symmetries, and at the same time global (in the case of the spectral cover survey and E8

embedding, which are general but only in terms of local models).

Clearly it is highly desirable to determine the possible U(1) symmetries in general, as these

impose vital phenomenological input, and can lead to potentially non-standard physics

beyond the Standard Model (see e.g. [106]). Furthermore, from a conceptual point of

view, it is very appealing to be able to constrain these symmetries from the analysis of the

fiber alone. One avenue that would lead in principle to such a general result is to determine

the possible realisations of non-abelian gauge groups via Tate’s algorithm [63,64] applied

to the elliptic fibrations with extra sections in [91, 93, 94]. This program was pursued

in [107, 108], resulting in a large class of new Tate-like models, however, in order to be

able to carry out the algorithm, some technical simplifications had to be made, thus

potentially jeopardizing the universality of the result.

In this thesis, we propose and provide a systematic analysis and universal characterisation

of such U(1) symmetries in F-theory. Recall, that matter in a representation R of the

gauge group, arises from wrapping M2-branes on irreducible components of the fiber in

codimension two. The U(1) charges of such matter multiplets are computed by intersect-

ing the U(1) generator, which is constructed from the rational sections, with these fiber

components. To classify the possible charges, one requires the following input: firstly, a

complete understanding of the types of codimension two fibers that realise matter, which

is now available in [70], and secondly, the possible configurations that the rational sec-
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tions can take within these fibers. As we will demonstrate, the latter can be constrained

in terms of general consistency requirements on P1s, i.e. rational curves, in Calabi–Yau

varieties.

The possible codimension two fibers in an elliptic fibration with a holomorphic zero-section

can be characterised in terms of classical Coulomb phases of d = 5 or d = 3 N = 2 super-

symmetic gauge theories [109–113,65], in terms of so-called box graphs [70]. In particular,

the box graphs characterise all possible splittings of the codimension one Kodaira fibers

into codimension two fibers, which realise matter. In terms of the singular Weierstrass

model, these characterise distinct small resolutions, which are connected by flop transi-

tions.

A rational section is characterised by the property that its intersection with the fiber is

one. In codimension one, this implies that the section intersects a single rational curve

in the Kodaira fiber transversally in a point1. In codimension two, the section can again

transversally intersect a single rational curve in the fiber, however, in addition, it can also

contain components of the fiber. This effect has been referred to in the existing literature

as the section wrapping the fiber component. This phenomenon was first observed in [91],

where these fibers were shown to produce U(1) charges distinct from fibers where both

the zero-section and the additional section intersect transversally.

For each section σ there are two configurations that can occur in codimension two. Either

the section intersects a single component transversally, or it contains (i.e. wraps) fiber

components. The wrapping is highly constrained by the requirement that the intersection

of σ with the fiber remains one, which we shall see translates into conditions on the normal

bundle degrees of the wrapped curves. Concretely, we consider smooth elliptic Calabi–

Yau varieties Y of dimension three and four and, subject to the following constraint, we

determine the possible section configurations: intersections of σ with fiber components in

codimension one are preserved in codimension two, in particular, they are consistent with

the splitting as dictated by the box graphs.

For purposes of F-theory model building our main focus will be on SU(n) gauge theories

with fundamental and anti-symmetric matter, and in fact large parts of this chapter will

focus on n = 5 with the view to realise SU(5) GUT models in F-theory with additional

U(1) symmetries. We determine all possible section configurations in codimension two

fibers for these matter representations, and thereby the U(1) charges. For SU(5) with

one U(1) there are three distinct codimension one configurations of the zero-section σ0,

1In principle, the section could contain codimension one fiber components, however, it would then not
be irreducible.
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relative to the additional rational section σ1, where they intersect transversally the same

P1 I
(01)
5 , nearest I

(0|1)
5 and next to nearest I

(0||1)
5 neighbor P1s of the I5 Kodaira fiber (see

figure 3.3).

We determine all section configurations for 5 and 10 matter, under the assumption that

the sections remain smooth divisors in the Calabi–Yau geometry – the precise setup that

enters this discussion is summarised in section 3.4.1. The resulting charges are as follows:

U(1) charges of 5̄ matter for





I
(01)
5 ∈ {−3,−2,−1, 0,+1,+2,+3}

I
(0|1)
5 ∈ {−14,−9,−4,+1,+6,+11}

I
(0||1)
5 ∈ {−13,−8,−3,+2,+7,+12}

U(1) charges of 10 matter for





I
(01)
5 ∈ {−3,−2,−1, 0,+1,+2,+3}

I
(0|1)
5 ∈ {−12,−7,−2,+3,+8,+13}

I
(0||1)
5 ∈ {−9,−4,+1,+6,+11} .

(3.1)

This result holds for both three- and four-folds alike, which we will carefully derive using

the constraints on the normal bundles of rational curves in Calabi–Yau varieties. For

four-folds we also discuss some extension to Yukawa couplings, which arise in codimension

three, and show how the box graph analysis generalises as well as how the U(1) charges

of the interacting matter representations are consistent with the section configuration in

codimension three fibers.

At this juncture we should clarify an important point regarding the normalisation of the

charges. The rational section, σ1, gives rise to a Q-divisor that is suitably orthogonal to

the divisors associated to the SU(5) singular fibers, using the homomorphism between

the Mordell–Weil group and the Q-divisors written in [114], φ(σ1). The generator of a

U(1) symmetry is an integral divisor and must be a multiple of the above Q-divisor to be

orthogonal to the gauge group, that is, it must have the form mφ(σ1) where m is such

that the divisor is integral. Normalisation of the U(1) charges fixes the multiplier: there

must not exist another integral divisor D ∈ H2(Y,Z) such that mφ(σ1) = m′D for any

non-unit m′ ∈ Z. With a U(1) generator so defined and normalised the U(1) charges will

be in the possibilities listed in (3.1).

One key realisation here is that the analysis of the section configuration holds true for

any rational section, and thereby models with multiple sections and thus U(1)n additional

gauge symmetry, can be obtained by combining the configurations in our classification.

We discuss several examples with multiple U(1)s in section 3.9. All matter charges and

fiber types in codimension two known from explicit models in the literature with one or

more U(1) symmetries appear in our classification, however these form a strict subset of
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possible charges, and it would indeed be very interesting to construct explicit realisations

for the new fiber types. We also compare our charges to the ones obtained from Higgsing

E8 in [105], and find that our class of models is strictly larger than the ones arising from

E8. Regarding the singlets in [105], we provide realisations for all charges of singlets in

terms of I2 fibers with rational sections. A detailed discussion of the comparison to E8

can be found in appendix A.2.

Furthermore, we are able to determine the fiber configurations for singlets, i.e. enhance-

ments from I1 fibers in codimension one to I2 fibers in codimension two. Contrary to the

remaining part of the chapter, this analysis is general only for three-folds. One important

criterion for determining the singlets is the contractibility of curves, which is known for

three-folds, but not to our knowledge, in the case of four-folds. However, we determine all

possible codimension two I2 fibers with rational sections, without imposing any constraints

on the normal bundle degree. This result can be seen as a general study of singlets, and

imposing further constraints on the normal bundle to impose contractibility should then

reduce these to the set of singlets in four-folds. Finally, we discuss flops of fibers with

rational sections. It appears that flops can map out of the class of fibers where the section

remains a smooth divisor in the Calabi–Yau, and it would be particularly interesting to

study such singular flops in the future.

Finally, we discuss the possibility, based on the singlet curve classification, to study more

general Higgsings of the U(1) symmetry to discrete symmetries, by giving U(1)-charged

singlets a vacuum expectation value (vev). The case of charge q = 2, 3 singlets and the

Higgsing to Zq has recently appeared in [79–81]. We provide both singlet fibers for higher

charges, as well as determine the realisation of the various KK-charges, i.e. intersections

with the zero-section.

The plan of this chapter is as follows. In section 3.2 we summarise all the necessary infor-

mation about codimension two fibers from [70]. Furthermore, we extend that analysis, and

determine the Coulomb phases for SU(n) gauge theories with a general (not necessarily

the one arising from U(n)) additional U(1) symmetry. In section 3.3, we discuss rational

curves in Calabi–Yau three- and four-folds, and determine constraints on their normal

bundles. These results will be an important input and constraining factor in our analysis.

We then argue at the beginning of section 3.4 that the constraints on the rational curves

contained in a rational section, turn out to be identical in elliptic three- and four-folds2,

thus allowing us in the remainder of this section to perform full classification of the codi-

mension two fibers for both dimensions simultaneously. The case of fundamental matter

2This is true only in this specific context of elliptically fibered Calabi–Yau geometries and we make the
complete setup clear in section 3.3. It is by far not true, for rational curves in general Calabi–Yau varieties.
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for SU(n) is discussed in the second half of section 3.4 and the anti-symmetric matter

for n = 5 is discussed in section 3.5 and appendix A.1. The latter can of course also be

generalised to n > 5, however we leave this for the enterprising reader. Flops among these

fibers are discussed in section 3.6. Singlets are discussed in section 3.7 and multiple U(1)s,

as well as Higgsing to discrete subgroups are the subject of section 3.9. For four-folds we

generalise our results to codimension three, and describe some of the Yukawa couplings

and section compatibility conditions in section 3.8. We close with discussions and future

directions in section 3.10.

To summarise the applicability of our results to three- and four-folds: sections 3.4 and 3.5

on charges of fundamental and anti-symmetric matter apply to both three- and four-folds.

The section on flops is applicable to three-folds, the section on singlets 3.7.2 to three-folds

and section 3.7.3 to four-folds. Finally, the section on codimension three to four-folds,

only.

3.2 Coulomb Phases and Fibers

Before discussing rational sections we will review the results in [70], which give a compre-

hensive characterisation of the singular fibers in codimension two of an elliptic fibration.

The main idea is that the classical Coulomb phases of a 5d N = 1 or 3d N = 2 supersym-

metric gauge theory with matter obtained by compactifying M-theory on an elliptically

fibered Calabi–Yau three- or four-fold, encode the information about the structure of sin-

gular fibers in codimensions one, two, and three. Distinct Coulomb phases, which are

separated by walls characterised by additional light matter, correspond to distinct smooth

Calabi–Yau varieties, which are related by flop transitions.

For this chapter, the main case of interest is su(5)3 and we shall restrict our attention

in section 3.2.1 to explaining the correspondence between singular fibers, gauge theory

phases, and box graphs to the case of su(5) with matter in the 5 and 10 representations,

respectively. For more general results see [70]. In addition, in section 3.2.3 we will also

extend the analysis of Coulomb phases to su(5)⊕ u(1).

3.2.1 Box Graphs and Coulomb Phases

Our main interest regarding the results in [70] is the characterisation of the fibers in

codimension two in an elliptically fibered Calabi–Yau variety of dimension three or four.

3From the point of view of the box graphs, and also the elliptic fibration, it is more natural to consider
the Lie algebra, rather than group.



Chapter 3. F-theory and All Things Rational 50

We will assume that any such fibration has at least one section. The generic codimension

one fibers in such a variety are either smooth elliptic curves, or singular fibers, which are

collections of rational curves, i.e. smooth P1s, intersecting in an affine Dynkin diagram

of an ADE Lie algebra g. This classification, due to Kodaira and Néron [59–61], holds

true in codimension one, however fibers in higher codimension can deviate from this. The

main result in [70], is to map the problem of determining the codimension two fibers to

the problem of characterizing the Coulomb branch phases of a 3d N = 2 or 5d N = 1

supersymmetric gauge theory with matter in a representation R of the gauge algebra

g [109–113].

Let us first discuss briefly the connection between Coulomb phases and resolutions of

singular elliptic Calabi–Yau varieties. The topologically distinct crepant resolutions, i.e.

resolutions preserve keep the Calabi–Yau condition, of a singular Calabi–Yau variety are

parameterised by the phases of the classical Coulomb branch of the 3d N = 2 gauge

theory4 obtained from the compactification of M-theory on the four-fold [113,65,70].

The 3d N = 2 vector multiplet V in the adjoint of the gauge algebra g has bosonic

components given by the vector potential A and a real scalar φ. We are interested in the

theory with additional chirals Q, transforming in a representation R of g. The classical

Coulomb branch is characterised by giving the scalars φ a vacuum expectation value, which

breaks the gauge algebra g to the Cartan subalgebra, where φ is such that

〈φ, αk〉 ≥ 0 , (3.2)

and αk are the simple roots of g. The Coulomb branch is therefore characterised by the

Weyl chamber of the gauge algebra g.

The presence of the chiral multiplets Q in a representation R of g adds a substructure to

the Coulomb branch. The vevs of φ give rise to a real mass term for the chiral multiplets,

L ⊃ |〈φ, λ〉|2|Q|2 , (3.3)

where λ is a weight of the representation R. The mass term vanishes along walls

〈φ, λ〉 = 0 . (3.4)

A classical Coulomb phase of the 3d gauge theory is then one of the subwedges of the

Weyl chamber delineated by the walls where chiral multiplets become massless. A phase

associated to the representation R is then specified by a map

ε : R → {±1}

λ 7→ ε(λ) ,
(3.5)

4A similar statement is true for Calabi–Yau three-folds in terms of the phases of the associated 5d gauge
theory.
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Figure 3.1: The 5 and 10 representation of SU(5). Each box represents a weight Li
(Li + Lj) of the fundamental (anti-symmetric) representation and the walls inbetween
each box correspond to the action of the simple roots αk = Lk − Lk+1 on the weights
as indicated by the arrows. The direction of the arrow indicates the addition of the
corresponding simple root.

such that 〈φ, λ〉 has a definite sign ε(λ), i.e.

ε(λ)〈φ, λ〉 > 0 . (3.6)

Solutions for φ will not exist for every possible sign assignment ε, i.e. the phases are the

non-empty subwedges of the Weyl chamber satisfying (3.6). In particular the condition

(3.6) means that the weight ε(λ)λ is in this subwedge that characterises the corresponding

phase. In [70] the phases for g of ADE type were determined with various representations

R, and shown to be characterised in terms of sign-decorated representation graphs, so-

called box graphs, of R, which are essentially a graphical depiction of the maps ε. It was

shown that there are simple, combinatorial rules for determining the box graphs corre-

sponding to non-empty subwedges, and that furthermore these encode vital information

about the elliptic Calabi–Yau geometry (the intersection ring and relative cone of effective

curves in the elliptic fiber).

For our purposes g = su(5) and R = 5 or 10. We denote the weights of these representa-

tions in terms of the fundamental weights Li

5 : λ ∈ {L1, L2, L3, L4, L5} , 10 : λ ∈ {Li + Lj | i < j; i, j = 1, · · · , 5} , (3.7)

where
∑

i Li = 0. The simple roots of su(5) in this basis are

αk = Lk − Lk+1 . (3.8)

The result of [70] applied to g = su(5) with R = 5 can be summarised as follows: each

consistent phase Φε is characterised by a map ε as in (3.5), subject to the constraint that

it satisfies

5 flow rules :

{
ε(Li) = + ⇒ ε(Lj) = + for all j < i

ε(Li) = − ⇒ ε(Lj) = − for all j > i
(3.9)
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This results in phases that also include all + or all − sign assignments to the weights.

These are in fact phases of the su(5) ⊕ u(1) theory. The phases for the su(5) theory

need to satisfy an additional constraint, which ensures that the sum of all the Li vanishes

(trace condition) [70]. In this chapter we are interested in the phases for the theory with

additional abelian factors. It is a priori not clear that all phases of any su(5)⊕u(1) theory

can be characterised in terms of the phases above, and we will prove this fact in section

3.2.3.

Likewise, for R = 10 a sign assignment ε gives rise to a phase, if and only if

10 flow rules :

{
ε(Li + Lj) = + ⇒ ε(Lk + Ll) = + for all (k, l), k ≤ i , l ≤ j

ε(Li + Lj) = − ⇒ ε(Lk + Ll) = − for all (k, l), k ≥ i , l ≥ j
(3.10)

Again for su(5) there is an additional trace condition, which however we do not impose as

we are interested in theories with u(1) factors. The connection between Coulomb phases

and box graphs is then formulated as follows (see [70] and section 3.2.3):

Fact 3.2.1 The classical Coulomb phases for 3d N = 2 supersymmetric su(5)⊕u(1) gauge

theories with matter in the R = 5 or 10 representation are in one-to-one correspondence

with maps ε as in (3.5), satisfying the flow rules (3.9) or (3.10), respectively. We will

denote these by ΦR
ε .

Each phase ΦR
ε associated to such a map ε can be represented graphically in terms of a

box graph BR
ε .

Definition 3.2.1 A box graph BR
ε for a Coulomb phase ΦR

ε is given in terms of the

representation graph of R, i.e. a graph where each weight λ of R is represented by a box,

and two weights are adjacent if they are mapped into each other by the action of a simple

root, together with a sign assignment/coloring, given by ε(λ).

Generically we will draw these by coloring + as blue and − as yellow. The representation

graphs for 5 and 10 of su(5) are shown in figure 3.1. The phases/box graphs for 5 are

shown in figure 3.2, for 10 in appendix A.1.

3.2.2 Box Graphs and Singular Fibers

The Coulomb phases encode information about the effective curves of the elliptic fibration

in codimension two. Let us begin with a few useful definitions. In the following Y is

a smooth elliptic Calabi–Yau variety of dimension at least three with a section, which

guarantees the existence of a Weierstrass model for this fibration. The information about

the Coulomb phases can be reformulated in terms of the geometric data of a certain
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relative subcone inside the cone of effective curves. A curve is defined to be effective if

it can be written in terms of a positive integral linear combination of integral curves (i.e.

actual complex one-dimensional subspaces) of Y . The cone of effective curves in Y is

denoted by NE(Y ).5 For an elliptic fibration, the notion of relative cone of curves is of

particular importance. Let W be the singular Weierstrass model, associated to Y . In fact,

for a given singular Weierstrass model there are generically several, topologically distinct

smooth models, Yi. The singular limit corresponds, in codimension one, to the maps

πi : Yi → W , (3.11)

such that all rational curves in the singular Kodaira fibers, which do not meet the section,

are contracted [115]. Associated to this, there is the notion of a relative cone of effective

curves (see e.g. [54]):

Definition 3.2.2 The relative cone of curves NE(πi) of the morphism πi in (3.11) is the

convex subcone of the cone of effective curves NE(Yi) generated by the curves that are

contracted by πi.

The phases/box graphs are in one-to-one correspondence with pairs (Yi, πi), specified in

the following way: Each fiber in codimension one is characterised by rational curves Fk

associated to the simple roots of the gauge group G. In codimension two some of the Fk

become reducible and split into a collection of rational curves

Fk → C1 + · · ·+ C` , (3.12)

where each Cj is associated to ε(λ)λ for λ a weight of the representation R, or to a simple

root. The main result in [70] can then be stated as follows:

Fact 3.2.2 There is a one-to-one correspondence between consistent phases or box graphs

BR
εi characterised by the sign assignments εi satisfying the conditions in Fact 3.2.1 and

crepant resolution of W , (Yi, πi). In particular, the box graphs determine the relative cone

of effective curves for the maps πi as

NE(πi) =
〈
{Fk | k = 0, · · · , rank(g)} ∪ {Cεi(λ)λ | λ weight of R}

〉
Z+ . (3.13)

The extremal generators of this cone are

1. The rational curves Fk, that remain irreducible in codimension two.

2. Cεi(λ)λ is extremal if there exists a j such that BR
εj = BR

εi |εj(λ)=−εi(λ), i.e. there is

another consistent box graph or phase, such that the only sign change occurs in the

weight λ.

5These are numerically effective curves, where we mod out by the equivalence that two curves are
identified if they have the same intersections with all Cartier divisors.
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Figure 3.2: Box graphs for u(5) phases with 5 matter. On the left are the splittings that
occur over matter loci for the corresponding phase.

From the box graphs we can determine which Fk remain irreducible: Fk, associated to the

simple roote αk, remains irreducible, if any weight λ, for which λ + αk is another weight

in the representation R, the weight λ+ αk has the same sign assignment, i.e.6

ε(λ) = ε(λ+ αk) . (3.14)

Fact 3.2.3 Two crepant resolutions (Yi, πi) and (Yj , πj) of the singular Weierstrass model

W are related by a simple flop, if the corresponding box graphs are related by a single sign

change

BR
εj = BR

εi |εj(λ)=−εi(λ) (3.15)

for some weight λ. I.e. they correspond to single box changes of signs, which map one

extremal generator to minus itself.

In the remainder of this chapter, it will be very important to understand the degrees of

normal bundles of curves in the fibers of elliptic Calabi–Yau varieties. The description of

the codimension two fibers in terms of box graphs allows us to determine the intersections

of the extremal generators with the so-called Cartan divisors, DFk , which are Fk fibered

over the codimension one discriminant locus. They are dual to the rational curves Fk,

with which they intersect in the Calabi–Yau Y in the negative Cartan matrix −Ckl of the

gauge algebra

DFk ·Y Fl = −Ckl . (3.16)

Consider now a codimension two fiber where Fk splits as in (3.12). Then

DFm ·Y Ca = ε
(
λ(a)

)
λ(a)
m , m = 1, · · · , rank(g) , (3.17)

i.e. it intersects with the rational curves Ca in a weight λ(a) of the representation R. Which

weight this is, i.e. the intersections of the fiber components with the Cartan divisors, and

with which sign assignment it occurs can be determined from the box graphs.

6This condition is formulated in [70] as adding the simple root does not cross the anti-Dyck path that
separates the + and - sign assigned weights in the box graph.
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Fact 3.2.4 Let C be an extremal generator of the cone NE(πi) for a pair (Yi, πi), asso-

ciated to the box graph BR
εi as in Fact 3.2.2, associated to a weight λ of the representation

R. The Dynkin labels εi(λ)λm = DFm ·Y C can be computed from the box graph BR
εi as

follows: If λ± αm is not a weight in the representation then DFm ·Y C = 0. Else:

1. If εi(λ) = εi(λ± αm) then DFm ·Y C = +1.

2. If εi(λ) = −εi(λ± αm) then DFm ·Y C = −1.

This fact together with DFm ·Y Fm = −2, will be used quite regularly in the analysis of

the normal bundles in sections 3.4 and 3.5.

Finally, let us note that the number NRq of phases, i.e. pairs (Yi, πi), with matter in the

representation R and u(1) charge q under the gauge algebra g⊕ u(1) is given in terms of

the quotiented Weyl group:

Fact 3.2.5 The number NR
q of classical Coulomb phases for gauge algebras g⊕ u(1) and

representation R with u(1) charge q is

NRq =

∣∣∣∣
Wg̃

Wg

∣∣∣∣ , (3.18)

where g̃ is the Lie algebra characterizing the local enhancement in codimension two, i.e.

decomposing its adjoint into representations of the gauge algebra contains the representa-

tion Rq and its conjugate as follows

g̃ → g⊕ u(1)

Adj (g̃) → Adj (g)⊕Adj (u(1))⊕Rq ⊕R−q .
(3.19)

For g = su(5) and R = 5 or 10, g̃ = su(6) or so(10) and N5 = 6 and N10 = 16. For

su(5) with 5 we summarised the phases in figure 3.2, including which of the Fk split. The

components into which they split are precisely those adjacent to the sign change, which

is clear from the statements in Fact 3.2.2. The curves C±i correspond to the weights ±Li,
which are generators of the cone defined by ΦR

ε . Note that the 5 representation can also

arise from a higher rank enhancement e.g. to su(n), n > 6. Such enhancements when

realised in the geometry would require very special tuning of the complex structure, with

the fibers corresponding to monodromy-reduced In fibers. These will not be considered

here, but the reader is referred to [116]. The structure of splittings in codimension two for

10 matter are listed in appendix A.1, tables A.1 and A.2, which include all the information

about the splitting in codimension two, the extremal generators of the relative cone of

effective curves, and the associated box graphs.
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3.2.3 U(1)-Extended Coulomb Phases

In [70] the phases for the su(5) ⊕ u(1) theory were determined in the case where the

u(1) corresponds to
∑5

i=1 Li, where the Li are the fundamental weights introduced in

the previous section, i.e. this u(1) corresponds to the trace of the u(5). In this section

we show that the analysis there holds more generally for the classical Coulomb phases of

su(5)⊕ u(1), where the U(1) does not necessarily have this origin7. Note that the phases

for the su(5)⊕ u(1) theory are one-to-one with the elements of the quotiented Weyl group

Wg̃/Wsu(5), as summarised in Fact 3.2.5, which is strictly larger than the number of phases

for the theory without an abelian factor.

Let Rq be a representation R of su(5) with charge q under the u(1). Let us consider

the maps ε : Rq → {±1} corresponding to a consistent, non-empty, subwedge of the

fundamental Weyl chamber. The walls of these subwedges are characterised by

〈φ, (λi; q)〉 ≡ 〈φ, λi〉+ qφu = 0 , (3.20)

where φu is the additional component of φ along the u(1) generator. Consider the 5q

representation of su(5) ⊕ u(1). The fundamental weights of su(5), the Li, in the Cartan-

Weyl basis take the form
λ1 : (1, 0, 0, 0)

λ2 : (−1, 1, 0, 0)

λ3 : (0,−1, 1, 0)

λ4 : (0, 0,−1, 1)

λ5 : (0, 0, 0,−1) .

(3.21)

In the same basis the simple roots of the su(5) are

α1 : (2,−1, 0, 0) , α2 : (−1, 2,−1, 0) , α3 : (0,−1, 2,−1) , α4 : (0, 0,−1, 2) .

(3.22)

To reiterate, to determine the maps ε which correspond to non-empty phases it is needed

to find the maps ε : 5q → {±1} such that the inequalities

〈φ, αi〉 > 0

ε((λi; q))〈φ, (λi; q)〉 > 0
(3.23)

have integral solutions for φ.

Similarly to the derivation of the flow rules alluded to in the earlier parts of this section

one can show that if ε((λi; q)) = −1 and ε((λi+1; q)) = +1 then there would be no such

7There can corrections to the classical Coulomb phase analysis with additional abelian factors, as
discussed in 6d in [117,118], which will not play a role here.
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solutions: for such an ε it would be the case that

〈φ, λi+1〉+ qφu − (〈φ, λi〉+ qφu) > 0 ⇔ 〈φ, λi+1 − λi〉 > 0 . (3.24)

However, the simple roots are αi = λi − λi+1 and the first of the inequalities in (3.23)

implies

〈φ, λi − λi+1〉 > 0 . (3.25)

Obviously there is no such φ which solves these inequalities: all subwedges of the funda-

mental Weyl chamber defined by this map ε are empty. This leads to the same flow rules

as listed in (3.9).

Again there are six phases, of which two have all positive or all negative signs, and are

only non-empty in the theory with a u(1) symmetry in addition to the su(5), indeed these

extra phases occur precisely for matter charged under the additional u(1). Consider now

the phase associated to the map ε((λi; q)) = +1 for all i. Then, using that
∑
λi = 0, as

can be seen explicitly above from the presentation in the Cartan-Weyl basis,

5∑

i=1

(〈φ, λi〉+ qφu) > 0 ⇔ qφu > 0 . (3.26)

Such inequalities can only be solved if q 6= 0, and similiarly for the all negative phase.

These are the two additional phases for charged matter.

One can also consider the 10q representation of su(5) ⊕ u(1) in the same way. Similarly

to the case when of the 5q representation one finds an augmented set of maps ε when q is

non-zero. There are sixteen phases when q 6= 0 and eight when q = 0. These sets of phases

correspond to the different sets of phases in [70], except here there is no assumption that

the generator of the u(1) symmetry is necessarily that in the u(5).

To summarise if the matter is charged under the u(1) symmetry then there are additional

phases of the classical Coulomb branch for the su(5)⊕u(1) theory with fundamental or anti-

symmetric matter. The additional phases imply that there are additional distinct resolved

geometries associated to the singular Calabi–Yau four-fold, induced by the specialisation

of complex structure necessary to produce matter charged under the additional u(1), i.e.

geometrically, the existence of additional rational sections.

3.3 Rational Curves in Calabi–Yau Varieties

The goal of this chapter is to constrain the possible U(1) charges of matter in 4d and

6d F-theory compactifications, by determining the possible codimension two fibers with
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rational sections. The relevant characteristic of the codimension two fibers that determine

the U(1) charge are the intersection numbers between the rational curves in the fiber

and the section. We constrain these by combining the input from the box graphs on the

codimension two fibers with general constraints on the normal bundles of rational curves

in projective varieties. From section 3.2 we obtain the information about the relative cone

of effective curves NE(πi), for each resolution (Yi, πi) of a singular Weierstrass model W .

All curves in NE(πi) are rational, i.e. they are smooth P1s in Yi. In the following we will

summarise several Theorems that we use in the later sections to constrain the fibers with

rational sections for Calabi–Yau three- and four-folds. The protagonist in this discussion

is the normal bundle of rational curves in Calabi–Yau varieties.

3.3.1 Rational Curves and Normal Bundles

In this section we collect useful results about rational curves in Calabi–Yau varieties, in

particular related to the normal bundle, which will allow us to constrain the fibers with

rational sections. Unless otherwise stated Y is a smooth Calabi–Yau variety.

The first theorem constrains the degree of the normal bundle of a rational curve in a

Calabi–Yau variety.

Theorem 3.3.1 Let Y be a smooth Calabi–Yau variety of dimension n and C a smooth

rational curve in Y . Then the normal bundle of C in Y , NC/Y , is

NC/Y =

n−1⊕

i=1

O(ai) , with

n−1∑

i=1

ai = −2 .

Proof: E.g. for n = 3 see [119]. Let Y be of dimension n, then NC/Y is defined by the

short exact sequence

0→ TC → TY |C → NC/Y → 0 , (3.27)

where T denotes the respective tangent bundles. This implies that NC/Y is a rank n− 1

vector bundle on C which, by the Birkhoff-Grothendieck Theorem [120], can be written

uniquely up to permutations, as a direct sum of line bundles on C,

NC/Y =
n−1⊕

i=1

O(ai) .

By the Calabi–Yau condition on Y , the canonical bundle is trivial and thus, c1(TY |C) = 0.

Combining this with c1(TC) = 2 the exact sequence gives that c1(NC/Y ) = −2. Thus
∑
ai = −2. �
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In the following we will encounter rational curves which are contained within divisors, for

instance, Cartan divisors associated to the elliptic fibration, which we introduced in (3.16).

They are ruled by the rational curves Fk associated to simple roots of the gauge algebra,

above the codimension one discriminant locus. Likewise we will see that the section, which

we will assume to be a smooth divisor in the Calabi–Yau, can contain rational curves in

the fiber that occur above codimension two. In all such instances it will be crucial to relate

the normal bundle of the curve in the Calabi–Yau to the normal bundle in the divisor.

This is achieved using the following exact sequence of normal bundles:

Theorem 3.3.2 Let Y be a smooth projective variety, D a non-singular divisor in Y , and

C a smooth rational curve contained in D. Then there is a short exact sequence of normal

bundles

0→ NC/D → NC/Y → ND/Y

∣∣
C
→ 0 . (3.28)

Proof: [121], 19.1.5. �

One of the goals in later sections will be to determine the intersection of the rational section

with various curves in the fiber. In particular, when these rational curves are contained

in the section, this intersection is determined by the degree of the normal bundle of the

divisor as follows – here C does not necessarily have to be a rational curve:

Theorem 3.3.3 Let Y be a smooth projective variety, D a divisor in Y and C a curve

C ⊂ D ⊂ Y . Then

D ·Y C = deg
(
ND/Y

∣∣
C

)
(3.29)

Proof: [122], Theorem 15.1. �

Combining these properties, we can in fact relate the intersection of any non-singular

divisor and a smooth rational curve contained inside it in terms of the degree of the

normal bundle of the curve inside the divisor.

Corollary 3.3.4 Let Y be a smooth Calabi–Yau n-fold and C a rational curve contained

inside a smooth divisor D in Y . Then

D ·Y C = −2− deg
(
NC/D

)
. (3.30)

Proof: By Theorem 3.3.1 the degree of NC/Y is −2, which by Theorem 3.3.2 has to be the

sum of the degrees −2 = deg(NC/D) + deg(ND/Y |C) = deg(NC/D) +D ·Y C by Theorem
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3.3.3. �

With these general results we now turn to determining the possible degrees of normal

bundles of rational curves in Calabi–Yau three-folds and four-folds in the next two sections,

respectively. In particular we will constrain the normal bundles of rational curves in

divisors, for instance rational sections, which by the above corollary will imply constraints

on the intersections and thereby U(1) charges.

3.3.2 Calabi–Yau Three-folds

In this section, let Y be a smooth Calabi–Yau three-fold. Some results in rational curves

in elliptically fibered three-folds (not necessarily Calabi–Yau varieties) can be found in

Miranda [123], which however does not discuss rational sections, or the generalisation

to higher dimensional varieties, which we will be important for us. Let D be a smooth

divisor in Y , and C a smooth rational curve contained in D. Then it follows directly from

Corollary 3.3.4 that8

D ·Y C = −2− C ·D C . (3.31)

We will often encounter the following situation: consider a rational curve C in a smooth

elliptic Calabi–Yau variety Y . From the box graph analysis, we know its normal bundle

in Y . We can then ask what normal bundles the curve can have in a divisor D – for

instance the section. By the Corollary 3.3.4, the degree of the normal bundle NC/D is

linked directly to the intersection in Y of the divisor with the curve, which in the case

when D is a section determine the U(1) charge. Thus, constraining the normal bundles

of C in the rational section results in constraints on the possible charges. The following

theorem determines what the possible normal bundles of rational curves in divisors can

be, given the normal bundle of the curve in Y . We furthermore summarise the bounds

that are then implied upon the intersection of the divisor with the curve.

Theorem 3.3.5 Let Y be a smooth Calabi–Yau three-fold, D a non-singular divisor in

Y , and C a rational curve contained in D.

(i) Let (C)2
D = deg(NC/D) = k. If k ≥ −1 the short exact sequence of normal bundles

in Theorem 3.3.2 splits and

NC/Y = O(k)⊕O(−2− k) . (3.32)

8We will most of the time refrain from using (C)2D = C ·D C as this does not generalise to higher
dimensional varieties.
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(ii) Let NC/Y = O(−1)⊕O(−1). If D is a smooth divisor containing C, then

NC/D = O(k) , k ≤ −1 , (3.33)

and there exists a non-trivial embedding

O(k) ↪→ NC/Y = O(−1)⊕O(−1) , (3.34)

and

D ·Y C = −2− k ≥ −1 . (3.35)

(iii) Let NC/Y = O ⊕O(−2). If D is a smooth divisor containing C, then

NC/D = O(k) , k = 0 or k ≤ −2 , (3.36)

and there exists a non-trivial embedding

O(k) ↪→ NC/Y = O ⊕O(−2) , (3.37)

and

D ·Y C = −2− k =

{
−2 k = 0

≥ 0 k ≤ −2
. (3.38)

(iv) More generally, there is an embedding (without loss of generality m ≥ −1)

O(k) ↪→ O(m)⊕O(−2−m) for k = m or k ≤ −2−m. (3.39)

Proof: To show (i) note that by Theorem 3.3.1 the degrees of the normal bundle have to

sum to −2, so NC/Y = O(a) ⊕ O(−2 − a), where without loss of generality a ≤ −1. By

assumption NC/D = O(k). The map O(k)→ O(a) with k ≥ −1 ≥ a is trivial map, unless

a = k, in which case the Theorem follows. Else, if a 6= k then O(k) needs to embed into

O(−2− a) and therefore k = −2− a. Part (ii) follows by applying (i) which implies that

if k > −1 then the normal bundle NC/Y cannot be O(−1) ⊕ O(−1). Thus k ≤ −1, and

there is an embedding of O(k) into O(−1) ⊕ O(−1). Similar arguments show parts (iii)

and (iv). �

Finally, the following theorem, which we will only make use of in our analysis of singlets,

determines the normal bundles of contractible curves in three-folds:

Theorem 3.3.6 Let C be a smooth, rational curve that can be contracted in a smooth

three-fold Y . Then the normal bundle is

NC/Y = O(a)⊕O(b) , (a, b) = (−1,−1), (−2, 0), or (−3, 1) . (3.40)

Such a curve is referred to as a (−2)−curve.

Proof: [124,125].
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3.3.3 Calabi–Yau Four-folds

For applications to 4d F-theory compactifications, including GUT model building, it is

crucial to determine constraints for Calabi–Yau four-folds. In the following section, let Y

be a smooth Calabi–Yau four-fold, and C a rational curve, contained in a smooth divisorD.

For elliptic fibrations, we will in fact be interested in a slightly more specialised situation,

where inside the divisor D there is a surface S which is ruled by C. Specifically, we have

in mind what is usually referred to as matter surface, which is a P1-fibration, i.e. a ruled

surface, over the matter curve (the codimension two locus in the base). These matter

surfaces are contained within the Cartan divisors, which are dual to the rational curves

Fi in the notation of section 3.2. In this setup, we will now show that the classification

for three-folds will in fact carry over directly to four-folds in codimension two. 9

Again, the goal is to connect the intersection of divisors (in particular the section) with

a rational curve C in Y to the degrees of the normal bundle of C in Y . Recall the short

exact sequence of normal bundles from Theorem 3.3.2 [121]

0 → NC/D → NC/Y → ND/Y |C → 0 . (3.41)

By Theorem 3.3.1, the normal bundle is a direct sum of line bundles, where the sum of

degrees needs to add up to −2

NC/Y = O(a)⊕O(b)⊕O(−2− a− b) . (3.42)

To determine the degrees a and b, there are two cases of interest when C is a rational curve

in a codimension two fiber in an elliptic Calabi–Yau four-fold: either the rational curve C

corresponds to one of the curves that split in codimension two, or it remains irreducible.

From the box graphs, we can determine the intersection of the Cartan divisors with the

curves, D ·Y C, which in turn by Theorem 3.3.3, constrain ND/Y |C . The following theorem

determines the normal bundle NC/Y given the information about ND/Y |C :

Theorem 3.3.7 Let C be a smooth rational curve, contained in a smooth divisor D in a

smooth Calabi–Yau four-fold Y .

(i) If ND/Y |C = O(−1) and D contains a surface S, which is ruled by C, then

NC/D = O ⊕O(−1) , (3.43)

and the short exact sequence (3.41) splits

NC/Y = O ⊕O(−1)⊕O(−1) . (3.44)

9It would appear that in fact it holds in codimension two for any elliptic Calabi–Yau n-fold.
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(ii) Likewise for ND/Y |C = O(−2) and D is ruled by C then

NC/D = O ⊕O , (3.45)

and

NC/Y = O ⊕O ⊕O(−2) . (3.46)

Proof: (i) If there is a surface in D which is ruled by C then there is an embedding

O ↪→ NC/D . (3.47)

If ND/Y |C = O(−1) and given that the degrees in NC/Y sum to −2, it follows that

NC/D = O(m)⊕O(−1−m) . (3.48)

As O = NC/S needs to embed into NC/D, it follows that m = 0. The extension group of

O ⊕ O(−1) and O(−1) is trivial, and thereby the exact sequence splits. (ii) By similar

arguments as in (i) NC/D = O(m)⊕O(−m), and for O to embed into this m = 0. Again

the extension group is trivial and the normal bundle sequence splits. �

For σ a rational section, which contains curves in the fiber, we can now constrain the

possible normal bundle degrees of C in σ. The last theorem provides us with the infor-

mation about the normal bundles NC/Y . As in Theorem 3.3.5, we now determine the

constraints on the intersection numbers σ ·Y C (where σ will be now be a rational section)

by constraining the degrees of the normal bundle of C in σ, which are related by Corollary

3.3.4.

Theorem 3.3.8 Let σ be a smooth divisor in Y , a smooth Calabi–Yau four-fold, and

C ⊂ σ a rational curve.

(i) If NC/Y = O ⊕O(−1)⊕O(−1), then there is an embedding

NC/σ = O(a)⊕O(b) ↪→ NC/Y = O ⊕O(−1)⊕O(−1) (3.49)

and

σ ·Y C = −2− a− b . (3.50)

The values for a and b are constrained to be (wlog a ≥ b)

a ≤ 0 , b ≤ −1 , a+ b ≤ −1 , (3.51)

which implies that

σ ·Y C ≥ −1 . (3.52)
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(ii) If NC/Y = O ⊕O ⊕O(−2), then there is an injection

NC/σ = O(a)⊕O(b) ↪→ NC/Y = O ⊕O ⊕O(−2) (3.53)

and

σ ·Y C = −2− a− b . (3.54)

The values for a and b are constrained to be

a = b = 0 or a ≤ 0 , b ≤ 0 , a+ b ≤ −2 , (3.55)

which implies that

σ ·Y C =

{
−2 a = b = 0

≥ 0 a+ b ≤ −2
. (3.56)

Proof: This follows directly from the short exact sequence (3.41) and Corollary 3.3.4. �

This concludes our summary of properties of rational curves. We now turn to combining

these constraints on the intersection numbers and normal bundles, with the constraints

from the box graphs that specify how codimension one fibers split in codimension two.

The next two sections will discuss this in the case of SU(n) with various matter represen-

tations.

3.4 SU(5)× U(1) with 5 Matter

The ultimate physics application of our analysis of codimension two fibers is the case

of SU(5) GUTs with additional U(1) symmetries. The constraints on the section and

codimension two fiber structure provide a systematic way to obtain a comprehensive list

of all possible U(1) charges for matter in the 5 and 10 representation of the GUT group

SU(5). In this section we will first focus on fundamental matter.

Throughout this section let Y be an elliptically fibered Calabi–Yau variety. The zero-

section of the fibration will be denoted by σ0, and the additional rational section needed

for there to be a U(1) symmetry as σ1.

3.4.1 Setup and Scope

There are a few assumptions that go into this analysis, and to make it clear what the

scope of the results in this chapter are, we will now list them.
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(1.) We assume that each section in codimension one intersects exactly one fiber compo-

nent transversally once, i.e. the sections do not contain components of codimension

one fibers10.

(2.) The rational sections, as divisors in Y , will always be assumed to be smooth.

(3.) The codimension one locus in the base of the fibration, above which there are singular

fibers I5, is smooth.

(4.) The U(1) generator is an integral divisor normalised as described after (3.62).

Within the setup outlined above, the following can be regarded as complete classification

of codimension two fibers for both Calabi–Yau three- and four-folds with one extra rational

section, and thereby the possible matter charges.

3.4.2 Codimension one Fibers with Rational Sections

The codimension one fibers for SU(5) GUTs realised in F-theory are fibers of Kodaira

type I5. These fibers consist of a ring of five smooth rational curves, Fi for i = 0, · · · , 4.

Further, as these curves are the components of the fiber over generic points above a

codimension one locus in the base, SGUT , one can define divisors in Y , which are ruled by

the curves Fi over SGUT . These divisors, DFi , are called the Cartan divisors, and satisfy

DFi ·Y Fj = −Cij , (3.57)

where Cij is the Cartan matrix of affine SU(5).

Let σ be a rational section of the elliptic fibration, i.e. it has to satisfy

σ ·Y Fiber = 1 . (3.58)

Throughout this chapter it shall be assumed, see section 3.4.1, that this condition is

satisfied by σ having exactly one transversal intersection with one of the components of

the generic codimension one fiber and having no intersection with the other components.

The section thus intersects, say, the mth component of the fiber

σ ·Y Fi =

{
1 i = m

0 i 6= m.
(3.59)

It shall always be supposed, without loss of generality, that one section, the zero-section,

shall intersect the component F0. Up to inverting the order of the simple roots there

10This in fact seems to not be a real constraint, as wrapping in codimension one would imply that the
section is either ruled by rational curves in the fiber (and thereby would contract to a curve in the singular
limit) or not be irreducible.
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Figure 3.3: Three types of codimension one I5 fibers with sections σ0 (blue) and σ1 (red)

distributed as I
(01)
5 , I

(0|1)
5 and I

(0||1)
5 , respectively.

are three distinct codimension one fiber types once this information about the additional

rational section is included. These are, using the notation introduced in [107],

I
(01)
5 : σ0 ·Y F0 = σ1 ·Y F0 = 1

I
(0|1)
5 : σ0 ·Y F0 = σ1 ·Y F1 = 1

I
(0||1)
5 : σ0 ·Y F0 = σ1 ·Y F2 = 1 ,

(3.60)

corresponding to the three configurations shown in figure 3.3.

The U(1) generator comes from the Shioda map as applied to the extra rational section,

σ1. The Shioda map associates to a rational section σ1 an element S(σ1) in H2d−2(Y,Z),

where d is the complex dimension of Y , which is perpendicular to all horizontal divisors

(i.e. divisors pulled back from the base), the zero-section as well as the Cartan divisors,

associated to the Fi, which ensures that the non-abelian SU(5) gauge bosons are uncharged

under the U(1) [91]. In order to compute U(1) charges of matter, we are interested in the

intersection of the Shioda map with curves in the fiber, for which the subtractions from

contributions of horizontal divisors are not relevant, and we therefore define S(σ1) to be

such that

S(σ1) ·Y C = q(C) , (3.61)

the charge under the U(1). In this way the Shioda map is specified by the codimension one

data of the fibration. For SU(5) with Mordell–Weil group rank one the Shioda divisors

are
I

(01)
5 : S(σ1) = σ1 − σ0

I
(0|1)
5 : S(σ1) = 5σ1 − 5σ0 + 4DF1 + 3DF2 + 2DF3 +DF4

I
(0||1)
5 : S(σ1) = 5σ1 − 5σ0 + 3DF1 + 6DF2 + 4DF3 + 2DF4 .

(3.62)

To arrive at the specific forms above some further assumptions need to be made for

the divisor S(σ1) that generates the U(1) symmetry from the Shioda map. Imposing

orthogonality to the SU(5) Cartan divisors specifies the above up to a multiplicative

constant. This constant is fixed by the requirement that S(σ1) should be integral, and

that there should be no other integral divisor D such that S(σ1) = m′D for some |m′| > 1.

The last condition is required for the U(1) symmetry to be normalised appropriately.
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Figure 3.4: Box graphs and codimension two fibers where the Fj that split into C± in
codimension two are shown with dashed lines, for the su(5)⊕ u(1) theory with matter in
the fundamental representation.

Assumption (4.) in section 3.4.1 is precisely that there does not exist such an integral

divisor D.

3.4.3 Normal Bundles in Elliptic Calabi–Yau Varieties

We start with an I5 fiber, with components Fi, intersecting in the affine Dynkin dia-

gram of SU(5). Along codimension two enhancement loci, some fiber components become

reducible. The resulting codimension two fibers, which give rise to matter in the fun-

damental representation, were determined in section 3.2, from the Coulomb phases/box

graphs, where one of the Fj curves splits as follows

Fj → C+ + C− . (3.63)

In the case of SU(5) with 5 these are shown in figure 3.4, including the fibers that split,

shown as dashed lines.

In this analysis we allow for a non-holomorphic zero-section [93,97] which means that over

codimension two σ0 can also contain curves in the fiber. Let σ denote either σ0 or σ1.

We will now determine the fibers including the rational sections in codimension two. In

addition to intersecting the components of the codimension two fiber transversally, the

section can contain entire fiber components C ⊂ σ, which in the existing literature is

refered to as wrapping. In addition to consistency of the embedding of the rational curves

into the divisors σ, we will use two constraints to determine all possible fibers:

1. If σ ·Y Fi = 0 or 1, then this holds also in codimension two, in particular when the

curve Fi splits it is necessary that the sum of the two curves, C+ and C−, intersects

with the section as Fi did.

2. σ ·Y Fiber = 1.

Denote by Fp the codimension one fiber component that splits

Fp → C+ + C− . (3.64)
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From the box graph analysis it is known that the intersection with DFp of these curves is

DFp ·Y C± = −1 . (3.65)

For the case where a curve Fi in the fiber remains irreducible, again from the box graph

analysis, we have that

DFi ·Y Fi = −2 . (3.66)

We will now determine, using (3.65) and (3.66), the normal bundles of the curves C± and

Fi in Y , which will in turn fix the possible intersection of these curves with the section.

Three-folds

First consider the case where Y is a Calabi–Yau three-fold. Then by Theorem 3.3.5 (i),

(3.65) fixes the normal bundles to be

NC±/Y = O(−1)⊕O(−1) . (3.67)

If a curve C = C± is contained in the divisor σ, C ⊂ σ, then from Theorem 3.3.5 (ii) it

follows that

NC/σ = O(k) , k ≤ −1 , (3.68)

and this in turn bounds the intesection of the curve with the section

σ ·Y C = −2− k ≥ −1 . (3.69)

On the other hand, if σ does not contain one of the curves C = C±, then σ ·Y C ≥ 0. In

summary we can conclude that the intersection number of σ with the two curves C± is

always bounded below as follows

σ ·Y C± ≥ −1 . (3.70)

If Fi is irreducible and Fi ⊂ σ then its normal bundle in Y is given by

NFi/Y = O ⊕O(−2) , (3.71)

and by (3.66) and Theorem 3.3.5 (iii)

NFi/σ = O(k), k = 0 or k ≤ −2 , (3.72)

and

σ ·Y Fi =

{
−2 k = 0

≥ 0 k ≤ −2
. (3.73)
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Four-folds

Likewise we can consider the case when Y is a smooth Calabi–Yau four-fold. We will now

show that the constraints on the intersections of the section with the fiber components in

this case are the same as the ones we derived for three-folds. In section 3.4.3 we started

by considering a rational Fp in the fiber, which in codimension two splits and

DFp ·Y C± = −1 . (3.74)

Let S± be the surfaces ruled by C± over the codimension two locus in the base. Then

S± ⊂ DFp which implies by Theorem 3.3.7 (i), that

NC±/DFp
= O ⊕O(−1) . (3.75)

and that the normal bundle to these curves in the four-fold is

NC±/Y = O ⊕O(−1)⊕O(−1) . (3.76)

Consider now the situation that S = S± is contained in σ, and thereby C = C± ⊂ σ.

There is a normal bundle exact sequence

0→ NC/S → NC/σ → NS/σ|C → 0 . (3.77)

As S is ruled by C we know that NC/S = O. On the other hand, we know that by the

normal bundle exact sequence for C ⊂ σ ⊂ Y

0→ NC/σ → NC/Y = O ⊕O(−1)⊕O(−1) → Nσ/Y |C → 0 , (3.78)

thus writing NC/σ = O(a) ⊕ O(b) Theorem 3.3.8 (i) states that a ≤ 0, b ≤ −1 and

a + b ≤ −1. However, from (3.77), we know that O ↪→ O(a) ⊕ O(b), therefore we must

have a = 0 and b ≤ −1, i.e.

NC±/σ = O ⊕O(k) , k ≤ −1 . (3.79)

This proves that the conditions on the normal bundle degrees of NC/σ for four-folds are

exactly the same as the ones we derived in the case of three-folds (3.69) resulting in the

same bounds on σ ·Y C± as in (3.70).

Likewise, when Fi ⊂ Si is contained in the section, where Si is the surface ruled by Fi over

the codimension two locus in the base, then DFi ·Y Fi = −2 and by Theorem 3.3.7 (ii)

NFi/Y = O ⊕O ⊕O(−2) . (3.80)
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Again applying the normal bundle exact sequences to Fi ⊂ Si ⊂ σ as well as Fi ⊂ σ ⊂ Y

we infer from 3.3.8 (ii) that

NFi/σ = O ⊕O(k) , k = 0 or k ≤ −2 , (3.81)

which again is identical to the constraints that we had on the normal bundle degree for

Fi ⊂ σ in the three-fold case in (3.72) and thus the bound on σ ·Y Fi is also identical to

that case and depends only on k.

It seems that similar arguments will hold for elliptic Calabi–Yau n-folds in codimension

two, quite generally for n ≥ 3, where instead of a ruled surface S±, there is a ruled n− 2

dimensional sub-variety, which is ruled by the rational curves in the fiber. This seems

to only add additional O summands to the normal bundle, and the constraints on the

intersections would appear to be the same as the ones we derived for n = 3 and n = 4.

3.4.4 Codimension two Fibers with Rational Sections

In the last section we have shown that the conditions on the normal bundle degrees for

rational curves in the elliptic fibration which are contained in the section, are characterised,

for both three- and four-folds by one integer, namely, the degree of the normal bundle

NC/σ = O(k) for three-folds, and NC/σ = O ⊕ O(k), for four-folds, respectively, where

k is bounded as described in the previous section. The happy fact, that the degrees in

three-and four-folds (in this specifc context), are constrained in the same way, allows us

to carry out a full classification simultaneously for both cases. The only important input

is the degree of the normal bundles deg(NC/σ) = k, upon which the charges will depend.

One last word of caution before we start our analysis: in the case of four-folds, whenever

a rational curve C in the fiber is contained in σ, we mean this to imply always, that there

is a surface S, which is ruled by C over the codimension two locus, which is also contained

in σ (i.e. in compliance with the general discussion in section 3.4.3).

The two cases to consider now separately are

σ ·Y Fp = σ ·Y (C+ + C−) =

{
0 Case (a)

1 Case (b)
. (3.82)

(a) σ ·Y Fp = 0:

From (3.69) it follows that σ ·Y C± ≥ −1. There are three solutions to σ ·Y Fp = 0:

(σ ·Y C+, σ ·Y C−) = (−1, 1) , (0, 0) and (1,−1) . (3.83)

There are several ways that each of these intersections can be realised: σ ·Y C+ = −1

implies C+ ⊂ σ and the degree of the normal bundle of C+ in σ is deg(NC+/σ) = −1.
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Likewise, σ ·Y C+ = 0 implies C+ ⊂ σ and deg(NC+/σ) = −2 or C+ 6⊂ σ with no

transverse intersection. On the other hand the intersections for C− can be realised

as follows: σ ·Y C− = 1 implies either, that C− 6⊂ σ, and intersects σ transversally

once, or C− ⊂ σ and deg(NC−/σ) = −3. The case for σ ·Y C+ = 1 proceeds in the

same fashion, by swapping C+ and C−. The intersection σ ·Y C− = 0 implies either,

that C− 6⊂ σ, and does not intersects σ, or C− ⊂ σ and deg(NC−/σ) = −2.

In the last case, it is important to note that by the structure of the codimension two

fiber the two curves C±, which are both contained in the divisor DFp , intersect

C+ ·DFp S
− = 1 , (3.84)

where S− is the matter surface, which is ruled by C− in the case of four-folds, and is

equal to C− for three-folds. I.e. if one of the curves is contained in the section, then

the other curve will automatically acquire an intersection with the section. Thus the

combinations C+ ⊂ σ, deg(NC+/σ) = −2 and C− 6⊂ σ , σ ·Y C− = 0 do not have

any solution in an I6 fiber.

In summary we obtain the following configurations:

σ ·Y C+ σ ·Y C− C+ configuration C− configuration

−1 1 C+ ⊂ σ , deg(NC+/σ) = −1 C− 6⊂ σ , σ ·Y C− = 1

C+ ⊂ σ , deg(NC+/σ) = −1 C− ⊂ σ , deg(NC−/σ) = −3

0 0 C+ ⊂ σ , deg(NC+/σ) = −2 C− ⊂ σ , deg(NC−/σ) = −2

C+ 6⊂ σ , σ ·Y C+ = 0 C− 6⊂ σ , σ ·Y C− = 0

1 −1 C+ 6⊂ σ , σ ·Y C+ = 1 C− ⊂ σ , deg(NC−/σ) = −1

C+ ⊂ σ , deg(NC+/σ) = −3 C− ⊂ σ , deg(NC−/σ) = −1

(3.85)

(b) σ ·Y Fp = 1:

Making use again of the bound (3.69), the solutions to σ ·Y (C+ + C−) = 1 are

(σ ·Y C+, σ ·Y C−) = (−1, 2) , (0, 1) , (1, 0) and (2,−1) . (3.86)

The only new configuration that has not already appeared in case (a) is σ ·Y C− = 2.

One configuration that realises this is C− 6⊂ σ, but C− has two transverse intersection

points with σ. Note that in this case C+ is contained in σ, and thus contributes

an intersection by (3.84). If C− ⊂ σ then deg(NC−/σ) = −4. The complete set of
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section configurations in this case are summarised in the following table11:

σ ·Y C+ σ ·Y C− C+ configuration C− configuration

−1 2 C+ ⊂ σ , deg(NC+/σ) = −1 C− 6⊂ σ , σ ·Y C− = 2

C+ ⊂ σ , deg(NC+/σ) = −1 C− ⊂ σ , deg(NC−/σ) = −4

0 1 C+ ⊂ σ , deg(NC+/σ) = −2 C− 6⊂ σ , σ ·Y C− = 1 (∗)
C+ ⊂ σ , deg(NC+/σ) = −2 C− ⊂ σ , deg(NC−/σ) = −3

C+ 6⊂ σ , σ ·Y C+ = 0 C− 6⊂ σ , σ ·Y C− = 1

1 0 C+ 6⊂ σ , σ ·Y C+ = 1 C− ⊂ σ , deg(NC−/σ) = −2 (∗)
C+ ⊂ σ , deg(NC+/σ) = −3 C− ⊂ σ , deg(NC−/σ) = −2

C+ 6⊂ σ , σ ·Y C+ = 1 C− 6⊂ σ , σ ·Y C− = 0

2 −1 C+ 6⊂ σ , σ ·Y C+ = 2 C− ⊂ σ , deg(NC−/σ) = −1

C+ ⊂ σ , deg(NC+/σ) = −4 C− ⊂ σ , deg(NC−/σ) = −1

(3.87)

Note that for each value of σ ·Y C± there are two realisations in terms of different config-

urations, and in the following we will only consider one of these.

Furthermore, we need to discuss the remaining fiber components. From the box graphs,

we know that the intersection of rational curves in the fiber in codimension two is that of

an I6 Kodaira fiber. Thus, if a component C± is contained in σ it induces intersections of

the section with the adjacent fiber components. Depending on the position of the section

in codimension one, there are two cases again to consider: let Fq be such that it remains

an irreducible fiber component in codimension two. Then

(a) σ ·Y Fq = 0:

Either Fq 6⊂ σ and has no transverse intersections, or Fq ⊂ σ then deg(NFq/σ) = −2.

(b) σ ·Y Fq = 1:

Either Fq 6⊂ σ and has one transverse intersection, or Fq ⊂ σ then deg(NFq/σ) = −3.

We can now determine the complete set of fibers in codimension two with a rational section

σ. Again, Fp → C+ + C− is the rational curve that becomes reducible in codimension

two:

(i) C+, C− 6⊂ σ:

(a) σ ·Y Fp = 0 and σ ·Y Fm = 1, p 6= m:

It follows from table 3.85 that the only configuration is

C+, C− 6⊂ σ , σ ·Y C± = 0 . (3.88)

11We will see that the intersection configurations with (∗) in fact do not have a realisation in an I6 fiber.
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The section does not intersect either of the split components, indeed it must

merely remain on the component that it originally intersected in codimension

one, Fm. Figures 3.5 and 3.10 (i) represent this configuration.

(b) σ ·Y Fp = 1:

From table 3.87 the only two solutions are

C+, C− 6⊂ σ , σ ·Y C± = 1 , σ ·Y C∓ = 0 . (3.89)

In this case the section intersects one of the split components transversally, and

does not contain any curves in the fiber. This is shown in figure 3.5, and more

generally, in figures 3.11, (i) and (ii), respectively.

(ii) C+ ⊂ σ, C− 6⊂ σ:

(a) σ ·Y Fp = 0 and σ ·Y Fm = 1, p 6= m:

The configuration from table 3.85 is

C+ ⊂ σ , deg(NC+/σ) = −1

C− 6⊂ σ , σ ·Y C− = 1 .
(3.90)

The positive intersection of σ with C− arises from the single point of intersection

between the curves C+ and C−. Any fiber components, Fi, which are positioned

in the ring between C+ and Fm must also be contained in σ, so that σ ·Y Fi = 0.

This can be seen by considering first the intersection point of C+ with the curve

Fi, which is adjacent to it in the ring. Clearly this would have σ ·Y Fi = 1,

which would be inconsistent with codimension one unless i = m. Therefore Fi

must be contained in σ, with Fi ·σ DFi = −2, so that it has zero intersection

number in Y . This is consistent with Theorems 3.3.5 and 3.3.8. Identically,

such wrapping must continue until the section meets the fiber component that

it intersects in codimension one. This configuration is depicted in figure 3.5

and, more generally, for In, in figure 3.10 (ii).

(b) σ ·Y Fp = 1:

There are two solutions in this case from table 3.87, however we will see only

the following gives rise to a consistent fiber:

C+ ⊂ σ , deg(NC+/σ) = −1

C− 6⊂ σ , σ ·Y C− = 2 .
(3.91)

The second solution characterised by C+ ⊂ σ , deg(NC+/σ) = −2 and C− 6⊂
σ , σ ·Y C− = 1 would imply that the section wraps C+, and thus by the

argument in the last paragraph, would gain a non-trivial intersection with all
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Figure 3.5: I5 fiber with rational section σ, shown intersecting F1 in codimension one.
The left hand side shows the case F2 → C+ + C− in codimension two and all the the
section configurations that are consistent, which correspond to all case (a) in the main
text. The fiber components that are contained in σ are colored red, and the numbers next
to it refer to the degree of the normal bundle of the curves inside σ. Furthermore, in each
row the two configurations give rise to the same intersection of σ ·Y C±, and are thus,
from the point of view of U(1) charges, identical. Note that for one of these configurations
the entire fiber is contained in the section. The right hand side shows the case when the
fiber component F1, which intersects the section in codimension one, becomes reducible
in codimension two. Again, for each pair (σ ·Y C+, σ ·Y C−) there are two configurations
realising those intersection numbers.
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Fi between C+ and C− unless, all of these curves are contained in σ with normal

bundle degree −2, so that σ ·Y Fi = 0. However, then C− would be the only

not contained fiber component, and would have intersection 2 with the section,

which would be in contradiction. Thus we are left with the only configuration

(3.91). Again, by the same arguments as given in the previous paragraph the

section must contain all the Fi between C+ and C−. If there were to be some Fi

which was not contained in σ then it would have a strictly positive intersection

number with σ from its neighbour in the ring, contradicting codimension one.

C− then has one intersection point with σ from the intersection with C+ and

one from the intersection with the Fi on its other side, giving the required

intersection number of +2. The fiber is represented in figure 3.5 and for In in

figure 3.11 (iv).

(iii) C− ⊂ σ, C+ 6⊂ σ:

The analysis in the case is essentially identical to the analysis in case (ii), by ex-

changing the roles of C+ and C−, and we do not repeat it here.

(a) σ ·Y Fp = 0:

See figure 3.5 and figure 3.10 (iii).

(b) σ ·Y Fp = 1:

See figure 3.5 and figure 3.11 (iii).

(iv) C+, C− ⊂ σ:

(a) σ ·Y Fp = 0 and σ ·Y Fm = 1, p 6= m:

From table 3.85 there are three configurations, corresponding to degree of the

normal bundle of the curves in σ

(
deg(NC+/σ), deg(NC−/σ)

)
= (−1,−3) , (−2,−2) , (−3,−1) . (3.92)

In all of these cases, all Fi need to be contained in σ, which again follows by

noting that if only C± were contained in σ, then both Fp−1 and Fp+1 gain an

intersection from the wrapping of C±. Thus in order for all but Fm to have

zero intersection with σ, the entire fiber needs to be contained in σ with

deg(NFm/σ) = −3 , deg(NFi/σ) = −2 , i 6= m, p . (3.93)

The degree of deg(NFm/σ) ensures that this component has, consistently with

codimension one, intersection +1 with σ. See figure 3.5 and figure 3.10 parts

(iv)-(vi).
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(b) σ ·Y Fp = 1:

Table 3.87 implies there are four configurations of this type:

(
deg(NC+/σ), deg(NC−/σ)

)
= (−1,−4) , (−2,−3) , (−3,−2) , (−4,−1) .

(3.94)

Again, just as in the last paragraph, the entire fiber needs to be contained in

σ with

deg(NFi/σ) = −2 , i 6= p . (3.95)

See figure 3.5 and figure 3.11 parts (v)-(viii).

This completes the analysis of what fiber configurations in codimension two are possible

with one rational section.

3.4.5 Compilation of Fibers

The analysis in the last section allows us now to characterise all possible fibers in codimen-

sion two for an SU(5) model with one rational section. There are in total three distinct

codimension one configurations for the section, up to inverting the order of the curves Fi

in codimension one. For each of these, we now determine the fibers with rational section

in codimension two. As shown in tables 3.85 and 3.87, for each value of (σ ·Y C+, σ ·Y C−)

there are two realisations in terms of fibers, see e.g. figure 3.5. As these are indistinguish-

able from the point of view of U(1) charges, in the following, we will only consider the

fibers with minimal wrapping. The different configurations are drawn for each phase of

each codimension one fiber type in figure 3.6. These tables contain information about

• Phase: given in terms of the box graph as well as the splitting Fi = C+ + C− for

each phase.

• Codimension two fiber: in the present case for fundamental matter, the enhancement

is to an I6 fiber, i.e. SU(6). The intersection of the exceptional P1s is shown,

including the curves C± that arise from the splitting are marked by dashed lines.

• All possible codimension two fibers with section: a dot on one of the P1s corresponds

to a section intersecting the fiber component transversally in +1. If a fiber compo-

nent is contained in the section σ, then it is colored (blue or red). The “wrapped”

components carry a numerical label, which indicates the normal bundle degree of

the curve inside the section σ.

• Matter intersections: finally, the table contains the information about the intersec-

tion of the section σ with the curves C±, which will then be used to compute the
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U(1) charges.

Knowing the various configurations one can read off the values of σ ·Y C± in each case.

It is these values which determine the U(1) charges, after the application of the Shioda

map, as shall be seen in the subsequent section. In the phase where the codimension one

component Fp splits the possible values of σ ·Y C± are

(a) σ ·Y Fp = 0

σ ·Y C± ∈ {−1, 0, 1} . (3.96)

(b) σ ·Y Fp = 1

σ ·Y C± ∈ {−1, 0, 1, 2} . (3.97)

These values are the contributions to the U(1) charges from the rational sections. One

sees that there is an additional value for σ ·Y C when the codimension one curve that

splits, Fp, had the rational section intersecting it in codimension one. We should then

anticipate seeing additional U(1) charges in those phases where such a component of the

I5 fiber splits. Indeed we will see this in the next section.

3.4.6 U(1) Charges

The U(1) charges of the curves C±, which are labelled by the weights of the fundamental

representation, are obtained by intersecting them with the Shioda map of the section σ1

S(σ1) = 5(σ1 − σ0) + Sf , (3.98)

where σ0 is the zero-section. Here, Sf depends on the codimension one fibers and is

determined by requiring that for all i

S(σ1) ·Y Fi = 0 . (3.99)

In particular, if Fi → C+ + C− splits then (C+ + C−) ·Y S(σ1) = 0 is required. The

U(1) charges of C+ and C− is given by S(σ1) ·Y C+ and S(σ1) ·Y C− respectively, and

are always conjugate. For I
(01)
5 , Sf is trivial, and for the remaining codimension one fiber

types they are listed in tables 3.1 and 3.2.

In the section 3.4.4 we determined a comprehensive list of possible fibers in codimension

two, given that a rational section σ intersects either F0, F1, or F2 in codimension one,

respectively. In a model with one U(1), we apply this analysis to the zero-section σ0 and

additional section σ1. Without loss of generality, σ0 ·Y F0 = 1, and thus the possible

codimension two fibers are listed in figure 3.6. Depending on which codimension one fiber
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Phase Sf Sf ·Y C+ Sf ·Y C−

4DF1 + 3DF2 + 2DF3 +DF4

+1 +4

−4 −1

+1 −1

+1 −1

+1 −1

Table 3.1: Values for Sf ·Y C± for I
(0|1)
5 local enhancement to I6.

Phase Sf Sf ·Y C+ Sf ·Y C−

3DF1 + 6DF2 + 4DF3 + 2DF4

+2 +3

−3 +3

−3 −2

+2 −2

+2 −2

Table 3.2: Values for Sf ·Y C± for I
(0||1)
5 local enhancement to I6.

type (3.60) we start with, in addition the section σ1 can be in one of the configurations in

figures 3.6. Obviously, only fiber types in the same phase can be combined.

The charge is computed by intersecting the Shioda map S(σ1) (3.98) with the split curves

C+ and C−. The result is shown for all codimension one fiber types in figures 3.7, 3.8,

and 3.9. Each of the figures contains the information

Caption for Figures 3.7, 3.8, and 3.9: (3.100)

• The phase, specified by the box graph, and the fiber in codimension two that results,

without the section information.

• The horizontal (vertical) axis shows the different configurations for curves of the

fiber in the section σ1 (σ0).

• The entries of the tables contain the U(1) charges (a,−a) determined by S(σ1) ·Y C+

and S(σ1) ·Y C− respectively.

• The lines between the phases, that is, connecting the six large boxes, denote that

there exist flop transitions between those linked phases.12 The coloring of the charges

is related these flops and will be discussed later.

12These are the flops that exist generically, as explained in [70]. This will be discussed later on.
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In summary the charges for 5̄ (and negative of these for the conjugate 5) that we find are:

U(1) charges of 5̄ matter for





I
(01)
5 ∈ {−3,−2,−1, 0,+1,+2,+3}

I
(0|1)
5 ∈ {−14,−9,−4,+1,+6,+11}

I
(0||1)
5 ∈ {−13,−8,−3,+2,+7,+12} .

(3.101)

This concludes the analysis of possible U(1) charges for an SU(5) gauge theory in F-

theory with fundamental matter, for one additional abelian gauge factor. Note that all

known charges from explicit realisations of the fiber in various toric tops as well as Tate

models, including the individual U(1) charges from models with multiple U(1) factors, are

a (strict) subset. We discuss the relation to the embedding into E8, as discussed in [105],

in appendix A.2.

3.4.7 SU(n)× U(1) with Fundamental Matter

In our discussion of fiber configurations in section 3.4.4 it was in fact of no particular

importance that we started with an In fiber with n = 5. Indeed the situation is very

similar and easily generalises, to SU(n) with fundamental (i.e. the n representation)

matter, where the fiber enhances from an In to an In+1. Each section in codimension one

intersects one of the rational curves Fi, i = 0, 1, · · · , n − 1, which intersect in an affine

SU(n) Dynkin diagram. In codimension two, one of the Fi splits, as shown in [70]. For

an elliptic fibration with sections σ0 and σ1, we again use the notation

I(0|m1)
n : σ0 ·Y F0 = 1 , σ1 ·Y Fm = 1 . (3.102)

Let Fp be the component that splits in codimension two. Then there are two cases to

consider: either σ ·Y Fp = 0 or 1, which are shown in figures 3.10 and 3.11, respectively.

The reasoning is entirely as in section 3.4.4, with the only difference being the length of

the chain of rational curves Fi that are located between C+ and C−. The distinct cases

of intersections (σ ·Y C+, σ ·Y C−) are also analogous to the SU(5) case.

The Shioda map can be constructed for an I
(0|m1)
n fiber and the U(1) charges of a fibration

with a specified wrapping configuration can be written in terms of m and n. The Shioda

map for an In fiber with separation m between the sections is determined by the mth row

of the inverse Cartan matrix associated to the codimension one singularity type [91]. The

inverse Cartan matrix of SU(n) is an (n− 1)× (n− 1) matrix with elements

Cmc =
1

n

{
c(n−m) c ≤ m
m(n− c) m < c .

(3.103)
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Figure 3.7: Codimension two fibers and charges for 5 matter for I
(01)
5 models. For details

see (3.100).
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Figure 3.8: Codimension two fibers and charges for 5 matter for I
(0|1)
5 models. For details

see (3.100).



Chapter 3. F-theory and All Things Rational 83

σ1.C+= 0
σ1.C- = 0 

σ1.C+= -1
σ1.C- = +1 

-1

σ
0.

C
+=

 0
σ

0.
C

-=
+1

 
σ

0.
C

+=
+1

σ
0.

C
-=

 0
σ

0.
C

+=
 -1

σ
0.

C
- =

 +
2

-2-2
-2

-2

-1

(-3,+3)(-8,+8)

(+7,-7)

(+2,-2)

(+2,-2)(-3,+3)

σ1.C+= +1
σ1.C- = -1 

(+2,-2)

-1
-2

-2 -2

σ
0.

C
+=

+2
σ

0.
C

- =
 -1

-1
-2

-2
-2 -2 (-13,+13) (-8,+8) (-3,+3)

(+7,-7 (+12,-12)

F0= C++C-

C-

C+

F1

F2

F3F4

(-3,+3)(-8,+8)

(+7,-7)

(+2,-2)

(+2,-2)(-3,+3)

(+2,-2) (+7,-7 (+12,-12)

(-13,+13) (-8,+8) (-3,+3)

σ1.C+= -1
σ1.C- = +1 

σ
0.

C
+=

 -1
σ

0.
C

-=
+1

 
σ

0.
C

+=
 0

σ
0.

C
-=

 0

(-3,+3)

(+7,-7)

(+2,-2)

(+2,-2)

σ1.C+= 0
σ1.C- = 0 

σ
0.

C
+=

+1
σ

0.
C

- =
 -1

-1

-2-2-2

(-8,+8) (-3,+3)

σ1.C+= +1
σ1.C- = -1

-1
-2

-2

(+2,-2)

(+7,-7)

(+12,-12)

-1

-1

-2

F4= C++C-

C-

C+

F1

F2

F3

F0

(-3,+3)

(+7,-7)

(+2,-2)

(+2,-2)

(-8,+8) (-3,+3) (+2,-2)

(+7,-7)

(+12,-12)

σ1.C+= -1
σ1.C- = +1 

σ
0.

C
+=

 -1
σ

0.
C

-=
+1

 
σ

0.
C

+=
 0

σ
0.

C
-=

 0

(-3,+3)

(+7,-7)

(+2,-2)

(+2,-2)

σ1.C+= 0
σ1.C- = 0 

σ
0.

C
+=

+1
σ

0.
C

- =
 -1

-1 -2-2
-2

(-8,+8) (-3,+3)

σ1.C+= +1
σ1.C- = -1

-1

-2
-2

(+2,-2)

(+7,-7)

(+12,-12)

-1

-1

-2

F3= C++C-

C- C+

F1

F2F4

F0

(-3,+3)

(+7,-7)

(+2,-2)

(+2,-2)

(-8,+8) (-3,+3) (+2,-2)

(+7,-7)

(+12,-12)

σ1.C+= 0
σ1.C- = +1 

σ1.C+= -1
σ1.C- = +2 

(-3,+3)(-8,+8)

(+7,-7)

(+2,-2)

(+2,-2)(-3,+3)

σ1.C+= +1
σ1.C- = 0 

-1-2
-2

-2

(-13,+13) (-8,+8 (-3,+3)

σ1.C+= +2
σ1.C- = -1

-1-2

-2
-2

(+2,-2)

(+7,-7)

(+12,-12)

-2 -2

(-3,+3)(-8,+8)

(+7,-7)

(+2,-2)

(+2,-2)(-3,+3)

(-13,+13) (-8,+8) (-3,+3) (+2,-2)

(+7,-7)

(+12,-12)

σ
0.

C
+=

 -1
σ

0.
C

-=
+1

 
σ

0.
C

+=
 0

σ
0.

C
-=

 0
σ

0.
C

+=
+1

σ
0.

C
- =

 -1

-1 -2

-2 -2

C-

C+

F1

F3

F4

F2= C++C-

F0

-1

σ
0.

C
+=

 -1
σ

0.
C

-=
 +

1 
σ

0.
C

+=
 0

σ
0.

C
-=

 0
σ

0.
C

+=
+1

σ
0.

C
- =

 -1

-1
-2

-2
-2

C-

C+

F2F3

F4

F1= C++C-

F0

-1

σ1.C+= -1
σ1.C- = +1 

(-8,+8)

(+2,-2)

σ1.C+= 0
σ1.C- = 0 

(-13,+13) (-8,+8)

σ1.C+= +1
σ1.C- = -1

-1
-2

-2

(+2,-2)

(+7,-7)

-1-2

(-8,+8)

(+2,-2)

(-3,+3)

(-3,+3)

(-13,+13) (-8,+8) (-3,+3)

(+2,-2)

(+7,-7)(-3,+3)

(-3,+3)

(-3,+3)

C-C+

F1

F2F3

F4

F0= C++C-
σ1.C+= 0
σ1.C- = 0 

σ1.C+= -1
σ1.C- = +1 

-1

σ
0.

C
+=

 0
σ

0.
C

-=
+1

 
σ

0.
C

+=
+1

σ
0.

C
-=

 0
σ

0.
C

+=
 -1

σ
0.

C
- =

 +
2

-1
-2

-2
-2

-2

(-3,+3)(-8,+8)

(+7,-7)

(+2,-2)

(+2,-2)(-3,+3)

σ1.C+= +1
σ1.C- = -1 

(+2,-2)

-1
-2

-2
-2

σ
0.

C
+=

+2
σ

0.
C

- =
 -1

-1-2
-2

-2
-2

(-13,+13) (-8,+8) (-3,+3)

(+7,-7) (+12,-12)

(-3,+3)(-8,+8)

(+7,-7)

(+2,-2)

(+2,-2)(-3,+3)

(+2,-2)

(-13,+13) (-8,+8) (-3,+3)

(+7,-7) (+12,-12)

Figure 3.9: Codimension two fibers and charges for 5 matter for I
(0||1)
5 models. For details

see (3.100).
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The Shioda map for an I
(0|m1)
n fiber is then of the form

S(σ1) = n(σ1 − σ0) +
n−1∑

i=1

CmiDFi , (3.104)

ignoring contributions from the base. For ease of notation we will allow cp to denote the

coefficient of the term DFp in the Shioda map, that is Cmp. The Shioda map excepting

the term n(σ1 − σ0) will be denoted by Sf as before. The conjugate U(1) charges are

obtained from the intersection numbers

S(σ1) ·Y C± . (3.105)

Such an intersection can be broken into two parts, contributions from (σ1 − σ0) ·Y C±,

which were enumerated for each section in (3.96, 3.97), and contributions from Sf ·Y C±,

which are determined here. Let us consider the phase where Fp → C+ + C−, and we

shall content ourselves with only obtaining the U(1) charge of C+, as the charge for C−

is simply its negative. From the resulting fiber it is observed that the only contributions

from Sf ·Y C+ come from cp and cp−1, as these are the coefficients in the Shioda map of

the divisors DFi , which C+ intersects, i.e.

Sf ·Y C+ = cp−1 − cp . (3.106)

Given (3.103) this can be expanded explicitly in terms of m and n (importantly the

dependence on the phase is minimal)

Sf ·Y C+ =

{
(m− n) p ≤ m
m m < p .

(3.107)

In the above we considered only the so-called SU(n)-phases, where p = 1, · · · , n−1. What

remains is to consider the phases with an additional U(1), where F0 → C+ + C−. In this

case the only contribution to Sf ·Y C+ comes from cn−1, which is m. In the previous section

the possible values of σ ·Y C+ were determined from the possible consistent wrapping

scenarios to be such that

σ ·Y C+ ∈ {−1, 0, 1, 2} . (3.108)

Combining this information with (3.107) tables can be constructed for all possible charges

in each phase. The two tables which cover all the phases for I
(0|m1)
n are given in table 3.3.

It can be seen that the possible charges are

S(σ1) ·Y C+ = m− 3n , m− 2n , · · · , m+ 2n . (3.109)

The subset of charges that exist in every phase is

S(σ1) ·Y C+ = m− 2n , m− n , · · · , m+ n . (3.110)
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σ1 ·Y C+

−1 0 1 2

σ
0
· Y
C

+ −1 m− n m m+ n m+ 2n

0 m− 2n m− n m m+ n

1 m− 3n m− 2n m− n m

σ1 ·Y C+

−1 0 1

σ
0
· Y
C

+ −1 m m+ n m+ 2n

0 m− n m m+ n

1 m− 2n m− n m

2 m− 3n m− 2n m− n

Table 3.3: The U(1) charges of all the possible wrapping combinations of the codimension

one I
(0|m1)
n fiber enhancing to an In+1 fiber. On the left are the charges in phase where

Fp splits for p = 1, · · · ,m, and on the right are the charges for the phases where p =
m+ 1, · · · , n− 1 or p = 0. In each configuration, the cases σ ·Y C+ = 2 only appear in the
p = m or p = 0 phases.

While these are the charges that appear in every phase for every m, there are some special

end-point values of m for which extra charges appear in all phases. When m = 1 or

m = n− 1 then charges m+ 2n and m− 3n respectively appear in all phases. In addition,

when m = 0 the tables degenerate on top of each other and the charge m+ 2n appears in

all phases. In the phase where F0 splits there is a new charge m+ 3n from σ1 ·Y C+ = 2

and σ0 ·Y C+ = −1.

There are charges, which do not appear in every phase within the framework of fibers

satisfying the setup outlined in section 3.4.1. This has in particular to do with the flops

of configurations of the type shown in (iii) and (iv) of figure 3.11, which we will elaborate

on in section 3.6.

3.5 SU(5)× U(1) with 10 Matter

In this section we find the possible charges for 10 matter by analysing how the sections

can behave under an I5 to I∗1 enhancement. The codimension one I5 fibers and Shioda

maps are the same as those given in section 3.4.2.
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Figure 3.12: The three abstract splittings for I5 to I∗1 enhancements. The colored loops
indicate that there exists a root that splits into the encircled curves in codimension two.

3.5.1 Codimension two Fibers with Rational Sections

The fibers of the 10 representation are obtained from the box graphs in tables A.1 and A.2

in appendix A.1. The resulting fibers are all I∗1 , consistent with the local enhancement

to so(10), with the correct multiplicities. To find the charges of the 10 representation

we employ the same method as before, solving for the possible configurations under the

constraints of consistency with codimension one, σ ·Y Fiber = 1. The multiplicity of each

component in the I∗1 fiber must be taken into account when imposing the latter condition.

There are three classes of splitting types that can occur in the enhancement to I∗1 , shown

in figure 3.12. They are one of the following,

(A) Fi → C+ + C̃−, Fj → C̃+ + C̃−, Fk → C̃+ + C−

(B) Fi → C̃± + Fj + C̃∓, Fk → C± + C̃∓

(C) Fi → C+ + Fj + Fk + C−, j 6= k and j, k 6= i .

In each of the three cases there are different subcases to consider depending on which of the

components of the fiber the section intersects in codimension one. There are five different

options corresponding to the number of components in codimension one, however the

reflection symmetry of the intersection graphs allows one to consider only eleven different

configurations, instead of fifteen. The configurations will be termed the “splitting types”

and will be denoted as

A.1: σ ·Y Fl = 1
A.2: σ ·Y Fi = 1
A.3: σ ·Y Fj = 1

B.1: σ ·Y Fl = 1
B.2: σ ·Y Fk = 1
B.3: σ ·Y Fj = 1
B.4: σ ·Y Fm = 1
B.5: σ ·Y Fi = 1

C.1: σ ·Y Fl = 1
C.2: σ ·Y Fk = 1
C.3: σ ·Y Fi = 1 .

For each splitting type one can determine the values of the intersection numbers, from the

intersection of the section with the split curves, that are consistent with the constraints

from codimension one and the requirement that the normal bundles of subspaces embed
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as subbundles of the total normal bundle. Each possible set of intersection numbers may

have multiple realisations in terms of configurations of the curves inside the section. The

intersection numbers with σ are all that is necessary to determine U(1) charges via the

Shioda map. In this section splitting type A.2 will be detailed explicitly and the tables of

results for all the other ten splitting types will be relegated to appendix A.1.

Consider then splitting type A.2, defined as the splitting

Fi → C̃+ + C−

Fj → C̃+ + C̃−

Fk → C+ + C̃− ,

(3.111)

with σ ·Y Fi = 1, and the intersection of the section with all other codimension one fiber

components being zero. As such the constraints from the split curves become

σ ·Y (C̃+ + C−) = 1

σ ·Y (C̃+ + C̃−) = 0

σ ·Y (C+ + C̃−) = 0 .

(3.112)

Any one of the intersection numbers σ ·Y C for any curve C determines all the other

intersection numbers with the Cs. As the normal bundle to the curves C that come from

the splitting of the curves Fi in codimension two is O(−1) ⊕ O(−1) for three-folds and

O⊕O(−1)⊕O(−1) for four-folds it is known by Theorems 3.3.5 and 3.3.8 that σ ·Y C ≥ −1

for all such C. Solving the constraints (3.112) subject to these inequalities leads to the

three solutions

(i) σ ·Y C− = 2 , σ ·Y C̃+ = σ ·Y C+ = −1 , σ ·Y C̃− = 1

(ii) σ ·Y C− = 1 , σ ·Y C̃+ = σ ·Y C̃− = σ ·Y C+ = 0

(iii) σ ·Y C− = 0 , σ ·Y C̃+ = σ ·Y C+ = 1 , σ ·Y C̃− = −1 . (3.113)

Each of these solutions has in addition that σ ·Y Fl = σ ·Y Fm = 0 from consistency of the

curves which do not split with codimension one. It remains to ask whether there are any

possible realisations of these intersection numbers. All the configurations realising each of

these three solutions are shown in figure 3.13. If a curve is such that σ ·Y C = −1 then it

must be contained in σ with deg(NC/σ) = −1, else if a curve is such that σ ·Y C = k ≥ 0

then the curve is either not contained in σ and has k transverse intersections with σ, or

it is contained in σ with deg(NC/σ) = −k − 2. In this way configurations of curves inside

the section with particular intersection numbers can be constructed.
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Figure 3.13: The different realisations of the intersection number solutions (i) (top row),
(ii) (middle row), and (iii) (bottom row) for splitting type A.2. The red integers are the
degree of the normal bundles of each curve inside the section.

Phase I
(01)
5 charges I

(0|1)
5 charges I

(0||1)
5 charges

1 −3,−2,−1, 0,+1,+2,+3 −12,−7,−2,+3,+8,+13 −9,−4,+1,+6,+11

2 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6

3 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6

4 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6,+11

5 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6

6 −2,−1, 0,+1,+2 − 7,−2,+3,+8 −9,−4,+1,+6

7 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6,+11

8 −2,−1, 0,+1,+2 − 7,−2,+3,+8 −9,−4,+1,+6,+11

9 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8 −9,−4,+1,+6,+11

10 −2,−1, 0,+1,+2 − 7,−2,+3,+8 −9,−4,+1,+6,+11

11 −2,−1, 0,+1,+2 −12,−7,−2,+3,+8,+13 −9,−4,+1,+6,+11

12 −2,−1, 0,+1,+2 − 7,−2,+3,+8,+13 −9,−4,+1,+6,+11

13 −2,−1, 0,+1,+2 − 7,−2,+3,+8 −9,−4,+1,+6,+11

14 −2,−1, 0,+1,+2 − 7,−2,+3,+8,+13 −9,−4,+1,+6,+11

15 −2,−1, 0,+1,+2 − 7,−2,+3,+8,+13 −9,−4,+1,+6,+11

16 −3,−2,−1, 0,+1,+2,+3 −12,−7,−2,+3,+8,+13 −9,−4,+1,+6,+11

Table 3.4: The range of possible U(1) charges for each codimension one fiber type. The
phases are those listed in tables A.1 and A.2 in appendix A.1.



Chapter 3. F-theory and All Things Rational 90

3.5.2 U(1) charges

The possible codimension two fibers are obtained by combining the σ0 and σ1 configura-

tions appearing in the same phase. The U(1) charges of the 10 representation for each

such combined configuration are determined from the C+/C− intersections with the sec-

tions listed in the figures and the appropriate Shioda map (3.98). The results are shown in

table 3.4. Each entry in the table lists the possible charges in each phase for a particular

codimension one fiber type, and is summarised in terms of the following set of possible

charges:

U(1) charges of 10 matter for





I
(01)
5 ∈ {−15,−10,−5, 0,+5,+10,+15}

I
(0|1)
5 ∈ {−12,−7,−2,+3,+8,+13}

I
(0||1)
5 ∈ {−9,−4,+1,+6,+11} .

(3.114)

Again, like for the case of fundamental matter, the known charges that occur in con-

crete realisations of elliptic fibrations of SU(5) GUTs are a strict subset of these. The

comparison to the embedding into E8 can be found in appendix A.2.

3.6 Flops and Rational Sections

Flops between distinct resolutions of singular elliptic Calabi–Yau fibrations have been

discussed in terms of the Coulomb phases, or box graphs, in [70], and realised in terms

of explicit elliptic fibrations (based on Tate models) in [65, 126–128]. In this section, we

will study the flops for codimension two fibers with sections wrapping fiber components.

For simplicity we consider here three-folds, however we expect all of the flops to generalise

quite straightforwardly to four-fold flops, e.g. as discussed in [129,130].

3.6.1 Flops and Intersections

The small resolutions of the singular fibers are related by flops along curves in the fiber

in codimension two. To determine how the flops change the normal bundle degrees of

C ⊂ D, which in the three-fold case is given by the self-intersections of the curves in D,

it is useful to recapitulate some of the mathematical results on this for three-folds. The

first important notion is that of a (−2)-curve as introduced in Theorem 3.3.6 (see [124] for

more details). Recall that the normal bundle of the curves Fi, which remain irreducible

in codimension two, are

NFi/Y = O ⊕O(−2) , (3.115)
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Figure 3.14: Flop of the curve C−1 into C+
2 . D’s are divisors, C the curves at their

intersections, and the small numbers indicate the degree of the normal bundles of the
curves inside the divisors. The exceptional divisor, E = P1×P1, is introduced in the blow-
up as an intermediate stage. Alternatively one can blow down to the singular configuration
at the bottom of the picture.

whereas if Fp → C+ + C− becomes reducible in codimension two, then each of the irre-

ducible components C± have normal bundle in Y

NC±/Y = O(−1)⊕O(−1) . (3.116)

Consider the situation shown in figure 3.14, starting with the configuration in the lower

left hand side. The curves C±1 both have normal bundles of degree (−1,−1), the curve C2

has normal bundle (−2, 0) (i.e. it is, in our standard notation, one of the Fi). Consider

blowing up along the curve C−1 .

Let D and D̂ be divisors and π1 : D̂ → D the blow-up of a curve C. The canonical class

changes as

KD̂ = π∗1KD + C . (3.117)

Here the blow-up affects the two divisors D2 and D′′, in particular under π1 : D̂2 → D2
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the canonical class changes by the new curve, C+
2 ,

KD̂2
= π∗1KD2 + C+

2 , KD̂′′ = π∗1KD′′ + C+
2 . (3.118)

The curves C2 and C+
1 , are contained within these two divisors, and their normal bundles

change in the blow-up. Denoting their images under the blow-up by Ĉ, the normal bundle

degrees are (using adjunction that KD ·D C = −(C)2
D − 2)

deg(NĈ2/D̂2
) = (Ĉ2)2

D̂2
= −KD̂2

·D̂2
Ĉ2 − 2

= −(π∗1KD2 + Ĉ+
2 ) ·D̂2

Ĉ2 − 2 = −(−2 + 1)− 2 = −1

deg(NĈ+
1 /D̂

′′) = (Ĉ+
1 )2

D̂′′
= −KD̂′′ ·D̂′′ Ĉ

+
1 − 2

= −(π∗1KD′′ + Ĉ+
2 ) ·D̂′′ Ĉ

+
1 − 2 = −(−1 + 1)− 2 = −2 .

(3.119)

The normal bundles of Ĉ−2 , Ĉ+
1 in the divisors D′, D1 respectively, are unchanged as

the canonical class of these divisors remains the same under the blow-up. The resulting

configuration is shown on the top of figure 3.14.

The flop is completed by blowing down the curve Ĉ−1 . The canonical classes change again

as in (3.117) for the two divisors, which contain this curve, i.e. D1 and D′ under the blow

down π2 : D → Ď

KD1 = π∗2KĎ1
+ Ĉ−1 , KD′ = π∗2KĎ′ + Ĉ−1 . (3.120)

After the blow down, denote the curve corresponding to Ĉ2 and Ĉ+
1 by Č−2 and Č1,

respectively. Then the normal bundles change as follows

deg(NČ−2 /Ď1
) = (Č−2 )2

Ď′
= −KĎ′ ·Ď′ Č

−
2 − 2

= −(KD′ − Ĉ−1 ) ·D′ Ĉ2 − 2 = −(0− 1)− 2 = −1

deg(NČ1/Ď1
) = (Č1)2

Ď1
= −KĎ1

·Ď1
Č1 − 2

= −(KD1 − Ĉ−1 ) ·D1 Ĉ
+
1 − 2 = −(−1− 1)− 2 = 0 .

(3.121)

On the other hand, Ĉ−1 is not in D̂2 or D̂′′, so the blow down does not affect the normal

bundle of Č−2 in D̂2 or of Č+
1 in D̂′′. Thus the flop of C−1 , which was previously the

intersection of D′ and D1, produces a new curve Ĉ+
2 which is no longer contained inside

either D′ or D1 but instead intersects them in a point.

Alternatively, one can consider first blowing down with p2 in figure 3.14, and then blowing

up. The advantage of the process we described here, is that the geometry in every step is

smooth, whereas the lower, singular configuration would require particular care in applying

the intersection calculus.

The prior analysis can now be applied to the case of SU(5) models with e.g. fundamental

matter. Taking one of the divisors D′ or D1 above to be one of the rational sections we see
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that, under a flop, a curve contained inside the section is flopped to one that intersects the

section in a point and vice versa. Consider a configuration in figure 3.6, for example where

σ ·Y F1 = 1 in codimension one, then the generic flops for fibers studied in [70] dictate

how the configurations flop into each other. However for fibers with rational sections, not

every configuration appears to have a flop image in the category of fiber configurations

that satisfy our initial setup. This is indicated in the shading of the charges in figures

3.7−3.9, showing which charges flop into each other. The charges in blue appear in every

phase whereas the charges highlighted in green only appear in certain phases. The flop of

the configurations, which do not appear in all phases will be discussed in section 3.6.3.

3.6.2 An I∗1 Flop

Consider the flop of the curve C+
3,4 depicted in figure 3.15. In this case it is simpler to

consider first blowing down this curve, and then blowing up. The starting configuration,

shown on the left of figure 3.15, appears in phase 6 of table A.4 where the section intersects

F1 in codimension one. The splitting in this phase is given by,

F4 → C+
3,4 + F1 + F2 + C−1,5 (3.122)

These curves have the following self-intersections, i.e. normal bundle degrees, inside DF4 ,

(C+
3,4)2

DF4
= −1

(C−1,5)2
DF4

= −1

(F1)2
DF4

= −2

(F2)2
DF4

= −2 ,

(3.123)

determined by the box graph for this phase. For the curves Fi do not split,

(Fi)
2
DFi

= 0 . (3.124)

In the configuration shown F2, C
+
3,4, F3 ⊂ σ1 and the self intersections in σ1 are given by

the red numbers appearing next to these curves in the figure. Now consider the blow down

of the curve C+
3,4 which changes the canonical class of DF4 and σ1,

Kσ1 = π∗1Kσ̌1 + C+
3,4, KDF4

= π∗1KĎF4
+ C+

3,4 . (3.125)

Under the blow-up π2 of the singular geometry we reach the I∗1 fiber obtained by the

splitting,
F4 → C+

2,4 + F1 + C−1,5

F2 → C+
2,4 + C−3,4

(3.126)
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Figure 3.15: Flop of a σ1 wrapping configuration from phase 6 (left) to phase 8 (right)
where σ1 ·Y F1 = 1. The red numbers denote the self intersections of the curves inside σ1.

The configuration in this phase, phase 8, is shown on the right in figure 3.15, where the

flopped curve C−3,4 6⊂ σ1 and the canonical class of the divisor ĎF2 is

KD̂F2
= π∗2KĎF2

+ C−3,4 . (3.127)

Only the normal bundle of the curve F2, which becomes C+
2,4, is altered by this flop as

no other curve intersected C+
3,4 in the original configuration. As the intermediate stage in

this description of the flop is singular the self intersection of the curve C+
2,4 in the divisors

D̂F4 , σ̂1 and D̂F2 in phase 8 is computed by always pulling back to one of the resolved

geometries,
(C+

2,4)2
σ̂1/D̂F4

=−Kσ̂1/D̂F4
·σ̂1/D̂F4 C

+
2,4 − 2

=−Kσ̌1/ĎF4
·σ̌1/ĎF4 F̌2 − 2

=− (Kσ1/DF4
− C+

3,4) ·σ1/DF4 F2 − 2

=− (0− 1)− 2 = −1 .

(3.128)

In the above, the second equality sign holds as the canonical class of ĎF4 and σ̌1 is

unchanged by the blow-up π2.

(C+
2,4)2

D̂F2
=−KD̂F2

·ĎF2 C
+
2,4 − 2

=− (π∗2KĎF2
+ C−3,4) ·D̂F2 C

+
2,4 − 2

=− (π∗2KDF2
+ C−3,4) ·D̂F2 C

+
2,4 − 2

=− (−2 + 1)− 2 = −1 .

(3.129)

Thus the curve C+
2,4 has normal bundle degree (−1,−1) in the flopped geometry which

is exactly what we expect from the splitting in phase 8. The flop discussed here exactly

reproduces what was claimed in the previous section: a curve contained inside the section

is flopped to one which intersects it at a point.
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of the normal bundle of the curves inside the divisors DFi and the section σ, respectively.

3.6.3 Flops to Singular Sections

It was mentioned in section 3.6.1 that certain configurations do not flop into configurations

within the class of fibers that we considered here. All such fibers are of the type that the

entire fiber except for one curve is contained inside the section. We now briefly comment

on this. Consider for instance flopping the curve C+
1 on the left hand side of figure 3.16.

In this configuration the splitting is given by F1 → C+
1 +C−2 and the curve C+

1 has normal

bundle (−1,−1) inside of DF1 .

Proceeding as described above, we blow-up every point along C+
1 and in doing so we obtain

the exceptional divisor E. The two points at which C+
1 intersected the section become

two curves contained inside the section. Under the contraction of the C+
1 ruling of the

exceptional divisor E, the two curves contained in the section are identified. Thus we

obtain a curve which is contained inside the section twice. The section is now singular as

it meets itself along this curve13. This configuration is shown on the right hand side of

figure 3.16. In our analysis we assumed throughout that the section is a smooth divisor

in the Calabi–Yau. Clearly, after this flop this condition ceases to hold, and it would be

interesting to study such configurations, and to determine whether or not the singular

section is consistent from the point of view of the F-theory compactification. We will

comment on this further in the discussion section 3.10.

13We thank Dave Morrison for discussions on this point.
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3.7 Singlets

As a final application of our method, we now turn to discuss U(1)-charged GUT singlets.

Mathematically, this corresponds to analyzing the codimension two fibers with rational

section for an I1 to I2 enhancement. Apart from the interest in the types of singlet charges

that are possible, this has wide-ranging implications for Higgsing the U(1) symmetries to

a discrete gauge symmetry, as in e.g. [79–81]. Other phenomenologically interesting impli-

cations, in particular when applied to four-folds, concern the possible Yukawa couplings of

the type RR1 as well as non-renormalisable couplings, which e.g. could regenerate proton

decay operators. After some general properties of singlets, we first discuss the situation

in three-folds in section 3.7.2, and for four-folds in section 3.7.3.

3.7.1 Constraints on Singlet Curves

Consider a smooth Calabi–Yau three- or four-fold Y . An I1 fiber consists of a single nodal

rational curve F0, with arithmetic genus pa(F0) = 1, such that

DF0 ·Y F0 = 0 (3.130)

Above a codimension two locus, the node splits

F0 → C+ + C− , (3.131)

where C± are smooth rational curves, which intersect in an I2 Kodaira fiber. Consistency

with codimension one requires that

DF0 ·Y C+ = −DF0 ·Y C− , . (3.132)

As both C± are smooth rational curves contained inside DF0 , it follows by Corollary 3.3.4

that

deg(NC+/DF0
) + deg(NC−/DF0

) = −4 . (3.133)

However, as these curves do not arise as complete intersections, their normal bundles in

Y are not fixed by the degrees of NC±/DF0
. We require one of the curves in the I2 fiber

to be contractible. Without loss of generality, we take C− to be the contractible curve.

In Calabi–Yau three-folds this condition is known to have three solutions, as summarised

in Theorem 3.3.6, which will be discussed in the next section. For four-folds we are not

aware of a similar result, and we will therefore conduct a survey without imposing the

additional contractibility condition in section 3.7.3.
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3.7.2 Singlets in Three-folds

In this section, let Y be a smooth Calabi–Yau three-fold. We will first determine the

possible section configurations that are consistent from the point of view of normal bundle

degrees in a three-fold. Following this, we determine the possible singlet charges and fiber

types.

Normal Bundle Constraints

We start by considering the possible normal bundle degrees for rational curves in an I2

fiber. We assume C− to be contractible. Theorem 3.3.6 implies that a contractible rational

curve can have the following normal bundles in Y :

A) NC−/Y = O(−1)⊕O(−1)

B) NC−/Y = O ⊕O(−2)

C) NC−/Y = O(1)⊕O(−3) .

We do not constrain C+ to be contractible therefore its normal bundle takes the general

form

NC+/Y = O(p)⊕O(−2− p), p ≥ −1 . (3.134)

We consider a fibration with two rational sections, σ0 and σ1. In codimension one both

sections intersect F0, therefore it is sufficient to just consider one of the sections to find

the possible configurations for the fiber in codimension two. For an I1 local enhancement

to I2 the constraint from codimension one is,

σ ·Y (C+ + C−) = 1 . (3.135)

For each case A−C there always exists the solution, where the section intersects transver-

sally either C+ or C− and does not contain any curves in the fiber. The two cases will

differ in the possible wrapping configurations.

As the normal bundle of C+ is the same for cases A−C we can first derive some general

statements irrespective of the normal bundle of C−. Consider C+ ⊂ σ, using Theorem

3.3.5 (iii), there exists an embedding

NC+/σ ↪→ NC+/Y = O(p)⊕O(−2− p) , p ≥ −1 , (3.136)

in the following two cases:

(i) deg(NC+/σ) = p
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(ii) deg(NC+/σ) ≤ −p− 2.

Using Corollary 3.3.4 one finds that for (i)

σ ·Y C+ = −p− 2 . (3.137)

Combining (3.137) with (3.135), one obtains the intersection of C− with σ,

σ ·Y C− = p+ 3 . (3.138)

The intersections of σ with C+ (resp. C−) will be bounded from below (resp. above) by

(3.137) (resp. (3.138)).

Now let us consider case A where C− has normal bundle degree (−1,−1). If C− ⊂ σ then

in order for NC−/σ to embed inside NC−/Y we must have,

deg(NC−/σ) ≤ −1 . (3.139)

This is a consequence of Theorem 3.3.5 part (ii) and as a result the intersections of σ with

C± are

(σ ·Y C+, σ ·Y C−) = (2,−1), (1, 0), (0, 1), (−p− 2, p+ 3) . (3.140)

The codimension one constraint (3.135) then specifies the upper bound for the intersection

of σ with C+. The possible configurations which realise these intersections are:

A.1) σ ·Y C+ = 2, σ ·Y C− = −1

The lower bound on σ ·Y C− is achieved by C− ⊂ σ, with deg(NC−/σ) = −1. To

obtain the correct intersection for C+ with the section there are two possibilities:

(i) C+ 6⊂ σ
The correct intersections are automatic in this case as in any I2 fiber the curves

C± intersect each other in two points, and C− is contained inside the section.

(ii) C+ ⊂ σ
The degree of NC+/σ is determined using Corollary 3.3.4, requiring σ ·Y C+ = 2

implies deg(NC+/σ) = −4. This solution is only valid when NC+/Y = O(−4)

can be embedded non-trivially into NC+/Y which is true for

− 1 ≤ p ≤ 2 . (3.141)

A.2) σ ·Y C+ = 1, σ ·Y C− = 0

There are two configurations, which realise the above intersections. The first is given

by C+ 6⊂ σ, but σ intersects C+ transversally. In this case the section does not

contain any components of the fiber. The second solution is given by C+, C− ⊂ σ
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and deg(NC+/σ) = −3 and deg(NC−/σ) = −2. One can check using Corollary

3.3.4 that these values give the correct intersection values for σ ·Y C±. The latter

configuration can only be realised for

− 1 ≤ p ≤ 1 (3.142)

A.3) σ ·Y C+ = 0, σ ·Y C− = 1

The solutions in this case can be obtained from the solutions in A.2 by exchanging

C±. The configuration where the entire fiber is contained inside the section is a

solution for

p = −1 or 0 . (3.143)

A.4) σ ·Y C+ = −p− 2, σ ·Y C− = p+ 3

As was detailed above, to achieve a negative intersection with the section, C+ must

be contained inside it with deg(NC+/σ) = p. There are two possibilities for C−:

(i) C− 6⊂ σ
The section, from the containment of C+, intersects C− in two points necessar-

ily. In order to satisfy (3.135) C− requires p + 1 additional intersections with

the section.

(ii) C− ⊂ σ
In this case we require deg(NC−/σ) = −p− 5 to satisfy σ ·Y C− = p+ 3. This

solution is valid for p ≥ −1 as for these values of p the following embedding

always exists

O(−p− 5) ↪→ O(−1)⊕O(−1) . (3.144)

The full set of configurations for A are summarised below. The configurations which have

been marked (∗) are only valid when p falls within the ranges specified in (3.141), (3.142)

and (3.143), respectively.

σ ·Y C+ σ ·Y C− C+configuration C−configuration

2 −1 C+ 6⊂ σ, σ ·Y C+ = 2 C− ⊂ σ, deg(NC−/σ) = −1

C+ ⊂ σ, deg(NC+/σ) = −4 C− ⊂ σ, deg(NC−/σ) = −1 (∗)
1 0 C+ 6⊂ σ, σ ·Y C+ = 1 C− 6⊂ σ, σ ·Y C− = 0

C+ ⊂ σ, deg(NC+/σ) = −3 C− ⊂ σ, deg(NC−/σ) = −2 (∗)
0 1 C+ 6⊂ σ, σ ·Y C+ = 0 C− 6⊂ σ, σ ·Y C− = 1

C+ ⊂ σ, deg(NC+/σ) = −2 C− ⊂ σ, deg(NC−/σ) = −3 (∗)
−p− 2 p+ 3 C+ ⊂ σ, deg(NC+/σ) = p C− 6⊂ σ, σ ·Y C− = p+ 3

C+ ⊂ σ, deg(NC+/σ) = p C− ⊂ σ, deg(NC−/σ) = −p− 5

(3.145)
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For case B the curve C− has normal bundle degree (0,−2). To find the lower bound for

the intersection of C− with the section we need to consider C− ⊂ σ. Requiring NC−/σ to

embed inside NC−/Y gives the constraint

deg(NC−/σ) ≤ 0 , (3.146)

where deg(NC−/σ) 6= −1. This bounds the intersection of C− with the section from below,

σ ·Y C− ≥ −2 ⇒ σ ·Y C+ ≤ 3 . (3.147)

The possible intersections are given by

(σ ·Y C+, σ ·Y C−) = (3,−2), (1, 0), (0, 1), (−p− 2, p+ 3) . (3.148)

The intersection of C+ with σ can not take the value−1 due to the constraint deg(NC−/σ) 6=
−1. The solutions for the last three intersection sets are the same as those given for case

A therefore we shall only detail the solutions for the first set here.

B.1) σ ·Y C+ = 3, σ ·Y C− = −2

The two configurations for this set of intersections must have C− ⊂ σ, deg(NC−/σ) =

0. This is mandated by the intersection of the section with C−. There are two

possibilities for C+:

(i) C+ 6⊂ σ
The containment of C− inside the section means that C+ intersects the section

twice through the intersection of C− and C+ in the fiber. Consistency with

codimension one requires an additional transverse intersection between σ and

C+.

(ii) C+ ⊂ σ
Requiring σ ·Y C+ = 3 means that deg(NC+/σ) = −5. This configuration is a

valid solution for

− 1 ≤ p ≤ 3 . (3.149)
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The configurations for case B are (p is constrained in the (*)’ed configurations as in (3.149),

(3.142) and (3.143), respectively)

σ ·Y C+ σ ·Y C− C+configuration C−configuration

3 −2 C+ 6⊂ σ, σ ·Y C+ = 3 C− ⊂ σ, deg(NC−/σ) = 0

C+ ⊂ σ, deg(NC+/σ) = −5 C− ⊂ σ, deg(NC−/σ) = 0 (∗)
1 0 C+ 6⊂ σ, σ ·Y C+ = 1 C− 6⊂ σ, σ ·Y C−σ = 0

C+ ⊂ σ, deg(NC+/σ) = −3 C− ⊂ σ, deg(NC−/σ) = −2 (∗)
0 1 C+ 6⊂ σ, σ ·Y C+ = 0 C− 6⊂ σ, σ ·Y C− = 1

C+ ⊂ σ, deg(NC+/σ) = −2 C− ⊂ σ, deg(NC−/σ) = −3 (∗)
−p− 2 p+ 3 C+ ⊂ σ, deg(NC+/σ) = p C− 6⊂ σ, σ ·Y C− = p+ 3

C+ ⊂ σ, deg(NC+/σ) = p C− ⊂ σ, deg(NC−/σ) = −p− 5

(3.150)

Finally, in case C, the curve C− has normal bundle (1,−3). If C− ⊂ σ then the only

wrapped configuration which gives negative intersections with the section is

deg(NC−/σ) = 1 ⇒ C− ·Y σ = −3 . (3.151)

This generates the upper bound σ ·Y C+ ≤ 4. The set of possible intersections are

(σ ·Y C+, σ ·Y C−) = (4,−3), (1, 0), (0, 1), (−p− 2, p+ 3) . (3.152)

Once again, the solutions for second and fourth set of intersections are the same as those

given in A. Though the third set of intersections has appeared previously the solutions for

this normal bundle case are more restricted and we will find only one solution.

C.1) σ ·Y C+ = 4, σ ·Y C− = −3

The two solutions to this set of intersection numbers both require C− ⊂ σ and

deg(NC−/σ) = 1. To obtain the correct intersection for C+ with the section there

are two possibilities:

(i) C+ 6⊂ σ
In addition to the two intersections C+ has with the section through the in-

tersection of C+ and C− two further intersections are required to satisfy the

codimension one constraint (3.135).

(ii) C+ ⊂ σ
The degree of the normal bundle NC+/σ is fixed by the intersection σ ·Y C+ = 4

to be deg(NC+/σ) = −6. This is a valid solution for

− 1 ≤ p ≤ 4 . (3.153)
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C.3) σ ·Y C+ = 0, σ ·Y C− = 1

This set of intersections has appeared in A and B however the configuration given

by C+, C− ⊂ σ and deg(NC+/σ) = −3,deg(NC−/σ) = −2 is not a valid solution here

as NC−/σ does not embed into NC−/Y = O(1)⊕O(−3). The only solution is given

by C+, C− 6⊂ σ and σ ·Y C− = 1.

The full set of solutions for case C are (with ranges of p in the (*)’ed configurations

constrained as in (3.153) and (3.143))

σ ·Y C+ σ ·Y C− C+configuration C−configuration

4 −3 C+ 6⊂ σ, σ ·Y C+ = 4 C− ⊂ σ, deg(NC−/σ) = 1

C+ ⊂ σ, deg(NC+/σ) = −6 C− ⊂ σ, deg(NC−/σ) = 1 (∗)
1 0 C+ 6⊂ σ, σ ·Y C+ = 1 C− 6⊂ σ, σ ·Y C− = 0

0 1 C+ 6⊂ σ, σ ·Y C+ = 0 C− 6⊂ σ, σ ·Y C− = 1

C+ ⊂ σ, deg(NC+/σ) = −2 C− ⊂ σ, deg(NC−/σ) = −3 (∗)
−p− 2 p+ 3 C+ ⊂ σ, deg(NC+/σ) = p C− 6⊂ σ, σ ·Y C− = p+ 3

C+ ⊂ σ, deg(NC+/σ) = p C− ⊂ σ, deg(NC−/σ) = −p− 5

(3.154)

Compilation of Fibers and U(1) Charges

The solutions for each case A−C are presented in table 3.5 where the intersection sets

appear along the horizontal axis and the different normal bundles run along vertically.

The I2 fibers are labeled as follows:

• The components of the fiber coloured in red are those contained inside the section

and the red numbers appearing next to these components denote the degree of the

normal bundle of those components inside σ.

• Red dots on unwrapped fiber components correspond to transverse singlet intersec-

tions with σ. The red numbers next to a sequence of such dots denote the number

of such transverse intersection points.

Not every set of σ ·Y C± intersections can be realised in each case A−C. Where an inter-

section column has been left blank there is no configuration corresponding to that set of

intersections with σ.

The U(1) charges of singlets can be determined by combining configurations for σ0 and

σ1 in each case A−C. As both sections intersect F0 in codimension one the Shioda map,
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C
+

C
- σ · C+ = −p− 2 σ · C+ = 0 σ · C+ = 1 σ · C+ = +2 σ · C+ = +3 σ · C+ = +4

σ · C− = p+ 3 σ · C− = 1 σ · C− = 0 σ · C− = −1 σ · C− = −2 σ · C− = −3

A p -p-5pp+1 -2 -3 -3 -2 -1-4-1

B p -p-5pp+1 -2 -3 -3 -2 0 0-5

C p -p-5pp+1 -2 -3 1 1-6

Table 3.5: Consistent wrapping configurations for I1 → I2 for normal bundle cases A−C.
The components in red are those contained inside the section with their normal bundle
degrees in σ indicated by the red numbers adjacent to the component. Configurations
where both components of the I2 fiber are contained inside the section (excluding those
appearing in the first column) are only valid for certain ranges of p, see main text for more
details.

S(σ1), is given by

S(σ1) = σ1 − σ0 . (3.155)

Singlet charges are obtained by computing S(σ1) ·Y C±. The set of possible singlet charges

and the associated I2 fibers are shown in figure 3.17. The fibers along the horizontal (resp.

vertical) axis, coloured in red (resp. blue), are for σ1 (resp. σ0). The entries (a,−a) are the

U(1) charges obtained by combining configurations for σ1 and σ0. Only one representative

has been chosen for each distinct set of intersections σ ·Y C±, wherefore there are more

realisations of each charge than shown in the figure. The singlet charges which appear in

each normal bundle pairing are:

U(1) charges of singlets in





A ∈ {0,±1,±2,±(p+ 2),±(p+ 3),±(p+ 4)}

B ∈ {0,±1,±2,±3,±(p+ 2),±(p+ 3),±(p+ 5)}

C ∈ {0,±1,±3,±4,±(p+ 2),±(p+ 3),±(p+ 6)} .
(3.156)

The charges are dependent on p, appearing in (3.134), which defines the normal bundle of

C+.

Singlet configurations (I2 fibers in the presence of an one additional rational section) with

charges

S(σ1) ·Y C− = {−1,+1,+2} , (3.157)

have appeared in [91, 103, 97]. The zero-section in these configurations is holomorphic

i.e. σ0 does not contain curves in the fiber over codimension two. The range of possible
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Figure 3.17: U(1) charges of singlets for normal bundles cases A−C. Configurations for
σ1 (σ0) are along the horizontal (vertical) axis and the charges are the pairs (a,−a) in the
grid. Only one representative has been chosen for each distinct set of intersections σ ·Y C±
therefore there are more realisations of each charge than shown.
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singlet charges was extended in [100] where a singlet configuration with charge +3 was

found. Comparing these fibers to those in figure 3.17, we find the same configurations in

the following normal bundle cases:

Charge S(σ1) ·Y C− I2 fiber Realisation

−1 -1 A

+1 A-C

+2 -1 A-C when p = −1

+3 -1 -1 A when p = −1

(3.158)

Finally, we compare the singlet charges found above with those required for every 5̄q1 and

5q2 in (3.101) to form a Yukawa coupling

5q1 5̄q21−q1−q2 . (3.159)

Generically, in the geometry all such couplings will be present for base varieties of di-

mension ≥ 3 and correspond to codimension three enhancements to SU(7), which will be

discussed in detail in section 3.8. Using the set of 5̄ charges in (3.101), the set of singlets,

1−q1−q2 , for each codimension one fiber in (3.60) is

U(1) charges of GUT singlets in





I
(01)
5 ∈ {0,±1,±2,±3,±4,±5,±6}

I
(0|1)
5 ∈ {0,±5,±10,±15,±20,±25}

I
(0||1)
5 ∈ {0,±5,±10,±15,±20,±25} .

(3.160)

Comparison (after multiplication by five) yields, that the singlet charges in (3.160) fall

within the charges derived from analysing I1 → I2 enhancements in (3.156). It would

be interesting to analyse this further from the point of view of four-fold normal bundle

consistencies at the Yukawa points.

3.7.3 Singlets in Four-folds

One of the criteria for the codimension two I2 fiber is that one of the curves needs to be

contractible. In the case of three-folds discussed in the last section, the relevant criterion

goes back to Theorem 3.3.6. A similar result, which constrains the normal bundle of

contractible curves in four-folds, to our knowledge, is not known. Nevertheless, we can

consider a general types of I2 fiber, and without imposing contractibility, determine the

consistent section configurations and corresponding charges.
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The result of this analysis is summarised in table 3.6. The normal bundle degrees deg(NC±/σ)

of curves C± that are wrapped by the sections in the I2 fiber, represented by r, s,m and

k in the table, have been left un-constrained, i.e. we do not impose that one of the curves

in the I2 fiber is contractible. The intersections of C± with the section are calculated

using Corollary 3.3.4, the only input being the values of r, s,m and k. In the table, these

intersections with σ0 and σ1 are shown below each fiber type, and the U(1) charge is again

computed using the Shioda map S(σ1) = σ1 − σ0. It would be interesting to generalise

the results of [124,125] to four-folds in order to further constrain the normal bundles and

thereby the U(1) charge values in four-folds.

3.8 Codimension three Fibers and Yukawa Couplings

In elliptic Calabi–Yau four-folds there are codimension three points in the base of the

fibration, above which the codimension two fibers can enhance further, i.e. again some of

the rational curves become reducible. From an F-theory point of view, the fibers above

such points in the base are of interest as they give rise to coupling of matter fields in

Yukawa interactions.

3.8.1 Codimension three Fibers and Phases

The codimension three fibers for SU(5) with 5 and 10 matter were determined from the

box graphs using mutual compatibility of the relative cones of effective curves in [70]. The

Yukawa couplings 10× 10× 5 and 5̄× 5̄× 10 occur at codimension three loci, where the

fiber enhances from the I6 and I∗1 fibers, that realise the fundamental and anti-symmetric

matter, to monodromy-reduced IV ∗ or I∗2 fibers, which correspond to a local enhancement

of the symmetry to E6 and SO(12), respectively. Physically, the Yukawas can be thought

of as generated by the splitting of matter curves into other matter curves, plus, potentially,

roots [69].

Here we will focus on the coupling between singlets and two fundamentals: 5 × 5̄ × 1.

These are realised above codimension three loci with an SU(7) enhancement. This is the

simplest instance in which the fibers (without the presence of additional sections) are not

standard Kodaira fibers in codimension three, but are monodromy-reduced, i.e. the fiber

is not I7, but remains I6. However, if there is a suitable additional section, there is an

enhancement to a full I7 fiber [131,71].

We will now explain how the box graphs can be used to determine the consistent codimen-

sion three fibers. The analysis works for general types of fibers, but we will concentrate
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here on SU(5) with 5 matter, i.e. the phases and fibers shown in figure 3.4. As before,

Fi are the rational curves associated to the simple roots of SU(5). First consider two

codimension two I6 fibers, which are characterised by the splitting

Fi → CT+
i + CT−i , Fj → CB+

j + CB−j . (3.161)

The superscripts Top and Bottom label the curves in the two I6 fibers in codimension

two. The combined phase is obtained by stacking the box graphs for each I6 fiber on top

of each other. Representation theoretically we are looking at the decomposition

su(7) → su(5)⊕ su(2)⊕ u(1) . (3.162)

Denote by F̃ the curve associated to the simple root α̃ of the su(2). Then in the combined

box graph this acts between the two layers, from the bottom to the top layer, e.g.

F
~

F1 F2 F3 F4

C2
+

C4
+ C4

-

C2
-

. (3.163)

The combined box graphs need to satisfy both the flow rules for the SU(5), as well as

compatibility with the action of this additional root.

Let us first assume i 6= j. In this case, e.g. shown in figure 3.18, both Fi and Fj are

reducible, and the extremal generators of the relative cone of curves are

CT+
i , CT−i , CB+

j , CB−j , Fk, k 6= i, j . (3.164)

In particular F̃ is not extremal. The resulting fiber is obtained applying similar rules to

the standard box graph analysis, summarised in section 3.2 (for more details on how the

fiber is determined from the graph we refer the reader to [70,126,128]) and exemplified in

part (i) of figure 3.18.

For i = j, the phases of the two I6 fibers agree, and the extremal generators are

CT−i , CB+
j , F̃ , Fk, k 6= i, j , (3.165)

where F̃ remains irreducible, and the curves in the I6 fibers, which became reducible, split

as follows
CT+
i → CB+

i + F̃

CB−j → CT−j + F̃ .
(3.166)

Note that this is the splitting from the I6 Top and Bottom codimension two fibers respec-

tively. The rational curves in the fiber in codimension three intersect again in an I7 fiber,

which is shown in part (ii) of figure 3.18.
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Figure 3.18: Construction of the fiber in codimension three, where two codimension two
I6 fibers in the phases/box graphs shown on the left, collide to give a fiber of type I7 in
codimension three. The box graph for the I7 is shown on the right of each figure. Figure
(i) shows the codimension three enhancement when the two I6 fibers are in different
phases/box graphs, whereas in (ii) they are in the same phase. Note that for each of these
enhancements it is necessary to have at least one extra rational section.

Let us re-emphasise that in both these cases, it is paramount that the fiber has an addi-

tional rational section, as otherwise there is a monodromy reduction from I7 to I6.

3.8.2 Codimension three Fibers with Rational Sections

Like in the splitting from codimension one to two that we analysed in section 3.4.4, we

require various conditions on the intersection numbers of the section σ with the fiber

components to be retained, when passing from codimension two to three:

1. The section σ intersects the fiber as σ ·Y Fiber = 1.

2. Let C be a rational curve in the fiber, which remains irreducible when passing

from codimension two to codimension three, and let SC 6⊂ σ, i.e. matter surface

obtained by fibering C over the matter locus is not contained in the section, but let

C be contained in σ in codimension three. Then σ ·Y C needs to be preserved in

codimension three.

3. If SC ⊂ σ in codimension two, and C → C+ + C− then by Corollary 3.3.4

σ ·Y C = −4− deg(NC+/σ)− deg(NC−/σ) . (3.167)
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Note that, obviously, a curve that is contained in the codimension two fiber continues

to be contained in the codimension three fiber to which the codimension two fiber de-

generates. The compatibility between codimension two and three has to be imposed for

every codimension two fiber whose codimension two locus in the base passes through the

codimension three point in question (i.e. all the codimension two fibers that correspond

to matter that participates in the Yukawa coupling).

Note also, that the constraints on the normal bundle derived for four-folds Y in section

3.3.3 need to be respected. The normal bundle of the rational curves in the fiber have to

be such that they embed into the normal bundle NC/Y . From Theorem 3.3.7 observe that

the normal bundles of Fi in the four-fold Y are

NFi/Y = O ⊕O ⊕O(−2) , (3.168)

and the normal bundles of the curves C±i , obtained from the splitting Fi → C+
i + C−i ,

which correspond to weights of the fundamental representation, are

NC±i /Y
= O ⊕O(−1)⊕O(−1) . (3.169)

3.8.3 Charged Singlet Yukawas

We now consider the Yukawa couplings that are realised by codimension three enhance-

ments to I7 involving charged singlets, i.e. 5 × 5 × 1 couplings. First consider the case

of the two I6 fibers in different phases. An example is shown in figure 3.19. Starting

with an I
(0|1)
5 model at the far left in codimension one, the next two entries correspond to

the codimension two fibers. The blue/red colored fibers indicate the rational curves that

are contained in the sections σ0 and σ1, respectively. From figure 3.8 the configurations

in codimension two, labeled (1) and (2), correspond to fundamental matter with U(1)

charges

q(5
(1)

) = +11 , q(5
(2)

) = +1 . (3.170)

The codimension three fiber when these two collide can be determined by imposing the

requirements in section 3.8.2. The compatibility conditions have to be satisfied for both

of the two I6 fibers enhancing to the I7 fiber. For instance, consider the I6 fiber (1). We

can characterise the configuration by For instance, the configurations of the I6 fibers (1)
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and (2) can be characterised by

(1) : F1, F2, F3 ⊂ σ0 deg(NFi/σ0) = −2

C+
4 ⊂ σ0 deg(NC+

4 /σ0
) = −1

C−4 , F0 6⊂ σ0 σ0 ·Y C−4 = σ0 ·Y F0 = 1

F0 ⊂ σ1 deg(NF0/σ1) = −2

C−4 ⊂ σ1 deg(NC−4 /σ1
) = −1

C+
4 , F1 6⊂ σ1 σ1 ·Y C+

4 = σ1 ·Y F1 = 1

(2) : F1 ⊂ σ0 deg(NF1/σ0) = −2

C+
2 ⊂ σ0 deg(NC+

2 /σ0
) = −1

C−2 , F0 6⊂ σ0 σ0 ·Y C−2 = σ0 ·Y F0 = 1

C+
2 ⊂ σ1 deg(NC+

2 /σ1
) = −1

C−2 , F1 6⊂ σ1 σ1 ·Y C−2 = σ1 ·Y F1 = 1 .

(3.171)

The fibers split as determined by the box graphs, and applying the compatibility conditions

on the sections in codimension three determines the fibers 14, e.g. it is clear that all the

components that are contained in either of the codimension two fibers have to continue

to be contained in the sections. Furthermore, imposing that the intersection numbers and

normal bundles are consistent, results in the configuration shown in figure 3.19.

From the I7 we can obtain the I2 fiber and thereby the singlet that participates in the

Yukawa coupling. As we consider two I6 fibers in different phases F̃ is not extremal, see

(3.164) for the configuration in figure 3.19, but is given in terms of

F̃ → C+
4 + F3 + C−2 , (3.172)

which can be read off from the box graph or directly from the fiber. In figure 3.164 the

component F̃ is shown, separated from its conjugate component, by the green cut through

the I7 fiber. The combination in equation (3.172) are uncharged under the GUT group

SU(5), i.e. geometrically

DFi ·Y F̃ = 0 , i = 0, · · · , 4 , (3.173)

as required for a singlet, but intersects the sections as

σ0 ·Y F̃ = σ0 ·Y (C+
4 + F3 + C−2 ) = −1 + 0 + 1 = 0

σ1 ·Y F̃ = σ1 ·Y (C+
4 + F3 + C−2 ) = 1 + 0 + 1 = 2 .

(3.174)

14Note that the codimension three fiber is not unique, but only unique in terms of the intersection
numbers. This is similar to the codimension two fibers, where, for example, σ ·Y F = 1 can be either
realised in terms of a transverse intersection, or in terms of F ⊂ σ with deg(NF/σ) = −3. These ambiguities
however do not change the charges or, in the case of codimension three, the possible Yukawa couplings.
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Figure 3.19: Example of a codimension three fiber with one additional rational section
where the codimension two fibers are in different phases. Codimension one: I5 fiber with
two sections, σ0 (blue) and σ1 (red). Codimension two: I6 fiber with sections as indicated
(the configuration is described in (3.171)), corresponding to 5 matter, with charge 11
and charge 1, respectively. Here the two I6 fibers are in different phases. The curves,
C±, into which the Fi that become reducible in codimension two have split are shown by
dotted lines. Colored fiber components correspond to rational curves that are contained
in the respective sections. The numbers next to these indicate the degree of the normal
bundle of these curves in the section. Codimension three: I7 fiber with sections, as well
as the corresponding box graph, obtained by stacking the box graphs associated to the
codimension two fibers. Again, fiber components that are contained in the sections σ0/1

are colored accordingly. The green line indicates where the I7 fiber needs to be “cut” to
determine the singlet that couples to the two fundamental matter multiplets. On the far
right the I2 fiber that realises this singlet is shown.
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Likewise we can consider the conjugate field, given by the curve (so to speak the other

half of the cut I7 fiber)

F̃ → C−4 + F0 + F1 + C+
2 , (3.175)

which intersects the sections as

σ0 ·Y F̃ = σ0 ·Y (C−4 + F0 + F1 + C+
2 ) = 1 + 1 + 0− 1 = 1

σ1 ·Y F̃ = σ1 ·Y (C−4 + F0 + F1 + C+
2 ) = −1 + 0 + 1 +−1 = −1 .

(3.176)

Applying Shioda (and multiplying by 5 for the SU(5) normalisation) we obtain that the

charges of these singlets are indeed ∓10, as required for the coupling to the matter of

charge ±11 and ∓1, i.e. 511 × 5−1 × 1−10.

Finally, let us briefly comment on the case when the two I6 fibers are in the same phase,

an example is shown in figure 3.20. The charges are

q(5
T

) = +11 q(5
B

) = −9 . (3.177)

The splitting from codimension two to codimension three of the fiber components is that

in (3.166) and part (ii) in figure 3.18, and F̃ is an irreducible, new fiber component. Again

we impose ompatibility with the section configurations in codimensions two and three, as

well as consistent normal bundle configurations. The resulting codimension three fiber is

shown in figure 3.20. The singlet charge is obtained by intersecting F̃ with the sections.

Note, that F̃ ·Y DFi = 0, which is consistent with this being the singlet, and

σ0 ·Y F̃ = −2

σ1 ·Y F̃ = 2 .
(3.178)

Likewise, the conjugate field is

F̃ → CB+
4 + F3 + F2 + F1 + F0 + CT−4 (3.179)

and

σ0 ·Y F̃ = 3

σ1 ·Y F̃ = −1 .
(3.180)

The associated I2 fiber, which realises these intersections, is shown in figure 3.20, and

matches the required charge of 20 from (3.177), such that the coupling 5−95−11120 is

uncharged.

3.9 Multiple U(1)s and Higgsing

The analysis shown in the preceding sections has been for a single additional rational

section of the elliptic fibration, which generates one U(1) symmetry. This can be extended
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Figure 3.20: Example of a codimension three fiber with one additional rational section,
where the codimension two fibers are in the same phase. The matter corresponds to charge
+11 (T) and charge −9 (B) 5 matter and a singlet of charge 20. The notation is as in
figure 3.19.

to the case of elliptic fibrations with multiple rational sections, which generates multiple

U(1) symmetries. Furthermore, based on the classification of singlets, we can consider

the possible Higgsings of the abelian symmetry to discrete subgroups. The case of partial

Higgsing of multiple U(1)s is left for future work.

3.9.1 Multiple U(1)s and Rational Sections

The set of rational sections, σα, in an elliptic fibration generate the Mordell–Weil group,

which is a finitely generated abelian group

Zr ⊕ Γ , (3.181)

where r is the number of rational sections in the fibration and Γ is the discrete part of the

Mordell–Weil group, which we do not consider here. The zero-section σ0 is the origin of

the Mordell–Weil group, and σα, α = 1, · · · , r, are the generators of the free part.

The key point to note is that our analysis for one rational section applies independently

to each generator of the free part of the Mordell–Weil group. The set of configurations

for each section in an Ik → Ik+1 enhancement is therefore just given by those in figures

3.10 and 3.11, where the section, σα, is taken to intersect Fiα in codimension one. One

can then construct the Shioda map, S(σα) for each section, which defines the generator of

the abelian gauge factor U(1)α. Let us consider an example with two additional rational

sections, σ1 and σ2, where the codimension one fiber type is I
(0|1||2)
5 , as depicted in figure
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Figure 3.21: Example set of 5̄ charges for an I
(0|1||2)
5 model in the phase where F2 splits.

The sections σ0/σ1/σ2 are colored blue/red/green. The configurations for σ0 and σ1 are
fixed to give charge −4 under U(1)1. Combining this with the possible configurations for
σ2 gives the set of charges under U(1)2.

3.21. For each phase, the possible charges for 5̄ matter under U(1)1, are given in figure

3.8 (modulo the fully wrapped configurations). To each of these one can overlay a config-

uration for σ2 in the same phase and compute the charge under U(1)2 by intersection C±

with

S(σ2) = 5σ2 − 5σ0 + 2DF1 + 4DF2 + 6DF3 + 3DF4 . (3.182)

Further, consider σ1 such that q5̄ = −4 in the phase where F2 splits. This is shown

in figure 3.21. This configuration can be combined with any one of the three possible

configurations for σ2, each of which gives a different charge under U(1)2. Repeating this

for every configuration in all phases gives the full set of charges for this codimension one

fiber. Following this procedure we determine all possible combinations, and it can be

shown that all known explicit realisations of models with multiple U(1) factors form a

subclass of the models obtained here.

3.9.2 Higgsing and Discrete Symmetries

In section 3.7 the set of possible codimension two I2 fibers with rational sections were

determined along with the corresponding singlet charges. One application of this result

is to use such U(1) charged singlets to Higgs the U(1) symmetry to a discrete subgroup
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Zq. Examples of such Higgsing have recently been considered in [79–81]15 for q = 2, 3.

Though Higgsing different singlet configurations of the same charge leads to the same

discrete symmetry in the F-theory compactification, this was shown not to be the case

upon the circle reduction to M-theory. This can be seen field theoretically by reducing

F-theory in 6d along an S1 to M-theory in 5d [77–81]. Turning on a vacuum expectation

value for the Higgs field, Sq, of charge q breaks the U(1) in F-theory to Zq. Starting in 6d,

and compactifying to 5d on a circle, the masses of the Kaluza–Klein modes are labeled by

the charge q, the mode number (or KK-charge) n and the Wilson line ξ along the circle

mq
n = |qξ + n| . (3.183)

The massless spectrum depends on the value of ξ and for ξ = k/q with integral k the

KK-charge n = −k becomes massless. There are q distinct values for the Wilson line,

modulo the action of SL2Z, which correspond to distinct M-theory vacua, between which

the Tate-Shafarevich group acts [75].

Equipped with the set of I2 fibers and their corresponding charges, given in figure 3.17,

we can now consider the Higgsing with more general singlet configurations, with charges

beyond q = 2, 3. Furthermore, it is possible to determine for a fixed singlet charge q, the

fibers which realise the q different choices of 5d Higgs fields. Note that the KK-charge n

is computed by intersecting with the zero-section

σ0 ·Y C± = n± . (3.184)

That is, we look for configurations where C+, or C−, has intersections with σ0 within the

set

n± = σ0 ·Y C± ∈ {0, · · · , q − 1} mod q . (3.185)

The result is that for charges up to q = 9 it is always possible, by tuning the degree of

the normal bundle of the curve C+ in (3.134), to obtain curves in the I2 fiber with the

desired intersections with σ0. It would be interesting to study how these configurations

are related via flop transitions such as in the case of q = 3 studied in [81]. For charges

q ≥ 10 the set of KK-charges, which do not have a realisation grows with q and it would

be interesting to explore how the other configurations could be realised.

3.10 Discussion and Outlook

In this chapter we determined the possible U(1) charges of matter in F-theory compacti-

fications to four and six dimensions, by classifying the possible configurations of rational

15Other discussions of discrete symmetries in F-theory compactifications without section (i.e. genus one
fibrations) have appeared in [100,75–78]
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sections in codimension two fibers. Our analysis for charged matter in the fundamental

and anti-symmetric representations of SU(n) in sections 3.4 and 3.5 holds for both Calabi–

Yau three- and four-folds. The main inputs were the classification result of codimension

two fibers in [70] as well as constraints on rational curves and their normal bundles in

Calabi–Yau varieties, as discussed in section 3.3. There are various exciting directions for

future research.

• Building complete models:

In our analysis we did not discuss constraints from charged matter Yukawa couplings,

only couplings between fundamental matter and singlets. It would be interesting to

see whether codimension three constraints will provide further conditions as to how

various codimension two fiber types can co-exist in a given model. The codimension

three fibers and possible Coulomb phases without additional sections were derived

already in [65, 70] and it would be interesting to generalise this to models with

rational sections. Clearly further constraints that would select subsets of compatible

codimension two fibers would also be of interest for model building, and could play an

important role for a systematic study of the phenomenology similar to [104,106,132].

• Explicit realisations:

The charges and fibers in explicitly known fibrations with various numbers of abelian

factors [91–103, 76, 107, 108], as well as the matter charges in the singlet-extended

E8 model [105], form a strict subset of the fibers that we have found in the present

thesis. It would be extremely interesting to determine realisations for the new fiber

types, including the singlets that we classified in section 3.7.

• Flops:

Our classification assumes that the section, which is a divisor in the Calabi–Yau

variety, is smooth. We have observed in section 3.6 that, by flopping codimension

two fibers with certain section configurations, the resulting fiber has a section which

self-intersects in a curve in the fiber, and is thus no longer smooth. It would be

very interesting to study such flops concretely, to determine the complete flop chain

when the allowed configurations include such singular sections. It would also be

interesting to study the flops for the I2 fibers realising different KK-charges for the

singlets, generalizing the analysis for charge 3 singlets in [81].

• Singlets:

Unlike the charged matter, the analysis for the classification of singlets in section

3.7 is comprehensive only for Calabi–Yau three-folds, as we impose that one of the

curves in the I2 fiber should be contractible. A similar criterion for contractibility
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for higher-dimensional Calabi–Yau varieties is not known to us, however we have

determined all possible codimension two I2 fibers with rational section, without

necessarily requiring contractibility of the curves, in table 3.6. It would be interesting

to determine a contractibility criterion on the normal bundle of rational curves in

four-folds and to thereby constrain the singlet configurations in table 3.6 to the

allowed set in four-folds. Note that no such disclaimer holds for the charged matter

in sections 3.4 and 3.5, which do not rely on imposing any contractibility on the

curves, and our results hold for codimension two in three- and four-folds alike.

• Higgsing and discrete groups:

We determined the singlet fibers for U(1) charges up until q = 9, including realisa-

tions for each KK-charge. This allows a comprehensive study of discrete symmetries

by giving vacuum expectation values to these singlets, and it would be interesting

to determine the effects on the low energy theories, for instance like in [74].



Chapter 4

Froggatt–Nielsen meets
Mordell–Weil: A
Phenomenological Survey of
Global F-theory GUTs with U(1)s

4.1 Introduction

Remarkable progress in the construction of global F-theory compactifications in recent

years has resulted in both conceptual and technical advances. After the initial surge

in particle physics explorations of local F-theory Grand Unified Theories, the study of

phenomenological implications was somewhat side-stepped in recent advances in global

model building.

Global models have in particular seen much progress in view of a comprehensive under-

standing of F-theory vacua – both in terms of the base as well as the fiber geometry. In

view of this, it is timely to conduct a survey of 4d F-theory vacua and their phenomeno-

logical viability. The goal of this chapter is to provide such an analysis, by imposing the

most stringent phenomenological requirements upon the F-theory compactifications with

additional U(1) symmetries and their 4d effective theories, in particular an exotic-free

Minimal Supersymmetric Standard Model (MSSM) spectrum, absence of dangerous cou-

plings, such as proton decay operators, as well as consistent flavour physics generated by

a Froggatt–Nielsen mechanism.

Central to both guaranteeing the absence of dangerous couplings and the applicability of a

Froggatt–Nielsen mechanism is the presence abelian gauge symmetries. One of the string

theoretic inputs in our analysis is the classification of U(1) charges in SU(5) F-theory

GUTs, which was recently performed in [32]. This classification result utilises general

119
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insights from codimension two fibers in [70], which realise the matter fields, and consistency

of rational sections, which give rise to U(1) gauge potentials. The one assumption in this

classification is that the rational sections are smooth. The resulting analysis does not

provide a constructive way of obtaining the elliptic fibrations, but gives a classification of

all consistent fibers with rational sections, which in turn determines the set of matter U(1)

charges. It reproduces all charges known to exist in explicit geometric constructions based

on hypersurfaces and complete intersections [101–103,91–98,107,108,99,100,76,105,133],

but the set of possible charges from this classification is strictly larger than the ones

arising from known geometries. This über-set obtained in [32] contains all charges that

can potentially arise in global F-theory compactifications, under the assumption of smooth

rational sections, and will be referred to as F-theoretic U(1) charges.

A second constraining factor in F-theory GUT model building is the requirement of

cancellation of anomalies that arise in the context of GUT breaking via hypercharge

flux [87, 84, 45], which to date is the only known mechanism to break the GUT group

in F-theory without immediately introducing exotics, such as is the case for Wilson line

breaking [84,85]. In the presence of additional U(1) symmetries, hypercharge flux induces

a chiral spectrum, which can be anomalous. The MSSM-U(1) mixed anomalies were de-

termined in [134,135,104,136] and form a stringent constraint on the matter spectra and

associated U(1) charges. It is worth noting, that none of the models with charges in

known geometric constructions solve these anomaly constraints without introducing ex-

otics or dangerous proton decay operators1. However in the F-theory charge set obtained

in [32] we do find solutions, including models with realistic flavour physics. One of the

goals of this chapter is to identify these phenomenologically sound models, provide the

corresponding charge patterns as well as fiber types, and thereby give guidance towards

their geometric construction.

Before diving into a summary of the results of our analysis, we begin with a brief overview

of F-theory phenomenology, in particular in view of flavour physics, which will play a key

role in our analysis. The most promising particle physics results were thus far obtained in

local F-theory GUTs and their associated spectral cover models, i.e. 4d supersymmetric

GUTs obtained from compactifications of the 7-brane effective theory on a 4-cycle, that

is embedded in a Calabi–Yau four-fold. Proton decay was studied in the context of local

spectral cover models in [137,138,134,139,104,106]. The anomalies of [134,135,104,136] in

conjunction with constraints on proton decay operators were surveyed in [104,106] and in

particular it was shown that in local spectral cover models, the anomalies were in conflict

1We will determine a new class of elliptic fibrations, which do in fact solve the anomalies and suppress
the couplings of dangerous operators. This will be discussed in section 4.7.2. However these models are
not amenable for an FN-type generation of flavour textures.
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with U(1) symmetries required for suppression of dimension five proton decay operators.

The only way to consistently combine these two effects was to allow for exotics.

Flavour in local F-theory models has a long history starting with the initial exciting

insight that the top Yukawa coupling is generated at order one at a local E6 enhancement

point [30, 31, 45, 140] and furthermore refined developments regarding corrections to the

leading order Yukawa matrices [141–156], see [157, 158] for reviews of various particle

physics implications of F-theory models. Local flavour models have undergone various

stages of accurateness. The present status is that world-volume gauge fluxes do not lead

to any corrections at all, but non-commutative fluxes in combination with non-perturbative

effects can potentially give rise to suitable corrections. Froggatt–Nielsen models in local

F-theory models were studied comprehensively in [159], however it was shown that unless

one imposes by hand an R-parity, the local models universally suffer from regeneration of

dangerous couplings. Clearly, global constraints, such as the type of U(1) charges, fluxes

and most likely the base geometry provide an additional set of constraints. The local

models, by now are understood to be incomplete in that they do not seem to give rise

to all possible U(1) symmetries that can be constructed globally – this holds true for the

geometrically realised charges, and even more so for the charge classification in [32]. This

leads then to the question whether global models can more successfully implement these

phenomenological constraints, and whether there are any distinct features in such models.

Phenomenological studies of global models have been rather scarce. The toric top-models

were shown not to give rise to appealing flavour models and a stable proton [132]. As

an alternative to GUTs, recent work has considered direct construction of the MSSM in

F-theory [160–162], which however requires further careful analysis of the phenomenology.

In this chapter we will assess the question of phenomenological implications of the U(1)

symmetries in F-theory based on the über-set obtained in [32], in conjunction with con-

sistency requirements such as anomalies, and provide some insights into how to construct

the relevant geometries.

Overview of Results and Search Strategy

To give the reader an overview of the results, we now summarise our framework and

constraints, and provide pointers to where these are found in the main text of the chapter.

The setups we consider are SU(5) GUTs with hypercharge flux GUT breaking in F-theory

compactification on an elliptically fibered Calabi–Yau four-fold. In addition, the following

consistency requirements are imposed:

1. Exact MSSM spectrum and absence of anomalies (A1.)−(A5.) listed in (4.3)−(4.8).
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2. U(1) charges within the classification of [32] as summarised in (4.34).

3. U(1) symmetries forbid all couplings (C1.)−(C7.) listed in (4.9)−(4.15).

4. U(1) symmetries are compatible with one generation top Yukawa coupling.

5. Froggatt–Nielsen (FN) mechanism to generate remaining Yukawa textures for both

quarks and leptons, by giving vevs to U(1)-charged GUT singlets without getting in

conflict with the constraints (C1.)−(C7.).

A more detailed exposition of these conditions can be found in section 4.2. The survey

is organised by number of U(1) symmetries, number of 10 and 5̄ representations, N10

and N5̄, respectively. The models with a single U(1) generically do not allow for very

interesting flavour physics, without further input, such as non-perturbative effects, going

beyond an FN-type mechanism. For N10 = 1 there is exactly one solution, which satisfies

all anomaly and (C1.)–(C7.) constraints, given by I.1.4.a in table 4.1. All other models for

any N5̄ regenerate dangerous couplings at the same order as Yukawa couplings, or include

exotics (for high enough number of matter multiplets).

Models with two additional U(1) symmetries allow for a more interesting solution space.

We find a large set of solutions to the constraints, and focus on two subclasses: either the

models satisfy conditions 1.−5., or they satisfy 1.−4., but have a geometric realisation. The

models satisfying 1.−5., which will be referred to as F-theoretic FN-models, are discussed

in section 4.5, and their spectra are summarised in tables 4.4 and 4.5. These models

generate known Yukawa textures for the quarks, and furthermore provide realistic lepton

and neutrino sectors. The matter charges of these solutions are within the set of F-theory

U(1) charges, however we do not yet know of an explicit construction. Nevertheless, to

guide such geometric endeavours, we summarise the fiber types of these models in section

4.7.3.

The second subclass of two U(1) models satisfy 1.−4., but not 5., i.e. do not allow for

a realistic FN-mechanism. However, they have the advantage that we can construct the

corresponding geometries:

5̃. Geometric construction in terms explicit realisation of the elliptic fiber.

The existence of such global solutions to the anomalies and constraints on couplings is in

stark contrast to local models, where there are no solutions satisfying all the conditions

1.−4. (with 2. modified to mean local spectral cover U(1)s). This class of global models

are discussed in section 4.4 and their geometric realisation is given in section 4.7.2.
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4.2 Constraints

This section provides an overview of all the constraints, and outlines the scope and strategy

of our search. The setup in the following will be SU(5) supersymmetric GUTs, with

additional U(1) symmetries with a realisation in F-theory compactifications on Calabi–

Yau four-folds.

The first type of conditions arise from basic consistency of the 4d effective theories, namely

an exotic-free MSSM spectrum and superpotential couplings, as well as absence of danger-

ous couplings that render the models inconsistent, which arise for instance through proton

decay and R-parity violation. Throughout this chapter we will impose that suppressions

of couplings will be administered through additional U(1) symmetries, which will be one

of the F-theoretic inputs into the models. Additional phenomenological requirements arise

from flavour constraints. There is somewhat more flexibility in how the flavour hierarchies

are engineered, and we will do a systematic analysis including flavour considerations using

Froggatt–Nielsen type models in section 4.5.

The second type of constraints are specific to the class of theories, namely GUTs with a UV

completion within F-theory. Here, one class of constraints arise from the GUT breaking,

which in F-theory can be realised in terms of hypercharge flux breaking, i.e. non-trivial

flux in the direction of the U(1)Y [84, 45]. In addition to imposing geometric conditions

on the class of this background flux2, if the model has in addition abelian symmetries,

the mixed MSSM-U(1) anomalies need to be cancelled [134, 135, 104, 136]. The second

class of F-theoretic constraints is the type of U(1) symmetries. In the recent work [32],

constraints on these have been determined. The combination of F-theoretic U(1) charges

and the hypercharge flux induced anomalies result in additional constraints on the possible

U(1) charges and distributions of the matter fields. In the following we will discuss both

classes of constraints in detail.

4.2.1 MSSM Spectrum and Anomalies

We consider N = 1 supersymmetric GUTs with SU(5) gauge group and matter in the

10 and 5̄ representation. The Higgs doublets of the MSSM arise from fundamental and

anti-fundamental representations of the SU(5). In F-theory the GUT multiplets are ge-

ometrically localised on complex curves, so-called matter curves inside a 4-cycle SGUT,

2The requirement is that it is topologically trivial as a two-form in the Calabi–Yau, but non-trivial
on the 4-cycle that realises the GUT theory. Examples of geometries realising such classes are known see
e.g. [163, 164]. However constructions of the hypercharge flux in terms of an M-theory G4 flux is thus far
been elusive, although recent progress was made in [165] for the U(1)-restricted Weierstrass model of [101].
Extending this work to models with rational sections would be of vital importance.
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which is wrapped by 7-branes in F-theory. The low energy theory on the 7-brane realises

the gauge degrees of freedom. Chirality is induced by G4-flux, and will be labeled by

Ma and Mi for 10 and 5̄ matter. GUT breaking is achieved by non-trivial flux in the

U(1)Y direction, 〈FY 〉. This lifts both the XY bosons of the gauge group SU(5), as well

as ensures that the Higgs triplets are massive. The restrictions of the hypercharge flux on

the 10 and 5̄ matter curves will be referred to in terms of integers Na and Ni, respectively.

In summary the matter content of the SU(5) GUT, with M chiral generations and restric-

tion of hypercharge flux N is parametrised as follows:

SU(5) representation MSSM representation Particle Chirality

(3,2)1/6 Q Ma

10a (3̄,1)−2/3 ū Ma −Na

(1,1)1 ē Ma +Na

5i
(3̄,1)1/3 d̄ Mi

(1̄,2)−1/2 L Mi +Ni

(4.1)

The integers M and N have to satisfy basic requirements of realising the exact MSSM

spectrum. In this chapter we will in particular impose that the spectra are free from

exotics. In addition to placing constraints on the values of M and N , the absence of

exotics places a bound on the number N of distinctly charged 10 and 5,

N10 ≤ 3

N5 ≤ 8 .
(4.2)

To derive these bounds, note that if we were to consider more than three 10s then some

of these must have Ma = 0 as there are only three generations of left-handed quarks.

Allowing a non-zero restriction of hypercharge flux over these allows the presence of either

a right-handed quark or lepton with the wrong chirality for the MSSM spectrum, which

results in the presence of exotics. Likewise, the maximum number of 5s is given by the

sum of three generations of left-handed leptons and right-handed quarks, in addition to

Hu and Hd.

In addition to the GUT gauge symmetry, we require additional abelian gauge factors,

U(1)α, α = 1, . . . , r, under which the SU(5) representations 10a and 5̄i carry charges qαa

and qαi , respectively. The type of U(1) charges are determined in terms of the F-theory

geometry and will be the subject of section 4.2.4. The combined system of FY hypercharge

flux breaking and additional U(1) symmetries implies that there can potentially be mixed

MSSM-U(1) anomalies.

Anomaly cancellation and the requirement of three generations imply the following set of

constraints on the chiralities M , hypercharge flux restriction N and charges qα – all sums
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∑N10
a=1 are over 10 representations,

∑N5̄
i=1 over 5̄s, with NR corresponding to the number

of matter multiplets in the representation R with distinct U(1) charge:

(A1.) MSSM anomalies ∑

i

Mi =
∑

a

Ma . (4.3)

(A2.) Mixed U(1)Y -MSSM anomalies [134,135,104]

∑

i

qαi Ni +
∑

a

qαaNa = 0 , α = 1, . . . , r . (4.4)

(A3.) Mixed U(1)Y -U(1)α-U(1)β anomalies [136]

3
∑

a

qαa q
β
aNa +

∑

i

qαi q
β
i Ni = 0 , α, β = 1, . . . , r . (4.5)

(A4.) Three generations of quarks and leptons:

∑

a

Ma =
∑

i

Mi = 3 . (4.6)

(A5.) Absence of exotics: ∑

a

Na =
∑

i

Ni = 0 . (4.7)

(A5.) One pair of Higgs doublets: ∑

i

|Mi +Ni| = 5 . (4.8)

The set of constraints (A1.)−(A5.) will be strictly imposed on each model, as a minimal

requirement for realistic 4d physics. Note that we have not as yet imposed any Yukawa

couplings – which Yukawas will be required to be compatible with the U(1) charges will

be discussed in section 4.2.3. We now turn to additional conditions on the U(1) charges,

on top of the anomaly constraints, which will ensure absence of dangerous couplings, such

as proton decay.

4.2.2 Proton Decay, µ-Term and R-parity Violation

Rapid proton decay and R-parity violation (RPV) can cause supersymmetric GUTs to

become phenomenologically unfit. In this thesis we will utilise U(1) symmetries to forbid

these couplings. The U(1) symmetries are broken, at a higher scale and for some of these

couplings we will require that they are not regenerated, e.g. by giving vevs to U(1)-charged

singlets.
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Summary of Dangerous Couplings

Let us first summarise the various problematic couplings and then discuss the bounds on

their suppression – i, j, · · · and a, b, · · · label matter representations, whereas I, J, · · · =

1, 2, 3 and A,B, · · · = 1, 2, 3 label generations:

(C1.) µ-term:

µ5Hu 5̄Hd (4.9)

(C2.) Dimension five proton decay:

δ
(5)
abci10a10b10c5i (4.10)

(C3.) Bilinear lepton number violating superpotential coupling:

βi5̄i5Hu ⊃ βILIHu (4.11)

(C4.) Dimension four proton decay:

λ
(4)
ija5̄i5̄j10a (4.12)

(C5.) Tri-linear lepton number violating Kähler potential couplings:

κabi10a10b5̄
†
i ⊃ κABIQAūBL

†
I (4.13)

(C6.) Dimension five lepton violating superpotential coupling:

γi5̄i5̄Hd5Hu5Hu ⊃ γILIHdHuHu (4.14)

(C7.) Dimension five lepton violating Kähler potential coupling:

ρa5̄Hd5
†
Hu

10a ⊃ ρAHdH
†
uēA (4.15)

We require these couplings to be absent at leading order. Furthermore, if a Yukawa matrix

element is generated by a singlet vev, we require that these operators do not re-appear

with the same singlet suppression. In the case that multiple singlet vevs are required to

generate a certain forbidden coupling, we study in detail whether the suppression is within

the bounds that we summarise below. This occurs frequently in our analysis for dimension

four and five proton decay operators.

Note that, if the top and bottom Yukawas are generated for all generations, then compat-

ibility of the U(1) symmetries with the Yukawas as well as absence of the µ-term (C1.)
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implies (C2.) with opposite sign. However, this needs to be checked in addition, if not all

Yukawas are generated perturbatively, as in most of the following models.

Imposing one top Yukawa coupling (for at least one generation, see (4.25)), as well as the

absence of (C5.) implies that there cannot be 5̄ matter on the same curve as Hu i.e.

Y t, (C5.) ⇒ Mi = 0 , Ni = −1 i = Hu . (4.16)

Likewise, imposing that the bottom Yukawa couplings are realised (either at leading order

or regenerated by singlet vevs, see (4.26)), as well as the absence of the coupling (C4.)

implies that there cannot be 5̄ matter on the same curve as Hd, i.e.

Y b, (C4.) ⇒ Mi = 0 , Ni = 1 i = Hd . (4.17)

µ-Term

The µ-term is a supersymmetric Higgsino mass term. Radiative electroweak supersym-

metry without much tuning in the MSSM requires µ to be around O(100)GeV. If this

coupling is generated at tree-level, this cannot be achieved without a fair amount of fine-

tuning and low-energy supersymmetry does not address the hierarchy problem. One way

to avoid this problem is to forbid the µ-term at the high scale with a U(1) symmetry –

a so-called PQ U(1) symmetry, i.e. the charge of the Hu and Hd do not add up to zero.

The µ-term can then be generated by a coupling to a charged singlet S (or products of

singlets) either via the superpotential or the Kähler potential. Concretely the µ-term can

for instance be generated as follows

S†

Λ
HuHd , (4.18)

where the 〈FS〉Λ then generically sets the scale of the µ-term, which is the Giudice-Masiero

mechanism [166]. This type of µ-term has wide application in gravity [167,166] but also in

gauge mediated supersymmetry breaking models, see for instance also in F-theory [168].

We shall not discuss the specific mechanisms of supersymmetry breaking in this thesis, as

these are highly model dependent, thus deviating from the goal that we set out here, to

be as comprehensive and general as possible. For our purposes we will impose that the

coupling (C1.) is absent at tree-level.

Dimension 4 Proton Decay Operators

Dimensions four and five proton decay operators are highly constrained in GUT models,

and one of the requirements in our search is the compatibility of the models with the
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bound on the lifetime of the proton given by τp ≥ 1034 years [15]. The dimension four

proton decay operators originate in the coupling

λ
(4)
ija5i5j10a, (4.19)

where the 5i and 10a denote matter representations. This operator results in the following

couplings,

λ0
IJALILJ ēA + λ1

IJAd̄ILJQA + λ2
IJAd̄I d̄J ūA , (4.20)

where I, J,A label the generation index. Dimension four proton decay occurs via inter-

actions involving products of λi, the main decay channel being p → π0e+ [169] which

involves the product λ1λ2. If both operators with couplings λ1 and λ2 are present this

results in very fast proton decay. Proton lifetime results in the following bounds on the

coupling constants for the lightest generation [170]

√
λ1λ2 ≤

(
MSUSY

TeV

)
10−12 . (4.21)

Here MSUSY is the mass scale of the supersymmetric particles entering the process, and

will be taken of O(1) TeV. Bounds on the other generation couplings for GUT models are

discussed in [171] and an up to date summary of all bounds can be found in section 6.5

of [172] from indirect searches, and section 7 from direct searches. In particular for λ0

there are bounds which are much weaker ∼ 10−5, cf. (6.100), and for the other components

of λ1λ2 see (6.110) in [172]. These operators violate baryon or lepton number and thereby

R-parity. In this analysis we require the U(1) symmetry forbid all operators of this type,

and furthermore that singlets do not regenerate them outside of the bounds listed above.

Dimension 5 Proton Decay Operators

The main contribution to proton decay from dimension five operators occurs through the

coupling

δ
(5)
abci10a10b10c5i , (4.22)

which gives rise to the operators

δ1
ABCIQAQBQCLI + δ2

ABCI ūAūB ēC d̄I + δ3
ABCIQAūB ēCLI . (4.23)

The bound on the coupling constant due to the interaction involving δ1 is [170]

δ1
112I ≤ 16π2

(
MSUSY

M2
GUT

)
I = 1, 2, 3 , (4.24)

where the relevant diagram is shown in figure 4.1. The mass MSUSY is set by the mass of

the sfermions contributing to the loop diagram. The operators involving other (s)quark
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ēuR, ēcR
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Figure 4.1: Process giving rise to dimension five proton decay parametrised by δ1
11aI .

generations are suppressed with appropriate flavour insertions, i.e. at least the appropri-

ate CKM elements have to be inserted. This ameliorates the bounds, in particular for

operators involving the third generation.

Remaining B/L violating operators

The remaining couplings are also constrained in particular from limits on flavour changing

processes, see [74] and for a review [172] . The bilinear coupling (C3.) violates lepton

number and leads to a mixing between the Higgs and lepton sectors. At tree-level we will

forbid this coupling, however in section 4.6 use it to generate neutrino masses. The cou-

plings (C5.), (C6.) and (C7.) violate either lepton or baryon number, and thus contribute

to proton decay in combination with the other B/L violating operators.

4.2.3 Flavour Constraints and FN-models

The assignment of the U(1) charges of matter must be such that it allows for a top Yukawa

coupling for the third generation, which amounts to requiring at least one charge neutral

coupling of the form

Y t
ab : λtab10a10b5Hu ⊃ Y u

ABQAūBHu , (4.25)

where A,B label the quark generations. As the mass of the bottom quark is suppressed

with respect to the mass of the top, a bottom Yukawa coupling

Y b
ai : λbai10a5̄i5̄Hd ⊃ Y

d
AIQAd̄IHd + Y L

IALI ēAHd , (4.26)

is not necessarily imposed at leading order. Both cases of rank 0 and rank 1 bottom

Yukawa matrices at first order are studied. The up-type and down-type Yukawa matrices,

Y u and Y d are the matrices formed from the couplings Y u
AB and Y d

AI , respectively after

the distribution of MSSM matter has been assigned to the 10 and 5 representations.
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In the present context we will apply a FN-type mechanism [173] to generate the remaining

Yukawa matrix entries, i.e. the U(1)-charged couplings are generated by giving suitably

charged singlets a vev. In a generic F-theory models, the couplings between conjugate fields

are always geometrically generated, i.e. the singlets required for all possible couplings of

the form
1 5i5j

1 10m10n ,
(4.27)

are always present. Giving these singlets a vacuum expectation value breaks the U(1)

symmetry under which the singlet is charged, and generates the remaining Yukawa cou-

plings. Whether or not such a vacuum expectation value can indeed be obtained, is a

question of moduli stabilisation, which is beyond the scope of this thesis. For a singlet S

of charge q a coupling, with charge nq, is regenerated with suppression

sn =

(
〈S〉

MGUT

)n
. (4.28)

Experimentally masses, mixing angles and CP violation are measured at low energies

compared to the UV scale at which we are calculating (see PDG flavour reviews [15] for

the latest experimental summary). To compare UV models of Yukawa couplings to low-

energy data, one needs to appropriately renormalise the couplings via the RG equations.

This evolution allows for additional effects that can explain the flavour structure at low

energies. For example flavour-violating effects from soft supersymmetry breaking can give

large contributions to flavour observables, in fact they could even generate the entire

flavour structure [174,175].

However, the question here is different, namely, can the pattern that we can obtain from

the additional U(1)s account for the entire flavour physics, i.e. with minimal RG evolution

effects. This limit can be achieved when large flavour violating effects are absent in the

soft-terms and canonical kinetic terms are present. In this context the RG evolution of

quark and lepton masses as well as mixing parameters to high energies, e.g. the GUT

scale at around 1016 GeV, has been performed (see for instance [176]). Roughly speaking

one observes with the above assumptions that the quark mixing parameters and masses

do not run very much. To first approximation, we hence aim at obtaining the following

mass ratios and mixing angles in the quark and lepton sector [177,178]:

mt : mc : mu ∼ 1 : ε4 : ε8

mb : ms : md ∼ 1 : ε2 : ε4

mτ : mµ : me ∼ 1 : ε2 : ε4,5 ,

(4.29)

and quark mixing angles

θ12 ∼ ε , θ23 ∼ ε2 , θ31 ∼ ε3 , (4.30)
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where ε ≈ 0.22 is the Wolfenstein parameter [179]. We do not determine the ratio mb
mt

=

εx tan−1 β as this is part of a full-fledged supersymmetry breaking model, which is not part

of our analysis. Furthermore, we do not discuss CP violation here as the U(1) symmetries

used for obtaining the hierarchical scaling do not constrain the complex phases of the

singlet insertions.

This experimentally constrained structure of masses and flavour mixings does not fix

the entire structure in the Yukawa matrices. There are various popular models for this

such as [177, 180, 181]. More systematically, by focusing on generating all hierarchies

with one singlet, one can classify all viable textures for the quark masses [181]. In the

present context, the only model in this classification, which is consistent with SU(5), is

the following hierarchical scaling of the Yukawa matrices first obtained by Haba in [182]

Y u
Haba ∼




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1


 , Y d

Haba ∼




ε4 ε4 ε4

ε2 ε2 ε2

1 1 1


 . (4.31)

Another texture which will be shown to be consistent with the F-theoretic setup was

already obtained by Babu, Enkhbat and Gogoladze (BaEnGo) in [183] and is given by

Y u
BaEnGo ∼




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1


 , Y d

BaEnGo ∼




ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1


 . (4.32)

The U(1) symmetries and associated singlet vevs generate these hierarchies in the cou-

plings, but do not predict the exact values for the masses. These are obtained by O(1)

numbers in front of each coupling, whose string theoretic origin can for instance be non-

canonical contributions to the kinetic terms. The couplings do not only depend on the

singlets but also on uncharged complex structure moduli. In practice we will determine

O(1) numbers which generate the experimentally favoured values, in particular for the

lepton sectors, which will be discussed in section 4.6.

A detailed analysis of the flavour constraints in the context of Froggatt–Nielsen models

will be done in section 4.5. We find F-theoretic models consistent with the above two

hierarchies as in [182] and [183]. In appendix B.4 we consider other known textures

[176, 159] and show that it is not possible to find F-theoretic charges, which solve the

anomaly cancellation conditions and generate the required quark Yukawa matrices.

4.2.4 F-theory U(1)s and the Mordell–Weil group

The key input from F-theory – apart from the anomalies – is the set of possible U(1)

charges for matter fields as determined in [32]. Much recent progress in F-theory model
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building has resulted in constructions of examples of global elliptic Calabi–Yau four-folds,

which realise both, GUT gauge groups in terms of singularities in the elliptic fiber, as well

as additional abelian gauge symmetries (see introduction for a list of references). Abelian

gauge symmetries are constructed in terms of so-called rational sections, which are maps

from the base of the fibration back to the fiber [38]. None of the explicit algebraic realisa-

tions, however, resulted in a complete classification of the possible U(1) symmetries. The

collection of rational sections form a finitely generated abelian group (under the elliptic

curve group law), called the Mordell–Weil group, which is isomorphic to Zr⊕Γ, where Γ is

the torsional part, which will not play a role in the current discussion. If the Mordell–Weil

group has rank r, then the resulting compactification will have r additional U(1) symme-

tries. Realising elliptic fibrations with multiple matter curves of distinct U(1) charges is

technically a highly challenging enterprise. Therefore an alternative approach that would

yield the charges, without necessarily constructing the corresponding geometries is highly

desirable.

Models with one U(1)

Such a full classification of possible U(1) symmetries for SU(5) was obtained in [32]3.

There the starting point is not a concrete realisation of the elliptic fiber, but a more

abstract approach pursued by studying the constraints on the possible U(1) charges in

terms of general consistency requirements between the rational sections and codimension

two fibers from the classification in [70]. This approach has the great advantage of giving

rise to a super-set of U(1) charges, that can be realised in F-theory, without however

providing a direct geometric construction. We take this set of charges as an input for our

analysis and show that certain charges in this set are phenomenologically favoured, as they

satisfy all constraints and provide realistic flavour physics. In this way, we provide a pointer

towards which geometric constructions can yield globally consistent compactifications. We

shall give some details on geometries of this type later in the chapter in section 4.7.

The input from the classification result in [32] for F-theory compactifications to 4d with r

U(1) symmetries, and matter in the 10 and 5̄ of SU(5) is the set of possible charges. For

a single U(1), there are three types of distinct distributions of sections in the codimension

one fiber4 – for the reader interested solely in the model building aspects, it is sufficient

3There is an assumption, that the section is a smooth divisor in the resolved Calabi–Yau four-fold. A
discussion of this particular point and potential extensions beyond that can be found in [32].

4Recall that sections can be thought of as marked points on the elliptic curve. A model that realises
an SU(5) gauge theory has special, so-called singular I5 fibers above a codimension one locus in the base
of the fibrations. Geometrically these are a ring of five rational curves, i.e. two-sphere, which intersect
in the affine SU(5) Dynkin diagram – as shown in figure 4.2. To describe a model with a single U(1)
there is a zero-section (origin of the elliptic curve) and the additional rational section, which generates the
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Figure 4.2: The configurations of fibers for an SU(5) model with one U(1) symmetry.
The I5 fiber, realised by the five black lines (corresponding to P1s in the fiber) gives rise
to the SU(5) gauge bosons, and the sections, shown as colored dots corresponding to the
zero-section (blue) and the additional section (red), give rise to the additional abelian
gauge factor.

to understand that there are three set of charges, labeled by

I
(01)
5 , I

(0|1)
5 , I

(0||1)
5 . (4.33)

and are shown in figure 4.2. For a given codimension one distribution of sections labeled

by I5 with the superindex indicating the separation between the zero-section (0) and the

extra section (1), it was found in [32] that, for smooth rational sections, the possible

charges for 10 and 5̄ matter that can arise in SU(5) F-theory models are as follows5:

I
(01)
5 :

{
q10 ∈{−3,−2,−1, 0,+1,+2,+3}

q5̄ ∈{−3,−2,−1, 0,+1,+2,+3}

I
(0|1)
5 :

{
q10 ∈{−12,−7,−2,+3,+8,+13}

q5̄ ∈{−14,−9,−4,+1,+6,+11}

I
(0||1)
5 :

{
q10 ∈{−9,−4,+1,+6,+11}

q5̄ ∈{−13,−8,−3,+2,+7,+12} .

(4.34)

A natural question is then to determine, whether there are integral solutions for the Ms

and Ns, such that the resulting charge assignments solve anomaly conditions (A1.)−(A5.)

and do not give rise to proton decay.

Finally we should comment on the U(1) charges of GUT singlets, which will play a role

later on in the Froggatt–Nielsen inspired flavour construction. In F-theory SU(5) GUTs,

the singlets arise at the intersection of any two 5̄ curves (as well as two 10s). Hence, we

can read off the singlet charges from the difference of charges

q1ij = q5̄i
− q5̄j

, i 6= j , (4.35)

for each of the three codimension one models.

Mordell–Weil group. The codimension one fibers with rational sections are thus decorations of the affine
SU(5) Dynkin diagram with two marked points, modulo trivial relabelling. These are shown in figure 4.2.

5For some studies it will be useful to rescale the models in I
(01)
5 by 5, so that a uniform treatment is

possible, i.e. that the unit charges is “normalised” to 5.
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(012) (01|2) (01||2)

(0|1|2)(0|12) (0||12)

Figure 4.3: The configurations of fibers for an SU(5) model with two U(1) symmetries.
The I5 fiber, realised by the five black lines (corresponding to P1s in the fiber) gives rise
to the SU(5) gauge bosons, and the sections, shown as colored dots corresponding to the
zero-section (blue) and the two additional sections (red, yellow), give rise to the additional
abelian gauge factors.

Throughout the main text we will consider only these F-theory charges (4.34). In certain

cases it is possible to use methods from solutions of Diophantine equations to solve the

anomalies in general and we will provide these in appendix B.3.

Models with two U(1)s

As we will see in section 4.3, there are only very few viable solutions with one U(1)

symmetry. To construct models with two additional U(1)s we need two additional rational

sections, σ1 and σ2 in the elliptic fibration, in addition to the zero-section, σ0. There are

nine possible codimension one fiber types in this case, up to a reordering of the simple

roots and exchanging the two rational sections. These are given by,

I
(012)
5 , I

(01|2)
5 , I

(01||2)
5 , I

(0|12)
5 , I

(0|1|2)
5 , I

(0|1||2)
5 , I

(0|1|||2)
5 , I

(0||12)
5 , I

(0||1|2)
5 ,

(4.36)

where i = 0, 1, 2 denotes the position of the section σi. For each codimension one fiber

there is a collection of codimension two fibers, and thus charge-sets.

The charges that appear in each of these codimension one fibers can be obtained from the

charges in (4.34) by noting that the charges in an I
(0|||1)
5 model are simply the negative of

those in I
(0||1)
5 . The same statement holds for I

(0||||1)
5 and I

(0|1)
5 . The two codimension one

fibers, I
(0|||1)
5 and I

(0||||1)
5 , were not considered in the case of a single additional rational

section as they are equivalent, under a reordering of the simple roots to I
(0||1)
5 and I

(0|1)
5 ,

respectively. In the case of two rational sections it is not always possible to bring both of
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the sections into one of these forms.

From what is stated above, it is clear that not all of the codimension one fibers in (4.36)

are distinct. For example, the charges in I
(0|12)
5 are the same as those in I

(0|1|||2)
5 if the

charges under the second U(1) are multiplied by −1. The anomaly cancellation conditions

(A2.) and (A3.) are invariant under such re-scalings of the U(1) charges therefore these

two fibers will give rise to the same set of solutions up to the normalisation of one of the

U(1)s. In this analysis we will consider the reduced set of codimension one fibers which

give rise to distinct U(1) charges given by

I
(012)
5 , I

(01|2)
5 , I

(01||2)
5 , I

(0|12)
5 , I

(0|1|2)
5 , I

(0||12)
5 . (4.37)

These configurations are also shown in figure 4.3. For these fibers, each additional rational

section with the zero-section will generate a U(1) with charges equal to those in (4.34).

By taking all possible pairings between these two sets of charges one obtains the charges

for a model with two additional U(1) symmetries.

4.3 Single U(1) Models

We begin our analysis by considering SU(5) models with one additional U(1) symmetry,

and varying N10 and N5. In summary: a single phenomenologically good model is found

for N10 = 1 and N5̄ = 4, denoted I.1.4.a in table 4.1, where the unwanted operators

are not regenerated at the same order as the remaining charged Yukawa couplings. For

N10 = 1 and N5̄ = 5 as well as N10 > 1 (see appendix B.1) solutions are found, which

however regenerate some dimension five proton decay operators along-side the charged

Yukawas. This in itself is not problematic, as long as the suppression is high enough.

However, single U(1) models suffer generically from a poor flavour structure as generated

by a FN-type mechanism. Nevertheless it is interesting to note that there are solutions

to the constraints within the F-theoretic U(1) charges, which could be augmented with

other mechanisms for generating flavour such as [156], to produce a phenomenologically

consistent F-theory model.

Contrary to this, models with two U(1)s can satisfy the constraints from anomalies and

couplings, and in addition will generate successful flavour physics via an FN-mechanism

as will be discussed in section 4.5.
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4.3.1 N10 = 1

We start the analysis with one 10 representation. Requiring one top Yukawa coupling im-

plies that not all 10 charges listed in (4.34) can be used. The charges, in each codimension

one configuration, which have a top Yukawa coupling with one of the possible 5 charges

are

U(1) charges of 10 with 10q10q5−2q:





I
(01)
5 q10 ∈ {−1, 0,+1}

I
(0|1)
5 q10 ∈ {−7,−2,+3}

I
(0||1)
5 q10 ∈ {−4,+1,+6} .

(4.38)

For the case of one 10 representations the solutions to the anomaly equations can be

parametrised as follows6

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd −qHu + 5wHd 0 1

5̄i −qHu + 5w5̄i Mi Ni

10 q10 3 0

(4.39)

where i = 1, . . . ,N5̄ − 2, where N5̄ is the number of 5̄ representations. The integer

parameters wHd and w5̄i denote the separation between the charges of Hd and 5 matter

from the charge of Hu
7. The charges for the 10 and 5 representations take values in

(4.38) and (4.34), respectively.

N5̄ = 3

In view of the arguments in (4.16) and (4.17), the minimal number of 5̄ representations is

three. However this case always allows the µ-term, which disfavours these models. To see

this, parametrise the models as in (4.39) with one 5̄1 curve, which has M = 3 and N = 0.

The anomaly condition (A2.) implies wHd = 0, which exactly generates the µ-term.

6Note that we give the charge of the conjugate of the up-type Higgs, i.e. qHu is the charge of 5, whereas
−qHu is the charge for 5̄.

7In this analysis we have multiplied the charges of the fiber type I
(01)
5 by 5 so that all fiber types can

be analysed with the same parametrisation.
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N5̄ = 4

For four 5 representations, the anomaly conditions can be solved exactly, and we will find

one model, which is phenomenologically viable. Consider again the parametrisation

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd −qHu + 5wHd 0 1

5̄1 −qHu + 5w5̄1 M N

5̄2 −qHu + 5w5̄2 3−M −N
10 −1

2qHu 3 0

(4.40)

where M,N ∈ Z+. In the analysis of four and more8 5s we do not allow solutions where

Mi = Ni = 0 for any of the 5s. The above parametrisation already satisfies (A1.), (A4.)

and (A5.) by construction. Constraint (A2.) and (A3.) imply

wHd = N(w5̄2 − w5̄1) , N(w5̄1 − w5̄2)(w5̄1 +Nw5̄1 + w5̄2 −Nw5̄2) = 0 , (4.41)

where we exclude cases N = 0 as well as w5̄1 = w5̄2 as they imply qHu = −qHd . If we do

not require a bottom Yukawa coupling qHu is left unconstrained and the charges are given

by

qHd = −qHu +
10w5̄2N

1 +N
q5̄1 = −qHu +

5w5̄2(N − 1)

1 +N
q5̄2 = −qHu + 5w5̄2 . (4.42)

Requiring a bottom Yukawa with 51 gives the additional constraint

qHu =
6N − 2

N + 1
w5̄2 . (4.43)

This results in the following set of charges

q10 =
−3N + 1

N + 1
w5̄2 , qHd =

4N + 2

N + 1
w5̄2 q5̄1 = −N + 3

N + 1
w5̄2 , q5̄2 =

−N + 7

N + 1
w5̄2 ,

(4.44)

where w5̄2 is unconstrained. In this case we do not consider the case M = 0 as we want a

bottom Yukawa coupling with q5̄1 , which must then contain a down-type quark.

To exemplify our solution process, in this case we summarise all solutions in table 4.1,

which fall within (4.34) and (4.38). This corresponds to picking a specific value for w5̄2 ,

and qHu in the case without a leading order bottom Yukawa coupling. The table also

displays the charges of the forbidden couplings (C1.)−(C7.) as well as the charged Yukawa

couplings, Y b
i . The solutions can be summarised as follows:

8This is to avoid repetition of solutions and in all sections that follow each 5 will have a non-zero net
flux restriction.
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• Model I.1.4a is the only phenomenologically viable solution for a single U(1) solving

all constraints, without bringing back any of the dangerous operators, when generat-

ing the remaining Yukawa couplings. It does regenerate the µ-term with two singlet

insertions. As noted already in general, the flavour physics of this model is however

quite limited, which is a matter that will be improved upon in the multiple U(1)

case.

• Model I.1.4.c regenerates both dimension five proton decay operators with two and

three singlet insertions and all other remaining models regenerate the dimension four

proton decay operators (C4.).

N5̄ = 5, 6, 7

For N5̄ > 4 solving the anomaly cancellation conditions for general charges is difficult,

however we provide a method for solving these in general in appendix B.3. In practice

given the finite set of charges, one can simply scan over all possibilities. For each 10 charge

in (4.38), one can require the top Yukawa coupling, which fixes the charge of 5Hu . Solving

(A1.)−(A5.) and requiring absence of (C1.)−(C7.), we find very few solutions, where every

single one regenerates dimension 5 or dimension 4 proton decay operators at the same order

as the remaining Yukawa couplings (with exactly the same singlet suppression). Thus all

models are disfavoured.

For N5 ≥ 6 there are no solutions. The case of six 5̄ is maximal for two of the charge

sets in (4.34). For these sets the only freedom comes in selecting the charge of the 10

representation which will fix qHu . As there are seven possible charges for fundamental

matter in the case of I
(01)
5 we need to consider all possible subsets of six once the charge

of the 10 has been fixed.

One can go further and allow for seven distinctly charged 5̄ representations in the case

of the I
(01)
5 models. One finds two solutions to the anomaly cancellation conditions for

q10 = ±1, however, these solutions do not forbid (C2.) and are therefore excluded.

4.3.2 N10 ≥ 2

The case of multiple 10 representations for a single U(1) symmetry does not yield any

interesting solutions to the constraints. In particular for a single U(1) the flavour physics is

very constrained. The analysis is provided in appendix B.1 for completeness. In summary

we find the following:
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• There are two solutions for N10 = 2 and N5 = 4, shown in table B.1. Both

these models regenerate dimension five operators at the same order as the charged

Yukawas. In terms of the flavour physics of these models, with only two 10 repre-

sentations and four 5s one can not satisfy the mass hierarchies for the up-type and

down-type quarks simultaneously.

• For N10 = 3 there is one model, which has realistic flavour structure for the quark

sector. In fact it generates the Haba textures (4.31), albeit it does regenerate di-

mension four proton decay operators at the same order as the Yukawas.

• No other solution exists with two or three 10s, which solve the anomaly cancellation

conditions and forbid the dangerous operators.

It is clear from the analysis carried out in this section that in order to construct feasible

models, that might give rise to interesting flavour structure, it is necessary to extend to

multiple U(1)s.

4.4 Two U(1) Models with Hypersurface Realisation

For two additional U(1) symmetries, the phenomenological properties of the models be-

come much more favourable. Allowing models with up to three 10 and eight 5 represen-

tations in the survey, one finds a large number of solutions to the anomaly cancellation

conditions with no exotics, which furthermore forbid the unwanted operators. In view of

this, it is then useful to focus on two subclasses of solutions:

1. Models with charges that have a known geometric realisation.

2. Models, where the U(1) symmetries can be used to construct realistic flavour tex-

tures. This is detailed in section 4.5.

We now turn to point 1. and find solutions, which have charges that are closest to known

geometric models. We will find in this section that there are no solutions, which are within

the charges obtained in the literature. However, there are solutions, summarised in tables

4.2 and 4.3, for which we determine new geometric models, that give rise to these charges

in section 4.7.
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II.1.6.a II.1.6.b

M1 1 1

M2 1 1

M3 0 0

N1 1 1

N2 −1 −1

N3 1 1

q10 (−2, 3) (−2, 1)

qHu (4,−6) (4,−2)

qHd (6,−4) (6, 2)

q5̄1 (−4, 1) (−4,−3)

q5̄2 (1,−4) (1,−3)

q5̄3 (1, 6) (1, 7)

q5̄4 (6, 1) (6, 7)

Y b
1 (0,0) (0,0)

Y b
2 (5,−5) (5, 0)

Y b
3 (5, 5) (5, 10)

Y b
4 (10, 0) (10, 10)

µ (10,−10) (10, 0)

C2 {(−10, 10), (−5, 5), (−5, 15), (0, 10)} {(−10, 0), (−5, 0), (−5, 10), (0, 10)}
C3 {(0,−5), (5,−10), (5, 0), (10,−5)} {(0,−5), (5,−5), (5, 5), (10, 5)}

C4

{(−10, 5), (−5, 0), (−5, 10), (0, 5), {(−10,−5), (−5,−5), (−5, 5), (0, 5),

(0,−5), (5, 0), (0, 15), (5, 10), (0,−5), (5, 5), (0, 15), (5, 15),

(10, 5)} (0, 15)}
C5 {(0, 5), (−5, 10), (−5, 0), (−10, 5)} {(0, 5), (−5, 5), (−5,−5), (−10,−5)}
C6 {(10,−15), (15,−20), (15,−10), (20,−15)} {(10,−5), (15,−5), (15, 5), (20, 5)}
C7 (0, 5) (0, 5)

Table 4.2: Solutions for N10 = 1 and N5̄ = 6 with 2 U(1)s. The charges of the bottom
Yukawa couplings are shown in the row Y b

i , where i = 1, 2, 3, 4 labels the 5i involved in
the coupling. The charges of the couplings (C1.)−(C7.) are shown in the corresponding
rows.
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II.1.6.c II.1.6.d

M1 1 1/2

M2 1 1/2

M3 1 0/1

N1 1 -1

N2 −1 −1

N3 −1 1

q10 (3, 1) (3, 1)

qHu (−6,−2) (−6,−2)

qHd (−4, 2) (−4, 2)

q5̄1 (1,−3) (1,−3)

q5̄2 (−4,−3) (−4, 7)

q5̄3 (1, 7) (1, 7)

q5̄4 (6,7) (6, -3)

Y b
1 (0,0) (0,0)

Y b
2 (−5, 0) (−5, 10)

Y b
3 (0, 10) (0, 10)

Y b
4 (5, 10) (5,0)

µ (−10, 0) (−10, 0)

C2 {(10, 0), (5, 0), (10, 10), (15, 10)} {(10, 0), (5, 10), (10, 10), (15, 0)}
C3 {(−5,−5), (−10,−5), (−5, 5), (0, 5)} {(−5,−5), (−10, 5), (−5, 5), (0,−5)}

C4

{(5,−5), (0,−5), (5, 5), (10, 5), {(5,−5), (0, 5), (5, 5), (10,−5),

(−5,−5), (0, 5), (5, 5), (5, 15), (10, 15), (−5, 15), (0, 15), (5, 15), (10, 5),

(15, 15)} (15,−5)}
C5 {(5, 5), (10, 5), (5,−5), (0,−5)} {(5, 5), (10,−5), (5,−5), (0, 5)}
C6 {(−15,−5), (−20,−5), (−15, 5), (−10, 5)} {(−15,−5), (−20, 5), (−15, 5), (−10,−5)}
C7 (5, 5) (5, 5)

Table 4.3: Solutions for N10 = 1 and N5̄ = 6 with 2 U(1)s. The model II.1.6.d regenerates
dimension five proton decay operators with multiple insertions of the singlets regenerating
the charged Yukawas.
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In the following we restrict to the set of U(1) charges which have appeared in explicit

realisations of two U(1) models [92–95,108]. These charges are given by9

I
(01)
5 :

{
q10 ∈{0,+1}

q5̄ ∈{−1, 0,+1}
I

(0|1)
5 :

{
q10 ∈{−2,+3}

q5̄ ∈{−4,+1,+6}
I

(0||1)
5 :

{
q10 ∈{−4,+1}

q5̄ ∈{−3,+2,+7}
(4.45)

Taking this reduced set of charges we look for subsets, which solve the anomaly cancel-

lation conditions, allowing up to N10 = 3 and N5 = 8. The set of models, which solve

the conditions (A1.)−(A5.) are then further filtered down to those which forbid the dan-

gerous couplings (C1.)−(C7.) at leading order. These dangerous couplings should also

not be regenerated with the same singlet insertion, that regenerates the charged Yukawa

couplings.

The phenomenologically good solutions are given in tables 4.2 and 4.3. These models

all feature N10 = 1 and 5 = 6 and have a top and bottom Yukawa coupling at leading

order. The model II.1.6.d regenerates dimension five proton decay operators with multiple

insertions of the singlets, that generate the charged Yukawas. The remaining three models

all give rise to the µ-term with two singlet insertions. Interesting flavour textures for these

models, which have only a single 10, cannot be generated through the U(1) symmetries,

however these models have the advantage of having a concrete geometric realisation: none

of the geometries in the literature [92–95, 108] generate this particular combination of

charges, however we will determine elliptic fibrations for these models in section 4.7.

4.5 F-theoretic Froggatt–Nielsen Models with two U(1)s

The constructions passing all anomaly and coupling constraints with charges seen in known

geometric constructions have not revealed an interesting flavour structure from the U(1)s,

as we only found solutions with a single 10 curve. We now turn our discussion to the

question whether we can find models with two U(1)s and three 10 curves with the more

general, F-theoretic set of charges in (4.34). This increase in complexity improves the

models, which as we will see, allow for realistic flavour physics. In short, we identify

models that lead to a realisation of the FN mechanism. Note that we will match the

quark Yukawas to several known flavour hierarchies. It certainly would be very interesting

to scan through all the possibilities in the solution space, and possibly determine new

textures. Concretely, we find two classes of flavour models, which appeared in [182, 183],

9Note that not all combinations of these charges are realised in geometric models in the literature – for
instance the models we find in tables 4.2 and 4.3 are of this type. However in section 4.7, we will determine
new geometries (based on the generalised cubic model of [133]), which give a concrete realisation of these
models.
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for the quark sector that can be realised. This will be the topic of the current section, and

the resulting new lepton flavour structure is discussed in section 4.6. There are several

popular flavour models, that we cannot realise in our class of models, which are detailed

in appendix B.4.

4.5.1 Models with N10 = 3

We now analyse F-theoretic U(1) models with two U(1)s for their potential to solve all

the constraints as well as induce realistic flavour hierarchies by a Froggatt–Nielsen type

mechanism. Each entry in the Yukawa matrix for the up-type quarks, Y u, is given by the

couplings

Y u
ij QiūjHu , i, j = 1, 2, 3 . (4.46)

The U(1) charges of 10 representations within which these quarks reside will determine

the charges of the singlets required to regenerate these couplings and therefore their sup-

pression. If we require that Y u is rank one at leading order so that only Y u
3,3, for the third

generation, is uncharged under the additional U(1)s and that Y u
1,1 and Y u

2,2 appear with

different suppressions, to match with a large class of known textures, we are required to

consider models with three 10 representations.

A leading order rank one up-type Yukawa matrix is achieved most easily by having Q3

and ū3 residing on the same 10 representation, 103, with U(1) charges satisfying

2q103 + qHu = 0 . (4.47)

In order for the top Yukawa coupling involving 103 to only generate a leading order mass

for the top quark we require

M103 = 1 and N103 = 0, (4.48)

so that only the third generation of left- and right-handed quarks lie within this 10 rep-

resentation. It is crucial that only the third generation is present on 103 otherwise off

diagonal terms in the Yukawa matrix will also be regenerated at first order.

Between the remaining two 10 representations, 101 and 102, one can have the following

distribution of the remaining quarks:

T.1: M101 = M102 = 1, N101 = N102 = 0

For these configurations one has

10A ⊃ QA + ūA + ēA, A = 1, 2, 3 , (4.49)



Chapter 4. Froggatt–Nielsen meets Mordell–Weil 145

and the resulting Yukawa matrix is symmetric. These textures could potentially

agree with those in [182,176,183,159].

T.2: M101 = M102 = 1, N101 = −1, M102 = 1

Here, both the remaining right-handed up-type quarks, ū1 and ū2, originate from

101,
101 ⊃ Q1 + ū1 + ū2

102 ⊃ Q2 + ē1 + ē2 .
(4.50)

The resulting Y u, denoting the singlet insertion which regenerates the top Yukawa

coupling between 10A and 10B as sAB, has the following form

Y u ∼




s11 s11 s13

s12 s12 s23

s13 s13 1


 , (4.51)

where two columns have identical singlet insertions, as the charges for the couplings

involving ūA, A = 1, 2 are the same. This does not match known textures, where off

diagonal terms have a greater suppression compared to their nearest diagonal terms.

T.3: M101 = 2,M102 = 0, N101 = 0, M102 = 0

We do not consider this case as 102 has no net chirality and therefore this case

reduces to two 10 representations.

The case T.2 can be shown to not give rise to good flavour textures. In the following

section we focus on case T.1, where each differently charged 10 representation contains

a different generation of QA and uA, and match to known textures in the literature. We

show in appendix B.4 that the flavour hierarchies in [176, 159] cannot be realised within

our global F-theoretic charge framework. Note that the textures in [181], which do not

have a symmetric Y u, cannot be realised. The two flavour models that can be realised in

our framework are those in Haba [182] as well as Babu, Enkhbat, and Gogoladze [183],

which we now discuss in turn.

4.5.2 F-theoretic FN-models (Haba1) and (Haba2)

In this section we determine solutions to our constraints, which furthermore generate the

Yukawa textures in Haba [182]

Y u
Haba ∼




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1


 , Y d

Haba ∼




ε4 ε4 ε4

ε2 ε2 ε2

1 1 1


 (4.52)
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from a Froggatt–Nielsen type mechanism. Let

M10A = 1, N10A = 0, A = 1, 2, 3 . (4.53)

The charges of the 10 representations therefore do not contribute to the anomaly can-

cellation conditions, as N10A = 0. We consider N5 = 4 in the following. The sets of

5 charges, which solve the conditions were determined in appendix B.2 and are given in

(B.16), (B.17) and (B.18).

In order to match to this texture we need to impose that all d̄i are from the same 5

representation, which is achieved by

M5̄1 = 0, N5̄1 = 1, 2 or 3

M5̄2 = 3, N5̄2 = −N5̄1 .
(4.54)

The cases N5̄1 = 1, 3 give phenomenologically disfavourable models as the solutions either

allow the µ-term or regenerate dimension four proton decay with the remaining charged

Yukawas. This leaves only N = 2, the solutions of which are given in table B.2. Imposing

the presence of a bottom Yukawa coupling of the form

10352Hd , (4.55)

restricts the set of solutions further. The set of charges with

M51 = 0, N51 = 2

M52 = 3, N52 = −2 ,
(4.56)

which furthermore allow for a bottom Yukawa coupling are as follows:

103 5Hu 5Hd 51 52

q(R)1 −q1
Hu
/2 q1

Hu
3q1
Hu
/7 −9q1

Hu
/14 q1

Hu
/14

q(R)2 −q2
Hu
/2 q2

Hu
3q2
Hu
/7 −9q2

Hu
/14 q2

Hu
/14

(4.57)

where we have imposed the top Yukawa coupling for 103. The charges of 101 and 102 are

given by10

(
q1

10A
, q2

10A

)
=

(
−1

2
q1
Hu ,−

1

2
q2
Hu

)
+ 5

(
w1

10A
, w2

10A

)
, (4.58)

where qα denotes the charges under U(1)α and A = 1, 2. The charges of matter under

these two U(1)s will therefore be almost identical, the only difference being in the charge

of 101 and 102, which should be chosen so that no dangerous couplings are allowed at

10In order to uniformly study all F-theoretic charges we rescaled for convenience the models of type I
(01)
5

by a factor of 5. This allows us to study all the models where the unit charges is now set to be 5 (rather
than 1).
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leading order. Restricting these general charges to the F-theory charges one finds that

there are only two choices for the charge of the Higgs up given by

(q1
Hu , q

2
Hu) = (14, 14) or (0, 14) . (4.59)

The integer separations, parametrised by wα10A
, satisfy the constraint

w1
10A
6= w2

10A
, A = 1, 2 , (4.60)

as there were no two 10 models for a single U(1) which were phenomenologically viable.

Violating the above constraint for either 101 or 102 will either bring back dangerous opera-

tors or regenerate them with the charged Yukawas. This implies the following distribution:

Representation Charge M N Matter

101

(
−1

2q
1
Hu

+ 5w1
101
,−1

2q
2
Hu

+ 5w2
101

)
1 0 Q1, ū1, ēA, A = 1, 2

102

(
−1

2q
1
Hu

+ 5w1
102
,−1

2q
2
Hu

+ 5w2
102

)
1 0 Q2, ū2, ēB, B 6= A, B = 1, 2

103

(
−1

2q
1
Hu
,−1

2q
2
Hu

)
1 0 Q3, ū3, ē3

5̄Hu (−q1
Hu
,−q2

Hu
) 0 −1 Hu

5̄Hd (3
7q

1
Hu
, 3

7q
2
Hu

) 0 1 Hd

5̄1 (− 9
14q

1
Hu
,− 9

14q
2
Hu

) 0 2 LI , I = 1, 2

5̄2 ( 1
14q

1
Hu
, 1

14q
2
Hu

) 3 −2 L3, d̄I , I = 1, 2, 3

(4.61)

The necessary singlet insertions to regenerate the full up and down-type Yukawa matrices

can be determined to be

Y u ∼




s2
1 s1s2 s1

s1s2 s2
2 s2

s1 s2 1


 , Y d ∼




s1 s1 s1

s2 s2 s2

1 1 1


 , (4.62)

where si = 〈Si〉
MGUT

. The charges of the singlets, S1 and S2 are given by

(q1
S1
, q2
S1

) = −5(w1
101 , w

2
101)

(q1
S2
, q2
S2

) = −5(w1
102 , w

2
102) .

(4.63)

These singlets exactly correspond to those which are present in 10310A1 couplings, where

A = 1, 2, as can be seen from their charges.

Choosing s1 = ε2 and s2 = ε4 one obtains the Haba texture in (4.31). When the charges

of the two singlets are not coprime we have the following relation

(q1
S1
, q2
S1

) = n(q1
S2
, q2
S2

) , (4.64)

for some integer n. In (4.62) s1 can be replaced with sn2 , and from this we see that in

order to match to the texture in (4.31) we must have n = 2. In this case we can generate

the entire Yukawa matrix by giving a vev to only one singlet.
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One choice of wα10A
which avoids all dangerous operators is given by11

(w1
101 , w

2
101) = (2, 0)

(w1
102 , w

2
102) = (1, 0) .

(4.65)

Within this setup there are two choices for the charge of the up-type Higgs:

(Haba1) : (q1
Hu , q

2
Hu) = (14, 14)

(Haba2) : (q1
Hu , q

2
Hu) = (0, 14) .

(4.66)

The full set of charges for these models are as follows12

GUT Charges for (Haba1) Charges for (Haba2) M N MSSM Matter

101 (3,−7) (10,−7) 1 0 Q1, ū1, ēA, A = 1, 2

102 (−2,−7) (5,−7) 1 0 Q2, ū2, ēB, B 6= A, B = 1, 2

103 (−7,−7) (0,−7) 1 0 Q3, ū3, ē3

5̄Hu (−14,−14) (0,−14) 0 −1 Hu

5̄Hd (6, 6) (0, 6) 0 1 Hd

5̄1 (−9,−9) (0,−9) 0 2 LI , I = 1, 2

5̄2 (1, 1) (0, 1) 3 −2 L3, d̄I , I = 1, 2, 3

(4.67)

The models are summarised in table 4.4, including the charges for all the couplings

(C1.)−(C7.). Both models have up- and down-type Yukawas with the same singlet inser-

tion structure

(Haba1,2) : Y u ∼




ω4
1 ω3

1 ω2
1

ω3
1 ω2

1 ω1

ω2
1 ω1 1


 , Y d ∼




ω2
1 ω2

1 ω2
1

ω1 ω1 ω1

1 1 1


 , (4.68)

where ω1 = 〈W1〉
MGUT

, where the charge of the singlet W1 is

(q1
W1
, q2
W1

) = (−5, 0) . (4.69)

By choosing ω1 = ε2 one recovers the Haba flavour texture in (4.31). The lepton Yukawa

matrices, from the above sets of charges, have the following singlet structure

(Haba1,2) : Y L ∼




ω2
1ω2 ω1ω2 ω2

ω2
1ω2 ω1ω2 ω2

ω2
1 ω1 1


 with 10A ⊃ ēA, where A = 1, 2 .

(4.70)

11The charge of the 101,2 are not fixed so far, even when including the constraint of suppressing all
dangerous couplings. Here they are chosen to bring them closest to the known geometric models.

12Note, that as mentioned earlier we rescaled the charges of the class of models I
(01)
5 by 5, to allow for

a uniform treatment of all models. This means, that instead of the 10 charges (2,1,0) we write (10, 5, 0).
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(Haba1) (Haba2)

M 0 0

N 2 2

M10A 1 1

N10A 0 0

q101 (3,−7) (10,−7)

q102 (−2,−7) (5,−7)

q103 (−7,−7) (0,−7)

qHu (14, 14) (0, 14)

qHd (6, 6) (0, 6)

q5̄1 (−9,−9) (0,−9)

q5̄2 (1, 1) (0, 1)

µ (20, 20) (0, 20)

C2

{(0,−30), (10,−20), (−5,−30), {(30,−30), (30,−20), (25,−30),

(5,−20), (−10,−30), (0,−20), (25,−20), (20,−30), (20,−20),

(−15,−30), (−5,−20), (−20,−30), (15,−30), (15,−20), (10,−30),

(−10,−20), (−25,−30), (−15,−20), (10,−20), (5,−30), (5,−20),

(−30,−30), (−20,−20)} (0,−30), (0,−20)}
C3 {(5, 5), (15, 15)} {(0, 5), (0, 15)}

C4

{(−15,−25), (−5,−15), (−20,−25), {(10,−25), (10,−15), (5,−25),

(−10,−15), (−25,−25), (−15,−15), (5,−15), (0,−25), (0,−15),

(5,−5), (0,−5), (−5,−5)} (10,−5), (5,−5), (0,−5)}

C5

{(15,−5), (5,−15), (10,−5), (0,−15), {(20,−5), (20,−15), (15,−5), (15,−15),

(5,−5), (−5,−15), (0,−5), (−10,−15), (10,−5), (10,−15), (5,−5), (5,−15),

(−5,−5), (−15,−15)} (0,−5), (0,−15)}
C6 {(25, 25), (35, 35)} {(0, 25), (0, 35)}
C7 {(−5,−15), (−10,−15), (−15,−15)} {(10,−15), (5,−15), (0,−15)}

Table 4.4: F-theoretic FN-models (Haba1) and (Haba2): these models have two U(1)s
and N10 = 3 and N5 = 4 and have realistic flavour textures, which for the quark sector
match those by Haba in [182].
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Here again the second singlet vev is ω2 = 〈W2〉
MGUT

. The choice for how the eA are distributed

on the 10B matter loci is made to get the standard hierarchy between first and second

generation. To regenerate the entries in these matrices the following charged singlets must

gain a vacuum expectation value

(Haba1) : (q1
W2
, q2
W2

) = (10, 10)

(Haba2) : (q1
W2
, q2
W2

) = (0, 10) .
(4.71)

As one can see from the charges of the (C2.) couplings in table 4.4, regenerating the lepton

Yukawas regenerates all the dimension five operators in both models. The dangerous

dimension five couplings with coupling constant δ1
112I that are regenerated with certain

singlet insertions are shown below for both models, where we take ω2 = O(1):

Model Coupling Charge Singlet insertions ε suppression

(Haba1) 10110110251 (−5,−30) ω5
1ω

3
2 ≤ ε10

10110110252 (5,−20) ω5
1ω

2
2 ≤ ε10

(Haba2) 10110110251 (25,−30) ω5
1ω

3
2 ≤ ε10

10110110252 (25,−20) ω5
1ω

2
2 ≤ ε10

(4.72)

For both models, in order for the

ε10

MGUT
≈ 10−7

MGUT
≤ 16π2MSUSY

M2
GUT

, (4.73)

where the Wolfenstein parameter is ε ≈ 0.22. This translates into the following relation

MSUSY ≥ 10−9MGUT , (4.74)

where as before ω1 = ε2 and ω2 = O(1). The latter can be improved upon by considering

lepton flavour, where the most constraining factor, for both the models, is the mass ratio

between the second and third generation, which is of order ε2. This is discussed in section

4.6.

Other dimension five operators of type Q3L are also regenerated with suppressions of ε2

and higher. For example, in this case one also gets the coupling

10310310352 ⊃ Q3Q3Q3L3 , (4.75)

which can be compared to the bound on δ1
112I by inserting suppression factors from the

CKM between the third generation and the first and second. One finds that this coupling,

which has ε2 suppression from the singlets, picks up at least an additional ε10 once we

take into account the mixing between the quark generations. This coupling does not pose

a greater threat than those considered above and the lower bound of MSUSY from this
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model is unchanged. In section 4.6 we consider the lepton and neutrino flavour physics of

these models in more detail.

We extended this analysis to N5̄ = 5 and 6, which are all possible choices, however there

are no further solutions. Extending the number of 5̄ beyond that results in exotics. Thus

the presently analysed case of N5̄ = 4 presents a sort of sweetspot.

4.5.3 F-theoretic FN-models (BaEnGo1)−(BaEnGo3)

Below we consider solutions which allow for a symmetric up-type Yukawa matrix paired

with a down-type Yukawa matrix, which has only two distinct columns. These textures

(4.32), as we shall show give rise to a realistic CKM structure. This has appeared in the

literature before in [183], and will be referred to as the BaEnGo texture

Y u
BaEnGo ∼




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1


 , Y d

BaEnGo ∼




ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1


 . (4.76)

In this case the structure of singlet insertions is of the form

Y u ∼




s2
1 s1s2 s1

s1s2 s2
2 s2

s1 s2 1


 , Y d ∼




s1s3 s1 s1

s2s3 s2 s2

s3 1 1


 , (4.77)

where si = 〈Si〉
MGUT

. The charges of the singlets, S1, S2 and S3 are given by

(q1
S1
, q2
S1

) = −5(w1
101 , w

2
101)

(q1
S2
, q2
S2

) = −5(w1
102 , w

2
102)

(q1
S3
, q2
S3

) = −5(w1
5̄n
− w1

5̄2
, w2

5̄n
− w2

5̄2
) ,

(4.78)

where one of the 5s, in this case 52, is the one taken to have a leading order bottom

Yukawa coupling and must contain two down-type quarks. One other 5, in the above,

labelled 5n, must contain the last down-type quark. Assuming the dominant contribution

to the masses comes from the diagonal elements, we choose

s1 = ε4, s2 = ε2 , (4.79)

to satisfy the up-type ratios in (4.29). Taking s3 = 1 we recover a down-type Yukawa

matrix in section 4.5.2, here we take the third singlet insertion to be

s3 = ε . (4.80)



Chapter 4. Froggatt–Nielsen meets Mordell–Weil 152

Using the formulas for the three mixing angles derived in [184, 185] the CKM, neglecting

the CP phase, can be calculated to take the form

VCKM ∼




1 ε2 ε4

ε2 1 ε2

ε4 ε2 1


 , (4.81)

to leading order in ε. The corresponding Yukawas are those shown in (4.32). Below we

study the models, which realise these textures with four and five 5s. These models share

the same up-type and down-type Yukawas, which have the structure in (4.77), however,

they differ on the texture of the lepton Yukawa matrix.

N5 = 4

One class of such solutions can be obtained by altering the M,Ns in (4.56) to

M51 = 1, N51 = 2

M52 = 2, N52 = −2 ,
(4.82)

which gives rise to models with the same set of possible charges, but the down-type Yukawa

matrix now has the structure in (4.77). In this distribution of M,Ns all three generations

of leptons reside in 51 which produces lepton Yukawas of the form

(BaEnGo1,2) : Y L ∼




s1s3 s2s3 s3

s1s3 s2s3 s3

s1s3 s2s3 s3


 , (4.83)

where we have chosen the following distribution of right-handed leptons 10A ⊃ ēA, where

A = 1, 2, 3 for both models. These choices ensure that the singlet suppressions generate

the correct hierarchy in lepton masses.

Restricting to the charges in (4.67), where the singlets si are not coprime, the up- and

down-type Yukawa matrices take the form

(BaEnGo1,2) : Y u ∼




ω4
1 ω3

1 ω2
1

ω3
1 ω2

1 ω1

ω2
1 ω1 1


 , Y d ∼




ω2
1ω2 ω2

1 ω2
1

ω1ω2 ω1 ω1

ω2 1 1


 , (4.84)

where ωi = 〈Wi〉
MGUT

. The lepton Yukawa matrix for both sets of charges takes the form

Y L ∼




ω2
1ω2 ω1ω2 ω2

ω2
1ω2 ω1ω2 ω2

ω2
1ω2 ω1ω2 ω2


 , (4.85)
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where the singlets Wi have the following charges

(BaEnGo1) : (q1
W1
, q2
W1

) = (−5, 0)

(q1
W2
, q2
W2

) = (10, 10)

(BaEnGo2) : (q1
W1
, q2
W1

) = (−5, 0)

(q1
W2
, q2
W2

) = (0, 10) .

(4.86)

The singlet suppressions, in terms of the Wolfenstein parameter ε, are given by

w1 = ε2, w2 = ε , (4.87)

to match the suppression of the singlets si in the general texture.

The charges of the unwanted operators are shown in table 4.5, in this case one regenerates

dimension five proton decay operators with the down-type Yukawas. For the couplings

involving δ1
112I one finds the following suppression:

Model Coupling Charge Singlet insertions ε suppression

(BaEnGo1) 10110110251 (−5,−30) ω5
1ω

3
2 ≤ ε13

(BaEnGo2) 10110110251 (25,−30) ω5
1ω

3
2 ≤ ε13

(4.88)

The suppression of these dimension five couplings are bounded as

ε13

MGUT
≈ 10−9

MGUT
≤ 16π2MSUSY

M2
GUT

, (4.89)

which results in the following bound on the mass of the sparticles participating in the

process:

MSUSY ≥ 10−11MGUT . (4.90)

As in the earlier case of the Haba textures, the other operators are further suppressed

compared to δ1
112I and thus not threatening to the consistency of the model.

N5 = 5

Finally, we discuss a solution, which has a distinct lepton flavour structure, by extending

the solution in section 4.5.2 to five 5s with

M51 = 0, N51 = 2

M52 = 2, N52 = −2

M53 = 1, N53 = 0 .

(4.91)

In this case the charges of the three 10s, 51 and 52 are as in (4.57) and (4.58). However

the charge of 53 is constrained not by the anomaly cancellation conditions, but by the



Chapter 4. Froggatt–Nielsen meets Mordell–Weil 154

(BaEnGo1) (BaEnGo2)

M 1 1

N 2 2

M10A 1 1

N10A 0 0

q101 (3,−7) (10,−7)

q102 (−2,−7) (5,−7)

q103 (−7,−7) (0,−7)

qHu (14, 14) (0, 14)

qHd (6, 6) (0, 6)

q5̄1 (−9,−9) (0,−9)

q5̄2 (1, 1) (0, 1)

µ (20, 20) (0, 20)

C2

{(0,−30), (10,−20), (−5,−30), {(30,−30), (30,−20), (25,−30),

(5,−20), (−10,−30), (0,−20), (25,−20), (20,−30), (20,−20),

(−15,−30), (−5,−20), (−20,−30), (10,−30), (10,−20), (5,−30),

(−10,−20), (−25,−30), (−15,−20), (5,−20), (15,−30), (15,−20),

(−30,−30), (−20,−20)} (0,−30), (0,−20)}
C3 {(5, 5)} {(0, 5)}

C4

{(−15,−25), (−5,−15), (−20,−25), {(10,−25), (10,−15), (5,−25),

(−10,−15), (−25,−25), (−15,−15), (5,−15), (0,−25), (0,−15),

(5,−5), (0,−5), (−5,−5)} (10,−5), (5,−5), (0,−5)}

C5

{(15,−5), (10,−5), (5,−5), (0,−5), {(20,−5), (15,−5), (10,−5), (5,−5),

(−5,−5)} (0,−5)}
C6 {(25, 25)} {(0, 25)}
C7 {(−5,−15), (−10,−15), (−15,−15)} {(10,−15), (5,−15), (0,−15)}

Table 4.5: F-theoretic FN-models (BaEnGo1) and (BaEnGo2): these models have two
U(1)s and N10 = 3 and N5 = 4 and have realistic flavour textures, which for the quark
sector match those by BaEnGo in (4.32).
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requirement of suppressing the unwanted operators. The distribution of MSSM matter is

Representation Charge M N Matter

101 (q1
101
, q2

101
) 1 0 Q1, ū1, ē3

102 (q1
102
, q2

102
) 1 0 Q2, ū2, ē2,

103 (−7,−7) 1 0 Q3, ū3, ē1

5̄Hu (−14,−14) 0 −1 Hu

5̄Hd (6, 6) 0 1 Hd

5̄1 (−9,−9) 0 2 LI , LJ , I, J = 1, 2, 3

5̄2 (1, 1) 2 −2 d̄2, d̄3

5̄3 (q1
53
, q2

53
) 1 0 LK , d̄1

(4.92)

where there is a choice in how the different generations of leptons are distributed, which

is unfixed by the anomaly cancellation conditions. The general structure of the lepton

Yukawas is given by

Y L ∼




s4s1 s4s2 s4

s4s1 s4s2 s4

s3s1 s3s2 s3


 , (4.93)

where the singlets have charges

(q1
S3
, q2
S3

) = −5(w1
53 − w

1
52 , w

2
53 − w

2
52)

(q1
S4
, q2
S4

) = −5(w1
51 − w

1
52 , w

2
51 − w

2
52) .

(4.94)

The up-type and down-type Yukawa textures are given in (4.77). One choice of charges,

which we will denote as model (BaEnGo3), that does not allow unwanted operators at

leading order is given by:

(BaEnGo3) :

Representation Charge M N Matter

101 (−12, 13) 1 0 Q1, ū1, ē3

102 (−7, 3) 1 0 Q2, ū2, ē2,

103 (−7,−7) 1 0 Q3, ū3, ē1

5̄Hu (−14,−14) 0 −1 Hu

5̄Hd (6, 6) 0 1 Hd

5̄1 (−9,−9) 0 2 L1, L2

5̄2 (1, 1) 2 −2 d̄2, d̄3

5̄3 (−4,−9) 1 0 L3, d̄1

(4.95)

A scan yields that there are no models, which give a lower bound on MSUSY than that

derived in the case for four 5s. This model has been chosen as it produces the same bound

for MSUSY as in (4.90) and does not regenerate any dimension four operators with any

number of singlet insertions.
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In this case the charges of the singlets required to regenerate the up-type, W1 and W2,

down-type, W3, and lepton Yukawa matrices, W4, have charges

(q1
W1
, q2
W1

) = (5,−20)

(q1
W2
, q2
W2

) = (0,−10)

(q1
W3
, q2
W3

) = (5, 10)

(q1
W4
, q2
W4

) = (10, 10) ,

(4.96)

where the Yukawa matrices take the general forms (4.77) and (4.93). The singlet insertions,

ω1 and ω2, expressed in terms of the Wolfenstein parameter, ε, are

ω1 = ε4, ω2 = ε2, ω3 = ε . (4.97)

As was the case in the previous textures, regenerating the lepton Yukawas also regenerates

dimension five operators. The dangerous couplings with coupling constant δ1
112I are given

below where we have written the singlet insertions which give rise to the lowest suppression

Model Coupling Charge Singlet insertions ε suppression

(BaEnGo3) 10110110251 (−40, 20) ω2
1ω2ω

3
4 ε13

10110110253 (−35, 20) ω1ω
3
2ω

3
4 + ω2

1ω2ω
2
4ω3 ≤ ε13

(4.98)

In the coupling involving 53 we have taken ω4 = ε, which is consistent with the lepton

mass hierarchies, in the estimation of the suppression. These suppression levels are the

same as those derived in the previous section and give rise to the bound on MSUSY in

(4.90). In the next section we examine model (BaEnGo1-3), as well as the models (Haba1)

and (Haba2) of section 4.5.2 under the constraints of lepton and neutrino flavour.

Finally, we should note, extending the current analysis to more 5̄ matter we find, for

N5 = 6 there no solutions with suitable flavour structure. It would be interesting to

extend this to N5 = 7 (which is the largest for this type of model without introducing

exotics), however increasing the number of 5s usually brings back proton decay operators.

4.6 Lepton and Neutrino Flavour

Let us now turn to the lepton and neutrino flavour properties of the F-theoretic FN-models

of the last section. Unlike the quark sector and the lepton masses (4.29), the neutrino

sector is far less experimentally constrained. Nevertheless let us state the respective ex-
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perimental bounds on the masses13

∆m2
12

[
10−5eV2

]
= 7.54+0.64

−0.56

∆m2
23

[
10−3eV2

]
= 2.43+0.18

−0.20∑
mνj < 0.66 eV

(4.99)

and mixing angles

θ12 = 0.59+0.05
−0.06 , θ23 = 0.72+0.19

−0.06 , θ13 = 0.15+0.02
−0.02 . (4.100)

The absolute masses for the neutrinos are not known and various different hierarchies

could be accommodated within these constraints. Furthermore the mixing angles are

not hierarchical. Nevertheless, we show that our F-theoretic FN-models from above can

accommodate the mixing angles.

The neutrino masses can arise from a so-called standard type I seesaw mechanism, for

which we introduce three right-handed neutrinos that are SU(5) singlets but are charged

under the additional U(1)s. The couplings needed are

(Yν)IJ5LI5Hu1νJR
, MIJ1νIR

1νJR
, (4.101)

where MIJ is generated by singlets with a vev. Below the mass scale of the right-handed

neutrinos Λ this leads to an effective neutrino mass via the Weinberg operator

1

Λ
LILJHuHu . (4.102)

Again this operator can be forbidden by the additional U(1) symmetries, but regenerated

by appropriate singlet insertions. Note that the charges of the right-handed neutrinos do

not enter the effective Weinberg operator and are not relevant for the discussion of neutrino

mixing. For the flavour models in section 4.5, the three distinct phenomenological scenarios

are studied in turn in the following.

13These are best-fit values and 3σ allowed ranges for neutrino masses with a normal hierarchy (m1 <
m2 < m3). The sum of neutrino masses and the other values can be found in the Neutrino mass, mixing
and oscillations chapter of [15].
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4.6.1 Models (Haba1) and (Haba2)

Including the structure of the neutrino Yukawa matrix arising from the Weinberg opera-

tors, the models from section 4.5.2 have the following Yukawa structures

Y u
Haba ∼




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1


 Y d

Haba ∼




ε4 ε4 ε4

ε2 ε2 ε2

1 1 1




Y L ∼




ε4+a ε2+a εa

ε4+a ε2+a εa

ε4 ε2 1


 Mν ∼




κ1 κ1 κ2

κ1 κ1 κ2

κ2 κ2 κ1κ2 + κ3
1


 ,

(4.103)

where the charges of singlets regenerating entries in the neutrino Yukawa matrices are

given by
(Haba1) : qK1 = (−10,−10), qK2 = (−20,−20)

(Haba2) : qK1 = (0,−10), qK2 = (0,−20) .
(4.104)

Note also that despite the fact that the quark mixing are those in Haba [182] (and BaEnGo

[183] in section 4.6.2) the lepton and neutrino textures are distinct from the models in the

literature.

For each choice of hierarchical singlet scalings, we scan over the O(1) coefficients in

front of each coupling and identify experimentally viable masses and mixings using the

Mathematica package Mixing Parameter Tools [186]. For each of the three different

scalings we find consistent mixing angles with suitable choices for the O(1) coefficients

and mass hierarchies that are consistent with (4.29). We allow the O(1) coefficients, z, for

the Yukawa matrices to be within the range

0.8 < |z| < 1.2 , (4.105)

where in the case of the lepton Yukawa matrices z is complex.

For models (Haba1), (Haba2) with a = 0.05, κ1 = 0.1 and κ2 = 0.3 one choice of O(1)

coefficients for the lepton and neutrino Yukawa matrices which give consistent mixing

angles is given by

Y L ∼




1.00ε4.05 −(0.68 + 0.97i)ε2.05 (0.30− 0.78i)ε0.05

(−0.89 + 0.54i)ε4.05 −(0.14 + 1.13i)ε2.05 −(0.43 + 1.10i)ε0.05

(0.64 + 0.63i)ε4 −(0.12 + 0.97i)ε2 −0.81− 0.10i




Mν ∼




1.17κ1 1.13κ1 0.92κ2

1.13κ1 0.92κ1 0.83κ2

0.92κ2 0.83κ2 0.96(κ1κ2 + κ3
1)


 .

(4.106)
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This choice for a means that s2 in these models is a O(1) number as was assumed in

the calculation of the bound for MSUSY in section 4.5.2. This set of matrices gives the

following mass ratios and mixing angles

θ12 = 0.60, θ13 = 0.20, θ23 = 0.72

mτ : mµ : me = 1 : 0.88ε2 : 0.63ε4 ,
(4.107)

which are consistent with the constraints in (4.29) and (4.100).

More interestingly, one can take a = 1 and still find O(1) coefficients which give rise to

good mixing angles and lepton mass hierarchies. This choice for a improves the bound on

MSUSY in (4.74) to

MSUSY ≥ 10−10MGUT , (4.108)

as now s2 = 0.22. In this case the other singlets take values κ1 = 0.7, κ2 = 0.7 and the

Yukawa matrices are given by

Y L ∼




1.00ε5 (−0.79 + 0.27i)ε3 (0.72− 0.61i)ε

−(0.70 + 0.87i)ε5 (−0.86 + 0.57i)ε3 (0.99 + 0.01i)ε

(0.98− 0.30i)ε4 (0.32− 1.08i)ε2 0.34− 0.80i




Mν ∼




0.90κ1 0.98κ1 1.07κ2

0.98κ1 1.16κ1 0.89κ2

1.07κ2 0.89κ2 1.00(κ1κ2 + κ3
1)


 .

(4.109)

The mixing angles and mass hierarchies are in very good agreement with those in (4.100)

and (4.29)
θ12 = 0.56, θ13 = 0.14, θ23 = 0.71

mτ : mµ : me = 1 : 0.68ε2 : 1.02ε5 .
(4.110)

4.6.2 Models (BaEnGo1)−(BaEnGo3)

For the matter distributions in the F-theoretic FN-models (BaEnGo1) and (BaEnGo2) of

section 4.5.3 we find that the leptons and neutrinos are different from the models in [183],

and are given by

Y u
BaEnGo ∼




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1


 Y d

BaEnGo ∼




ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1




Y L ∼




ε5 ε3 ε1

ε5 ε3 ε1

ε5 ε3 ε1


 Mν ∼




κ1 κ1 κ1

κ1 κ1 κ1

κ1 κ1 κ1


 ,

(4.111)
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where the singlets have charges

(BaEnGo1) : qK2 = (−10,−10), (BaEnGo2) : qK2 = (0,−10) . (4.112)

Likewise for model (BaEnGo3) we get

Y u
BaEnGo ∼




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1


 Y d

BaEnGo ∼




ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1




Y L∼




ε4+c ε2+c εc

ε4+c ε2+c εc

ε5 ε3 ε


 Mν ∼




κ1 κ1 κ1κ2

κ1 κ1 κ1κ2

κ1κ2 κ1κ2 κ1κ
2
2


 ,

(4.113)

where

qK1 = (−10,−10) , qK2 = (−5, 0) . (4.114)

For (BaEnGo1) and (BaEnGo2) the following O(1) coefficients in the lepton and neutrino

Yukawa matrices

Y L ∼




(1.09− 0.04i)ε5 (−1.11 + 0.42i)ε3 (−0.13− 0.91i)ε

(0.19 + 1.05i)ε5 (−0.88 + 0.31i)ε3 (1.04− 0.52i)ε

(−0.21 + 0.93i)ε5 (−0.24 + 1.00i)ε3 0.97 + 0.10iε




Mν ∼




0.81κ1 1.10κ1 1.03κ1

1.10κ1 1.11κ1 1.05κ1

1.03κ1 1.05κ1 1.01κ1




(4.115)

with κ1 = 0.22 result in PMNS mixing angles and lepton mass hierarchies, which are

consistent with the phenomenological constraints (4.29) and (4.100)

θ12 = 0.60, θ13 = 0.18, θ23 = 0.69

mτ : mµ : me = 1 : 0.92ε2 : 0.59ε5 .
(4.116)

This model fits precisely the anarchy models in [187].

Finally, consider FN-model (BaEnGo3), where in addition to the quark Yukawa matrices

in (4.113) one finds the following set of lepton and neutrino Yukawa matrices for c =

1, κ1 = 0.2 and κ2 = 0.4

Y L ∼




(−0.92 + 0.08i)ε5 (1.06 + 0.36i)ε3 (0.69− 0.57i)ε

(0.89− 0.33i)ε5 (1.00 + 0.10i)ε3 (0.30− 0.77i)ε

(0.38 + 0.82i)ε5 (1.02 + 0.19i)ε3 (0.53 + 0.61i)ε




Mν ∼




0.82κ1 0.88κ1 0.85κ1κ2

0.88κ1 0.94κ1 1.10κ1κ2

0.85κ1κ2 1.10κ1κ2 0.93κ1κ
2
2


 .

(4.117)
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The resulting mixing angles and lepton mass ratios are

θ12 = 0.61, θ13 = 0.16, θ23 = 0.71

mτ : mµ : me = 1 : 0.92ε2 : 0.97ε4 ,
(4.118)

which again are phenomenologically sound.

4.7 Geometric Realisation

In this section we discuss how some of the phenomenologically viable models can be realised

geometrically. For the case of the two U(1) models, some of the solutions in section 4.4

can be realised in terms of a general cubic in P2. For the F-theoretic FN-models, we have

not determined a geometric construction, however we provide the necessary fiber types,

that realise the charge patterns underlying these flavour models.

4.7.1 Single U(1) Models

For one U(1) there is exactly one model that is consistent, denoted by I.1.4.a in table

4.1. All other models bring back in one way or another the dimension four or five proton

decay operators. In addition the single U(1) models have very limited scope with respect

to flavour. Nevertheless to geometrically engineer the solution I.1.4.a one has to consider

the codimension one fiber type I
(01)
5 . As one can see however, the charges in the model

are wider separated than in known constructions. We will focus our attention on the

phenomenologically more interesting multiple U(1) models.

4.7.2 Two U(1) Models

In section 4.4, the charge spectrum of the four models, with two U(1) symmetries, which

solved the anomaly cancellation conditions and forbid dangerous proton decay operators

were detailed. In this section we show how three of these models can be constructed by

considering elliptic fibrations with two additional rational sections, described by enhancing

the singularity type of the general cubic in P2. The elliptically fibered Calabi–Yau four-

fold, as a hypersurface in an ambient five-fold, is given by the following cubic equation [133]

w(s1w
2 + s2wx+ s3x

2 + s5wy + s6xy + s8y
2) +

3∏

i=1

(aix+ biy) = 0 , (4.119)

where [w : x : y] are projective coordinates in P2. This fibration has three rational sections

given by

σ0 : [0 : −b1 : a1], σ1 : [0 : −b2 : a2], σ2 : [0 : −b3 : a3] . (4.120)
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Section Line bundle

s1,j O(−6KB − 2[a1]− 2[a2]− 2[a3]− 3[s8]− jSG)

s2,j O(−4KB − [a1]− [a2]− [a3]− 2[s8]− jSG)

s3,j O(−2KB − [s8]− jSG)

s5,j O(−3KB − [a1]− [a2]− [a3]− [s8]− jSG)

s6,j O(−KB − jSG)

s8,j O([s8]− jSG)

a1,j O([a1]− jSG)

a2,j O([a2]− jSG)

a3,j O([a3]− jSG)

b1,j O(KB + [a1] + [s8]− jSG)

b2,j O(KB + [a2] + [s8]− jSG)

b3,j O(KB + [a3] + [s8]− jSG)

Table 4.6: Classes of the sections for the elliptic fibration realised in terms of a general
cubic in P2.

By expanding the coefficients above, which we denote generally as ci, along a coordinate

in the base, z, as

ci =

∞∑

j=1

ci,jz
j , (4.121)

singularities can be tuned along the locus z = 0. The coefficients si,j , ai,j and bi,j are

sections of the following holomorphic line bundles over the base shown in table 4.6, where

KB is the pullback of the canonical class of the base, B, and SG is the class of z.

As we are interested in SU(5) GUTs we will only consider models which realise I5 singu-

larities. To determine this, we apply Tate’s algorithm to the general cubic. Resolving the

I5 singularities introduces four exceptional curves Fm, where m = 1, · · · , 4, into the fiber.

The fibration of each Fm over the singular locus z gives a divisor DFm . With each rational

section, in addition to the zero-section σ0, we can define the Shioda map, S(σα) such that

S(σα) ·Y Fi = 0 , i = (0,m) , (4.122)

Here ·Y denotes that the intersection is taken in the four-fold Y . The Shioda map con-

structs from each rational section a divisor which corresponds to the generator of the

U(1) symmetry. The U(1) charges of matter are found by intersecting S(σα) with the

matter curves obtained from the splitting of the Fi in codimension two. The resolutions

and intersections carried out in this thesis are computed using the Mathematica package

Smooth [66].

Here, we label our models as in [108], where the vanishing orders, nci , are given in the
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order

(ns1 , ns2 , ns3 , ns5 , ns6 , ns8 , na1 , nb1 , na2 , nb2 , na3 , nb3) . (4.123)

Furthermore it will be necessary to consider so-called non-canonical models, where the

enhancement of the discriminant to O(z5), occurs not by simply specifying the vanishing

order of the coefficients, but by subtle cancellations between the coefficients, which are

non-trivially related see e.g. [64,107,108]. In the models we consider here the enhancement

to I5 requires solving

AB − CD = 0 , (4.124)

in terms of the coefficients of the hypersurface equation. This has to be solved over the

coordinate ring of the base of the elliptic fibration, which is a unique factorisation domain.

Applying the standard Tate’s algorithm in this context [64, 107, 108] the enhancement is

obtained as a so-called non-canonical solution in terms of sections ξi

A = ξ1ξ2, B = ξ3ξ4, C = ξ1ξ3, D = ξ2ξ4 . (4.125)

In addition to specifying the vanishing order, the labelling of the non-canonical models

also includes the specialisation of the coefficients in terms of ξi, which is given underneath

the vanishing orders.

The models which realise the solutions in section 4.4 are given in table 4.7. For each model

the fiber type, vanishing orders and non-canonical specialisation is given along with the

charges of the 10 and 5̄ matter in the model. The equations for the matter loci referred

to in the table are given below:

ξ2ξ3ξ
2
4s3,0 + ξ1ξ4(ξ2

3a3,1 + ξ2
2a1,0b2,0s5,0− ξ2ξ3s6,1)− ξ2

1(ξ2
3b3,1 + ξ2

2b1,0b2,0s5,0− ξ2ξ3s8,1) = 0

(4.126)

a2
1,0b2,0b3,0s5,0 + b1,0s

2
6,0 − a1,0s6,0s8,0 = 0 (4.127)

ξ2
4(ξ2

3s1,1 − ξ2ξ3s2,1 + ξ2
2s3,0)− ξ1ξ4(ξ2

2a1,0a3,0b2,0 + ξ2
3s5,1 − ξ2ξ3s6,1)

+ξ2
1ξ3(−ξ2a1,0b2,0b3,0 + ξ3s8,0) = 0

(4.128)

These models provide new charge configurations that have thus far not been obtained in

the literature.

Each of the models in table 4.7 have additional charged matter, which is not present in

the corresponding solutions given in section 4.4, which can be forbidden in the base. As

an aside: the charges for the non-canonical model (3, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0) under the

first U(1) is reversed to those in solution II.1.6.a. This can be further seen by the fact

that the fiber type of this model is not one considered in the analysis in section 4.4, as

was noted earlier. This is justified as the charges in an I
(i|j|k)
5 model are the same as those
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in I
(i|jk)
5 except with the sign of one of the U(1)s reversed. As the anomaly cancellation

conditions are unaffected by global rescalings of the U(1) charges, the model in the table

solves the anomaly cancellation condition as in solution II.1.6.a.

4.7.3 Fibers for Models (Haba1) and (Haba2)

The F-theoretic FN-models in section 4.5.2 have particularly nice phenomenology in addi-

tion to satisfying all anomaly constraints and absence of dangerous couplings. The charges

for those models are within the classification of the F-theory charges [32], however so far

no concrete geometric realisation is known. To guide the construction of these geometries,

we now provide the possible fiber types necessary for these models in the following for the

models in table 4.4.

The models are based on I
(02|1)
5 , where the two additional sections σ1 and σ2 generate the

two extra U(1) symmetries. For simplicity we discuss the model (Haba2) in table 4.4 – for

model (Haba1) the only change is that the two extra sections have the same charges, for

the 5̄ matter loci, and thus have the same configurations. The fibers in codimension two,

including the configuration of the sections is shown in figure 4.4. We shall refrain from

providing the details of this result and refer the reader to [32], where a comprehensive

discussion of these fibers was obtained.

The main difficulty in constructing this class of models is that the charges are separated,

e.g. the 5̄ charges have a range from q2 = −14 to 6, i.e. qmax
5̄
− qmin

5̄
= 20, which is

in current algebraic constructions not observed. Generically the charge differences are

qmax
5̄
− qmin

5̄
= 10, with the only example, known to us, with this difference given by 15

is a toric construction obtained in [97]. It would be very interesting to systematically

search for models with wider separation of charges. One complication is of course, that

the codimension two fibers will have to be more and more wrapped, i.e. there will be

components in the codimension two fibers that are contained within the section, as shown

in figure 4.4.

4.8 Discussion and Outlook

We have shown that there are viable models in the class of F-theory charge configurations

from the classification in [32], which satisfy all consistency requirements (A1.)−(A5.) and

(C1.)−(C7.), and have realistic flavour physics, however these are very scarce.

We considered one or two U(1) symmetries, although our analysis can be easily extended
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Figure 4.4: Fibers for the F-theoretic FN-model (Haba2) of table 4.4. The codimension

one type I
(02|1)
5 is as in figure 4.3 (up to permutation of the two extra sections), with

the zero-section shown in blue. The nomenclature is as in [32]: The codimension two
fibers realising the 5̄ matter (I6) as well as 10 matter (I∗1 fibers) are shown together with
their charges. The coloring correspond to the wrapping of the fibers, and the labels along
the wrapped components correspond to the degrees of the normal bundle, which in turn
determine the charges. For the 5̄ matter, the blue and yellow sections have to have the
same configurations, as the charge is zero. These are shown in terms of green coloring.
The blue/yellow colored representation graphs (box graphs) indicate the phases of the
respective resolution type, see [70].
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to three or more U(1)s. For single U(1) models there is one solution, which does not

regenerate any of the dangerous couplings at the same order as the Yukawa couplings,

however single U(1) models have very limited scope with regards to FN-type modeling.

For two U(1)s we studied two sets of solutions: one which solves all the constraints and has

an explicit geometric construction – albeit coming short on the flavour physics. The second

class of solutions have realistic flavour textures generated by an FN-mechanism, which we

studied in both quark and lepton sectors, however their geometric construction is unknown

– these were denoted by (Haba1)-(Haba2) and (BaEnGo1)-(BaEnGo3), according to the

Yukawa textures for the quarks. We provided the required fiber types for (Haba1) and

(Haba2) and hope that our result gives a guidance to the geometric efforts to construct

more elaborate F-theory compactifications. It would be very exciting to find a geometric

construction of these models summarised in table 4.4. This includes the construction of

the elliptic fibration with two rational sections as well as the G-flux, in particular also

the hypercharge flux, that induces the necessary matter distributions as detailed by the

M and N values. Furthermore, combining our general insights from the structure of the

elliptic fiber with recent advances on the understanding of the base of the fibration of four-

folds [188,189] would lead to a very powerful way to constrain the set of phenomenologically

viable F-theory vacua.



Chapter 5

M5-branes and Compactifications

In the latter part of this thesis the focal point shifts to the non-perturbative limit of type

IIA string theory, M-theory. The absence of a dimensionless coupling constant in M-

theory has greatly hindered progress in understanding the eleven-dimensional description

as one can not make use of perturbation theory. This is associated with the fact that

the fundamental object in M-theory is not the string but instead an object of one greater

space-time dimension; a membrane. In this chapter we introduce both the membrane (M2-

brane) and its magnetic dual, the M5-brane, however the latter shall be the centerpiece.

The low energy effective theory of M-theory is eleven-dimensional supergravity whose

bosonic field content is the metric g and a three-form potential C3. The eleven-dimensional

supersymmetry algebra with a Majorana spinor Qα, which has 32 real components, is given

by [190]

{Qα, Qβ} = (γm)αβPm + (γmn)αβZmn + (Γmnpqr)αβZmnpqr , m, n = 1, · · · , 11 , (5.1)

where Pm is the generator of translations and Zmn, Zmnpqr are central charges. The pres-

ence of central charges in the supersymmetry algebra means the theory can contain topo-

logical BPS solitons. In order to preserve Lorentz invariance of the index structure these

states must extend two or five spatial dimensions [191]. These solitons are called the

M2-brane and M5-brane, which couple to the potential C3.

Before discussing these M-branes directly let us recall that M-theory reduced on a circle is

type IIA string theory. As a result the fundamental string and branes in type IIA all have

an origin in eleven dimensions which were determined in [192,193]. Here we summarise the

simplest cases arising from the reduction of the M2-brane and M5-brane to ten dimensions

and refer to [194,7] for a more complete discussion. An M2-brane wrapped on the M-theory

circle is reduced to an object spanning two space-time dimensions which corresponds to

the fundamental string. In the alternative scenario, an unwrapped M2-brane descends to

168
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a D2-brane in type IIA. For the M5-branes the wrapped and unwrapped configurations

reduce to D4-branes and NS5-branes, respectively.

The M2-brane couples electrically to the three-form potential in M-theory and the action

for a single M2-brane is given by [11]

SM2 = TM2

∫
d3ξ
√
|GIJ |+ TM2

∫
CIJK , (5.2)

where TM2 is the M2-brane tension and GIJ is the induced metric on the world-volume of

the brane and CIJK is the pull-back of the three-form flux onto the brane world-volume.

The M2-brane is maximally supersymmetric in three-dimensions and so preserves N = 8

supersymmetry, i.e. 16 supercharges. The theory of multiple M2-branes, whose bosonic

field content consists of a gauge field and eight scalars transforming in the fundamental

of the SO(8) R-symmetry of the theory, remained largely mysterious for a long time.

However, in the last decade two actions have been proposed for multiple M2-branes. The

first action determined by Bagger–Lambert and Gustavsson (BLG) [195, 196] made use

of 3-algebras and accurately describes the interacting theory of two M2-branes. This was

subsequently followed by a proposal from Aharony–Bergman–Jafferis–Maldacena (ABJM)

[197] for an arbitrary number of M2-branes in an orbifold background.

The object which couples magnetically to the three-form potential is the M5-brane [198].

Due to many reasons, which will be mentioned in section 5.1, the theory for multiple M5-

branes has evaded discovery. It is an interacting superconformal theory which preserves

two chiral supercharges [199, 9], whose abelian equations of motion are known. Despite

our limited access to the interacting theory many interesting correspondences have arisen

from studying the compactifications of the six-dimensional theory to lower dimensions. In

this chapter we give an introduction to known M5-brane compactifications and the related

correspondences as motivations for the work carried out in chapter 6.

5.1 The Mysterious Theory of M5-branes

The superconformal algebras were classified by Nahm in [200]. He found that only in six

dimensions and lower can the supersymmetry algebra be extended to a superconformal

algebra. From Nahm’s classification in six dimensions one can preserve maximal super-

symmetry and half maximal, these correspond to 16 and 8 supercharges, respectively.

Furthermore, the supercharges must be of the same chirality so the possible superconfor-

mal field theories preserve N = (2, 0) or N = (1, 0) supersymmetry. The 6d N = (2, 0)

theories are classified by a simply laced compact Lie algebra g i.e. of ADE-type [9]. A clas-
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sification of the 6d N = (1, 0) SCFTs was recently determined in [46,47] based on F-theory

compactifications. In this thesis we shall only discuss the maximally supersymmetric case.

The interacting theory of multiple M5-branes is a 6d N = (2, 0) SCFT, where the Lie

algebra associated to a stack of k M5-branes is Ak−1. The equations of motion for a single

M5-brane were determined in [201, 202]. The theory consists of a two-form BAB with

self-dual field strength H, five scalars ΦÂ and a symplectic-Majorana fermion ρm̂. The

supersymmetry variations, using the index notation in appendix C, are given by

δBAB = −εm̂ΓABρm̂

δΦm̂n̂ = −4ε[m̂ρn̂] − Ωm̂n̂εr̂ ρr̂

δρm̂ =
1

48
H+
µνσΓµνσεm̂ +

1

4
/∂Φm̂n̂εn̂ ,

(5.3)

where H± = 1
2(1 ± ∗)H. The supersymmetry algebra closes on the equations motion for

the free fields.

The presence of the self-dual field strength has made constructing an action for a single

M5-brane a difficult task as the natural coupling
∫
H ∧ ∗H , (5.4)

vanishes. However, a Dirac–Born–Infield type action for the abelian self-dual three-form

was constructed in [203] by sacrificing manifest 6d Lorentz invariance, which was later

covariantised in [204]. Building on this progress a complete action for the single M5-brane

was later obtained in [205, 206]. More recently an alternative action for the single M5-

brane was proposed in [207,208] employing the 3-algebra construction of the BLG action

for multiple M2-branes.

Despite this progress, the non-abelian theory for multiple M5-branes is still unknown.

The non-abelianisation of Maxwell theory and matter was first introduced in [209], who

first developed the notion of gauge theory using Lie groups. The procedure for non-

abelianising, which involves introducing a covariant derivative containing the gauge field

as the connection for the gauge bundle, has now become standard. When supersymmetry is

included this procedure produces SYM theories with couplings between the gauge field and

matter, which all transform in the adjoint representation of the gauge group. However,

the M5-brane theory does not contain a gauge field but instead a two-form potential.

The non-abelian theory requires this two-form to take values in the Lie algebra and one

is required to consider non-abelian gerbe theories. This framework was considered in

[210], where the 3-algebra construction for the M2-brane was applied to obtain the non-

abelian supersymmetry variations for multiple M5-branes and the corresponding equations

of motion.
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Understanding the interacting 6d N = (2, 0) theory remains an active area of research and

greater understanding of this elusive theory will certainly lead to a deeper appreciation of

M-theory. For a review of the developments in this direction see [211]. Despite not knowing

the interacting theory in six dimensions it can be fruitful to study the compactification

of the M5-brane theory to lower dimensions where we can get access to a non-abelian

description.

5.2 Compactifications and Dualities

The simplest reduction one can perform is the one originally considered in Kaluza–Klein

theory where the internal manifold is a circle. From the reduction of M-theory to type IIA

string theory we know that an M5-brane wrapped on the M-theory circle descends to a

D4-brane in the limit of vanishing circle radius [192]. As a result the 6d N = (2, 0) theory

on an S1 reduces to 5d N = 2 SYM [212, 213], the theory describing multiple D4-branes.

The Yang–Mills coupling is related to the radius of the circle, R as

1

g2
YM

=
1

R
, (5.5)

and an alternative viewpoint was conjectured in [213, 214] that the 6d N = (2, 0) theory

compactified on an S1 is exactly 5d N = 2 SYM for any value of the coupling. The

Kaluza–Klein modes with momentum along the S1 are captured by instantons in the

five-dimensional theory.

One can consider a further reduction on another S1 which corresponds to the 6d N = (2, 0)

theory on the torus T 2 = S1 × S1. This preserves all 16 supercharges and we obtain 4d

N = 4 SYM, the world-volume theory of D3-branes in type IIB string theory. The complex

structure of the torus τ descends to the four-dimensional complexified coupling

τ =
θ

2π
+ i

4π

g2
YM

, (5.6)

where θ is the θ-angle. From this construction the S-duality symmetry of 4d N = 4

SYM has a six-dimensional origin as the SL(2,Z) modular transformation of the complex

structure [215]. This set-up was generalised in [216] by considering the M5-brane theory

on an elliptic three-fold. The dimensional reduction produces 4d N = 4 SYM with varying

coupling constant and singularities in the elliptic fibration give rise to codimension one

and two defects in the 4d theory.

Compactifications down to four dimensions preserving less supersymmetry were considered

in [217]. Gaiotto studied a class of 4d N = 2 superconformal field theories of Ak−1
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type which arise from the compactification of k M5-branes on a Riemann surface with n

punctures, Σn,g, where g is the genus of the Riemann surface. These theories are often

referred to as class S theories in the literature. The world-volume of the M5-branes lies

along R1,3 × Σn,g and in order to preserve supersymmetry on the Riemann surface one

needs to perform a topological twist.

In the introduction the conditions for supersymmetry preserving compactifications were

formulated in terms of the existence of covariantly constant spinors, which require the

compactification manifold X to have reduced holonomy. The covariantly constant spinors

transform as singlets under the holonomy group of the manifold. For manifolds with

general holonomy no such spinors exist, however one can preserve some supersymmetry

by performing a topological twist [218]. This involves turning on a gauge field for the

R-symmetry, or a subgroup of it, along the internal manifold which modifies the covariant

derivative of the spinors to

∇X → ∇̃X = ∂X + ωX + VX , (5.7)

where ωX is the spin-connection and VX is the R-symmetry gauge field. Using the R-

symmetry gauge field to cancel the spin-connection piece in the covariant derivative, the

condition for covariantly constant spinors reduces to simply constant spinors on X. These

spinors transform as scalars under the twisting of the holonomy group and the R-symmetry.

The topological twist required to preserve supersymmetry on the Riemann surface involves

twisting the holonomy of the Riemann surface with an SO(2)R subgroup inside the SO(5)R

R-symmetry of the 6d theory. The Lorentz and R-symmetry groups of the 6d theory are

decomposed as
SO(1, 5)L → SO(1, 3)L × SO(2)L

SO(5)R → SO(3)R × SO(2)R .
(5.8)

The transformation of the supercharges under the new space-time symmetries is given by

SO(1, 5)L ⊕ SO(5)R → SO(1, 3)L × SO(2)L × SO(3)R × SO(2)R

(4,4) → ((2,1)−1
2
⊕ (1,2)1

2
,2+ 1

2
⊕ 2−1

2
) ,

(5.9)

and the topological twist is defined as SO(2)twist = diag(SO(2)L × SO(2)R). Under the

twisted holonomy the supercharges transform as

SO(5, 1)L ⊕ SO(5)R → SO(3, 1)L × SO(3)R × SO(2)twist

(4,4) → (2,1,2)0 ⊕ (2,1,2)−1 ⊕ (1,2,2)+1 ⊕ (1,2,2)0 .
(5.10)

From this twist we obtain a right- and left-moving spinor in four dimensions which are

doublets of the SO(3)R R-symmetry compatible with N = 2 supersymmetry in four
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6d (2,0) AN-1 on S4 x Σn,g

Class S theories 
TAN-1 

[Σn,g] on S4
AN-1 Toda field theory 

on Σn,g

   Vol(S4)      0 Vol(Σn,g)      0

Figure 5.1: Schematic diagram depicting the two theories related by the AGT correspon-
dence and how they arise from compactifications of the M5-brane theory.

dimensions. These supercharges, which transform in the representations (2,1,2)0 and

(1,2,2)0, are now uncharged under SO(2)twist and therefore transform as scalars on the

Riemann surface.

From the compactification of N M5-branes on Σn,g we obtain a class of 4d N = 2 su-

perconformal field theories, TAN−1
[Σn,g], labelled by the Riemann surface. It materialised

that viewing the four-dimensional theories as reductions of the 6d N = (2, 0) theory on the

Riemann surface allowed an identification between components of the gauge theory and

the geometry of the Riemann surface. This correspondence was studied further by Alday,

Gaiotto and Tachikawa in [219], where a relation was made between the Nekrasov parti-

tion function [220,221] of TA1 [Σn,g] on a four-sphere and the Liouville correlation function

on Σn,g. This correspondence was later generalised to SU(N) gauge groups in [222] using

the fact that Liouville theory is the simplest case of AN−1 Toda theory. Both sides of this

correspondence can be obtained by considering the 6d N = (2, 0) theory of AN−1 type

on the background S4 ×Σn,g. Toda theory of type AN−1 and the 4d theories TAN−1
[Σn,g]

can then be obtained as the lower dimensional theories arising from taking the volume of

the S4 and the Riemann surface, respectively, to zero. This correspondence is depicted in

figure 5.1.

Shortly after the proposal of the AGT correspondence a 3d-3d correspondence between 3d

N = 2 SCFTs on S3, denoted Tg[M3] where g is of ADE-type, and 3d Chern-Simons theory

with complexified gauge group on a three-manifold M3 was conjectured in [223,224]. The

dictionary between the two theories relates symmetries and parameters of Tg[M3] to the

geometry of the three-manifold as well as the partition functions on both sides

ZTg[M3] on S3 = ZCSgC
on M3 . (5.11)

This correspondence can also be seen to arise from the 6d N = (2, 0) theory on S3 ×M3,

where the theories on each side of the correspondence is obtained by taking the volume of

either the three-sphere or M3 to zero.

In light of the discussion above a natural question now arises regarding the 6d theory



Chapter 5. M5-branes and Compactifications 174

6d (2,0) on T2 x M4

2d (0,2) SCFT 
Tg[M4] on T2

4d N = 4 SYM with 
Vafa-Witten twist

   Vol(T2)      0 Vol(M4)      0

Figure 5.2: A correspondence between 2d SCFTs with two chiral supercharges and 4d
N = 4 SYM with the Vafa-Witten twist arising from reductions of the 6d N = (2, 0)
theory on T 2 ×M4.

on S2 ×M4, which would lead to a 4d-2d correspondence. In order to make progress in

exploring this possible correspondence one first needs to identify the two theories which

arise from the reduction on the S2 and M4. Similarly to the two known correspondences

the 6dN = (2, 0) theory needs to be topologically twisted in order for some supersymmetry

to be preserved on a general four-manifold. In chapter 6 we discuss the possible topological

twists and carry out the reduction of the 6d N = (2, 0) theory of type AN−1 on the two-

sphere with a particular twist, the Vafa-Witten twist [225], as a step towards providing

answers to the question posed above.

A related set-up was considered in [226] where the authors studied the 6d N = (2, 0)

theory on T 2 ×M4. This scenario is depicted in figure 5.2, where as discussed earlier the

compactification on the torus gives rise to 4d N = 4 SYM on R1,3. In order to preserve

supersymmetry on a general four-manifold the 4d theory needs to be topologically twisted

and the type of supersymmetry preserved in the two-dimensional theory depends on the

choice of topological twist. In [226] they considered the Vafa-Witten twist where the

Lorentz symmetry and R-symmetry of the 6d theory is decomposed as in (5.8) and SO(3)R

subgroup of the R-symmetry is twisted with an SO(3) subgroup of the holonomy of the

four-manifold. This twist, which will be discussed in detail in chapter 6, produces two

chiral supercharges i.e. N = (0, 2) supersymmetry in two dimensions.

The dictionary of the correspondence matches basic operations on four-manifolds with

dualities in the 2d N = (0, 2) theory. At the level of observables in the two theories

the Vafa-Witten partition function is matched with the elliptic genus, the T 2 partition

function, of Tg[M4]. More recent work [227] proposes a method of obtaining invariants of

four-manifolds from the correlation functions of the half-twisted 2d theory1.

1The topological half-twist [228] involves twisting the U(1)L Lorentz symmetry with the U(1)R R-
symmetry of the 2d N = (0,2) theory. As the two supercharges transform with opposite charges under
U(1)R the topological half-twist preserves one scalar supercharge.
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5.3 Derivation of Correspondences

AGT and the 3d-3d correspondence can be associated with the 6d N = (2, 0) theory on the

product space Sd ×M6−d, where d = 3, 4. Employing this relation, both correspondences

were derived in a series of papers by Cordova and Jafferis [229,230], where they considered

the reduction of the 6d N = (2, 0) theory on the three-sphere and four-sphere to arrive at

Chern-Simons theory and Toda theory, respectively. This provided proof for the existence

of these correspondences, which were previously only well-substantiated conjectures.

In this section we will briefly recall the salient points in their reduction relevant for the

determining the theory on the S2.

• Coupling to Supergravity

Firstly, we note that the three-sphere and four-sphere are backgrounds which pre-

serve supersymmetry as they admit Killing spinors [231], therefore the reduction can

be performed on Sd×R6−d without a topological twist.2 In order to keep track of the

additional curvature couplings on Sd Cordova and Jafferis considered the abelian 6d

N = (2, 0) theory, a free tensor multiplet, coupled to six-dimensional N = (2, 0) off-

shell conformal supergravity [232,233]. The supergravity background fields are then

determined by solving the Killing spinor equations for the background Sd×R6−d. For

more general backgrounds this procedure ensures that supersymmetry is preserved.

• Non-abelianisation in 5d

In order to obtain a non-abelian theory the dimensional reduction is carried out via

five dimensions. This requires the background to contain a circle direction along

which one can reduce to 5d. For the S3 the circle is the Hopf fiber in the smooth

Hopf fibration over S2. The reduction on the four-sphere was carried out by viewing

it as an S3-fibration over an interval and the circle direction was therefore also the

Hopf fiber inside the three-sphere. The 5d theory obtained after the circle reduction

is given by the action for Maxwell theory, five free scalars and a fermion coupled

to the background supergravity fields. The non-abelianisation of this action was

determined in [234, 235] and the theory obtained was 5d N = 2 SYM coupled to

background supergravity.

The remaining details of the reductions depend on the specific geometry and will therefore

be omitted. However, the above two points are key to obtaining a supersymmetric and non-

abelian theory more generally. Armed with this machinery we now consider the reduction

2The topological twist can be performed after the reduction on Sd to obtain a topological theory on a
general manifold M6−d.
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on S2 ×M4 in the next chapter.



Chapter 6

M5-branes on S2 ×M4: Nahm’s
Equations and 4d Topological
Sigma-models

6.1 Introduction

The six-dimensional N = (2, 0) superconformal theory with an ADE type gauge group is

believed to describe the theory on multiple M5-branes. The equations of motion in six di-

mensions are known only for the abelian theory [201,202], and a Lagrangian formulation of

this theory is believed to not exist. However, in the last few years, much progress has been

made in uncovering properties of this elusive theory by considering compactifications to

lower dimensions. Compactification of the 6d theory on a product Sd×M6−d has resulted

in correspondences between supersymmetric gauge theories on d-dimensional spheres Sd

and conformal/topological field theories on a 6−d- dimensional manifold M6−d. The goal

of this chapter is to consider the compactification of the 6d theory on a four-manifold

M4 times a two-sphere S2 and to determine the topological theory on M4. The particu-

lar background that we consider is a half-topological twist along the S2, together with a

Vafa-Witten-like twist on M4, and we will find that the theory on M4 is a twisted version

of a sigma-model into the moduli space of SU(2) monopoles with k centers, where k is the

number of M5-branes, or equivalently, the moduli space of Nahm’s equations [236] with

certain singular boundary conditions. This suggests the existence of a correspondence

between this topological sigma-model on M4 and a two-dimensional N = (0, 2) theory,

with a half-twist. This fits into the correspondences studied in the last years, which we

shall now briefly summarise.

For d = 4, the Alday-Gaiotto-Tachikawa (AGT) correspondence [219] connects 4d N = 2

supersymmetric gauge theories on S4 with Liouville or Toda theories on Riemann surfaces

177
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M2. Correlation functions in Toda theories are equal to the partition function of an N = 2

supersymmetric gauge theory, which depends on the Riemann surface M2. Such 4d N = 2

gauge theories obtained by dimensional reduction of the 6d N = (2, 0) theories were first

studied by Gaiotto in [217], generalizing the Seiberg-Witten construction [237]. For d = 3,

a correspondence between 3d supersymmetric gauge theories, labelled by three-manifolds

M3, and complex Chern-Simons theory on M3 was proposed in [224,223], also referred to

as the 3d-3d correspondence. This correspondence has a direct connection to the AGT

correspondence by considering three-manifolds, which are a Riemann surface M2 times

an interval I, M3 = M2 ×ϕ I, whose endpoints are identified modulo the action of an

element ϕ of the mapping class group of M2. On the dual gauge theory side, the mapping

class group action translates into a generalised S-duality, and the three-dimensional gauge

theories, dual to complex Chern-Simons theory are obtained on duality defects in the 4d

N = 2 Gaiotto theory. The 3d-3d correspondence was ultimately derived from a direct

dimensional reduction of the 6d N = (2, 0) theory on a three-sphere via 5d by Cordova

and Jafferis [235,229].

Both the AGT and 3d-3d correspondences uncovered very deep and surprising relations be-

tween supersymmetric gauge theories and two/three-manifolds, their geometry and moduli

spaces. In view of this a very natural question is to ask, whether we can obtain insights

into four-manifolds, as well as the dual two-dimensional gauge theories obtained by di-

mensional reduction of the 6d N = (2, 0) theory. Here, unlike the AGT case, the theory

on the four-manifold is a topological theory, and the gauge theory lives in the remaining

two dimensions and has (half-twisted) N = (0, 2) supersymmetry. A schematic depiction

of this is given in figure 6.1. More precisely, we propose a correspondence between a 4d

topological sigma-model and a 2d half-twisted N = (0, 2) gauge theory. In particular we

expect that topological observables in the 4d theory can be mapped to the partition func-

tion and other supersymmetric observables of the 2d theory. Note that the S2 partition

function defined with the topological half-twist [238] is ambiguous as explained in [239].

However the analysis of counter-terms (and therefore ambiguities) must be revisited in

the context of the embedding in 6d conformal supergravity, which is our set-up. In par-

ticular, the 2d counter-terms should originate from 6d counter-terms. Recent results on

localisation in 2d N = (0, 2) theories have appeared in [240], albeit only for theories that

have N = (2, 2) loci. The theories obtained from the reduction in this chapter do not

necessarily have such a N = (2, 2) locus.

From a brane picture, the theory we consider can be obtained by compactifying k M5-

branes on a co-associave four-cycle in G2 [241, 242]. The two-dimensional theory that is

transverse to the co-associative cycle has N = (0, 2) supersymmetry, and we consider this
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6d (2,0) on S2 x M4

(0,2) SCFT on S2Topological 
 σ-model on M4

   Vol(S2)      0 Vol(M4)      0

Figure 6.1: 4d-2d correspondence between the reduction of the 6d N = (2, 0) theory on
M4 to a 2d N = (0, 2) SCFT on S2, and the ‘dual’ 4d topological sigma-model from M4

into the Nahm or monopole moduli space, which is obtained in this thesis by reducing the
6d theory on a two-sphere.

on a two-sphere, with an additional topological half-twist.

The first question in view of this proposal is to determine what the topological theory

on M4 is. There are various ways to approach this question. The simplest case is the

abelian theory, which on S2 × R1,3 gives rise to a 4d free N = 2 hyper-multiplet [243],

which we shall view as a sigma-model into the one-monopole moduli space. On a general

four-manifold M4, we will show that in the topologically twisted reduction, the abelian

theory integrates indeed to a “twisted version” of a hyper-multiplet, where the fields are

a compact scalar and self-dual two-form on M4.

For the general, non-abelian case, this 4d-2d correspondence can in principle be connected

to the 3d-3d correspondence by considering the special case of M4 = M3 ×ϕ I, where I

is an interval, similar to the derivation of the 3d-3d correspondence from AGT. In this

chapter we will refrain from considering this approach, and study instead the reduction

via 5d N = 2 SYM, in the same spirit as [235,229].

We first consider the dimensional reduction on flat M4, and then topologically twist the

resulting 4d N = 2 theory. We restrict to the U(k) gauge groups, but in principle the

analysis holds also for the D and E type. To determine the flat space reduction, we view

the S2 in terms of a circle fibration over an interval, where the circle fiber shrinks to

zero radius at the two endpoints. We determine the 6d supergravity background which

corresponds to the 6d theory on S2×R4. After dimensional reduction on S1 the resulting

theory is 5d N = 2 SYM on an interval, where the scalars satisfy Nahm pole boundary

conditions [244,245]. Further dimensional reduction to 4d requires to consider scalars, that

satisfy Nahm’s equations. The resulting theory is a 4d sigma-model into the moduli space

of solutions of Nahm’s equations, which is isomorphic to the moduli space of k-centered

monopoles [246] and has a natural Hyper-Kähler structure. Much of the geometry of the
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6d N=(2,0) 

5d SYM on I 
with Nahm poles

S1

I

4d Topological σ-model into Mmonopole 

S2

Figure 6.2: The dimensional reduction of the 6d N = (2, 0) theory on an S2, viewed as a
circle-fibration along an interval I, is determined by dimensional reduction via 5d N = 2
SYM. The scalars of the 5d theory satisfy the Nahm equations, with Nahm pole boundary
conditions at the endpoints of the interval. The 4d theory is a topological sigma-model
into the moduli space of solutions to these Nahm equations, or equivalently the moduli
space of monopoles.

moduli space is known, in particular for one- or two-monopoles [247], and a more algebraic

formulation in terms of Slodowy-slices exists following [248–250]. The latter description

is particularly amenable for the characterisation of N = 2 Gaiotto theories with finite

area for the Riemann surface as studied in [245]. Figure 6.2 summarises our dimensional

reduction procedure.

The 4d N = 2 supersymmetric sigma-model for flat M4 falls into the class of models

obtained in [251,252]. We find that the coupling constant of the 4d sigma-model is given

in terms of the area of the two-sphere. To define this sigma-model on a general four-

manifold requires topologically twisting the theory with the R-symmetry of the 4d theory.

One of the complications is that the SU(2) R-symmetry of the 4d theory gets identified

with an SU(2) isometry of the Hyper-Kähler target. The twisting requires thus a precise

knowledge of how the coordinates of the monopole moduli space transform under the

SU(2) symmetry. This is known only in the case of one- and two-monopoles, where a

metric has been determined explicitly [247]. In these cases, we shall describe in section

6.6 the topological sigma-models, which have both scalars and self-dual two-form fields

on M4. The sigma-model into the one-monopole moduli space S1 × R3, corresponding to

the reduction of the abelian theory to a free 4d hypermultiplet, gives rise upon twisting

to a (free) theory on M4 with a compact scalar and a self-dual two-form, and belongs

to the class of 4d A-models of [253]. The sigma-model into the two-monopole moduli

space, which is closely related to the Atiyah-Hitchin manifold, gives rise to an exotic

sigma-model of scalars and self-dual two-forms obeying constraints. Sigma-models in 4d
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are non-renormalisable and infrared free, however, the observables of the topologically

twisted theory are independent of the RG flow and can in principle be computed in the

weak coupling regime.

In the case of M4 a Hyper-Kähler manifold, the holonomy is reduced and the twisting does

not require knowledge of the R-symmetry transformations of the coordinate fields. This

is discussed in section 6.5.1, and the topological sigma-model that we find upon twisting

is the one studied in [254] by Anselmi and Frè for almost quaternionic target spaces.

In this thesis we focus on the reduction of the 6d N = (2, 0) theory on a two-sphere,

however, as we emphasise in section 6.3, the reduction would proceed in the same way with

the addition of two arbitrary ‘punctures’ on the two-sphere, characterizing BPS defects

of the 6d non-abelian theory. In the intermediate 5d theory, it would result in different

Nahm-pole boundary conditions for scalar fields at the two ends of the interval and the

final flat space four-dimensional theory would be a sigma-model into the moduli space of

solutions of Nahm’s equations with these modified Nahm-pole boundary conditions.

We should also remark upon the connection of our results to the paper by Gadde, Gukov

and Putrov [226], who consider the torus reduction of the M5-brane theory. The topolog-

ical twist along M4 is the same in their setup as in our construction. Thus, the dictionary

to the data of the 2d theory as developed in [226], such as its dependence on the topolog-

ical/geometric data of M4, should hold in our case as well. For instance, the rank of the

2d gauge group is determined by b2(M4). The key difference is however, that we consider

this 2d theory on S2, and topologically twist the chiral supersymmetry. Interestingly,

the reduction of the 6d theory on either T 2 or S2 with half-twist gives rather distinct 4d

topological theories: in the former, the 4d N = 4 SYM theory with Vafa-Witten twist, in

the latter, we find a four-dimensional topological sigma-model into the monopole moduli

space, which for general M4 has both scalars as well as self-dual two-forms. The appear-

ance of self-dual two-forms is indeed not surprising in this context, as the topological twist

along M4 is precisely realised in terms of M5-branes wrapping a co-associative cycle in

G2, which locally is given in terms of the bundle of self-dual two-forms Ω2+(M4) [255].

The plan of the chapter is as follows. We begin in section 6.2 by setting up the various

topological twists of the 6d N = (2, 0) theory on S2 ×M4, and provide the supergravity

background and Killing spinors, for the S2 reduction with the half-twist. In section 6.3

we dimensionally reduce the 6d theory to 5d N = 2 SYM on an interval times R4, with

Nahm pole boundary conditions for the scalar fields. In particular we study this with a

generic squashed metric on S2 and in a special ‘cylinder’ limit. The reduction to 4d is then

performed in section 6.4, where we show that the fields have to take values in the moduli
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space of Nahm’s equations, and determine the N = 2 supersymmetric sigma-model on

R4. The action can be found in (6.110), as well as in the form of the models of [251, 252]

in (6.115). In sections 6.5 and 6.6 we study the associated topological sigma-models:

in section 6.5 we consider the case of M4 a Hyper-Kähler manifold, and show that this

gives rise to the topological sigma-model in [254]. The action can be found in (6.130).

We furthermore connect this to the dimensional reduction of the topologically twisted 5d

N = 2 SYM theory and show that both approaches yield the same 4d sigma-model in

appendix C.6. In section 6.6, we let M4 be a general four-manifold, but specialise to the

case of one- or two- monopole moduli spaces, and use the explicit metrics to determine the

topological field theory. In this case, the bosonic fields are scalars and self-dual two-forms

on M4. The action for k = 1 is (6.153) and for k = 2 we obtain (6.176). We close with some

open questions in section 6.7, and provide details on our conventions and computational

intricacies in the appendices.

6.2 Topological Twists and Supergravity Backgrounds

This section serves two purposes: firstly, to explain the possible twists of the 6d N =

(2, 0) theory on a two-sphere S2, and secondly, to determine the supergravity background

associated to the topological half-twist on S2.

6.2.1 Twists of the M5-brane on M4

We consider the compactification of the M5-brane theory, i.e. the six-dimensional N =

(2, 0) theory, on M4 × S2, where M4 is a four-dimensional manifold. More generally, we

can consider the twists for reductions on general Riemann surfaces Σ instead of S2. We

will determine the 4d theory that is obtained upon dimensional reduction on the S2, and

consider this theory on a general four-manifold M4. Supersymmetry of this theory requires

that certain background fields are switched on, which correspond to twisting the theory

– both along M4 as well as along S2. The twisting procedure requires to identify part of

the Lorentz algebra of the flat space theory with a subalgebra of the R-symmetry. The

R-symmetry and Lorentz algebra of the M5-brane theory on R6 are1

sp(4)R ⊕ so(6)L . (6.1)

The supercharges transform in the (4, 4̄) spinor representation (the same representation

as the fermions in the theory, see appendix C.1). The product structure of the space-time

1In the dimensional reduction via 5d N = 2 SYM, we will in fact consider the Lorentzian theory to
derive the theory on R1,3. As we have in mind a compactification on a compact four-manifold M4, we will
discuss here the Euclidean version.
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implies that we decompose the Lorentz algebra as

so(6)L → so(4)L ⊕ so(2)L ∼= su(2)` ⊕ su(2)r ⊕ so(2)L . (6.2)

We can consider the following twists of the theory along M4. Either we identify an su(2)

subalgebra of both Lorentz and R-symmetry, or we twist with the full so(4).

On M4 there are two su(2) twists that we can consider. In the first instance consider the

decomposition of the R-symmetry as

sp(4)R → su(2)R ⊕ so(2)R (6.3)

and the su(2)` is twisted by su(2)R. That is we replace su(2)` by the diagonal su(2)twist ⊂
su(2)` ⊕ su(2)R and define the twisted su(2) generators by

T atwist =
1

2
(T a` + T aR) , (6.4)

so that the twisted theory has the following symmetries

Twist 1 : sp(4)R ⊕ so(6)L → su(2)twist ⊕ su(2)r ⊕ so(2)R ⊕ so(2)L . (6.5)

This twist is reminiscent of the Vafa-Witten twist of 4d N = 4 SYM [225]. The super-

charges decompose under (6.2) and (6.3) as

sp(4)R ⊕ so(6)L → su(2)R ⊕ so(2)R ⊕ su(2)` ⊕ su(2)r ⊕ so(2)L

(4,4) → (2+1 ⊕ 2−1, (2,1)−1 ⊕ (1,2)1) ,
(6.6)

which after the twist becomes

sp(4)R ⊕ so(6)L → su(2)twist ⊕ su(2)r ⊕ so(2)R ⊕ so(2)L

(4, 4̄) → (1⊕ 3,1)+− ⊕ (1⊕ 3,1)−− ⊕ (2,2)++ ⊕ (2,2)−+ .
(6.7)

This yields two scalar supercharges on M4, which are of the same negative 2d chirality

under so(2)L

(1,1)+− ⊕ (1,1)−− . (6.8)

Upon reduction on M4, this twist leads to a 2d theory with N = (0, 2) supersymmetry.

In this thesis we are not concerned with the reduction on M4, but focus on the reverse,

namely the theory on M4. This twist is compatible with a further twist along S2 or more

generally an arbitrary Riemann surface Σ, which identifies so(2)L with the remaining R-

symmetry so(2)R. This is the setup that we will study in this chapter. In the following we

will first perform the reduction (and topological twisting) along the S2, and then further

twist the resulting four-dimensional theory on M4.
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Finally, let us briefly discuss alternative twists. We can use a different su(2) R-symmetry

factor to twist the theory along M4, namely we can use su(2)1 ⊂ su(2)1⊕su(2)2 ' so(4)R ⊂
sp(4)R decomposed as

sp(4)R → su(2)1 ⊕ su(2)2 . (6.9)

This twist leads upon reduction on M4 to a 2d theory with N = (0, 1) supersymmetry.

Twist 2 : sp(4)R ⊕ so(6)L → su(2)twist ⊕ su(2)2 ⊕ su(2)r ⊕ so(2)L

(4, 4̄) → (3⊕ 1,1,1)− ⊕ (2,1,2)+ ⊕ (2,2,1)− ⊕ (1,2,2)+ .
(6.10)

We can in fact further twist the su(2)2 with the remaining su(2)r Lorentz symmetry on

M4. This corresponds to a total twist of the full so(4)R with so(4)L and is analogous to

the geometric Langlands (or Marcus) twist of 4d N = 4 SYM theory on M4 [256,257]

Twist 3 : sp(4)R ⊕ so(6)L → so(4)twist ⊕ so(2)L

(4, 4̄) → (3⊕ 1,1)− ⊕ (2,2)+ ⊕ (2,2)− ⊕ (1,1⊕ 3)+ ,
(6.11)

which has two scalar supercharges of opposite 2d chiralities

(1,1)+ ⊕ (1,1)− , (6.12)

so that this twist leads upon reduction on M4 to a 2d theory with N = (1, 1) supersym-

metry. It is not compatible with a further topological twist on S2. Interestingly it was

found in [258] that supersymmetry can be preserved by turning on suitable background

supergravity fields on M4. We will not study this background in this thesis, but will return

to this in the future.

We will now consider the setup of twist 1 and carry out the reduction of the 6d N = (2, 0)

theory on S2 × M4. As explained in the introduction our strategy is to find the 6d

supergravity background corresponding to the twisted theory along S2, taking M4 = R4

to begin with, and carry out the reduction to 4d, where we will finally twist the theory

along an arbitrary M4.

6.2.2 Twisting on S2

For our analysis we first consider the theory on S2×R4 and the twist along S2. The Lorentz

and R-symmetry groups reduce again as in (6.2) and (6.3). The twist is implemented by

identifying so(2)R with so(2)L and we denote it so(2)twist ' u(1)twist, whose generators

are given by

Utwist = UL + UR . (6.13)
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As we have seen this is compatible with the twist 1, discussed in the last subsection.

S2 Twist : so(6)L⊕ sp(4)R → gres ∼= su(2)`⊕ su(2)r⊕ su(2)R⊕ u(1)twist . (6.14)

The residual symmetry group and decomposition of the supercharges and fermions is then

so(6)L ⊕ sp(4)R → gres ∼= su(2)` ⊕ su(2)r ⊕ su(2)R ⊕ u(1)twist

(4,4) → (2,1,2)0 ⊕ (2,1,2)−2 ⊕ (1,2,2)2 ⊕ (1,2,2)0 .
(6.15)

There are eight supercharges transforming as singlets on S2 and transforming as Weyl

spinors of opposite chirality on M4 and doublets under the remaining R-symmetry. The

fields of the 6d N = (2, 0) theory decompose as follows

so(6)L ⊕ sp(4)R → su(2)` ⊕ su(2)r ⊕ su(2)R ⊕ u(1)L ⊕ u(1)R

Φm̂n̂ = (1,5) → (1,1,1)0,2 ⊕ (1,1,1)0,−2 ⊕ (1,1,3)0,0

ρm̂m = (4,4) → (1,2,2)+1,−1 ⊕ (1,2,2)+1,+1 ⊕ (2,1,2)−1,−1 ⊕ (2,1,2)−1,+1

BAB = (15,1) → (1,1,1)0,0 ⊕ (3,1,1)0,0 ⊕ (1,3,1)0,0 ⊕ (2,2,1)2,0 ⊕ (2,2,1)−2,0 .
(6.16)

Note from the point of view of the 4d N = 2 superalgebra, some of these fields transform

in hyper-multiplets, however with a non-standard transformation under the R-symmetry,

under which some of the scalars form a triplet. The standard transformation of the hyper-

multiplet can be obtained using an additional SU(2) symmetry [259]. However, in the

present situation, we have to use the R-symmetry as given in the above decomposition.

Twisting with the su(2)` Lorentz with the remaining su(2)R, i.e.

su(2)twist
∼= diag(su(2)` ⊕ su(2)R) (6.17)

the resulting topological theory has the following matter content

so(6)L ⊕ sp(4)R → g̃ ∼= su(2)twist ⊕ su(2)r ⊕ u(1)twist

Φm̂n̂ = (1,5) → (1,1)2 ⊕ (1,1)−2 ⊕ (3,1)0

ρm̂m = (4,4) → (2,2)0 ⊕ (2,2)2 ⊕ (1⊕ 3,1)−2 ⊕ (1⊕ 3,1)0

BAB = (15,1) → (1,1)0 ⊕ (3,1)0 ⊕ (1,3)0 ⊕ (2,2)2 ⊕ (2,2)−2 .

(6.18)

In the following it will be clear that the 6d scalars Φ give rise to scalars and a self-dual two-

form on M4. The fermions give rise to either vectors, or scalars and self-dual two-forms as

well. The fields appearing in the decomposition of the two-form B are not all independent

due to the constraint of self-duality of H = dB. They will give rise to a vector field and a

scalar on M4. This matter content will be visible in the intermediate 5d description that

we reach later in section 6.3, however, after reducing the theory to 4d and integrating out

massive fields, the matter content of the final 4d theories will be different.
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6.2.3 Supergravity Background Fields

Before describing the details of the reduction, we should summarise our strategy. Our goal

is to determine the dimensional reduction of the 6d N = (2, 0) theory with non-abelian

u(k) gauge algebra. For the abelian theory, the dimensional reduction is possible, using the

equations of motions in 6d [201,202]. However, for the non-abelian case, due to absence of

a 6d formulation of the theory, we have to follow an alternative strategy. Our strategy is

much alike to the derivation of complex Chern-Simons theory as the dimensional reduction

on an S3 in [229]. First note, that the 6d theory on S1 gives rise to 5d N = 2 SYM theory.

More generally, the dimensional reduction of the 6d theory on a circle fibration gives rise

to a 5d N = 2 SYM theory in a supergravity background [235] (for earlier references

see [260,234]). This theory has a non-abelian extension, consistent with gauge invariance

and supersymmetry, which is then conjectured to be the dimensional reduction of the

non-abelian 6d theory.

More precisely, this approach requires first to determine the background of the 6d abelian

theory as described in terms of the N = (2, 0) conformal supergravity theory [232, 233].

The 5d background is determined by reduction on the circle fiber, and is then non-

abelianised. We can further reduce the theory along the remaining compact directions

to determine the theory in 4d. For S3, there is the Hopf-fibration, used in [229] to derive

the Chern-Simons theory in this two-step reduction process. In the present case of the

two-sphere, we will fiber the S1 over an interval I, and necessarily, the fibers will have to

become singular at the end-points.

In the following we will prepare the analysis of the supergravity background. By requiring

invariance under the residual group of symmetries gres preserved by the topological twist

on S2, we derive ansätze for the background fields in 6d N = (2, 0) off-shell conformal

supergravity fields. In the next section we will consider the Killing spinor equations and

fix the background fields completely.

To begin with, the 6d metric on S2 × R4 is given by

ds2 = ds2
R4 + r2dθ2 + `(θ)2 dφ2 , (6.19)

with `(θ) = r sin(θ) for the round two-sphere and θ ∈ I = [0, π]. More generally, `(θ) can

be a function, which is smooth and interpolates between

`(θ)

r
∼ θ , for θ → 0 ,

`(θ)

r
∼ π − θ , for θ → π . (6.20)

We choose the frame

eA = dxA , e5 = r dθ , e6 = `(θ) dφ . (6.21)



Chapter 6. M5-branes on S2 ×M4 187

Label Field sp(4)R Properties

e
A
µ Frame 1

V B̂Ĉ
A R-symmetry gauge field 10 V B̂Ĉ

A = −V ĈB̂
A

T Â[BCD] Auxiliary 3-form 5 T Â = − ? T Â

D
(ÂB̂)

Auxiliary scalar 14 D
ÂB̂

= D
B̂Â

, DÂ
Â

= 0

bA Dilatation gauge field 1

Table 6.1: The bosonic background fields for the 6d N = (2, 0) conformal supergravity.

The corresponding non-vanishing components of the spin connection are

ω56 = −ω65 = −`
′(θ)

r
dφ . (6.22)

In the following the index conventions are such that all hatted indices refer to the R-

symmetry, all unhatted ones are Lorentz indices. The background fields for the off-shell

gravity multiplet are summarised in table 6.1. Underlined Roman capital letters are flat 6d

coordinates, underlined Greek are curved space indices in 6d, and middle Roman alphabet

underlined indices are 6d spinors. All our conventions are summarised in appendix C.1.

Before making the ansätze for the background fields, we note the following decompositions

of representations that these background fields transform under, first for the Lorentz

symmetry,

so(6)L → su(2)` ⊕ su(2)r ⊕ u(1)L

A : 6 → (2,2)0 ⊕ (1,1)2 ⊕ (1,1)−2

[BCD](+) : 10 → (2,2)0 ⊕ (3,1)2 ⊕ (1,3)−2

[BC] : 15 → (2,2)2 ⊕ (2,2)−2 ⊕ (3,1)0 ⊕ (1,3)0 ⊕ (1,1)0

(6.23)

and also for the R-symmetry

so(5)R → su(2)R ⊕ u(1)R

Â : 5 → 30 ⊕ 12 ⊕ 1−2

[B̂Ĉ] : 10 → 30 ⊕ 32 ⊕ 3−2 ⊕ 10

(B̂Ĉ) : 14 → 50 ⊕ 32 ⊕ 3−2 ⊕ 12 ⊕ 1−2 ⊕ 10 .

(6.24)

The bosonic supergravity fields of 6d off-shell conformal maximal supergravity were de-

termined in [232,233,261,260,235]. They are the frame e
A
µ and

T
[BCD]Â

, V
A [B̂Ĉ]

→ (dV )
[AB] [ĈD̂]

, D
(ÂB̂)

, bA → (db)[AB] , (6.25)
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where dV and db denote the field strength of the R-symmetry and dilatation gauge fields,

respectively. Furthermore T
[BCD]Â

is anti-self-dual2 and D
(ÂB̂)

is traceless

T
[BCD]Â

= T
[BCD](+)Â

, δÂB̂D
ÂB̂

= 0 . (6.26)

We shall now decompose these in turn under the residual symmetry group gres ∼= su(2)`⊕
su(2)r ⊕ su(2)R ⊕ u(1)twist and determine the components that transform trivially, and

thus can take non-trivial background values.

1. T
[BCD]Â

: The decomposition under gres is given by

(10,5)→(2,2,3)(2) ⊕ (3,1,3)(2) ⊕ (1,3,3)(−2) ⊕ (2,2,1)(±2) ⊕ (3,1,1)(4)

⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,3,1)(−4) .
(6.27)

This tensor product does not contain any singlet under gres, so the backgrounds we

consider have T
[BCD]Â

= 0.

2. V
A[B̂Ĉ]

: We are looking for components of the field strength (dV )
[AB] [ĈD̂]

invariant

under gres. The decomposition of (dV )
[AB] [ĈD̂]

is:

(15,10)→(2,2,3)(±2) ⊕ (3,1,3)(0) ⊕ (1,3,3)(0) ⊕ (1,1,3)(0) ⊕ (2,2,3)(±4)

⊕ 2× (2,2,3)(0) ⊕ (3,1,3)(±2) ⊕ (1,3,3)(±2) ⊕ (1,1,3)(±2)

⊕ (2,2,1)(±2) ⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,1,1)(0) .
(6.28)

We see that we have a singlet that corresponds to turning on a flux on the S2 and

an ansatz for V is given by

Vφ x̂ŷ =
1

2
v(θ) εx̂ŷ , (6.29)

where x̂, ŷ run over the components B̂, Ĉ = 4, 5, and the other components of V

vanish.

3. bA: The field strength (db)[AB] decomposes under gres as

(15,1)→ (2,2,1)(±2) ⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,1,1)(0) . (6.30)

There is a singlet, which corresponds to turning on a field strength on the S2. In

the following we will not consider this possibility. Note that any other choice can

always be obtained by a conformal transformation with K, which shifts bA [233]. In

the following we thus set

bA = 0 . (6.31)

2In Euclidean signature, T[BCD]Â can be complexified and taken to satify T = i ? T .
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4. D
(ÂB̂)

: The decomposition under gres is given by

(1,14)→ (1,1,5)(0) ⊕ (1,1,3)(±2) ⊕ (1,1,1)(±2) ⊕ (1,1,1)(0) . (6.32)

There is one singlet corresponding to the ansatz

D
âb̂

= d δ
âb̂

, Dx̂ŷ = −3

2
d δx̂ŷ , (6.33)

with other components vanishing. The relative coefficients are fixed by the trace-

lessness condition on D
(ÂB̂)

.

6.2.4 Killing spinors

With the ansätze for the supergravity background fields we can now determine the con-

ditions on the coefficients v and d, to preserve supersymmetry. The background of the 6d

supergravity is summarised in section 6.2.3 and the Killing spinor equations (C.23) and

(C.29) are solved in appendix C.2. In summary the background with T
[BCD]Â

= bA = 0

preserves half the supersymmetries if

v(θ) = −`
′(θ)

r

d(θ) =
3

2

`′′(θ)

r2`(θ)
,

(6.34)

where for the round two-sphere `(θ) = r sin(θ), and the Killing spinor ε is constant and

satisfies the following constraint

(Γ4̂5̂)m̂n̂ε
n̂ − Γ56εm̂ = 0 . (6.35)

The value of the R-symmetry gauge field V 56 = − `′(θ)
r dφ = ω56 and the fact that the pre-

served supersymmetries are generated by constant spinors indicates that this supergravity

background realises the topological twist on S2, as expected.

Finally, recall that we chose a gauge for which bA = 0. Note that the background field bA

can be fixed to an arbitrary other value by a special conformal transformation (see [233]).

The special conformal transformation does not act on the other background fields (they

transform as scalars under these transformations), nor on the spinor εm̂, however it changes

the spinor ηm̂ parametrizing conformal supersymmetry transformations. Indeed one can

show that the Killing spinor equations (C.23) and (C.29) are solved for an arbitrary bA

by the same solution εm̂ together with

ηm̂ = −1

2
bAΓAεm̂ . (6.36)

In this way one can recover the gauge choice bµ = α−1∂µα (with α = 1/` in our conven-

tions) of [235], although we will keep our more convenient choice bµ = 0. For our gauge

choice, the dimensional reduction to 5d is rederived in appendix C.3.
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6.3 From 6d N = (2, 0) on S2 to 5d N = 2 SYM

We now proceed with the dimensional reduction of the six-dimensional N = (2, 0) theory

on S1 to obtain 5d maximally supersymmetric Yang–Mills theory, as in [260, 235]. The

main distinction in our case arises in subtle boundary conditions, which will have to

be imposed on the fields along the 5d interval. All our conventions are summarised in

appendix C.1.

We should remark on an important point in the signature conventions: the reduction to

the 5d N = 2 SYM theory is accomplished in Lorentzian signature, R4 → R1,3, where

fields admit 6d reality conditions, however it would go through in Euclidean signature

upon complexifying the fields in 6d and then imposing reality conditions in 5d. This

amounts to Wick-rotating the Lorentzian 5d theory. In later sections, when we study the

5d theory on a generic M4, we adopt the Euclidean signature, which is compatible with

the twist on M4.

6.3.1 The 6d N = (2, 0) Theory

The abelian 6d N = (2, 0) theory contains a tensor multiplet, which is comprised of a

two-form B with field strength H = dB, five scalars Φm̂n̂, and four Weyl spinors ρm̂m of

negative chirality, which are symplectic Majorana. The scalars satisfy Φm̂n̂ = −Φn̂m̂ and

Ωm̂n̂Φm̂n̂ = 0. The equations of motion are (we will use the conventions of [233])

H−µνσ −
1

2
Φm̂n̂T

m̂n̂
µνσ = 0

D2Φm̂n̂ −
1

15
Dr̂ŝ
m̂n̂Φr̂ŝ +

1

3
H+
µνσT

µνσ

m̂n̂ = 0

/Dρm̂ − 1

12
T m̂n̂µνσΓµνσρn̂ = 0 .

(6.37)

Here H± = 1/2(H ± ?H) and the R-symmetry indices of the background fields have

been transformed from Â → m̂n̂ using the Gamma-matrices as in (C.25). The covariant

derivatives are defined as follows

Dµρ
m̂ =

(
∂µ −

5

2
bµ +

1

4
ωABµ ΓAB

)
ρm̂ − 1

2
V m̂
µn̂ρ

n̂

DµΦm̂n̂ = (∂µ − 2bµ)Φm̂n̂ + V
[m̂
µr̂ Φn̂]r̂

D2Φm̂n̂ =
(
∂A − 3bA + ω

BA
B

)
DAΦm̂n̂ + V

A[m̂
r̂ DAΦn̂]r̂ − R6d

5
Φm̂n̂ .

(6.38)



Chapter 6. M5-branes on S2 ×M4 191

Here R6d is the 6d Ricci scalar. These equations are invariant under the following super-

symmetry transformations

δBµν = −εm̂Γµνρm̂

δΦm̂n̂ = −4ε[m̂ρn̂] − Ωm̂n̂εr̂ ρr̂

δρm̂ =
1

48
H+
µνσΓµνσεm̂ +

1

4
/DΦm̂n̂εn̂ − Φm̂n̂ηn̂ .

(6.39)

The dimensional reduction of these equations yields abelian 5d N = 2 SYM in a general

supergravity background. We will perform this reduction in a gauge choice where bA = 0,

which is for instance different from the choice in [235]. The details of this general reduction

are given in appendix C.3. The 6d supergravity fields decompose as follows

e
µ

A →

(
eµ
′

A′ eφA′ ≡ CA′
eµ
′

6 ≡ 0 eφ6 ≡ α

)
H → F = dA

ρmm̂ →

(
0

iρm
′m̂

)

Φm̂n̂ → Φm̂n̂ ,

(6.40)

where we used again the index conventions in appendix C.1. The action of abelian 5d

N = 2 SYM theory in a general background is

S5d = SF + Sscalar + Sρ , (6.41)

where

SF = −
∫

[αF̃ ∧ ?5dF̃ + C ∧ F ∧ F ]

Sscalar = −
∫
d5x

√
|g|α−1

(
DA′Φ

m̂n̂DA′Φm̂n̂ + 4Φm̂n̂FA′B′T
A′B′

m̂n̂ − Φm̂n̂(MΦ)m̂n̂r̂ŝ Φr̂ŝ
)

Sρ = −
∫
d5x
√
|g|α−1ρm′m̂

(
i /D

m′

n′ ρ
n′m̂ + (Mρ)

m′m̂
n′n̂ ρn

′n̂
)
,

(6.42)

with all mass matrices defined in appendix C.3 and F̃ is defined as

F̃ = F − 1

α
Φm̂n̂T

m̂n̂ . (6.43)

6.3.2 5d N = 2 SYM in the Supergravity Background

We can now specialise to the 6d background R4×S2, including the background supergravity

fields of section 6.2 and determine the 5d N = 2 SYM theory in the background, which

corresponds to the 6d N = (2, 0) theory on S2, by performing the dimensional reduction

along the circle fiber. As shown in section 6.2.3, the only background fields for the 5d

N = 2 SYM theory, which are compatible with the residual symmetry group, are Dm̂n̂
r̂ŝ

and V m̂n̂
φ ≡ Sm̂n̂. With these background fields, and the action of the 5d N = 2 SYM
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theory in a general background, that we derived in appendix C.3 in the gauge bA = 0, we

can now determine the non-abelian 5d action in our background.

For our background the metric, graviphoton, CA′ , and the dilaton, α, are given by

ds2
5 = ds2

R4 + r2dθ2 , CA′ = 0 , α =
1

`(θ)
, 0 ≤ θ ≤ π , (6.44)

which means that G = dC = 0. Imposing these conditions and turning on only the

background fields Dm̂n̂
rs and Sm̂n̂ the full action is given by3

S = SF + Sscalar + Sρ + Sint , (6.45)

where

SF = −1

4

∫
1

`(θ)
Tr(F ∧ ?5dF )

Sscalar =
1

16

∫
d5x

√
|g| `(θ) Tr

(
Φm̂n̂D2Φm̂n̂ + Φm̂n̂(MΦ)r̂ŝm̂n̂Φr̂ŝ

)

Sρ = −
∫
d5x

√
|g| `(θ) Tr

(
iρm′m̂ /D

m′

n′ ρ
n′m̂ + ρm′m̂(Mρ)

m̂n̂m′
n′ ρ

n′

n̂

)
.

(6.46)

Here, we non-abelianised the theory, and the covariant derivatives and mass matrices

Dµ′Φ
m̂n̂ = ∂µ′ + [Aµ′ ,Φ

m̂n̂]

D2Φm̂n̂ = ∂µ
′
Dµ′Φ

m̂n̂ +
`′(θ)

r2`(θ)
DθΦ

m̂n̂ + [Aµ′ , ∂
µ′Φm̂n̂] + [Aµ′ , [A

µ′ ,Φm̂n̂]]

Dµ′ρ
m̂ = ∂µ′ρ

m̂ + [Aµ′ , ρ
m̂]

(MΦ)m̂n̂r̂ŝ =
2`′′(θ)

5r2`(θ)
δm̂[r̂ δ

n̂
ŝ] +

1

2`(θ)2

(
Sm̂[r̂ S

n̂
ŝ] − S

n̂
t̂
S t̂[r̂δ

m̂
ŝ]

)
− 1

15
Dm̂n̂
r̂ŝ

(Mρ)
m̂n̂m′

n′ =
1

`(θ)

(
1

2
Sm̂n̂δm

′
n′ +

i`′(θ)

2r
Ωm̂n̂(γ5)m

′
n′

)
,

(6.47)

where the five-dimensional Ricci scalar vanishes, because we have a flat metric on the

interval. In the non-abelian case we can add the following interaction terms

Sint =

∫
d5x
√
|g|Tr

(
`(θ)3

64
[Φm̂n̂,Φ

n̂r̂][Φr̂ŝ,Φ
ŝm̂] +

`(θ)

24
Sm̂n̂Φm̂r̂[Φn̂ŝ,Φr̂ŝ]− `(θ)2ρm′m̂[Φm̂n̂, ρm

′

n̂ ]

)
,

(6.48)

where the non-vanishing background fields are

Sm̂n̂ = −`
′(θ)

r
(Γ4̂5̂)m̂n̂

Dm̂n̂
r̂ŝ =

3`′′(θ)

2r2`(θ)

[
5(Γ4̂5̂)

[m̂
r̂ (Γ4̂5̂)

n̂]
ŝ − δ

[m̂
r̂ δ

n̂]
ŝ − Ωm̂n̂Ωr̂ŝ

]
,

(6.49)

3The ratios of numerical prefactors are determined by supersymmetry. Note that our convention for
the scalar fields and gauge fields is that they are anti-hermitian.
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where `′ and `′′ denote first and second derivatives of ` with respect to θ. The action is

invariant under the following supersymmetry transformations

δAµ′ = `(θ) εm̂γµ′ρ
m̂

δΦm̂n̂ = −4iε[m̂ρn̂] − iΩm̂n̂εr̂ ρr̂

δρm̂ =
i

8`(θ)
Fµ′ν′γ

µ′ν′εm̂ +
1

4
/DΦm̂n̂εn̂ +

i

4`(θ)
S

[m̂
r̂ Φn̂]r̂εn̂ −

i

8
`(θ)Ωn̂r̂[Φ

m̂n̂,Φr̂ŝ]εŝ .

(6.50)

Note that the Killing spinor εm
′

m̂ satisfies the relation (6.35) which now reads

(Γ4̂5̂)m̂n̂εm
′

n̂ = −i(γ5)m
′

n′ ε
n′m̂ . (6.51)

So far we have kept the sp(4)R R-symmetry indices explicit. However the background

breaks the R-symmetry to su(2)R⊕so(2)R. To make the symmetry of the theory manifest,

we decompose the scalar fields Φm̂n̂ into a triplet of scalars ϕâ, transforming in the 30 of

su(2)R ⊕ so(2)R, and the complex field ϕ, which is a singlet 11. This can be achieved as

follows

ϕâ =
1

4
(Γâ)m̂n̂Φm̂n̂ , â = 1, 2, 3

ϕ = ϕ4 + iϕ5 =
1

4

(
Γ4 + iΓ5

)
m̂n̂

Φm̂n̂ .

(6.52)

The spinors ρm̂ decompose into the two doublets ρ
(1)
p̂ , ρ

(2)
p̂ , transforming in (2)1 ⊕ (2)−1,

as detailed in appendix C.1.3. We also split the gauge field (singlet of the R-symmetry)

into the components Aµ along R4 and the component Aθ along the interval.

The spinor εn̂ parametrizing supersymmetry transformations decomposes under the R-

symmetry subalgebra su(2)R⊕ so(2)R into two su(2)R doublets of opposite so(2)R charge:

εm̂ → ε
(1)
p̂ , ε

(2)
p̂ (see appendix C.1.3). The projection condition (6.51) becomes

ε
(1)
p̂ − γ

5ε
(1)
p̂ = 0 , ε

(2)
p̂ + γ5ε

(2)
p̂ = 0 . (6.53)

For any 5d spinor χ we define

χ± =
1

2
(χ± γ5χ) , (6.54)

as the four-dimensional chirality. The action for the gauge field is

SF = −1

8

∫
d5x
√
|g| 1

`(θ)
Tr
(
FµνF

µν + 2FµθF
µθ
)
, (6.55)

and for the scalars we find

Sscalar

= −1

4

∫
d5x
√
|g|`(θ) Tr

(
DµϕâDµϕâ +DµϕDµϕ̄+

1

r2
Dθϕ

âDθϕâ +
1

r2
DθϕDθϕ̄+m2

ϕϕϕ̄

)
,

(6.56)
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with the mass term

mϕ(θ)2 =
`′(θ)2 − `(θ)`′′(θ)

r2`(θ)2
, (6.57)

which for the round sphere ism2
ϕ = cot(θ)2/r2 and diverges at the endpoints of the interval.

We will return to this matter when discussing the boundary conditions. The action for

the fermions is

Sρ = −2i

∫
d5x
√
|g| `(θ) Tr

(
ρ

(1)
p̂+γ

µDµρ
(2)p̂
− + ρ

(1)
p̂−γ

µDµρ
(2)p̂
+ +

1

r
ρ

(1)
p̂+Dθρ

(2)p̂
+ − 1

r
ρ

(2)
p̂−Dθρ

(1)p̂
−

)
.

(6.58)

Finally, the interaction terms in this decomposition read as follows

SYukawa = −
∫
d5x
√
|g| `(θ)2 Tr

[
2(σâ)p̂q̂ρ

(2)
p̂−

[
ϕâ, ρ

(1)
q̂−

]
+ 2(σâ)p̂q̂ρ

(2)
p̂+

[
ϕâ, ρ

(1)
q̂+

]

+i
(
ρ

(1)
p̂−

[
ϕ̄, ρ

p̂(1)
−

]
+ ρ

(1)
p̂+

[
ϕ̄, ρ

p̂(1)
+

]
− ρ(2)

p̂−

[
ϕ, ρ

p̂(2)
−

]
− ρ(2)

p̂+

[
ϕ, ρ

p̂(2)
+

])]

Squartic = −1

4

∫
d5x
√
|g| `(θ)3 Tr

(
[ϕâ, ϕ][ϕâ, ϕ̄] +

1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂]− 1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

)

Scubic = −1

6

∫
d5x
√
|g| `(θ)`

′(θ)

r
εâb̂ĉ Tr

(
ϕâ[ϕb̂, ϕĉ]

)
.

(6.59)

The complete 5d action is

S5d = SF + Sscalar + Sρ + SYukawa + Squartic + Scubic , (6.60)

and the supersymmetry variations for this action, decomposed with regards to the R-

symmetry, are summarised in appendix C.4. The action above should be supplemented

with appropriate boundary terms, which ensure that supersymmetry is preserved and that

the action is finite. This will be addressed subsequently.

We need to determine the boundary conditions of the 5d fields at the endpoints of the

θ interval. To proceed we first notice that the complex scalar ϕ has a mass term m(θ)2

which diverges at the boundaries θ = 0, π 4

m(θ)2 '

{
1
θ2

, θ → 0 ,
1

(π−θ)2 , θ → π .
(6.61)

Finiteness of the action requires that ϕ behaves as

ϕ =

{
O(θ) , θ → 0 ,

O(π − θ) , θ → π .
(6.62)

The boundary conditions on the other fields are most easily determined by the require-

ment of preserving supersymmetry under the transformations generated by ε
(1)
p̂ and ε

(2)
p̂

presented in appendix C.4. We obtain at θ = 0:

ρ
(1)
p̂+ = O(θ) , ρ

(2)
p̂− = O(θ) , Aµ = O(θ2) , (6.63)

4This follows from the regularity conditions (6.20) on `.
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and the counterpart at θ = π.

The fields ϕâ, Aθ are constrained by supersymmetry to obey modified Nahm’s equations

as they approach the boundaries, given by

Dθϕ
â − 1

2
r`(θ)εâ

b̂ĉ
[ϕb̂, ϕĉ] = 0 . (6.64)

These equations are compatible with a singular boundary behaviour of the fields at the

endpoints of the θ-interval. For simplicity let us assume the gauge Aθ = 0 in a neighbor-

hood of θ = 0, then the above modified Nahm’s equations are compatible with the polar

behavior at θ = 0

ϕâ =
2%(τ â)

r2θ2
+O(1) , (6.65)

where

% : su(2) → u(k) (6.66)

denotes a Lie algebra homomorphism from su(2) to u(k), see e.g. in [244,245] and τ â are

related to the Pauli matrices σâ as follows

τ â =
i

2
σâ . (6.67)

Moreover the O(1) term is constrained to be in the commutant of % in u(k). The reduc-

tion that we study, from a smooth two-sphere to the interval, corresponds to % being an

irreducible embedding [245].

More generally the Nahm pole boundary condition (6.64) is compatible with any homo-

morphism % and is associated with the presence of ‘punctures’ – or field singularities – at

the poles of the two-sphere in the 6d non-abelian theory [217]. An embedding % can be

associated to a decomposition of the fundamental representation k under su(2) and can

be recast into a partition [n1, n2, · · · ] of k. The irreducible embedding is associated to the

partition % = [k] and corresponds to the absence of punctures in 6d, and is therefore the

sphere reduction that we consider here. The boundary conditions at θ = π are symmetric

to the ones at θ = 0 and are also characterised by Nahm pole behaviour with irreducible

embedding % = [k].

The remaining fermions ρ
(1)
− , ρ

(2)
+ appear in the supersymmetry variations of ϕâ and hence

are of order O(1) at θ = 0

ρ
(1)
p̂− = O(1) , ρ

(2)
p̂+ = O(1) , (6.68)

and similarly at θ = π.

The boundary condition (6.65) for the scalars ϕâ introduces two difficulties: the super-

symmetry variation of the action results in a non-vanishing boundary term and the poles
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of the scalar fields make the action diverge. These two problems are cured by the addition

of the following boundary term

Sbdry =

[
`(θ)2

12

∫
d4x
√
|g4|Tr

(
εâb̂ĉϕâ[ϕb̂, ϕĉ]

)]π

0

=

∫
dθ ∂θ

[
`(θ)2

12

∫
d4x
√
|g4|Tr

(
εâb̂ĉϕâ[ϕb̂, ϕĉ]

)]
,

(6.69)

The second line gives Sbdry as a total θ-derivative and we shall take this as the definition

of the boundary term. This additional term ensures supersymmetry and makes the 5d

action finite. In particular, taking the derivative along θ we find,

Sbdry =

∫
d5x
√
|g|
[
`(θ)`′(θ)

6r
εâb̂ĉ Tr

(
ϕâ[ϕb̂, ϕĉ]

)
+
`(θ)2

4r
εâb̂ĉ Tr

(
∂θϕâ[ϕb̂, ϕĉ]

)]
, (6.70)

where the first piece cancels the cubic scalar interaction in the 5d action and the second

term combines to give

− 1

4r2

∫
d5x
√
|g|`(θ) Tr

(
Dθϕ

âDθϕâ + r2`(θ)2 1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂]− r`(θ)εâb̂ĉ∂θϕâ[ϕb̂, ϕĉ]
)

=− 1

4r2

∫
d5x
√
|g|Tr

(
Dθϕâ −

1

2
r`(θ)ε

âb̂ĉ
[ϕb̂, ϕĉ]

)2

,

(6.71)

which is the square of modified Nahm’s equations. The 5d action is finite since the scalar

fields ϕâ obey modified Nahm’s equations at the boundaries.

We notice that the modified Nahm’s equations (6.64) can be recast into the form of

standard Nahm’s equations by a change of coordinate to

θ̃ =
1

r

∫ θ

0
dx `(x) . (6.72)

One obtains

D
θ̃
ϕâ − 1

2
r2εâ

b̂ĉ
[ϕb̂, ϕĉ] = 0 ,

r2ϕâ =
%(τ â)

θ̃
+O(θ̃0) ,

(6.73)

and a similar Nahm pole behavior at the other end of the θ̃ interval. We conclude then

that the moduli space of solutions of the modified Nahm’s equations is the same as the

moduli space of solution of the standard Nahm’s equations.

6.3.3 Cylinder Limit

For general hyperbolic Riemann surfaces, with a half-topological twist, the dimensional

reduction depends only on the complex structure moduli [217]. The two-sphere has no

complex structure moduli, however, there will be a metric-dependence in terms of the area
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of the sphere, which enters as the coupling constant of the 4d sigma-model [245]. We do

not expect the reduction to depend on the function `(θ), except through the area of the

sphere. This can be checked explicitly by performing the reduction keeping `(θ) arbitrary.

However, for simplicity we consider here the special singular limiting case, when the two-

sphere is deformed to a thin cylinder. This is achieved by taking the metric factor `(θ) as

follows
`(θ) = ` = constant for ε < θ < π − ε ,

`(θ)→ smooth caps for θ < ε , π − ε < θ ,

and then taking the limit ε → 0. The limit is singular at the endpoints of the θ-interval,

since at finite ε, the two-sphere has smooth caps, `(θ) ∼ rθ, while at ε = 0, `(θ) = ` is

constant on the whole θ interval and describes the metric on a cylinder, or a sphere with

two punctures. One may worry that such a singular limit is too strong and would change

the theory itself. We will argue below in section 6.3.4 that the reduction of the theory

with ` constant leads to the same four-dimensional sigma model as for arbitrary `(θ). The

reason for choosing ` constant is only to simplify the derivation.

We rescale the fields as follows

ϕâ → 1

r`
ϕâ , ϕ→ 1

r`
ϕ , ρ

(1)
± →

1

r`
ρ

(1)
± , ρ

(2)
± →

1

r`
ρ

(2)
± . (6.74)

The action in this limit simplifies to

SF = − r

8`

∫
dθd4x

√
|g4|Tr

(
FµνF

µν +
2

r2
(∂µAθ − ∂θAµ + [Aµ, Aθ])

2

)

Sscalar = − 1

4r`

∫
dθd4x

√
|g4|Tr

(
DµϕâDµϕâ +DµϕDµϕ̄+

1

r2
Dθϕ

âDθϕâ +
1

r2
DθϕDθϕ̄

)

Sρ = −2i

r`

∫
dθd4x

√
|g4|Tr

(
ρ

(1)
p̂+γ

µDµρ
(2)p̂
− + ρ

(1)
p̂−γ

µDµρ
(2)p̂
+ +

1

r
ρ

(1)
p̂+Dθρ

(2)p̂
+

−1

r
ρ

(1)
p̂−Dθρ

(2)p̂
−

)

SYukawa = − 1

r2`

∫
dθd4x

√
|g4|Tr

(
2ρ

(2)
p̂−

[
ϕp̂q̂, ρ

(1)
q̂−

]
+ 2ρ

(2)
p̂+

[
ϕp̂q̂, ρ

(1)
q̂+

]

+i
(
ρ

(1)
p̂−

[
ϕ̄, ρ

p̂(1)
−

]
+ ρ

(1)
p̂+

[
ϕ̄, ρ

p̂(1)
+

]
− ρ(2)

p̂−

[
ϕ, ρ

p̂(2)
−

]
− ρ(2)

p̂+

[
ϕ, ρ

p̂(2)
+

]))

Squartic = − 1

4r3`

∫
dθd4x

√
|g4|Tr

(
1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂] + [ϕâ, ϕ][ϕâ, ϕ̄]− 1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

)

Sbdry =
1

6r3`

∫
dθd4x

√
|g4|∂θ Tr

(
εâb̂ĉϕâϕb̂ϕĉ

)
.

(6.75)

The supersymmetry variations of the 5d action summarised in appendix C.4 simplify in
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the cylinder limit and for the bosonic fields are

δAµ = −1

r

(
ε(1)p̂γµρ

(2)
p̂− + ε(2)p̂γµρ

(1)
p̂+

)

δAθ = −
(
ε(1)p̂ρ

(2)
p̂+ − ε

(2)p̂ρ
(1)
p̂−

)

δϕâ = i
(
ε(1)

p̂(σ
â)p̂q̂ρ

(2)
q̂+ − ε

(2)
p̂(σ

â)p̂q̂ρ
(1)
q̂−

)

δϕ = −2ε(1)p̂ρ
(1)
p̂+

δϕ̄ = +2ε(2)p̂ρ
(2)
p̂−

(6.76)

and for the fermions

δρ
(1)
p̂+ =

ir

8
Fµνγ

µνε
(1)
p̂ −

i

4
Dµϕγ

µε
(2)
p̂ +

1

4r
Dθϕ

q̂
p̂ε

(1)
q̂ −

1

8r

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(1)
q̂ − i[ϕ, ϕ̄]ε

(1)
p̂

)

δρ
(1)
p̂− =

i

4
Fµθγ

µε
(1)
p̂ +

1

4
Dµϕ

q̂
p̂ γ

µε
(1)
q̂ +

i

4r
Dθϕε

(2)
p̂ −

1

4r
[ϕ,ϕq̂p̂]ε

(2)
q̂

δρ
(2)
p̂+ = − i

4
Fµθγ

µε
(2)
p̂ −

1

4
Dµϕ

q̂
p̂ γ

µε
(2)
q̂ +

i

4r
Dθϕ̄ε

(1)
p̂ −

1

4r
[ϕ̄, ϕq̂p̂]ε

(1)
q̂

δρ
(2)
p̂− =

ir

8
Fµνγ

µνε
(2)
p̂ +

i

4
Dµϕ̄γ

µε
(1)
p̂ +

1

4r
Dθϕ

q̂
p̂ε

(2)
q̂ −

1

8r

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(2)
q̂ + i[ϕ, ϕ̄]ε

(2)
p̂

)
.

(6.77)

The theory we obtain is nothing else than the maximally supersymmetric SYM in 5d. A

similar reduction of the 6d N = (2, 0) theory on a cigar geometry was considered in [244].

This five-dimensional N = 2 SYM theory is defined on a manifold with boundaries, which

are at the end-points of the θ-interval and half of the supersymmetries are broken by the

boundary conditions. It is key to study the boundary terms and boundary conditions in

detail, which will be done in the next subsection.

6.3.4 Nahm’s Equations and Boundary Considerations

The boundary conditions at the two ends of the θ interval are affected by the singular

cylinder limit. They can be worked out in the same way as in section 6.3.2 by enforcing

supersymmetry at the boundaries. In the cylinder limit of the two-sphere `(θ) → ` the

mass term m(θ)2 goes to zero everywhere along the θ-interval except at the endpoints

θ = 0, π where it diverges, forcing the scalar ϕ to vanish at the boundary, as before.

The other boundary conditions are found by requiring supersymmetry under the eight

supercharges. This requires that the scalars ϕâ obey the standard Nahm’s equations close

to the boundaries

Dθϕ
â − 1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ] = 0 . (6.78)
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Furthermore, the boundary behavior of the fields in the gauge Aθ = 0 around θ = 0 are

(although this is not the gauge we will choose later)

ϕ = O(θ) , Aµ = O(θ) , ϕâ =
%(τ â)

θ
+ ϕâ(0) +O(θ) ,

ρ
(1)
p̂− = O(1) , ρ

(2)
p̂+ = O(1) , ρ

(1)
p̂+ = O(θ) , ρ

(2)
p̂− = O(θ) ,

(6.79)

where % : su(2) → u(k) is an irreducible embedding of su(2) into u(k), with τ as in

(6.67) . There are similar boundary conditions at θ = π. The constant term ϕâ(0) in

the ϕâ-expansion is constrained to be in the commutant of embedding %. With % = [k]

the irreducible embedding, this commutant is simply the diagonal u(1) ⊂ u(k), so ϕâ(0) is

a constant diagonal matrix. This condition propagates by supersymmetry to the other

fields.

The maximally supersymmetric configurations are vacua of the theory preserving eight

supercharges and are given by solutions to the BPS equations

Dθϕ
â − 1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ] = 0

ϕ = ϕ̄ = Fµν = Fµθ = 0

Dµϕâ = 0 ,

(6.80)

with all fermions vanishing. The 5d action is minimised and vanishes for supersymmetric

field configurations (6.80). Moreover there is the additional constraint that the scalars ϕâ

have poles at θ = 0, π both characterised by the partition/embedding % = [k]. The first

equation in (6.80) is Nahm’s equation for the fields (ϕâ, Aθ) and the boundary behaviour

of ϕâ are standard Nahm poles.

We can now address the validity of the singular cylinder limit `(θ) = ` constant. In

the following we will reduce the theory on the interval and find that the dominant field

configurations are given by solutions of Nahm’s equations. The resulting four-dimensional

theory will be a sigma model into the moduli space of solutions of Nahm’s equations. It

is easy to see that for arbitrary `(θ) describing a smooth two-sphere metric, the same

dimensional reduction will be dominated by field configurations satisfying the modified

Nahm’s equations (6.64). We can then reasonably expect that the reduction will lead to

a four-dimensional sigma model into the moduli space of the modified Nahm’s equations.

However we argued at the end of section 6.3.2 that this moduli space is the same as the

moduli space of standard Nahm’s equations, so the reduction for arbitrary `(θ) would lead

to the same sigma model.

Finally, let us comment on generalisations of the Nahm pole boundary conditions with

two arbitrary partitions %0 and %π for the scalar fields at the two boundaries θ = 0, π,
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respectively, as described in [245]. The polar boundary behavior at θ = 0 is given by (6.79)

with %→ %0 and the subleading constant piece ϕâ(0) takes values in the commutant of %0 (i.e.

matrices commuting with the image of %0). These boundary conditions preserve the same

amount of supersymmetry and admit global symmetry groups H0×Hπ ⊂ SU(k)×SU(k)

acting by gauge transformations at the end-points of the θ-interval. H0 and Hπ are the

groups, whose algebras h0, hπ are respectively the commutants of %0 and %π in su(k).

These global transformations leave the %0 and %π boundary conditions invariant. In the

reduction to 4d, only a subgroup of H0×Hπ can be preserved (see the discussion in section

2 of [245]).

The general (%0, %π) boundary conditions correspond to inserting singularities or ‘punc-

tures’ of the type %0 at one pole of the two-sphere and of the type %π at the other pole

in the 6d N = (2, 0) theory. All our results can be directly generalised to having general

(%0, %π) Nahm poles at the boundaries of the θ-interval. In this case we would obtain

sigma-models into a different moduli space: the moduli space of Nahm’s equations with

(%0, %π) boundary conditions.

For the sphere with two punctures labeled by two arbitrary partitions %0, %π, it is very

natural to consider the metric describing a cylinder, since this is the topology of a sphere

with two punctures, and the reduction, whether with the sphere or the cylinder metric,

is expected to lead to the same four-dimensional theory. From this point of view, the

sphere without punctures, or “trivial punctures”, is simply a subcase corresponding to the

specific partitions %0 = %π = [k], and we may take the cylinder metric, as for any other

choice of punctures.

6.4 Nahm’s Equations and 4d Sigma-Model

In the last section we have seen that the 5d N = 2 SYM in the background corresponding

to the S2 reduction of the 6d N = (2, 0) theory requires the scalars ϕâ to satisfy Nahm’s

equations, and the supersymmetric boundary conditions require them to have Nahm poles

(6.79) at the boundary of the interval. The four-dimensional theory is therefore dependent

on solutions to Nahm’s equations. To dimensionally reduce the theory, we pass to a de-

scription in terms of coordinates on the moduli spaceMk of solutions to Nahm’s equations

and find the theory to be a four-dimensional sigma-model into Mk with the action

S4d =
1

4r`

∫
d4x
√
|g4|

[
GIJ

(
∂µX

I∂µXJ − 2iξ(1)Ip̂σµDµξ(2)J
p̂

)

−1

2
RIJKLξ

(1)Ip̂ξ
(1)J
p̂ ξ(2)Kq̂ξ

(2)L
q̂

] (6.81)
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with XI the coordinates on the moduli space

X : M4 → Mk , (6.82)

and ξ(i), where i = 1, 2, Grassmann-valued sections of the pull-back of the tangent bundle

to Mk

ξ(1,2) ∈ Γ(X∗TMk ⊗ S±) , (6.83)

where S± is the spin bundle of ± chirality on M4. The sigma-model for M4 = R4 is

supersymmetric, with N = 2 supersymmetry in 4d. The coupling constant for the sigma-

model is proportional to the area of the two-sphere, which is ∼ r`, as anticipated.

6.4.1 Poles and Monopoles

Before studying the dimensional reduction to 4d, we summarise a few well-known use-

ful properties of the moduli space Mk. The moduli space Mk of solutions to Nahm’s

equations, on an interval with Nahm pole boundary conditions given by the irreducible

embedding % = [k], is well-known to be isomorphic to the moduli space of (framed) SU(2)

magnetic monopoles of charge k [262, 263, 246, 247], which is 4k-dimensional and has a

Hyper-Kähler structure. The metric of the spacesMk is not known in explicit form, other

than for the cases M1 ' R3 × S1 (which is the position of the monopole in R3 and the

large gauge transformations parametrised by S1) and for the case

M2 ' R3 × S1 ×MAH

Z2
, (6.84)

where MAH is the Atiyah-Hitchin manifold [247]. A detailed description of the metric in

the latter case will be given in section 6.6.2. Hitchin showed the equivalence of SU(2)

monopoles of charge k with solutions of Nahm’s equations [263]

dTi
dθ
− 1

2
εijk[Tj , Tk] = 0 , i = 1, 2, 3 , (6.85)

where Ti are matrix-valued, depending on θ ∈ [0, π] and have poles at the endpoints of the

interval, the residues of which define representations of su(2). Furthermore, Donaldson

[246] identified Nahm’s equations in terms of the anti-self-duality equation FA = − ? FA
of a connection

A = Tθdθ +
∑

i

Tidxi , (6.86)

on R4, where Tθ, the gauge field along the interval, can be gauged away and the Ti are

taken independent of the xi coordinates. The metric of the solution-space (modulo gauge

transformations) has a Hyper-Kähler structure [264,265].
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This Nahm moduli space (or monopole moduli space) takes the form [247]

Mk ' R3 ×
S1 ×M0

k

Zk
, (6.87)

where R3 parameterises the center of mass of the k-centered monopole. A particularly

useful characterisation of the reduced Nahm moduli space M0
k is in terms of Slodowy-

slices. Kronheimer has shown that the solutions of Nahm’s equations with no poles at

the boundaries have a moduli space given by the cotangent bundle of the complexified

gauge group, T ∗GC ≡ gC×GC, which has a natural Hyper-Kähler structure. Furthermore,

Bielawski showed in [249,250], that the moduli space of solutions with Nahm pole boundary

conditions for k-centered SU(2) monopoles is given in terms of

M0
k
∼= {(g,X) ∈ SU(N)C × su(N)C; X ∈ S[k] ∩ g−1S[k]g} ⊂ T ∗SU(k)C , (6.88)

where the Slodowy slice for an embedding ρ : su(2)→ u(k) is

Sρ = {ρ(τ+) + x ∈ su(k)C; [ρ(τ−), x] = 0} . (6.89)

Here τ± ≡ τ1 ± iτ2 are the raising/lowering operators of su(2). The Hyper-Kähler metric

on Mk will play a particularly important role in section 6.6, where this will be discussed

in more detail.

6.4.2 Reduction to the 4d Sigma-Model

To proceed with the reduction on the θ-interval to four dimensions, we take the limit

where the size of the interval, r, is small.5 The terms in the action (6.75) are organised

in powers of r, and in the limit, the divergent terms which are of order r−n, n = 2, 3,

must vanish separately. The terms of order r−1 contain the four-dimensional kinetic

terms and lead to the 4d action. The terms of order rn, n ≥ 0 are subleading and can

be set to zero. To perform this reduction we must expand the fields in powers of r,

Φ = Φ0 + Φ1r + Φ2r
2 + · · · , and compute the contribution at each order. We find that

only the leading term Φ0 contributes to the final 4d action for each field, except for the

‘massive’ scalars ϕ, ϕ̄ and spinors ρ
(1)
+p̂, ρ

(2)
−p̂, whose leading contribution arise at order r.

The final 4d action will arise with the overall coupling 1
r` .

Let us now proceed with detailing the dimensional reduction. At order r−3 we find the

5By r small, we mean that we consider the effective theory at energies small compared to 1
r
.
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term

S = − 1

4r3`

∫
dθd4x

√
|g4|

Tr

[(
Dθϕ

â − 1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ]

)2

+ [ϕâ, ϕ][ϕâ, ϕ̄] +DθϕDθϕ̄−
1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

]
.

(6.90)

This term is minimised (and actually vanishes)6, up to order O(r−1) corrections, upon

imposing the following constraints: ϕ, ϕ̄ vanish at order r0,

ϕ = ϕ̄ = O(r) , (6.91)

and the fields ϕâ and Aθ obey Nahm’s equations, up to order O(r) corrections,

Dθϕ
â −

εâ
b̂ĉ

2
[ϕb̂, ϕĉ] = 0 , (6.92)

with Nahm pole behaviour % = [k] at the two ends of the interval. The four-dimensional

theory then localises onto maps X : R4 → Mk, where Mk is the moduli space of u(k)

valued solutions of Nahm’s equations on the interval with %-poles at the boundaries, or

equivalently the moduli space of k-centered SU(2) monopoles, as reviewed in section 6.4.1.

The fields satisfying Nahm’s equations can be written in terms of an explicit dependence

on the point XI in the moduli space Mk

ϕâ(θ, xµ) = ϕâ(θ,X(xµ)) , Aθ(θ, x
µ) = Aθ(θ,X(xµ)) . (6.93)

Furthermore, we choose the gauge fixing

∂θAθ = 0 . (6.94)

The terms at O(r−2) vanish by imposing the spinors ρ
(1)
p̂+, ρ

(2)
p̂− to have no O(r0) term

ρ
(1)
p̂+ = O(r) , ρ

(2)
p̂− = O(r) . (6.95)

The kinetic term of these spinors becomes of order r and can be dropped in the small

r limit. The fermions ρ
(1)
p̂+, ρ

(2)
p̂− become Lagrange multipliers and can then be integrated

out, leading to the constraints on the fermions ρ
(1)
p̂−, ρ

(2)
p̂+

Dθρ
(2)
+p̂ + i[ϕp̂q̂ , ρ

(2)
+q̂ ] = 0

Dθρ
(1)
−p̂ + i[ϕp̂q̂ , ρ

(1)
−q̂ ] = 0 ,

(6.96)

which are supersymmetric counterparts to Nahm’s equations (6.78). We will use these

localizing equations below to expand the fermionic fields in terms of vectors in the tangent

space to the moduli space of Nahm’s equations, Mk.

6To avoid possible confusions about the positivity of the action, we remind that our conventions are
such that the fields are anti-hermitian.
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Finally we drop the order r kinetic terms of the 4d gauge field and scalars ϕ, ϕ̄ (which

contribute only at order r), and we are left with the terms of order 1
r which describe the

4d action. The remaining task is to express this action in terms of the fields X = {XI}
and the massless fermionic degrees of freedom, and to integrate out the 4d components of

the gauge field Aµ and the scalars ϕ, ϕ̄, which appear as auxiliary fields in the 4d action.

The subleading terms (at order r) in the ϕâ expansion can similarly be integrated out

without producing any term in the final 4d action, so we ignore these contributions in the

rest of the derivation.

In addition one should integrate over the one-loop fluctuations of the fields around their

saddle point configurations. We will assume here that the bosonic and fermionic one-loop

determinants cancel, as is frequently the case in similar computations [266], and now turn

to deriving the 4d action. Some of the technical details have been relegated to appendix

C.5.

Scalars

We will now describe the 4d theory in terms of ‘collective coordinates’ XI , similar to

the approach taken in e.g. [266] for the dimensional reduction of 4d SYM theories on a

Riemann surface resulting in a 2d sigma-model into the Hitchin moduli space. Related

work can also be found in [267, 268]. The resulting theory is a (supersymmetric) sigma-

model (6.82), where for this part of the chapter we will consider M4 = R4. The three

scalar fields ϕâ and Aθ are expanded in the collective coordinates as follows

δϕâ =Υâ
IδX

I

δAθ =Υθ
IδX

I ,
(6.97)

where I = 1, . . . , 4k. Here, the basis of the cotangent bundle of Mk is given by

Υâ
I =

∂ϕâ

∂XI
+ [EI , ϕ

â]

Υθ
I =

∂Aθ
∂XI

−DθEI ,

(6.98)

where EI defines a u(k) connection ∇I ≡ ∂I + [EI , .] onMk. The Υâ
I ,Υ

θ
I satisfy linearised

Nahm’s equations

DθΥ
â
I +

[
Υθ
I , ϕ

â
]

= εâb̂ĉ
[
Υ
Ib̂
, ϕĉ
]
. (6.99)

The metric on Mk can be expressed in terms of these one-forms as

GIJ = −
∫
dθTr(Υâ

IΥJâ + Υθ
IΥ

θ
J) . (6.100)
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The Hyper-Kähler structure onMk can be made manifest in this formulation, by defining

the three symplectic forms (see for instance [269])

ωâIJ =

∫
dθTr(εâb̂ĉΥ

Ib̂
ΥJĉ + Υâ

IΥ
θ
J −Υθ

IΥ
â
J) . (6.101)

Some useful properties of these are summarised in appendix C.5.1. Using the expansion

(6.98) we obtain

Sscalars = − 1

4r`

∫
dθd4x

√
|g4|Tr

(
∂IAθ∂JAθ + ∂Iϕ

â∂Jϕâ

)
∂µX

I ∂µXJ . (6.102)

This will combine with terms arising from integrating out the gauge field to give the usual

sigma-model kinetic term.

Fermions

The fermions satisfy the equation (6.96), which is the supersymmetry variation of Nahm’s

equations. The spinors therefore take values in the cotangent bundle to the moduli space

Mk and we can expand them in the basis that we defined in (6.98)

ρ
(1)
−p̂ = Υâ

I (σâ)
q̂
p̂λ

(1)I
q̂ + iΥ

(θ)
I λ

(1)I
p̂

ρ
(2)
+p̂ = Υâ

I (σâ)
q̂
p̂λ

(2)I
q̂ + iΥ

(θ)
I λ

(2)I
p̂ ,

(6.103)

where λ
(1)I
p̂ , λ

(2)I
p̂ are spacetime spinors, valued in TMk. The identities (C.58) imply that

the fermionic fields obey the constraints

ωâIJλ
(i)J
p̂ = i(σâ)q̂p̂λ

(i)I
q̂ . (6.104)

The expansion in (6.103) can be seen to satisfy the equation of motion for the spinors

(6.96) by making use of (6.99) and the gauge fixing condition (C.62). Then substituting

in the kinetic term for the spinors and making use of the expression for the metric onMk

(6.100), the symplectic forms ωâIJ and the constraint (6.104), we find

Sρkin =
8i

rl

∫
d4x
√
|g4|

[
GIJλ

(1)Ip̂γµ∂µλ
(2)J
p̂

−
∫
dθTr

(
Υâ
I∂JΥKâ + Υ

(θ)
I ∂JΥ

(θ)
K

)
λ(1)Ip̂γµλ

(2)K
p̂ ∂µX

J
]
.

(6.105)

6.4.3 4d Sigma-Model into the Nahm Moduli Space

Finally, we need to integrate out the gauge field and the scalars ϕ, ϕ̄, which is done in

appendix C.5.2. The conclusion is that, in addition to giving the standard kinetic term for
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the scalars, this covariantises the fermion action and results in a quartic fermion interaction

that depends on the Riemann tensor of the moduli space. In summary we find the action

S =
1

r`

∫
d4x
√
|g4|

[
1

4
GIJ∂µX

I∂µXJ+8iGIJλ
(1)Ip̂γµDµλ(2)J

p̂

−32RIJKL

(
λ(1)Ip̂λ

(1)J
p̂

)(
λ(2)Kq̂λ

(2)L
q̂

)]
,

(6.106)

where Dµλ(2)I
p̂ = ∂µλ

(2)I
p̂ + λ

(2)J
p̂ ΓIJK∂µX

K . The final step is to decompose the spinors

λ(i), as explained in appendix C.1.2, into 4d Weyl spinors

λ
(1)I
p̂ =

1

4

(
ξ

(1)I
p̂

0

)
, λ

(2)I
p̂ =

1

4

(
0

ξ
(2)I
p̂

)
, (6.107)

obeying the reality conditions

(ξ(1)p)∗ = ξ
(2)
ṗ , (ξ(2)ṗ)∗ = ξ(1)

p , (6.108)

and the constraint

ωâIJξ
(i)J
p̂ = i(σâ)q̂p̂ξ

(i)I
q̂ . (6.109)

The 4d sigma-model action from flat M4 into the monopole moduli spaceMk is then given

by

S4d =
1

4r`

∫
d4x
√
|g4|

[
GIJ

(
∂µX

I∂µXJ − 2iξ(1)Ip̂σµDµξ(2)J
p̂

)

−1

2
RIJKLξ

(1)Ip̂ξ
(1)J
p̂ ξ(2)Kq̂ξ

(2)L
q̂

]
.

(6.110)

The supersymmetry transformations are

δXI = −i
(
ε(2)p̂ξ

(1)I
p̂ + ε(1)p̂ξ

(2)I
p̂

)

δξ
(1)I
p̂ =

1

4

(
∂µX

Iσµε
(1)
p̂ − iω

âI
J(σâ)

q̂
p̂∂µX

Jσµε
(1)
q̂

)
− ΓIJKδX

Jξ
(1)K
p̂

δξ
(2)I
p̂ = −1

4

(
∂µX

I σ̄µε
(2)
p̂ − iω

âI
J(σâ)

q̂
p̂∂µX

J σ̄µε
(2)
q̂

)
− ΓIJKδX

Jξ
(2)K
p̂ .

(6.111)

We have thus shown, that the M5-brane theory reduced on an S2 gives rise to a four-

dimensional sigma-model with N = 2 supersymmetry, based on maps from R4 into the

moduli space Mk of Nahm’s equations (with % = [k] boundary conditions).

6.4.4 Relation to the Bagger-Witten Model

There is an equivalent description of the sigma-model in (6.110), which relates it to the

models in [251,252]. In this alternative description we make use of the reduced holonomy of

the Hyper-Kähler targetMk. We will consider an (Sp(k)×Sp(1))/Z2 subgroup of SO(4k),
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under which the complexified tangent bundle of a Hyper-Kähler space decomposes into a

rank 2k vector bundle V and a rank 2 trivial bundle S. The index I decomposes under this

into ip̂, where i = 1, · · · , 2k labels the 2k-dimensional representation of sp(k) and p̂ = 1, 2

is the doublet index of sp(1) = su(2)R. The map I → ip̂ is realised by the invariant tensors

f ip̂I [270], which satisfy

f ip̂If
J
ip̂ = δIJ , f ip̂I f

I
jq̂ = δijδ

p̂
q̂ , 2f ip̂I f

J
iq̂ = δIJδ

p̂
q̂ + iωâI

J(σâ)
p̂
q̂ . (6.112)

The alternative description of the sigma-model is obtained by defining the fields

ξ(1)i ≡ 1

2
f ip̂I ξ

(1)I
p̂ , ξ(2)i ≡ 1

2
f ip̂I ξ

(2)I
p̂ . (6.113)

which can be inverted, by using the constraint on the fermions (6.109)

ξ
(1)I
p̂ = f I ip̂ ξ

(1)i , ξ
(2)I
p̂ = f I ip̂ ξ

(2)i . (6.114)

Using this decomposition the 4d untwisted sigma-model action into the monopole moduli

space Mk can be re-expressed in terms of the fermionic fields (6.113)

S =
1

r`

∫
d4x
√
|g4|

[
1

4
GIJ∂µX

I ∂µXJ − igijξ(1)iσµDµξ
(2)j − 1

4
Wijkl(ξ

(1)iξ(1)j)(ξ(2)kξ(2)l)

]
,

(6.115)

where the covariant derivative is

Dµξ
(2)i = ∂µξ

(2)i + ξ(2)jwIj
i∂µX

I . (6.116)

The tensors wIj
i and Wijkl are the Sp(k) connection on V and the totally symmetric

curvature tensor, respectively. These are expressed in terms of the Christoffel connection

and Riemann tensor as

wIi
j =

1

2
f jp̂J

(
∂If

J
ip̂ + ΓJIKf

K
ip̂

)

Wijkl =
1

2
f Ip̂if

J
p̂jf

Kq̂
kf

L
q̂lRIJKL .

(6.117)

The supersymmetry transformations are

δXI = −iε(2)p̂f I ip̂ξ
(1)i − iε(1)p̂f I ip̂ξ

(2)i

δξ(1)i =
1

2
f ip̂I∂µX

Iσµε
(1)
p̂ − wIj

iδXIξ(1)j

δξ(2)i = −1

2
f ip̂I∂µX

I σ̄µε
(2)
p̂ − wIj

iδXIξ(2)j .

(6.118)

It is natural to ask how this sigma-model can be extended to general, oriented four-

manifolds M4. Using the topological twist 1 in section 6.2.1, we will now consider this

generalisation.
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6.5 4d Topological Sigma-Models: Hyper-Kähler M4

So far we have discussed the five-dimensional theory on flat I×R4, where I is the θ interval,

reducing it to a sigma-model in four-dimensional flat space. The goal in the following is

to define a 4d topological sigma-model on a general four-manifold. We first describe the

twist in terms of the 4d theory in section 6.5.1.

As we shall see, for the target space a Hyper-Kähler manifold, as is the case for the Nahm

moduli space, and general gauge group, we determine a general form of the sigma-model

for the case of Hyper-Kähler M4. For compact M4, this comprises T 4 and K3 varieties.

We will discuss the special reductions for the abelian case and the two-monopole case for

general M4 later on.

6.5.1 Topological Twist

Twist 1 in section 6.2.1 was formulated for the 6d theory. We now briefly summarise how

this twist acts in 4d. From now on we switch to Euclidean signature 7.

Recall, that in 6d, we twist the su(2)` ⊂ su(2)` ⊕ su(2)r of the 4d Lorentz algebra with

the su(2)R ⊂ su(2)R ⊕ so(2)R ⊂ sp(4)R. From the point of view of the 4d theory, we

start with the R-symmetry su(2)R and twist this with the Lorentz symmetry of M4, which

generically is so(4)L ∼= su(2)` ⊕ su(2)r, resulting in

g4d = su(2)R ⊕ so(4)L → gtwist = su(2)twist ⊕ su(2)r . (6.119)

In terms of 4d representations, ε
(1)
p̂ and ε

(2)
p̂ are Weyl spinors of positive and negative

chirality respectively. We adopt the convention that negative/positive chirality spinors

correspond to doublets of su(2)`/su(2)r respectively. After the twisting, ε
(2)
p̂ has one scalar

component under su(2)twist ⊕ su(2)r, which is selected by the projections

(γ0aδ
q̂
p̂ + i(σâ)

q̂
p̂)ε

(2)
q̂ = 0 , a ' â = 1, 2, 3 , (6.120)

where the indices a and â are identified in the twisted theory. The spinor ε(2)p̂ parametrises

the preserved supercharge and can be decomposed as

ε(2)p̂ = u ε̃p̂ , (6.121)

where u is a complex Grassmann-odd parameter and ε̃p̂ is a Grassmann-even spinor nor-

malised so that

ε̃p̂ε̃p̂ = 1 . (6.122)

7For this twist we change from Lorentzian to Euclidean signature. In what follows γ0 as defined in
appendix C.1.2 is replaced with γ0′ = iγ0, where the prime will be omitted.
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We can associate the u(1)R charge −1 to the parameter u and consider ε̃p̂ as uncharged.

The su(2)R R-symmetry with which we twist rotates the complex structures of the target

and therefore is identified with the sp(1) ⊂ so(4k) of the Hyper-Kähler target. This means

that SU(2)R/Z2 is mapped to an SO(3) isometry of the metric onMk. In order to do the

twist one needs to know how the coordinates XI transform under this sp(1) ≡ su(2)R. For

the monopole moduli space with charge 1 and 2, M1 and M2, where the explicit metric

on the moduli space is known, the coordinates split into two sets transforming respectively

in the trivial and adjoint representation of su(2)R. This suggests that this property could

hold for moduli spaces Mk, with k > 2. Under the twist, the coordinates transforming

in the adjoint of su(2)R become self-dual two forms on M4 and the resulting theory is

a sigma-model, whose bosonic fields are maps into a reduced target space and self-dual

two-forms. We shall study the M1 and M2 cases in section 6.6.

A simplification occurs when the bundle of self-dual two-forms on M4 is trivial i.e. when

M4 is Hyper-Kähler. In this case, all the coordinates transform as scalars on M4 after

the twist and therefore the twist can be performed without knowledge of the metric on

Mk. In this situation, the twisting procedure is simply a re-writing of the theory, making

manifest the transformation of the fields under the new Lorentz group. This is done in

the next section and gives a topological sigma-model on Hyper-Kähler M4.

6.5.2 Topological Sigma-Model for Hyper-Kähler M4

The 4d sigma-model into the Nahm moduli space (6.110) can be topologically twisted for

Hyper-Kähler M4. We now show that this reduces to the 4d topological theory by Anselmi

and Frè [254], for the special target space given by the moduli space of Nahm’s equations.

This topological theory describes tri-holomorphic maps from M4 into Mk

X = {XI} : M4 → Mk , (6.123)

which satisfy the triholomorphicity constraint

∂µX
I − (ja)µ

ν∂νX
JωaJ

I = 0 , (6.124)

where the index a = 1, 2, 3 is summed over and ja and ωa are triplets of complex structures

on M4 and Mk respectively, which define the Hyper-Kähler structures. We will also

comment in section 6.5.3 on how this can be obtained by first topologically twisting the

5d N = 2 SYM theory, and then dimensionally reducing this to 4d. This alternative

derivation from the twisted 5d N = 2 SYM theory can be found in appendix C.6.
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We now turn to the topological twisting of the 4d sigma-model into the Nahm moduli

space (6.110), by the twist of section 6.5.1. The fields of the 4d sigma-model become

forms on M4, with the degree depending on their transformations under gtwist

Field g4d gtwist Twisted Field

XI (1,1,1) (1,1) XI

ξ
(1)Ip
p̂ (2,2,1) (1⊕ 3,1) λI , χIµν

ξ
(2)Iṗ
p̂ (2,1,2) (2,2) κIµ

(6.125)

Despite the fact that the index I transforms non-trivially under the R-symmetry SO(3)R,

this will not play a role in the twist for the Hyper-Kähler four-manifold M4: the holonomy

is reduced to su(2)r and the su(2)` connection that we twist with vanishes. To be even

more concrete, the covariant derivatives acting on fields with an index I will not pick

up any su(2)twist connection because the connection vanishes, so we may treat I as an

external index. This is of course not true for non-Hyper-Kähler M4.

The most general decomposition of the spinors into twisted fields is given by

ξ
(1)I
p̂ =

(
λI +

1

4
σµνχIµν

)
ε̃p̂

ξ
(2)I
p̂ = σ̄µκIµε̃p̂ ,

(6.126)

where the Grassmann-odd fields λI , χIµν , κ
I
µ are respectively a scalar, a self-dual two-form

and a one-form, valued in the pull-back of the tangent bundle of the target space X∗TMk.

However the components of ξ
(i)I
p̂ are not all independent as they satisfy the constraint

(6.109). This constraint on the components of ξ
(i)I
p̂ translates into

ωµν
I
Jλ

J = χIµν ,

ωµν
I
Jκ

νJ = −3κIµ ,
(6.127)

where ωµν
I
J ≡ −(jâ)µνω

âI
J . As the self-dual two-form χIµν is not an independent degree

of freedom we shall consider the decomposition of ξ
(1)I
p̂ just in terms of the fermionic scalar

λI , with a convenient normalisation,

ξ
(1)I
p̂ = i

(
λI +

1

4
σµνωµν

I
Jλ

J

)
ε̃p̂

ξ
(2)I
p̂ = −1

4
σ̄µκIµε̃p̂ .

(6.128)

Note that this decomposition of ξ
(1)I
p̂ solves the constraint (6.109) automatically, and thus

all components of λI are independent. However, this is not the case for ξ
(2)I
p̂ and we need to

impose upon the fermionic one-form κIµ the constraint (6.127), which can be re-expressed

as

κIµ +
1

3
(ja)µ

νκJν (ωa)J
I = 0 . (6.129)
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The action in terms of the twisted fields takes the form

SHK =
1

4r`

∫
d4x
√
|g4|

[
GIJ∂µX

I∂µXJ − 2GIJg
µνλIDµκJν +

1

8
RIJKLκ

I
µκ

J
νλ

KλL
]
,

(6.130)

and is invariant under the supersymmetry transformations

δXI = uλI

δλI = 0

δκIµ = u
(
∂µX

I − ωµνIJ∂νXJ
)
− ΓIJKδX

JκKµ .

(6.131)

This is precisely the form of the topological sigma-model of [254] for Hyper-Kähler M4.

The action takes a simpler form than in the model presented in [254] since the target space

Mk is also Hyper-Kähler (i.e. has a covariantly constant quaternionic structure).

The topological BRST transformation Q (with δu = uQ) squares to zero Q2 = 0 on-shell.

To make the algebra close off-shell, we can introduce an auxiliary one-form bIµ valued in the

pull-back of the tangent space to Mk, b ∈ Γ(X∗TM⊗ Ω1) and satisfying the constraint

bIµ +
1

3
(ja)µ

νbJν (ωa)J
I = 0 . (6.132)

We then define the BRST transformation to be

QXI = λI

QλI = 0

QκIµ = bIµ − ΓIJKλ
JκKµ

QbIµ =
1

2
RJK

I
Lλ

JλKκLµ − ΓIJKλ
JbKµ .

(6.133)

The action (6.130) can then be recast in the form

Soff−shell
HK = S′ − ST . (6.134)

where S′ and ST are Q-exact and topological, respectively, given by

S′ = Q

(
1

2r`

∫
d4x
√
|g4|GIJgµνκIµ

(
∂νX

J − 1

8
bJν

))

ST =
1

4r`

∫
d4x
√
|g4| (ja)µνωaIJ∂µXI∂νX

J .

(6.135)

Integrating out bIµ

bIµ = ∂µX
I − (ja)µ

ν∂νX
JωaJ

I , (6.136)

we recover the on-shell action (6.130). The term ST is ‘topological’, in the sense that it is

invariant under Hyper-Kähler deformations, and can be written as

ST =
1

2r`

∫

M4

ja ∧X∗ωa , (6.137)
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where X∗ωa is the pull-back of the Kähler forms onMk, and for Hyper-Kähler M4, ja are

the Kähler forms. From this form it is clear that the term is invariant under Hyper-Kähler

deformations, but not deformations, that break the Hyper-Kählerity.

Finally, to show that the theory is topological, meaning independent of continuous defor-

mations of the metric (which preserve the Hyper-Kähler structure), we must check that

the energy-momentum tensor Tµν associated with S′ part of the action is Q-exact. We

find

Tµν ≡
2
√
g

δS′

δgµν
= GIJb

I
µ(∂νX

J − 1

8
bJν ) +GIJb

I
ν(∂µX

J − 1

8
bJµ)− gµνL′ , (6.138)

where L is the Lagrangian density in (6.135). This can be expressed as

Tµν = Q

{
GIJκ

I
µ

(
∂νX

J − 1

8
bJν

)
+GIJκ

I
ν

(
∂µX

J − 1

8
bJµ

)
− gµνGIJκIρ

(
∂ρX

J − 1

8
bJρ

)}
.

(6.139)

Clearly it is of interest to study further properties of these theories, in particular observ-

ables, which will be postponed to future work. Some preliminary results for sigma-models

that localise on tri-holomorphic maps have appeared in [254], however only in terms of

simplified setups, where the target is the same as M4.

6.5.3 Relation to topologically twisted 5d N = 2 SYM

The topological sigma-model (6.130) for the Hyper-Kähler case, can also be obtained by

first topologically twisting the 5dN = 2 SYM theory on an interval obtained in section 6.3,

with the twist described in section 6.5.1. The derivation is quite similar to the analysis

in section 6.4, and we summarise the salient points here. The details are provided for

the interested reader in appendix C.6. There, we also discuss the topological twist 1

in the context of the 5d N = 2 SYM theory. The action for the bosonic fields, and

some analysis of the boundary conditions in terms of Nahm data, has appeared in [244].

The supersymmetric version has appeared in [271], albeit without the supersymmetric

boundary conditions.

The topologically twisted 5d N = 2 SYM theory can be written in terms of the fields Bµν ,

which is a self-dual two-form defined in (C.80), a complex scalar field ϕ, the gauge field

Aµ and fermions, which in terms of the twisted fields have the following decomposition

ρ
(1)
+p̂ = γµψ(1)

µ ε̃p̂

ρ
(1)
−p̂ =

(
η(1) +

1

4
γµνχ(1)

µν

)
ε̃p̂

ρ
(2)
+p̂ = γµψ(2)

µ ε̃p̂

ρ
(2)
−p̂ =

(
η(2) +

1

4
γµνχ(2)

µν

)
ε̃p̂ .

(6.140)
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Nahm’s equations in terms of the self-dual two-forms are

DθBµν −
1

2
[Bµρ, Bν

ρ] = 0 . (6.141)

The supersymmetric vacuum configurations which satisfy this, are again characterised in

terms of maps into the moduli space of solutions to the equations (6.141), which is the

k-centered monopole moduli space, when M4 is Hyper-Kähler. The 4d topological theory

is obtained by expanding the fields Bµν , Aθ and the fermions in terms of coordinates on

the moduli space, much like in section 6.4, and the resulting 4d topological sigma-model

is precisely the one we obtained by twisting the flat space sigma-model in (6.130).

6.6 Sigma-models with Self-dual Two-forms

Having understood the Hyper-Kähler M4 case, we can finally turn to the case of general

M4. The reduction proceeds in the same way as for the Hyper-Kähler case, but the

situation is somewhat complicated by the fact that part of the coordinates XI become

sections of Ω+
2 (M4), namely self-dual two-forms. We consider in detail the abelian case

with target space M1 ' R3 × S1 and the first non-trivial case, corresponding to the

reduction of the 5d U(2) theory, with target space M2 ' R3 × S1×M0
2

Z2
, where M0

2 is the

Atiyah-Hitchin manifold.

In the case of an arbitrary (oriented) four-manifold M4, there is no Hyper-Kähler structure,

only an almost quaternionic structure [272]. One could anticipate dimensionally reducing

the twisted 5d SYM theory, as discussed in section 6.5.3 and appendix C.6.1. However,

this requires that Nahm’s equations for the self-dual two-forms Bµν

DθBµν −
1

2
[Bµρ, Bν

ρ] = 0 , (6.142)

to be solved locally on patches in M4 and the patching must be defined globally, according

to the transformation of B on overlaps. Generically this means that part of the mapping

coordinates XI will transform from one patch to the other and therefore belong to non-

trivial SU(2)` bundles over M4. A similar situation appears in [266] appendix B, when

twisting the sigma-model into the Hitchin moduli space. To understand precisely, which

coordinates XI become sections of SU(2)` bundles on M4, we require a detailed under-

standing of the metric on Mk and the action of the SU(2)` isometries. In the following,

we will address this in the case of k = 1, 2, where the metrics are known.

We provide here the analysis in the case of the reduction of the abelian theory, as a warm-

up, and then the reduction of the U(2) theory, which is the first non-trivial case. In these
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cases we find that the four-dimensional theory is a topological sigma-model with part of

the coordinates XI on the target space transforming as self-dual two-forms on M4.

6.6.1 Abelian Theory

Recall that the dimensional reduction on S2 of the untwisted single M5-brane theory gives

a free hyper-multiplet in R1,3. We shall now discuss this in the context of the topologically

twisted theory on S2×M4 and determine the sigma-model into the one-monopole moduli

space Mk=1
∼= R3 × S1, with R3 the position of the center and S1 parametrizing a phase

angle. As the metric is known, we can identity the coordinates parametrising the position

of the center as those which transform under the su(2)R and the twist gives a topological

model for general M4. In fact, we find the abelian version of a model in [253] in the context

of 4d topological A-models. The 4d field content is the self-dual two-form Bµν , the scalar

φ and (twisted) for the fermions, a scalar η, a vector ψµ, and a self-dual two-form χµν .

We begin by decomposing the target space index I → (a, φ), with a = 1, 2, 3. Under this

decomposition the constraints on the spinors ξ
(i)I
p̂ can be solved as

ξ
(i)â
p̂ = i(σa)q̂p̂ ξ

(i)φ
q̂ , (6.143)

leaving only ξ
(i)φ
q̂ as the unconstrained fermions in the theory. Under the twist the fields

become
Field g4d gtwist Twisted Field

Xφ (1,1,1) (1,1) φ

Xa (3,1,1) (3,1) Bµν

ξ
(1)φ
p̂ (2,2,1) (1⊕ 3,1) η, χµν

ξ
(2)φ
p̂ (2,1,2) (2,2) ψµ

(6.144)

where the twisted fermions are obtained from the decompositions

ξ
(1)φ
p̂ = i

(
η +

1

4
σµνχµν

)
ε̃p̂

ξ
(2)φ
p̂ = −1

4
σ̄µψµε̃p̂ .

(6.145)

The scalars Xa are decomposed in terms of the self-dual two-form Bµν by making use of

the invariant tensors jaµν

Bµν = −jaµνXa . (6.146)

The action for the k = 1 topological sigma-model from flat space into the monopole moduli

space M1 is then

SM1 =
1

4r`

∫
d4x
√
|g4|(∂µφ∂µφ+

1

4
∂µBρσ∂

µBρσ − 2ψµ∂µη + 2ψµ∂νχ
µν) , (6.147)
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and it is invariant the supersymmetry transformations

δφ = uη

δBµν = uχµν

δη = δχ = 0

δψµ = u(∂µφ+ ∂νBνµ) .

(6.148)

To show that this action is topological we introduce the auxiliary field

Pµ = ∂µφ+ ∂νBνµ , (6.149)

so that δPµ = 0 and δψµ = uPµ. The action can be written as the sum of a Q-exact term

and a topological term by noting that δu = uQ

SM1 = QV +
1

2r`

∫

M4

dφ ∧ dB , (6.150)

where

V =
1

4r`

∫

M4

d4x
√
|g4| (−ψµPµ + 2ψµ(∂µφ+ ∂νBνµ)) . (6.151)

For M4 without boundary, the second term in (6.150) vanishes upon integrating by parts.

This action can then be generalised to arbitrary M4 by covariantising the derivatives, and

add curvature terms

RµνρσBµνBρσ , RBµνBµν . (6.152)

The resulting theory is a (free) topological sigma-model based on the map φ : M4 → U(1),

together with a self-dual two-form B and fermionic fields and is given by

SM1 =
1

4r`

∫
(?dφ ∧ dφ+ ?dB ∧ dB + 2ψ ∧ (?dη − dχ)) . (6.153)

The supersymmetric vacua, which are the saddle points of the action, satisfy

dφ+ ?dB = 0 , (6.154)

which implies that φ and B are harmonic, and in particular then dφ = 0 and dB = 0.

Thus, φ is a constant scalar, and B is a self-dual 2-form in a cohomology class of H2,+(M4).

Note, likewise one can obtain the same abelian theory starting with the 5d twisted theory

for curved M4 as discussed in section 6.5.3 and appendix C.6.1. The reduction can be done

straight forwardly, integrating out the fields ψ(1), χ(2) and η(2), and taking the leading

1/r terms in the action. The match to the action in (6.153) can be found by defining the

fields in the 4d reduction as

Aθ ≡ φ , η ≡ η(1) , ψµ ≡ 4iψ(2)
µ , χµν ≡ χ(1)

µν . (6.155)
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The scalar φ is actually defined in a gauge invariant way as φ =
∫ π

0 dθAθ. Moreover it takes

values in iR/Z = U(1) 8, where the Z-quotient is due to the large gauge transformations

δ(
∫
Aθ) = 2πin, n ∈ Z 9.

6.6.2 U(2) Theory and Atiyah-Hitchin Manifold

In this section we study the simplest non-abelian case, corresponding to two M5-branes

wrapped on S2, or equivalently we study the reduction of the 5d U(2) theory to 4d on

an interval with Nahm pole boundary conditions. The flat 4d theory is given by a map

into the 2-monopole moduli space M2, with the action given in (6.110). For the curved

space theory we find a description in terms of a sigma-model into S1×R≥0 supplemented

by self-dual two-forms obeying some constraints. We provide a detailed analysis of the

geometrical data entering the sigma-model and we give the bosonic part of the topological

sigma-model on an arbitrary four-manifold M4.

The 2-monopole moduli space has been studied extensively in the literature (see for in-

stance [247, 273–276]), starting with the work of Atiyah and Hitchin [247]. It has the

product structure

M2 = R3 × S1 ×MAH

Z2
, (6.156)

where R3 parametrises the position of the center of mass of the 2-monopole system, and

MAH is the Atiyah-Hitchin manifold, which is a four-dimensional Hyper-Kähler manifold.

The metric on R3×S1 is flat, it is associated to the abelian part of the theory U(1) ⊂ U(2).

The non-trivial geometry is carried by the Atiyah-Hitchin (AH) manifold [247], whose

Hyper-Kähler metric (AH metric) is given by

ds2
AH = f(r)2dr2 + a(r)2σ2

1 + b(r)2σ2
2 + c(r)2σ2

3 , (6.157)

where f, a, b, c are functions of r ∈ R≥0 and σi are SO(3) left invariant one-forms

σ1 = − sinψdθ + cos(ψ) sin(θ)dφ

σ2 = cosψdθ + sin(ψ) sin(θ)dφ

σ2 = cos(θ)dφ+ dψ ,

(6.158)

with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ < 2π, with ψ ∼ ψ+2π. In addition the coordinates

are subject to the following identifications [273],

(θ, φ, ψ) ∼ (π − θ, φ+ π,−ψ) , (β, ψ) ∼ (β + π, ψ + π) , (6.159)

8The factor i is due to our conventions in which Aθ is purely imaginary.
9These transformations correspond to gauge group elements g = eiα(θ) with α(0) = 0 and α(π) = 2πn.

The quantisation of n is required for g to be trivial at the endpoints of the θ interval.
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where the second identification accounts for the Z2 quotient in (6.156), β ∈ [0, 2π] being

the angle coordinate on the S1. The one-forms obey

dσ1 = σ2 ∧ σ3 , (6.160)

and cyclic permutations of 1, 2, 3. The metric has an SO(3) ≡ SO(3)AH isometry (leaving

the one-form σ1,2,3 invariant). The function f can be fixed to any desirable value by a

reparametrisation of r (usual choices are f = abc or f = −b/r). The functions a, b, c obey

the differential equation
da

dr
=

f

2bc

(
b2 + c2 − a2 − 2bc

)
, (6.161)

and cyclic permutations of a, b, c. More details on the geometry of MAH, including the

explicit Riemann tensor, can be found in [275].

The geometry is Hyper-Kähler and therefore possesses three complex structures Ja, a =

1, 2, 3. These three complex structures transform as a triplet of the SO(3)AH isometry.

They extend naturally to complex structures on the fullM2 geometry and then transform

as a triplet of SO(3)M2 =diag(SO(3)AH × SO(3)abel), where SO(3)abel is the rotation

group of R3. In the untwisted sigma-model (6.110), this SO(3)M2 isometry is identified

with the SO(3)R R-symmetry of the 4d theory,

Untwisted theory: SO(3)M2 ' SO(3)R . (6.162)

In the twisted sigma-model SO(3)M2 gets identified with the SO(3)` left Lorentz rotations

on the base manifold M4,

Twisted theory: SO(3)M2 ' SO(3)` . (6.163)

Because of this identification, some coordinates on M2 acquire SO(3)` Lorentz indices

and become forms on M4. To make the action of SO(3)` on the M2 coordinates explicit

and manageable, we need to choose appropriate coordinates.

The treatment of the R3 × S1 coordinates is identical to the abelian case. We have

coordinates φa, a = 1, 2, 3, parametrizing R3, transforming as a triplet of SO(3)M2 , and β

parametrizing S1, scalar under SO(3)M2 . Here and in the rest of the section we identify

the indices â and a, namely we implement the 4d twisting which identifies SO(3)R and

SO(3)`.

The treatment of the coordinates onMAH is more involved. Here we propose to introduce

the coordinates yi,a ≡ yai, with a, i = 1, 2, 3, forming an SO(3) matrix (yai) ∈ SO(3)

(yai) =



− sinψ sinφ+ cos θ cosφ cosψ − cosψ sinφ− cos θ cosφ sinψ cosφ sin θ

− sinψ cosφ− cos θ sinφ cosψ − cosψ cosφ+ cos θ sinφ sinψ − sinφ sin θ

cosψ sin θ − sin θ sinψ − cos θ


 .

(6.164)
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The SO(3)M2 isometries act on the matrix (yai) by left matrix multiplication, so that the

three vectors y1,a, y2,a, y3,a transform as three triplets of SO(3)M2 . The identifications

(6.159) become

(β, y1,a, y2,a, y3,a) ∼ (β, y1,a,−y2,a,−y3,a) , (β, y1,a, y2,a, y3,a) ∼ (β+π,−y1,a,−y2,a, y3,a) .

(6.165)

We can express the AH metric in terms of the yi,a coordinates by using the relations

(σ1)2 =
1

2
(−dy1,ady1,a + dy2,ady2,a + dy3,ady3,a)

(σ2)2 =
1

2
(dy1,ady1,a − dy2,ady2,a + dy3,ady3,a)

(σ3)2 =
1

2
(dy1,ady1,a + dy2,ady2,a − dy3,ady3,a) ,

(6.166)

where the index a is summed over. The AH metric (6.157) is then understood as the

pull-back of the metric

d̃s
2

AH = f2dr2 + v1dy
1,ady1,a + v2dy

2,ady2,a + v3dy
3,ady3,a , (6.167)

where

v1 =
1

2
(−a2 + b2 + c2) , v2 =

1

2
(a2 − b2 + c2) , v3 =

1

2
(a2 + b2 − c2) . (6.168)

As already mentioned the AH manifold MAH admits three complex structures Ja, a =

1, 2, 3, preserved by the above metric, and satisfying the quaternionic relations

(Ja)IJ(Jb)JK = −δabδIK + εabc(Jc)IK , (6.169)

where the indices I, J,K run over the four coordinates of the AH metric 10. Lowering

an index with the AH metric GIJ (6.157), we define the three Kähler forms (Ωa)IJ =

GIK(Ja)KJ . These forms can be nicely expressed as the pull-back of the forms Ω̃a on the

space parametrised by the r, yi,a coordinates:11

Ω̃a =
1

2
εabc

[
(−a+ b+ c)fy1,bdr ∧ dy1,c + (a− b+ c)fy2,bdr ∧ dy2,c + (a+ b− c)fy3,bdr ∧ dy3,c

− bc dy1,b ∧ dy1,c − ac dy2,b ∧ dy2,c − ab dy3,b ∧ dy3,c
]
.

(6.170)

These forms can be further simplified by using the functions w1 = bc, w2 = ca, w3 = ab,

which obey

dw1

dr
= −f (−a+ b+ c) ,

dw2

dr
= −f (c+ a− b) , dw3

dr
= −f (b− c+ a) . (6.171)

10This is a small abuse of notation compared to the convention of previous sections where I, J,K run
over all the coordinates on Mk.

11We found the expression of one complex structure in [274] in terms of the Euler angles θ, φ, ψ and
worked out the re-writing in terms of yi,a. The other two complex structures were easily obtained by cyclic
permutation of the yi,a coordinates.
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We obtain the nice expression

Ω̃a = −1

2
εabc

∑

i=1,2,3

d(wiy
i,b) ∧ dyi,c . (6.172)

The pull-backs Ωa are complex structures on MAH, hence they obey dΩa = 0. This

description of the complex structures is convenient, because it is much simpler than the

expression in terms of the Euler angles θ, φ, ψ, but more importantly because it makes

manifest the fact that the three Kähler forms Ωa, or the three complex structures Ja,

transform as a triplet under the SO(3)M2 isometry.

After this preliminary work we can express the bosonic part of the flat space sigma-model

action (6.110) in terms of the new coordinates β, φa, r, yi,a, describing the maps M4 →M2.

Fixing f(r) = 1 for simplicity, we obtain

SM2,bos =
1

4r`

∫
d4x
√
|g4|

(
∂µβ∂µβ + δab∂

µφa∂µφ
b + ∂µr∂µr +

3∑

i=1

vi(r)δab∂
µyi,a∂µy

i,b

)
,

(6.173)

where the sigma-model coordinates yi,a are constrained to form an SO(3) matrix (6.164)

and to obey (6.165). These constraints can be stated explicitly

δaby
i,ayj,b = δij , εabcy

1,ay2,by3,c = 1 . (6.174)

The coordinate r is also constrained to be positive r ≥ 0.

Having described the (bosonic) action of the twisted theory on flat space we can easily

derive the (bosonic) action on an arbitrary M4. The fields β, r are scalars on M4, so their

kinetic term is unchanged. The fields φa, yi,a are triplets of SO(3)`. They are mapped to

self-dual two-forms

bµν = −jaµνφa , yiµν = −jaµνyi,a . (6.175)

Their kinetic term gets covariantised by adding suitable curvature terms and we obtain

SM2,bos = − 1

4r`

∫
dβ ∧ ?dβ + db ∧ ?db+ dr ∧ ?dr +

3∑

i=1

vi(r)dy
i ∧ ?dyi . (6.176)

The constraints (6.174) become yiµνy
jµν = 4δij and y1

µ
νy2

ν
ρy3

ρ
µ = 4.

The fermionic part of the action SM2,ferm that is obtained from the untwisted action

(6.110), is somewhat more involved, due to the presence of the four-Fermi interaction

and the constraint (6.109) on the fields ξ(i)I . From the abelian part of the U(2) theory

we obtain the fermionic field content of the abelian model (6.153). In the following we

describe only the fermions related to MAH . Explicitly we can define the push-forward of

the fermionic fields

ξ
(1)Ĩp
q̂ = ∂Iy

Ĩξ
(1)Ip
q̂ , ξ

(2)Ĩ ṗ
q̂ = ∂Iy

Ĩξ
(2)Iṗ
q̂ , (6.177)
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where the index Ĩ runs over r, (i, a). In the twisted theory we identify the su(2)` and

su(2)R doublet indices q and q̂ and the fermionic fields of the resulting sigma model are a

vector κµ, a scalar η and self-dual two-forms ηi,a ∼ ηiµν satisfying the constraints

δaby
i,aηj,b = −δabyj,aηi,b ,

∑

j

yj,aηj,b = −
∑

j

yj,bηj,a . (6.178)

The other fields appearing after the twisting are expect to be expressed in terms the above

fields by solving the constraints (6.109). However the computation is rather involved and

we do not provide an explicit expression here.

The sigma-model we obtain seems to be different from the sigma-models studied in the

literature so far. It is a sigma-model with target S1×R≥0 with constrained self-dual two-

forms. To study this sigma-model, and in particular to show that it defines a topological

theory, one would need to work out the details of the fermionic part of the Lagrangian

and the action of the preserved supersymmetry (or BRST) transformation on the fields.

We leave this for future work.

To conclude we can see how the bosonic action (6.176) compares with the bosonic action

of the topological model that we obtained for Hyper-Kähler M4 (6.130). More precisely

we would like to know how the action (6.176) decomposes into Q-exact plus topological

terms as in (6.135). For this we simply evaluate ST for the sigma-model into M2, using

the explicit form of the Ωa (6.172). The terms involving the fields φ and b vanish upon

integration by parts as in the abelian case, assuming M4 has no boundary. When the

theory is defined on an generic four-manifold M4, the remaining contribution is

ST =
1

2r`

∫
ja ∧X∗(Ωa) =

1

4r`

∫
ja ∧ dxµ ∧ dxν(Ωa)IJDµX

IDνX
J + curv. , (6.179)

where Dµ is covariant with respect to the Christoffel connection and SU(2)` Lorentz ro-

tations (in the tangent space), and “+curv.” denotes extra curvature terms, which appear

when we consider a general curved M4 and covariantise ST . Replacing XI → r, yi,a we

obtain

ST = −
3∑

i=1

1

16r`

∫
dxµ ∧ dxν ∧ dxρ ∧ dxσεabc(ja)ρσDµ(wiy

b,i)Dνy
c,i + curv.

= −
3∑

i=1

1

16r`

∫
d4x
√
gεµνρσ (jb)ρ

τ (jc)τσDµ(wiy
b,i)Dνy

c,i + curv.

= −
3∑

i=1

1

16r`

∫
d4x
√
gεµνρσDµ(wiy

i
ρ
τ )Dνy

i
τσ + curv.

=

3∑

i=1

1

16r`

∫
d4x
√
gεµνρσ(wiy

i
ρ
τ )D[µDν]y

i
τσ + curv.

= 0 .

(6.180)
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From the third to the fourth line we have integrated by parts assuming M4 has no bound-

ary. The result on the fourth line can be recognised as containing only curvature terms

(no derivatives on the fields r, yiµν) which must cancel each-other. This is necessary for

supersymmetry to be preserved (since this term must be supersymmetric by itself). We

conclude that the sigma-model action (6.176) must be Q-exact, without an extra topolog-

ical term. Clearly, studying topological observables and further properties of this model

are interesting directions for future investigations.

6.7 Discussion and Outlook

In this chapter we determined the dimensional reduction of the 6d N = (2, 0) theory on

S2, and found this to be a 4d sigma-model into the moduli spaceMk of k-centered SU(2)

monopoles. There are several exciting follow-up questions to consider:

1. 4d-2d Correspondence:

Let us comment now on the proposed correspondence between 2d N = (0, 2) theories

with a half-topological twist, and four-dimensional topological sigma-models into

Mk. The setup we considered, much like the AGT and 3d-3d correspondences,

implies a dependence of the 2d theory on the geometric properties of the four-

manifold. In [226] such a dictionary was setup in the context of the torus-reduction,

which leads to the Vafa-Witten topological field theory in 4d. It would be very

important to develop such a dictionary in the present case. From the point of view

of the 2d theory, the twist along M4 is the same, and thus the dictionary developed

between the topological data of M4 and matter content of the 2d theory will apply

here as well. The key difference is that we consider this theory on a two-sphere, and

the corresponding ‘dual’ is not the Vafa-Witten theory, but the topological sigma-

model into the Nahm moduli space.

2. Observables in 2d N = (0, 2) theories:

Recently much progress has been made in 2d N = (0, 2) theories, both in construct-

ing new classes of such theories [226, 277, 49, 50] as well as studying anomalies [278]

and computing correlation functions using localisation [240]. In particular, the local-

isation results are based on deformations of N = (2, 2) theories and the associated

localisation computations in [279,280]. The theories obtained in this thesis from the

compactification of the M5-brane theory do not necessarily have such a (2, 2) locus

and thus extending the results on localisation beyond the models studied in [240]

would be most interesting.
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3. Observables in the 4d topological sigma-model:

An equally pressing question is to develop the theory on M4, determine the coho-

mology of the twisted supercharges, and compute topological observables. For the

case of Hyper-Kähler M4, with the target also given by M4, some observables of the

topological sigma-model were discussed in [254]. However, we find ourselves in a

more general situation, where the target is a specific 4k-dimensional Hyper-Kähler

manifold. For the general M4 case we clearly get a new class of theories, which have

scalars and self-dual two-forms. The only place where a similar theory has thus far

appeared that we are aware of, is in [253] in the context of 4d topological A-models.

We have studied the topological sigma-models for k = 1, 2, and the explicit topolog-

ical sigma-models for k ≥ 3 remain unknown. It would certainly be one of the most

interesting directions to study these.

4. Generalisation to spheres with punctures:

The analysis in this thesis for the sphere reduction can be easily generalised to spheres

with two (general) punctures, i.e. with different boundary conditions for the scalars

in the 5d N = 2 SYM theory. We expect the 4d theory to be again a topological

sigma-model, however, now into the moduli space of Nahm’s equations with modified

boundary conditions. Studying this case may provide further interesting examples

of 4d topological field theories, which seem to be an interesting class of models to

study in the future.

5. Reduction to three-dimensions and 3d duality:

The four-dimensional sigma-model that we found by compactification of the 6d N =

(2, 0) theory on a two-sphere, can be further reduced on a circle S1 to give rise to a

three-dimensional sigma-model into the sameMk target space. Similarly the twisted

sigma-model on a manifold S1 ×M3 reduces along S1 to a twisted sigma-model on

M3. On the other hand the compactification of the twisted 6d N = (2, 0) Ak theory

on S2×S1×M3 can be performed by reducing first on S1, obtaining 5d N = 2 SYM

theory on S2 ×M3, and then reducing on S2. We expect this reduction to yield

a different three-dimensional theory, which would be dual to the 3d sigma model

into Mk, for M3 = R3, or twisted sigma model, for general M3, that we studied

in this thesis. This new duality would be understood as an extension of 3d mirror

symmetry [281] to topological theories. To our knowledge the reduction of 5d N = 2

SYM on the topologically twisted S2 has not been studied 12. It would be very

interesting to study it and to further investigate these ideas in the future.

12Note that the reduction of 5d N = 2 SYM on a two-sphere, but in a different supersymmetric back-
ground, has been considered in [282, 283], in relation with the 3d-3d correspondence [223, 284], and leads
to an SL(k,C) Chern-Simons theory on M3 with a complex Chern-Simons coupling.
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Conclusion

In this thesis aspects of gauge theories derived from higher dimensional compactifications

were studied in the framework of M-theory and F-theory. Many key features of the lower

dimensional theory are encoded in intricate aspects of the compactification manifold, which

is one of the reasons why the study of this subject is so fascinating. We shall briefly review

the material presented in this thesis.

As a natural consequence of string theory living in dimensions greater than the four space-

time dimensions which we observe compactifications are central in the study of string

phenomenology. Requiring some supersymmetry to be preserved in the reduction requires

the compact dimensions to admit covariantly constant spinors. M-theory reductions to four

dimensions preserving N = 1 supersymmetry requires the compactification manifold to

have G2 holonomy1, which has recently received considerable attention. Four-dimensional

reductions of F-theory preserving minimal supersymmetry singles out elliptically fibered

Calabi–Yau four-folds, and part of this thesis has focussed on exploring one particular

aspect of these manifolds.

This thesis began with an exploration of additional U(1) symmetries in SU(5) GUT models

engineered in F-theory. In chapter 3 the possible U(1) charges for 5 and 10 representa-

tions of SU(5) were determined by studying elliptically fibered Calabi–Yau manifolds with

additional rational sections. One important ingredient in this analysis is the possible split-

tings of the fibral curves over codimension two loci over which matter is localised, which

was determined in [70]. Together with the geometric constraints on the rational sections

the possible intersections of the section with matter curves in the fiber were ascertained

and the realisable U(1) charges computed.

1The other known seven-dimensional manifold which can be considered is one with Calabi–Yau three-
fold boundary [14].
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In chapter 4 a phenomenological survey of the U(1) charges determined in chapter 3

was conducted with the objective of establishing whether these abelian gauge symmetries

would be effective at forbidding couplings which result in fast proton decay, common to

SU(5) GUT models. To engineer a matter spectrum consistent with the minimal super-

symmetric Standard Model one needs to incorporate fluxes. The fluxes are constrained by

requiring the absence of exotics and also by the cancellation of mixed anomalies between

the additional U(1) symmetries and the Standard Model gauge group. Despite the abun-

dance of constraining factors phenomenologically favourable models were discovered and

could be extended, in the case of two additional U(1) symmetries, to also generate known

Yukawa textures through the Froggatt–Nielsen mechanism.

In the context of gauge theories compactifications have a long history of yielding interest-

ing equations on lower dimensional spaces. One well-known example is the reduction of

the instanton equations, which arise as the minimal energy configurations in pure Yang–

Mills theory in four dimensions. The dimensional reduction of the self-dual Yang–Mills

equations yield the monopole equations in three dimensions and Hitchin’s equations in

two dimensions [285]. The study of Hitchin’s equations on Riemann surfaces, or flat holo-

morphic vector bundles, has remarkable connections to other areas of mathematics.

In the final chapter of this thesis the focal point changes to the 6d N = (2, 0) superconfor-

mal field theory describing the interacting theory of multiple M5-branes. The dimensional

reduction of the 6d theory on the two-sphere is carried out in chapter 6. The S2 is ex-

pressed as a circle fibration over an interval and the reduction proceeds via 5d N = 2 SYM.

The reduction of the 5d theory on an interval with supersymmetric boundary conditions

require the fields to solve Nahm’s equations and the resulting 4d theory, after topological

twisting, is a topological sigma-model into the moduli space of Nahm’s equations. Su-

persymmetric observables in this theory should have a counterpart in the 2d N = (0, 2)

superconformal field theory which arises from the compactification of M5-branes on a gen-

eral four-manifold with the Vafa–Witten twist. It would be very interesting to explore

this further in the future.
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Appendices for Chapter 3

A.1 Details for Anti-Symmetric Matter

In this appendix the various details of the enhancements from I5 to I∗1 , which gives rise

to matter in the 10 representation of SU(5), are collected. Tables A.1 and A.2 list the

sixteen different enhancements that can occur, as determined in [70], and represented by

the appropriate box graph. The possible U(1) charges listed in section 3.5 are determined

by studying each of these sixteen enhancements and asking in what ways fiber curves, or

collections of fiber curves, can be contained inside the section, whilst remaining consistent

with the intersection data in codimension one. There are eleven qualitatively different

“splitting types”, which were previously listed in section 3.5, and for each of these it is

determined what the possible configurations of curves in any rational section for that

particular splitting type are.

A.1.1 Codimension two I∗1 Fibers

For the purpose of this appendix a new notation will need to be introduced to concisely

summarise all of the different configurations as there are many configurations that realise

the same intersection numbers of the curves with the section. Each fiber will be displayed

as in figure A.1a. As such there is an obvious choice of ordering C1, · · · , C6, where these

curves can be curves associated to either roots or weights. If a curve Ci is contained

within the section it is such that deg(NCi/σ) ≤ −1 by Theorems 3.3.5 and 3.3.8, and by

the analysis it is also known that this value always happens to be in the (negative) single

digits. The notation is then given by the string (n1n2n3n4n5n6) where the ni are

(i) If Ci is contained inside the section then ni = −deg(NCi/σ).

(ii) If Ci is uncontained in the section and has an additional transverse intersection with
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C1 C2

C3

C4 C5

C6

(a)

-1 -1

-2
-3

(b)

Figure A.1: (i) is a schematic depiction of an I∗1 fiber and (ii) is this I∗1 fiber in the
configuration (1123–x). As usual if a component is colored red then it is contained inside
the section, and the red integer adjacent to the component is the degree of the normal
bundle to that component in the section. A red node indicates an additional transverse
intersection with the section.

the section then the ni is replaced by an “x”. Additional here means that there

is a transverse intersection that does not come from the intersection(s) of Ci with

another curve Cj which is contained inside the section.

(iii) If the curve Ci is otherwise then the ni is replaced with an en-dash “–”.

Such a string completely determines the configuration, for example consider the configu-

ration (1123–x) on the fiber presented in figure A.1a. Such a configuration is represented

in figure A.1b. The string fixes that

• C1, C2, C3, C4 ⊂ σ with deg(NC1/σ) = deg(NC2/σ) = −1, deg(NC3/σ) = −2, and

deg(NC4/σ) = −3.

• C5 6⊂ σ and σ ·Y C5 = 1 from the single intersection point between C5 and the

contained curve C4.

• C6 6⊂ σ and σ ·Y C6 = 2 with one contribution from the intersection point of C6

and C4, and an additional contribution from the extra transverse intersection of the

section with C6.

A.1.2 Compilation of Codimension two Fibers

In this section the different sets of intersection numbers and the possible realisations as

configurations of the fiber curves contained within the section are enumerated for each

splitting type introduced in section 3.5.1. Figure A.2 demonstrates the ordering of the

fiber components for each of the three major types, and fixes the ordering of the notation

(n1 · · ·n6). All the configurations, determined by a similar procedure to that used in
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# Box Graph Splitting Intersections I
(0|1)
5 Sf values I

(0||1)
5 Sf values

1 F0 → C+
4,5 + F2 + F3 + F̃0

C45
+

F4

F3

F2 F1

C12
-

Sf ·Y C+
4,5 = +2 Sf ·Y C+

4,5 = +4

F̃0 = C−1,2 Sf ·Y C−1,2 = +3 Sf ·Y C−1,2 = +6

2 F3 → C+
3,5 + C−4,5

F4

F2

F1C12
-

C45
-

C35
+

Sf ·Y C+
3,5 = +2 Sf ·Y C+

3,5 = +4

F0 → C+
3,5 + F2 + F̃0 Sf ·Y C−4,5 = −2 Sf ·Y C−4,5 = −4

F̃0 = C−12 Sf ·Y C−1,2 = +3 Sf ·Y C−1,2 = +6

3 F2 → C+
2,5 + C−3,5

F3

F1

C12
-

C34
+

C35
-

C25
+

Sf ·Y C+
2,5 = +2 Sf ·Y C+

2,5 = −1

F4 → C+
3,4 + C−3,5 Sf ·Y C−3,5 = −2 Sf ·Y C−3,5 = −4

F0 → C+
2,5 + F̃0 Sf ·Y C+

3,4 = +2 Sf ·Y C+
3,4 = +4

F̃0 = C−1,2 Sf ·Y C−1,2 = +3 Sf ·Y C−1,2 = +6

4 F2 → C+
2,5 + C−3,4 + F4

F4

F3

F1

C12
-

C25
+

C34
-

Sf ·Y C+
2,5 = +2 Sf ·Y C+

2,5 = −1

F0 → C+
2,5 + F̃0 Sf ·Y C−3,4 = −2 Sf ·Y C−3,4 = −4

F̃0 = C−12

5 F1 → C+
1,5 + C−2,5

F3

F2

F0

C34
+

C25
-

C15
+

Sf ·Y C+
1,5 = −3 Sf ·Y C+

1,5 = −1

F4 → C+
3,4 + F2 + C−2,5 Sf ·Y C−2,5 = −2 Sf ·Y C−2,5 = +1

Sf ·Y C+
3,4 = +2 Sf ·Y C+

3,4 = +4

6 F4 → C+
3,4 + F1 + F2 + C−1,5

F3

F2

F0

C34
+

F1

C15
-

Sf ·Y C+
3,4 = +2 Sf ·Y C+

3,4 = +4

Sf ·Y C−1,5 = +3 Sf ·Y C−1,5 = +1

7 F1 → C+
1,5 + C−2,5

F3

F0

C15
+

C25
-

C24
+

C34
-

Sf ·Y C+
1,5 = −3 Sf ·Y C+

1,5 = −1

F2 → C+
2,4 + C−3,4 Sf ·Y C−2,5 = −2 Sf ·Y C−2,5 = +1

F4 → C+
2,4 + C−2,5 Sf ·Y C+

2,4 = +2 Sf ·Y C+
2,4 = −1

Sf ·Y C−3,4 = −2 Sf ·Y C−3,4 = −4

8 F2 → C+
2,4 + C−3,5

F3

F0

F1

C24
+

C34
-

C15
-

Sf ·Y C+
2,4 = +2 Sf ·Y C+

2,4 = −1

F4 → C+
2,4 + F1 + C−1,5 Sf ·Y C−3,4 = −2 Sf ·Y C−3,4 = −4

Sf ·Y C−1,5 = +3 Sf ·Y C−1,5 = +1

Table A.1: Splitting rules for SU(5)× U(1) with 10 and Shioda map details Sf for I
(0|1)
5

and I
(0||1)
5 for phases 1− 8.
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# Box Graph Splitting Intersections I
(0|1)
5 Sf values I

(0||1)
5 Sf values

9 F1 → C+
1,5 + F4 + C−2,4

F2

F0

F4

C15
+

C24
-

C23
+

Sf ·Y C+
1,5 = −3 Sf ·Y C+

1,5 = −1

F3 → C+
2,3 + C−2,4 Sf ·Y C−2,4 = −2 Sf ·Y C−2,4 = +1

Sf ·Y C+
2,3 = +2 Sf ·Y C+

2,3 = −1

10 F1 → C+
1,4 + C−2,4

F2

F0

C24
-

C23
+

C15
-

C14
+

Sf ·Y C+
1,4 = −3 Sf ·Y C+

1,4 = −1

F3 → C+
2,3 + C−2,4 Sf ·Y C−2,4 = −2 Sf ·Y C−2,4 = +1

F4 → C+
1,4 + C−1,5 Sf ·Y C+

2,3 = +2 Sf ·Y C+
2,3 = −1

Sf ·Y C−1,5 = +3 Sf ·Y C−1,5 = +1

11 F1 → C+
1,5 + F4 + F3 + C−2,3

F3

F2

F0F4

C23
-

C15
+

Sf ·Y C+
1,5 = −3 Sf ·Y C+

1,5 = −1

Sf ·Y C−2,3 = −2 Sf ·Y C−2,3 = +1

12 F1 → C+
1,4 + F3 + C−2,3

F3

F2

F0

C23
-

C15
-

C14
+

Sf ·Y C+
1,4 = −3 Sf ·Y C+

1,4 = −1

F4 → C+
1,4 + C−1,5 Sf ·Y C−2,3 = −2 Sf ·Y C−2,3 = +1

Sf ·Y C−1,5 = +3 Sf ·Y C−1,5 = +1

13 F3 → C+
2,3 + F1 + C−1,4

F3

F2

F4

C23
+

C14
-

C45
+

Sf ·Y C+
2,3 = +2 Sf ·Y C+

2,3 = −1

F0 → C−1,4 + F̃0 Sf ·Y C−1,4 = +3 Sf ·Y C−1,4 = +1

F̃0 = C+
4,5 Sf ·Y C+

4,5 = +2 Sf ·Y C+
4,5 = −4

14 F1 → C+
1,3 + C−2,3

F2

F4

C14
-

C45
+

C23
-

C13
+

Sf ·Y C+
1,3 = −3 Sf ·Y C+

1,3 = −1

F3 → C+
1,3 + C−1,4 Sf ·Y C−2,3 = −2 Sf ·Y C−2,3 = +1

F0 → C−1,4 + F̃0 Sf ·Y C−1,4 = +3 Sf ·Y C−1,4 = +1

F̃0 = C+
4,5 Sf ·Y C+

4,5 = +2 Sf ·Y C+
4,5 = +4

15 F2 → C+
1,2 + C−1,3

F3

F1

F4C45
+

C12
+

C13
-

Sf ·Y C+
1,2 = −3 Sf ·Y C+

1,2 = −6

F0 → F̃0 + F3 + C−1,3 Sf ·Y C−1,3 = +3 Sf ·Y C−1,3 = +1

F0 = C+
4,5

16 F0 → C−1,2 + F2 + F3 + F̃0

F3

F2 F1

F4C45
+

C12
-

Sf ·Y C+
4,5 = +2 Sf ·Y C+

4,5 = +4

F0 = C+
4,5 Sf ·Y C−1,2 = +3 Sf ·Y C−1,2 = +6

Table A.2: Splitting rules for SU(5)× U(1) with 10 and Shioda map details Sf for I
(0|1)
5

and I
(0||1)
5 for phases 9− 16.
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Figure A.2: The structure and ordering of the I∗1 fibers of A-type, B-type, and C-type,
respectively.

section 3.5 for the A.2 splitting types, are listed in table A.3.

For each splitting type there are many more configurations than there are possible sets of

intersections numbers between the split curves and the section. Multiple configurations

correspond to the same intersection numbers, the same U(1) charges. In table A.3 the

intersection numbers are listed for each set of configurations with common intersection

numbers. The intersection numbers σ ·Y C are given as a tuple of integers in the same

ordering as the strings describing the configurations. The intersections of the section with

curves that do not split are not included in such a listing as they are always determined by

codimension one: they are either zero or one depending on whether the section intersects

that component in codimension one.

Each of the concrete enhancements from the I5 fiber into an I∗1 fiber, listed in tables

A.1 and A.2, are realisations of one of the splitting types just analysed. Determining

the splitting type depends on the phase (which fixes whether it is of type A, B, or C),

and the codimension one configuration, which determines the subcase. The configurations

of I∗1 curves in the section can then be determined for each phase and codimension one

configuration of the section. All of the configurations for each of the sixteen phases are

listed in tables A.4 and A.5.

A.2 Charge Comparison to Singlet-Extended E8

In [105] U(1) charges for SU(5) models that come from a Higgsing of E8, extended by

non-E8 singlets, are determined. What is considered is the decomposition of the adjoint

of E8 → SU(5)×U(1)4, which is then augmented by additional singlets carrying different

charge under the abelian U(1)4 such that for every pair of 5 and 5 representations of SU(5)

coming from the decomposition of E8 there exists a singlet such that the coupling 155 is

uncharged under the U(1)4. Various singlets can be Higgsed to produce models with fewer
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Splitting type Intersection numbers Configurations

A.1

(-1,1,-1,1) (1231– –), (1231–3), (12313–), (123133)

(0,0,0,0) (– – – –x–), (2222–2), (222232)

(1,-1,1,-1) (–213–1), (3213–1), (–21331), (321331)

A.2

(-1,1,-1,2) (12312x), (123124)

(0,0,0,1) (– – – – –x), (22222–), (222223)

(1,-1,1,0) (–21– – –), (321– – –), (–21322), (321322)

A.3
(-1,1,0,0) (1– – – – –), (123222)

(0,0,1,-1) (– – – – –1), (222321)

B.1

(-1,1,-1) (1223–1), (122331)

(0,0,0) (– – – –x–), (2222–2), (222232)

(1,-1,1)
(–221– –), (3221– –), (–2213–), (–221–3),

(32213–), (3221–3), (–22133), (322133)

B.2

(-1,1,0) (122– – –), (122322)

(0,0,1) (– – – – –x), (22222–), (222223)

(1,-1,2) (–2212x), (32212x), (–22124), (322124)

B.3
(-1,0,0) (1– – – – –), (123222)

(0,-1,1) (– – –12–), (22312–), (– – –123), (223123)

B.4

(-1,1,-1) (1–2321), (132321)

(0,0,0) (–x– – – –), (2–2222), (232222)

(1,-1,1)
(– –212–), (3–212–), (–3212–), (– –2123)

(33212–), (3–2123), (–32123), (332123)

B.5

(0,1,-1) (– – – – –1), (222321)

(1,0,0) (x– – – – –), (–22222), (322222)

(2,-1,1) (x2212–), (x22123), (42212–), (422123)

C.1

(1,-1) (–222–1), (3222–1), (–22231), (322231)

(0,0) (– – – –x–), (2222–2), (222232)

(-1,1) (1222– –), (12223–), (1222–3), (122233)

C.2
(-1,0) (122– – –), (122322)

(0,-1) (– – – – –1), (222321)

C.3

(2,-1) (x22221), (422221)

(1,0) (x– – – – –), (–22222), (322222)

(0,1) (– – – – –x), (22222–), (222223)

(-1,2) (12222x), (122224)

Table A.3: For each of the different splitting types, listed in section 3.5.1, for the enhance-
ments from an I5 fiber to an I∗1 , including the information of which fiber component the
section intersects in codimension one, all the possible consistent configurations of the I∗1
fiber components with the section are listed in the third column, using the notation de-
scribed in section A.1.1. There are multiple configurations of the curves inside the section
where all of the fiber curves have the same intersection numbers with the section, these are
collected and the intersection numbers particular to those configurations are listed in the
second column. These intersection numbers are the relevant datum for the computation
of the U(1) charges. The tuples of intersection numbers do not include the curves which
do not split as their intersection numbers are always uniquely fixed by codimension one.
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abelian symmetries, and determine the tree of possible theories arising from this singlet-

extension of E8. In this appendix the charges found from this analysis, listed in tables 2.1

and 2.2 of [105], are compared to the possible U(1) charges determined in the main body

of this thesis. In summary, it is found that the charges appearing in descendants of the

singlet-extended E8 form a strict subset of the charges found herein.

Consider first the single U(1) models from the singlet-extended E8. There are eleven such

models listed in [105], which all have U(1) charges1 that are subsets of one of the following

three classes of charges

10 5

(1) : {−2,−1, 0, 1, 2} {−3,−2,−1, 0, 1, 2, 3}
(2) : {−8,−3, 2, 7} {−11,−6,−1, 4, 9}
(3) : {−4, 1, 6} {−8,−3, 2, 7} .

(A.1)

For each of the three classes there is at least one model which realises matter represen-

tations with all of the charges in that class. These three classes have charges which are

subsets of the charges2 from the three codimension one fiber types, I
(01)
5 , I

(0|1)
5 , and I

(0||1)
5

respectively, as determined in sections 3.4 and 3.5 for the 5 and 10 matter. There are some

U(1) charges which come from the analysis of configurations of the fiber curves with the

section which do not appear to arise from the singlet-extended E8. The missing charges

are

• In class (1) the charges ±3 for the 10 representation.

• In class (2) the charges −13 and +12 for the 10 and 14 for the 5.

• In class (3) the charges −9 and +11 for the 10 and −13 and +12 for the 5.

The significance of E8 is not entirely clear so that this mismatch in the charges of the

10 and 5 matter is perhaps not too surprising. However all the single U(1) models from

the singlet-extended E8 have charges which come from the analysis of the possible con-

figurations of the section in the present thesis, as expected. This includes also the singlet

charges which appear in [105] as, from the analysis in section 3.7, the range of singlet

charges depends on an integer p, which specifies the normal bundle of one of the curves in

the I2 fiber. As we do not know of any constraint on the possible values of p it is possible

to tune p such that one realises the charges in the singlet-extended E8 analysis.

Moving on to the models with two or more remaining U(1) symmetries after the further

1Some models have an additional discrete symmetry from the Higgsing of the U(1). This is not relevant
for this comparison and will be ignored at this point.

2There is an overall sign between the charges of class (2) and the I
(0|1)
5 codimension one configurations

which were listed in figure 3.8.
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Higgsing of the U(1)4 it appears that there are models which have charges that are not

neatly pairs of charges that would be possible for single U(1)s. As discussed in section

3.9, when there are multiple U(1)s one can consider any linear combination of the U(1)

generators and thus produce another U(1) generator, under which the matter will have

different charges. To be concrete, consider the model labelled {4, 6, 8} from table 2.1

of [105]. This model has 5 matter with U(1) charges (−4,−4) and (−2,−1), among other

5 matter. Recall that for a single U(1) it was only possible to realise a 5 matter curve

with charge −4 in an I
(0|1)
5 model, and thus all the 5 matter should have charge, under

that U(1), which take values in −14, −9, −4, 1, 6, and 11. The model in question also

has 5 matter with charge −2 (or −1 if one studies the second U(1)) which is not one of

the possible charges. However, if one designates the two U(1) generators as U1 and U2

respectively then one can define two new U(1)s by linear combinations of these, as

U ′1 = U1 − U2

U ′2 = 2U1 − 3U2 .
(A.2)

Under this new pair of U(1) generators the charges of the 10 and 5 curves in the model

{4, 6, 8} transform as

10 5

(−2,−2) (−4,−4)

(0, 1) (−2,−1)

(1, 0) (−1,−2)

(3, 3) (1, 1)

(3, 4)

(4, 3)

↔

10 5

(2, 0) (4, 0)

(−3,−1) (−1,−1)

(2, 1) (4, 1)

(−3, 0) (−1, 0)

(−6,−1)

(−1, 1) .

(A.3)

Now it can be seen that the sets of charges are consistent with the charges listed in the

main text for each additional U(1). Indeed with respect to the first new generator U ′1 the

section σ2 to which it is associated seems to be an I
(0|2)
5 fiber in codimension one, and the

section of the second generator, σ1, seems to intersect the codimension one fiber as I
(01)
5 .

The {4, 6, 8} model can be seen to come from an enhancement of an I
(01|2)
5 model.

The remaining multiple U(1) models in table 2.1 of [105] which have charges that do not

immediately match the charges found in the main body of this thesis can all be brought into

the form listed here by taking the appropriate linear combination of the U(1) generators,

and thus all the U(1) charges found therein can be seen to be U(1) charges that also come

from the analysis of how the section can contain curves in the codimension two fiber that

has been the focus of this thesis.
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Appendices for Chapter 4

B.1 Multiple 10 curves for single U(1) Models

In this appendix we provide details on multiple 10 representations for single U(1) mod-

els, completing the analysis in section 4.3. We find only models with N10 = 2 and

N5 = 4 solve the anomaly cancellation conditions and forbid the unwanted operators at

leading order. These models regenerate dimension five proton decay operators with the

remaining charged Yukawas, which if sufficiently suppressed, could still leave these models

phenomenologically viable. However their flavour physics is highly constrained and does

not yield phenomenologically interesting textures.

B.1.1 N10 = 2

For the case of multiple 10 representations with one U(1) symmetries it is possible to have

top Yukawa couplings of the form,

10q110q25−q1−q2 , (B.1)

where the two 10 representations do not have the same charge under the U(1). This means

we can make use of the full set of charges in (4.34) and, in particular, we do not require

one of the 10 representations to have a U(1) charge within the set given in (4.38).

In this case the general parametrisation will be of the form,

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd qHd 0 1

5̄i q5̄i Mi Ni

101 q101 M10 N10

102 q102 3−M10 −N10

(B.2)

235
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where i = 1, . . . ,N5̄, the latter being the number of 5̄ representations.

N5̄ = 3

Here the anomaly cancellation conditions can be solved for general charges. There are two

possible parametrisations, which differ in the structure of the top Yukawa coupling.

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd −qHu + 5wHd 0 1

5̄1 −qHu + 5w5̄1 3 0

101 −1
2qHu M10 N10

102 −1
2qHu + 5w10 3−M10 −N10

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd −qHu + 5wHd 0 1

5̄1 −qHu + 5w5̄1 3 0

101 q10 M10 N10

102 −q10 − qHu 3−M10 −N10

(a) (b)

(B.3)

In the above parametrisation, N10 = 0,±1, this is to ensure the absence of exotics. How-

ever setting N10 = 0 only gives solutions where the µ-term is allowed at leading order,

therefore we neglect this case and focus on N10 = ±1. For parametrisation (a) the top

Yukawa coupling is of the standard form,

10q110q1Hu , (B.4)

where the two 10s have the same charge under the U(1). In (b) the top Yukawa coupling

is of the form given in (B.1). Below we outline the solution for (a) but a very similar

analysis can be done for (b).

The anomaly condition (A2.) imposes wHd = w10N10, which upon imposing (A3.) yields

w10N10(qHu + 5w10(N10 − 3)) = 0 . (B.5)

As we require the two 10s to be different charged and wHd 6= 0 to avoid the µ-term thus

w10, N10 6= 0, the only allowed solution to (B.5) is given by qHu = −5w10(N10 − 3). The

charges, which satisfy the anomaly conditions are

R q(R) M N

5̄Hu 5w10(N10 − 3) 0 −1

5̄Hd 5w10(2N10 − 3) 0 1

5̄1 5(w5̄1 + w10(N10 − 3)) 3 0

101
5
2w10(N10 − 3) M10 N10

102
5
2w10(N10 − 1) 3−M10 −N10

(B.6)

Imposing a bottom Yukawa coupling with 101 gives the additional constraint,

w5̄1 =
w10

2
(15− 7N10) . (B.7)
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There are solutions to the above set of charges, which satisfy the F-theory charge pattern,

which we summarise in table B.1. Here we have not imposed the presence of the bottom

Yukawa coupling explicitly as these solutions correspond to one particular choice for w5̄1 .

Restricting to the F-theory charge range, (4.38) and (4.34), we are constrained to take

w10 ± 1, and, without loss of generality, we take w10 = 1 as the two choices differ by an

overall factor of −1 in normalisation of the U(1) charges. Likewise we have taken qHu = 5

in case (b). All the possible choices for w5̄1 , which are within the F-theory charge range,

are given by,

w5̄1 for

{
I.2.3.a ∈ {−1, 2, 3, 4, 5}

I.2.3.b ∈ {−2, 1, 2, 3, 4} .
(B.8)

As one can see from the general solutions, all but one of these allow either the dimension

five proton decay operators (C2.) or (C6.) and are therefore excluded. The case which

forbids the unwanted operators at leading order is given by w5̄1 = −2 in I.2.3.b however

in this model dimension four proton decay operators are regenerated with bottom Yukawa

couplings and therefore is also not a viable model.

N5̄ = 4

For N5̄ ≥ 4, the strategy for finding solutions to the anomaly conditions is to take all

possible sets of 10 and 5̄ charges, selected from (4.34) and find those, which can solve

(A1.)−(A5.) for allowed M,Ns. The two solutions shown in table B.1 solve the anomaly

cancellation conditions, forbid operators (C1.)−(C7.) and do not regenerate dimension

four proton decay operators with the charged Yukawas. They do, however, regenerate

dimension five proton decay operators, which, if sufficiently suppressed, could still give

viable models.

The matter in the MSSM can be allocated to the U(1) charged 10 and 5̄ representations

in model I.2.4.a as follows:

Representation Charge M N Matter

101 −3 1 −1 Q1, ū1, ū2,

102 −1 2 1 Q2, Q3, ū3, ēA, A = 1, 2, 3

5̄Hu −2 0 −1 Hu

5̄Hd 2 0 1 Hd

5̄1 −3 0 3 LI , I = 1, 2, 3

5̄2 −1 3 −3 d̄I , I = 1, 2, 3

(B.9)

In this spectrum the following couplings are allowed by the additional U(1) symmetry

Y t
221021025Hu ⊃ Q3ū3Hu

Y b
241025̄Hd 5̄2 ⊃ Q3d̄3Hd +Q2d̄2Hd .

(B.10)
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In order to regenerate the remaining Yukawa couplings one needs the singlet of charge 2

to acquire a vev, which however, also regenerates all dimension five operator, with various

suppressions. This model may still be viable from the point of view of proton decay, with

sufficient suppression, however, the flavour physics based on an FN-type model is not very

realistic, and we therefore discard these solutions.

For model I.2.4.b the spectrum is given by

Representation Charge M N Matter

101 −3 2 0 Q1, Q2, ū1, ū2, ē1, ē2

102 −1 1 0 Q3, ū3, ē3

5̄Hu −2 0 −1 Hu

5̄Hd 2 0 1 Hd

5̄1 −1 1 2 d̄3, LI , I = 1, 2, 3

5̄2 1 2 −2 d̄1, d̄2

(B.11)

For this model there were two sets of M,Ns which solved the anomaly cancellation condi-

tions, the values displayed in (B.11) are the ones compatible with having rank one top and

bottom Yukawa matrices at tree level. In order to regenerate the top Yukawa coupling

involving the two differently charged 10s a singlet of charge 2 is required, and the same

remarks as for I.2.4.a apply.

N5̄ ≥ 5

All but one of the models, for N5 = 5,regenerate the dimension four operator (C4.) with

the missing Yukawa couplings. The remaining model however is inconsistent with the

hierarchy of Yukawa couplings. For the cases of six and seven 5̄ representations there

are no solutions, which both solve the anomaly cancellation conditions and forbid the

unwanted operators, in agreement with what was found for a single 10 representation.

B.1.2 N10 = 3

This case is maximal for the number of 10 representations and has the greatest potential

for generating a Yukawa texture with good quark mass ratios. However, by increasing the

number of 10s one increases the chance of generating forbidden couplings, in particular

the operator (C5.) becomes unavoidable in most models. There is only one solution to the

anomaly cancellation conditions which forbids the unwanted couplings at leading order.
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This solution, I.3.4.a

Representation Charge M N

101 −3 1 0

102 −2 1 0

103 −1 1 0

5Hu −2 0 −1

5̄Hd 1 0 1

5̄1 −1 0 3

5̄2 0 3 −3

(B.12)

A full rank Yukawa matrix can be generated by giving a vev to the singlet of charge 1.

This model interestingly generates the Haba textures (4.31), however one also regenerates

dimension four proton decay operators with a singlet insertion of the singlet, which is

phenomenologically unacceptable.

In conclusion we see that for a single U(1) the solution space is very limited – even

disregarding flavour problems – and for solutions to the anomalies and constraints on

couplings, generically the Yukawas bring back the unwanted couplings at subleading order.

B.2 General Solution for N10 = 1 and N5̄ = 4 with multiple
U(1)s

B.2.1 Two U(1)s

In this appendix the general solution for the case of one 10 and four 5s is derived for two

U(1)s. This class of solutions, which give rise to good phenomenological models, is given

in table B.2. The extension of the solutions for the case of two U(1)s to multiple U(1)s is

also discussed. Consider a model with two abelian factors, parametrised as

R q(R)α M N

5̄Hu −qαHu 0 −1

5̄Hd −qαHu + 5wαHd 0 1

5̄1 −qαHu + 5wα
5̄1

M N

5̄2 −qαHu + 5wα
5̄2

3−M −N
10 q10 = −1

2q
α
Hu

3 0

(B.13)

where qαi denotes the charges under U(1)α, α = 1, 2. Without loss of generality, we take

N ≥ 0. The linear anomaly (A2.) for each abelian factor is of the form

wαHd +N(wα5̄1 − w
α
5̄2

) = 0 , (B.14)
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which can be solved for wαHd . Inserting this equation into the quadratic set of anomalies

(A3.), we have,

N(w1
5̄1
− w1

5̄2
)(w1

5̄1
+ w1

5̄2
+ (w1

5̄1
− w1

5̄2
)N) = 0

N(w2
5̄1
− w2

5̄2
)(w2

5̄1
+ w2

5̄2
+ (w2

5̄1
− w2

5̄2
)N) = 0

N(w1
5̄1
w2

5̄1
− w1

5̄2
w2

5̄2
+ (w1

5̄1
− w1

5̄2
)(w2

5̄1
− w2

5̄2
)N) = 0 .

(B.15)

Setting N = 0 solves all the anomaly conditions simultaneously but from (B.14) we see

that this results in the presence of the µ-term at tree-level, which is unfavourable. We

therefore neglect this class of solutions. The first two quadratic anomalies can be solved

in three distinct ways:

a) w1
5̄1

= w1
5̄2
, w2

5̄1
= w2

5̄2

b) w1
5̄1

= (N−1)
N+1 w

1
5̄2
, w2

5̄1
= (N−1)

N+1 w
2
5̄2

c) w1
5̄1

= w1
5̄2
, w2

5̄1
= (N−1)

N+1 w
2
5̄2

The sets of charges from these three possibilities are given below.

a) Upon the insertion of w1
5̄1

= w1
5̄2
, w2

5̄1
= w2

5̄2
into the third anomaly condition in

(B.15) the mixed quadratic anomaly is automatically solved. The U(1) charges in

this case are

10 5Hu 5Hd 51 52

q1(R) −1
2q

1
Hu

q1
Hu

−q1
Hu

−q1
Hu

+ 5w1
5̄2
−q1

Hu
+ 5w1

5̄2

q2(R) −1
2q

2
Hu

q2
Hu

−q2
Hu

−q2
Hu

+ 5w2
5̄2
−q2

Hu
+ 5w2

5̄2

(B.16)

This pair of U(1)s always gives rise to the µ-term at leading order and therefore does

not give phenomenologically favourable models.

b) Here the solutions for w1
5̄1

and w2
5̄1

have the same form as in the single U(1) case.

The mixed anomaly in (B.15) is automatically solved and the charges for each U(1)

are

10 5Hu 5Hd 51 52

q1(R) −1
2q

1
Hu

q1
Hu

−q1
Hu

+ 10N
1+Nw

1
5̄2
−q1

Hu
+ 5(N−1)

1+N w1
5̄2
−q1

Hu
+ 5w1

5̄2

q2(R) −1
2q

2
Hu

q2
Hu

−q2
Hu

+ 10N
1+Nw

2
5̄2
−q2

Hu
+ 5(N−1)

1+N w2
5̄2
−q2

Hu
+ 5w2

5̄2
(B.17)

c) The mixed anomaly in (B.15) is not automatically solved, but instead it reduces to

w1
5̄2
w2

5̄2
N

1 +N
= 0 . (B.18)

The charges for the two different solutions to (B.18) are:
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II.1.4.a II.1.4.b

M 0/1 0/1

N 2 2

q101 (−1
2q

1
Hu
,−1

2q
2
Hu

) (−1
2q

1
Hu
,−1

2q
2
Hu

)

qHu (q1
Hu
, q2
Hu

) (q1
Hu
, q2
Hu

)

qHd (−q1
Hu

+ 20
3 w

1
52
,−q2

Hu
+ 20

3 w
2
52

) (−q1
Hu
,−q2

Hu
+ 20

3 w
2
52

)

q5̄1 (−q1
Hu

+ 5
3w

1
52
,−q2

Hu
+ 5

3w
2
52

) (−q1
Hu
,−q2

Hu
+ 5

3w
2
52

)

q5̄2 (−q1
Hu

+ 5w1
52
,−q2

Hu
+ 5w2

52
) (−q1

Hu
,−q2

Hu
+ 5w2

52
)

Y b
1 (−5

2q
1
Hu

+ 25
3 w

1
52
,−5

2q
2
Hu

+ 25
3 w

2
52

) (−5
2q

1
Hu
,−5

2q
2
Hu

+ 25
3 w

2
52

)

Y b
2 (−5

2q
1
Hu

+ 35
3 w

1
52
,−5

2q
2
Hu

+ 35
3 w

2
52

) (−5
2q

1
Hu
,−5

2q
2
Hu

+ 35
3 w

2
52

)

Table B.2: Solution for N5̄ = 4, N10 = 1 for two U(1)s.

i) w1
5̄2

= 0

10 5Hu 5Hd 51 52

q1(R) −1
2q

1
Hu

q1
Hu

−q1
Hu

−q1
Hu

−q1
Hu

q2(R) −1
2q

2
Hu

q2
Hu

−q2
Hu

+ 10N
1+Nw

2
5̄2
−q2

Hu
+ 5(N−1)

1+N w2
5̄2
−q2

Hu
+ 5w2

5̄2
(B.19)

ii) w2
5̄2

= 0

10 5Hu 5Hd 51 52

q1(R) −1
2q

1
Hu

q1
Hu

−q1
Hu

−q1
Hu

+ 5w1
5̄2
−q1

Hu
+ 5w1

5̄2

q2(R) −1
2q

2
Hu

q2
Hu

−q2
Hu

−q2
Hu

−q2
Hu

(B.20)

This set of charges also does not forbid the µ-term at leading order and therefore

is disfavoured.

Excluding the cases where the tree-level µ-term is not forbidden by the additional U(1)

symmetries we are left with only case b) and ci). In both cases setting N = 1 results in

the separation between the charges of 51 and 5Hu becoming zero, this produces a leading

order coupling of the form (C5.)

10110151 , (B.21)

which is forbidden. Similarly, N = 3 can be excluded as these cases always regenerate

dimension four proton decay operators with the remaining charged Yukawa couplings.

This can be seen from the charge relation

qαHd + qα5̄1 = 2qα5̄2 , α = 1, 2 , (B.22)

which is true only when N = 3. This relation implies that the charge of the dimension four

proton operator coupling 101 and 52 will be the same as the bottom Yukawa couplings

for 51.
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The charges for case (b) and (ci) for N = 2 are given in table B.2. If the charges are to

remain within the F-theory charge set then wα52 = ±3, α = 1, 2 and the charges of Hu are

restricted to,

qαHu for





I
(01)
5 ∈ {−2,+2}

I
(0|1)
5 ∈ {−14,+6}

I
(0||1)
5 ∈ {−8,+12} .

(B.23)

Each distinct pair of charges (q1
Hu
, q2
Hu

) gives a phenomenologically viable model, which

forbids the unwanted operators at leading order.

Imposing the presence of a bottom Yukawa coupling further constrains the sets of possible

U(1) charges. For II.1.4.a the requirement of a bottom Yukawa coupling with either 51

or 52 gives solutions where all matter is charged the same under both U(1)s. In model

II.1.4.b requiring a bottom Yukawa coupling forces all matter to be completely uncharged

under one of the two U(1)s. Thus in both cases, the solutions reduce to the single U(1)

models I.1.4.a and I.1.4.c given in table 4.1. Extending to two additional U(1) symmetries

results in no new models, if one requires the presence of a bottom Yukawa coupling.

B.2.2 Extension to Multiple U(1)s

The pairs of matter charges for two U(1)s, determined above, can be combined to give

models charged under multiple U(1)s. Every pair of U(1)s must solve the anomaly can-

cellation conditions in one of the cases a), b), ci) or cii). From examining the charges in

each case one can rule out certain combinations of the four different pairs of U(1) charges.

One obtains four types of models with multiple U(1)s:

Type A: Charges from case a) and case cii) are combined in one model

Type B: Charges from case a) are combined in one model

Type C: Charges from case b) and case ci) are combined in one model

Type D: Charges from case b) are combined in one model

Models of type A and B are phenomenologically disfavoured as the µ-term is always

present at leading order. This can be seen from the charges in (B.16) and (B.20). All

models of type C and D can be obtained by combining the charges which arise in II1.4.a

and II.1.4.b in table B.2, however none of these allow for a leading order bottom Yukawa

coupling. This implies that all multiple U(1) models in this case, with F-theory charges

and a bottom Yukawa coupling at leading order, are trivial extensions of the single U(1)

solutions I.1.4.a and I.1.4.c in table 4.1.
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B.3 General solutions to Anomaly Equations

Solving the anomaly constraints in generality for multiple matter curves can be quite

difficult. Here we provide some systematic approach how to do so. The quadratic anomaly

(A3.) is a diophantine equation in terms of the U(1) charges and integer multiplicities

M and N , and we will use some methods from Mordell’s work in [72] to find general

solutions. Note that for the case of the restricted F-theory charge range (as we can simply

scan through all the possibilities), these methods are not necessary, however it provides

an elegant approach to finding closed forms of the solutions.

We would like to stress that this approach can be used to classify all possible solutions

allowed after imposing the constraints (A1.)-(A5.) and (C1.)-(C7.). This approach allows

to classify all phenomenologically allowed solutions and can be used to survey all field-

theoretically allowed FN models. It is similar to the approach taken in [74, 286] where

anomaly free, flavour universal gauge symmetry extensions to the MSSM were classified.

B.3.1 Mordell’s solution for Diophantine equations

Consider one U(1) with N10 = 1 and N5̄ = n. We will now solve the system of anomaly

constraints using a method of Mordell. First let us set up the equations: the matter

spectrum in this case takes the following form, where the top Yukawa coupling is already

imposed

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd qHd 0 1

5̄i 6=n qi Mi Ni

5̄n qn 3−
∑n−1

i=1 Mi −
∑n−1

i=1 Ni

10 q10 = −1
2qHu 3 0

(B.24)

The constraints on the integers Mi and Ni is

0 ≤Mi ≤ 3 , 0 ≤Mi +Ni ≤ 3 ,
n−1∑

i=1

Mi ≤ 3 , (N1, . . . , Nn) 6= (0, . . . , 0) .

(B.25)

Imposing the anomaly constraint

(A2.) ⇒ qHd = −qHu +
n−1∑

i=1

Ni(qn − qi) . (B.26)

This automatically implies that the charge of the µ-term is

qµ = qHu + qHd =
n−1∑

i=1

Ni(qn − qi) . (B.27)
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Next, impose the bottom Yukawa coupling, without loss of generality, for 5̄1

(Y2.) : q1 + qHd + q10 = 0 ⇒ qHu =
2

3

(
q1 +

n−1∑

i=1

Ni(qn − qi)

)

qHd =
1

3

(
−2q1 +

n−1∑

i=1

Ni(qn − qi)

)
.

(B.28)

Finally, we impose the anomaly (A3.), which results for a single U(1) in a quadratic

constraint

qµ (qHd − qHu) +
n−1∑

i=1

Ni(q
2
i − q2

n) = 0 , (B.29)

which after inserting the solution of the charges for the Higgs doublets takes the form of

a Diophantine equation
n−1∑

i,j=1

aijqiqj = 0 , (B.30)

where the integers aij depend on the multiplicities Ni. From the form (B.29) it is clear

that each term in the anomaly is proportional to the difference of two charges, so that one

initial seed solution is

qi = q0 i = 1, . . . , n . (B.31)

Starting from this solution, we can generate all solutions to this with the method from

Mordell [72].

The theorem in Mordell [72] states, that if a non-zero integer solution to

aq2
1 + bq2

2 + cq2
3 + 2fq2q3 + 2gq1q3 + 2hq1q2 = 0 (B.32)

exists, then the general solution with all qi coprime, i.e. (q1, q2, q3) = 1, is given by

expressions

qi = aip
2 + bipq + ciq

2 , (p, q) = 1 , p, q ∈ Z , (B.33)

with ai, bi, ci ∈ Z constants. In fact a constructive method is given: consider an initial

seed solution (q0
1, q

0
2, q

0
3). Then let

q1 = rq0
1 + p , q2 = rq0

2 + q , q3 = rq0
3 . (B.34)

Inserting this back into (B.32) results in a linear equation for r, which can be solved and

thus one determines the expressions for qi from (B.34).

This method can be applied more generally for n > 2. The ansätze are

qi = q0
i r + pi , for i = 1, . . . , n− 1

qn = q0
nr .

(B.35)
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Again, the resulting equation (B.30) becomes lines in r, and can be solved in each case to

yield the charges qi for all i. In general this leaves n−1 charges unfixed by the constraints

imposed thus far. For each case we will now consider in the following the charges of the

unwanted couplings (C1.)−(C7.), in order to determine the phenomenological soundness

of the models.

B.3.2 General Solutions for N5̄ = 5

To exemplify the method in the last section, consider the case of three matter 5̄ represen-

tations, in addition to the two Higgs ones, which will be parametrised as

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd qHd 0 1

5̄1 q1 M1 N1

5̄2 q2 M2 N2

5̄3 q3 3−M1 −M2 −N1 −N2

10 q10 = −1
2qHu 3 0

(B.36)

Note that for fewer, the equations always factor and can be solved easily. The first non-

trivial case is n = 5. The constraints on the integers Mi and Ni is

0 ≤Mi ≤ 3 , 0 ≤Mi +Ni ≤ 3 , M1 +M2 ≤ 3 , (N1, N2) 6= (0, 0) . (B.37)

There are 90 solutions, however only 40 will be eventually of interest and distinct from

earlier cases with fewer, distinctly charged matter.

Again, we first solve the anomaly constraint (A2.) which yields

(A2.) ⇒ qHd = q3(N1 +N2)−N1q1 −N2q2 − qHu . (B.38)

Furthermore, without loss of generality, we impose the bottom Yukawa coupling for the

5̄1 matter, i.e.

(Y2.) ⇒ q1+qHd+q10 = 0 ⇒ qHu = −2

3
(N1q1−N1q3+N2q2−N2q3−q1) , (B.39)

where qHd from the anomaly was used. Furthermore as we impose the bottom Yukawa for

5̄1, we require M1 6= 0. Note that the µ-term has charge

qµ = qHu + qHd = (N1 +N2) q3 −N1q1 −N2q2 6= 0 . (B.40)

This in particular implies

(N1, N2) 6= (0, 0) . (B.41)
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The anomaly (A2.) constraint now reads

(A3.) ⇒ (7−N1)N1q
2
1 + (3−N2)N2q

2
2 − (N1 +N2) (N1 +N2 + 3) q2

3

+ 2 (N1 − 2) (N1 +N2) q1q3 − 2 (N1 − 2)N2q1q2 + 2N2 (N1 +N2) q2q3 = 0 ,
(B.42)

which is a homogeneous quadratic equation in qi with integer coefficients. We are searching

for rational solutions, although by rescaling, we can consider integer solutions. Such Dio-

phantine equations are for instance discussed in [72], which gives a systematic construction

of its solution, starting with a seed solution.

Applying this to the anomaly constraint (B.42) with the seed solutions

q0
1 = 4N1N2 − 3N1 + 9N2 , q0

2 = 4N1N2 + 17N1 − 11N2 , q0
3 = 4N1N2 − 3N1 − 11N2 ,

(B.43)

which is non-trivial as Ni cannot both vanish. We now need to choose these integers so

that the seed solution satisfies (q0
1, q

0
2, q

0
3) = 1. Examples of these are

(N1, N2, N3) = (−1,−2, 3), (1,−2, 1), (−3, 2, 1), (−2, 1, 1), (2,−1,−1) . (B.44)

The resulting charges from the Mordell argument are

q1 = p−
(9N2 +N1 (4N2 − 3))

(
(N1 − 7)N1p

2 + 2 (N1 − 2)N2pq + (N2 − 3)N2q
2
)

10 (N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q)

q2 = q −
(N1 (4N2 + 17)− 11N2)

(
(N1 − 7)N1p

2 + 2 (N1 − 2)N2pq + (N2 − 3)N2q
2
)

10 (N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q)

q3 = −
(N1 (4N2 − 3)− 11N2)

(
(N1 − 7)N1p

2 + 2 (N1 − 2)N2pq + (N2 − 3)N2q
2
)

10 (N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q)
.

(B.45)

Here, p, q ∈ Z and coprime. The µ-term is

qµ = − 3 (N1 +N2) (N1p−N2q)
2

N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q
6= 0 . (B.46)

The remaining bottom Yukawa couplings have charge

q(λb2) = − (N1 +N2) (N1p−N2q) ((2N1 − 11) p+ (2N2 − 3) q)

N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q

q(λb3) = −(N1p−N2q) (−11N2p+N1 (2N2 + 3) p+ 2 (N2 − 3)N2q)

N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q
.

(B.47)

Similarly one can solve for more 5̄ curves using this Mordell approach. In the main text

we will constrain ourselves to the F-theoretic charges, which comprise a finite set, and

thus do not necessarily need to use this method.
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B.4 Search for Other Known Textures

In section 4.5 we saw that the case of four 5 representations produced Yukawa textures

matching (4.31) and (4.32). Extending the analysis to five and six 5s we find that there

are no solutions to the anomaly cancellation conditions, which produce the same Yukawa

hierarchies. Here we consider whether other known flavour models can be realised within

our F-theory framework. We find no fits to other known flavour textures.

B.4.1 Symmetric Textures

Consider first the Yukawa hierarchies in [176] given by

Y u ∼




ε4 ε3 ε3

ε3 ε2 ε2

ε3 ε2 1


 , Y d ∼




ε4 ε3 ε3

ε3 ε2 ε2

ε3 ε2 1


 . (B.48)

In this section we will show it is not possible to match to this texture in our framework,

due to the form of the down-type Yukawa matrix. To see this, note that we need at least

five 5s so that each down-type quark resides within a differently charged 5. Consider the

parametrisation

R q1(R) q2(R) M N

5̄Hu −q1
Hu

−q2
Hu

0 −1

5̄Hd
3
2q

1
Hu
− 5w1

53
3
2q

2
Hu
− 5w2

53
0 1

5̄1 −q1
Hu

+ 5w1
51

−q2
Hu

+ 5w2
51

1 N1

5̄2 −q1
Hu

+ 5w1
52

−q2
Hu

+ 5w2
52

1 N2

5̄3 −q1
Hu

+ 5w1
53

−q2
Hu

+ 5w2
53

1 −N1 −N2

101 −1
2q

1
Hu

+ 5w1
101

−1
2q

2
Hu

+ 5w2
101

1 0

102 −1
2q

1
Hu

+ 5w1
102

−1
2q

2
Hu

+ 5w2
102

10

103 −1
2q

1
Hu

−1
2q

2
Hu

1 0

(B.49)

where the charge of Hd has been chosen to allow an order one bottom Yukawa coupling

(which we choose to be 5̄3) at leading order. This set of charges gives rise to the following

Yukawa textures written in terms of the singlet insertions required to regenerate each

entry

Y u ∼




s2
1 s1s2 s1

s1s2 s2
2 s2

s1 s2 1


 , Y d ∼




s4s1 s1s3 s1

s4s2 s2s3 s2

s4 s3 1


 . (B.50)



Appendix B. Appendices for Chapter 4 249

where si = 〈Si〉
MGUT

and the charges of the singlets Si are

(q1
S1
, q2
S1

) = −5(w1
101 , w

2
101)

(q1
S2
, q2
S2

) = −5(w1
102 , w

2
102)

(q1
S3
, q2
S3

) = −5(w1
5̄2
− w1

5̄3
, w2

5̄2
− w2

5̄3
)

(q1
S4
, q2
S4

) = −5(w1
5̄1
− w1

5̄3
, w2

5̄1
− w2

5̄3
) .

(B.51)

From the structure of the singlet insertions in the Yukawa matrices shown above one can

see that it is not possible to match to the ε suppressions shown in (B.48). The problem

lies in the texture of the down-type matrix in (B.50), if the singlet insertions in (2,3) and

(3,2) are chosen to have ε2 suppression then the (2,2) entry is automatically of order ε4.

This is in disagreement with (B.48) therefore it is not possible achieve the texture in [176].

B.4.2 E8-model Textures

Consider the Yukawa hierarchies discussed in [159]1, which was discussed in the context

of local models in F-theory in the context of models obtained by higgsing E8,

Y u ∼




ε6 ε5 ε3

ε5 ε4 ε2

ε3 ε2 1


 , Y d ∼




ε6 ε5 ε3

ε4 ε3 ε

ε3 ε2 1


 . (B.52)

One finds that it is not possible to match to this set of textures either. It is not surprising

that the local analysis in [159] is not consistent with the analysis here, as it relied on local

U(1) charges and does not consider the quadratic anomaly (A3.). To see that the global

F-theory charges do not allow for these texture in (B.52), note that each down-type quark

must originate from a differently charged 5 representation which requires

M5i = 1,

N5i = −1, 0, 1, 2, i = 1, 2, 3 ,
(B.53)

where the restriction on N5i stems from imposing the absence of exotics. For general 5

charges there are three distinct cases to consider

(N51 , N52 , N53) = {(0, 0, 0), (1,−1, 0), (2,−1,−1)} . (B.54)

The first case is excluded as the cancellation of the linear anomaly (A2.) requires the

presence of the µ-term at leading order which is unfavourable. We shall see in the following

that we find no phenomenologically good models for the second and third cases either.

1The down-type Yukawa matrix has been transposed to match the convention defined in (4.26).
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For the second case, the anomaly cancellation conditions can be solved exactly for the

following parametrisation,

R q1(R) q2(R) M N

5̄Hu −q1
Hu

−q2
Hu

0 −1

5̄Hd −q1
Hu

+ 5w1
Hd

−q2
Hu

+ 5w2
Hd

0 1

5̄1 −q1
Hu

+ 5w1
51

−q2
Hu

+ 5w2
51

1 1

5̄2 −q1
Hu

+ 5w1
52

−q2
Hu

+ 5w2
52

1 −1

5̄3 −q1
Hu

+ 5w1
53

−q2
Hu

+ 5w2
53

1 0

101 −1
2q

1
Hu

+ 5w1
101

−1
2q

2
Hu

+ 5w2
101

1 0

102 −1
2q

1
Hu

+ 5w1
102

−1
2q

2
Hu

+ 5w2
102

1 0

103 −1
2q

1
Hu

−1
2q

2
Hu

1 0

(B.55)

The third generation quarks are taken to reside within 103, the charge of which has been

fixed to allow for a leading order top Yukawa coupling. Inserting this set of charges and

M,Ns into the linear anomaly we obtain,

wαHd + wα51 − w
α
52 = 0 , (B.56)

where α = 1, 2. Solving for wαHd and inserting into the quadratic anomaly (A3.) we obtain,

wα51(wα51 − w
α
52) = 0,

2w1
51w

2
51 − w

2
51w

1
52 + w1

51w
2
52 = 0 .

(B.57)

This set of three equations has two distinct solutions however neither of them lead to

phenomenologically good models

• w1
51

= w2
51

= 0

Substituting this into the charges in (B.55) we observe that,

(q1
Hu , q

2
Hu) = (q1

51 , q
2
51) , (B.58)

which means that the unwanted operator (C5.) is present at leading order through

the coupling 10310351. This set of solutions is therefore not viable.

• w1
51

= w1
52

and w2
51

= w2
52

Substituting this solution into (B.56) one observes that wαHd = 0, which results in a

leading order µ-term which is unfavourable.

To find solutions for the last case, given by the choice, N51 = 2, N52 = N53 = −1 we scan

through the possible charges of 10 and 5 matter under two U(1)s for the six codimension

one fibers in (4.37). We find no sets of charges which solve the anomaly cancellation

conditions for this set of N5is. Therefore, in order to obtain a model that is consistent with

the flavour texture in (B.52), anomaly cancellation and absence of dangerous operators
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one must go to greater than five 5 representations. However, on extending this analysis to

six 5 representations, there are again no solutions matching to flavour texture in (B.52).

Possibly, by including more U(1)s these other textures become accessible in this class of

models as well. We leave this for future investigations.
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Appendices for Chapter 6

C.1 Conventions and Spinor Decompositions

C.1.1 Indices

Our index conventions, for Lorentz and R-symmetry representations, which are used

throughout chapter 6 of the thesis are summarised in the following tables. Note that

R-symmetry indices are always hatted. Furthermore, note that m = 1, · · · , 8, however

only four components are independent for Weyl spinors in 6d.

Lorentz indices 6d 5d 4d 3d 2d

Curved vector µ, ν µ′, ν ′ µ, ν . .

Flat vector A,B A′, B′ A,B a, b x, y

Spinors m,n m′, n′ p, q; ṗ, q̇ . .

(4 of su(4)L) (4 of sp(4)L) (2 of su(2)`; 2 of su(2)r)

Table C.1: Spacetime indices in various dimensions.

so(5)R sp(4)R so(3)R su(2)R so(2)R

Index for the fundamental rep Â, B̂ m̂, n̂ â, b̂ p̂, q̂ x̂, ŷ

Table C.2: R-symmetry indices.

252
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C.1.2 Gamma-matrices and Spinors: 6d, 5d and 4d

We work with the mostly + signature (−,+, · · · ,+). The gamma matrices ΓA in 6d, γA
′

in 5d and γA in 4d, respectively, are defined as follows:

Γ1 = iσ2 ⊗ 12 ⊗ σ1 ≡ γ1 ⊗ σ1

Γ2 = σ1 ⊗ σ1 ⊗ σ1 ≡ γ2 ⊗ σ1

Γ3 = σ1 ⊗ σ2 ⊗ σ1 ≡ γ3 ⊗ σ1

Γ4 = σ1 ⊗ σ3 ⊗ σ1 ≡ γ4 ⊗ σ1

Γ5 = −σ3 ⊗ 12 ⊗ σ1 ≡ γ5 ⊗ σ1

Γ6 = 12 ⊗ 12 ⊗ σ2 , (C.1)

with the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (C.2)

The 6d gamma matrices satisfy the Clifford algebra

{ΓA,ΓB} = 2ηAB , (C.3)

and similarly for the 5d and 4d gamma matrices.

Futhermore we define

ΓA1A2...An ≡ Γ[A1A2...An] =
1

n!

∑

w∈Sn

(−1)wΓAw(1) ΓAw(2) . . .ΓAw(n) , (C.4)

and similarly for all types of gamma matrices.

The chirality matrix in 4d is γ5 = −σ3 ⊗ 12 and in 6d is defined by

Γ7 = Γ1Γ2 · · ·Γ6 = 12 ⊗ 12 ⊗ σ3 . (C.5)

The charge conjugation matrices in 6d, 5d and 4d are defined by

C(6d) = σ3 ⊗ σ2 ⊗ σ2 ≡ C

C(5d) = C(4d) = −i σ3 ⊗ σ2 ≡ C . (C.6)

They obey the identities

(
ΓA
)T

= −CΓAC−1 , A = 1, · · · , 6.
(
γA
′
)T

= CγA
′
C−1 , A′ = 1, · · · , 5.

(
γA
)T

= CγAC−1 , A = 1, · · · , 4. (C.7)
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To define irreducible spinors we also introduce the B-matrices

B(6d) = iσ1 ⊗ σ2 ⊗ σ3

B(5d) = B(4d) = i σ1 ⊗ σ2 , (C.8)

which satisfy

(
ΓA
)∗

= B(6d)Γ
AB−1

(6d) , A = 1, · · · , 6.
(
γA
′
)∗

= −B(5d)γ
A′B−1

(5d) , A′ = 1, · · · , 5.
(
γA
)∗

= −B(4d)γ
AB−1

(4d) , A = 1, · · · , 4. (C.9)

The 6d Dirac spinors have eight complex components. Irreducible spinors have a definite

chirality and have only four complex components. For instance a spinor ρ of positive

chirality satisfies Γ7ρ = ρ. Similarly Dirac spinors in 4d have four complex components

and Weyl spinors obey a chirality projection, for instance γ5ψ = ψ for positive chirality,

and have two complex components. The components of positive and negative, chirality

spinors in 4d are denoted with the index ṗ = 1, 2 and p = 1, 2, respectively.

The indices of Weyl spinors in 6d can be raised and lowered using the SW/NE (South-

West/North-East) convention:

ρm = ρnC
nm , ρm = Cmnρ

n , (C.10)

with (Cmn) = (Cmn) = C. There is a slight abuse of notation here: the indices m,n go

from 1 to 8 here (instead of 1 to 4), but half of the spinor components are zero due to the

chirality condition. When indices are omitted the contraction is implicitly SW/NE. For

instance

ρρ̃ = ρmρ̃
m , ρΓAρ̃ = ρn(ΓA)nmρ̃

m , (C.11)

with (ΓA)nm the components of ΓA as given above.

The conventions on 5d and 4d spinors are analogous: indices are raised and lowered using

the SW/NE convention with (Cm
′n′) = (Cm′n′) = C in 5d and with the epsilon matrices

εpq = εpq = εṗq̇ = εṗq̇, with ε12 = 1. They are contracted using the SW/NE convention.

We also introduce gamma matrices ΓÂ for the sp(4)R = so(5)R R-symmetry

Γ1̂ = σ1 ⊗ σ3 , Γ2̂ = σ2 ⊗ σ3 , Γ3̂ = σ3 ⊗ σ3 , Γ4̂ = 12 ⊗ σ2 , Γ5̂ = 12 ⊗ σ1 .

(C.12)

For the R-symmetry indices we use the opposite convention compared to the Lorentz

indices, namely indices are raised and lowered with the NW/SE convention:

ρm̂ = ρn̂Ωn̂m̂ , ρm̂ = Ωm̂n̂ρn̂ , (C.13)
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with (Ωm̂n̂) = (Ωm̂n̂) = iσ2 ⊗ σ1. When unspecified, R-symmetry indices are contracted

with the NW/SE convention, so that we have for instance ρρ̃ = ρm̂mρ̃
m
m̂.

A collection of Weyl spinors ρm̂ in 6d transforming in the 4 of sp(4)R can further satisfy a

Symplectic-Majorana condition (which exists in Lorentzian signature, but not in Euclidean

signature)

(ρm̂)∗ = B(6d)ρ
m̂ . (C.14)

In 5d the Symplectic-Majorana condition on spinors is similarly

(ρm̂)∗ = B(5d)ρ
m̂ . (C.15)

In 4d the Weyl spinors are irreducible, however 4d Dirac spinor can obey a Symplectic-

Majorana condition identical to (C.15).

Let us finally comment on the conventions for the supersymmetries and their chiralities

in 6d. The fermions and supercharges have the same chirality, which we will chose to be

4 of so(6)L, and we consider an N = (2, 0) theory in 6d. Subsequently, from the invariant

contraction of spinors (C.11) and (C.10), it follows since {Γ7, C} = 0 and CT = C, that

the supersymmetry transformation parameters are of opposite chirality, i.e. left chiral

spinors transforming in 4.

C.1.3 Spinor Decompositions

6d to 5d :

A Dirac spinor in 6d decomposes into two 5d spinors. A 6d spinor ρ = (ρm) (eight com-

ponents) of positive chirality reduces to a single 5d spinor ρ = (ρm
′
), with the embedding

ρ = ρ⊗
(

1

0

)
. (C.16)

For a 6d spinor of negative chirality, the 5d spinor is embedded in the complementary four

spinor components. The 6d Symplectic-Majorana condition (C.14) on ρ
m̂

reduces to the

5d Symplectic-Majorana condition (C.15) on ρm̂ if ρ
m̂

has positive chirality, or reduces to

the opposite reality condition (extra minus sign on the right hand side of (C.15)), if ρ
m̂

has negative chirality.
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5d to 4d :

A 5d spinor ρ = (ρm
′
) decomposes into two 4d Weyl spinors ψ+, ψ− of opposite chiralities,

with the embedding

ρ =

(
0

1

)
⊗ ψ+ +

(
1

0

)
⊗ ψ− =

(
ψ−
ψ+

)
. (C.17)

If ρm̂ obeys the 5d Symplectic-Majorana condition (C.15), the spinors ψm̂+ , ψ
m̂
− are not

independent. They form four-component spinors which obey a 4d Symplectic-Majorana

condition: (
ψ−m̂
ψ+m̂

)∗
= B(4d)

(
ψ−

m̂

ψ+
m̂

)
. (C.18)

With these conventions, we obtain for two 5d spinors ρ, ρ̃ the decomposition of bilinears

ρρ̃ = ρm′ ρ̃
m′ = ψ+pψ̃

p
+ − ψ−ṗψ̃

ṗ
− = ψ+ψ̃+ − ψ−ψ̃− ,

ργ5ρ̃ = ρm′(γ
5)m

′
n′ ρ̃

n′ = ψ+pψ̃
p
+ + ψ−ṗψ̃

ṗ
− = ψ+ψ̃+ + ψ−ψ̃−

ργµρ̃ = ψ+p(τ
µ)pṗψ̃

ṗ
− + ψ−ṗ(τ̄

µ)ṗpψ̃
p
+ = ψ+τ

µψ̃− + ψ−τ̄
µψ̃+ , (C.19)

with (τ1, τ2, τ3, τ4) = (−12, σ1, σ2, σ3) and (τ̄1, τ̄2, τ̄3, τ̄4) = (−12,−σ1,−σ2,−σ3).

R-symmetry reduction :

In this thesis we consider the reduction of the R-symmetry group

sp(4)R → su(2)R ⊕ so(2)R . (C.20)

The fundamental index m̂ of sp(4)R decomposes into the index (p̂, x̂) of su(2)R ⊕ so(2)R.

A (collection of) spinors ρm̂ in any spacetime dimension can be gathered in a column

four-vector ρ with each component being a full spinor. The decomposition is then

ρ = ρ(1) ⊗
(

1

0

)
+ ρ(2) ⊗

(
0

1

)
, (C.21)

with ρ(1) = (ρ(1)
p̂) transforming in the (2)+1 of su(2)R ⊕ so(2)R and ρ(2) = (ρ(2)

p̂) trans-

forming in the (2)−1. So the four spinors ρm̂ get replaced by the four spinors ρ(1)
p̂, ρ

(2)
p̂.

From the sp(4)R invariant tensor Ωm̂n̂, with Ω = ε⊗ σ1, and the explicit gamma matrices

(C.12) we find the bilinear decompositions. For instance

ρm̂ρ̃m̂ = ρ(1)p̂ρ̃
(2)
p̂ + ρ(2)p̂ρ̃

(1)
p̂

ρΓâρ̃ ≡ ρm̂(Γâ)m̂
n̂ρ̃n̂ = ρ(2)p̂(σâ)p̂

q̂ρ̃
(1)
q̂ − ρ

(1)p̂(σâ)p̂
q̂ρ̃

(2)
q̂

≡ ρ(2)σâρ̃(1) − ρ(1)σâρ̃(2) , â = 1, 2, 3 .

Another useful identity is

(ΓÂ)m̂n̂(Γ
Â

)r̂ŝ = 4δ[m̂
r̂δ
n̂]
ŝ − Ωm̂n̂Ωr̂ŝ . (C.22)
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C.2 Killing Spinors for the S2 Background

In this appendix we determine the solutions to the Killing spinor equations for the S2

background of section 6.2.3.

C.2.1 δψm̂A = 0

The supersymmetry transformations of conformal supergravity are parametrised by two

complex eight-component spinors εm̂, ηm̂, of positive chirality and negative chirality, re-

spectively,1 with an index m̂ transforming in the 4 of sp(4)R. The first Killing spinor

equation is

0 = δψm̂A = DAεm̂ +
1

24
(T m̂n̂)BCDΓBCDΓAεn̂ + ΓAη

m̂ (C.23)

with

Dµεm̂ = ∂µε
m̂ +

1

2
bµε

m̂ +
1

4
ω̃BCµ ΓBCε

m̂ − 1

2
V m̂
µ n̂ε

n̂

ω̃ABµ = 2eν[A∂[µeν]
B] − eρ[AeB]σeCµ ∂ρeσC + 2e[A

µ b
B] = ωABµ + 2e[A

µ b
B] ,

(C.24)

where the background fields have been converted to sp(4)R representations with

V m̂
A n̂ = V

AB̂Ĉ
(ΓB̂Ĉ)m̂n̂ , T m̂n̂BCD = T

ÂBCD
(ΓÂ)m̂n̂ , Dm̂n̂

r̂ŝ = D
ÂB̂

(ΓÂ)m̂n̂(ΓB̂)r̂ŝ .

(C.25)

We choose to set η = 0. After inserting our ansatz, in particular T m̂n̂BCD = bA = 0, we

obtain

0 = ∂φε
m̂ − 1

2r
`′(θ) Γ56εm̂ − 1

2
v(θ) (Γ4̂5̂)m̂n̂ε

n̂

0 = ∂µ′ε
m̂ , µ′ = x1, x2, x3, x4, θ ,

(C.26)

We find solutions for constant spinors εm̂ subject to the constraint

0 = −Γ56εm̂ + (Γ4̂5̂)m̂n̂ε
n̂ , (C.27)

with

v(θ) = −`
′(θ)

r
. (C.28)

The condition (C.27) projects out half of the components of a constant spinor, leaving

eight real supercharges in Lorentzian signature, or eight complex supercharges in Euclidean

signature.

1In Lorentzian signature these spinors obey a Symplectic-Majorana condition, leaving 16+16 real su-
percharges.
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C.2.2 δχm̂n̂r̂ = 0

The second Killing spinor equation is given by

0 = δχm̂n̂r̂

=
5

32

(
DAT m̂n̂BCD

)
ΓBCDΓAεr̂ −

15

16
ΓBCR

[m̂
BC r̂ε

n̂] − 1

4
Dm̂n̂

r̂ŝε
ŝ +

5

8
T m̂n̂BCDΓBCDηr̂ − traces ,

(C.29)

with
DµT m̂n̂BCD = ∂µT

m̂n̂
BCD + 3ω̃

E
µ[BT

m̂n̂
CD]E − bµ T

m̂n̂
BCD + V

[m̂
µr̂ T

n̂]r̂
BCD

Rm̂n̂µν = 2∂[µV
m̂n̂
ν] + V

r̂(m̂
[µ V

n̂)
ν]r̂ .

(C.30)

Here, ‘traces’ indicates terms proportional to invariant tensors Ωm̂n̂, δm̂r̂ , δ
n̂
r̂ . Again the

background fields are converted to sp(4)R representations using (C.25).

With T m̂n̂BCD = 0, we obtain the simpler conditions

0 = −15

4
ΓBCR

[m̂
BC r̂ε

n̂] −Dm̂n̂
r̂ŝε

ŝ − traces . (C.31)

The R-symmetry field strength has a single non-vanishing component, corresponding to a

flux on S2

Rm̂n̂θφ = −Rm̂n̂φθ = −`
′′(θ)

r
(Γ4̂5̂)m̂n̂ . (C.32)

In flat space indices this becomes

Rm̂n̂56 = −Rm̂n̂65 = − `′′(θ)

r2`(θ)
(Γ4̂5̂)m̂n̂ . (C.33)

Moreover our ansätze for D
ÂB̂

(6.33) can be re-expressed in sp(4)R indices as:

Dm̂n̂
r̂ŝ = d

[
5(Γ4̂5̂)[m̂

r̂(Γ
4̂5̂)n̂]

ŝ − δ[m̂
r̂δ
n̂]
ŝ − Ωm̂n̂Ωr̂ŝ

]
, (C.34)

where the two last terms lead only to “trace” contributions in (C.31) and hence drop from

the equations. We obtain

0 =
15

2

`′′(θ)

r2`(θ)
Γ56(Γ4̂5̂)[m̂

r̂ε
n̂] − 5d(Γ4̂5̂)[m̂

r̂(Γ
4̂5̂)n̂]

ŝε
ŝ . (C.35)

Using (C.27), we solve the equations without further constraints on εm̂ if

d =
3

2

`′′(θ)

r2`(θ)
. (C.36)

The background we found corresponds to the twisting u(1)L ⊕ u(1)R → u(1) on S2. It

preserves half of the supersymmetries (and no conformal supersymmetries) of the flat

space theory, and corresponds to the topological half-twist of the 2d theory.
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C.3 6d to 5d Reduction for bµ = 0

In this appendix we detail the reduction of the six-dimensional equations of motion on

an S1. This is done following [260, 235] however we choose to gauge fix bµ = 0, which is

possible without loss of generality.

We start by decomposing the six-dimensional frame as

e
µ

A =

(
eµ
′

A′ eφA′ = −CA′
eµ
′

6 = 0 eφ6 = α

)
eAµ =

(
eA
′

µ′ e6
µ′ = α−1Cµ′

eA
′

φ = 0 e6
φ = α−1

)
, (C.37)

where the 5d indices are primed. We work in the gauge bµ = 0, which is achieved by

fixing the special conformal generators, KA. Note that this choice is different from the

gauge fixing of bµ in [260, 235], in particular α is not covariantly constant in our case.

Furthermore, we fix the conformal supersymmetry generators to ensure ψ5 = 0, which

means that e
µ

6 = 0 is invariant under supersymmetry transformations. For a general

background the bosonic supergravity fields descend to 5d fields as

Dm̂n̂
r̂ŝ → Dm̂n̂

r̂ŝ

V m̂n̂
A →

{
V m̂n̂
A′ A 6= 6

Sm̂n̂ A = 6

T m̂n̂ABC → T m̂n̂A′B′6 ≡ T m̂n̂A′B′ .

(C.38)

The components of the spin connection along the φ direction are given by

ωA
′6

φ =
1

α2
eµ
′A′∂µ′α , ωA

′B′
φ = − 1

2α2
GA

′B′ , ωA
′6

µ′ =
1

2α
eν
′A′Gµ′ν′+

1

α2
Cµ′e

A′
ν′ ∂

ν′α ,

(C.39)

where G = dC, and can be derived from the six-dimensional vielbein using

ωABµ = 2eν[A∂[µe
B]
ν] − e

ρ[AeB]σeCµ ∂ρeσC . (C.40)

C.3.1 Equations of Motion for B

The 6d equations of motion for the three-form H are given by

dH = 0

H−ABC −
1

2
Φm̂n̂T

m̂n̂
ABC = 0 .

(C.41)

We decompose H into 5d components

H =
1

3!
HA′B′C′e

A′ ∧ eB′ ∧C′ +1

2
HD′E′6e

D′ ∧ eE′ ∧ e6 . (C.42)
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We can solve the second equation of motion by setting

HA′B′6 = αFA′B′

HA′B′C′ =
1

2
εA′B′C′

D′E′
(
αFD′E′ − Φm̂n̂T

m̂n̂
D′E′

)
,

(C.43)

where Fµ′ν′ is a two-form in five dimensions. Substituting this into the expansion of H

and reducing to 5d we obtain

H = α ?5d

(
F − 1

α
Φm̂n̂T

m̂n̂

)
+ F ∧ C + F ∧ dϕ . (C.44)

The equations of motion dH = 0 imply

dF = 0 , F ∧ dC + d
(
α ?5 F − Φm̂n̂ ?5 T

m̂n̂
)
, (C.45)

which can be integrated to the 5d action

SF = −
∫ (

αF̃ ∧ ?5dF̃ + C ∧ F ∧ F
)
, (C.46)

where

F̃ = F − 1

α
Φm̂n̂T

m̂n̂ . (C.47)

Together with the constraint dF = 0, which identifies F with the field strength of a

five-dimensional connection A, given by Fµ′ν′ = ∂µ′Aν′ − ∂ν′Aµ′ .

C.3.2 Equations of Motion for the Scalars

The dimensionally reduced 6d scalar equations of motion are

D2Φm̂n̂ + 2FA′B′T
A′B′

m̂n̂ + (MΦ)m̂n̂r̂ŝ Φr̂ŝ = 0 , (C.48)

where

Dµ′Φ
m̂n̂ = ∂µ′ + V

[m̂
µ′r̂Φ

n̂]r̂

D2Φm̂n̂ = (∂A
′
+ ωB

′A′
B′ )DA′Φ

m̂n̂ + V
[̂m
µ′r̂D

µ′Φn̂]r̂

(MΦ)m̂n̂r̂ŝ = −R6d

5
δ

[m̂
r̂ δ

n̂]
ŝ +

1

α
Cµ
′
∂µ′αS

[m̂
r̂ Φn̂]r̂ +

1

2
α2(S

[m̂
r̂ S

n̂]
ŝ − S

t̂
ŝS

[m̂

t̂
δ
n̂]
r̂ )− 1

15
Dm̂n̂
r̂ŝ − T

A′B′

r̂ŝ T m̂n̂A′B′ .

(C.49)

The 6d Ricci scalar R6d can be rewritten of course in terms of the 5d fields. This equation

of motion can be integrated to the following action

§Φ = −
∫
d5x

√
|g|α−1

(
DA′Φ

m̂n̂DA′Φm̂n̂ + 4Φm̂n̂FA′B′T
A′B′

m̂n̂ − Φm̂n̂(MΦ)m̂n̂r̂ŝ Φr̂ŝ
)
.

(C.50)
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C.3.3 Equations of Motion for the Fermions

The 6d fermions are decomposed as follows

ρmm̂ →

(
0

iρm
′m̂

)
. (C.51)

Then for a general background the six-dimensional equation of motion reduces to

i /Dρm
′m̂ + (Mρ)

m′m̂
n′n̂ ρn

′n̂ = 0 , (C.52)

where

Dµ′ρ
m′m̂ =

(
∂µ′ +

1

4
ωA
′B′

µ′ γA′B′

)
ρm
′m̂ − 1

2
V m̂
µ′n̂ρ

n̂

(Mρ)
m′m̂
n′n̂ = α

(
−1

2
Sm̂n̂ δ

m′
n′ +

1

8α2
GA′B′(γ

A′B′)m
′

n′ δ
m̂
n̂ −

i

2α2
eµ
′A′∂µ′α(γA′)

m′
n′ δ

m̂
n̂

)

+
1

2α2
(γµ

′
γν
′
)m
′

n′ δ
m̂
n̂ Cµ′∂ν′α+

1

2
TA′B′

m̂
n̂(γA

′B′)m
′

n′ .

(C.53)

From this we obtain the action

Sρ = −
∫
d5x
√
|g|α−1ρmm̂

(
i /D

m
n ρ

nm̂ + (Mρ)
mm̂
nn̂ ρnn̂

)
. (C.54)

C.4 Supersymmetry Variations of the 5d Action

The supersymmetry variations (6.50), which leave the 5d action (6.60) invariant, can be

decomposed with respect to the R-symmetry, following appendix C.1.3. This decomposi-

tion will be useful in further proceeding to four dimensions. The scalar and gauge field

variations are then

δAµ = −`(θ)
(
ε(1)p̂γµρ

(2)
p̂− + ε(2)p̂γµρ

(1)
p̂+

)

δAθ = −r`(θ)
(
ε(1)p̂ρ

(2)
p̂+ − ε

(2)p̂ρ
(1)
p̂−

)

δϕâ = i
(
ε(1)

p̂(σ
â)p̂q̂ρ

(2)
q̂+ − ε

(2)
p̂(σ

â)p̂q̂ρ
(1)
q̂−

)

δϕ = −2ε(1)p̂ρ
(1)
p̂+ , δϕ̄ = 2ε(2)p̂ρ

(2)
p̂−

(C.55)

and for the fermions we find

δρ
(1)
p̂+ =

i

8`(θ)
Fµνγ

µνε
(1)
p̂ −

i

4
Dµϕγ

µε
(2)
p̂ +

1

4r
Dθϕ

q̂
p̂ε

(1)
q̂ −

`(θ)

8

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(1)
q̂ − i[ϕ, ϕ̄]ε

(1)
p̂

)

δρ
(1)
p̂− =

i

4r`(θ)
Fµθγ

µε
(1)
p̂ +

1

4
Dµϕ

q̂
p̂ γ

µε
(1)
q̂ +

i

4r

(
Dθϕ+

`′(θ)

`(θ)
ϕ

)
ε
(2)
p̂ −

`(θ)

4
[ϕ,ϕq̂p̂]ε

(2)
q̂

δρ
(2)
p̂+ = − i

4r`(θ)
Fµθγ

µε
(2)
p̂ −

1

4
Dµϕ

q̂
p̂ γ

µε
(2)
q̂ +

i

4r

(
Dθϕ̄+

`′(θ)

`(θ)
ϕ̄

)
ε
(1)
p̂ −

`(θ)

4
[ϕ̄, ϕq̂p̂]ε

(1)
q̂

δρ
(2)
p̂− =

i

8`(θ)
Fµνγ

µνε
(2)
p̂ +

i

4
Dµϕ̄γ

µε
(1)
p̂ +

1

4r
Dθϕ

q̂
p̂ε

(2)
q̂ −

`(θ)

8

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(2)
q̂ + i[ϕ, ϕ̄]ε

(2)
p̂

)
,

(C.56)

where ϕp̂
q̂ =

∑
â ϕ

â(σâ)p̂
q̂.
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C.5 Aspects of the 4d Sigma-model

In this appendix we collect several useful relations for the sigma-model reduction, as well

as give details on integrating out the gauge field and the scalars ϕ and ϕ̄, which appear

only algebraically in the r → 0 limit of the 5d action.

C.5.1 Useful Relations

We now summarise properties of the sigma-model defined in section 6.4. The three sym-

plectic structures (6.101) of the Hyper-Kähler target can be used to define the three

complex structures ωâK
I = ωâKJG

JI , which satisfy

ωâI
Jω

b̂J
K = −δ

âb̂
δKI + ε

âb̂ĉ
ωĉI

K . (C.57)

The complex structures exchange the cotangent vectors Υâ
I and Υθ

I in the following fashion

ωâI
JΥθ

J = −Υâ
I

ωâI
JΥb̂

J = δâb̂Υθ
I + εâb̂ĉΥIĉ .

(C.58)

We introduce a complete set of functions, satisfying the completeness relations [268]

GIJΥâα
I (θ)Υb̂β

J (τ) +
∑

i

Ψâα
i (θ)Ψb̂β

i (τ) = δâb̂ δαβ δ(θ − τ)

GIJΥθα
I (θ)Υθβ

J (τ) +
∑

i

Ψθα
i (θ)Ψθβ

i (τ) = δαβ δ(θ − τ)

GIJΥâα
I (θ)Υθβ

J (τ) +
∑

i

Ψâα
i (θ)Ψθβ

i (τ) = 0 .

(C.59)

Here, α, β are indices labeling the generators of the gauge algebra. These functions satisfy

the orthogonality relations
∫
dθΥâα

I (θ)Ψb̂β
i (θ) = 0 ,

∫
dθΥθα

I (θ)Ψθβ
i (θ) = 0 . (C.60)

C.5.2 Integrating out Fields

In this appendix we discuss how the scalars ϕ, ϕ̄ and the 4d gauge field Aµ are integrated

out in the sigma-model reduction. The equation of motions for ϕ, ϕ̄ and Aµ are

D2
θϕ+

[
ϕâ,
[
ϕâ, ϕ

]]
= −4ir[ρ

(1)
−p̂, ρ

(1)p̂
+ ]

D2
θ ϕ̄+

[
ϕâ,
[
ϕâ, ϕ̄

]]
= 4ir[ρ

(2)
+p̂, ρ

(2)p̂
− ]

D2
θAµ +

[
ϕâ,
[
ϕâ, Aµ

]]
= [Aθ, ∂IAθ] ∂µX

I +
[
ϕâ, ∂Iϕ

â
]
∂µX

I − 4i[ρ
(1)
−p̂, γµρ

(2)p̂
+ ] .

(C.61)
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We adopt a convenient gauge for the connection EI

DθΥθ
I + [ϕâ,Υ

â
I ] = 0 , (C.62)

which can be re-expressed as

D2
θEI + [ϕâ, [ϕ

â, EI ]] = [Aθ, ∂IAθ] + [ϕâ, ∂Iϕ
â] , (C.63)

where we have used the gauge fixing condition ∂θAθ = 0. Using the expansion for the

spinors (6.103) and the constraints (6.104), we evaluate the spinor bilinears in (C.61) to

give [
ρ

(1)
−p̂, ρ

(1)p̂
−

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υθ
I ,Υ

θ
J

])
λ

(1)I
p̂ λ(1)Jp̂

[
ρ

(2)
+p̂, ρ

(2)p̂
+

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υθ
I ,Υ

θ
J

])
λ

(2)I
p̂ λ(2)Jp̂

[
ρ

(1)
−p̂, γµρ

(2)p̂
+

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υθ
I ,Υ

θ
J

])
λ

(1)I
p̂ γµλ

(2)Jp̂ .

(C.64)

We note that the curvature

ΦIJ = [∇I ,∇J ] , (C.65)

where ∇I = ∂I + [EI , · ], satisfies the equation

D2
θΦIJ + [ϕâ, [ϕ

â,ΦIJ ]] = 2
(

[ΥIâ,Υ
â
J ] + [Υθ

I ,Υ
θ
J ]
)
. (C.66)

It can be used to solve the equations of motion by

ϕ = 8irΦIJλ
(1)I
p̂ λ(1)Jp̂

ϕ̄ = −8irΦIJλ
(2)I
p̂ λ(2)Jp̂

Aµ = EI∂µX
I + 8iΦIJλ

(1)I
p̂ γµλ

(2)Jp̂ .

(C.67)

Inserting this back in the action the terms with ϕ, ϕ̄ results in

Sϕ,ϕ̄ =
16

r`

∫
dθd4x

√
|g4|Tr

(
DθΦIJDθΦKL + [ΦIJ , ϕ

â][ΦKL, ϕâ]
)
λ(1)Ip̂λ

(1)J
p̂ λ(2)Kq̂λ

(2)L
q̂ .

(C.68)

The terms we obtain by integrating out Aµ will be grouped into three types of terms. The

first type are such that XI appear quadratically

SAµ,type 1 = − 1

4r`

∫
dθd4x

√
|g4|Tr

(
DθEIDθEJ − 2∂IAθDθEJ + 2∂Iϕ

â[EJ , ϕâ]

+ [EI , ϕ
â][EJ , ϕâ]

)
∂µX

I∂µXJ .

(C.69)

These terms combine with terms in the scalar action (6.102) to give the usual sigma-model

kinetic term

Sscalars + SAµ,type 1 =
1

4r`

∫
d4x
√
|g4|GIJ∂µXI∂µXJ . (C.70)
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Terms of type 2 are linear in XI and covariantise the kinetic terms of the spinor

SAµ,type 2 = −4i

r`

∫
dθd4x

√
|g4|Tr

(
2Υâ

I [EJ ,ΥKâ] + 2Υθ
I [EJ ,Υ

θ
K ]
)
λ(1)Ip̂γµλ

(2)K
p̂ ∂µX

J .

(C.71)

The terms involving the connection EI are promoted to covariant derivatives ∇I when

combined with the terms in the spinor action (6.105). Using the identities

∇IΥâ
J = ΓKIJΥâ

K +
1

2
[ΦIJ , ϕ

â]

∇IΥθ
J = ΓKIJΥθ

K −
1

2
DθΦIJ ,

(C.72)

where

ΓIJ,K = −
∫
dθTr

(
Υâ
K∇(IΥJ)â + Υθ

K∇(IΥ
θ
J)

)
, (C.73)

the kinetic term in the spinor action is covariantised. Lastly, the terms of type 3 give rise

to the quartic fermion interaction. Using (C.66) these terms simplify to

SAµ,type 3 = −16

r`

∫
d4xdθ

√
|g4|Tr

(
DθΦIJDθΦKL + [ΦIJ , ϕ

â][ΦKL, ϕâ]
)

× λ(1)Ip̂γµλ
(2)J
p̂ λ(1)Kq̂γµλ

(2)L
q̂ .

(C.74)

Using various identities, including Fierz-type identities,

(λ(1)p̂[Iλ
(1)J ]
p̂ )(λ(2)q̂[Kλ

(2)L]
q̂ ) = 2(λ(1)p̂[Iλ(1)J ]q̂)(λ

(2)[K
p̂ λ

(2)L]
q̂ )

ωâI
K∇[KΥθ

J ] = ∇[IΥ
â
J ]

∇[IΥ
â
J ]λ

(i)J
p̂ = i∇[IΥ

θ
J ](σ

â)q̂p̂λ
(i)J
q̂

∇[IΥ
â
J ]∇[KΥL]âλ

(i)J
p̂ λ

(i)L
q̂ = 3∇[IΥ

θ
J ]∇[KΥθ

L]λ
(i)[J
p̂ λ

(i)L]
q̂ ,

(C.75)

it can be shown that this quartic fermion interaction combines with the term (C.68) to

make the Riemann tensor of the target space appear

SAµ,type 3 + Sϕ,ϕ̄ = −32

r`

∫
d4x
√
|g4|RIJKL(λ(1)Ip̂λ

(1)J
p̂ )(λ(2)Kq̂λ

(2)L
q̂ ) , (C.76)

where the Riemann tensor is given by

RIJKL = −
∫
dθTr

(
2∇[IΥ

â
J ]∇[KΥL]â +∇[IΥ

â
K]∇[JΥL]â −∇[IΥ

â
L]∇[JΥK]â

+2∇[IΥ
θ
J ]∇[KΥθ

L] +∇[IΥ
θ
K]∇[JΥθ

L] −∇[IΥ
θ
L]∇[JΥθ

K]

)

= −1

4

∫
dθ Tr

(
2DθΦIJDθΦKL + 2[ΦIJ , ϕ

â][ΦKL, ϕâ]

+DθΦIKDθΦJL + [ΦIK , ϕ
â][ΦJL, ϕâ]

−DθΦILDθΦJK − [ΦIL, ϕ
â][ΦJK , ϕâ]

)
.

(C.77)

Combining all the terms we obtain the final sigma-model (6.106).
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C.6 Sigma-model for Hyper-Kähler M4 from 5d N = 2 SYM

In this appendix we provide a comprehensive discussion of the topological twist of the 5d

N = 2 SYM on an interval with Nahm pole boundary conditions, and its dimensional

reduction to 4d for M4 a Hyper-Kähler manifold. This results in the same 4d topological

sigma-model as we obtained in section 6.5.2, by twisting the 4d sigma-model on flat M4.

C.6.1 Topological Twist

Let us first consider the topological twist 1 of section 6.2.1 applied to the 5d N = 2 SYM

theory. From now on we switch to Euclidean signature 2. The twisted 5d theory was

already considered in [244,271].

Twist 1 of the 6d N = (2, 0) theory identifies su(2)` ⊂ su(2)` ⊕ su(2)r of the 4d Lorentz

algebra with the su(2)R ⊂ su(2)R ⊕ so(2)R ⊂ sp(4)R. Under dimensional reduction to 5d

the symmetries after the twist are

sp(4)R ⊕ so(5)L → gtwist = su(2)twist ⊕ su(2)r ⊕ u(1)R . (C.78)

The fields of the 5d theory become forms in the twisted theory, according to their trans-

formations with respect to the gtwist, as summarised in the following table:

Field gtwist Representation Twisted Field

Aµ (2,2)0 Aµ

ϕ (1,1)2 ϕ

ϕ̄ (1,1)−2 ϕ̄

ϕâ (3,1)0 Bµν

ρ
(1)
+ (2,2)1 ψ

(1)
µ

ρ
(2)
+ (2,2)−1 ψ

(2)
µ

ρ
(1)
− (1,1)1 ⊕ (3,1)1 (η(1), χ

(1)
µν )

ρ
(2)
− (1,1)−1 ⊕ (3,1)−1 (η(2), χ

(2)
µν )

(C.79)

The fields Aµ, ϕ, ϕ̄ do not carry su(2)R charge and are thus unaffected. The scalars ϕâ

transform as a triplet of su(2)R. In the twisted theory they become a triplet ϕa of su(2)twist,

defining a self-dual two-form Bµν on M4:

Bµν = −(jâ)µνϕ
â , (C.80)

where the three local self-dual two-forms jâ transforming as a triplet of su(2)twist. They

can be defined in a local frame eAµ as (ja)µν = eAµ e
B
ν (ja)AB, a = 1, 2, 3, with

(ja)0b = −δab , (ja)bc = −εabc , a, b, c = 1, 2, 3 . (C.81)

2For this twist we change from Lorentzian to Euclidean signature. In what follows γ0 as defined in
appendix C.1.2 is replaced with γ0′ = iγ0, where the prime will be omitted.
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In this local frame we have

B0a = ϕa, Bab = εabcϕ
c, a, b, c = 1, 2, 3 . (C.82)

The self-dual tensors ja are used to map the vector index a of so(3) to the self-dual two-

form index [AB]+. The tensors (ja)µν define an almost quaternionic structure, since they

satisfy

(ja)µρ(j
b)ρν = −δabδµν + εabc(j

c)µν . (C.83)

The spinor fields transform as doublets of su(2)R. They become scalar, self-dual two-

forms and one-form fields on M4 as indicated in the table. The explicit decomposition, is

obtained using the Killing spinor associated to the scalar supercharge in the twisted theory.

This Killing spinor can be found as follows. The spinor εm̂ generating the preserved

supersymmetry is a constant spinor and is invariant under the twisted Lorentz algebra

su(2)twist ⊕ su(2)r. As explained in section 6.3.2 and in appendix C.1.3 εm̂ decomposes

under sp(4)R → su(2)R ⊕ u(1)R into two spinors doublets of su(2)R: εm̂ → ε
(1)
p̂ , ε

(2)
p̂ ,

satisfying the projections (6.53)

ε
(1)
p̂ − γ

5ε
(1)
p̂ = 0 , ε

(2)
p̂ + γ5ε

(2)
p̂ = 0 . (C.84)

As explained in section 6.5.1, ε
(2)
p̂ has one scalar component under su(2)twist ⊕ su(2)r

selected out by the projections

(γ0aδ
q̂
p̂ + i(σâ)

q̂
p̂)ε

(2)
q̂ = 0 , a ' â = 1, 2, 3 , (C.85)

where the indices a and â gets identified in the twisted theory. The spinor ε(2)p̂ parametriz-

ing the preserved supercharge is then decomposed as

ε(2)p̂ = u ε̃p̂ , (C.86)

where u is complex Grassmann-odd parameter and ε̃p̂ is a Grassmann-even spinor with

unit normalisation. The decomposition of the spinors into the twisted fields is then given

by

ρ
(1)
+p̂ = γµψ(1)

µ ε̃p̂

ρ
(2)
+p̂ = γµψ(2)

µ ε̃p̂

ρ
(1)
−p̂ =

(
η(1) +

1

4
γµνχ(1)

µν

)
ε̃p̂

ρ
(2)
−p̂ =

(
η(2) +

1

4
γµνχ(2)

µν

)
ε̃p̂ .

(C.87)
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C.6.2 Twisted 5d Action

We rewrite now the action in terms of the twisted fields and provide the preserved su-

persymmetry transformations. The bosonic part of this action has appeared in [244], and

related considerations regarding the supersymmetric versions of the twisted model can be

found in [271].

The action in (6.75) in terms of the twisted fields takes the form

SF = − r

8`

∫
dθd4x

√
|g4|Tr

(
FµνF

µν +
2

r2
(∂µAθ − ∂θAµ + [Aµ, Aθ])

2

)

Sscalars = − 1

4r`

∫
dθd4x

√
|g4|Tr

(
1

4
DµBρσDµB

ρσ +
1

4r2
DθBρσDθB

ρσ

+DµϕDµϕ̄+
1

r2
DθϕDθϕ̄

)

Sρ =
2i

r`

∫
dθd4x

√
|g4|Tr

[
η(2)Dµψ

(1)µ − ψ(1)
µ Dνχ

(2)µν + η(1)Dµψ
(2)µ − ψ(2)

µ Dνχ
(1)µν

+
1

r

(
ψ(1)
µ Dθψ

(2)µ − η(1)Dθη
(2) − 1

4
χ(1)
µνDθχ

(2)µν

)]

SYukawa = − i

r2`

∫
dθd4x

√
|g4|Tr

(
−1

2
Bµν

[
η(2), χ(1)µν

]
+

1

2
Bµν

[
η(1), χ(2)µν

]

−1

2
Bµν

[
χ(2)µτ , χ(1)ν

τ

]
− 2Bµν

[
ψ(2)µ, ψ(1)ν

]

+ϕ̄
[
η(1), η(1)

]
+

1

4
ϕ̄
[
χ(1)
µν , χ

(1)µν
]

+ ϕ̄
[
ψ(1)
µ , ψ(1)µ

]

−ϕ
[
η(2), η(2)

]
− 1

4
ϕ
[
χ(2)
µν , χ

(2)µν
]
− ϕ

[
ψ(2)
µ , ψ(2)µ

])

Squartic = − 1

16r3`

∫
dθd4x

√
|g4|Tr

(
1

4
[Bµρ, Bν

ρ] [Bµ
σ, B

νσ] + [Bµν , ϕ][Bµν , ϕ̄]− [ϕ, ϕ̄][ϕ, ϕ̄]

)

Sbdry =
1

16r3`

∫
dθd4x

√
|g4|Tr (∂θBµν [Bµρ, Bν

ρ]) .

(C.88)

The supersymmetry transformations of this 5d topologically twisted SYM theory are

δAµ = −u
r
ψ(1)
µ δAθ = uη(1)

δBµν = uχ(1)
µν

δϕ = 0 δϕ̄ = 2uη(2)

δψ(1)
µ = − iu

4
Dµϕ δψ(2)

µ = − iu
4
Fµθ −

iu

4
DνBνµ

δη(1) =
iu

4r
Dθϕ δη(2) = − iu

8r
[ϕ, ϕ̄]

δχ(1)
µν = − iu

4r
[ϕ,Bµν ] δχ(2)

µν =
iur

2
F+
µν +

iu

4r
DθBµν −

iu

8r
[Bµτ , Bν

τ ] ,

(C.89)
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where the self-dual part of the gauge field is defined as

F+ =
1

2
(1 + ∗)F . (C.90)

To define the twisted action for curved M4, in addition to covariantising the derivatives,

the curvature terms

RBµνBµν and RµνρσBµνBρσ , (C.91)

must be added to the action in order to preserve supersymmetry. These terms can be

repackaged with the kinetic term for Bµν changing the action for the scalars to

Sscalars

= − 1

4r`

∫
dθd4x

√
|g|Tr

(
DµBµρDνBνρ −

1

2
FµνB

µ
σB

νσ +
1

4r2
DθBρσDθB

ρσ +Dµ′ϕDµ′ϕ̄
)
,

(C.92)

where D is defined to be covariant with respect to the curvature connection on M4 and

the gauge connection. The 5d twisted action on curved M4 can be written in the form

S5d = QV + S5d,top , (C.93)

where the Q-exact and topological terms are given by

V = − 1

r`

∫
dθd4x

√
|g|Tr

[
χ(2)µν

(
Pµν − i(rFµν +

1

2r
(DθBµν −

1

2
[Bµτ , Bν

τ ]))

)

+2ψ(2)µ (2Pµ + i(Fµθ +DνBνµ)) + iψ(1)µDµϕ̄−
i

2r
η(2)[ϕ, ϕ̄]− i

r
η(1)Dθϕ̄

+
i

4r
χ(1)µν [ϕ̄, Bµν ]

]

S5d,top =
r

4`

∫

M4×I
TrF ∧ ∗F − 1

2r`

[∫

M4

TrF ∧B
]θ=π

θ=0

,

(C.94)

where Pµν and Pµ are auxiliary fields. The supersymmetry transformations are

QAµ = −1

r
ψ(1)
µ QAθ = η(1) QBµν = χ(1)

µν

Qϕ = 0 Qϕ̄ = 2η(2)

QPµ =
i

4r
[ψ(2)
µ , ϕ] QPµν =

i

4r
[χ(2)
µν , ϕ]

Qη(1) =
i

4r
Dθϕ Qψ(1)

µ = − i
4
Dµϕ Qχ(1)

µν = − iu
4r

[ϕ,Bµν ]

Qη(2) = − i

8r
[ϕ, ϕ̄] Qψ(2)

µ = Pµ , Qχ(2)
µν = Pµν .

(C.95)

The auxiliary fields are integrated out by

Pµ = − i
4

(Fµθ +DνBνµ)

Pµν =
ir

2
F+
µν +

i

4r

(
DθBµν −

1

2
[Bµτ , Bν

τ ]

)
.

(C.96)

We can now proceed with the dimensional reduction to four-dimensions.
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C.6.3 Triholomorphic Sigma-model with Hyper-Kähler M4

We now reduce the twisted 5d SYM theory to 4d on Hyper-Kähler M4. We proceed similar

to the analysis in section 6.4.2 and in appendix C.5, and expand all fields in powers of

r and demand that the leading order terms in 1
r in the action (C.88) vanish. This sets

ϕ = ϕ̄ = O(r) and leads to Nahm’s equations for the self-dual two-forms

DθBµν −
1

2
[Bµρ, Bν

ρ] = 0 , (C.97)

with % = [k] Nahm pole boundary condition. Locally this is the same situation as in the

untwisted theory, but not globally. In the untwisted theory the scalars ϕâ were scalar fields

on R4 and the solutions to the Nahm’s equations are described by a map R4 →Mk. In the

twisted theory B belongs to the bundle Ω2,+(M4) and the global solutions to (C.97) are

generically more involved. However this complication does not happen when the bundle

of self-dual two-forms Ω2,+(M4) is trivial, namely when B transforms as a scalar. In this

case one can regard the components Bµν as scalars on M4 and the solutions to (C.97) are

again given in terms of a map

X : M4 →Mk , (C.98)

whereMk is the moduli space of solutions to Nahm’s equations with % Nahm pole bound-

ary conditions. As before we define coordinates X = {XI} on Mk. The case when

Ω2,+(M4) is trivial corresponds to M4 having reduced holonomy SU(2)r ⊂ SU(2)` ×
SU(2)r, which is the definition of a Hyper-Kähler manifold.

The zero modes around a solution Bµν(XI) can be expressed as

δBµν = ΥI,µνδX
I

δAθ = Υθ
IδX

I ,
(C.99)

where the expansion is in terms of the cotangent vectors Υ, which satisfy

ΥI,µν = ∂IBµν + [EI , Bµν ]

Υθ
I = ∂IAθ − ∂θEI − [Aθ, EI ] ,

(C.100)

with EI defining a gauge connection onMN . We will choose the convenient ‘gauge fixing

condition’

DθΥ
θ
I −

1

4
[ΥI,µν , B

µν ] = 0 . (C.101)

The equations obeyed by the cotangent vectors Υµν
I , Υθ

I are

DθΥI,µν + [Υθ
I , Bµν ]− 1

2
([ΥI,µρ, Bν

ρ]− [ΥI,νρ, Bµ
ρ]) = 0 . (C.102)

A natural metric on MN can be defined as

GIJ = −
∫
dθTr

(
1

4
Υµν
I ΥJ,µν+Υθ

IΥ
θ
J

)
. (C.103)
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Similarly we can write down an expression for the three symplectic forms ωaIJ (see e.g.

[269]), repackaged into ωµν,IJ = −(ja)µνω
a
IJ , as

ωµν,IJ = −
∫
dθTr

(
1

2
ΥI,µρΥJ

ρ
ν −

1

2
ΥI,νρΥJ

ρ
µ −ΥI,µνΥθ

J + Υθ
IΥJ,µν

)
. (C.104)

These provide the Hyper-Kähler structure of the moduli space Mk. The quaternionic

relations on the three complex structures ωaIJ becomes

ωµρ,I
Jων

ρ
J
K = 2ωµν,I

K − 3gµνδ
K
I . (C.105)

Using the orthogonality of the Υµν
I , Υθ

I modes we derive the relations

ωµν,I
JΥθ

J = −ΥI,µν

ωµρ,I
JΥνρ

J = 2ΥI,µ
ν + 3δνµΥθ

I .
(C.106)

At order r−2 in the 5d action we find terms involving fermions. They vanish upon imposing

η(2) = O(r), ψ(1)
µ = O(r), χ(2)

µν = O(r) . (C.107)

The 4d action arises with overall coupling 1
4r` and at this order in r the above fermions

appear as Lagrange multipliers and can be integrated out to give the constraints

Dθχ
(1)
µν+[η(1), Bµν ]− 1

2

(
[χ(1)
µρ , Bν

ρ]− [χ(1)
νρ , Bµ

ρ]
)

= 0

Dθη
(1) − 1

4
[χ(1)
µν , B

µν ] = 0

Dθψ
(2)
µ − [ψ(2)

ν , Bµ
ν ] = 0 .

(C.108)

These equations are solved using the basis of the contangent bundle, which obey (C.102)

and (C.101), with the following relations

χ(1)
µν = ΥI µνλ

I + Υθ
Iζ
I
µν + ΥI σ[µζ

I σ
ν]

η(1) = Υθ
Iλ

I − 1

4
ΥI µνζ

I µν

ψ(2)
µ = ΥI µ

νκIν −Υθ
Iκ

I
µ ,

(C.109)

where the fields λI , κIµ and ζIµν are Grassmann-odd scalars, vectors and self-dual two-

forms on M4, respectively. The identities (C.106) imply that the fermionic fields obey the

constraints
ωµν

I
Jλ

J = ξIµν

ωµσ
I
Jξ

J
ν
σ = 2ξIµν − 3δµνλ

I

ωµν
I
Jκ

Jν = −3κIµ .

(C.110)

or more generally

ωµν
I
Jκ

J
σ = gµσκ

I
ν − gνσκIµ + εµνσ

ρκIρ . (C.111)
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This decomposition satisfies the fermion equtaions of motion, which can be seen by using

the identity

ΩρµΩ̃ρ
ν =

1

4
ΩρσΩ̃ρσgµν + Ωρ[µΩ̃ρ

ν] , (C.112)

where Ωµν , Ω̃µν are self-dual two-forms.

C.6.4 Dimensional Reduction to 4d Sigma-Model

After reduction to four dimensions the bosonic fields of the theory will be the collective

coordinates XI describing a map M4 →Mk and the fermionic fields will be the scalars λI ,

one-forms κI and self-dual two-forms ζIµν , which are valued in the pull-back of the tangent

bundle to Mk

λ ∈ Γ(X∗TMk)

κ ∈ Γ(X∗TMk ⊗ Ω1)

ζ ∈ Γ(X∗TMk ⊗ Ω2) .

(C.113)

The bosonic and fermionic zero modes lead to a four-dimensional effective action with

overall coupling constant 1
r` for the fields XI , λI , κIµ, ζIµν , Aµ and the scalars ϕ, ϕ̄.

As mentioned previously the kinetic term for Aµ, namely F 2
µν is of order r and drops from

the action in the small r limit. The gauge field Aµ becomes an auxiliary field and can be

integrated out using its equation of motion, and likewise for the scalars ϕ and ϕ̄. Their

equations of motion are

D2
θϕ+

1

4
[Bµν , [B

µν , ϕ]] =4ir

(
[η(1), η(1)] +

1

4
[χ(1)
µν , χ

(1)µν ]

)

D2
θ ϕ̄+

1

4
[Bµν , [B

µν , ϕ̄]] =− 4ir
(

[ψ(1)
µ , ψ(1)µ]

)

D2
θAµ +

1

4
[Bνρ, [B

νρ, Aµ]] = [Aθ, ∂IAθ] ∂µX
I +

1

4
[Bνρ, ∂IB

νρ] ∂µX
I

+ 4i([η(1), ψ(2)
µ ]− [χ(1)

νµ , ψ
(2)ν ]) .

(C.114)

The spinor bilinears can be further simplified by applying the expansion for the spinors

(C.109)

[η(1), η(1)] +
1

4
[χ(1)
µν , χ

(1)µν ] = 4([Υθ
I ,Υ

θ
J ] +

1

4
[ΥIµν ,Υ

µν
J ])(λIλJ +

1

4
ζIσρζ

Jσρ)

[ψ(1)
µ , ψ(1)µ] = −4([Υθ

I ,Υ
θ
J ] +

1

4
[ΥIσρ,Υ

σρ
J ])κIµκ

Jµ

[η(1), ψ(2)
µ ]− [χ(1)

νµ , ψ
(2)ν ] = −4([Υθ

I ,Υ
θ
J ] +

1

4
[ΥIνρ,Υ

νρ
J ])λIκJµ .

(C.115)

To solve these equations we note that the curvature

ΦIJ = [∇I ,∇J ] , (C.116)
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where ∇I = ∂I + [EI , · ], satisfies the equation

D2
θΦIJ +

1

4
[Bνρ, [B

νρ,ΦIJ ]] =
1

2
[ΥIνρ,Υ

νρ
J ] + 2[Υθ

I ,Υ
θ
J ] . (C.117)

Combining the information above the solutions are

ϕ = 8irΦIJλ
IλJ + 2irΦIJζ

I
µνζ

Jµν

ϕ̄ = −8irΦIJκ
I
µκ

µJ

Aµ = EI∂µX
I − 8iΦIJ(λIκJµ − ζIνµκJν) .

(C.118)

Replacing the fermionic and bosonic zero modes in the action one obtains

Sscalars = − 1

4r`

∫
dθd4x

√
|g4|

[
Tr

(
∂IAθ∂JAθ +

1

4
∂IBρσ∂JB

ρσ

)
∂µX

I∂µXJ

]

Sfermions = +
2i

r`

∫
d4x
√
|g4|

[(
GIJg

µν − ωµνIJ
)

(λI∂µκ
J
ν − ξIµσ∂σκJν )

−(δKI g
σν − ωσνIK)Tr

(
1

4
ΥK ρτ∂JΥρτ

L + Υθ
K∂JΥθ

L

)
∂µX

J(δµσλ
IκLν − ξIσµκLν )

]
.

(C.119)

Substituting in the solution for the gauge field (C.118) we obtain three different types of

terms, which we address in turn. Terms of type 1 are proportional to ∂µX
I∂νX

J and

combine with the terms in the scalar action to give

Sscalars + SAµ,type 1 =
1

4r`

∫
d4x
√
|g4|GIJgµν∂µXI∂νX

J . (C.120)

Terms of type 2 combine with terms from the action of the fermions to give

SAµ,type 2 = −2i

r`

∫
dθd4x

√
|g4| (δKI gσν − ωσνIK)Tr

(
1

4
ΥK ρτ∇JΥρτ

L + Υθ
K∇JΥθ

L

)
∂µX

J

× (δµσλ
IκLν − ξIσµκLν ) .

(C.121)

Using the identities

∇IΥµν
J = ΓKIJΥµν

K +
1

2
[ΦIJ , B

µν ]

∇IΥθ
J = ΓKIJΥθ

K −
1

2
DθΦIJ ,

(C.122)

where

ΓIJ,K = −
∫
dθTr

(
1

4
Υµν
K ∇(IΥJ)µν + Υθ

K∇(IΥ
θ
J)

)
, (C.123)

these terms simplify to

SAµ,type 2 =
2i

r`

∫
dθd4x

√
|g4| (GIJgσν − ωσνIJ)ΓJKL∂µX

K(δµσλ
IκLν − ξIσµκLν ) .

(C.124)
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and covariantise the kinetic terms for the fermions. Lastly the terms of type three con-

tribute towards quartic fermion interactions. These take the form

SAµ,type 3 =
16

r`

∫
dθd4x

√
|g4|Tr

(
DθΦIKDθΦJL +

1

4
[ΦIK , Bµν ][ΦJL, B

µν ]

)

× (λIλJκKτ κ
Lτ +

1

4
ζIρσζ

JρσκKτ κ
Lτ )

=
8

r`

∫
dθd4x

√
|g4|Tr

(
DθΦIKDθΦJL +

1

4
[ΦIK , Bµν ][ΦJL, B

µν ]

−DθΦILDθΦJK +
1

4
[ΦIL, Bµν ][ΦJK , B

µν ]
)

×
(
λIλJκKτ κ

Lτ +
1

4
ζIρσζ

JρσκKτ κ
Lτ

)
,

(C.125)

where we have made use of the identity

ωµνM
I∇[IΥ

θ
J ] = −ωµνJ I∇[IΥ

θ
M ] , (C.126)

and the analogous relation for Υµν
I , and antisymmetrised in KL indices. To obtain a

quartic fermion interaction involving the Riemann tensor of the target we need to combine

the terms in (C.125) with the term which arises from integrating out ϕ and ϕ̄

Sϕ/ϕ̄ =
16

r`

∫
dθd4x

√
|g4|Tr

(
DθΦIJDθΦKL +

1

4
[ΦIJ , Bµν ][ΦKL, B

µν ]

)

× (λIλJκKτ κ
Lτ +

1

4
ζIρσζ

JρσκKτ κ
Lτ ) .

(C.127)

Combining (C.127) and (C.125), as well as the fact that the Riemann tensor on the target

is given by

RIJKL = −
∫
dθTr

(1

2
∇[IΥ

µν
J ]∇[KΥL]µν +

1

4
∇[IΥ

µν
K]∇[JΥL]µν −

1

4
∇[IΥ

µν
L]∇[JΥK]µν

+ 2∇[IΥ
θ
J ]∇[KΥθ

L] +∇[IΥ
θ
K]∇[JΥθ

L] −∇[IΥ
θ
L]∇[JΥθ

K]

)
,

(C.128)

we obtain the four fermi interaction

Sfermi4 = −32

r`

∫
d4x
√
|g4|RIJKL

(
λIλJκKτ κ

Lτ +
1

4
ζIρσζ

JρσκKτ κ
Lτ

)
. (C.129)

The final action upon combining all the above terms is

S =
1

r`

∫
d4x
√
|g4|

[
1

4
GIJg

µν∂µX
I∂νXJ + 2i

(
GIJg

µν − ωµνIJ
)

(λIDµκ
J
ν − ζIµσDσκJν )

−32RIJKL

(
λIλJκKτ κ

Lτ +
1

4
ζIρσζ

JρσκKτ κ
Lτ

)]
,

(C.130)

where

Dµκ
I
ν = ∂µκ

I
ν + ΓIJK∂µX

JκKν . (C.131)
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The action can be further simplified by using relations between the complex structures

ωµν
I
J and the fermions (C.110) to eliminate the self-dual two-form ζIµν . In addition we

know that the target space Mk is Hyper-Kähler, which means that the three complex

structures ωµν
I
J define covariantly constant on Mk

DIωµν
J
K = 0 . (C.132)

This in turn implies the relations with the Riemann tensor on Mk

RIJK
Mωµν,ML = RIJL

Mωµν,MK , (C.133)

and other relations obtained using the standard symmetries of the Riemann tensor. With

(C.110) and (C.133), and after rescaling λ→ 1
4λ

I and κµ → i
16κµ, the action simplifies to

SHK =
1

4r`

∫
d4x
√
|g4|

(
GIJg

µν∂µX
I∂νX

J − 2GIJg
µνκIµDνλ

J +
1

8
gµνRIJKLκ

I
µκ

J
νλ

KλL
)
.

(C.134)

The constraint on the fermions κIµ can be re-expressed as

κIµ +
1

3
(ja)µ

νκJνω
a
J
I = 0 , (C.135)

The supersymmetry transformations are

δXI = uλI

δλI = 0

δκIµ = u
(
∂µX

I − (ja)µ
ν∂νX

JωaJ
I
)
− uΓIJKλ

JκKµ .

(C.136)

This dimensional reduction of the 5d topologically twisted SYM theory, thus gives precisely

the same action we obtained in (6.130), by topologically twisting the 4d sigma-model for

Hyper-Kähler M4.
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