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Abstract: The engineering of quantum computers requires the reliable characterization of qubits, quan-

tum operations, and even the entire hardware. Quantum tomography is an indispensable framework

in quantum characterization, verification, and validation (QCVV), which has been widely accepted

by researchers. According to the tomographic target, quantum tomography can be categorized into

quantum state tomography (QST), quantum process tomography (QPT), gate set tomography (GST),

process tensor tomography (PTT), and instrument set tomography (IST). Standard quantum tomogra-

phy toolkits generally consist of basic linear inverse methods and statistical maximum likelihood

estimation (MLE)-based methods. Furthermore, the performance of standard methods, including

effectiveness and efficiency, has been further developed by exploiting Bayesian estimation, neural

networks, matrix completion techniques, etc. In this review, we introduce the fundamental quantum

tomography techniques, including QST, QPT, GST, PTT, and IST. We first introduce the details of

basic linear inverse methods. Then, the framework of MLE methods with constraints is summarized.

Finally, we briefly introduce recent further research in developing the performance of tomography,

utilizing some symmetry properties of the target. This review provides a primary getting-start in

developing quantum tomography, which promotes quantum computer development.

Keywords: quantum characterization, verification, and validation; quantum tomography; linear

inverse; maximum likelihood estimation

1. Introduction

Quantum tomography, as a significant framework in quantum characterization, verifi-
cation, and validation (QCVV), is indispensable for manufacturing and developing quan-
tum computers [1,2]. The term “tomography” originates from the Greek words “tomos”,
meaning “description” or “writing”. In the context of quantum tomography as depicted in
Figure 1, the term is used to describe a process that involves reconstructing a quantum state
by obtaining information about its various slices or projections. The results of tomography
are generally considered as the foundation of quantum device calibration [3–7], quantum
error mitigation (QEM) [8], and quantum error correction (QEC) [9–11], providing detailed
information about qubits, quantum gates, as well as the quantum noise. In this framework,
an experimenter prepares a set of experiments consisting of quantum states, circuits, and
measurements. Then, a set of data is collected by executing the prepared experiments.
Results of interest are derived by performing estimation algorithms.

Based on the common skeleton but different targets, the main techniques are quantum
state tomography (QST) [6,12–22], quantum process tomography (QPT) [23–31], and gate
set tomography (GST) [5,32–35], process tensor tomography (PTT) [36,37], and instrument
set tomography (IST) [38]. The effectiveness of these methods in characterizing the target
components within specified assumptions has been proven. Furthermore, some methods
have been used in developing real quantum hardware [4,39–41].
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Tomography tools typically operate under the assumption that components other than
the target are knowable. This implies that the experimenter possesses complete knowledge
of non-target components or can acquire their information implicitly through learning
algorithms. Relaxing knowable assumptions indicates the progress of comprehensiveness
and practicality at a cost of complexity in terms of the number of experiments required and
the post-processing.

The tomography first emerged by proposing QST [23–31] with the assumption that
quantum gates and measurements are known to the experimenter. Therefore, one can con-
struct a complete basis of the Hilbert–Schmidt space corresponding to the target quantum
state. The black-box quantum state is mathematically reconstructed utilizing measurement
probabilities and the knowledge of quantum gates and measurements. Analogously, the
QPT [23–26] follows this approach, where the target is a black box quantum process, and
the knowable assumptions are made to non-target quantum gates, quantum states, and
measurements. Utilizing non-target quantum gates to compose symmetry state preparation
and measurement (SPAM) circuits and combining them with the known quantum states
and measurements, complete bases are constructed before and after the black-box quantum
process, respectively. Consequently, the QPT tries to recover a completely positive (CP)
trace-preserving (TP) map between the input and output quantum states to represent the
target process.

Developing from the QPT, GST was proposed based on the fact that all components
are noisy. While applying tomography to quantum gates, QPT becomes inaccurate in the
presence of SPAM errors. GST addressed this issue by independently modeling quantum
gates, initial states, and measurements as tomography targets. Therefore, the GST explicitly
separates the SPAM error into intrinsic and extrinsic errors. Intrinsic errors are inherent in
the state preparation and measurement process, while extrinsic errors are introduced by
performing quantum gates in SPAM circuits, facilitating QEC and QEM. Furthermore, GST
exhibits gauge freedom up to a similarity transformation by a gauge matrix. This implies
that an initialization error cannot be easily distinguished from a faulty measurement. As a
result, GST provides a systematic method to simultaneously characterize quantum gates,
initial states, and measurements. However, the scaling with the system size is polynomially
worse than QPT due to the requirement to characterize multiple gates at once.

QPT and GST do not account for the dynamic influence of the environment on quan-
tum processes. Nevertheless, compelling evidence, as highlighted in recent research [37],
suggests the existence of multi-time system–environment (SE) correlations. Neglecting
these SE correlations may introduce systematic errors in the tomography process. For
instance, using QPT or GST to perform tomography on a black-box quantum process
with SE correlations in the state preparation may cause the theoretical violation of CP
constraints [37]. This can disrupt tomography under the Markovian model and degrade
the effectiveness of QEC codes.

PTT [36,37] initially aims to operationally characterize SE correlations. Based on the
quantum stochastic process [42], a multi-time-step non-Markovian system can be modeled
by a principal quantum system [43], an environment with the same dimensions as the
system, as SE unitaries act on both the system and environment dimensions between
adjacent time steps, and instruments that the experimenter applies to the system at time
steps. In NISQ settings, those instruments, quantum gates, and measurements are the
only components accessible to the experimenter. The PTT exploits the process tensor
to represent all inaccessible parts consisting of the initial SE state and SE unitaries. By
combining informationally complete instruments that span the space of CP and trace non-
increasing (TNI) quantum operations, the process tensor is recovered. However, the PTT
requires an exponential number of experiments with respect to the Markovian order, which
limits large-scale implementations.

Growing out of PTT, the IST [38] was proposed to perform GST in non-Markovian
situations. It tackles the inconsistency in characterizing SE correlations and instruments.
For example, two inconsistent process tensors may be generated by two sets of imperfect
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instruments. Both SE correlations and instruments are targets. The IST successfully esti-
mates the instrument and the SE correlations that are consistent with the measurement
probabilities. However, it still suffers from the exponential number of experiments and the
high complexity of post-processing.

In this review, we provide a fundamental introduction to quantum tomography tech-
niques, including QST, QPT, GST, PTT, and IST. We briefly introduce the basics and direction
of the development of these techniques for readers to facilitate systematic comprehension.
This review contains many abbreviations. To facilitate prompt reference for readers, we have
compiled the key abbreviations in Table 1, aiming to enhance accessibility and comprehension.

This review is structured as follows. In Section 2, we briefly introduce mathematical
representations for quantum tomography. Then, the basic frameworks for Markovian and
non-Markovian quantum tomography are introduced in Sections 3 and 4, respectively.
In Section 5, we introduce the maximum likelihood estimation method as an indispens-
able statistical tool in the standard toolkit. Finally, further developments to enhance the
performance of tomography are discussed in Section 6.

Table 1. The major abbreviations of this review.

Terminology Type Abbreviation Explanation

Tomography

(L)QST (Linear inverse) quantum state tomography
(L)QPT (Linear inverse) quantum process tomography
(L)GST (Linear inverse) gate set tomography
PPT Process tensor tomography
IST Instrument set tomography
SPAM State preparation and measurement

Mathematical

CP Completely positive
TP Trace-preserving
PTM Pauli transfer matrix
CJI Choi–Jamiolkowski isomorphism
MLE Maximum likelihood estimation

Noise-related SE System–environment

Figure 1. Schematic view of quantum tomography. For an unknown quantum device, which can be

a quantum state preparation circuit, quantum process, etc., one can obtain the explicit representation

with some SPAM circuits.

2. Preliminaries

Prior to delving into quantum tomography techniques, it is essential to establish math-
ematical representations for physical entities. This section introduces the mathematical
expressions for quantum states, gates, and measurements. Subsequently, a calligraphic
notation will be employed to depict the physical entities associated with quantum opera-
tions, such as quantum gates (G) and measurements (M). The quantum state is written
in the Roman alphabet, such as ρ. We primarily utilize the Pauli transfer matrix (PTM)
formalism. Then, the Choi–Jamiolkowski isomorphism (CJI) representation is additionally
introduced [37,44].
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In the PTM representation, a quantum state ρ on a d-dimensional Hilbert space Hd

is represented by a superoperator |ρ⟩⟩ as a vector in the d2-dimensional Hilbert–Schmidt
space. We specify the basis of Hilbert–Schmidt space to be Pauli basis without loss of
generality. Hence, the elements of |ρ⟩⟩ represent the coefficients of the corresponding
normalized Pauli matrix [5],

|ρ⟩⟩ = ∑
k

Tr(Pkρ)|k⟩⟩, (1)

where Pk ∈ {I/
√

2, X/
√

2, Y/
√

2, Z/
√

2}⊗n is the k-th normalized Pauli matrix. Further-
more, a quantum measurement, which is described as an operator M, can be represented
by a set of row vectors [5], i.e.,

⟨⟨M| = ∑
k

Tr(Pk M)⟨⟨k|, (2)

where ⟨⟨k| = |k⟩⟩†. Let ⟨⟨A|B⟩⟩ denote Tr(AB), the probability of performing measurement
M on ρ, be represented as [5]

p = ⟨⟨M|ρ⟩⟩. (3)

A quantum process A can be conveniently represented by a PTM defined as

(A)ij = Tr
{

PiA(Pj)
}

. (4)

This definition describes the mapping between input and output quantum states.
Notably, the output state ρout is represented by the left product of input state ρin that

|ρout⟩⟩ = A|ρin⟩⟩. (5)

Hence, the experimental probability result of the experiment, which involves a quan-
tum state ρ, quantum process A, and a measurement M, can be represented as

p = Tr{M ◦A(ρi)} = Tr{MA(ρi)} = ⟨⟨M|A|ρ⟩⟩. (6)

The PTM constructs a mapping from the input state to the output state. It is easy to
check and constrain the trace characteristics by examining the first row of PTM. For example,
the trace-preserving (TP) constraints indicate the first row of PTM to be [1, 0, 0, . . . , 0] [5].
However, it is difficult to intuitively represent the CP property.

Therefore, we also introduce the CJI representations. For a quantum process G , the CJI
matrix is defined as [37,44]

ξG = ∑
ij

G(|i⟩⟨j|)⊗ |i⟩⟨j|, (7)

where the output state can be determined by

ρout = Trin[(I ⊗ ρT
in)ξG ]. (8)

Since the CJI matrix represents a quantum state without normalization, it is also
referred to as the Choi state. The CP constraints for G are equivalent to the positive
semi-definiteness of the ξG .

Additionally, PTM representation A can be easily transformed into Choi–Jamiolkowski
isomorphism (CJI) [37,44] representation ξA, and vice versa, that
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ξA =
1

d2 ∑
ij

AijPj ⊗ PT
i , (9)

Aij = Tr
{(

Pj ⊗ PT
i

)

ξA
}

. (10)

3. Basic Markovian Tomography Framework

Considering a Markovian quantum experiment conducted by an experimenter with
specified components consisting of quantum state ρ, circuit G, and measurement M,
the probability of the experiment, whose samples are the only accessible outputs to the
experimenter, is given by [5]

p = Tr[M◦G(ρ)], (11)

where the PTM representation is

p = ⟨⟨M|G|ρ⟩⟩. (12)

Current quantum devices generally provide limited initial quantum states and quan-
tum measurements. Therefore, the specified quantum state and measurement are referred
to as the state preparation and measurement (SPAM) circuits that act on the initial states
and native measurements. Then, the probability can be rewritten in the following form [5]

p =Tr[M◦ E ◦ G ◦ F (ρ)] (13)

=⟨⟨M|E G F|ρ⟩⟩, (14)

where E and F represent the state preparation circuit and measurement circuit, respec-
tively. In the following, the quantum state and measurement are referred to as the SPAM
circuits acting on the initial state and native measurement, respectively. Moreover, the
specified quantum states and measurements with index in experiments are implemented
by specifying the SPAM circuits without loss of generality [5]

ρi : |ρi⟩⟩ = Fi|ρ⟩⟩, (15)

Mi : ⟨⟨Mi| = ⟨⟨M|Ei. (16)

The basic Markovian quantum tomography framework can be summarized in the
following steps:

(1) Experiment preparation. Prepare a set of experiments, where each experiment consists
of the quantum state, circuit, and measurement.

(2) Data collection. Execute the prepared experiments and record the measurement samples.
(3) Tomography reconstruction. Reconstruct the tomographic target by performing a post-

process algorithm based on the collected data.

In general, quantum tomography techniques assume that components except for
tomographic targets are perfectly implemented as the knowledge to the experimenter, or
implicitly learnable by learning algorithms. Experimenters usually prepare experiments
that form a tomographically complete basis for the target to obtain sufficient information.

In this section, based on the linear inversion, we will introduce the basic methods of
QST, QPT, and GST, i.e., LQST, LQPT, and LGST, respectively.

3.1. Basic QST

The task of QST is to find the explicit representation of an unknown quantum state
σ ∈ Hd [6,13–18]. The construction of a tomographically complete basis for the state
is constructed by combining quantum circuits and measurements, which can be solely
accomplished by measurements with identity circuits.
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Let the set of measurement {Mi}d2

i=0 be tomographically complete so that {⟨⟨Mi|}d2

i=0
are linear independent. The probability of sampling a desired output value of Mi is

pi = ⟨⟨Mi|σ⟩⟩, (17)

which indicates the decomposition of the unknown quantum state σ. Since the measure-

ments are known to the experimenter, the dual set of {⟨⟨Mi|}d2−1
i=0 can be determined as

{|Dj⟩⟩}d2−1
j=0 by performing the linear inversion, where ⟨⟨Mi|Dj⟩⟩ = δij.

Then, the unknown quantum state can be reconstructed by

|σ̂⟩⟩ =
d2−1

∑
i=0

p̂i|Di⟩⟩, (18)

where p̂i = ni/nt is the estimated probability, ns is the number of the desired output value
of Mi in samples, and nt is the total sampling times.

The LQST requires at least d2 experiments to collect complete information on the un-
known quantum state, and the linear inverse process on a d2 × d2 matrix. The reconstructed
state σ̂ is represented by a d2-dimensional real vector.

3.2. Basic QPT

The task of QPT is to find the explicit representation of an unknown quantum process
G ∈ B(Hd), where B(•) represents the space of bounded linear operator on the operand
space [23–25,27–31]. The process G can be treated as a map from the space of the input state
to the space of the output state. Therefore, to construct a tomographically complete basis

for the unknown quantum process, QPT requires a set of quantum states {ρi}d2−1
i=0 and a set

of quantum measurements {Mj}d2−1
i=0 that simultaneously span Hd, i.e., both {|ρi⟩⟩}d2−1

i=0

and {⟨⟨Mj|}d2−1
j=0 are linear independent.

Given ρi and Mj, the probability is

pij = ⟨⟨Mj|G|ρi⟩⟩, (19)

which indicates the coefficient of the map from ρi to Mj. Based on the known knowledge

of quantum states and measurements, the dual sets of {|ρi⟩⟩}d2−1
i=0 and {⟨⟨Mi|}d2−1

j=0 can be

determined by {⟨⟨βk|}d2−1
k=0 and {|Dl⟩⟩}d2−1

l=0 , respectively, by performing the linear inversion.
Then, the quantum process can be reconstructed by

Ĝ =
d2−1

∑
i,j=0

p̂ij|Dj⟩⟩⟨⟨βi|, (20)

where p̂ij is the estimated probability.
It can be observed that the construction of a tomographically complete basis requires

d4 experiments and processes the linear inversion on the d2 × d2 matrix twice. The recon-
structed quantum process Ĝ is saved as a d2 × d2-dimensional PTM.

3.3. Basic GST

QST and QPT typically assume the perfect implementation of non-target components,
serving as knowledge for the experimenter. However, nothing is absolutely perfect. While
using QPT to characterize a set of quantum gates that are available to a quantum device,
errors introduced by SPAM circuits impact the self-consistency of tomography, which
motivate the development of GST [5,32–35]. Compared to QST and QPT, the goal of GST is
to self-consistently and completely characterize a set of nk quantum gates {Gk}, an initial
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quantum state ρ, and a native quantum measurement M. Based on the probability defined
in (11), a quantum gate set is defined as [5]

G := {ρ,M,G0, · · · ,GK}, (21)

where M is a two-outcome measurement and G0 is the null gate, which does nothing for no
time. Based on the given gate set G, SPAM gates are defined as

F = {F1,F2, · · · ,Fd2}, (22)

where Fi is composed of gates in the set {Gk}, that is,

Fi = GiLi
◦ · · · ◦ Gi2 ◦ Gi1 , (23)

where Li is the length of the i-th SPAM gate. Then, we can also obtain d2 tomographi-
cally complete input quantum states {Fj(ρ)} and d2 measurement operators {M ◦ Fi}.

Therefore, we can obtain nk × d4 probabilities,

pikj = ⟨⟨M|FiGkFj|ρ⟩⟩ (24)

= ∑
rs

⟨⟨M|Fi|r⟩⟩⟨⟨r|Gk|s⟩⟩⟨⟨s|Fj|ρ⟩⟩. (25)

Likewise, we can rewrite the above equality in the matrix form,

Rk = AGkB, (26)

where

A = ∑
i

|i⟩⟩⟨⟨M|Fi, B = ∑
j

Fj|ρ⟩⟩⟨⟨j|, (27)

(Rk)ij = pikj. (28)

Experimentally measuring the values pikj, we can obtain matrices {Sk}, whose ele-
ments satisfy

E[Sk] = Rk, ∀ k. (29)

Moreover, we define

g = S0, E[g] = AB. (30)

Furthermore, we define |ρ̃⟩⟩ and ⟨⟨M̃|, which can be experimentally estimated with
and satisfy

E[|ρ̃⟩⟩] = ∑
i

|i⟩⟩⟨⟨M|Fi|ρ⟩⟩, (31)

E[⟨⟨M̃|] = ∑
j

⟨⟨M|Fj|ρ⟩⟩⟨⟨j|, (32)

where ⟨⟨M|Fi|ρ⟩⟩ is measurable.
Then, the unknown gate set can be recovered by performing convex optimization

technology. Based on high-quality quantum devices, it is known a priori that the measured
gates will differ from an ideal (target) set of gates by some very small error. Therefore, we
have a target set G′ = {|ρ′⟩⟩, ⟨⟨E′|, G′

0, · · · , G′
K} and define

G̃k := g−1Sk ≈ B−1RkB. (33)
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Then, we can find the estimation of matrix B via the following convex optimiza-
tion problem,

B̂ = arg min
B̃

K+1

∑
k=1

Tr

[

(

G̃k − B̃−1G′
k B̃

)2
]

, (34)

where G′
K+1 = |ρ′⟩⟩⟨⟨M′| and G̃k = g−1|ρ̃⟩⟩⟨⟨M̃|. Lastly, we can recover the unknown gate

set with

|ρ̂⟩⟩ := B̂|ρ̃⟩, (35)

⟨⟨M̂| := ⟨⟨M̃|B̂−1, (36)

Ĝk := B̂G̃k B̂−1. (37)

4. Basic Non-Markovian Tomography Framework

No system is isolated. Based on the quantum stochastic process theory [42,45], an
open quantum system subjected to k-time-step interventions by quantum operations (in-
struments), such as quantum processes and measurements, can be modeled as shown
in Figure 2. It utilizes a principal quantum system and an environment to represent the

entire SE dimensions. At time step t, the experimenter applies an instrument A(t)
xt

from the

t-available set J(t) :=
{

A(t)
xt

}

to the system. The instrument transforms the system state

and outputs a value xt as the observation of the experimenter. Without loss of generality,
the output xt is treated as the index of the instrument applied at time step t. Notably, there
exists an SE unitary between adjacent time steps to represent the non-Markovian SE evolu-
tion. Therefore, the probability of obtaining a sequence of output value x := [x0, x1, ..., xk−1]
is represented by

px =Tr
{

A(k−1)
xk−1

Uk−2:k−1 . . .A(1)
x1

U0:1A(0)
x0

(

ρ
(0)
SE

)}

(38)

=⟨⟨0SE|A(k−1)
xk−1

k−2

∏
t=0

Ut:t+1 A
(t)
xt
|ρ(0)SE ⟩⟩, (39)

where we simplify the A(t)
xt

⊗ I and A
(t)
xt

⊗ I into A(t)
xt

and A
(t)
xt

, respectively, without
confusing them.

Figure 2. Model of operational open quantum process. Components marked by green blocks are inacces-

sible to the experimenter, while instruments marked by red blocks are the only accessible components.

Non-negligible non-Markovian SE correlations of open quantum systems theoreti-
cally impact the tomography techniques designed under Markovian settings. A simple
example to demonstrate the impact is the theoretical violation of CP constraints given in
Example 1 in [33,37] (c.f. Example A1 in Appendix A). The requirement of characterization
of non-Markovian quantum correlations motivates non-Markovian quantum tomography
techniques, such as process tensor tomography (PTT) and instrument set tomography
(IST). Non-Markovian quantum tomography also exploits the three-step skeleton as shown
in Section 3, where each experiment in the first step of Experiment Preparation consists
of instruments.

The target in the non-Markovian tomography should be further exclaimed. Based on
the criterion of accessibility, the components are classified into accessible and inaccessible
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parts. Specifically, the only accessible components to the experimenter are the instruments
acting on the principal quantum system, while the initial SE state and SE unitaries remain
inaccessible. Quantum stochastic process theory [42,45] utilizes the process tensor to
represent all inaccessible parts as a map from the product of k spaces of CP and trace
non-increasing (TNI) bounded operators on quantum states to the space of output quantum
states. In this review, we principally adopt the definitions of process tensor T0:k that

px = T0:k(Ax) = T0:k

(

A(0)
x0

, . . . ,A(k−1)
xk−1

)

, (40)

with physical properties:

(P1) Linearity. T0:k(aA + bB) = T0:k(aA) + T0:k(bB), for any a.b ∈ R.
(P2) Complete positivity. T0:k ⊗ Ianc(AS,anc) ≥ 0, where Ianc is the identity process on the

ancilla, for any instruments AS,anc act on the system and the ancilla.
(P3) Containment. Ti:j is contained in Tl:k, where l ≤ i ≤ j ≤ k.

Recently, the most acceptable mathematical representation of process tensor is the
CJI matrix

ΥT0:k
= TrE[ξUk−2:k−1

⋆ · · · ⋆ ξU0:1
⋆ ρ

(0)
SE ], (41)

where ⋆ represents the link product defined in [37], ξU is the Choi state of SE unitary U .
This formulation indicates that the SE correlations of an open quantum system with k
time step instrument interventions can be represented by a Choi state consisting of 2k + 1
subsystems labeled by {ik−1, ok−2 . . . , i1, o0}, respectively. In this way, the output state can
be determined by

px = Tr
[

ΞT
x ΥT0:k

]

, (42)

where Ξx = ξ
(k−1)
xk−1

⊗ · · · ⊗ ξ
(0)
x0

, and ξ
(t)
xt

represent the Choi state of A(t)
xt

. It is easy to verify
the linearity and complete positivity of ΥT0:k

. Furthermore, the process tensor of a sub-time
span can be derived as

ΥTi:j
(Ξxl ,...,xi−1

)

= Trl

[

(

Ξxk−1,...,xj
⊗ Il ⊗ Ξxl ,...,xi−1

)T
ΥTl:k

]

,
(43)

for any Ξxk−1,...,xj
because of the causality, where l = ij−1oj−2 . . . ii+1oi, and partial trace

with label •̄ means partial trace other dimensions except for •.
In this section, based on the linear inversion, we will introduce the basic methods of

PTT and IST, i.e., LPTT and LIST, respectively.

4.1. Basic PTT

Linear inverse process tensor tomography (LPTT) provides a common and quick
method for PTT [36,42]. The process tensor can be treated as a map from the space of
k-time-step instruments to the probability. The tomography of process tensor requires
the informationally complete (IC) available sets at all time steps, which means that the
instruments in each available set span the space of the bounded linear operator on the
quantum state. Furthermore, we assume that instruments are perfectly implemented as the
knowledge to the experimenter.

The experimenter prepares a set of experiments labeled by x that consist of all combi-
nations of instruments. By performing the experiments, the experimenter collects estimated
probabilities p̂x.
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Let D(t) := {χ
(t)
xt
} be the dual set of t-available set J(t) := {ξ

(t)
xt
} that Tr(χ

(t)T
i ξ

(t)
j ) = δij.

The process tensor can be reconstructed by

Υ̂T0:k
= ∑

x

p̂x

(

χ
(k−1)
xk−1

⊗ · · · ⊗ χ
(0)
x0

)

. (44)

Given a sequence of output y, it can be verified that

Tr
[

ΞT
y Υ̂T0:k

]

(45)

= ∑
x

px ∏
t

Tr[χ
(t)T
xt

ξ
(t)
yt
] (46)

= ∑
x

px ∏
t

δxtyt (47)

= py. (48)

Since the IC available set at each time step consists of d2 × d2 instruments, LPTT
requires d4k experiments to characterize the entire process tensor. However, the linear
inverse procedures are independently applied on each time step to determine the dual set
of the available set. This indicates k independent linear inverse procedures on the d4 × d4

complex matrix. Nevertheless, it still requires the reconstruction of the d4k matrix of the
process tensor.

4.2. Basic IST

The emergence of instrument set tomography (IST) results from non-avoidable imperfect
implementations of instruments while performing PTT [38]. The differences between the
knowledge and the practical implementations of instruments may lead to the systematic
inconsistency of tomographic results. A simple example to show the inconsistency is that
PTT generates two different process tensors utilizing two sets of imperfectly implemented
IC instruments, respectively. Moreover, it is not always reasonable to require the quantum
device to be characterized as this can formulate an IC available set at each time step. Recent
superconductive quantum devices can hardly provide quantum gates that span the space of
unitary when a time step is specified to be a time slot for applying a quantum gate [33,38].
Tomographic results should be responsible for all available quantum instruments that the
quantum device can provide, which results in the requirement of the self-consistency of
the IST.

Equation (38) indicates that, given the initial SE state, SE unitaries, and instruments, the
probability can be determined. By exploiting the process tensor to represent all inaccessible
components, the probability can be determined by specifying the instruments and the
process tensor. Therefore, the full and reduced instrument set can be defined as

Ifull :=
{

J,U, ρ
(0)
SE

}

, (49)

Ireduced := {J, T }, (50)

respectively, where J :=
{

J (t)
}k−1

t=0
represents available sets, U := {Ut:t+1}k−2

t=0 is the set of

SE unitaries, and ρ
(0)
SE represents the initial SE state.

LIST consists of two sub-procedures. First, LIST fixes the linear relationship of avail-
able sets by measurement probabilities and knowledge of instruments. For time step t, the
probability described in (39) can be reformed as

px+x−(xt) = Tr
[

Bx+x− A
(t)
xt

]

, (51)
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where x+ and x− represent the output values before and after time step t in a k-time step

experiment, respectively. This indicates the decomposition of A
(t)
xt

on the inaccessible
non-orthogonal basis

B
(t) = {Bx+x−}. (52)

By adjusting x+ and x−, the LIST tries to make the basis B(t) complete. Utilizing a
unique integer α to denote x+x− as the index of the basis matrix, the LIST connects the
measured probabilities and the basis as

p
(t)
xt

=















(b
(t)
0 )†

(b
(t)
1 )†

...

(b
(t)

d4−1
)†















a
(t)
xt

= B(t)a
(t)
xt

, (53)

where a
(t)
xt

and b
(t)
α represent the vectorization of the A

(t)
xt

and B
(t)
α , respectively. If B(t) is

invertible, we can obtain the instruments

Ξ(t) =
(

B(t)
)−1

Γ(t), (54)

where Ξ(t) = [a
(t)
0 , a

(t)
1 , . . . , a

(t)
mt−1] and Γ(t) = [p

(t)
0 , p

(t)
1 , . . . , p

(t)
mt−1].

Assuming that the quantum instruments are well implemented and approximately
close to the ideal instruments, the inaccessible basis matrix can be optimized by

B(t) = arg min
X

∑
t

∥

∥

∥
XΓ(t) − Ξ

(t)
knowledge

∥

∥

∥

F
, (55)

where Ξ
(t)
knowledge represents the knowledge of instruments to the experimenter. Then, the

PTMs of instruments are recovered by the devectorization of determined a
(t)
xt

in Ξ(t).
Then, the LIST performs the process tensor reconstruction to recover the process

tensor. Utilized instruments are the maximum linear independent set of instruments in the
corresponding available sets. Details of process tensor reconstruction can be referred to
in Section 4.1.

Note that the requirement of basis matrix optimization implies gauge freedom, which
is also present in the GST. The optimal basis matrix is non-unique and results in the non-
uniqueness of tomographic results. This implies that correlations introduced before the
time step cannot be distinguished by correlations introduced after.

5. Maximum Likelihood Estimation-Based Methods

Maximum likelihood estimation (MLE)-based methods [5,32,37,38,46,47] grew out of
the drawbacks of basic linear inverse methods. It should be highlighted that the precision of
linear inverse methods highly relies on the accuracy of estimated probability generated by
measurement sampling, which is of the order O(1/ns), where ns is the number of samples.
The probability estimation of finite measurement sampling introduces the sampling error,
leading to a biased estimated probability. Subsequently, the result of the tomography
target may not be physical, such as the CP violation of the estimated quantum state in
QST. Experimenters may be interested in utilizing more experiment data to enhance the
performance of the tomography. However, linear inverse methods lack the capability of
extracting additional information from overcomplete data.

Addressing these issues, statistical methods are proposed based on the MLE, which
enables the exploitation of overcomplete data to reduce the error of estimation. These
methods compose the measurement data into a likelihood function L(T̂) with respect
to the estimated target T̂ which requires maximization. The parameterization of the
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tomographic target also varies from the method. Typically, quantum states, processes,
and measurements can be directly parameterized by d2-dimensional real column vectors,
d2 × d2-dimensional real matrices, and d2-dimensional real row vectors, respectively, as
their PTM representations.

The parameterization of SE correlations in non-Markovian situations is more com-
plicated. While representing SE correlations by the process tensor, it can be modeled by
the Cholesky decomposition of the Choi state which naturally satisfies the CP constraints.
The PTM representation of the process tensor is also available as described in Section 4.
Furthermore, the SE correlations can also be represented by the initial SE state and SE
unitaries, where the SE state can be represented by a d4-dimensional real column vector
and each SE unitary can be modeled by a (d4 − 1)-dimensional real vector α whose i-th
element represents the rotation angle on the (i + 1)-th Pauli matrix, i.e., the estimated SE
unitary is

V̂(α) := PTM(exp(ι ∑
i

αiPi+1)), (56)

where ι2 = −1.
Although several kinds of likelihood functions are proposed, we apply the most

common likelihood as described in Appendix B, where maximizing L(T̂) is equivalent
to minimizing l(T̂) with respect to the desired estimator p̂ as described in their basic
framework. Remarkably, constraints are introduced in MLE methods to guarantee that the
result is physical. The details of constraints for tomography components are listed below:

State: A quantum state ρ̂ is constrained to be completely positive, meaning its density
matrix must be positive semi-definite with a unit trace,

ρ̂ ⪰ 0, (57)

Tr ρ̂ = 1. (58)

This guarantees that the probabilities of the system are positive with summation 1.
Note that TP constraints can be efficiently represented by

|ρ̂⟩⟩ = 1. (59)

Process: A quantum process is constrained to be CPTP. The CP constraints require the
Choi state of Ĝ to be completely positive,

ξ̂G ⪰ 0, (60)

which indicates that the process remains the CP property of the quantum state. Meanwhile,
entries of the first row of its PTM are limited as

Ĝ0j = δ0j (61)

to guarantee the TP property, which indicates that the summation of probabilities of the
quantum state is 1.

Measurement: A quantum measurement M̂ and its complementary are constrained
by a complete positive that

M̂ = ∑
i

⟨⟨M̂|iPi ⪰ 0, (62)

I − M̂ ⪰ 0, (63)

representing the positive outcome of probabilities.
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Process tensor: The process tensor T̂ should be constrained by CP and causality. The
CP constraints require the Choi state of the process tensor to be positive semi-definite,

Υ̂T ⪰ 0. (64)

Causality constraints result from the fact that future events do not influence past
statistics, as a generalization of trace preservation, which in the Choi state representation is

Trok−1

[

Υ̂T0:k

]

= Iik−1
⊗ Υ̂T0:k−1

. (65)

By superoperators of PTM representation, the causality constraints can be conveniently
represented by

⟨⟨Υ̂T0:k
|Pban⟩⟩ = 0, (66)

Pban = I⊗2t+1 ⊗
(

Q̃2t+2 ⊗ Q2t+3 ⊗ · · · ⊗ Q2k−1

)

, ∀t, (67)

Q̃ ∈
{

P1, . . . , Pd2−1

}

, (68)

Q ∈
{

P0, P1, . . . , Pd2−1

}

. (69)

Then, an optimization algorithm is performed to optimize the optimization problem

min
T̂

l(T̂) (70)

s.t. Constraints of T̂. (71)

The workflow of MLE methods is demonstrated in Figure 3.

Figure 3. Workflow of MLE-based quantum tomography. Components are specified in the Markovian

settings for facilitating understanding, although the workflow is general for both Markovian and

non-Markovian situations.

MLE methods fill the blank of constrained statistical methods within the standard
quantum tomography toolkits and obtained wild acceptance from researchers. They pro-
vide physical implementable results by introducing constraints. The capability of utilizing
overcomplete data promotes the accuracy of the tomography by extracting additional
information compared with basic linear inverse methods. However, MLE methods are
quite computationally resource-consuming. In the classic memory aspect, all MLE methods
require saving exponentially large data with respect to the system dimension d to perform
the optimization algorithm. In the time aspect, MLE methods require more experiments
than the linear inverse methods which is exponentially large to d. Moreover, solving
constrained optimization problems with an exponentially large number of parameters
with respect to d is extremely time-consuming. Therefore, the recent applications of MLE
methods are limited to small-scale quantum systems.

6. Further Developments

The advancement of quantum tomography performance necessitates further devel-
opment built upon standard methods, including linear inverse and maximum likelihood
estimation (MLE) techniques. First, the effectiveness of frequency-based standard methods
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requires further consideration. The estimated probabilities are biased with finite sampling,
which results in the possibility of the violation of physical implementability as it may occur
in linear inverse methods. It seems that this problem has been solved by MLE methods.
However, it can be verified that the MLE outputs the same result as linear inverse methods
when using the same set of measurement data without constraints. The introduction of
constraints forces the output to satisfy the physical requirement, which means that the
result lies on the boundary of feasible solutions, as shown in Figure 4. This indicates that
no reasonable error bar can be applied in this estimation.

Figure 4. Utilizing the black box to represent the whole space of the tomographic target, the space

of physical implementable results is represented by the blue region. The green dot is the ideal

tomographic target to be characterized. Due to the probabilistic sampling, the sampled target may

lie in the red region. Assuming the sampled target to be ∗ out of physical implementable space, the

MLE result lies on the boundary of the implementable region, which can be represented by ×.

Bayesian tomographic methods are proposed for this systematic problem [14,26,48,49].
These methods propose meaningful formations for the estimation error of the target. The
tomographic targets are assumed to obey a probability distribution. After optimization,
the final target is set as the expectation of the distribution, which naturally has a reason-
able error bar corresponding to the variance. Nevertheless, Bayesian methods are quite
time-consuming due to the construction of distribution. Efficient Bayesian estimation for
quantum tomography needs further research.

Then, the efficiency indicated by the accuracy gained from the unit number of exper-
iments and the unit time of the post-process algorithm should be further improved. As
previously introduced, the linear inverse provides relatively quick methods for tomogra-
phy, but the accuracy is bounded by the reciprocal of the number of samples without the
capability of utilizing additional data to improve the accuracy. Moreover, sampling errors
may cause the physical violations of results. The MLE methods have the capability to utilize
additional data with physical constraints. However, performing optimization algorithms to
solve constrained optimization problems with an exponentially large number of parameters
is time-consuming, which limits these methods to small-scale systems. Recently, researchers
have proposed several methods to enhance the efficiency of quantum tomography.

Following the trend of the development of machine learning, a quantum tomography
scheme utilizing the neural network has been proposed [50–52]. Typically, training and test-
ing datasets consist of measurement results and prior tomographic results. Then, the neural
network explicitly learns the map from measurement data to the tomographic target, and
implicitly learns the knowledge of non-target components. To a certain extent, the absence
of knowledge of non-target components mitigates the impact of imperfect implementations.
Remarkably, when the training has been finished, neural-network-based methods have
obtained higher accuracy with the same number of probability data inputs compared with
the linear inverse method. It should be noted that neural-network-based methods may
not generate physically implementable results due to the absence of constraints. However,
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physical constraints can be introduced into the cost function while performing neural
network training, which results in time-consuming neural network training.

Another approach to enhance efficiency involves leveraging the prior symmetrical
structure of the tomographic target. In other words, incorporating certain assumptions
about the tomographic target can prove beneficial. One well-known assumption is em-
ployed in compressed tomography [13,53,54], which posits that the tomographic target
exhibits a low-rank characteristic. This methodology has evolved from matrix completion
techniques, where the complete target matrix is reconstructed from incomplete elements
using random sampling and a nuclear norm minimization algorithm. For instance, consider
an unknown quantum state ρ with rank(ρ) ≤ r. By employing this approach, an estimate ρ̂

can be derived with only O(rd log2 d) measurement settings. Additionally, other prior sym-
metry structural assumptions, such as matrix product states [55], permutationally invariant
states [56], and similar concepts, also significantly contribute to enhancing efficiency.
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Appendix A. Examples

Example A1 (CP violation). Let the QPT target with SE correlations be

GSE = ∏
P=X,Y,Z

{cos (wt)IS ⊗ IE − sin (wt)PS ⊗ PE}, (A1)

which is a unitary. Let the initial SE state be

ρ
(0)
SE =

1

4
[IS ⊗ IE + a⃗ σ⃗S ⊗ IE + gYS ⊗ ZE], (A2)

where a⃗ σ⃗S = [ax, ay, az][XS, YS, ZS]
† = axXS + ayYS + az. Since the experimenter can only

intervene in the system state, we prepare states by setting a⃗ to be [±1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T .
Hence, the Choi state of tomographic result Ĝ is

ξĜ =
1

2









1 + c2 0 −gcs 2c2

0 1 − c2 0 −gcs
−gcs 0 1 − c2 0
2c2 −gcs 0 1 + c2









, (A3)

where c = cos(2wt) and s = sin(2wt). There exist eigenvalues 1
2 [1 − c2 ± 2cs] that may be

negative and cause the theoretical CP violation.
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Appendix B. Likelihood Function

In this review, we utilize the likelihood function as described below. Let the probability
be measured by repeating the experiment ns times and recording ni, which denotes how
many times the desired output i occurs. Therefore, we use the general likelihood function

L(T̂) = ∏
i

( p̂i)
ni (1 − p̂i)

ns−ni , (A4)

where p̂i is the probability estimator modeled by the parameters of tomography target T̂.
By exploiting the central limit theorem, each term of the likelihood can be rewritten as

a normal distribution,

L(T̂) = ∏
i

exp

[

− ( p̃i − p̂i)
2

σ2
i

]

, (A5)

where p̃i = ni/ns represents the measured probability, σ2
i = p̃i(1 − p̃i)/ns is the sampling

variance in the measurement mi. Exploiting the monotonic logarithm function, maximizing
L is equivalent to minimizing the weighted mean square error

l(T̂) =− log(L(T̂)) = ∑
i

( p̃i − p̂x)
2

σ2
i

. (A6)
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