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Abstract We study cosmic evolution based on the fixed
points in the dynamical analysis of the degenerate higher-
order scalar-tensor (DHOST) theories. We consider the
DHOST theory in which the propagation speed of gravita-
tional waves is equal to the speed of light, the tensor per-
turbations do not decay to dark energy perturbations, and
the scaling solutions exist. The scaling fixed point associ-
ated with late-time acceleration of the universe can be either
stable or saddle depending on the parameters of the theory.
For some ranges of the parameters, this scaling fixed point
and field-dominated fixed point can be simultaneously sta-
ble. Cosmic evolution will reach either the scaling attractor
or the field-dominated attractor depending on the sign of the
time derivative of the scalar field in the theory during the mat-
ter domination. The density parameter of dark matter can be
larger than unity before reaching the scaling attractor if the
deviation from Einstein’s theory of gravity is too large. For
this DHOST theory, stabilities of ¢-matter-dominated epoch
(¢MDE) and field-dominated solutions are similar to the cou-
pled dark energy models in Einstein gravity even though
gravity is described by different theories. In our consider-
ation, the universe can only evolve from the  MDE regime
to the field-dominated regime. The ghost and gradient insta-
bilities up to linear order in cosmological perturbations have
been investigated. There is no gradient instability, while the
ghost instability can be avoided for some range of the model
parameters.

1 Introduction

Observed cosmic acceleration [1,2] is an important puzzle
in modern cosmology which can possibly be explained by
supposing that the physics of gravity deviates from the Ein-
stein theory on cosmic scales [3]. Deviation from the Ein-
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stein theory can be achieved if there are extra degrees of
freedom for gravity in addition to two tensor degrees of free-
dom. For the simplest case, these extra degrees of freedom
can be scalar degrees of freedom, which can be explained by
a class of theories called the scalar-tensor theories of grav-
ity [4-11]. Degenerate higher-order scalar-tensor (DHOST)
theories, which are the most general scalar-tensor theories
of gravity, are constructed by demanding that the theories
are degenerate to eliminate Ostrogradsky instability [12—16].
This class of theories consists of a single scalar and two ten-
sor degrees of freedom for gravity, similar to the usual Brans-
Dicke theory.

The important constraint on the DHOST theories comes
from the propagation speed of gravitational waves (GW),
which coincides with the speed of light to an accuracy of
10~15 [17]. The propagation speed of GW was measured
from the detection of GW and gamma-ray bursts from the
merging of a binary system of neutron stars [18-21]. If the
propagation speed of GW is required to be always equal to the
speed of light, the action for scalar-tensor theories of gravity
is tightly constrained [22-29]. For the Horndeski action, the
non-minimal coupling term that satisfies this constraint is in
the form of the generalized Brans-Dicke theory. The action
beyond Horndeski theories [11] that satisfies the GW con-
straint was discussed and cosmology in this constrained the-
ory was analyzed in [30]. The cosmic evolution and density
perturbation in the DHOST theories which satisfy the con-
straint on the propagation speed of GW have been studied in
various aspects, e.g., [31-34]. In addition to the constraint
on propagation speed, we demand that GW do not decay to
dark energy perturbations [35]. This requirement, together
with the constraint on propagation speed of GW, tightly con-
strains the form of the Lagrangian for the DHOST theories.
The Vainshtein mechanism for a class of DHOST theories
that satisfies these two constraints was studied in [36].

Scaling and tracking behaviors for the cosmic evolution
are interesting features that arise in some models of dark
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energy and modified theories of gravity, because they could
lead to attractors in the phase space of the cosmic evolution
which could satisfy the observational constraints [37—44]. A
model having scaling behavior can be obtained by assuming
interaction between dark energy and dark matter. Because of
this interaction, a ratio of the energy density of dark energy
to that of dark matter is constant with time during the scaling
regime. The scaling behavior in the interacting dark energy
models has been widely investigated in the literature [45—
48], and scaling and tracking solutions in the DHOST theory
which satisfy the above two constraints on GW have been
discussed. Demanding that the scaling and tracking solutions
exist, a suitable form of the Lagrangians has been derived
[49].

In this work, we analyze the stabilities of the fixed points
found in [49] and discuss cosmic evolution based on these
fixed points. We also explore the conditions for avoiding
ghost and gradient instabilities in the class of DHOST theo-
ries.

As = —As

N (—4Gax —2A| — XA3) (—12G4G4x — 6A1G4 — 8ATX + A3G4X — 16A1G4x X)

we concentrate on the terms up to the quadratic in the second-
order derivatives of the scalar field. The possible form of the
quadratic terms can be written as [12]

CE Bupbyn = AL, X) v
+A2(¢, X)([O9) + A3(¢, X)) ¢ 0"
A4S, X)P" Gpupd”" b
+As($. X) (@ duve”)’. 2)

Based on the degeneracy conditions, the DHOST theories
can be classified into three classes. However, the theories in
class I can be free from the gradient instability, while those in
class II cannot, because the square of the sound speed of the
tensor and scalar perturbations have opposite signs [50,51]
For class 111, the tensor degrees of freedom do not propagate.
Hence, we concentrate on class I. The degeneracy conditions
for class I are

A2 = _Als (3)
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In Sect. 2, we review the DHOST theory that has scaling
solutions. The fixed points of the cosmic evolution and their
stabilities are analyzed in Sect. 3, and the possible cosmic
evolution associated with these fixed points is discussed. In
Sect. 4, we study the stability of linear cosmological pertur-
bations around the cosmological background. We conclude
in Sect. 5.

2 DHOST theories with scaling solutions
2.1 Review of DHOST theories

The DHOST theories are constructed by imposing the degen-
eracy conditions to the most general form of the Lagrangian
containing second-order derivatives of the scalar field in the
form

L = Ga(¢, X) + G3(@, )¢ + Ga(¢, X)R
+C" Bup by + CEo " Papduvbio. (1)

where R is the Ricci scalar, X = —¢, ¢, ¢, = V.o,
¢uv = Vu Ve, and V, denotes a covariant derivative com-
patible with the metric g,,,. In the following consideration,
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where subscript x denotes the derivative with respect to
X. For the DHOST theories which depend quadratically on
second-order derivatives of the scalar field, the propagation
speed of the tensor perturbations is given by [52]

Gy

2
-7+ 6
T= Git XA, ©

where the speed of light is equal to unity in this expression.
From the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO)/Virgoresults [17,49,53], ct is equal to the speed
of light, so that Eq. (6) yields

A =0. (7

It has been shown that the GW in DHOST theories can decay
to scalar perturbations. To avoid this decay, we demand [35]

A5 =0, (®)

Inserting the conditions from Egs. (7) and (8) into Egs. (4)

and (5), we get

63
Gy

A5 = 0 , and A4 = (9)

Hence, the action for quadratic DHOST theories in which
the propagation speed of GW is equal to the speed of light
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and the GW do not decay to dark energy perturbations can
be written in the form

6G?
G“X " bupd” by
4

(10)

S¢ = /d4xv—g {Gz + G30¢ + G4R +

where we have set the reduced Planck mass M, =
1/+/87G = 1. The G3 term will be dropped in the follow-
ing consideration for simplicity. The above action can also be
obtained by applying a conformal transformation in which
the transformation coefficient depends on both a scalar field
and its kinetic term to the Einstein—Hilbert action [54]. We
write the total action as

S=S8c+ Su. (1)

Here, S); is the action for the matter in the universe includ-

ing ordinary matter and dark matter. The ordinary matter is
minimally coupled to gravity, while the dark matter is cou-
pled non-gravitationally to scalar field ¢ and coupled non-
minimally to gravity. The action for dark matter is denoted
by S, in the following sections.

2.2 Evolution equations for the background universe

To study the evolution of the background universe in the
DHOST theories described by the action (11), we use
the Friedmann—Lemaitre—Robertson—Walker (FLRW) met-
ric for the spatially flat universe in the form

ds? = —n?(1)dr® + a*(1)8;;dx" dx, (12)

where §;; is the Kronecker delta, a() is the cosmic scale
factor, and n(r) is an auxiliary function which will be set to
unity after the evolution equations are obtained. Using the
above line element and homogeneity of the scalar field in the
background universe, the action (11) becomes

S=/dta3n
. . . 2
é H Guix ¢ d (¢
Gr—6G4pyH—=—6G4 | —F+——— | — Sw,
x{z 4¢ 22 4|:n+G4n2dt " +Sm

(13)

where a dot denotes derivative with respect to time ¢, H =
a/a is the Hubble parameter, and subscript 4 denotes the
derivative with respect to ¢.

Variations in the action (13) with respect to n and a yield

o = Eop = % [—G4X (—6(;3 (—2G§X}i§ - 6HG§X<}S)
4

+G4 (12 <2H2 + H) Gax + 2G2x) + 6Gﬁx<}§2>

+G3 (6G4H2 +6He (2Gaxd + Gap) + GZ)

F12X2Gaxd ((Gix - ZG4G4XX> ¢

—2G4Gypx + G4xG4¢)] ) (14)
and
1 . .
—pu = Eii = Ga [G4 (40 (Gax ¢ +2HGaxd + HGag)
+6G4H? +4G4H + 4Gax$* +2Gagpd + Ga)
+X ((8G4Gaxx — 6Giy) ¢*
+8G4¢Gapx +2G4Gagg)] . (15)

where pp and pys are the energy density and pressure of
the total matter, in which each of the matter components is
perfect fluid. These quantities can be obtained by varying the
action Sy with respect to the metric. Equations (14) and (15)
together with Eq. (20) agree with Eqgs. (2.13) and (2.14) in
[49]. These two equations can be combined to eliminate H
as

1 . .
0= [G4X (—6G4H*Gux + 6H (2Gax Gag — 2GiyP)
4

+6Giy$* + 6GaxGapd — 2G4Gax +3G2Gax)
+G} (6G4H* + 6H (2G4xd + Gag) + G2)
—Gapm (G4 —3XGaxwpy)

+3X%Gux (—2G3yd* +4GaxGagd +2G4Gagy)].  (16)
In the above equation, wy = pu/pm is the equation-of-
state parameter of the total matter, which is not necessarily
zero. Varying the action (13) with respect to the scalar field
¢, we obtain the evolution equation for the scalar field, which
can be written in the form

a7

where Q is the interaction term arising from the variation in
the action S, for dark matter with respect to the scalar field
¢. We will see in the following sections that the coupling
between the scalar field and matter is needed for shifting the
effective equation-of-state parameter wefr = wg 2y during
the scaling regime at late time to a negative value as required
by observations. Here, wy and Q4 are the effective equation-
of-state parameter and effective density parameter of scalar
degrees of freedom associated with the scalar field ¢ defined
below. In the following consideration, we suppose that the
interaction term Q is a consequence of an energy transfer
between the scalar field and dark matter. In principle, the
form of the interaction term Q depends on the form of §,,,.
However, for simplicity, we start with the phenomenologi-
cal form of the interaction term studied in the literature. We
write the function F in the above equation in the form of the
conservation equation for the effective energy density of the
scalar fieldas F' — py+3H (pp + pp) = 0. Then we add the
phenomenological interaction term on the right-hand side of
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the conservation equation as

by +3H (pg + pg) = —Qpmd, (18)

where Q is constant, and pg and py are the effective energy
density and effective pressure of the scalar field ¢. Supposing
that the total energy density of the scalar field and dark matter
is conserved, we have

bm + 3Hom = Qpm¢, (19)

where a subscript ,, denotes the quantities for dark matter.
The effective energy density and pressure of the scalar field
are defined such that Eqgs. (14) and (15) take the forms of
the usual Friedmann and acceleration equations as 3H? =
oM + pp and 2H +3H? = —py — D¢ The expressions for
pg and py can be read from Egs. (14) and (15) as

pp =3H? — Eoo, py = Ei —2H —3H". (20)

From the above expressions, the effective equation-of-state
parameter of the scalar field can be defined as wy = pg/0g.
According to the definitions of py and pg, we can write

H 3
3 1
= 3 1+ ng + Weff ) - (21

Here, Q2,, is the density parameter of radiation, where Q) =
Qu + Qy, and Q,, is the density parameter of dark mat-
ter. The evolution of the background universe can be studied
using dynamical analysis. To compute the autonomous equa-
tions describing the evolution of the background universe,
we have to know the expression for the ratio H / H2. To com-
pute this ratio, we firstly differentiate Eq. (15) with respect
to time. Then we eliminate ¢ from the resulting equation
using Eq. (17). The remaining ¢ terms can be eliminated
using Eq. (15). Finally, we obtain

0=Ei($ ¢, ¢, H, pm). (22)

Differentiating the above equation with respect to time and
eliminating ¢ terms using Eq. (15), we obtain

72 = e 6.6. H. pm). (23)

2.3 Scaling solutions

The gravity theories described by the action (13) can have
scaling behavior if the effective energy density and effective
pressure of the scalar field together with the energy density of
the matter obey the scaling relations pg o pgy X o o< H 2,
During the scaling regime, we have

2 = % = constant. (24)
H A

@ Springer

Based on the analysis in [49], for constant coupling Q, the
DHOST theory in action (13) has scaling solutions if

1
Gy = Xg (Y) G4=§+g4(Y), (25)

where G; and G4 are arbitrary functions of
¢
XeMp

Y =
-
M,

(26)

Here, A is constant and M), is restored in the above expres-
sion and some subsequent relations to avoid confusion. To
study scaling solutions in DHOST theories, we set G, and
G4 according to Eq. (25). Since Y is a linear function of the
kinetic term X, we choose G, and G4 as polynomial func-
tions of Y [49]:

Gy = X (32Y™ — G6Y™), 27)
1
Gy = 3 + Cq Y™, (28)

where ¢;, ¢4 and Cg are constant, and ny, ng and ng are
constant integers. The above expressions for G> and G4
are mainly motivated by demanding scaling solutions in the
model. Additional motivation for these choices of G, and G4
are based on the requirement that G can reduce to a form of
the Lagrangian for the canonical scalar field if n, = 0 and
ne = —1, while G4 can reduce to the case of the Einstein
theory when ¢4 = 0. Since the existence of the scaling solu-
tions requires that G, and G4 depend on the scalar field ¢
through Y, shift symmetry is broken in this scaling model,
and consequently a self-accelerating solution is absent. This
implies that the field ¢ is required to be slowly varying with
time to drive the cosmic acceleration at late time. When the
coupling between the scalar field and dark matter is constant,
the scaling solutions can give

2h
P L7 (29)
3Q¢w¢

3 Stabilities of the fixed points and the corresponding
cosmic evolution

3.1 Autonomous equations

To compute the autonomous equations from the evolution
equations in the previous section, we define the dimension-
less variables as
. —io
é M3e™r
X = , Y=

A
H éH

(30)
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For convenience, we normalize the variables x, y and z by
their values at scaling fixed point, such that
(3D

_ _ 7 _
Xr=_o Y= and z, = —,

X Z
s Vs ls
where subscript ; denotes the quantities at the scaling fixed
point. The scaling fixed point in this case is the fixed point that
x satisfies the condition in Eq. (24) and Q satisfies Eq. (29).
To compute x; and z5, we compute the derivative of x with
respectto N = Ina as
, H
X =7ZX — xm, (32)
which is a possible form of the autonomous equation. Here,
a prime denotes a derivative with respect to N. From the
condition in Eq. (24), we have

b
P
2H |

X5,
-, 33
> (33)

where x; = x;A. Inserting this solution into Eq. (32), we get
s = —hg = —x; /2. In terms of dimensionless variables, the
constraint equations (16) and (22) are given by Eqgs. (A2) and
(A3) in the appendix. We see that these constraint equations
can be solved for z and €2, in terms of x and y. Here we are
interested in the evolution of the late-time universe so that we
set 2, = 0.Hence, the late-time dynamics of the background
universe can be described by two dynamical variables xand
y.

Using definitions of x,- and y,, we can write the autonomous
equations as

X3 ZrX H
=Ty T G4
Y; = —XXrYr — 2Yr—5 (35)

H?’

where z, is computed from the constraint equations whose
solutions are shown in Egs. (A5)—(A7). When the autonomous
equations are written in these forms, the coupling constant Q
in the autonomous equations is always divided by A, so that
the dynamics of the background universe depend on Q/A
rather than Q. In the numerical integration for the evolution
of the universe discussed below, we concentrate on the case
where z, is the first solution given in Eq. (AS5) to avoid contri-
butions from the imaginary part of the solution. We note that
the solutions which give z, = x, = y, = 1 are not necessar-
ily the solution in Eq. (AS5), unless n4 = 1. Hence, in our
numerical integration for the cosmic evolution, we set n4 to
be either —1 or 1. According to Eq. (23), H/ H? also depends
on £2,,. However, €2, in this expression can be eliminated
using the constraint equations Eq. (A2).

To compute the fixed points of this system, we set x;, y
and z, in the constraint equations Egs. (A1) and (A2) to be
unity, and then we solve for the parameters as

1

= — 5
2 (2c4 + 1)~ (n2 — ng)
[—663 (—2 (s +2n6 (x;, —3) + x5 —6) + Znix%
—nix; (nexs + x5 — 6) + 4ng (x; — 4))
+6¢c4 Qs — ng (xp —4) +2n6 (x) —3) + x5 — 6)
—462 (3nix)% — 3nixk
(nex;. + x) — 6) + 6n4 (x3 —4) — 2 (2ng (x) — 3)
+x3 —6)) +3Q s
+2n6 (x3 — 3) + x), — 6], (36)
1
c6 = —

2 2c4 + 1) (12 — n)

[6¢F (2 (s + x5 — 6)

_2”?1%% + nﬁ (xp —6) xp —4ng (x) —4)

+ny (g3 + 4x;, — 12))

+6¢4 Qs — na (x), —4) +2n2 (x) — 3) + x, — 6)
—462 (3n2x% — 3n£ (xp — 6) x,

+6n4 (x5, — 4) +ny (=3n3xi — dx, 4+ 12) — 2 (x5, — 6))

+3Qu s + 212 (x5 — 3) + x5 — 6], (37)

where 2, ¢ is €2,, at the scaling fixed point, and we redefine
the coefficients as

o= szfY;” , ca=C4Y™, and cg = E6x3YS”6. (38)

We set hy = x; /2 and x, = y, = 1, and substitute ¢ and cg

from Eqgs. (36) and (37) into Eq. (23) as

)C)L o .

? =h(p, P, 0, H, pu)ls = h(x,, Vrs Zrs Q2m)ls
=h(1,1,1, Q). (39)

This relation yields

o 18c4 Ces £ D *naQn (05, = 23, (0353 + 31 = 3)
- 212 ’
(40)

where Q) = Q/A. The interesting conditions required by
the above equation are

Quns =0, O)x)+x,—3=0, or c4=0. (41)

We can see that Q; —2 = 0is the special case of the condition
0,x5 +x), —3 = 0. These conditions lead to three classes of
fixed point as follows: (1) Qx4+ x) —3 = 0 corresponding
to a scaling fixed point where Q satisfies Eq. (29), (2) 2,5 =
0 corresponding to the field-dominated point where Q does
not necessarily satisfy Eq. (29), and (3) c4 = 0 yielding
v, = 0 for negative n4. These fixed points have been found
in [49]. The stabilities of these fixed points will be discussed
in the next section.

@ Springer
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3.2 Fixed points and stabilities X, —6 8a
y = 2 1+ 14+ —2 ), (48)
4 ag ()C)L — 6)

To investigate the stabilities of the fixed points, we linearize
the autonomous equations around the fixed point and check
the signs of the eigenvalues of the Jacobian matrix defined
by

ox;
Jij = — , (42)
an fixed point
where x; = (x,, yr).
3.2.1 Scaling fixed point
The scaling fixed point corresponds to the condition
3
X)) = . (43)
Q5 +1
From hg = x, /2, we have
05
=— . 44
Weff 0, +1 (44)
We see that if the coupling term disappears, weir = 0,

because for the scaling solution, pg/pm is constant. Using
the relation wegr = Qgpwy and Eq. (44), we can compute 2
as well as £2,, at the fixed point if wy at the fixed point is
specified. Inserting the relations for the scaling fixed point
into the Jacobian matrix, we obtain the polynomial equation
for the eigenvalues of the fixed point. For sufficiently large
c4, the eigenvalues of the Jacobian matrix depend only on x;,
and are given by

Ealz{”2_6,o}. (45)

Since one of the eigenvalues is zero, the stability of this fixed
point cannot be determined using linear stability analysis.
Nonlinear stability analysis can be performed using the center
manifold method, but we will not consider nonlinear analysis
in this work. If ¢4 is not too large, the eigenvalues of the
Jacobian matrix can be written as

Eq = {p1, na}. (46)

To describe the accelerated expansion of the late-time uni-
verse required by observations, we demand that x; < 1. The
eigenvalues 1 and py can be computed from the equation

azuz—}-mu—i—do =0, 47

where a»,a; and ap are complicated functions of x;,
Qus, C2,C4,Ce, N2, ng and ng. The solutions for the above
equation can be written as

x), —6 8ayg
= - 14— ),
=y ( +a1(xk—6)>

@ Springer

In the above expressions, the relation a; /(2a;) = (6 —x,)/4
is used. It follows from the relations for | and wu; that the
real part of uo is always negative for x; < 6, while the
real part of 1 can be either negative or positive. Hence, the
fixed point is stable when the real part of w is negative and
becomes saddle when the real part of 1] is positive. Because
of the lengthy expressions for ap, a; and ap, we compute (11
numerically and plot the results as a function of ¢4.

The real part of 1| for some choices of the parameters is
plotted in Fig. 1. In all plots, x; and €2, are chosen such
that wegr satisfies observational constraints. For 2, = 0.3,
we set x; = 0.92 and x; = 0.69 which correspond to wy =
—0.99 and wy = —1.10, respectively.

From Fig. 1 and Eq. (48), we see that the stability of the
fixed point depends on x;, which controls the value of wegr
through the relation x; = —3(1 + wefr). In the plot, when
x;, decreases, the fixed point of some models, e.g., the model
with ng = —1, can become a saddle point. According to
Fig. 1, the fixed point is stable for the wide range of c4 if ng
is positive. For ng = —3, the fixed point can be either saddle
or stable depending on the value of c4. From the plot, we see
that the real part of | reaches zero when c4 is sufficiently
large independently of n>, n4, ng and x;, which agrees with
Eq. (45).

3.2.2 Field-dominated point

Equation (40) indicates that 2,, = 0 is a possible fixed point
of the system. To obtain Eq. (40), we set h = x, /2 at the
fixed point according to Eq. (24). Nevertheless, the condition
h = x,/2 can be relaxed if x,, y, and z, are not equal to
unity at a fixed point, where the condition x, = y, =z, = 1
defines the scaling fixed point. From Egs. (34) and (35), we
see that the fixed points exist when

X X
h= %zr - Ter, (49)

where the expressions for x, and z, at the fixed point can be
solved from Egs. (A1), (A2) and (A3). For the fixed point
Q= 0, the expressions for x, and z, are complicated and
strongly depend on ny, n4 and ng, because Egs. (Al), (A2)
and (A3) contain x,2, x;'* and x,"°. However, we can substi-
tute Eq. (49) into Eq. (21) to obtain
XA Xr b
3

where subscript , denotes evaluation at the field-dominated
point. We note that for this fixed point there is no requirement
for Q,. It follows from Eqgs. (18) and (19) that the effect
of the coupling Q disappears when €2,, = 0. According to
this fixed point, the eigenvalues computed from the Jacobian

wy = wetr = —1 + (50)
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Fig. 1 Plots of the real part of ;| as a function of c4. The upper
left, upper right, lower left and lower right panels correspond to
(x5, n4) = (092, —1), (0.92, —2), (0.69, —1) and (0.69, —2), respec-

matrix are given by

X3 Xrp— 6

> XX 50 + 1) = 31

Ep={ (1)
It follows from Eq. (50) that observational data require
X, Xxrp < 1 so that the first eigenvalue in Eq. (51) is always
negative. We see that if Q, does not satisfy Eq. (43), the
second eigenvalue in Eq. (51) is negative when Q,; <
3/(x3xrp) — 1 for positive x; x,p and Q; > —3/|x3xrp| — 1
for negative x; x; . These results are the same as those in [47],
which implies that the modification of gravity theory has no
effect on the stability of the field dominated fixed point. In
the case where Q) satisfies Eq. (43), one of the eigenvalues
vanishes. In this case, the eigenvalues for the field-dominated
point are similar to those for the scaling fixed point in which
c4 — 00. Since one of the eigenvalues vanishes, we cannot

Cq

tively. In the plots, lines 1, 2, 3, 4, 5, 6 and 7 represent the cases of
(n2,n6) = (0, —1), (0, =3), (0, 1), (0, 3), (1, —=1), (1, =3) and (1,3)

use linear dynamical analysis to estimate the stability of the
fixed point. However we will not go beyond the linear anal-
ysis in this work. For a given value of x; which could make
the field-dominated point stable, we can choose n», ns4, ng
and c4 such that the scaling fixed point is also stable. The
question is when the cosmic evolution will reach the scaling
fixed point at late time in what situation. Since it is difficult to
perform analytical analysis to answer this question, we solve
the autonomous equations numerically and plot the evolution
of €2, in Fig. 2 for some values of the model parameters.
According to Fig. 2, the cosmic evolution will reach the
scaling fixed point at late time if x, > O during the mat-
ter domination. For x, < 0 during the matter domination,
the cosmic evolution will evolve toward the field-dominated
point. This result is a consequence of a positive x; of the
scaling points given by Eq. (33), and the fact that the evolu-
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N=Ina

Fig. 2 Plots of €2,, as a function of N. The upper two panels represent
the cases x, > O during the matter domination, while the lower two
panels represent the cases x, < 0 during the matter domination. The

tion of x cannot cross x = 0. This implies that although one
of the eigenvalues vanishes, the field-dominated point can be
stable. Since the scaling points we consider in the plots are
stable, these points should be reached for wide ranges of ini-
tial conditions. However, if ¢4 is large enough and the initial
condition for y, differs significantly from its value at the fixed
point, the value of €2, can be larger than unity before reach-
ing the fixed point. This implies that 24 can be negative, so
that the definitions in Eq. (20) may not be interpreted as the
energy density and pressure of the dark component. These
cases are shown in Fig. 2. In the top left panel of Fig. 2,
the initial values for x, and y, during the matter domina-
tion for the solid, long-dashed, dashed and dash-long-dashed
lines are (x,, y,) = (0.55,107), (0.05,0.24), (0.1, 1079),
and (0.79, 0.7), respectively. In the top right panel of Fig. 2,
the initial values for x, and y, during the matter domina-

@ Springer
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two left panels and the two right panels correspond to the model of
(n2, n4,n6) = (0, —1, —1) and (0, —1, 1), respectively

tion for the solid, long-dashed, dashed and dash-long-dashed
lines are (x,, y) = (0.4, 0.2), (0.74, 0.8), (0.18, 0.01), and
(0.85, 0.8), respectively. For the cases where y, differs sig-
nificantly from their values at a fixed point, the maximum
value of €2, during the cosmic evolution increases when cy4
increases. Since c4 quantifies the deviation from the Einstein
gravity, this suggests that the deviation from the Einstein
gravity should not be large, to avoid an unphysical value of
Q,, during the cosmic evolution. Moreover, even though the
initial values of x, and y, during the matter domination are
in the same order of magnitude of the value at the fixed point,
the slower cosmic evolution reaches the fixed point for pos-
itive initial x, compared with the negative initial value of
Xr.
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3.2.3 y, =0: ¢MDE point

According to Eq. (40), the other fixed point corresponds to
yr = 0. It follows from Eq. (35) that y. = 0 when y, = 0.
If we also consider Eq. (34), we see that x/. = 0 when z, =
2h/x;,. Here, h for this fixed point is not necessarily equal to
X;/2, because x; is evaluated at the scaling fixed point (fixed
point a). From the definitions of G, and G4 in Egs. (27) and
(28), as well as the definition of y in Eq. (30), we see that the
existence of the fixed point y, = 0 requires n, < 0,16 < 0
and n4 < 0. Here, we demand that ny # ng and nqa # O.
Inserting z, = 2h/x; and Q, = 0 into Egs. (Al), (A2)
and (A3), and then taking the limit y, — 0, we respectively
obtain

3 2 2
hk:ﬂ’ chzl—% and
2 3
0;x
Xpe = —22F, (52)
e

where the subscript . denotes evaluation at the  MDE point.
Substituting the above x; . into the expression for €2, ., we
obtain

2.2
_ 9

Que=1
mc 3¢y

(53)

This equation shows that ¢, must be positive; otherwise €2, ¢
is larger than unity. The eigenvalues for this fixed point are

2.2 2
E. = i_%+ 9% 34 QA(HQ“’“}. (54)

2¢o c

These eigenvalues coincide with those in [47]. The first eigen-
value can be written as —3€2,, /2, so that it is always nega-
tive. The second eigenvalue becomes positive when Q; > 0
or 0, < —1 for positive c;. Since x;, is evaluated at the scal-
ing fixed point, it follows from Eq. (43) that Q; < 1 yields
X < 0 corresponding to phantom expansion. We now check
how the evolution of the universe can move from this fixed
point during matter domination to the scaling fixed point at
late time. Let us first consider x, . in Eq. (52). We can use
Eq. (43) to write x, . = (x5 — 3)/c2. The scaling fixed point
can lead to the acceleration of the universe if x; < 2. Hence,
Xr¢ 1s negative. Since x,. is the value of x, during mat-
ter domination in our consideration, the universe will evolve
toward the field-dominated point rather than the scaling fixed
point as presented in the previous section. For illustration, we
plot the evolution of €2,, in Fig. 3. For given values of x;,
0. and €2, ¢, the value of ¢, can be computed from Eq. (53).
From the values of x;, Q; and ¢, we can compute x, . from
Eq. (52) and compute c4 from Eq. (36) by setting €2,, s = 0.3.
Finally, cg can be computed from Eq. (37). The models used
in the plots are shown in the Table 1.

From Fig. 3, we see that €2, evolves toward the field-
dominated point for various values of Q; which correspond

—— Model [

——=Model II
------- Model 11T
—-—--Model IV
—— Model V

Fig. 3 Plots of 2, as a function of N for models I-V given in the table

to various wefr at late time. In the plots, we initially set
y, = 10~ according to the MDE point, so that the value
of ,, can be larger than unity before reaching the field-
dominated point. However, if ¢4 is sufficiently small, e.g.,
cs = 5.6 x 1073 for model 1V, ,, can be less than unity
throughout the evolution of the universe. By definition, c4
quantifies the size of the deviation from the Einstein gravity.
The above results suggest that the deviation from the Einstein
gravity should not be large, to avoid the case €2, > 1 during
the cosmic evolution. From the analysis of the Vainshtein
mechanism, the bound on the difference between the gravi-
tational constant of the gravitational source and the gravita-
tional coupling for GW gives [36]

‘XG“X < 01073). (55)

In terms of c4, | XGax| = |nac4] at the scaling fixed point.
Hence, the small ¢4 seems to agree with the above bound.

4 Stability of the linear perturbations

In this section, we investigate the stability of the linear per-
turbations in the theory considered in the previous sections
around the FLRW background. To describe the perturbations
in the metric tensor, we use the metric tensor in the ADM
form,

ds? = —n?dt? + h;j(dx" +n'de)(dx! +nddo), (56)

and quantify the scalar perturbations in the unitary gauge by
field variables én, ¥ and ¢ as

n=1+8n, n' =8Y3;y, hj=e*s;. (57)

@ Springer
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Table 1 The models used in the plots. We set €2, . = 0.95 for models I-IV and €2,,,. = 0.93 for model V. The column wefr shows the value of

wesr at the field-dominated point

Model (n2, n4, ne) () Xre cq Weff

1 O, —-1,-1) —10 —0.045 7.7 —0.88
11 0, —-1,-1) 2 —0.075 1.7 —1.28
1T 0, —-1,-1) 2/3 —0.125 0.67 —1.44
v 0, —1,-1) 1/6 —0.49 5.6 x 1073 —1.47
\Y 0, —1,-2) 2 —0.075 4.0 —1.17
The perturbed action for the DHOST theories up to the second B ﬁ B — 6¢°

order in perturbation is [50] $H XH?

a

woz @)
e +Cg 3 :|,

M2
s@ :/d3xdta 7|:A 2

where the propagating scalar degree of freedom is described
by

¢ =¢— pion. (59)

The coefficients in the action (58) are given by

(58)

1
A= Tran— fR™ (©0

2 d [aMz(l +an+ A1 +aT))]

=-2(1+om) + —

aM? dr H(l +ag) — fi
(61)
. = 40t ampr + 20 +an)p? + s ©2)
¢ (1+ap —f1/H)?
Here,
6 d
@ = ax + 602 — S (a HMZaB,Bl) (63)

For the action in Eq. (10), the variables M2, oK, OB, OH, L,
oT, B1, B2 and B3 defined in [11,50] are

M? = 2G4, ar =0, ap =0, (64)
¢ (6Gaxd +2XGapx + Gag)
=2
ag =2p; + 2GaH .
4HXGax + § (6Gsx$ +2XGugx +Gap) oo
2G4H '
XG
oy = —Zﬁl, ,31 = X ﬁz = _3.312,
Gy
By = 687 — 4B, ©0
and
2X (Gax +2XGaxx)
oK =
G4H?
_ 6X (H (Gax +2XGuxx) + ¢ (2XGugxx +3Gagpx))
G4H

@ Springer

<4ﬂ1 - (13/31 +10X? G4XX)131

G G
F15p% 4 ox2 (13 725X 4 o x TAXXX ) g
G4 Ga

+4 <x2 Gé“ )2> . 67)

4

According to Egs. (58) and (63), the no-ghost condition is
o > 0. (68)

We now add matter into our consideration by supposing that
the matter is described by K-essence [30,50] for which the
action is

S, = /d4x~/—§P(Y), Y = —§g"a,0d,0, (69)

where o is the scalar field, and the metric g, is related to the
metric g,,, in the action (10) by the conformal transformation,

guv - (70)

It can be shown that the action for the matter in the form of
Eq. (69) can lead to Eq. (19) (see, e.g., [55,56]). Including
the matter, the action (58) becomes [31,50]

8uv = e?2¢

S = /d*xdm {VICVT — —a VLeavT, } (71)

where V = (E, 80), and S0 describes the perturbations in
the field o. The matrix /C and £ are defined as

AB B Ch
k= (B An ) L= (cm m,n>’ 72)

where 651 = Py/(Py + 2Y Pyy) is the square of the sound
speed of the matter perturbations, a subscript y denotes
derivative with respect to Y, and

28209 p,
) M
A = A; + —, (74)
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_pn(l+wn)  1—3c; B (75)
" oM, H(l4ap)—fi
e _ €%+ wy) L +an+pi(l +or) 6)
" GoM? H(l+ag)—f

The quantity oy is the time derivative of the background field
op and

M =39, H? [(1 + wy) (6,81 — 9c,%1,812) + 6wm,31]

204
290 p,, (1 + wy) ) T
T am [1 - 3Cm:31] : (77)
40¢ _
. 09 QY Py — P)
o = ——o— (78)

The ghost and gradient instabilities can be avoided if the
eigenvalues of the matrices X and £ are positive. From
Eq. (72), the eigenvalues of these matrices can be written
in the forms

I = % ((Ag +Aw) £ (A + An)? — 4(A; Ay — Bi))
(79)

1 2
he=5 ((BE + Amcl)

/By + Anc)? = 4(B; Anch, - cgl)) . (80)
We see that the model can be free from ghost instability
if A; > 0, Ay, > 0and A;A, > B2. Since A,, is the
coefficient of the kinetic term for the matter, we expect that
A, > 0.The coefﬁcientAg > 0ifEq. (68)is satisfied. Using
the limit w,, — 0 and ¢2 — 0, the condition A; A, > B2
can be satisfied. Hence, even though the matter is included
in the consideration, the no-ghost condition is still given by
Eq. (68). Similar to the case of ghost instability, the model
can be free from gradient instability if B; > 0, Apmc2, >0
and B Amc2, > C2. To check the latter condition, we write

B;:Amcg1 - C,zn

B 2e290¢ py B 3e22Q, [ 1+au+p1 ]°
- M2 d M2 | (+ap)— B
2e20¢ Py
= TC. (81)
Hence, the gradient instability can be avoided if B; > 0 and

¢
C > 0. We now estimate the factor e>?? in the expression

for C. It is difficult to estimate the value of ¢ from the results
in the previous sections, so we estimate Q from Eq. (43),
which gives Q /A >~ 2.2 if x; =~ 0.92. Since the background
dynamics discussed in the previous sections depend on Q /A
rather than Q, for a given value of Q /A, we can choose X such
that Q is small or negative without altering the background
dynamics. Hence, for simplicity, we suppose that e>¢? < 1.

We check the ghost and gradient instabilities at the scaling
point which corresponds to the cosmic acceleration at late
time. We choose x; ~ 0.92,Q,, = 0.3 and ¢4 = 0.1. We
write «, BZ and C in terms of dimensionless variables and
compute numerical values of these quantities. We have found
that there is no gradient instability, and the ghost instability
can be avoided if ng > n, for no > 0 and for a wide range
of n4. These conclusions do not depend on c4.

5 Conclusions

In this work, we have studied the cosmic evolution based
on the fixed points in the dynamical analysis of the DHOST
theory which has scaling solutions. In addition to the scaling
solutions, the DHOST theory in our consideration satisfies
the requirements that the propagation speed of GW is equal
to the speed of light and the GW do not decay to dark energy
perturbations. We concentrate on the model parameters for
which the expression of z, is given by Eq. (AS5).

We have found in our analysis that the scaling fixed point
associated with the late-time accelerating universe is stable
when n, and ng are not negative for ng = —1 and —2. The
stability of this scaling fixed point also depends on the expan-
sion rate of the universe at late time through the parameter
x,. There are ranges of parameters in which the scaling fixed
point and the field-dominated point are simultaneously sta-
ble. The cosmic evolution will reach the scaling fixed point
at late time if x, when the matter domination is positive.
If x, during the matter domination is negative, the cosmic
evolution will reach the field-dominated point.

When the scaling fixed point and the field-dominated point
are stable, these points can be reached at late time for wide
ranges of x, and y, during the matter domination. However,
we have found that the density parameter of the matter can
be larger than unity during the cosmic evolution if ¢4 is large
enough and the initial value of y, during the matter domi-
nation is significantly different from its value at those fixed
points. By definition, ¢4 quantifies the size of the deviation
from the Finstein gravity. In our consideration, the allowed
values of c4 depend on the initial conditions for x, and y,
during the matter domination.

Even though the autonomous equations for the model con-
sidered here are different from coupled dark energy models
presented in [47], we have found that the eigenvalues for
the field-dominated and pMDE points in both models are
the same. In our numerical investigation, the universe can
only evolve from the pMDE to the field-dominated point.
We have also found that the eigenvalues for the scaling fixed
point reduce to those for the field-dominated point when c4 is
significantly large. However, recall that the large c4 can lead
to unphysical values of €2, during the cosmic evolution.
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We conclude that the fixed points for the DHOST the-
ory studied in [49] are similar to those in the coupled dark
energy model in [47]. We have found that the eigenvalues
for the field-dominated and ¢ MDE points in DHOST the-
ory with scaling solutions are similar to those in the coupled
dark energy model even though the theories of gravity in
these models are different. However, for DHOST theory, the
expressions for the eigenvalues corresponding to the scaling
point are complicated, and consequently the stability of the
fixed point is evaluated numerically in this work.

We have also estimated the ghost and gradient instabilities
in this theory. We have found that this theory is free from the
gradient instability, while the ghost instability is absent when
ng > np for ny > 0 and for a wide range of n4.
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Appendix A: Constraint equations in terms of dimension-
less variables

In terms of the dimensionless variables, we can write Eq. (15)
as

1
T 2c4 + UM

ZrX), —i + 20 —2) — 0zl + nax?
H2 r A

ot (e = exnt) + s 47 (e (455 +6)

H e
+ 2m+9y+3 Ur

+eanaz?x} (ca (ng —4)
+2(ng — 1) v;"‘) - 4C4nﬁz,x% (2()4 + v;’4)

—cangxy, (24 + V%) @rxn — D)),

[v,f"“ (v:"zf"f’ (ZC4 + vf“) (2cw4v;‘2+"6

(A)

@ Springer

where v, = y; /x,z.
Equation (16) can be written in terms of the dimensionless
variables as

1
—ny—ny— 2
0= ——[v 2 (— 2y

(2c4 + vf4)2 ’

(—4ce Bng —2ng — 1) xrzvf2 —d4cy (2np —3n4+ 1) x,zvf6
+3yr2te (4n2x3x§ + 4ngy(2x,x;,

=2z, + Q) —2) + nﬁx;t(x, (8 —2z,x;)

42 (zr2x3 +4)) + 12)) — 2c4v2™

(—c6 (3ng — 4ng — 2) x20" — ¢5 (4ny — 3ng + 2) X207
+302176 (ng (xpx5 — 222 + R, — 1) +3))
—6c3v2176 (n3x? (—4xrz + 4x? — 23)

+n£x;L (x, (8 —2z,x3)

+zr (zrxn +4) Hdna (. (xr —2) — D +4)

03" (—c6 2ng + 1) x20™ + ¢ 2ny + 1) x2 v

=302 ] 43 (e + Q). (A2)

This equation can be used to express €2, in terms of the
other dimensionless variables. Equation (22) can be written
in terms of the dimensionless variables as

0 = v m2m4mane (3 (—6ni
(8x} — 18z,x% + 9z2x, + 27) x 2o
+3n2x§ (8xxxf — 96x,2 — 3z,
(272, = 24) X, + 22 (2035, + 12)) w2 T
+12n4 (c6x? (2n6 — 1) X33 — Qngzr +2,) x5 + 8) V2
—czxr2 (2ny — 1) x,x;,
—Qnazr +z7) X0+ 8) V) + (xr — 2,) (R — 3) ;2 T"0)
—lZnixk (ctsx,z
Qx, +z,) V)2
—c2x7 (% +2) VS + (n (@rxn — 4)
xF =2(Qy + 220, = 7) %,
+2r (—Qy + 2225 +4)) v)2T6) + 8x, (3v72F7
(@ +9y) 052
—xr (c6V!™ (2 (xr —2,) X313+ (X2 — 32, X5, +6) 6 — 2,23 +6)
—cl (2 (xy — 2) Xan3
+ (x5 — 3z, X0 + 6) 12 — 7, x5 +6))))
o — 3¢ (8nix3 (xy — z,) xjv2tns
—Znix% (xkxg + (z,x5 — 16) x,? + 8z,x, + 2z%) vfz*”"
g (—4eox? ((2ng — 1) x,x;
— 2n6zr +27) 1+ 8) U2 + deax] (2n2 — 1) xrxs
— (2nazr +27) X5 + 8) V)6
=2 (xr — ) (29 = 3) X2 *70)
+nixA (6c(,x,2z, v — 602xrzzrvf" + (x;\ (zr x5, —4) sz
+ (8 — 4z,x3) Xr + 22, (—3Qy + zpx5 + 5)) v )
—dx, (3v12F70 (Qy + Q) Orxs
—x; (cov!"? (2 (xr —2,) Xang+ (x5, =32, +6) g —2,X5,+6)
—cou)'t (2 xr —2r) xm%

+ (x,x5 — 3z,x) + 6)ny — 7,x5 +6)))) v,z”4
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—3cy (2 (X — 2r) (7C6X3U:,2 + czva'r"’ + (Qy - l) vf2+"6) xkni

+ (—C(,xrz (2ng — 1) x,x;

— nezr +2) X1+ 8) U2 + c2x? (2n2 — 1) x,x5

— (2nazy +z7) x5 + 8) V)0

= —2) (R — 1) 1020 ) ny — 2, (3u)2 17

(Qm +2y) Osxa

—xr (c6v2 (2 (x — 20) Xan2 4 (X x — 32,x0 + 6) ng — z,x5 + 6)
—cpv)0 (2 (xr —2r) xxn%

+ (x5 = 320x5 + 6) 12 — Zpx5 4+ 6)))) VI + x, (3u)2TN6

(@ + Q) 0rxa

—X (cm)fz (2 (x, — zr)x;hn% + (xpx) — 3z;x5 +6) ng — x5 + 6)
—cup (2 (xr — ) X313

+ (X — 32,23 4+ 6) ny — 2o + 6))) V™
+6cin4xl (41’!2)6%)63 +2n4x;) (Zer;Ln% —2(zpx0+8) na — zrx;, +4) xf
— (IZZExfni + 2% 32,x5, — 40) n3 — 8 (z,x5 — 4) ng + 4) x,
notns)

(A3)

—(na = Dz (azyx, —2)°)v

To compute the equation for z,, we substitute €2, solved
from Eq. (A2) into the above equation. The resulting equation
can be written in the form

b3z} + baz? +blz, + by =0, (A4)

where by, by, b and b3 are complicated functions of the
dimensionless variables of 2, x,, y- and x;.. Using Eq. (A4),
we can compute the expression for z, in the form

. _ N2(@bibz—b3) VA by A5)
! 3b3V/A 392b;  3bs’
(1+iv3) Goubs —12)  (1-iV3) VA 4,
Z - - — 57
" 3(223b3 /A 64/2b3 3bs
(A6)
(1=v3) (3bibs - 53)
Z =
a 322533 /D)
(L A)VE o, (A7)
67/2b3 3bs’
where A = —2b3 + 9bibsby — 27hob} +

4 (30163 — B2) 3 + (=263 + 9b1b3bs — 27bob2).

The physically relevant solution is selected from the above
solutions by the requirement that z, becomes unity when
x =y =1,2, =0, and ¢; and c¢ are given by Egs. (36)
and (37).
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