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Abstract. A short introduction to the Standard Big Bang model is provided,
presenting its physical model, and emphasizing its long—standing problems such
as the horizon, flatness, baryon asymmetry, among others. Next, an introduction
to the inflationary cosmology is presented to elucidate a solution to some of the
above—mentioned problems. It is shown that the inflationary scenario succeeds in
explaining what the standard Big Bang model cannot, passing the tests of the
high precision experimental constraints which have been performed since last de-
cade. This contribution should serve as an introduction to the standard ideas and
scenarios which will be used in the forthcoming lectures of this book.

1 On the Standard Big Bang Model

We would like to begin our study by reviewing some basic aspects of the
the standard hot Big Bang model (SBB), paying attention to what particle
physics theories would bring about in the very early Universe. Our primary
focus is to present the achievements of the SBB, but also some difficulties or
conundrums that cannot be understood without the incorporation of other
concepts, such as extensions to both gravity and particle physics theories,
which will give rise to an inflationary scenario.

1.1 FRW Models

The SBB is based on Einstein’s general relativity (GR) theory, which can be
derived from the Einstein—Hilbert Lagrangian:

1
167G Bv=g , (1)
where R is the Ricci scalar, G the Newton constant, and g = |g,,| the
determinant of the metric tensor; for our geometric conventions see the table
provided in [68] (cover page), here we have used “-” for the metric g, “+” for
Riemann, and “-” for Einstein.
By performing the metric variation of this equation, one obtains the Ein-
stein’s well known field equations

1
R, — iRg;w = _87TGT;M/ ) (2)
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where R,,,, is the Ricci tensor and T}, is the energy-momentum stress tensor.
The left hand side (L.h.s.) of this equation represents the geometry, whereas
the right hand side (r.h.s.) accounts for the fluid(s) present. In GR the space—
time is four dimensional (three spatial dimensions plus time), and since both
tensors are symmetric, (2) represents a collection of ten coupled, partial dif-
ferential equations.

Once one is provided with the gravity theory, one should introduce a
symmetry through the metric tensor. In cosmology one assumes a simple
metric tensor according to the cosmological principle which states that the
Universe is both homogeneous and isotropic. This turns out to be in very good
agreement with the observed very—large—scale structure of the Universe. This
homogeneous and isotropic space-time symmetry was originally studied by
Friedmann, Robertson, and Walker (FRW); see [38, 81, 96]. The symmetry
is encoded in the special form of the following line element:

dr?

1— kr?

ds? = —dt? + a2(t) +7* (d6® + sin® 0 d¢?) | | (3)

where t is the time variable, —6—¢ are polar coordinates, which can be ad-
justed so that the constant curvature takes the values k = 0,+1, or —1 for a
flat, closed, or open space, respectively. a(t) is the scale factor of the Universe.

The FRW solutions to the Einstein equations (2) represent a cornerstone
in the development of modern cosmology, since with them it is possible to
understand the expansion of Universe, as was realized in the late 20s through
Hubble’s law of expansion [53]. With this metric, the GR cosmological field

equations are,
N
o _ (a\ _ 8nG k
= () R )

and

Z:fﬁ(ﬁi’m) : ()

3

where H is the Hubble parameter; p and p are the density and pressure of
the perfect fluid considered; that is, T,,, = pupu, + p(upu, — guv), Where
Uy = (52 is the four—velocity of the fluid in co-moving coordinates, i.e. in
coordinates that are moving with the expansion. Equations (4-5) can also be
deduced within Newtonian cosmology, but there the pressure is not a source
of gravitation; see the contribution of E. Copeland in this book.

The energy-momentum tensor conservation, 7,,”., = 0, is valid and from
it one obtains that

p+3H(p+p)=0 . (6)

If one assumes further a barotropic equation of state for the fluid, w =
const.,
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% for radiation and/or ultra — relativistic matter
P_ - 0 for dust (7)
p )1 for stiff fluid

—1 for vacuum energy

to integrate (6), it yields
M.,
p= 2304w (8)

where M, is the integration constant and is differently dimensioned by con-
sidering different w—fluids. Equations (4), (5), and (6) are not linearly inde-
pendent, only two of them are. That is, one can derive, e.g., (5) from (4) and
(6). Note that these equations are time symmetric, the interchange t — —t
leaves the equations the same.

Let us very briefly recall which w—values are needed to describe the di-
fferent epochs of the Universe’s evolution. At very early times, the Universe
is believed to have experienced a huge expansion due to some cosmological
constant (A = 8m7Gp, where p = const.) or vacuum energy. This epoch,
to be fully described later on, is roughly characterized by an equation of
state w = —1. After inflation, the vacuum energy decays in some particle
content, a process called reheating [3, 33, 1], after which the Universe is
filled with a “fluid” of radiation or of ultra-relativistic matter where the
material content of the Universe consisted of photons, neutrinos, electrons,
and other massive particles with very high kinetic energy. During this epoch
the assumption w = 1/3 is valid. After some Universe cooling, some massive
particles decayed and others survived (protons, neutrons, electrons) and their
masses eventually surpassed the radiation components (photons, neutrinos).
From that epoch until very recent times, the matter content dominated and
effectively produced no pressure on the expansion and, therefore, one accepts
a model filled with dust, i.e. w = 0. Until the mid 90s we thought that a
dust model would be representative for the current energy content of the
Universe. Recent measurements (see contribution of A. Filippenko in this
book), however, indicate that as of recently the Universe is again experiencing
a huge expansion rate. It is believed that a kind of cosmological constant, or
vacuum energy, is the largest energy contribution to the expansion of the
Universe at present. Thus the cosmological constant is the generic factor of
an inflationary solution, see the k = 0 solution below, (10), which is believed
to be characteristic of both the very early inflationary epoch and today.

Finally, a stiff model, w = 1, is sometimes considered in order to describe
very dense matter under very high pressures.

The ordinary differential equations system described above needs a set of
either initial conditions or boundary conditions to be integrated. One can as-
sume a set of two initial values, say, (p(t«), a(t«)) = (p«, a+) at some (initial)
time t,, in order to determine its evolution. Its full analysis has been revie-
wed by many authors [97, 68]. Here, in order to show some early Universe
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consequences we take k = 0, justified as follows: From (4) and (8) one notes
that the expansion rate, given by the Hubble parameter, is dominated by the
density term as a(t) — 0, since p ~ 1/a31*%) > k/a? for w > —1/3; that is,
the flat solution is very well fitted at the very beginning of time. Furthermore,
recent Cosmic Microwave Background Radiation (CMBR) ! measurements
[26, 6, 48, 13] are consistent with k& ~ 0. Therefore, assuming k = 0, (4)
implies

a(t) = [6rGM,,(1 + w)2) T (t — t,) 0o

(3—327rGM )4 (t—t.)? for w =1 radiation
= (67TGM0)1/3 (t—t.)?/3 for w=0 dust 9)
(247GM Y6 (t —t,)Y/3 for w =1 stiff fluid

and

Ht

a(t) = ase for w = —1 vacuum energy (10)

Wy ”

where the letters with a subindex “x” are integration constants, representing
quantities evaluated at the beginning of times, t = t,.

From (9) one can immediately see that at t = ., a. = 0 and from (8),
px = 00; that is, the solution has a singularity at that time, presumably at
the Universe’s beginning; this initial cosmological singularity is also called
Big Bang singularity. As the Universe expands the Hubble parameter evolves
as H ~ 1/t, i.e. the expansion rate decreases; whereas the matter—energy
content acts as an expanding agent, cf. (4), it also decelerates the expansion
in an asymptotically decreasing manner, cf. (5) and (8). In that way, H~!
represents an upper limit to the age of the Universe; for instance, H ! = 2t
for w=1/3 and H~! = 3t/2 for w = 0, t being the Universe’s age.

The solution (10) is inflationary and has no singularity. This solution is
such that the Hubble parameter is indeed a constant. A fundamental ingre-
dient of inflation is that the r.h.s. of (5) remains positive, ¢ > 0. This is
performed when the inflation pressure is negative [18], p + 3p < 0. In this
way, one does not have necessarily to impose the strong condition w = —1,
but it suffices that w < —1/3, in order to have a moderate inflationary solu-
tion; for example, w = —2/3 it implies a = a,t?, a mild power-law inflation.
The issue of inflation will be discussed in Sect. 2.

1.2 The Physical Scenario

So far we have obtained some exact solutions for Einstein’s cosmology. Now,
to achieve a more physical scenario one considers the Universe filled with a
plasma of particles and their antiparticles. This was originally done by G.
Gamow [40], who first considered a hot Big Bang model for the Universe’s

! The CMBR is also sometimes referred to in this book as Cosmic Microwave
Background (CMB) or Cosmic Background Radiation(CBR).
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beginning, which was later qualitatively confirmed by Penzias and Wilson
[73] and interpreted by Dicke et. al. [29]. Furthermore, with the development
of modern particle physics theories in the 70s it was unavoidable to think
about a physical scenario for the early Universe which should include even
the “new” physics. It was also realized that the physics described by GR
should not be applied beyond Planck (Pl) initial conditions, because there
the quantum corrections to the metric tensor become very important, a theory
which is still in progress. Thus, we make some assumption at some early time,
t Z tp;: the Universe was filled with a plasma of relativistic particles, including
quarks, leptons, and gauge and Higgs bosons, all in thermal equilibrium at a
very high temperature, T, with some gauge symmetry dictated by a particle
physics theory.

Now, in order to work in that direction one introduces some thermodyna-
mic considerations necessary for the description of the physical content of the
Universe, which we would like to present here. Assuming an ideal-gas appro-
ximation, the number density n; of the particles of type ¢, with a momentum
q, is given by a Fermi or Bose distribution [60]:

2
9 q-dq
= 272 / e(Bi—u)/T 41 7 (11)

where E; = \/m? + ¢2 is the particle energy, u; is the chemical potential,
the sign (+) applies for fermions and (—) for bosons, and g; is the number
of spin states. One has that g; = 2 for photons, quarks, baryons, electrons,
muons, taus, and their antiparticles, but g; = 1 for neutrinos because they
are only left-handed. For the particles existing in the early Universe one
usually assumes that p; = 0: one expects that in any particle reaction the
1; are conserved, just as the charge, energy, spin, and lepton and baryon
number are conserved as well. The number density of photons (n,), which
can be created and/or annihilated after some particle collisions, must not be
conserved and its distribution with u, = 0, E = ¢ = hv, reduces to the
Planck one. For other constituents, in order to determine the u;, one needs
n;; one notes from (11) that for large p; > 0, n; is large too. One does not
know n;, but from nucleosynthesis that [72]

nj Nbaryons — Manti—baryons ~ (3 o 4) % 10710 . (12)
N~y N~y

Ui

The smallness of the baryon number density, np, relative to the photon’s,
suggests that nieptons may also be small compared with n.. Therefore, one
takes for granted that p; = 0 for all particles. Why the ratio ng/n, is so
small, but not zero, is one of the puzzles of the SBB. This ratio is also often
called n = ng/n.,.

The above approximation allows one to treat the density and pressure of
all particles as a function of the temperature only. According to the second
law of thermodynamics, one has [97]
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1
dS(V,T) = L[d(pV) +pdV] , (13)

where S is the entropy in a volume V ~ a3(t) with p = p(T), p = p(T) in
82

equilibrium. Furthermore, the integrability condition PS5 _0°S_ g also

! ) aTaVv avaT
valid, which turns out to be

dp _p+p
T T (14)
Additionally, the energy conservation law equation (6) leads to
dp d
3 3
=X = — t 1
(0D = L1 )0+ )] (15)
and using (14), the latter takes the form
d .a3(t)
— =0 . 16
10+ p) (16)
Using (14), (13) can be written as
1 v
dS(V.T) = 7d((p+p)V] = 7 (p +p)dT . (17)
Then, (16) together with (17) imply that the entropy
a3
S = ?[p + p] = const. (18)
is a constant of motion.
The density and pressure are given by
e
p= /Emidq and p= /S—Einidq ) (19)

For photons or ultra—relativistic fluids, E = ¢, these equations become such

that
1

= 20
p=3p, (20)

confirming (7), and after integrating (14), it results that
p=0bT* (21)

with the constant of integration, b. In a real scenario there are many relati-
vistic particles present, each of which contributes as in (21). Summing up all
of them, p =3, p; and p = >, p; over all relativistic species, it results that
b(T) = g—;(N B+ %N r), which depends on the number of effective relativi-
stic degrees of freedom of bosons (Np) and fermions (Ng). Therefore, this
quantity varies with the temperature; different i—species remain relativistic
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until some characteristic temperature T' = m;, after which the value N, (or
Np,) no longer contributes to b(T). The factor 7/8 accounts for the different
statistics the particles have, see (11). In the standard model of particles phy-
sics b 1for T < 1 MeV and b =~ 35 for T > 300 GeV. Additionally, for
relativistic particles one obtains from (11) that

46 3

n=cl?® with c=>3*(Np+ ZNF) . (22)

where ((3) ~ 1.2 is the Riemann zeta function of 3. Currently, n, ~ 2373

where Th 75 = %; the subscript “0” refers to quantities evaluated at
present time.

From (18), using (20) and (21), one concludes that T' ~ 1/a(t) and from
the w = 1/3 solution in (9) one arrives at the result

SMyo1 ) 3 1 (23)
b oa(t)  V32rGb(t—t,)3

ol=

T =

a decreasing temperature behavior as the Universe expands. Therefore, in-
itially at the Big Bang ¢t = ¢, implies T, = oo, the Universe was very hot.

The entropy for an effective relativistic fluid is given by (18) together with
(20) and (21):

S =-b(aT)?= const. (24)

[SUNRN

Combining this with (23), one can compute the value of M, to be M, =
(35)4/3/b1/3 ~ 1016, since b ~ 35 and the photon entropy S = % b (ap Tp)? ~
1088 for the currently evaluated quantities ag = dg(tp) = 10%®cm and
T,, = 2.7 °K. For later convenience, we deﬁne the entropy per unit vo-
lume, entropy density, to be s = S/V = 3 % (NB + 7NF)T3 thus, currently
s & Tn,. The nucleosynthesis bound on 7, (12), implies that ng/s ~ (4-
—6) x 10711

Now we consider particles in their non—relativistic limit (m > T'). From
(11) one obtains for both bosons and fermions that

3/2
mT —m
n—g<2ﬂ> e~m/T (25)

The abundance of equilibrium massive particles decreases exponentially once
they become non-relativistic; this situation is referred as in equilibrium an-
nihilation. Their density and pressure are given through (19) and (25) by

p=nm
p=nl<p . (26)
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Therefore, the entropy given by (18) for non-relativistic particles through
(25) and (26) also diminishes exponentially during their in equilibrium an-
nihilation. The entropy of these particles is transferred to that of relativis-
tic components by augmenting their temperature. Hence, the constant total
entropy is essentially the same as that given by (24), but the i—species con-
tributing to it are just those which are in equilibrium and maintain their
relativistic behavior, that is, particles without mass such as photons.

Having introduced the abundances of the different particle types, we
would like to comment on the equilibrium conditions for the constituents
of the Universe as it evolves. This is especially of importance in order to have
an idea whether or not a given i—species disappears or decouples from the
primordial brew. To see this, let us consider n; when the Universe’s tempera-
ture, T', is such that (a) T > m;, during the ultra—relativistic stage of some
particles of type ¢ and (b) T' < m;, when the particles ¢ are non—relativistic;
both cases originally in thermal equilibrium. From (22) one obtains for case
(a) that n; ~ T3; the total number of particles, ~ n;a®, remains constant.
Whereas for case (b), from (25), n; ~ T3/?e=™i/T ie. when the Universe
temperature goes down below m;, the number density of the ¢—species sig-
nificantly diminishes; an “in equilibrium annihilation” occurs. Let us take as
an example the neutron—proton annihilation: one then has

Ny, mp—mn _1.5x10'0 °k

— ~e T —e T (27)

which drops with the temperature, from nearly 1 at T > 10'2? °K to about 5/6
at T ~ 10 °K, and 3/5 at T ~ 3 x 10'° °K [70]. If this is forever valid, one
ends up without massive particles, meaning that our Universe should have
consisted only of radiative components; our own existence contradicts that!
Therefore, the in—equilibrium annihilation eventually stopped. The quest is
now to freeze out this ratio (to be n,/n, ~ 1/6) 2 in order to leave some ha-
drons for posteriorly achieving successful nucleosynthesis. The answer comes
by comparing the Universe expansion rate, H, with particle physics reaction
rates, I'. Hence, for H < I', the particles interact with each other faster than
the Universe expansion rate and then equilibrium is established. For H > I"
the particles cease to interact effectively and then thermal equilibrium drops
out 3. In this way, the more interacting the particles are, the longer they
remain in equilibrium annihilation and, therefore, the lower their number
densities are after some time; e.g., baryons vanish first, then charged leptons,

2 Due to neutron decays, until the time when nucleosynthesis begins, Ny /Np redu-
ces to 1/7.

3 This is only approximately true; a proper account of this involves a Boltzmann
equation analysis. In doing so a numerical integration should be carried out in
which annihilation rates are balanced with inverse processes; see for example
[90, 60].
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neutral leptons, etc. Finally, the particle numbers of (massless) photons and
neutrinos remain constant, as it was mentioned above; see Fig. 1. Note that
if interactions of an i—species freeze out when it is still relativistic, then its
abundance can be significant at present.

It is worth mentioning that if the Universe were to expand faster, then
the temperature of decoupling at H ~ I" would be higher, thus the fixed ratio
N, /n, would be greater, thus leading to profound implications in the nucleo-
synthesis of the light elements. For instance the Helium, *He, abundance
should be higher. Therefore, the expansion of the Universe cannot arbitrarily
be augmented during the equilibrium era of some particles. Furthermore, if a
particle species is still highly relativistic (T > m;) or highly non-relativistic
(T <« m;) when decoupling from primordial plasma occurs, it maintains an
equilibrium distribution; the former characterized by T,.a =const. and the
latter by T},a? =const., cf. (30).

Log[n;/ny]

mass zero

-20 | | | |
1 10 100 1000

m;/T

Fig. 1. The evolution of the particle density of different i—species. If an i—species
is in equilibrium its abundance diminishes exponentially after the particle becomes
non-relativistic (solid line). However, interactions of an i—species can freeze out,
causing the particle species to decouple from equilibrium and maintain its abun-
dance (dashed line). (Figure adapted from Kolb and Turner 1990).

There are also some other examples of decoupling, like the neutrino decou-
pling: during nucleosynthesis there exist reactions like v +— eTe™, which
maintain neutrinos efficiently coupled to the original plasma (I" > H) un-

til about 1 MeV, since % ~ (MZV)S' Below 1 MeV reactions are no longer
efficient and neutrinos decouple and continue evolving with a temperature
T, ~ 1/a. Then, at T'Z m, = 0.51MeV the particles in equilibrium are pho-

tons (with Np = 2) and electron and positron pairs (with Np = 4) which
contribute to the entropy with b(T') = g—; - (11/2). Later, when the tempe-
rature drops to T" < m,, the reactions are no longer efficient (I" < H) and
after the e pair annihilation there are only photons in equilibrium with
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(T = g—; - (2). Since the total entropy, S = %b(aT)3, must be conserved,
the decrease in b(T) must be balanced with an increase in the radiation tem-
perature; this gives a result of % = (%)1/3, which should remain to the
present day, implying the existence of a cosmic background of neutrinos with
a temperature today of T,,, = 1.96 °K.

Another example of this is the gravitation decoupling, which should also
be present if gravitons were in thermal equilibrium at the Planck time and
then decoupled. The present—day background of temperature should be cha-

racterized at most by Tyray. = (%)1/3 ~ 0.91 °K.

For the matter dominated era we have stressed that effectively p = 0;
next we will see the reason for this: First consider an ideal gas (like atomic
Hydrogen) with mass m, then p = nm + %nTm and p = nT,,. From (15) one
obtains, equivalently, that

d

%(003(15)) = —3pa’(t) (28)

and substituting the above p and p, one obtains

d 3 2
%(nmag(t) + inTmag(t)) = =3nTa"(t) (29)

where nma3(t) is a const. This equation yields
T,na®(t) = const. , (30)

that matter temperature drops faster than that of radiation as the Universe
expands; see (23). Now, if one considers both radiation and matter, it is
valid that p = nm + %nTm +bT* and p = nTy, + %bTT‘L; the source of the
Universe’s expansion is proportional to p+p = nm + %nTm + %be ; the first
term dominates the second, precisely because T},, decreases very rapidly. The
third term diminishes as ~ 1/a*, whereas the first as ~ 1/a3, and after the
time of densities equality (eq.), pm = pr, the matter density term is greater
than the others, which is why one assumes no pressure for that era.

From now on, when we refer to the temperature, T', it should be related
to the radiation temperature.

The detailed description of the thermal evolution of the Universe for the
different particle types, depending on their masses, cross-sections, etc., is
well described in many textbooks, going from the physics known in the early
70s [97] to the late 80s [60], or late 90s [62], and therefore it will not be
presented here. However, we notice that as the Universe cools down, a se-
ries of spontaneous symmetry—breaking phase transitions are expected to
occur. The type and/or nature of these transitions depend on the specific
particle physics theory considered. Among the most popular are Grand Uni-
fication theories (GUT) which bring together all known interactions except
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for gravity. One could also be more modest and just consider the standard
model of particle physics or some extensions of it. Ultimately, one should de-
cide, in constructing a cosmological theory, according to which energy scale
one wants to use to describe physics. For instance, at a temperature bet-
ween 104 GeV to 10*® GeV the transition of the SU(5) GUT should take
place -if this theory is valid- in which a Higgs field breaks this symmetry
to SU(B)c x SU(2)w x U(1)mc, a process through which some bosons ac-
quire their masses. Due to the gauge symmetry, there are color (C), weak
(W) and hypercharge (HC) conservation, as the subindexes indicate. Later
on, when the Universe evolves to about a few hundred GeV, the electro-
weak phase transition takes place, in which a second Higgs field breaks the
symmetry SU(3)¢c x SU2)w x U(1)mgc to SU(3)c x U(1) gar; through this
second breaking the fermions also acquire their masses. At this stage, there
are only color and electromagnetic (EM) charge conservation, due to the
gauge symmetry. Afterwards, at a temperature of about 100 to 300 MeV
the Universe should undergo a transition associated to the chiral symmetry—
breaking and color confinement, from which baryons and mesons are formed
out of quarks. Subsequently, at approximately 10 MeV the synthesis of light
elements (nucleosynthesis) begins, producing most of the observed Hydrogen
and Helium observed in the present day, along with abundances of some other
light elements. The nucleosynthesis represents the earliest scenario tested in
the SBB. After some time, matter dominates, over radiation components, in
the Universe, and the large scale structure (galaxies, clusters, superclusters,
voids, etc.) begins to form. At about 1 eV the recombination takes place;
that is, the Hydrogen ions and electrons combine to compose neutral Hy-
drogen atoms, then matter and EM radiation decouple from each other. At
this moment the surface of last scattering (ls) of the CMBR evolves as an
imprint of the Universe at that time. In Fig. 2 the main events of the SSB are
sketched.

Let us go back to the FRW cosmological equations. In observing the
two terms involved in (4), the matter term 87Gp/3 and the curvature term
k/a?, one should be aware of the validity of the approximation 87Gp/3 >
k/a?. Let us for the moment elucidate that k is tiny but different from zero.
Then, eventually when the energy density has diminished enough due to the
expansion, 8mGp/3 ~ k/a?, and further on the Universe will be dominated
by its curvature. Let us consider this case, but for both k£ = £1 separately.
First, take k¥ = —1, then H = 1/a and the solution is a ~ ¢, that is, the
Universe expands forever. Otherwise, for k = +1, at the moment of maximum
expansion, say? 7./2 , 87Gp/3 = k/a?, the Universe stops its expansion and
then the scale factor begins to decrease. The solution given by the negative
square root of (4) again ends with a singularity but now at ¢t = 7. > t,, where

* 7. stands for Teollapse. The lifetime of such an Universe, the time of a cycle, is just
twice the time of maximal expansion, because the solution is time symmetric.
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Fig. 2. The thermal history of the SBB (Figure adapted from Harrison 1970).

p =00, T = 0o, and a = 0; this is the so-called Big Crunch. For instance,
the lifetime 7. for a model filled with cold dark matter is

M
Te~ MG~ —107% s ; 31
Mo (31)

that is, if our Universe were dark—matter dominated and with a closed cur-

vature, then it must presently have (1017 s) a mass M > 10%°Mp; ~ 105%gr.

For a radiation model, in terms of its entropy, from (18) and (23), one

obtains that
S2/3 .

~ T~ §YP107 s 32

v ; (32)

in this case S > 10%°, a huge entropy! In trying to understand such big

numbers one is forced to recognize some problems with the SBB. Next, we
present some of them.
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1.3 Problems of the Standard Big Bang Model

In considering a theory of the Universe one is open to think about an Uni-
verse’s “arena’ as general as possible. In doing so one finds a large list of
problems to be understood. However, not all of them are of the same na-
ture. For instance, some problems arise as a result of computations, others
by implementing a physical scenario for GUT or from the conception itself of
how the Universe should have begun; that is, apart from the choice of initial
conditions, (px, @), are the number of dimensions or the global topology. In
this section we list some of these problems, emphasizing those for which the
inflationary Universe offers an explanation:

Dimensionality

Why should the Universe have four space—time dimensions, at least locally
in our surroundings? A first attempt to consider theories in more dimensions
was carried out by Kaluza and Klein [54, 56], who tried, unsuccessfully, to
unify gravity with the electromagnetic interaction. However, from that we
learned to use more than four dimensions for unifying meanings.

Other theories such as fundamental strings are conceivable in D—dimen-
sions, but by demanding Lorentz invariance of the quantized bosonic string
theory one has to choose D = 26, or in fermionic strings D = 10. Yet, there
arises the problem of compactifying the D —4 dimensions, to a compact space
whose size is of the order of the Planck length (Ip;). There is no unique pro-
cedure. The compactification can be achieved in a number of ways, many of
them casting different particle content in their low energy effective Lagrangi-
ans. In addition, there exists no compelling principle which would determine
the space-time dimension to be four. All dimensions below D seem to be on
an equal footing [66].

Euclidicity

What is the global geometry of the Universe? The space geometry is almost
perfectly Euclidean on large scales, but on very small scales -say, slightly
smaller than the Planckian- GR is not any more tractable, as quantum fluc-
tuations of the metric make it impossible to extend a classical formalism.
Within GR one understands a large—scale euclidicity, but not at the very
small scale, even though the only natural length in GR is Ip; = v/G. Why
this? Naturally, it is tempting to go beyond GR, a theory which is not yet
completed.

Singularity

As we have already mentioned, at ¢t = t, the scale factor is a = 0, the density
p=o0and T = oo, see (9), (8) and (23). It can also be shown that the
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curvature tensor R" s = 00 at that time. There exists no such a theory to
explain gravity as a(t) approaches zero. In fact, one expects GR to be valid
as far as a(t) — lp;; in going beyond this limit the problems mentioned in
the Euclidicity item appear.

Homogeneity and Isotropy

The large—scale structure of the Universe seems to be very homogeneous and
isotropic. However, looking on small scales, the isotropy and homogeneity
break down: there exist planets, stars, compact objects, galaxies, clusters...a
large—scale structure. Hence, it is tempting to consider more general inhomo-
geneous and anisotropic models, which should explain, as a consequence of
their evolution, the currently observed large—scale structure along with the
isotropy limits observed in the CMBR, in x-ray backgrounds (e.g. quasars at
high redshift), and in number counts in faint radio sources.

In GR, without the aid of a cosmological constant or inflation, Collins
and Hawking [25] examined the question in terms of an “initial conditions”
analysis. They obtained that the set of spatially homogeneous cosmological
models approaching isotropy in the limit of infinite times is of measure zero
in the space of all spatially homogeneous models. This in turn implies that
the isotropy of the models is unstable to homogeneous and anisotropic per-
turbations. However, their definition of isotropization demands asymptotic
stability of the isotropic solution. An asymptotic stability analysis of Bianchi
models in GR [10] shows, e.g., that in the Bianchi type VII; the anisotropy
will not exactly vanish but can be bounded. In this sense, the open FRW
model may be stable. Attempts to understand this question in other gravity
theories, such as Brans—Dicke theory, shed some light on the solution [20].

Horizon

The region of space which can be connected to some other region by causal
physical processes, at most through the propagation of light with ds? = 0,
defines the causal or particle horizon, dg. For the FRW equation (3), in
spherical coordinates with 6,¢ =const. and after redefining r, this means
that [82, 97]:

I dr
/0 alt) /0 VI—kr?
() = a(t) / t_dar (33)
o V1I—kr?
In order to analyze the whole horizon evolution, from the present (¢y) to the
Planck time (tp;), we first compute the horizon for the matter dominated era

teq. <t < to and secondly for the radiation era ¢t < t.q., because they are
differently determined by (9), where we set t, = 0 for convenience. For the
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matter epoch one has a(t) = ag(t/ty)?/?, then the first equation above gives
TH = a%(t% t)1/3; from the second equation one obtains the horizon dy(t) =
3t = 2H~'. For the radiation period, one finds that ry = é(teq, t)1/2
and dy(t) = 2t = H~'. We see for the matter dominated era that the
causal horizon is twice the Hubble distance, H~!, and that they are equal
to each other during the radiation dominated era; therefore, one uses them
interchangeably. It is clearly seen for both eras that as t — 0, the Universe
is causally disconnected, being a(t) > dg(t).

The evolution of a typical co-moving distance scale, L, due to the Universe
expansion is given by L(t) = LO%?. Next, let us compare the past evolution
of that scale with the corresponding traced by the horizon, dg (t) = dg, (t/t0),
where dg, = 3to, for the matter dominated era. Then, one finds that

dy  du, (t\"*?
—_— = — fi teg. <t <1p . 4
I Lo t or eq. > U > 10 (3 )

Now consider the typical scale, Lg, to be the present observed particle horizon,
Ly = dp,. Then, the amount by which the three dimensional horizon was
smaller than the “volume” L3(t) is determined by the following relation:

dn\® ¢ To 3/2
(L) == <T for teq. <t <to , (35)

in which we have made use of (9) and (24). At the time when the CMBR

was last scattered (Is) one has then that (de)?s ~ 107%; that is, there were
approximately one hundred thousand small horizon regions without causal
connection! But, on the other hand, by that time the CMBR was already
highly isotropic. Thus, one has to take for granted that the initial conditions
for all the 10° volume horizons were fine tuned so as to account for the present
observed large angle CMBR levels of isotropy, with §7//T ~ 10~5. This is the
horizon problem.

One can go further and compute the number of disconnected regions up

to the Planck epoch. But first, one needs to evaluate the ratio dg /L when the

radiation and matter densities equal (eq.) each other; this is (de)Zq_ ~ 1076,
Up until this time, one has to use the radiation solution given by
dy  dn., £ \1/2
H o e f t<teq , 36
L~ Leq \feq o = Feq. (36)

again taking as the typical scale that of the horizon at that time, which is
given by (dTH)iq, ~ 1075. Then, one finds that

d 3 ¢ 3/2 T 3
(2{) —=10"6 (t ) =109 (;*) for t <teq. (37)
eq.
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which at the time of nucleosynthesis (ns) is (dTH)iS ~ 1072%; then one has
to tune the initial conditions even finer (than at ¢ = t.,) to explain the
homogeneous Universe element composition. Further, at Planck time it yields
(dTH)SPZ ~ 107%, that is, i ~ 10%° ~ €58; such large numbers will later be
explained in a successful inflationary model.

Now, let us try to link this issue with the big numbers encountered in (31)
and (32). To do that, next we compute the entropy per horizon, Sg, using

(24), finding
4
Sy = 3 b(dy T)? , (38)

now using (34), (24), and (9) for the matter dominated era and (36), (24),
and (23) for the radiation era, we obtain the following results:

Ty \*/2
Sg=3=S <T) for teq. <t <ty (39)
and
dch_ 3 Teq. 3 _ Tea. 3
SH:S(Leq><eTQ>:S><106(;?) for ¢t <teq , (40)

where S = 10% and should be a constant of motion; see (18). From these
equations one obtains at t = t;; that Sg,. = 1083, At a typical time during
the nucleosynthesis one finds Sy, = 105, and so on, until the Planck time,
where Sy, = 1. That is to say that the horizon problem is related to the
increase of the horizon entropy as the Universe expands: this increase should
be such that currently Sy, 2 105 can explain the Universe’s age, cf. (32).
The evolution of horizon entropy in the standard Big Bang model is depicted
in Fig. 3. Within the context of the anthropic principle, the existence of such
big numbers invites us to reflect on our own existence; why are they so big
(or so small)? The anthropic principle states that only in this way can life
exist to account for it!

Flatness

Why is our Universe today nearly flat, and why was it almost identically flat
at the very beginning? [30]. From (4) and (8) one finds that

P = Pec k
Qi) —1= =
() pc a2H2

k
- 818 M0~ (143w) — | (41)

where the density parameter is defined as §2(¢) = p(t)/p.(t) and the critical
density as p.(t) = 3H?(t)/87G. From (41) one can see that k = 0, 2 = 1



An Introduction to Standard Cosmology 23

-Log[SH/S]

60

40

201

5 10 15 20 25 Log T
Teq
Fig. 3. The entropy per horizon is shown as the Universe cools. For the matter
era the solution is given by (39) and for the radiation era by (40). The entropy per
horizon presently is Sg, = S ~ 10%® at T = 2.7 °K.

is an unstable point. Consider the limit ¢ — 0, then 2 — 1 for w > —1/3.
Now, if k = —1, as a — oo then {2 — 0; while for k = +1, as @ — apax. then
{2 — oo. That is, unless k£ = 0 and exactly {2 = 1, the spatially flat Universe
is unstable [72]; see Fig. 4.

Let us analyze in greater detail the first limit taken above. In order to
compare the presently observed {29 = O(1) with that in the past, we first
consider the evolution during the matter dominated era, given by (9) with
w = 0. It implies that

—1\2 2/3
Q(t)lk(HO ) <t> for  teq. <t <t (42)

a ) \to
which at t =t implies 2 — 1 =~ k, but at t = tis, 2 — 1 = k 10~%. Therefore,
in order to explain the present 29 = O(1) one has to fine tune the density
value at t = t)s to be very similar to the critical value, the difference being of
the order of only one part in ten thousand. This is the flatness problem.

For t < teq., we use the radiation solution, given by (9) with w =1/3, to
have

a1\ t
Q) 1=k <Q> for  t<teq (43)
Qeq. teq.

at t = tp;, 2 —1 =k 10759 | Thus, considering the entire evolution of the
Universe beginning with Planckian initial conditions, one needs again to fine—
tune the initial density value to be p = (14 107%)p,. in order to explain the
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Fig. 4. The parameter (2 as a function of the scale factor, a, in a radiation do-
minated Universe. For closed models, with k£ = +1, (2 diverges as the scale factor
approaches its maximum value, whereas for open models, k = —1, {2 asymptotically
approaches to zero as the Universe expands. Finally, for a flat metric, k = 0, {2 is
always equal to one. The behavior for a dust model is similar.

currently observed energy content of the Universe, i.e. to explain our own
existence. The anthropic principle would just restate that the Universe has
chosen those initial conditions necessary for us to be here! Nevertheless, this
is no explanation but more a philosophical posture.

Let us try again to relate this issue to the aforementioned big numbers,
(31) and (32). To do that, we express the above quantities in terms of the
entropy within the horizon, (39) and (40). Since (24) is always valid, one
obtains for both eras that

Sy \?
Qty—-1=k <S> for all times; (44)

again, at t = tg, 2(t) — 1 ~ k. At t = ti5, Sy, = 1082 implies that 2(t) — 1 ~
k104, whereas at the Planck time Sy ~ 1, one once again obtains that
2(t) — 1 ~ k10759, Very similar to the horizon problem, here one finds
that the very small numbers come from the vast entropy increase within the
horizon, which is the entropy necessary to fit the Universe’s age, cf. (32).

Thus, the last two puzzles can be restated as: Why was the horizon en-
tropy at the Planck time S, ~ 1, but now Sg, ~ 10%%?
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Baryon Asymmetry

We observe that our Universe is apparently made of matter but not of an-
timatter. Why is this? Furthermore, the present different types of matter
(fermions, bosons) are not in equal proportion. As we have already mentio-
ned, nucleosynthesis restricts the value of 1 to be® n ~ (3 —4) x 10710, cf.
(12); this fact tells us that the Universe is far more filled with photons than
with baryons and if the baryon number is conserved 1 must also be conserved
since the beginning of nucleosynthesis. In the standard model of cosmology
one has to assume this as a given input. Let us explain this in more detail:

As far as observations show, within the solar system and our galaxy there
is no evidence of primordial anti-baryons; if there were, some amount of
gamma rays would be detected because of their annihilation with their baryon
counterparts, something which has been not observed [89]. In going beyond
galaxy scales, antimatter in galaxy clusters is ruled out by simple arguments
that in fact are related to the horizon problem: one can imagine a baryon
symmetric early Universe, whereby baryons and anti-baryons coexist in equi-
librium. Their particle numbers in a co-moving volume should remain con-
stant only until they become non-relativistic, when (25) begin to be valid;
after that their particle abundances decrease exponentially. The particles re-
main in equilibrium annihilation until the temperature T ~ 22 MeV, when
the annihilation rate, I, falls below the expansion rate. Then the ratio ng/s
is fixed to be ny,/s = ny/s = 7x 10720 [89, 60], nine orders of magnitude smal-
ler than the currently observed ratio np/s! In order to avoid this annihilation
catastrophe one can try in some manner to stop the annihilation mechanism
some time before, at about T ~ 38 MeV when ny/s = nj/s = 10710 — 10711,
by separating baryons from anti-baryons. Even so the horizon at that time
contained the following amount of matter:

dir\* 6 (Tea.
My = piy = (¥ () =100 (=) g

where we have used (37); at 7' = 38 MeV, My = 5 x 10%6gr = 2.7 x 107" M,
which is clearly very much smaller compared to galaxy cluster mass scale;
again, very fine tuning must be done. Instead of appealing to rare initial
conditions, an alternative is to explain the baryon asymmetry by means of
the Universe’s evolution. Accordingly, at some high temperature T2 1 GeV,

51In fact, n cannot be directly determined, nor can ng/s. They are fitted
to the currently observed values of light element composition in the Uni-
verse, i.e. 0.22 5 Yay, $0.26, D/HZ (1 — 2) x 107°, (D + *He)/HS107* and
("Li/H) <2 x 107'%. In this way, one can relate n with the baryon content of
the Universe. Accordingly, for baryons ng = pg/mp = 1.13 x 1075’_(23}12/cm3
and n, = %@TS’ ~ %Tgm, therefore, 25 = 3.6 x 10"nT5 75/h*, and from
the above mentioned value of 1 one finds that 0.01 < 25 < 0.10; that is, the
Universe cannot be closed by baryons alone.
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when ng = ng =~ n,, a tiny asymmetry was already present and it prevented
the total annihilation of quarks (¢) and anti—quarks (¢), in such a manner
that "% = 3 x 107® in order to explain the np/s needed for successful

nucleosyilthesis to take place [60].

The particle physics implementation in the early Universe by which that
tiny asymmetry could be solved is called baryogenesis. The first attempt to
address this problem was made by Sakharov [84], who pointed out three ingre-
dients necessary to attain a baryon asymmetry in the Big Bang model. Let us
review these: (i) baryon number violation, otherwise the baryon asymmetry
can only reflect asymmetric initial conditions; (i) violation of charge conju-
gation (C) and charge conjugation combined with parity (CP) are necessary
to achieve different production rates for baryon and anti—baryons, otherwise a
net zero baryon number is maintained; and (i) non—equilibrium conditions,
otherwise the same Fermi distribution of baryons and anti-baryons would
guarantee the same phase space for them, i.e. ny = ng.

It is curious that these three conditions were pointed out before there was
a theory which could accomplish them. Indeed, first GUT appeared in the
70s and when one realized them in an early Universe scenario, they met the
three ingredients: the first two are fulfilled because, by construction, strong
and electroweak interactions are unified; this implies that quarks and lep-
tons are members of a common irreducible representation of the GUT gauge
group. In that way, gauge bosons mediate interactions in which baryons can
decay into leptons, or the inverse, giving rise to a baryon number violation.
C is violated by weak interactions and CP violation is observed in Kaon K°
(meson) interaction. Thus, one also expects that the massive X-bosons decay
into quarks/leptons, with a branching ratio of, say, r, and X with T, such that
r # T. The third condition is attained due to Universe expansion, which evol-
ves as H ~ T?/Mp; in the radiation dominated era. For that to happen, one
takes the reaction rates (decay, annihilation, and inverse processes) I'x > H.
Then, through the out-of-equilibrium decay mechanism the X —bosons have
a long enough lifetime so that their inverse decays go out of equilibrium as
they are still abundant. In this way, the baryon number is produced by the
X free decay, whereas the inverse rates are turned off.

Nevertheless, GUT have their own problems. For instance, precisely be-
cause of the first two ingredients above, the proton should decay too; in the
minimal SU(5) GUT its lifetime is 7, ~ 102°*1 years, but the experimen-
tal limit is greater, 7, ~ 1031732 years. Thus, something is wrong with this
theory.

Another problem of GUT is that unless the model is B-L conserving, any
net baryon number generated might be brought to zero by efficient anomalous
electroweak processes, at temperatures of about T' ~ 100 GeV. Though this
seems not possible within the standard model electroweak baryogenesis, there
are model extensions where this can be possible; see contribution of Picci-
nelly and Ayala in this book. This possibility represents a serious problem
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to GUT, and it opens new windows for low energy physics. Here, we depict
briefly the idea of how electroweak baryogenesis works[31]: the vacuum ma-
nifold of the electroweak model, the so-called §—vacuum, has degenerated
minima separated by energy barriers in the field configuration space as a
result of non—trivial vacuum gauge configurations (Aau # 0) of non—Abelian
gauge theories. Different minima have different baryon and lepton numbers,
with the net difference between two adjacent minima being given by the num-
ber of families. Thus, for the standard model, jumps between these minima
imply the creation of three baryons and leptons, hence, there is B-L conserva-
tion and B+L violation. At T = 0, tunneling (jumps) between two adjacent
minima is mediated by instantons and the tunneling rate is exponentially

S
suppressed [92] I" ~ e “sw | where a,,,, = 1/170 is the electroweak coupling
constant; this is why the proton is stable. However, at finite temperature,
T ~ 100 GeV, one can go over the energy barrier to achieve a baryon number

violation, as first described in [61]. The height of the barrier is a solution of
Es

an unstable static configuration called sphaleron, whose rate is I" ~ e~ 7 |
with its associated energy Fg ~ My /o, . For temperatures above the cri-
tical temperature of electroweak symmetry restoration, the rate is no more
strongly suppressed, but I ~ (a,,, T)?, indeed making possible baryon num-
ber violation. The other two ingredients to achieve baryogenesis could also
be present, but a detailed analysis is in order; for a short review see [32, 44]
and for an extended one see [31].

Monopole and Other Relics

Another problem of GUT is the production of magnetic monopoles [91, 77] as
a consequence of GUT symmetry—breaking to some semi simple group U(1).
In the course of the phase transition, bubbles of the new phase are produced
and on scales greater than dy one expects different Higgs field alignments.
Because of this randomness, topological knots are present and they are the
magnetic monopoles. It has been proved that their number density should be
comparable to the baryon density, but their mass is 10'® times greater than
that of the protons; in this case, the Universe should have recollapsed long
before [55, 102, 78].

Additionally, some theories predict primordial cosmological particles (or
structures) that could be present currently, also as a result of some sponta-
neous symmetry—breaking process. Among these cosmological relics are mas-
sive neutrinos, gravitinos, domain walls, cosmic strings, axions, etc.

Cosmological Constant

Another problem that arises as a consequence of theories of grand unifica-
tion (or theories of everything, including gravity) is that the vacuum energy
associated with these, < 0|7),,|0 >=< p > g,., turns out to be very large.
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Summing the zero-point energies of all normal modes of some field of mass
m, one obtains < p >~ M*/(1672), where M represents some cutoff in the
integration, M > m. Then, assuming GR is valid up to the Planck scale, one
should take M ~ 1/v/87G, which gives < p >= 10"* GeV*. This term plays
the role of an effective cosmological constant of A = 87G < p >~ M3, ~ 1038
GeV? which must be added to the L.h.s. of Einstein equations (2) and yields
an inflationary solution (10). However, if the cosmological constant is at pre-
sent of the order of magnitude of the material content of the Universe, one
has that

A~ 81Gpy = 3HZ ~ 10" 33GeV?, (46)

which is very small compared with the value derived above on dimensional
grounds. Thus, the cosmological constraint and theoretical expectations are
rather dissimilar, by about 121 orders of magnitude! Even if one considers
symmetries at lower energy scales, the theoretical A is indeed smaller, but
never as small as the cosmological constraint. One finds that Aqyr ~ 102
GeV? and Agy(2) ~ 10722 GeV? in contrast to (46). For an analysis of this
problem in terms of longitude scales (not of mass square scales), see the
contribution by E. Copeland in this book. This problem has been reviewed
in [98, 19].

Large—Scale Structure

The problem of explaining structure formation in the Universe is most fasci-
nating. There exist stars, galaxies, clusters of galaxies, superclusters, voids,
and a variety of large-scale structures in the currently observed Universe,
whose origin one hopes to understand within the framework of Newtonian
or GR physics. Such systems represent complicated problems, for which one
needs a deep understanding of both the initial conditions of the relevant
physical quantities and their evolution: among them are the Universe com-
position (accounted in the density of the different i-species, §2;) and the type
of perturbation the Universe experienced, i.e. adiabatic or isocurvature (iso-
thermal).

Imagine an early Universe filled with a radiation fluid (i.e. effective rela-
tivistic) and some non-relativistic components. Let us consider the following
density contrast:

= — - — 5

p p

where p is the average density of the Universe. If in the past there were
small density perturbations that grew as time went on, the formation of
some structure will be favored. This density contrast is commonly expanded
into a Fourier expansion:
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14 —ik-x 33
6((17) = (271_)3/ . 5k~€ d’k and
O = i/ S(x)e**dPy (48)
Vv vol.

where for @ are chosen co—moving coordinates. A given “perturbation” mode
A is associated with its wave number k = 27 /\. The physical mode is given

by Aphys. = )\%, then Kphys. = k%, when the expansion begins at ¢t =

ty, a(ty). One can also relate to a given \ a mass defined as the rest mass

contained in a radius Apnys. /2, M = §pmAd o = 1.5 X 10" Mg, (207%) A

For a galaxy, for instance this corresponds to Agal ~ %; this is the
physical scale that would contain today a galaxy mass (of approximately
~ 10'2M,) and after its non-linear regime would give rise to a typical galaxy
size of approximately 30 kpc.

The fundamental quantity |6x|?, called the power spectrum, P(k), de-
termines any statistical quantity for gaussian random fluctuations. In the
absence of a fundamental theory of structure origin, one admits a power
spectrum of the type

P(k) = |6x|* = const. k" | (49)

where an isotropic wave number |k| = k has been assumed which is allowed
in an FRW Universe symmetry; n is a constant called the spectral indea®.
At first, the Cosmic Background Explorer (COBE) satellite DMR results[86]
suggested that ns ~ 1 [11, 12, 100, 7]. Recently, the WMAP satellite measu-
rements of the CMBR concluded more precisely that n, = 0.93 & 0.03 [13].

The evolution of the density contrast determines whether and when the
perturbation grows to arrive at its non-linear stage, when [03|? > 1, it starts
to develop structure formation. This comes out by analyzing the Jeans equati-
ons in an expanding Universe. One finds that effectively there exists growing
modes solutions (for & < kj), which open, in principle, the possibility of
describing the presently observed large—scale structure.

A particular perturbation is given through a Fourier component and is
characterized by its amplitude and its co-moving wave number, in terms of
which one can write the root-mean-square (rms) density fluctuation dp/p as,

2 o 1.3 2
() = Gy = [ SR (50)

p 272

where (---) stands for spatial average. An rms mass fluctuation, dM, corre-
sponds to a density contrast such that

6 The spectral index, ns, is sometimes referred as n, cf. contribution of E. Copeland
in this book.
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i 2 S 23
<M )A T 2n)PVVE /P(k)IW(k)| &k (51)

where W (k) is a window function, typically Gaussian, i.e. W (k) = Viye *"7e/2,
where 7, is the radius within which the mass M is contained; Viy = (27)%/%r3

being its volume. Then, one has for the rms mass perturbation at a given A

that

oM ? 3 3+n
(M)A ~ KBP(k) ~ K (52)

where the overall normalization amplitude, for all A, has not yet been speci-
fied, according to (49). Note that (%”)k ~ (%)N where the subindex k in

the density contrast means % in a given logarithmic interval % ~ 1.

Because of the existence of a causal horizon, there should be some A— mo-
des that were once super-horizon sized and that some time later enter inside
the horizon. These modes begin to grow posteriorly at ¢ > toq.. Once the per-
turbation enters the horizon, the Universe is well described with Newtonian
physics and the distinction between adiabatic and isothermal perturbations
becomes irrelevant; see Fig. 5. 5

M

The density and matter contrasts evolve for superhorizon modes as 7 ~

dan(t) ~ tﬂfrw), see (9); during the radiation era w = 1/3, m = 2 and for

the matter dominated era w = 0, m = 1. During the time the physical
2

mode is superhorizon sized, it scales as Apnys. = Aa(t) ~ At30+<) and at

the moment this mode enters the horizon it is valid that Apnys. = dg ~
3(1+w) _ 3(1+4w) . 3(14w)
ty, therefore, A\ #3« ~ k7 1¥3« ~ tp; since 150 > 0, then the larger

the initial perturbation wavelength is, the later it enters the horizon. This
means larger perturbation wavelengths begin later to develop to their non—
linear regime, thus, one expects large—scale perturbations in the present to
be smaller than the small scale perturbations. This is in accordance with the
fact that dp/p ~ 103 for stars, 105 for galaxies, 10'~2 for cluster of galaxies,
and O(1) for superclusters.

One has at the moment of horizon entering for every A—scale that

oM e

M 2m 3+ns ng—1
%(k;7t):k_1+3w -k Jr2 =k 2

(53)

This is valid for both radiation and matter dominated horizon entering modes,
since li?w = 2 for both cases. Harrison [49] and Zel’dovich [101] have argued
that at the time perturbations enter the horizon they should have equal
amplitude, that is, a scale invariant spectrum, which is achieved by choosing
ng = 1. This value is preferred by observations, as mentioned above. For
instance, if ng > 1, the perturbations are too strong and tend to close up and
form island Universes; for ns < 1 they are too weak to form galaxies [72].
Furthermore, the amplitude is required to be O(107°) in magnitude when
the perturbations start to grow at tq..
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Fig. 5. At some early times there were superhorizon sized perturbations characteri-
zed by their wavelength and amplitude. As the Universe evolves these perturbations
grow with the scale factor and eventually they cross inside the horizon, H ~'. After
that, these modes first have a linear regime (Jy < 1) and afterwards they start
to develop the sky structure we see nowadays. In the figure we show two typical
modes, one corresponding to galaxy scales and the other to horizon scales. The
horizon evolves as H™! ~ ¢ ~ a'/™, where here n denotes n = 3(1 + w)/2, from
solution (9). (Figure adapted from Kolb and Turner 1990).

During its radiation dominated phase, the Universe will not significantly
develop non-linearities inside the horizon. Furthermore, some A—scales are
forbidden because of damping phenomena due to collisionless phase mixing of
relativistic particles, known as Landau damping or free—streaming (fs). This is
caused because relativistic particles move freely away from overdense regions
and their velocity dispersion dissolves the compression regions. In this way,
only those wavelengths greater than some free streaming scale ” (\rs) are

7 That is, wavelengths corresponding to scales greater than the horizon size when
the particles become non-relativistic. \fs = O(1) x (%) == 1Mpc%%‘, where
nr refers to when the X —component, with mass mx and temperature Tx, be-

comes non-relativistic.
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allowed to maintain overdense regions. Once a non-relativistic component
becomes dominant, the growing modes increase typically as 0 ~ a(t). Howe-
ver, baryons suffer from collisional damping due to photon diffusion, mainly
during photon decoupling. This allows growing A—modes that are larger than
the diffusion scale, also known as the Silk scale® (\g).

The amplitude of density perturbations affects the temperature profile
and, at the last scattering surface, the last stage of matter-radiation equili-
brium. This can be quantified, since the present—day observed temperature
contrast, ‘%T ~ 107%, represents a “cosmic imprint” of the Universe since
decoupling.

The currently measured temperature perturbations are partially caused
by fluctuations in the gravitational potential, the so—called the Sachs- Wolf
effect. This effect is responsible for large angular—scale ( > 1°) anisotropies®.
The other known effect, the dipole anisotropy, is presumably due to our
galaxy’s peculiar velocity with respect to the cosmic rest frame.

One finds in the synchronous gauge for a flat Universe and large angular
scales that

0T(x)| _  afH§ —2¢ —ik-x 3
T he ™ 2(2m)3 /k dpe™ " dk
1 )
IR G N (54)
P /a~Hy?

where Ag¢(x, 1) is the perturbed Newtonian potential and @ points to the
last scattering surface and has a length of 2H; ! Tt is convenient to expand
0T /T in spherical harmonics,

oo m=-+I
5T1(—,w) = Z Z alm}/lm(97¢) ) (55)

=2 m=—1

where 6 and ¢ are the spherical angles in the sky (6 > 1° corresponds to
[ < 100). The coefficients a;,;, can be computed for the power spectrum of
(49) resulting in

HY [ , dk
Cr = (Jaml*) = 5+ ; 0% * i (k) * 5
5 2
~ HP P (p) (56)
P/t

1/2

= ()
density, i.e. 20 =2 + 24 +---.

9 1° because the horizon scale at decoupling subtended approximately that angle.
Then, 6 > 1° corresponds to a A—perturbation that was super-horizon sized.
The existence of such super-horizon scales represents an initial density spectrum
beyond causality!

where 2p is the baryonic contribution to the total
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where j; is the spherical Bessel function of order {. Hence, 6T/T depends
upon the present horizon scale, H; ! For a Harrison-Zel’dovich form, ny = 1,
the spectrum of density fluctuations with a A—scale greater than A, =~
13(£20h*)~! Mpc should conserve its initial form, and is related to an rms
mass perturbation as follows:

SM\?
~ (HoL)*' ( — ) .
a~ ) (57 ) 57)
Evaluating it in L = 30h~* Mpc and (§M/M) = 1/4, as inferred from
measurements, one gets Cll/ ? 2 2 x 1075 which is experimentally confirmed

from the CMBR anisotropies measurements; a more general discussion is
found, e.g., in [60].

Note that, on the one hand, one has that (%”) = const. (‘%T)ls
1s

the other hand!'®, dp/p ~ a(t) ~ 1/(1 + z); thus, the maximal amplitude
grow from last scattering until now is given by 1 + 23 = ZTO = 1200 times

and, on

107°, which is not sufficient to form the non-linear structures we observe
today. Therefore, other (dark) components must have played a role in the
growing of perturbations. It seems that considering dark matter together
with a quintessence field the correct grow can be achieved, as is suggested in
the forthcoming lectures in this book.

One more intriguing aspect of the large—scale structure arises by observing
the autocorrelation function of galaxies, clusters, etc.; £(r) = (dn(z+7)d(x)),
which is proportional to the probability of finding an emitting object at a
distance r from a given object, i.e. §P = ndV [l + £(r)]; for instance, in a
totally uniform distribution &£(r) = 0, whereas £(r) > 0 indicates an enhan-
cement of density near a given object. This has been measured for galaxies,
clusters, and superclusters, showing that approximately [5, 9, 74]

& =201 for 2 Sry.<S10
€ ~360r7  for 15 Sy S 100
Eoe = 1500 77 for 100 T ry,. < 200 , (58)

where v~ 1.7 — 1.8 and the distance r,__ is given in Mpc. Again, due to the
existence of a causal horizon, if one goes back in time one finds out that the
co—moving separation between two emitting objects, e.g. cluster of galaxies,
is larger than the light cone of causality at ¢ = t.q. Therefore, if the initial
density perturbations, §(x), were produced before, or at, teq, the correlations
cannot be explained by causal mechanisms. Hence, why do have approxi-
mately the same slope, but different magnitudes or correlation lengths, is a
mysterious aspect that should be explained by the structure formation theory,

10 By considering the evolution of the Universe, one often uses, instead of the time
parameter, the redshift (z), defined as 1 + z = ao/a.
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still in development. The different magnitudes of £(r)s suggest the existence
of some dark matter present in greater quantities on bigger scales. This is
in agreement with the determination of {2y from dynamical computations,
according to which one needs more dark matter as one goes from galaxy to
cluster scales, and so forth.

In order to explain these issues, investigators have developed some nume-
rical codes in which they include Hot Dark Matter (HDM) like light neutri-
nos in order to achieve a top—down scenario, first performing large structures
that should fragment to give rise to smaller ones. One finds that typical
large—scale filamentary structures and voids are well reproduced, but smal-
ler scales are underweighted and, for instance, galaxy formation should have
taken place rather recently, at z <1 , in order to obtain the observed galaxy
correlation function mentioned above. Besides, the predicted limits for AT /T
are near the upper limit measured. Numerical simulations also include Cold
Dark Matter (CDM) with WIMPs (weakly interacting massive particles) to
have now a bottom—up scenario, where first the smaller structures are formed
and, later on, the larger ones. These simulations are in good agreement with
galaxy correlation functions for acceptable redshifts, say z ~ few. Nevert-
heless, some negative correlation function is expected for galaxies that have
not been observed. Furthermore, the cluster correlation function is predicted
to be about three times less than the measured value, that is, large scales
are underweighted; the temperature contrast in this model can be as much
as one order of magnitude below that observed. One notes that HDM and
CDM play opposite roles for structure formation, because of their different
free streaming ranges. Therefore, one considers mixed models (MDM) which
include both CDM and HDM, and additionally some smooth components
as a cosmological constant term (ADM). Up until now, it is not known for
sure which particles have participated as the relevant building blocks that
eventually brought about the formation of the large—scale structure with the
right spectrum of anisotropies we observe today; computations hint there
may be mixture of them: cold, hot, and a A—term; see the contribution of
Cabral-Rosetti et al in this book. A review of these topics can be found in
[4].

Summarizing, the problem of density perturbations lies in the understan-
ding of its growth during its linear era in such away that on large scales
5p/p ~ 6T/T ~ 10>, but on small scales dp/p > 1 in order to reproduce the
structures we see in the sky nowadays.

We have mentioned above some important aspects to be considered in
order to achieve a better understanding of our present Universe. One should
mention that these problems do not imply logical inconsistencies with the
SBB. Nevertheless, for their explanation one is forced to appeal to very spe-
cial initial conditions, a thing that a physicist would hardly accept. Moreover,
solutions like the anthropic principle result to be dissatisfying. Therefore, ex-
tensions of the SBB are required, because by nature some of the presented
problems, but not all, already come from its extensions, as by incorporating
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high energy (> MeV) physics; ergo, the solutions to the puzzles should hope-
fully come from correct implementations of such extensions. Some proposed
scenarios are already known, such as the inflationary one, which is the best
candidate and is the subject of the next section. In order to achieve a further
understanding of the early Universe, it is tempting to move from energies in
MeVs to the Planck energy scale, that is, 22 orders of magnitude greater!

2 Beyond the Standard Big Bang Model: Inflation

In this section we show a way to solve the problems of the SBB presented in
Sect. 1. We explain the general inflationary scenario that took place in the
very early Universe and that gave rise to a successful cosmological model;
that is, a Universe with its right causal size, age, temperature, and the per-
turbations spectrum that originated structure formation. At the end of this
section we point out some remarks on inflationary models.

Inflation was accomplished as a natural extension of the “new” physics
of the 70s being incorporated into the SBB. With the advent of GUT it was
natural to study their cosmological consequences. In the late 70s and the
beginning of the 80s some publications appeared about effects of GUT phase
transitions in the very early Universe; even in this respect some authors con-
sidered exponential solutions, see [65, 72]. But the cornerstone paper was that
of A. Guth [46], where he stressed that due to these phase transitions, the
Universe could have experienced an exponential expansion of approximately
€% foldings, and in this way one could solve the horizon, flatness, and mo-
nopole problems, all at once. This was the first model of inflation. Although
the original model suffered from some problems, this has shown that it is,
in principle, possible to tackle the problems of the SBB by considering some
vacuum energy or scalar fields to be present at the very beginning of time.
Next, we explain how inflation addresses this.

2.1 Inflation: The General Idea

As we mentioned in Sect. 1, the FRW cosmological (4)-(6) admit very rapid
expanding solutions for the scale factor. This is achieved when the inflation
pressure, p + 3p, is negative, i.e. when the equation of state admits negative
pressure such that w < —1/3, to have d > 0. For instance, if w = —2/3, one
has that a ~ t? and p ~ 1/a, that is, the source of rapid expansion decreases
inversely proportional to the expansion. Of special interest is the case when
w = —1, p = const., because this guarantees that the expansion rate will not
diminish. Thus, if p = const. is valid for a period of time, 7, then the Universe
will experience an expansion of N = 7H e—foldings, given by a = a.e’¥, (10).
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This is the well known de Sitter cosmological solution!! [27], achieved here
only for a 7—stage in an FRW model.'?

We shall now see how an inflationary stage helps to solve the problems of
the SBB. First consider the particle (causal) horizon, given by (33), during
inflation; with £ = 0, again one obtains

dy = H (e 1) (59)

the causal horizon grows exponentially, whereas H ~! remains constant. Since
dy # H™', we call H~! the Hubble horizon to distinguish it from the causal
horizon. We again compare, in analogy to (34) and (36), the horizon distance

with that of any physical length scale, L(t) = L4 — L.eft to get

Q%

dg  H '(e"'—1) _Ht
T Lem e (60

for initial length scales L, S H —1 After a few e-fold times the causal horizon
is as big as any length scale which initially was subhorizon sized. Therefore,
if the original patch before inflation is causally connected, and presumably in
equilibrium®?, after inflation this region of causality is exponentially bigger
than it was; thus all the present observed (apparent) Universe can stem from
it. Therefore, at some later time, say, at the time of last scattering (photon
decoupling) the Universe has all the mentioned 10° regions (and more than
that!) causally connected, then solving the horizon problem. In fact, if the
inflation stage is sufficiently long, there can presently exist regions which are
still so distant from each other that they are no longer in contact, even though
originally they come from the same causal patch in existence before inflation;
they will be in contact again when light reaches these distant points.

From (59) one can observe that if the initial physical length scale is greater
than the Hubble distance, L, > H_ !, then L > dy during inflation. Events
initially outside the Hubble horizon remain acausal. This is better observed
by considering the event horizon, d., that determines the region of space

' The de Sitter model contained no matter, p = p = 0. Instead de Sitter considered
a cosmological constant such H? = A/3. In this sense, this was an anti-Machian
solution, since matter was not needed to produce inertia. Alternatively, by choo-
sing p = —p, A = 0 the dynamic is the same and the solution is Machian, but
the price paid is that of having such exotic matter, p = —p.

From now on, inflation will refer to the period of exponential expansion. Ho-
wever, an inflationary scenario also implies some other physical processes such
generation of density fluctuations, reheating, etc.

One can imagine the initial stage of the Universe to possess some inhomogenei-
ties, anisotropies, and a rather chaotic distribution of particles. At some time
after the Planck scale, 10%¢p;, one expects the dampening of the anisotropies
and inhomogeneities in the metric, and due to statistical processes, the Universe
should thermalize in some local scale (< dg), which we now call the original
patch [46].

12
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which will remain in causal contact after some time; that is, it delimits the
region from which one can ever receive (up to some time tp,,x) information
about events taking place now (at the time ¢):

do(t) = a(t) /t " aﬁ:) . (61)

For a flat model during its matter dominated era (a ~ t2/3), like our Universe
in the present, d. — 00 as tmax — 00. However, during inflation one finds
that

de=H (1 — e Um0 s g1, (62)

which implies that any observer sees only those events that take place within
a distance < H~!. In this respect, there is an analogy with black holes, from
whose surface no information can escape. Here, in an exponential expanding
Universe, observers encounter themselves in a region which apparently was
surrounded by a black hole [43, 65], since they receive no information located
further than H 1.

So far we have seen how the exponential solution can offer means to un-
derstand the horizon problem of the SBB. Now, we analyze it quantitatively.
First, consider the evolution of a co-moving length since the very beginning.
Before inflation starts the Universe is characterized by some initial values of
temperature, Hubble horizon, etc., related by

p*:bev
Hf:%b]”f’
3
4 3
Sy = 3 b (a:Ty)” . (63)

If inflation does not take place, an initial horizon—sized length scale, L, <
H_ ', grows only proportionally to t'/? (radiation era) and, later, to t*/3
(matter era). Therefore its size would currently be much smaller than our
apparent Universe; in others words, this is the horizon problem. Hence, sup-
pose that inflation indeed takes place during a time period 7 = NH_ ! and,

afterwards, a usual Friedmann Universe follows. Then, a typical co-moving

scale evolves as
. 1/2 4\ 2/3
L=1L.N <q> () . (64)
ty teq

The first term accounts for the inflationary stage (until the final time t; ~
7 = NH_'), the second for the radiation era that lasts until the time of
equal densities (p, = pm at t = teq), and the third term for the matter
dominated era; all of them being solutions of the FRW cosmological equations
characterized by different equations of state, cf. (9) and (10). Consequently,
the number of e-folds (N) of growth in the initial co-moving scale L., to
achieve at present (¢g) a size Lg, is given by
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1 Lo 1. te 2. t
N= log=2 — ~log=% — Zlog~" ) = Nyins - 65
loge<0gL* 2 %%, 3Ogteq> ! (65)

In principle, one could substitute the value t; ~ NH_ ! into (65) and try
to solve it for N, but one finds no analytical solution. As a matter of fact,
one typically obtains ¢y ~ 10?H_ ! and this turns out to be a very good
approximation. For definiteness, let us assume this and, furthermore, that
the initial co-moving scale is the horizon at the beginning, i.e. our original
patch; then from (63), L. = H; ' ~ 107 Mp; /T?. T is the temperature that

characterizes some phase transition and is typically 7, = 10'* GeV. Then,

H' =107 om, . = 1073 s, 2 = 00 — 10, fo = 102 — 105, and
Lo = lloofjfglm = 1052 to yield N = 60.2. In fact, this value represents the

minimal number of e-folds of inflation necessary for an initial horizon sized
co-moving length scale to grow as big as our presently observed Universe,
Lo = Hy' ~ 10%® cm. If the original patch is horizon sized, then during
inflation it remains within the causal horizon, dp, according to (59). After
inflation the causal horizon grows as dy ~ t, whereas the co-moving scale
expands only as the scale factor does, in conformity with (9). Therefore, the
co—moving length scale, L, remains always within the causal horizon.

For the inflationary Universe the currently apparent horizon comes from
a region delimited by the original patch H !, which during inflation remains
almost constant and, after, evolves as H~! ~ t. At the end of inflation
a(t) > H~'(t). Subsequently, the scale factor expands only with the po-
wer law solution ¢'/2 (or ¢?/?), whereas the Hubble horizon evolves faster,
H~' ~ t. Then, at some later time the Hubble horizon is as large as the scale
factor, H=! ~ a(t). Accordingly, the value Ny, defines the minimal num-
ber of e-folds of inflation necessarily to have this equality at present; that is,
the original patch grown until now is as big as our apparent Hubble horizon.
Hence, some time ago, say, at the last scattering surface (photon decoupling),
the Universe consisted of 10> Hubble horizon regions, yet all these regions
stem from one original patch of size H_ ! just at the start of inflation. Recall
that the causal horizon, dg, is always bigger than H !, except at the outset
of inflation. Naturally, our original patch could have experienced a longer
period of inflation. In this case, N > Npyi,1 and the Universe is bigger than
we observe it to be today: our event horizon will enable us to explore the
Universe beyond.

Let us see how the flatness comes out of inflation. Consider originally a
Hubble patch, H~!, that might even possess some curvature different from
zero. If there were the above conditions for such a gigantic expansion to
take place, then in a short time the original Hubble patch will become very

flat, since H = \/%p stays constant during that 7-stage. On the other
hand, a typical scale L, < H~! will exponentially increase in size as L(t) =

L2 — L.eN. That is, all physical inhomogeneities, anisotropies and/or

*
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‘perturbations’ of any kind (including particles!) will be diluted away. Their
density becomes insignificant, thus solving the monopole (and other relics)
problem.

When we discussed the flatness problem it was pointed out that {2 closely
approaches unity as one goes back in time (see 42 and 43), in a way such
that one must choose very special initial density values for explaining our
flatness today, i.e. 29 ~ O(1). Imagine the Universe with initial conditions
taken above, a, ~ H_ 1, then 2, — 1 ~ k. Now, if the exponential expansion
occurs, {2(t = ) evolves to

P = pe k -
Q(T) —1= e = m = ke 2N . (66)

If N is sufficiently large, which will be case since typically N > Npn1, after
a de Sitter stage the Universe looks like an almost perfectly flat model. The-
refore, the initial density plays almost no role; if the exponential expansion
occurs the Universe becomes effectively flat; see Fig. 6. In this way, instead of
appealing to very special initial conditions, one starts with a Universe with
more normal -that is, not very fine tuned- conditions which permit the Uni-
verse to evolve to an inflationary stage, after which it looks like it would have
very special conditions, i.e. with {2 ~ 1 with exponential accuracy. Thereu-
pon, the flatness problem is no longer present.

One can also observe this by geometric means. The radius of curvature of
the Universe is defined as

_a®) _ HT!
curv — ‘kll/Z - |Q—1|1/2 9

R (67)

where we have used (4). Initially one may find that 2 ~ O(1), implying that
Reuwy ~ H™1, but after inflation {2 is very close to unity; thus the radius of
curvature is exponentially larger than the Hubble distance, making the latter
look very flat.

We have argued that the Universe becomes very flat. However, after in-
flation the r.h.s. of (66) starts to grow linearly with time during the radiation
dominated era, as was derived in (43), and during the matter era it grows as
~ t2/3 cf. (42). Therefore, the time evolution of £2(t) is given by

k 2N tq i 28
) —1=— =Fke 2N M for teq <t .
®) a’H? ‘ tr (teq) of tea> (68)

If the number of e-folds of inflation is not sufficient, at some t, {2 will be very
different from one. Accordingly, from (68) one can compute the minimal num-
ber of e-folds such that currently 29 ~ O(1), as suggested from observations.
One gets,

1 te 2
N>——|log=2 + Zlog— | = Npin2 , 69
- 2 log e (og f 3 08 ) 2 (69)
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which with the values used above implies that N > 56 = Ny,ine. However,
the value of N chosen greater than (65), N > Npin1, already fulfills our
new requirement, since Npin1 2 Nmine. Therefore, in most models of inflation
N > Npinm to predict 2y to be unity to high accuracy, in accordance with
the recent WMAP measurements [13] of the CMBR. However, if {2 is close,
but different than the unity, then there will come a future time when the
value of {2 is arbitrarily close to zero (for k = —1) or arbitrarily large (for
k = 1), the same as happens in the SBB; compare Figs. 4 and 6.

2 ()
A
15 E
closed :
1 : flat
N
0.5 :
Inflation Standard Cosmology !
f i > a
an Amax
nowadays

Fig. 6. The parameter {2 as a function of the scale factor, a, during inflation and
thereafter in a radiation dominated Universe. Inflation makes the space seem almost
flat. Having enough e-folds of inflation to solve the horizon problem implies that
the Universe still looks currently very flat. Later on, the behavior is as in Fig. 4.

2.2 Transition to the Physical Universe

Provided that the Universe underwent a period of N (> Nyin1 ~ 60) e-folds
of inflation, it seems that the horizon and flatness problems are no longer
present: all physical events are, or were, in causal contact. However, as we
shall see now, this is only a necessary, but not a sufficient, condition to assure
that the original patch, H_!, contains the properties of our Universe today.

In Sect. 1 we saw that both problems are related to the increase of entropy
per horizon and that the age of the Universe is related to the total entropy, cf.
(32): the Universe is too old because the entropy is too large. Then, within the
inflationary Universe there arises the question of how the Ny are related
to the entropy enhancement.

In this section we have remarked that with the aid of inflation any co-
moving length scale remains within causal horizon. Therefore, in the present



An Introduction to Standard Cosmology 41

case the entropy per causal horizon remains constant if the Universe evolves
adiabatically (T ~ 1/a), and therefore it is no longer necessary to distinguish
between horizon entropy and the total entropy. Thus, it suffices to compute
the entropy at any time to know how large it is. Accordingly, at the very
beginning S, = $b(a,T)? ~ 10 with initial conditions taken from above.
Clearly, this value is much smaller than the observed photon entropy today,
Sy ~ 10%8. Once the entropy augments to 103%, the flat patch can explain the
currently observed Universe with a big mass and age; see (31) and (32). In
this way, to fully solve the horizon and flatness problems, one has to find an
entropy production mechanism such that the increase factor grows over 107
orders of magnitude! Would this entropy enhancement not exist, the original
patch must contain a huge entropy (10%%), and therefore, the Universe would
consist at the very beginning of too many disconnected causal horizons; ergo,
the horizon problem would stay unsolved. The natural solution is to obtain
after inflation a mechanism by which the entropy increases from some initial
value to Sy ~ 1088, To see how this happens, consider first a Universe model
filled with some relativistic components with an energy density given by

p=bT*+V(0) , (70)

where V(0) = M* is a constant associated with the vacuum energy density of
some GUT; M is some mass term. As the Universe cools the energy density
diminishes until certain time, say, t = t., at which the constant dominates the
dynamics over the radiative components. At that moment the entropy wit-
hin the horizon is Sy, = %b(acTc)3 = const., assuming adiabatic processes.
At the moment when the constant V(0) begins to dominate the dynamics,
the solution is given by (10). Then, the original patch, a. ~ H_ !, expands
exponentially and the Universe supercools T' = T.e 7, since aT = const.
during the 7-stage of inflation. Note that the entrance to an inflationary era
is natural as a consequence of the Universe cooling and, of course, of the pre-
sence of the constant V' (0). Typically, M ~ T, ~ 10** GeV is related to the
critical temperature of a spontaneous symmetry—breaking process, whereas
H; 1 ~ 1071 Mp;/M? ~ 107345, that is, the values we have chosen above to
yield Sy, ~ 101% < 10%8. Furthermore, after inflation the Universe contains a
very low particle density and is very cold, even as cold as it is today! The tran-
sition to a radiation—(or matter—)dominated era with sufficient entropy and
particle content comes from the ‘decaying’ or transformation of the energy
source of inflation, p = V(0), into heat, a process called reheating (RH).
In his original model of inflation A. Guth [46] showed that if the Universe
super—cools sufficiently its temperature is T, ~ e~ VT, and a phase transition
proceeds releasing latent heat of characteristic temperature ~ T,.. Then, the
Universe is reheated to some temperature (Try) of the order of T,. Through
this mechanism the entropy increases from the initial value S, = 3b(a.T.)?
to the final, after reheating, Sy = %b(aRHTRH)3 ~ %b(eNacTC)g7 that is, by
a factor of (Trp /Ts)® ~ €3V, achieving the desired numbers.



42 J.L. Cervantes—Cota

2.3 Density Perturbations

The vacuum energy density responsible for inflation is associated with some
scalar field that experiences quantum fluctuations around some vacuum ex-
pectation value. The theory of quantum fluctuations in a de Sitter space
was developed by Bunch and Davies [17] and was applied by several authors
[50, 47, 88, 8] to the inflationary universe in order to compute its contribution
to dp/p.

It is our intention in this subsection to depict qualitatively how these
fluctuations are responsible for a density perturbation spectrum, as required
to understand structure formation; see the problem of structure formation
above. For a detailed treatment of this topic see the lecture by R. Branden-
berger in this book and his review article [69] .

We begin by noting that the event horizon during a de Sitter stage is
d. ~ H~', cf. (62). This means that microphysics can only operate coherently
within distances at most as big as the Hubble horizon, H~'. Recall that the
causal horizon, dy, expands exponentially and it is very large compared to
the almost constant H~! during inflation, see (59). Hence, during the de
Sitter stage the generation of perturbations, which is a causal microphysical
process, is localized in regions of the order of H~!. That is, in all regions of
size H~! that comprise the Universe during inflation there should be such
generation of perturbations.

Furthermore, it has been shown that the amplitude of inhomogeneities
produced corresponds to the Hawking temperature in the de Sitter space,
Ty = H/(2m). In turn, this means that perturbations with a fixed physical
wavelength of size H~! are produced throughout the inflationary era. Accor-
dingly, a physical scale associated with a quantum fluctuation, Apnys = Aa(t),
expands exponentially and once it leaves the (Hubble) horizon it behaves as
a metric perturbation; its description is then classical, general relativistic.
If inflation lasts for enough time, the physical scale can grow as much as a
galaxy— or horizon—sized perturbation. The field fluctuation always expands
with the scale factor and after inflation it evolves according to t" (n = 1/2
radiation or n = 2/3 matter). On the other hand, the Hubble horizon evol-
ves after inflation as H~! ~ t. This means that there will come a time at
which field fluctuations cross inside the Hubble horizon and re-enter as den-
sity fluctuations. Thus, inflation produces a large spectrum of perturbations,
of which the largest originated at the start of inflation with a size Hfl, and
the smallest with H;l at the end of inflation; see Fig. 7.

Finally, analogous to the density perturbations spectrum created by the
scalar field during inflation, any massless (or very light H > M) field is
excited in the de Sitter space. Once the excited modes re-enter the Hubble
horizon they will propagate as particles [94]. In this way, gravitational wave
(GW) perturbations re—enter the Hubble horizon during the radiation do-
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Fig. 7. Quantum perturbations were initially subhorizon—sized. During inflation
they grow exponentially (Apnys. = Aa(t)), whereas the Hubble horizon remains
almost constant. Then they eventually cross outside H~' and evolve as classical
perturbations. Later on, they re-enter the Hubble horizon to produce an almost
scale invariant, Harrison-Zel’dovich density perturbation spectrum; in this way, its
origin is no longer a mystery. In the figure there are two physical perturbations
scales depicted, galaxy and horizon sized. (Figure adapted from Kolb and Turner
1990).

minated era [45, 87, 83, 35]. The amplitude of these perturbations must be
< 107® in order to be consistent with the isotropy levels of the CMBR.

2.4 Final Remarks on Inflationary Models

The descriptions presented above generically describe the inflationary scena-
rio without referring to the many specific models that have been proposed
in the course of more than twenty years of inflationary cosmology. Below we
mention the primary features of the first inflationary models that permitted
the understanding of the physical properties of a general inflationary scenario.

The first inflationary model was due to A. Guth, who in 1981 published
[46] a model which later became known as old inflation. This model proposed
the formation of bubbles of scalar fields obeying a first-order GUT phase
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transition in the early Universe; see Fig. 8. However, the nucleation of the
bubbles and Hubble expansion rates could not encompass the right numbers
of e-folds required (> Nuyin) and, at the same time, achieve a homogeneous
thermalized model. The model also had difficulties in ending the inflationary
period, a problem known as graceful ezit.

®

©

Fig. 8. An artistic picture of how the formation of bubbles after inflation should
take place. The big circle represents the universe filled with a background of false
vacuum, ¢ = 0. Thus, some bubbles are forming in a sea of false vacuum. The
different bubble ¢-field values are represented by different gray tones.

Shortly afterwards, a model called new inflation was proposed [63, 2], in
which the scalar field experiences a second—order phase transition. In this
model the whole Universe stems from an initially uniform single bubble or
fluctuation region (< dg), which after its exponential expansion can be as
large as our apparent horizon. In this way the Universe does not possess the
problem of bubble nucleation, nor that of the presence of unwanted relics,
because they are produced at bubble boundaries, which in this case are ex-
ponentially far away from our apparent horizon. The source of exponential
expansion is achieved by permitting the scalar field to slowly evolve from its
symmetric state (¢ = 0) to its ground state, ¢ = v, of a typical potential
V(¢) = M(¢? —v?)2. During this time the potential associated with the scalar
field is almost constant, thus providing an effective cosmological constant to
the FRW equations; see Fig. 9. The process of slow rolling down of ¢ along
its potential curvature is the main new ingredient of this model of achieving
an inflationary stage.

After inflation the ¢-field begins to oscillate around its stable minimum,
¢ = v. The energy stored in V(0) decays to reheat the Universe to have
the required entropy. One must point out that over the course of the years,
important steps to consolidate the theory of reheating have been made; see for
example [93]. But, qualitative new ideas have been introduced only since the
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Fig. 9. A sketch of the new inflationary potential is shown. The potential curvature
is very flat in order to permit the field to slow roll down the hill to yield enough
e-folds of inflation during that time. Inflation begins at some ¢; and ends at ¢y
when the field begins to evolve rapidly to its stable symmetry—breaking state ¢ = v,
around which the field oscillates until reheating.

mid 90s [57, 58]. Accordingly, the process of reheating should consist of three
different stages. At the first phase, the ¢-field decays into massive bosons
(fermions) due to parametric resonance given through a Mathieu equation
that determines the regions of stability and instability (particle production)
in the quantum fluctuations of the created particles. These can be ¢-particles
or other bosons (fermions) coupled to the ¢-field. This process is very efficient,
even explosive, and many bosons can be created in this stage. Note that
the original theory is based upon the decay of the ¢-particles, whereas in
the present theory the ¢-field decays into ¢-particles, and perhaps others,
and only after this process does the decay of ¢-particles proceed. Then, to
distinguish this explosive process from the normal stage of particle decay,
the authors of [57] have called it preheating. Bosons produced at this stage
are far from thermal equilibrium and have very big occupational numbers.
The second stage of this scenario describes the decay of the already produced
particles. This phase is described as in the original theory. Thus, the methods
developed for the original theory are now applied to the product particles,
but not to the decay of the ¢-field itself. The third stage is the thermalization
by which the system reaches equilibrium; for review of this topic see [59].

A very important result found in the context of the “new” inflationary
model is that perturbations of the scalar field can explain the required initial
conditions of structure formation, i.e. an almost scale invariant, Harrison-
Zel'dovich spectrum. This spectrum results from the original quantum fluc-
tuations of the ¢-field. These field fluctuations cross outside the Hubble hori-
zon during inflation, evolve classically and, eventually, return back to re-enter
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the Hubble horizon as density perturbations with scales of galaxy or present—
horizon size, see Sect. 2.3. But its correct accomplishment demands, according
with the COBE and WMAP measurements, a magnitude of §p/p ~ 107>
when perturbations re—enter the Hubble horizon. This fact demands the
above potential, or the generic toy chaotic model potential V = A¢™ [64],
to have an extremely small value for A\ which in turn implies very particular
choices of particle physics models (fine-tuning), or even wrong models. In
this way, some inconsistencies appear. Inflation was thought to circumvent
the choosing of special initial conditions of the SBB, but now we see that
it encounters its own. In spite of this and other difficulties, the new and the
chaotic inflationary models served to show how the very idea of field slow rol-
lover dynamics can be implemented in many particle physics and/or gravity
theories with general success.

Over the course of two decades of the inflationary theory, many related
scenarios and models have been proposed with concrete physical mechanisms
to achieve inflation, reheating, baryogenesis and a causal perturbation spec-
trum, among others. It has been found that many models generally suffer from
“unnatural” fine-tuning of parameters. Nevertheless, some of these models
have interesting properties, and the relation among theoretical and obser-
vational cosmology and particle physics has become tighter than ever. For
instance, typical unification theories have different scalar fields which have
been used to have one or more inflationary stages. Additionally, they have
been used to produce the correct density perturbation spectrum together
with a sufficient reheating temperature. That is, it is tempting to use the va-
rious fields for achieving different cosmological tasks, as in the case of hybrid
inflation. Then, to distinguish among the different fields, the field responsible
for the period of exponential expansion is generically called the inflaton. The
modern view is that this inflaton is a primary ingredient in offering a solu-
tion to the above—mentioned problems. A general description of the scalar
field (inflaton) dynamics, as well as some of its quantitative parameters, are
found in the contributions of E. Copeland and C. A. Terrero—Escalante in
this book.

3 Overview

Finally, we are going to review the topics that were covered in this contri-
bution. We have presented a general view of the SBB, its problems, and the
main ideas involved in the inflationary Universe. We have shown how infla-
tion achieves an explanation of the horizon and flatness problems. In doing
so, a period exponential expansion of about 60 e-folds in the scale factor is
necessary. However, this condition is not sufficient at all to yield a Universe
like the one we live in: after inflation the region of the Universe which will
give rise to our present apparent horizon is almost devoid of particles and,
because of the adiabatic exponential expansion, it is also very cold. There-



An Introduction to Standard Cosmology 47

fore, a process of reheating is mandatory. GUT offer through phase transition
phenomena an appealing scenario for creating both a constant energy density
in the very early Universe, to have inflation, and its subsequent preheating
and reheating. After inflation Baryogenesis can take place in the context of
GUT, a scenario which can attain the Sakharov required conditions.

We have also shown that the inflationary theory provides means to solve
the monopole and other relics problems within the new inflationary scenario.
Furthermore, there are inflationary models with no singularity, because they
begin with finite initial conditions, for instance, those attached to the poten-
tial energy. In this way, one excludes singularities by appealing to the physical
limitations of the classical theory; this is the case for chaotic inflation. Other
inflationary models without initial singularity have also been proposed [95].

The homogeneity and isotropy of the large—scale structure of the Universe
are also a consequence of a long period of exponential expansion. Recall that
all inhomogeneities are shifted away from the Hubble horizon. Thus, inflation
makes the space very homogeneous and isotropic. This assertion is known as
the cosmic no hair conjecture [43, 15]. The question remains whether the
initial patch was sufficiently smooth to enable inflation to start. That is, in
some sense, the Universe should be, at some level homogeneous and isotropic
to consider it as an original patch with which to begin inflation. It turns
out that scalar fields, initially without considering potential terms, can bring
an initially homogeneous, anisotropic patch to an almost FRW symmetry
[20, 67]. That is, an anisotropic Universe can begin with such initial conditions
that the potential term is yet not the primary contribution to the cosmological
field equations and, after some time, it can become nearly isotropic. Then,
inflation occurs when the potential term begins to dominate [21, 22, 23].

The cosmological constant, A = V(0), provides the energy density to have
an exponential expansion. However, in the inflationary theory this constant
must be assumed, and inflation provides no explanation of this. From the
particle physics point of view, it is also intriguing to consider why this con-
stant should or should not exist; there is no known principle that demands
it to vanish. Thus, for convenience one usually assumes V' (0) # 0 in order to
be able to achieve inflation and to have today V(v) = 0 with ¢ = v. In this
way, one avoids choosing the tuned value V(v) < p., &~ 107%7 GeV* today.
However, this last possibility is very interesting in the context of the present
huge expansion rate; see below.

It is worthwhile to notice that because inflation predicts {29 =~ 1 and
since our observed baryonic Universe only contributes {2 ~ 0.05 to the total
energy density, then inflation predicts some amount of dark components, na-
mely, 2qark ~ 0.95! The motivation for one of the dark candidates, A, came
from different cosmological measurements which without a cosmological con-
stant (or function) are rather difficult to explain. For instance, W. Priester et
al. [51, 52, 14] pointed out that with a present cosmological constant one can
explain the absorption lines of quasars, the so called Ly a-forest spectrum,
assuming a Hubble constant of Hy = 90 km s~! Mpc~!. Further, measure-
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ments of the Hubble constant employing a variety of techniques suggested a
rather high value for it: Hy = 80 £ 5 km s~ Mpc~! [39]. Also, the Hubble
Space Telescope (HST) measurements of Cepheid variable stars in the Virgo
cluster evidence such high values as Hy = 80 & 17 km s~! Mpc~? [36, 71]. If
this evidence is correct, it turns out that the age of a flat Big Bang Universe
(suggested by inflation) is too small, tg = %Ho_l =8 —10 Gyr, to explain the
oldest globular clusters estimated to be 16 + 3 Gyr [85] or 9.3 + 2 Gyr [99].
This means that some other contribution to the FRW cosmological equati-
ons should be present to let the Universe be older. This effect is carried out
precisely by a cosmological constant, or function term. This is so because A
corresponds to a negative pressure (repulsive force) so that the expansion rate
first decreases more slowly (than if A = 0) and eventually decreases faster,
yielding a larger expansion age.

Astonishingly, recent, independent observational data measured in the
CMBR on various angular scales [26, 13], in type Ia supernovae'? [79, 76, 80],
as well as in the 2dF Galaxy Redshift survey [75, 34], suggest that 2 = 25 +
On = 1, or 2y =~ 0.7 and (2, = 0.3, implying the existence of dark energy
and dark matter, respectively. One particular candidate for dark energy is a
scalar field usually called quintessence [24]. Naturally, particular inflationary
scenarios motivated from different particle physics theories have their own
dark matter candidates, as such the Axion, neutralino, Higgs particle, etc,
and additionally a quintessence field; see the contributions of E. Copeland
and A. de la Macorra in this book.

Additionally, three—dimensional numerical simulations of structure for-
mation have incorporated cold, warm, or hot particles into their analyses
and, up to now, the best fittings with sky surveys turn out to be a mixture
of the different dark matter ingredients with 2a¢ter ~ 0.3, also including a
cosmological constant with £24 ~ 0.7 [4].

Next we comment on the first two problems listed in Sect. 1: the di-
mensionality and euclidicity problems. They seem to go beyond the scope of
the inflationary theory. They touch the foundations of a theory of everything,
including gravity. However, some cosmological solutions in Kaluza Klein theo-
ries have been found that are related to modern particle physics and gravity
theories [37]. With the advent of fundamental string theory, some cosmologi-
cal solutions have been found that compactify the D — 4 dimensions to four
[28], and there are inflationary solutions stemming from effective string theo-
ries in which various fields exist; one of them, the dilaton, plays the role of
the inflaton [41, 42, 16]. The issue of string cosmology has become of much in-
terest in recent years, and modern implementations are accomplished within
braneworld scenarios; this topic is extensively explained in the contributions
of K. Maeda and J. Lidsey in this book.

14 See the contribution of A. Filippenko in this book.
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Inflation turns out to be a possible, natural, cosmological realization of

high energy physics with qualitatively outstanding results. However, a better
implementation of it must be achieved, perhaps within new theories or as
extensions of the known ones, such as the ones presented in the forthcoming
chapters of this book.
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