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In the work it is shown that the principles “of the complete physical theory” and corollaries of the standard
quantum mechanics are not in such antagonistic inconsistency as it is usually supposed. In the framework
of algebraic approach the postulates are formulated which allow constructing the updated mathematical
scheme of quantum mechanics. This scheme incorporates the standard mathematical apparatus of quantum
mechanics. Simultaneously, there is a mathematical object in it, which adequately describes individual
experiment.

Principles of locality and the causality occupy a central place in structure of quantum field the-
ory. So the axiom of locality is one of basic in the Wightman axiomatics [1]. In the Bogoliubov [2]
approach the condition of causality is a main constructive element of the theory. The local algebras
are the basic component of the algebraic approach [3]. The properties of these algebras are signifi-
cally determined by the axiom of locality. The large role plays also the Haag principle of primitive
causality [4].

The principles of locality and causality are tightly related among themselves. On the physical
essence they are very close to the concept of “the objective local theory” which was introduced in
works of Bell [5, 6]. The basic supposition of Bell consists in the following.

The properties of a physical system exist objectively, irrespective of measurement and are fulfilled
the requirements:

1) every system is characterized by some variables, probably, correlated for two systems(causality);
2) the results of measurement of one system do not depend on whether measurements on other
system is made (locality);

3) the characteristics of statistical ensembles depends only on conditions in earlier times, “the
retrospective causality” is impossible.

Actually, these requirements are the further development of the concept of “the physical reality”,
formulated in the famous work of Einstein-Podolsky-Rosen [7]:

a) every element of the physical reality must have a counter-part in the complete physical theory;
b) if, without in any way disturbing a system, we can predict with certainty (i.e. with probabil-
ity equal to unity) the value of a physical quantity, then there is an element of physical reality
corresponding to this physical quantity.

All these statements seem quite reasonable. However, they have one essential drawback —
they badly agree with the basic conceptions of the standard quantum mechanics (theory of Bohr,
Heisenberg, Dirac, von Neumann). At least, so it is considered. On the other hand, the corollaries
of the standard quantum mechanics perfectly agree with enormous range of phenomena.

In proposed work I want to show that the statements, formulated by Bell and Einstein-Podolsky-
Rosen, and corollaries of the standard quantum mechanics are not in such antagonistic inconsistency,
as it seems at the first glance.
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We shall accept the algebraic approach to quantum theory: the elements of some algebra corre-
sponds to observable quantities. It is convenient to consider complex combinations of the observ-
ables, which further will be referred to as dynamical quantities.

In this context, we adopt Postulate 1.

Dynamic variables correspond to elements of an involutive associative (in the genmeral case)
noncommutative algebra A, satisfying the following conditions :

1. for any element R € U there exists a Hermitian element A (A* = A) such that R*R = A?;
2. if "R =0, then R =0.

The observable variables correspond to the Hermitian elements of the algebra 2. We let 2,
denote the set of these elements.

The so-called simultaneously measurable (compatible) observables, play a preferential role in
quantum mechanics. It is observables, for which there are measuring apparatuses (system of appa-
ratuses), permitting in principle to measure them simultaneously to any desired degree of precision.

We adopt Postulate 2.

Mutually commuting elements of the set A, correspond to compatible observables.

In connection with this postulate commutative subalgebras of the algebra 2l will play essential
role in the following.

Let us designate a maximal real commutative subalgebra of the algebra 2 by Q; (Q, = {Q}g €
2, ). It is algebra of the simultaneously measurable observables. The subscript £ distinguishes one
such subalgebra from the other.

The Hermitian elements of the algebra 2l are latent form of the observable quantities. The
explicit form of an observable should be some number. This means that to determine the explicit
form of the observables on the Hermitian elements of the algebra 2l we must define some functional
@(A) = A, where A is a real number. Physically, the latent form of the observable A becomes
explicit as a result of measurement. This means that the functional ¢(A) should determine the
value of the observable A that may result from a concrete (individual) measurement. We call this
functional the physical state of the quantum object.

Only mutually commuting elements can be measured in an individual experiment. The sum and
the product of the observables should correspond to the sum and the product of the measurement
results: 1211 + 1212 — A; + Ay and 12111212 — A A,

We use the following definition. Let ‘B be a complex (real) commutative algebra and ¢ be a linear
functional on 8. If

80(3132) = W(Bl)SO(Bz) (1)

for any By, B, € 9B, then the functional ¢ is called a complex (real) homomorphism on algebra 8.
A functional that satisfies equality (1) also called a multiplicative functional.

We now formulate Postulate 3.

The physical state of a quantum object, appearing in the individual measurement, is described
by a (generally, multi-valued) functional p(A) (A € A.), for which the restriction (p¢(A)) on any
subalgebra Q; is single-valued and is a real homomorphism (pe(A) = A is real number).

It is possible to show [8] that the functionals, appearing in the third postulate, have the prop-
erties:

/1] ¢e(0
/2/ el
/3 pe(A%) 2 0;

/4) if A = @c(A), than \ € o(A);

/5/ if A € 0(A), than A = @ (A) for some @, (A).

= 0; (2)
1
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Here a(fl) is a spectrum of the element A in algebra 2. In the standard quantum mechanics the
corresponding properties of individual measurements are postulated, here they are consequences of
the third postulate.

The multi-valuedness of the functional ¢ is caused by the fact that the result of measurement
can depend not only on the measured quantum object, but also on the nature of the measuring
device. Let us say that the device, measuring an observable A, is coordinated with subalgebra of
observables £, (Ae ¢), if for any physical state ¢ the measurement outcome is @5(121).

The coordination of the device with this or that subalgebra £, is determined by its classical
characteristics, i.e. by the construction, position in space and so forth. Multi-valuedness of the
functional ¢( ) allows to introduce it in a consistent manner. It is possible to make it by direct
construction. Due to multi-valuedness of the functional ¢, the conditions of the Kochen-Specker
no-go theorem [9] are not fulfilled for it. Thus, the functional ¢( ) does not describe the value of an
observable 4 in a particular physical state. It describes reaction of the particular type of measuring
device to the observable A. Correspondingly a physical reality is not the value of an observable A
in the considered physical state, but a reaction of the measuring device to this state.

If the functional () is single-valued in the point fl, we shall say that the corresponding physical
state ¢ is stable on the observable A.

Now we shall introduce a construction, which corresponds to a pure state in the standard
quantum mechanics. The functional ¢ maps a set Q¢ = {Q}¢ (maximal commutative subalgebra)
into the set of real numbers: ) )

{Q} = {Q=¢(@)}e
For different functionals p;( ), ¢;( ) the sets {0:i(Q)}, {¢;(Q)} can either differ or coincide. If for
all Q € {Q} is valid goi(Q) = goj(Q) = @, then we shall call physical functionals ¢;( ) and ¢;( ) as
{Q}-equivalent functionals.

Let {¢}o be the set of all {Q}-equivalent functionals, stable on observables of the subalgebra
{Q}g The set of corresponding physical states we shall call a quantum (pure) state, and we shall
designate it by ¥g,.

Let us consider the quantum W,-ensemble as a general population (in sense of probability
theory), and any experiment aimed to measured an observable A as a trial. Let the event A be
experiment in which the measured value of the observable A is no larger then 4, i.e., o(A) = A < A.
This event is not unconditional. By virtue of the second postulate one trial cannot be event for
two noncommuting observables. The probability of the event A is determined by structure of
quantum ensemble and this condition. Let this probability be equal to P(A). We designate {go}é
({go}é C {¢}q) the set of the physical states, which figure iIAl denumerable sample of mutually
independent random trials for measurement of the observable A.

By definition, the probability of appearance of the event A in each trials is equal to P(/Nl) It
determines a probability measure u(p) (p(A) < A) on any such sample. In its turn, the measure
11(p) determines distribution of values A; = ¢;(A) of the observable A and expectation < A > in
this sample:

<A>= /{W du(p) ¢(A).

Let for 1 < i < n functionals ¢, € {go}é, then according to the theorem of Hinchin (the law of
large numbers, see for example [10]) the aleatory variable A, = (A; + ...+ A,)/n converges on
probability to < A > as n — oo. Thus,

P- lim = (p1(A) + ...+ gu(d)) =< A >= Wo(A). (3)

n—oo n,

Formula (3) defines the functional (quantum average) on the set 2.
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The totality of quantum experiments leads to conclusion that we should accept Postulate 4.
The functional g ( ) is linear on the set 2.
This means that

Vo(A+ B) = Uo(A) + ¥o(B)

even in the case where [A, B] # 0.
Any element R of the algebra 2l can be uniquely expressed in form R = A + iB, where A, B €
20, . Therefore, the functional ¥4 ( ) can be continued to a linear functional on the algebra %:

N N N

Vo(R) = Vo(A) +i¥q(B). o .

The equality ||R||* = sup, Vo (R*R) defines a norm of an element R € 2. This norm has
properties ||R*|| = ||R||, |R*R|| = || R||*(see [11, 3]). With such norm the algebra 2 is a C*-algebra.

Therefore, according to the Gelfand-Naumark-Segal construction (see, for example [3]), the
functional g ( ) canonically generates a Hilbert space and the representation of the algebra 2l by
linear operators in this Hilbert space. In other words, in the proposed approach it is possible to
reproduce the mathematical formalism of the standard quantum mechanics completely.

The physical state is “a physical reality”, which Einstein did not see in the standard quantum
mechanics, and so he considered that the quantum mechanics is the incomplete theory.

At the same time, the physical states can play a role of the Bell’s variables which characterize
physical system. Here, however, it is necessary to make an essential remark. Bell implied that these
variables are certain numerical parameters (practically hidden parameters). On their basis he has
obtained the famous inequality, which contradicts corollaries of the standard quantum mechanics
and experiments. In the proposed approach physical states are nonlinear functionals (many-valued).
The Bell’s inequality does not follow from existence of such specific “hidden parameters” [11].

Besides, for such “hidden parameters” the reasoning of von Neumann [12] on impossibility of
existence of hidden parameters is not valid [11]. Here, the basic fact is the nonlinearity of the
functional describing the physical state. Actually von Neumann has shown that the linearity of a
state is in the conflict with causality and the hypothesis about the hidden parameters.

From this he has made a deduction that causality is absent at the microscopic level, and the
causality occurs due to averaging over large number of noncausal events at the macroscopic level.

The approach formulated in the present work allows to solve the same conflict in the opposite
way. It is possible to suppose that there is causality at the level of a single microscopic phenomenon,
and the linearity is absent. The linearity of the (quantum) state occurs due to averaging over
quantum ensemble. The transition from a single phenomenon to the quantum ensemble replaces
the initial determinism by probabilistic interpretation.

We now discuss the place of the approach to quantum theory proposed in this article among
different possible approaches. In any modern approach to quantum theory, the main structure
elements are the observables and the states of the physical system. In standard quantum mechanics,
the basic structure element is the Hilbert space. The observable variables are associated with self-
adjoint linear operators in this space, while the states are associated with either vectors or statistical
operators.

The mathematical formalism constructed within the framework of standard quantum mechanics
works very well. The question therefore arises whether it is worthwhile to make efforts towards
constructing quantum-theoretical models beyond standard quantum mechanics.

There are good reasons for making such efforts. First is the problem of the physical interpreta-
tion. The Hilbert space is a rather specific mathematical concept whose physical interpretation is
not straightforward. The consistent formulation of standard quantum mechanics relies on a special
“quantum logic” that is also hard to interpret physically. There are problems of causality and lo-
cality in quantum measurements. All this is the subject of an everlasting debate on the consistent
interpretation of quantum mechanics, a debate that intensified in recent years.
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The other reason to attempt to go beyond standard quantum mechanics is the difficulties that
the theory encounters in describing systems with an infinite number of degrees of freedom. As shown
by von Neumann, all representations of the canonical commutation relation for systems with a finite
number of degrees of freedom are equivalent; therefore, standard quantum mechanics can provide
a universal description of such systems. However, this statement cannot be made for systems with
an infinite number of degrees of freedom. Therefore, a more general construction is needed for
obtaining their universal description. Exactly such a construction can be realized in the algebraic
approach.

There are two main ingredient in the algebraic approach: the algebra of observables and the set
of linear positive functionals on the algebra of observables, interpreted as the set of states of the
physical systems.

These functionals have a rather simple physical interpretation. It is postulated that the value
of the functional on an element of the algebra coincides with the average value of the observable for
physical systems that are in the corresponding state.

On one hand, the framework of the algebraic approach is wider than that of the standard quan-
tum mechanics. Therefore, the algebraic approach holds promise to help circumvent (at least partly)
the difficulties that standard quantum mechanics faces. On the other hand, the Gelfand-Neimark-
Segal construction allows obtaining the principal components of standard quantum mechanics, i.e.,
the Hilbert space and linear operators, within the algebraic approach. In the framework of the alge-
braic approach, these concepts are not primary but secondary. The construction used in standard
quantum mechanics is one of the possible nonequivalent representations of the algebra of observ-
ables. Hence, the passage from standard quantum mechanics to the algebraic approach is a passage
to a deeper level of the quantum theory.

In this sense, the system of postulates proposed in this article can be interpreted as a passage
to a level that is yet deeper. The first two of the formulated postulates related to the algebra
of the observables are adopted directly from the traditional algebraic approach. Other than this,
however, the approach we propose is different. In this approach, the principal role belongs to real
commutative subalgebras of observables.

Using these subalgebras, we introduce the essentially new element, i.e., the nonlinear functional
¢ whose values describe the possible result of an individual measurement (see Postulate 3). This
functional is interpreted as the physical state. In contrast, we call the state defined in the traditional
algebraic approach (the linear functional) the quantum state.

In the proposed approach, the primary element is the physical state, while the quantum state
turns out to be a secondary element, the equivalence class of the physical states. In standard
quantum mechanics and the traditional algebraic approach, the result of an individual measurement
(the physical reality) does not have any mathematical counterpart. In the proposed approach,
such a counterpart is the nonlinear functional ¢. The functional ¢ allows a transparent physical
interpretation. In addition, this functional allows bringing the structure of the algebra of observables
to the form of the C*-algebra. This allows using the Gelfand-Neimark-Segal construction and passing
to the mathematical scheme of standard quantum mechanics. The traditional algebraic approach
normally postulates that the algebra of observables is the C*-algebra. This is not quite obvious
physically.

Standard quantum mechanics and the traditional algebraic approach postulate that the func-
tional associated with the quantum state statistically describes the average value of the corre-
sponding observable. In the proposed approach, this functional is constructed through statistical

averaging of the functionals . This construction implies that the functional describes the average
value of the observable.
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