397

PROTOTYPING HARDWARE FOR THE ATLAS READOUT BUFFERS

R.Cranfield (rc@hep.ucl.ac.uk), G.Crone, University College London
G.Boorman, B.Green (B.Green@rhbnc.ac.uk), Royal Holloway University of London
0.Gachelin, M.Huet (huet@hep.saclay.cea.fr), P.LeDu, M.Mur, Saclay
H.Boterenbrood, P.Jansweijer, G.Kieft, J.Vermeulen (73 @nikhef.nl), NIKHEF
A.Kugel (Andreas Kugel @ti.uni-mannheim.de), R.Rissmann, University of Mannheim

Abstract

Current design studies for the ATLAS readout assume
that detector data is held in standard buffers until needed
for full event building. These buffers are fed with data in
parallel via a large number of high bandwidth links from
the sub-detector readout electronics for events accepted
at the first level, but only a subset of this data is required
for level 2 trigger processing, selected from "regions of
interest" identified at level 1. It is assumed that such
buffers will not be available "off-the-shelf”, so ATLAS
is pursuing a programme of buffer design, building
prototypes and exploring architectural options. This
paper describes both the current mainline prototypes,
which use Intel 1960 processors and interface to PCI, as
well as an entirely FPGA-based solution, and a SHARC
DSP-based board which is being designed to explore an
alternative buffering strategy.

1. ASSUMPTIONS

The basic strategy[1] adopted by ATLAS for taming
the enormous data rate expected after Level-1
(hardware) triggering is to concentrate Level-2
processing on only that subset of the data issuing from
“regions of interest” identified by Level-1. In this way
only a fraction of the data needs to be merged from the
readout lines into the Level-2 processors, and
subsequently only the fraction of events selected at
Level-2 needs to be sent on to the Event Filter.

This strategy implies the incorporation of special
buffering into the readout lines where data can sit until
either rejected by Level-2 or required by the Event
Filter. The system components responsible for the whole
buffering process are referred to as ROBs (Read Out
Buffers) and are assumed to form the first common stage
in the readout chain. A ROB has several interfaces: it
must be able to accept detector data at a high rate from
one or more Read Out Lines; it must communicate with
the Level-2 system, servicing requests for data
“fragments” from regions of interest; it must
communicate with the Event Filter, servicing requests
for whole event data for accepted events; and it must
communicate with the readout software infrastructure,
providing downloading, initialisation, monitoring and
debugging facilities as required.

The ultimate structure of a ROB is not yet decided,
but for hardware prototyping purposes its functionality
has been split into an input component (ROB-in) which
includes the data buffer, a supervisory component (ROB-
controller), and a network interface component (ROB-
out). This enables different groups to concentrate on the
development of the different parts, as well as allowing
for experimentation with different degrees of input and
output multiplexing. This paper describes recent work on
the development of the ROB-in component.

The basic references for this work are the ESA-style
User Requirements Documents (URDs) which have been
drawn up for both the ROB[2] and the ROB-in[3] on the
basis of current knowledge. Final versions of these
documents are planned for the end of the prototyping
phase.

2. PROTOTYPES

The rationale for designing and building ROB-in
prototypes is two-fold. Real modules are needed for the
construction of “vertical slices” of both the Level-2
trigger and the DAQ front-end, required for proving
designs for these sub-systems. At the same time the
design process gives us hands-on experience of the
problems intrinsic to building an appropriate hardware
buffer. This is particularly important since it is by no
means clear that such buffers will be available as
"Commodity Off-The-Shelf" items and they may well
need to be custom-made. This is notwithstanding the fact
that there are now commercially-produced boards[4][5]
suitable for the implementation of a ROB-in. The scale
of the eventual ATLAS buffering (~2,000 Read Out
Links) justifies further exploration of the cost, density
and modularity of the final buffer system through
development of the present prototypes and their use in
multi-channel configurations.

One of the commercial boards, the microEnable, is
described here. It is a multi-purpose design with SRAM
memory, FPGA and S-Link interfacing, that evolved
from development work at Mannheim University[6]. The
ROB-in "design" consists of programming the FPGA
such that the ROB-in requirements are satisfied. The
current ROB-in implementation on this board includes a
Level-2 pre-processing task, which is potentially useful
for sub-detectors such as the TRT, where only a

398

compacted form of the data is needed for making the
Level-2 decision.

Two of the custom prototypes have evolved from
earlier designs that used Texas Instruments’ DSPs. The
UCL/RHUL ROB-in RD board[7] followed on from the
C40-based T2B buffer successfully used in early small-
scale trigger demonstrators, whilst the Saclay ROBIN(8]
was developed from on an earlier C80-based design.
Both these boards are intended for use in demonstrators
associated with the Level-2 Pilot Project[9], as well as
in prototype multi-ROB-in ROB Complex[10]
configurations. The RD board is also being used in the
DAQ Prototype-1{11] front-end demonstration.

The CRUSH board[12] is a recent design from
NIKHEF using the SHARC DSP and a different buffer
management technique and is aimed at local tests of
ROB Complex configurations.

3. APPROACH

i960RD [

PCI/PMC

Fig 1: UK ROB-in RD

The two current mainline ROB-in prototype variants, the
UK ROB-in RD and Saclay ROBIN, follow similar
design approaches. Detector data enters (from one of
many Read Out Drivers associated with a sub-detector)
on a Read Out Line and is written into fast dual-port
memory by programmable logic, under the direction of
buffer manager software running on a microprocessor.

TIC/L1
FiFo (derandomizer)
Glue Logic
| I SDRAM | 8 MB
Listof List of ﬁj PMC
full pages free pages Form factor
JTAG
Bridge crPyU
PLX 9080 (i960Jx)

PC1
Fig 2: Saclay ROBIN
The buffer manager software receives data request
messages across a PCI interface and initiates DMAs of

the identified data back across the PCI interface for
subsequent transmission to Level-2 and/or Event Filter.
The buffer management is performed by allocating the
buffer memory in fixed-size pages and keeping track of
which pages contain fragments of which events. The
programmable logic needs only to be supplied with the
addresses of free pages, and to inform the buffer
manager how many bytes have been written into each as

. they are used; the event id itself can be read by the

buffer manager directly from the event data in the
buffer.

The new design from NIKHEF employs a simpler
circular event buffer, copying data out of the buffer into
buffer manager memory (internal memory of the
SHARC DSP) whenever it is in danger of being
overwritten. This design too uses programmable logic
and dual-port memory with a microprocessor-based
buffer manager and communication and output across
PCIL

Compact RoB Using a SHARC (CRUSH)

6 (40 MByrefs)
S-link DMA SHARC links
request/
S ant it
FIFO) Summary Paged =§ £ » SHARC e
1k*36 infor i i ol 21060L fee
address ”I .

[

GQMHJl

Altera 10k100A FPGA

Address
generiion

Contral,
SUE,
Imermpts

Buffer memory
M.

1 MByle
addiess | TR AM

daln o

Fig 3: NIKHEF CRUSH

The microEnable-based design is completely realised
in programmable logic (Xylinx FPGAs). It uses a
circular buffer like the NIKHEF board, but there is no
microprocessor and the buffer management is built
directly into the firmware.

— e
== e == = _
o= 3z ZEE A 32 =
o>
Clock & Local bus,
Support 40 Mhz, 32 Bit

_PCI - Interface

B
i :

PCIl, 33 Mhz, 32 Bit I

Fig 4: microEnable

4. COMPONENTS

4.1.

Data is assumed to enter the buffers via a dedicated
link from the detector readout components. The

Data Input

canonical speed for this link is 100 MB/s or 100 kHz of
1KB event fragments. The implementation of this link is
still under discussion, but most of the prototyping work
assumes that it will be interfaced according to the S-Link
specification[13], which provides a 32-bit-wide data
connection together with control and status lines.

The S-Link interface provides an error bit that can be
read by the ROB-in and reported to the controlling
infrastructure. It also carries an XON/XOFF protocol,
which is used both for holding off data prior to
initialisation and signalling when the buffer memory is
nearly full. It is assumed that this handshake will be
propagated back along the readout chain in some way
ultimately blocking the data flow out from the sub-
detector.

The detector data is fed into an input fifo which
accommodates the lack of synchronisation between the
clock controlling the Read Out Link and the clock
controlling the buffer memory. In general it can
therefore be quite short, though in the Saclay design it is
also necessary to buffer data in this fifo before it can be
burst into the buffer memory.

It is assumed that the beginning and end of each event
fragment is marked in the data. The S-Link specification
defines a special bit marking a word as a control word,
and the proposed Read Out Link format[14] defines a
pair of control word patterns (BOB and EOB) indicating
the beginning and end of a data block respectively.
Actually only the end marker is strictly necessary,
enabling the ROB-in hardware to know when to record
the event details and to ready itself for the next
fragment.

4.2. Buffer Memory

The buffer memory must take in data at an average
rate of 100 MB/s i.e. one 32-bit word every 40 ns.
However the memory must be a lot faster than that since
it must also be read both by the buffer manager software
(to pick up the event ids) and by the DMA engine
responsible for outputting event fragments to Level-2
and the Event Filter. The rates for these tasks are about
400 kB/s and 10 MB/s respectively.

In the ROB-in RD normal fast (10ns) asynchronous
SRAM is used and advantage is taken of the difference
in access rates required on the two ports with the output
side being allowed up to one access in every four.
Memory size is limited by the size of available SRAM
chips with the current prototypes providing 1 MB total
buffering.

The Saclay ROBIN meanwhile uses SDRAM. This
permits a larger memory (8 MB) to be accommodated in
the available board space though at the expense of
increased logic complexity and with the constraint that
the fastest access requires the use of burst mode. This in
turn has resulted in the selection of a longer input fifo, as
noted above, and the restriction of fast access from the

399

microprocessor side to read-only. Slow read and write
word access is possible, however, from either local or
host CPU.

The microEnable uses standard asynchronous SRAM
(0.5 - 2 MB), with dual-port capability being emulated in
the FPGA by running the RAM-control task at twice the
speed (40 MHz) of the I/O task.

The CRUSH design makes use of ZBT (Zero Bus
Turnaround) memory, which avoids the wait states
necessary with fast synchronous SRAM when alternating
between reading and writing. The buffer memory runs
on an 80MHz clock, allowing one write from the S-Link
interface every 25 ns (resulting in a maximum input
bandwidth of 160 MB/s) plus one access from the
SHARC. Due to pipeline delays in the FPGA and the
properties of the bus protocol of the SHARC the
bandwidth to/from the SHARC is limited to 40 MB/s.

4.3. Microprocessor

Both the ROB-in RD and Saclay ROBIN make use of
the Intel 1960 family of I/O microprocessors. The Saclay
ROBIN uses the more established JX variant, whilst the
London-designed board incorporates the newer RD
chips. These latter chips have the convenience of built-in
PCI bridging, but introduce the complications of
increased power dissipation and BGA mounting
technology. The 1960 family provides an appropriate
balance between speed, power dissipation, size and
complexity.

As already noted, the NIKHEF design uses instead a
SHARC DSP as its microprocessor. This also provides
an appropriate balance of operating parameters, as well
as the possibility of interconnection of ROB-ins via its
proprietary communication links.

The fourth prototype does away with a microprocessor
altogether. This potentially increases the speed of buffer
manager processing, though making the coding less
transparent and hence arguably less versatile. The trade-
off between hardware and software implementations of
buffer management in the ROB-in is an important open
question.

4.4.

The heart of the ROB-in design is the buffer manager.
It is this that allows the input data to be written at a
continuously high rate whilst also allowing for the
variable amount of time that an event fragment might
need to remain in the buffer during Level-2 processing
or whilst waiting to be requested by the Event Filter.

In the page-managed schemes (ROB-in RD and
Saclay ROBIN) all the pages can be used since the
buffer manager notifies the hardware of all the free
pages, and keeps track of their usage. The only
inefficiency arises from the use of a fixed page size. This
is no problem for those sub-detectors with fixed event
fragment sizes (no zero-suppression), but in the case of

Buffer Management

400

variable fragment sizes a compromise has to be
established between minimising the number of pages
used per event fragment and minimising the amount of
wasted space within pages.

An alternative buffer management scheme has been
tested in the ROB-in RD in which the overhead
associated with tracking several pages per event has
been minimised by linking the pages of an event directly
in the buffer memory. This means that small pages can
be used without penalty and enables particularly
efficient memory utilisation.

Both the CRUSH and the microEnable designs
incorporate a circular buffer, which simplifies the input
task, since it needs only a cyclically repeating address
counter. However it means that an event fragment can
block the buffer if it needs to be retained for longer than
the buffer cycle time. In the CRUSH design it is
assumed that the SHARC microprocessor will transfer
such an event fragment into the microprocessor's own
heap memory. This then requires a management scheme
for the fragments on the heap, but should be feasible if it
is a relatively rare occurrence. In the microEnable
prototype it is also planned to try a fifo-style buffer as an
alternative to the circular buffer.

All the buffer management schemes need to maintain
some sort of index table to associate an event ID with
the address of its data fragment in buffer memory. In the
i960-based designs the microprocessor reads which
pages have been used by the hardware via a “used page
fifo” and is then able to read the event IDs directly from
the buffer. In the SHARC-based design the hardware
itself notes the IDs (along with a few other key data
words) and passes these to the microprocessor together
with the address window of the event fragment in the
circular buffer. In the FPGA-based design the FPGA
generates a simple lookup table as it reads event
fragments into the circular buffer.

4.5. PCI & Format

All four prototypes use PCI for communications other
than the front-end data input. The PCI bus provides a
convenient common connection standard for prototyping
work, as well as constituting a real technology option for
the final system, since the total bandwidth required for a
operation of a single channel ROB-in is about 15 MB/s,
which is well within the PCI spec.

Both the 960 modules come in PMC format, enabling
them to be plugged directly onto a motherboard via the
PCI bus. The possibility then exists of constructing a
complete ROB from e.g. a VME single board processor
as a ROB-controller, with a pair of PMC daughter
boards, acting as ROB-in and ROB-out respectively.

The microEnable module and an alternative version of
the ROB-in RD come in a standard PCI format suitable
for plugging directly into a PCI slot in a standard PC,
whilst the CRUSH module communicates via its

SHARC links with a second PCI module containing a
SHARC and a PCI interface.

4.6.

The ROB-ins must be sensitive to several kinds of
errors in the data-stream, as well as being able to
recognise errors reported by the link system itself. Event
fragments might arrive without BOB or EOB markers
and/or they may contain too much data. Level-2 or
Event Filter requests may be received for data that has
not yet arrived at the buffer and/or the data may never
arrive. Data may also be corrupted in various ways.
Whilst data corruption in general has to be left for
further processing downstream, corruption of identifying
information must be handled non-fatally at the ROB-in.

In general situations in which data is not released
quickly enough from the buffers are handled by the S-
Link handshake mechanism. The ROB-in RD, for
example, asserts XOFF whenever the number of free
buffer pages drops below a certain level, or if the input
fifo fills too much. This means that extra-long event
fragments, possibly caused by the absence of EOB
markers, will not disrupt operation; they can be
recognised by the buffer manager and immediately
released.

Requests for events not yet received can be handled
by flagging the corresponding entry in the index table, so
that the request can be satisfied once the data arrives.

It is not yet clear whether fragments can be guaranteed
to arrive in strict order of ID, but the buffer manager can
easily check that they are not grossly out of sequence, or
for duplicates, as part of the indexing process.

The thorniest problems concern event data and
requests that never match up. This begins to be a
concern once the buffer manager needs to re-use an
already occupied slot in its index table. It is easy to
avoid the immediate problem by linked-list extensions to
the simple lookup table, but it is not yet clear what
should be provided in the way of timeouts from the point
of view of overall system efficiency.

4.7.

It is assumed that event fragments will be requested
for monitoring purposes as well as for the mainstream
DAQ dataflow. Such requests can simply be handled by
the standard fragment-request mechanisms. What is not
yet decided is the extent to which individual ROB-ins
will need to select and/or store events of different types;
this could have a major impact on future ROB-in design.

5. OPERATION

The i960-based prototypes boot from ROM, but there
is enough on-chip memory for the main buffer manager
code to run from cache, with consequent speed
improvements. Code has also been downloaded across
PCI, which is useful for testing and might be convenient

Error-Handling

Monitoring

for online program changes. JTAG is used extensively
for downloading both programmable logic and
microprocessors and also as a route for emulator-based
debugging of the microprocessors.

The SHARC prototype is booted across a SHARC link
by the SHARC on its associated PCI interface board,
itself booted via PCI. The SHARC on-chip memory has
room for the buffer manager code, index table and
overflow buffer, as well as a library supporting terminal
and disk I/O via the host PC.

Testing is carried out both by running special
programs in place of the regular buffer manager and by
connecting to auxiliary test facilities, such as the
SLIDAS S-Link data source. The designs also
incorporate mechanisms for injecting data directly into
the front-end of the ROB-in under host control.

SOFTWARE

The buffer manager software on the microprocessors
is written in C for transparency and possible portability.
Earlier experience with the "T2B" buffer shows that C
code can achieve about half the speed of assembler in
this kind of application.

Since the buffer manager's role is essentially to
service its input sources, with no significant background
tasks, it has generally been implemented as a large
polling loop, rather than employing interrupts.
Comparative timing measurements justify this design
choice. Efficiency has been gained, however, by
servicing a group of inputs from each source at a time.

The Xylinx chip on the microEnable board is coded
using CHDL, a C-like high-level language developed for
easy programming of FPGAs.

At the moment each prototype uses its own
proprietary programs, but the aim is to define a set of
common APIs for future prototyping work which could
eventually evolve into the production software. Work
has begun on this with the first iteration of an API for
the operation of a ROB within the Level-2 Reference
Software[15] framework.

As well as the buffer manager code itself attention
must also be paid to the interaction between the ROB-in
and the rest of the world. Currently APIs have been
defined[16] in the context of the DAQ Prototype-1
covering communication between a ROB-in and the rest
of the DAQ front-end and these have now been
implemented for the ROB-in RD.

6. PERFORMANCE & STATUS

The designs described here are intended primarily for
prototyping experiments to be conducted over the next
eighteen months, essentially the Level-2 Pilot Project
and the DAQ Prototype-1. Versions now exist of all four
boards, though some hardware debugging and
refinement remains to be completed.

401

Early results from simulation environments and
measurements of loop times suggest that all the
prototypes are fundamentally capable of coping with the
specified 100 kHz event rate, and can comfortably
provide the required output bandwidth.

7. FUTURE DEVELOPMENT

The main focus of ROB-related work in the Level-2
Pilot Project will be to analyse the options for a ROB
Complex, defined to be a generalised buffering system
incorporating one or more front-end links and network
connections. This will involve exploration of hardware
possibilities and constraints as well as extrapolation of
technology and performance relevant to the Level-2
trigger, preparatory to a final design programme starting
in 2000, At the same time the DAQ Prototype-1
programme will explore the integration of ROB
components into the full DAQ system.

As well as using the current ROB-ins in Level-2
vertical slice demonstrators it is planned to configure
several test setups, each containing a number of the
current prototype ROB-ins, to measure the performance
of different architectural organisations for a ROB
Complex. It is also planned to pursue paper designs for
possible multi-ROB Complexes, which will explore
possibilities for tighter coupling and closer packing of
ROB components.

8. REFERENCES

1 http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/
LEVEL2/DOCUMENTS/level2docs
2 http://www.cern.ch/HSI/rob
3 http://www.cern.ch/HSI/rob-in
4 http://www silicon-software.com
S http://www.ces.ch/Products/Products
6 http://www-mp.informatik.uni-mannheim.de/
groups/mass-par-1/parallelproc
7 http://www.hep.ucl.ac.uk/atlas/rob-in/
8 http://www-dapnia.cea.fr/Phys/Sei/fexp/ ATLAS/
rob/index
9 http://atlasinfo.cern.ch/Atlas/fGROUPS/DAQTRIG/
L2PILOT/2pilot
10 http://www.nikhef.nl/pub/experiments/atlas/dag/ROB
11 http://atddoc.cern.ch/Atlas/
12 http://www.nikhef.nl/pub/experiments/atlas/dag/
Nikhef-studies
13 http://www.cern.ch/HIS/s-link/
14 http://www.cern.ch/HS/atlas/format
15 http://www.cem.ch/Atlas/project/L VL 2testbed/www/
16 http://atddoc.cern.ch/Atlas/Notes/063/Note(063-1
http://atddoc.cern.ch/Atlas/Notes/065/Note065-1
http://atddoc.cern.ch/Atlas/Notes/071/Note071-1

