
Abstract 
Current design studies for the ATLAS readout assume 

that detector data is held in standard buffers until needed 
for full event building. These buffers are fed with data in 
parallel via a large number of high bandwidth links from 
the sub-detector readout electronics for events accepted 
at the first level, but only a subset of this data is required 
for level 2 trigger processing, selected from "regions of 
interest" identified at level 1. It is assumed that such 
buffers will not be available "off-the-shelf", so ATLAS 
is pursuing a programme of buffer design, building 
prototypes and exploring architectural options. This 
paper describes both die current mainline 1 
which use Intel i960 processors and interface 
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well as an entirely FPGA-based solution, and a SI-IARC 
DSP-based board which is being designed to explore an 
alternative buffering strategy. 

The basic strategy[1] adopted by ATLAS for taming 
the enormous data rate expected after Level-1 
(hardware) triggering is to concentrate Level-2 

, on only -,» . 
:of the data issuing from 

M of interest"' by Level-1. In this way 
only a fraction of the data needs to be merged from the 
readout lines into the Level-2 processors, and 
subsequently only the fraction of events selected at 
Level-2 needs to be sent on to the Event Filter. 

This strategy implies the incorporation of special 
buffering into the readout lines where data can sit until 
either rejected by Level-2 or required by the Event 
Filter. The system components responsible for the whole 
buffering process are referred to as ROBs (Read Out 
Buffers) and are assumed to form the first common stage 
in the readout chain. A ROB has several interfaces: it 
must be able to accept detector data at a high rate from 
one or more Read Out Lines, it must communicate with 
the Level-2 system, servicing requests for data 
"fragments" from regions of interest, it must 
communicate with the Event Filter, servicing requests 
for whole event data for accepted events; and it must 
communicate with the readout software infrastructure, 
providing downloading, initialisation, monitoring and 
debugging facilities as required. 
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The rationale for designing and building ROB-in 
prototypes is two-fold. Real modules are needed for the 
construction of "vertical slices" of both the Level-2 
trigger and the DAQ front-end, required for proving 
designs for these sub-systems. At the same time the 
design process gives us hands-on experience of the 
problems intrinsic to building an appropriate hardware 
buffer. This is particularly important since it is by no 
means clear that such buffers will be available as 
"Commodity Off-The-Shelf' items and they may well 
need to be custom-made. This is notwithstanding the fact 
that there are now commercially-produced boards[4][5] 
suitable for the implementation of a ROB-in. The scale 
of the eventual ATLAS buffering (-2,000 Read Out 
Links) justifies further exploration of the cost, density 
and modularity of the final buffer system through 
development of the present prototypes and their use in 
multi-channel configurations. 

One of the commercial boards, the microEnable, is 
described here. It is a multi-purpose design with SRAM 
memory, FPGA and S-Link interfacing, that evolved 
from development work at Mannheim University[6]. The 
ROB-in "design" consists of programming the FPGA 
such that the ROB-in requirements are satisfied. The 
current ROB-in implementation on this board includes a 
Level-2 pre-processing task, which is potentially useful 
for sub-detectors such as the TRT, where only a 

The ultimate structure of a ROB is not yet decided, 
but for hardware prototyping purposes its functionality 
has been split into an input component (ROB-in) which 
includes the data buffer, a supervisory component (ROB- 
controller), and a network interface component (ROB- 
out). This enables different groups to concentrate on the 
development of the different parts, as well as allowing 
for experimentation with different degrees of input and 
output multiplexing. This paper describes recent work on 
the development of the ROB-in component. 

The basic references for this work are the ESA-style 
User Requirements Documents (URDs) which have been 
drawn up for both the ROB [2] and the ROB-in[3] on the 
basis of current knowledge. Final versions of these 
documents are planned for the end of the prototyping 
phase. 

2. PROTOTYPES 
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compacted form of the data is needed for malting the 
Level-2 decision. 

Two of the custom prototypes have evolved from 
earlier designs that used Texas Instruments' DSPs. The 
UCL/RHU1. ROB-in RD board[7] followed on from the 
C40-based T2B buffer successfully used in early small- 
scale trigger demonstrators, whilst the Saclay ROBIN[8] 
was developed from on an earlier C80-based design. 
Both these boards are intended for use in demonstrators 
associated with the Level-2 Pilot Project[9], as well as 
in prototype multi-ROB-in ROB Complex[l0] 
configurations. The RD board is also being used in the 
DAQ Prototype-I [1 l ]  front-end demonstration. 

The CRUSH board[12] is a recent design from 
NIKHEF using the SI-IARC DSP and a different buffer 
management technique and is aimed at local tests of 
ROB Complex configurations. 

3. APPROACH 

the identified data back across the PCI interface for 
subsequent transmission to Level-2 and/or Event Filter. 

The buffer management is performed by allocating the 
buffer memory in fixed-size pages and keeping track of 
which pages contain fragments of which events. The 
programmable logic needs only to be supplied with the 
addresses of free pages, and to inform the buffer 
manager how many bytes have been written into each as 
they are used, the event id itself can be read by the 
buffer manager directly from the event data in the 
buffer. 

The new design from NIKHEF employs a simpler 
circular event buffer, copying data out of the buffer into 
buffer manager memory (internal memory of the 
SI-L¢\RC DSP) whenever it is in danger of being 
overwritten. This design too uses programmable logic 
and dual-port memory with a microprocessor-based 
buffer manager and communication and output across 
PCI. 
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Fig 1: UK ROB-in RD Fig 3: NIKHEF CRUSH 

The two current mainline ROB-in prototype variants, the 
UK ROB-in RD and Saclay ROBIN, follow similar 
design approaches. Detector data enters (from one of 
many Read Out Drivers associated with a sub-detector) 
on a Read Out Line and is written into fast dual-pon 
memory by programmable logic, under the direction of 
buffer manager software running on a microprocessor. 

The microEnable-based design is completely realised 
in programmable logic (Xylinx FPGAs). It uses a 
circular buffer like the NIKHEF board, but there is no 
microprocessor and the buffer management is built 
directly into the firmware. 
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Fig 2: Saclay ROBIN 
The buffer manager software receives data request 

messages across a PCI interface and initiates DMAs of 

'I 

1 
I L 

4.1. Data Input 

Data is assumed to enter the buffers via a dedicated 
link from the detector readout components. The 

I 
I 



canonical speed for this link is 100 MB/s or 100 kHz of 
IKB event fragments. The implementation of this link is 
still under discussion, but most of the prototyping work 
assumes that it will be interfaced according to the S-Link 
specification[13], which provides a 32-bit-wide data 
connection together with control and status lines. 

The S-Link interface provides an error bit that can be 
read by the ROB-in and reported to the controlling 
infrastructure. It also carries an XON/XOFF protocol, 
which is used both for holding off data prior to 
initialisation and signaling when the buffer memory is 
nearly full. It is assumed that this handshake will be 
" ̀  . - along the readout chain in some way 
r ' -=\ a = f g the data flow out from the sub- 
detector. 

The detector data is fed into an input fife which 
accommodates the lack of synchronisation between the 
clock controlling the Read Out Link and the clock 
controlling the buffer memory. In general it can 
therefore be quite short, though in the Saclay design it is 
also necessary to buffer data in this info before it can be 
burst into the buffer memory. 

It is assumed that the beginning and end of each event 
§'§'a11arked in the data. The s-Lin; 

Qyiecial bit marling a word as a 
and the proposed Read Out Link format[l4] defines a 
pair of control word patterns (BOB and EOB) 
the beginning and end of a data block 

.e-Aus-sv*_E35- 

Actually only the end marker is strictly necessary, 
enabling the ROB-in hardware to know when to record 
the event details and to ready itself for the next 
fragment. 

t 

The buffer memory must take in data at an average 
rate of 100 MB/s i.e. one 32-bit word every 40 ns. 
However the memory must be a lot faster than that since 
it must also be read both by the buffer manager software 
(to pick up the event ids) and by the DMA engine 
responsible for outputting event fragments to Level-2 
and the Event Filter. The rates for these tasks are about 
400 KB/s and 10 MB/s respectively. 

In the ROB-in RD normal fast (10ns) asynchronous 
SRAM is used and advantage is taken of the difference 
in access rates required on the two ports with the output 
side being allowed up to one access in every four. 
Memory size is limited by the size of available SRAM 
chips with the current prototypes providing l MB total 
buffering. 

The Saclay ROBIN meanwhile uses SDRAM. This 
p e r n § @  .- r memory (8 MB) to be accommodated in 
the - . 

_. .ft board space though at the expense of 
increased logic complexity and with the constraint that 
the fastest access requires the use of burst mode. This in 
turn has resulted in the selection of a longer input fife, as 
noted above, and the restriction of fast access from the 
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Both the ROB-in RD and Saclay ROBIN make use of 
the Intel i960 family of I/O microprocessors. The Saclay 
ROBIN uses the more established JX variant, whilst the 
London-designed board incorporates the newer RD 
chips. These latter chips have the convenience of built-in 
PCI bridging, but introduce the complications of 
increased power dissipation and BGA mounting 
technology. The i960 family provides an appropriate 
balance between speed, power dissipation, size and 
complexity. 

As already noted, the NIKHEF design uses instead a 
SHARC DSP as its microprocessor. This also provides 
an appropriate balance of operating parameters, as well 
as the possibility of interconnection of ROB-ins via its 
proprietary communication links. 

The fourth prototype does away with a microprocessor 
altogether. This potentially increases the speed of buffer 
manager processing, though malting the coding less 
transparent and hence arguably less versatile. The trade- 
off between hardware and software implementations of 
buffer management in the ROB-in is an important open 
question. 

microprocessor side to read-only. Slow read and write 
word access is possible, however, from either local or 
host CPU. 

The microEnable uses standard asynchronous SRAM 
(0.5 - 2 MB), with dual-port capability being emulated in 
the FPGA by running the RAM-control task at twice the 
speed (40 MHz) of the I/O task. 

The CRUSH design makes use of ZBT (Zero Bus 
Turnaround) memory, which avoids the wait states 
necessary with fast synchronous SRAM when alternating 
between reading and writing. The buffer memory runs 
on an 80MHz clock, allowing one write from the S-Link 
interface every 25 ns (resulting in a maximum input 
bandwidth of 160 MB/s) plus one access from the 
SHARC. Due to pipeline delays in the FPGA and the 
properties of the bus protocol of the SHARC the 
bandwidth to/from the SPLARC is limited to 40 MB/s. 

By]j"er Management 

The heart of the ROB-in design is the buffer manager. 
It is this that allows the input data to be written at a 
continuously high rate whilst also allowing for the 
variable amount of time that an event fragment might 
need to remain in the buffer during Level-2 processing 
or whilst waiting to be requested by the Event Filter. 

In the page-managed schemes (ROB-in RD and 
Saclay ROBIN) all the pages can be used since the 
buffer manager notifies the hardware of all the free 
pages, and keeps track of their usage. The only 
inefficiency arises from the use of a fixed page size. This 
is no problem for those sub-detectors with fixed event 
fragment sizes (no zero-suppression), but in the case of 

4. 4. 

4.3. Microprocessor 
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SHARC links with a second PCI module containing a 
SI-LARC and a PCI interface. 

variable fragment sizes a compromise has to be 
established between minimising the number of pages 
used per event fragment and minimising the amount of 
wasted space within pages. 

An alternative buffer management scheme has been 
tested in the ROB-in RD in which the overhead 
associated with tracking several pages per event has 
been minimised by linking the pages of an event directly 
in the buffer memory. This means that small pages can 
be used without penalty and enables particularly 
efficient memory utilisation. 

Both the CRUSH and the microEnable designs 
incorporate a circular buffer, which simplifies the input 
task, since it needs only a cyclically repeating address 
counter. However it means that an event fragment can 
block the buffer if it needs to be retained for longer than 
the buffer cycle time. In the CRUSH design it is 
assumed that the SHARC microprocessor will transfer 
such an event fragment into the microprocessor's own 
heap memory. This then requires a management scheme 
for the fragments on the heap, but should be feasible if it 
is a relatively rare occurrence. In the microEnable 
prototype it is also planned to try a fife-style buffer as an 
alternative to the circular buffer. 

All the buffer management schemes need to maintain 
some sort of index table to associate an event ID with 
the address of its data fragment in buffer memory. In the 
i960-based designs the microprocessor reads which 
pages have been used by the hardware via a "used page 
fife" and is then able to read the event IDs directly from 
the buffer. In the SI-IARC-based design the hardware 
itself notes the IDs (along with a few other key data 
words) and passes these to the microprocessor together 
with the address window of the event fragment in the 
circular buffer. In the FPGA-based design the FPGA 
generates a simple lookup table as it reads event 
fragments into the circular buffer. 

4.6. Error-Handling 

4.5. PCI & Format 

The ROB-ins must be sensitive to several ldnds of 
errors in the data-stream, as well as being able to 
recognise errors reported by the link system itself. Event 
fragments might arrive without BOB or EOB markers 
and/or they may contain too much data. Level-2 or 
Event Filter requests may be received for data that has 
not yet arrived at the buffer and/or the data may never 
arrive. Data may also be corrupted in various ways. 
Whilst data corruption in general has to be left for 
further processing downstream, corruption of identifying 
information must be handled non-fatally at the ROB-in. 

In general situations in which data is not released 
quickly enough from the buffers are handled by the S- 
Link handshake mechanism. The ROB-in RD, for 
example, asserts XOFF whenever the number of free 
buffer pages drops below a certain level, or if the input 
fife fills too much. This means that extra-long event 
fragments, possibly caused by the absence of EOB 
markers, will not disrupt operation, they can be 
recognised by the buffer manager and immediately 
released. 

Requests for events not yet received can be handled 
by flagging the corresponding entry in the index table, so 
that the request can be satisfied once the data arrives, 

It is not yet clear whether fragments can be guaranteed 
to arrive in strict order of ID, but the buffer manager can 
easily check that they are not grossly out of sequence, or 
for duplicates, as part of the indexing process. 

The thorniest problems concern event data and 
requests that never match up. This begins to be a 
concern once the buffer manager needs to re-use an 
already occupied slot in its index table. It is easy to 
avoid the immediate problem by linked-list extensions to 
the simple lookup table, but it is not yet clear what 
should be provided in the way of timeouts from the point 
of view of overall system efficiency. 

4.7. Monitoring 
It is assumed that event fragments will be requested 

for monitoring purposes as well as for the mainstream 
DAQ dataflow. Such requests can simply be handled by 
the standard fragment-request mechanisms. What is not 
yet decided is the extent to which individual ROB-ins 
will need to select and/or store events of different types, 
this could have a major impact on future ROB-in design. 

A11 four prototypes use PCI for communications other 
than the front-end data input. The PCI bus provides a 
convenient common connection standard for prototyping 
work, as well as constituting a real technology option for 
the final system, since the total bandwidth required for a 
operation of a single channel ROB-in is about 15 MB/s, 
which is well within the PCI spec. 

Both the i960 modules come in PMC format, enabling 
them to be plugged directly onto a motherboard via the 
PCI bus. The possibility then exists of constructing a 
complete ROB from e.g. a VME single board processor 
as a ROB-controller, with a pair of PMC daughter 
boards, acting as ROB-in and ROB-out respectively. 

The microEnable module and an alterative version of 
the ROB-in RD come in a standard PCI format suitable 
for plugging directly into a PCI slot in a standard PC, 
whilst the CRUSH module communicates via its 

5. OPERATION 
The i960-based prototypes boot from ROM, but there 

is enough on-chip memory for the main buffer manager 
code to mn from cache, with consequent speed 
improvements. Code has also been downloaded across 
PCI, which is useful for testing and might be convenient 
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Early results from simulation environments and 
measurements of loop times suggest that all the 
prototypes are fundamentally capable of coping with the 
specified 100 Id-Iz event rate, and can comfortably 
provide the required output bandwidth. 

for online program changes. JTAG is used extensively 
for downloading both programmable logic and 
microprocessors and also as a route for emulator-based 
debugging of the microprocessors. 

The SHARC prototype is booted across a SHARC link 
by the SHARC on its associated PCI interface board, 
itself booted via PCI. The SHARC on-chip memory has 
room for the buffer manager code, index table and 
overflow buffer, as well as a library supporting terminal 
and disk I/O via the host pc. 

Testing is carried out both by running special 
programs in place of the regular buffer manager and by 
connecting to auxiliary test facilities, such as the 
SLIDAS S-Link data source. The designs also 
incorporate mechanisms for injecting data directly into 
the front-end of the ROB-in under host control. 

7. FUTURE DEVELOPMENT 

SOFTWARE 

The main focus of ROB-related work in the Level-2 
Pilot Project will be to analyse the options for a ROB 
Complex, defined to be a generalised buffering system 
incorporating one or more front-end links and network 
connections. This will involve exploration of hardware 
possibilities and constraints as well as extrapolation of 
technology and performance relevant to the Level-2 
trigger, preparatory to a final design programme starting 
in 2000. At the same time the DAQ Prototype-1 
p r o g r a e  will explore the integration of ROB 
components into the full DAQ system. 

As well as using the current ROB-ins in Level-2 
vertical slice demonstrators it is planned to configure 
several test setups, each containing a number of the 
current prototype ROB-ins, to measure the performance 
of different architectural organisations for a ROB 
Complex. It is also planned to pursue paper designs for 
possible multi-ROB Complexes, which will explore 
possibilities for tighter coupling and closer packing of 
ROB components. 

The buffer manager software on the microprocessors 
is written in C for transparency and possible portability. 
Earlier experience with the "T2B" buffer shows that C 
code can achieve about half the speed of assembler in 
this land of application. 

Since the buffer manager's role is essentially to 
service its input sources, with no significant background 
tasks, it has generally been implemented as a large 
polling loop, rather than employing interrupts. 
Comparative timing measurements justify this design 
choice. Efficiency has been gained, however, by 
servicing a group of inputs from each source at a time. 

The Xylinx chip on the microEnable board is coded 
using CI-IDL, a C-like high-level language developed for 
easy programming of FPGAs. 

At the moment each prototype uses its own 
proprietary programs, but the aim is to define a set of 
common APIs for future prototyping work which could 
eventually evolve into the production software. Work 
has begun on this with the first iteration of an API for 
the operation of a ROB w W f  the Level-2 Reference 
Software[l5] framework. 

As well as the buffer manager code itself attention 
must also be paid to the interaction between the ROB-in 
and the rest of the world. Currently APIs have been 
defined[l6] in the context of the DAQ Prototype-l 
covering communication between a ROB-in and the rest 
of the DAQ front-end and these have now been 
implemented for the ROB-in RD. 
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The designs described here are intended primarily for 
prototyping experiments to be conducted over the next 
eighteen months, essentially the Level-2 Pilot Project 
and the DAQ Prototype-1. Versions now exist of all four 
boards, though some hardware debugging and 
refinement remains to be completed. 


