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“ORE ARCHITECTURE AND
THE PREFPIX2 CHIP

ARCHITECTURE AND SIMULATIONS

1 INTRODUCTION

px’t:’??i‘?{“} is & developmental step in the evolution of the final BTeV pixel architecture. Itisa

smaller version of a fully functional FPIX Core. 1015 a necessary step between FPIX1 and FPIX2
‘mostly for monetary reaschs. Both FPIX1:and FPIX2 Tiwst be bump bonded to 18x160 arrays of

ATLAS pixel detectors. Therefore, since éach pixel 18 50 itm by 400w, each FPIX chip cannot

possibly be simaller than 7.2 mur by 8 fm. -Since such-alarge chipis expensive, the collaborators
are -only being conservative by producing smaller wmx}m of full FPIX chips when testing
differsnit z{imm

- Most impoitantly, preFPIX2 continiues a4 progression towards smaller and smaller device
geometries, FPIXO was developed using Hewlert-Packard’s 0.8um CMOS protess. FPIX] was

developed using Hewlett-Packard’s 0.5(im CMOS process. FPIX2will be 'déve?@p@:(i in IBM’s
0.25 {im process or TSMCs 0.25 pm process or in both processes. The major objectives of the
development of preFPIX2 are Yo test our ability to successfully develop deup submicron 1C chips

and to test the C&pdbﬁltiﬁ% of both the TSMC and IBM processés. The goal of reducing the

prodess geomelry is todake advantage of the }}whar and higher radiation tolerances they provide

- [11. To furthier the soal of high radiation toletance, F?’EL‘U will b developed using radiation
tolerant design: !&ihmq&i{% if pm‘tim}gi enclosed transistors [2]. preFPIXZ s the fsr%t functional
‘chip éev&lugzﬁd at Fermitlaby'to use such technigues.

Finally, mePEXE ‘has been devdoped 10 test 4 number of & mmhsmp miodifications to the
afiginal read-out control dewziﬁped in FPIX]. The FPIX! readout architecture, also calléd the

--C@mmmd Driven Architectare, his beén ‘highly successful in all tests, -However, it was decided
that 1t could bé dmproved substantially and q;mpi;md dmmaﬂmﬂy without CE‘M%’WH‘}W it
fundamentally.

“The purpose ‘of this paper is to deseribe in detail this new version of the Command Driven

Architecture and to-describe 4 concept that is somewhat new 1o FPIX = the division of lbor
- between the C{m and the Periphery.



7 A SHORT NOTE ON TERMINOLOGY

Tt can bé somewhat confusing talking about Pixels because so many words mean the. saine
‘thing and because, very often, the same word is used fo mdan inany things. The following is a Hist
of words and thefn* meanings as they will be used in this paper.

1. Pikel Detector . +  The actual semiconductor device through which a high-
energy particle will pass and leave an electrical trace.

2. Pixel Cell - The VLSI circuit that deals with the electrical signals of the
Pixel Detector and, among other things, converts those: signals into usable digital data
(ie. converts it data to mwz‘d@d data).

3. Pixel Cell Array - The arvay of Pixel Cells viewed us a single entity

4. Pixel Detector Array -  The array of Pixel Ditectors viewed as a single entity

5. HitData - The electrical gignal of a Pixel Detector or the electrical
signals Pixel Detector Arviy. Hit data can be considered the current state of the Pixel
'Df.,{efcm Array. Hit data changes with each bearq cross over.

6. Recorded Data - The result of the conversion of Hit Data into usable digital
data that 18 it part stored in the Pixel.Cell Array and in part stored in the End-of-column
Logic. Recorded dataremaing stored uniil ivis read out.

7. Outpat Data - Also called Core Dutput Datd. It is the data stream ouipul

from the Core.

Most-of the confusion cecurs with the overase of the word. “dat”, This s why it is important to

be explicit with the three: types-of data in the FPIX Core. Hit datd is produced by the pixel

detector array. It is an-ever-changing snap ehag:» of the interaction chamber, Hit data i converted
fito recorded duta By the pixel cell array. Recorded data is held mdefinitelv. Itis converted to
outputdata by the combined effoits of the Pixel Cell, Bnd-of:column Logic and the Core Logic.
As recorded data is convertéd into ouwtput data it is erased from the. pa;w? cell array. The pixel
detevtor array supplies or hashit-data. The pixel cell array has recorded data: The Core streams
output data. I the FPIX Core Has done itsjob ;:smpesly the original hit data cah be reconstricted
from the mztput datal In i:aw: that is the ultimate purpose of the FPIX Core.



3 CORE CELLS AND PERIPHERY CELLS

HaveData >
soralata

wm{% . ' o B Output to DAQ

Pixel Detectors] N g >
”.. .. = Core w . Periphery L | Input from DAQ
 SendData <

Read clock

BCO clock|

FPIX Architecture

Figurg 40 Cove and Peviphery Cells

Starting with preFPIX2, the FPIX sichitecture should be viewed as two black boxes: the Core
- and the Periphery (See Figure 1). The Core is confected to the pixel detector artay and 1o the
P@atg}heﬁ “The Periphery is connected to the Core and to the DA systen. The job of the Core
8o accept Hit ddta from the pixel detector aftay, convert it into-the Core output data.Stream and
present that stredin. tothe Pediphery in a consistent fashion. The job of the Periphery is to take
‘that predmmble ouiput data stream and Convert i into a form acwpmbl; by whatever DAQ
systeri s connected to the chip. The purpose of this division of 1abor is to allow Core and
Periphery arichitecturss (o develop with some independence. It ensures that changes o the DAGQ
system do not influece the way pixel detector arrays are handled and it ensures “that changes in
thé way prxel detector arrays are handled do not influence the way the DAQ system g vazhars data.
This allows the pm%) e of pixel readout o be optimized in Imiatscm from the myriad pfobimm of
output-data ofganization. Some users might want triggered operation whereas others might want
non-titgeered: operation.. Some might wail ixma»méere& output whereas others might not care.

Some might want to row-or colunin- ordered output, etc. Allordering and/or triggering as well as
Afy r&qxz;r&x;zuni% of Chip-to-DAG comminication should be handled in the. ?mphmw The Core
would rémain untotched by these requirements.

To dccomplish this division of labor, a consistent interface between the Core and Periphery
has been defined (See Figure 1). The Periphery provides the Core with the Beami Cross Over
Clock {BCO ¢lock) dnd the Read Clock which establish the timing for hit-datd and putput data,
respectively, Tnorder to reduces sources of ertor, the design of the Core shonld be mah that these
twr clocks are not reguired to b relaed in cither fmqu»m_y or synchronicity. The Periphery

also provides the Core with two signals, SendData and ‘RejectHits.  RejectHits controls the
conversion 'of hit data into recorded data that is er&rmed by the pmui cetlarray. I3 is active,
the conversion 1s am;}nm}&,ﬁ and new hit data 15 ignored,  IF it i inactive, the conversion i8
entabled, and new hit data 1§ recorded. SendData controls the conveérsion of recorded data into
“output put data that is performed by the End-of<colimn Logic and the Care Logic. Ifit is active
the conversion is enabled and recorded dara is output from the Core. I it in ihactive, the




coftversion is. bubpendeci and recorded datais hield i in the pixel cell wrray. The two controls are
independent as shown i Table 1.

Table {: Meaning of Send Data énd Reject Hirs

State  Meaning Action '

00 Send Datainactive  No recorded data is sent. Core will actéptnew hit data. After
Reject Hits inactive.  an infiite amount of time, the entiré pixel cell array will be full
of recorded data.

01 Send Data inactive  Norecorded dam is sent. No new hit data is accepted. Thie state

Reject Hits active of the Core will not change one or ‘both of these signals s
changed.
16 Send Data active Recorded datais sent. Core ’wzﬂ accept new hit data. Normal
Reject Hits inactive  operational miside..
11 Send Data active: Recorded data is sent. ‘Core will not accept pew hit data.  Adter
Reject Hits active @ short time, the Core will be empty of recorded data.

The Core provides the Periphery with the HaveData signal. 'When HaveData is active, the
‘Core -is streaming -output data. "When inactive, the Core s NOT . streaming oufput data. It is
‘possible for Hﬁzvﬁ{)am to be indctive in spite of the fact that there is recorded data somewhere in
the pmﬁ*i cell array; This would depennd on timing. "HaveData is an indicator that the Core is
streaming outpat data. Jiis not an indieator of the presence of recorded datd in the pixel cell array
or sz {hu pmafmw @f hz% dzi’i& in ﬂ’it‘: pm&i d&iecmr arm\p wrei}gm is the Guipm {iam 0‘? t};e {‘f}m
:wmrd c,{mtams the; full ﬁCO number {mm smmp) of” the gvent, the fizil celunm numb@r thc fu!i
roW addréss and the full- maﬁnztudt of the hit. Any concatenation or separation of output data
words should be handled in ti}ﬁ_%’mphery.

The amount of {az,:tput data mianipulation and organization that occurs in the Periphery can
vary over'a very wide spectrum. 1t has, i fact, no logical limit. Its only practical Hmitation is
that, typically, pixel projects Hke to limit. the amount of ahxp area not dedicated to the pixel cell
array -(the detection area). The Periphety could contain FIFOs, serializers, Content-Addressable
~Memory, ete. It {:mzid wu} be empty pmmdeé that the DAQ systerm can be structured 1o provide
the signals. necessary to run the Cofe.  This last fact is demonstrated by preFPIX2 tself,
preFPIX2 is an FPIX Core with d small (18x32) pixel cell arfay and no Periphery.
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Figure 2:0rgainization of a 4 x 4 Core

4 CORE ORGANIZATION

The organization «of the FPIX Core is very similar to the organization of FPIX1 (See
Figure 2). '"§ 1e array of pm% cell§ controls the array of pixél detectors (one cell to one detector).
The pixel cells must be, of course, the same physical size 48 the pixel detectors. The cells are
“aware” of hit data coming from the detectors. They are controlied by commands and tokens
coming from the End-of-column Logic celiss Most zmparwmiy the pixel cells are not “aware” of
time at all. They livein a wrmaiiy mymhmmm world,  Bach ¢éll can veceive hit data from its
pixel detector. If commanded to do so, it records (stores) that hit data. Finally, if commanded to
do o, the cell will either cutput o teset its recorded datal

Pixel cells are organized mto {:s')!hz;z'ms, 'f;?_éi{?h of which is controlled by an End-of-column
Logic. The End-of-column Logic is “aware” of the pm%ezéce of récorded data somewhere in the
column. Tt also controls the commands and tokens sent to the pixel cells in its column, though it
is viot aware which pixels-are obeying v@imh commands. The End-of-cohnmn Logic is aware of
time through the BCO clock and. Read ¢lock as well as the BCO number provided by the Core
Logic. Most importantly, the End-of-column Logic knows whether it is TalKing or Silént. Ifitis
Silent, it Kniows if it has Nothing to Say, if it has Something to-Say (the next time it gets the
token) or if it-has Finished Talking.

Finally, the Core Logic controls access to the output data bus by cortrolling the so-called

‘Horizontal Token. ‘Similar to the Endeof-columii Logic, the Core Logic knows whether it is
-Ta&mw o Si}ent f&i starm;:s, the Cﬁr@ Lﬂom is reset to ihe Sziem state. When Ehm‘e &% ﬁa&a jiv %:’n:

.'mi:;atm zhe Herrmma _ Takm i;ir_ﬁp Wheﬁ thu Hm amntal Tﬂk@l_’i _maka‘; n, ot (I}f ﬁhe e:sghu side of



the columiins, the Core Logic makes the: transition back to the Silent state. T“he Core Lcw;c:
provides the BCO nurnber toall wi‘ﬁ;mm m}d it cmmms some dingnostic logicas well,

'Xt'is”vaimpartani to realize ﬁmt n'o'thmg in: th%fﬁ P?EX Core is aware of a chip token. The
chip token was used it FPIX T to indicate tooan FPIX 1 chip that if had the right to output-data-onto
the external databus, The FPIX Core abways thinks it has the right fo output data provided that
SendData 1§ active. Any chip-to- chip arbitiation for an external bus would be handied by the
Periphery.



5 THE PIXEL CELL
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5.1 SIGNALS

The Kill and Inject Logic Signals

KI_RESET

KILL.CLK
KILL_CLKB

KILL_SHIN

KILL_SHOUT

INI_CLK
INI_CLKB

INJ_SHIN
INJ_SHOUT
Command Signa%s.
COMA<L:0>
COMB<«1:0>
COMC<1:0>

COMD«<1:0>

Input. Resets the kill and inject logic so that the cell is not killed and
not injected

Input. Advances/clocks the kill shift register

Input. Shift input for the kill shift register

Output. Shift output for the kill shift register

“Input. Advances/clocks the inject shift register

" Triput. Shift input for the inject shift register

_“Output. Shift output for the inject shift register

- Anput. Command Pair

Input. Command Pair

: if{hput. Command Pair

Input. Command Pair

Token and Control Sigrial

ACCEPT

COLTOKENIN

RFASTNOR

HFASTNOR-

Input. Controls the Hit Data to Recorded Data conversion. If
ACCEPT=1, the pixel cell accepts new hits. If ACCEPT=0 the pixel

—¢ell ignores new hits

Tnput. The Column Token Input. I COLTOKENIN=] and the pixel

‘needs the token, then on the next rising edge of the COLREADCLK,

the pixel will output its data. If COLTOKENIN=0, then the pixel
must wait.

Output. Will be pulled low when the pixel needs to output data. The
signal is always in response to an Output Command from the End-of-
column Logic

Output. Will be pulled low when the pixel cell has received a hit (has

converted hit data into recorded data). The signal is always in
response to hit data from a-detecior cell while ACCEPT=1 and the
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20

21

20

21

22

23

24

26

27

COLTOKENGUT

COLREADCLK

COLREADCLKB

DATARESET

READRESET

Data Signals
PIXDATA<T:0>
PIXDATA<IO:8>

Bias Signals.

VTH<T:0>

VREF

VEB2

VEBP

VBBP2

VDIFFB
VEF

VBBNL

End-of-column Logic is driving a Listen Command.

.Outpat If the pixel cell does not need to output its data,
COLTOKENOUT=COLTOKENIN. If the pixel-does need to -output

data, then COLTOKENOUT=0 until the pixel cell gets control of the
bus.

Input. Clock strobe for output data

Input. Driven from the main Reset signal pad. When active, any
recorded data is wiped from the pixel.

Input. Equal to the main Reset signal pad OR-ed with the End-of-

column Logic entering the Silent state. Guaranteed reset of pixels
that have been outputting.

Output. Row address.

Output. Pixel Cell ADC output

Input. Threshold control input (inclades main threshold and ADC

thresholds).

Input. Reference voltage for second stage amplifier (threshold
voltages are relative to VREF)

Input. Second stage feedback bias voltage (can be connected to
VREF)

Input. Input current. Bias current for the front end preamp.

Input. Bias carrent for the second stage. Can be connected to VBBP
provided that the current is doubled,

Input. Bias current for the leakage compensation ampiifier.

Inpat. Bias current controlling the feedback of the preamplifier

Input. Bias current for the preamplifier

11
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53 PIEL CELL DIGITAL CONTROL

The troe complexity of the pixel cell lies in the Tact that it is rigidly constrained to the size of
the: pixel detector it controls. ~From an algorithmic perspective, it is actually guite simple.
Figure 4 shows the orgamization of the Digital Control section of the pixel cell. In the drawing,
'the analog front end i€ to the far lefi and owside of the graphic. The Kill and Inject Logic is one
segment of a pair of shift registers that wind throtghout the pixel cell array. The kill %iﬁﬂé}ﬂ closes
off the input of the analog front end. The inject s'i-gna} enables & didgnosti¢ input c}f"thﬁ analog
front end. The ADC Encoder Logic converts the seven-hit thermometer code output of the front
end's anatag-to-digital converter into a three-bit binary ¢code. The ADC Output Logic drives the
three ADC bits down the colimn.. The Command Logic interprets the Commands and control
signals coming from the End-of-cotuinm Logic to the pixel. Tt controls the conversion of hit data
into recorded date. It also controls the resetting of the pixel ¢eil following a read-out or a chip-
wide reset. The Token Logic controls the access 10 the column bus by grabbing or passing a
column token. Finally, the Address is the unigue positional data of the pixel cell that is driven to
the End-of-column Logic whenever the pixel cell ontputs its recorded data.

531 KILLAND INJECT LOGIC

Cné% §}a ;s@dws{iuaﬁy mjmmbi e and. kiﬁ&t‘f}b Te} be m;{‘:cmb}c means tiﬁm{ a test ;mfs& can m;ea{ a
charge intothe pixel cell. Thisallows each individual plxel 1o be tested ész’ecﬂy and controllably.
To bef; killable' means that a pixeleell can be forced to ignore hit data from its pixel detsctor and
from sest pulses. A killed pixel cell masks hit-data from the digital sections .of the pixel and,
cotisequently, prevents'the hit data- from being recorded.. This zﬂlows noisy pixels to be shut off
by the user. This is different from the Regeutﬁm signal that the Periphery provides the Core.
First, killing a pixel affects only that pixel whereas activating the RejectHits signal affects the
entire pixel cell array. Second, killing a pixel cell is done in th{, analog front end {}f the {31}\{,3 cell
whereas activating the RejectHits signal instructs the digital back ends of all pixel cells in the
pixel cell @rray toignore incoming fits.

The logic for the Kill and Inject signals-is simplicity itself. From the perspective of a singls
pixel cell, the kill state (I=Killed, O=not killed) is stored in one flip-flop and the inject state
{I=injectable, O=not injectable) is stored on a second fhip-flop. The outputs of each flip-fop are
passed o the analog front end of the pixel cell where they performthe kill and injéect functions.
There are independent clock signals foredch of the two Hip-flops; but they share a common reset
Signal. This is shown in Piguré'd on the lefi-hand side.

i3
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Figure 4: Kitl.and Inject Logic in preFPIX2(within one pixel cell {left} and ina 4x4 pixel cell array
(right})

From the perspective of the entire pixel cell array, the Kill and Iject logic resembles two
pamﬁe% shift registers. This is shown in Figure 4 on the ght hand side. ThL outputs-of each flip-
flop in a-particular pixel cell are the inputs to the kill and inject flip-flops of the next pixel cell.
The separate clocks allow . the two scan paths to be operated independently. This is an
improvement over FPIX1." The common reset is also @n improvement over FPIX1, which
required the user 1o scan in the kill and - mjeat stites, even if the user required no kills and no
m}wzs In preFPIX2 and beyond, 4 programming reset will reset all pixed cells to "not killed™ and

“not injected™. :

The kill and inject logic has no effect on the digital back-end of the pixel cell.

532 CADCENCODER LOGIC

The ADC Encoder accepts as its inputs the 7-bit wide thermometer-code that is output by the
flash ADC located in the analog front end of the pixel cell. The ADC Encoder geperates a 3-bit
binary output from the input as shown in Table 2

Table 2: ADC Thermemeter Code Output vs. Input

Input .. o Cutpst
T, T, T, 1. T, T, T, B, B, B,
B S T T e
o 6 0 6 o 0o 1 o 0 1
¢ 0o 0 6 0 1 1 o 1 0
o o o o 1 1 1 0 1 1
0o o 0 1 1 1 1 i 0 0
o o 1 1 1 1 1 P01
o 1 1 1 1 1 1 S
1 1 1 1 1 1 1 111

There dre @ number of ways to mplement this ransformation. The m'nmma} method reguires
82 transistors. It is a nandnand CMOS nétwork the outputs of which come from 4-input nand.



gates. It is an irregular design, which ‘would have réquired a Targe amount of routing and,
conseguently, a-large amount of space. For these réasons, this method was rejected.

The ¢hosen method for the transformation is pass<rangistor logie, which, while requiring 100
transistors 1o tplément, s extremely regularin its layout and can be fabricated in an area 35um
by 50pm. This design style is essentially an array of CMOS 2-to-] multiplexors. Bach of the
seven input bits: gonitrols thice muliiplexors, one per output bit. Depending on the state of éach
input bit, the multipléxors choose to either pass the: cutput of the previous midtiplexor or drive a
new oaipui. Algebraically, thisis shown as:

Po=0
Pusi=Ti Bt To- P Equation 1
ut =

whire Ta is each of the seven thermometer-code input bits, Bn is the binary number to drive if
Tn=1, and Pnis the binary output.of the previous m@zitxpiemz to be passed 1f Ton=0. To achicvea
ihem’mm@er code to binary transformation, the vafious Bi for the three output bits are defined as
shiown in Table 3

Table 3

TBi2 Bl Bit0

.

B, 0 o i
B, 0 1 0
B, O 1 i
B, 1 0 0
B, 1 0 1
B, 1 1 0
B t 1 i

The schematic that implements this transformation is shown in Figure 5. The layoutis shown
in Fignre 6. This-trplementation method is slower than the full CMOS version, but speed is not
an important hopitation for theé ADC Bocoder: The End-oftcolumn Logie guarantess that there
will be a minimom of one beam crossing period {132ng) between the arrival of a hat and the
request £for outplit. The ‘pass-transistor logic implemeéntation: 18 easily capable of settling to s
final value in that length of time. Figure 7 ¢learly shows that not only does the A}f}{f Encoder
accurately make the transformation, but it also does itin Jess than Tns.

15



L
x|

Figure 5: The schematic for the Pixel ADC Encoder. The oval surrounds a single 4-transistor CMOS
multiplexor.. The ercoder is-obviousty an grray of these devicey, Their Teftinpuls are the outpuls of

the previous imltiplexors, and thetr right inputsare ¢ither tied to power or ground, reflecting the Bn

Audbers shows i Tabife 3
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Figure 6; The Pixel ADC Encoder Layout. The oval surrounds a single 4-transistor CMOS
wattiplexar.

e
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Figure 7: ELDO simulation-of the ADC Encode. The upper seven signals [V(T6)-V(T0)] aré the
incomiig therimonmerer code which changés every 20ns. Thie next three [V(B2)-VIBO} are the
encoded putpuis. The final signal [ Encoded | shows the hexidecimal output of the encoder.

17
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Figure 8: (A) The old (FPIX1) way of driving ADC outputs (B) The new (FPIX2) way of driving ADC
Quiputs
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533 ADCOUTPUTLOGIC

In previcus versions of FPIX, thers was no encodet. Instead. the cutputs of three comparator
latches were driven-directly by CMOS ditvers. CMOS switches controlled by the pixel GetBus
signal either connected the drivers to or tri-stated the drivers from the three-column-wide ottput

dines: This ig shown in Figure 8(A).

There are several tmproverients that can be made Yo this approach. First, the CMOS drivers
requirs two fiiverting sthges o drive the original signal. Second, the CMOS switches must be
wiade very large to minimize the resistance on the output lines, These large CMOS switches also
serve 1o load the GetBus signal, which contiols the rélease of both pixel address data-and pixel
ADC data.

In preFPIX2; these two fometiony (driving and wri-statingy are combined into two transistors,
one pull-up and one pull-down, At any given time, these two transistors either will both be off or
only one will belon. “If they are both off, the ADC Output is tri-statéd. 1f oné or the dther s on,
the output fine Wwill be pulled high (f the encoded ADC bit is a-one or low (if the encoded ADC
bit is azero}. Inthiscase, the speed of the GetBus signal is fmiproved because it is-only loaded by
Cgoninnmum size CVOS gate: This is showniin Figure 8(B).



‘The logic inside the box in Figare 8(B} is vety straightforward. If GetBus is a zero, then o=0
and B=1. 10 GetBus is wone and ADC Bit is a zéro, then o=1 and B=1. Jf GetBus is 2 one and
ADC Bitis a one, theno=0-and B=0. This yvields the following equations for e and B

e rd
o =\ADChit + GetBus)

, Equation 2
B ={ADChit » GeiBus)

These equations-can be easily implemented ‘with eight minimum sized transistors. Al three
ADC Output drivers with thelr suppott logic can be faid out In an area 19um by 50pm. this s
shown in

B

g

i o e

Figare 9: The ADC Outpw DriverLayout. The three ovals cover (clockwise from the:lower right) the
twa drive ransistors, the NOR gate for gencrating & and the NAND gate for genevating 5. These
three clreuins are repeatedd thige fimes, onte for each ADC bir,
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534  COMMAND LOGIC

In the interest -of keeping this section self-contained, some of this information may be a
répetifion of information given elsewhere. First; the Command Logic of a pixel cell is either Full
or Empty, meaning it'is either holding recorded data from a previous hit or it is not. Second, the
Command Logic in €ach pixel cell accepts as input four pairs of Command Lines from the End-
of-columin Logic. Each pair.of Command Lines is used to transinit the following commands:

1. Idie 00y
2. Listen (11)
3. OQOutput (10)

4,  Reset (61

=do nothing

—listen for incoming hits

“output data (address and ADC) when the @ixe‘i cell g‘été_'_the bus

- 85et the Cominand Logic-of a pixel ceil back to Empty and reset the
ADE data '

Other Command Logic input signals are;

I, AnaNewHit

2. Accept’

3. GetBus (gbus)

— from the analog front-end of the pixel cell; the actual “new hit” signal

- from the End-of-column Logic; If high (One), accept new data; If low
(Zero), reject new data,

— froni the Token Control Logic; indicates whether or not the pixel cell
controls the output bus

The Command Logic outpuit signals are:

1. MNeedToken
2.  HFastOR

3. RFa‘stOR B

5.3.4.1 Algorithm -

-2 $ignal to the Token Control Logic that pixel cell nead:s.the'output bus;
only happens when the Command Logic is Full and has been ordered to
Cuiput,

~a signal to the End-of-column Logic that the pixel cell has received new
hit data and converted it to recorded data; only happens when an End-of-
colurmm register is issuing a Listen

— a signal to the End-of-column Logic that the pixel needs to the output

‘bus; only happens when the Command Logic is Full and has been ordered

to Output.

1} While Empty, the :C.om'mand Logic observes all four command lines with equal priority and
ignores all commands éxcept the Listen Command.

2) When AnaNewHit arrives from the analog front end:

" The Accept -signzi}.is derived from the RejectHits input to the Core.



a)

b)

<)

I the Accept signal-is low (Zero), the new hit data is ignored and discarded. Nothing
happens.

if the Accept signal is high {One) and the pixel cell is Full, the new hit data is ignored
and discarded. Nothing happens.

If the Accept signal is high (One) and the pixel cell is Empty:

i} If no Command Lines are ordering the pixel to “Listen”, the pixel cell waits until one
of the Commands Lines orders it to “Listen”. The pixel cell will wait indefinitely for
this to-happen. It is the responsibility of the End-of-column Logic to make sure the
pixel cell does not wait forever.,

ii} If a pair of Command Lines is ordering the pixel to Listen:

(1} the pixel cell will latch the hit data, thereby completing the transformation of hit
data to recorded data

(2) The pixel cell will focus its attention onto the pair of Command Lines that had
issued the Listen Command when the hit data arrived. Until the pixel cell is
read-out or resét'by commands from that particular pair of Command Lines, the
pixel cell will ignore commands from all other Command Lines. This is called
associating the pixel with an Erid-of-column Register.

{3) The pixel cell will consider itself Full until it is read-out or reset.

(4) The pixel cell will alert the End-of-column Logic of the presence of a hit by
pulling low the HFastOR signal. It will hold this signal Jow until its associated
End-of-column Register acknowledges the hit by withdrawing the Listen
Command.

3) ‘While Full (not Empty):

ay

b)

)

d)

Commands issued on unassociated Command Lines are ignored.

If the associated Command Lines issue an Idle Command, the pixel cell does nothing,
and the recorded data remains recorded

If the associated Command Lines issue a Listen Command, the pixel cell will pull the
HFastOR signal low until the Listen Command is withdrawn. Recorded data remains
unchanged. (This situation should never happen under ordinary operation. This condition
was added to the algorithm to increase the Single Event Effect tolerance of FPIX2.)

If the associated Command Lines issue a Reset Command

1) The pixel cell will reset itself

i) The Full pixel cell will become Empty.

ti1) The recorded data will be erased

21



v} Areset will be issued by the Command Liogic to the analog front end of the pixel cell
for the purpose of resetting the ADC latcheés:

¢) If the associated Comimand Lines issue an Output Command

iy The pixel cell acknowledges the command by pulling the RFastOR low. The pixel
cell will-remain in this state for as long as the Output Command is being issued to the
Full pixel cell.

1) The Command Logic signals the Token Control Logic via the NeedToken signal that
it needs the output bus. The pixel cell will remiain in this state for as long as the
Output Commmand is being issued to the Full pixel cell.

11} Eventually, the Token Control Logic will signal the Command Logic that the pixel
cell has control of the output bus (via the GetBus signal).

(1) The GetBus signal will reset the Command Logic (see 3.d.i through 3.d.iii
above).

(2) The pixel cell will release the RFastOR signal.

(3) The next read clock cycle, a signal will be released by the Command Logic to
reset the analog front end of the pixel cell.

The true difficulty -in the above algorithm is that all of this functionality had to be
implemented in -dn-area 50ium by 75pm. The design is best understood if it is broken down into
five subsections: the Front Command Cells, the Hit Conditioners, the Reset Logic, the Passed
Conimand Cells, and the FastOR Logic.

5.3.4.2 The Front Commuand Cells

Figure 10: A Schematic of the Front Command Cell

There are four Front Command Cells in each pixel cell. One Front Command Cell connects
to-each pair of Command Lines. These four separate Front Command Célls allow an Empty pixel
cell to observe all four End-of-column Registers with .equal priority as required in the above
Algorithm, Part 1.



Each Front Command Cell contains the logic to decode the Listen Command (and only the
Listen Command).. In fact, the code for the Listen Command (i}) was chosen to simplify the
Front Command Cell because with this code, a single nand gate is-all that is necessary to decode
the command.

All Front Command Cells are connected to the InterestingHit signal, which is a conditioned
version of the hit signal output by the analog front end of the pixel cell. More will be said about
this signal later. For now, it is enough to know that it activates when there is new hit data for this
pixel cell. Itis active low.

Each Front Command Cell contains a single SR flip-flop. This flip-flop is actually where
recorded data is stored. I a pair of Command Lines connected to a Front Command Cell is
issuing the Listen Command and Interesiing}iit goes active, then the SR flip- fiop in that Front
Command Cell'will be set and the pixel cell is now Full. The flip-flop will remain set until the
pixel cell is reset or until the pixel cell is read out. The act of setting one of these flip-flops is
actually the transformation of hit data to recorded data. The complementary outputs of this SR
tlip-flop are called Hit and NoHit. They have two parposes:

I. Within each Front Command Cell, the Hit and NoHit signals are used to open or close
two CMOS switches (see Figure 10). The-inputs to these switches are the two Command
Line inputs to the Front Command Cell. The outputs of these two switches are the two
PassCmd signais. If a Front Command Cell has recorded a hit in its SR flip-flep, then the
two Command Lines are passed to the PassCrad signals. If a Front Command Cell does
not have a recorded hit in its SR flip-flop, then the two Command Lines are blocked from
the PassCmd signals. This is how the Command Logic associates itself with only one
End-of-column register. When the pixel cell is Empty, each of the four Front Command
Cells are “Jooking™ at their respective End-of-column register. The Front Command
Cells can only recognize the Listen Command. Any End-of-colunin register issuing Idle,
Output-or Reset is ignored. At any given time, only one of the End-of-column registers
will be issuing a Listen command. When a hit arrives, the SR flip-flop in the Front
Comimand CeH connected to that pair of Command Lines will be set, and those
Command Lines will be passed to the rest of the pixel cell where logic exists to decode
other commands. " Other Command Lines will be blocked from the rest of the pixel cell
and their commands ignored. As shall be shown later, InterestingHit will be prevented
from going active as long as the pixel cell is Fall.

2. External to the Front Command Cells, all of the NoHit signals are ORed together to
produce a signali that is high (One) when the pixel cell is Empty and low (Zero) when any
Front Command Cell SR {flip-flops are set. This signal is called PreviousHitb.



5.3.4.3 The Hit Conditioners
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Figure 11: The Command Logic Hit Conditioner. “msp_dff_ar” is an asynchronously rescttable
positive edged, D flip-flop.

The job of the Hit Conditioner is to block unwanted hits while passing the desired ones as
quickly as possible. The Hit Conditioner is shown in Figure 11.

The Accept signal is a One if the End-of-coliran Logic wishes the pixel cells in its column to
accept new hits. It is a Zero otherwise. AnaNewHit is the discriminator output of the analog
front end of the pixel cell, which goes high when there 1s a new hit. The positive edge of
AnaNewHit clocks -an edge-triggered D ﬂ1p flop (msp_dff_ar). If Accept is a One, then the
output of the fhip-lop wﬂl be a One indicating a new hit. If Accept is a Zero, then the output of
the flip-flop will be {remain} a Zero, and the Command Logic will never know that a hit occurred.
It s possible to condition AnaNewHit: with a simple AND gate that combines Accept and
AnaNewHit. However, the output of that AND gate would depend on the duration of the
AnaNewHit sigrial, which itself is dépendent on bias settings and radiation damage. Hits that
occurred ‘while Accept was a Zero might appear as hits that suddenly occurred as soon as the
Accept signal was restored to a One. The flip-flop prevents that from-happening. Only hits
whose rising edge airives when Accept is a One will generate hit data in the Command Logic.

The output of the flip-flop is further conditioned by the PreviousHitb signal which is a Zero
when the pixel cell is full and a One when it is Empty. InterestingHit, the output of the Hit
Conditioner, will go to Zero only for a hit that arrives when Accept is a One and the pixel cell is
BEmpty.

5.3.4.4 The Reset Logic

There are several resets that affect the pixel cell. The first is the Reset Command, which is an
order by the End-of-column Logic to reset. This would be a column-wide reset for any pixel cells
obeying that particular pair of Command Lines. The second is a Master Reset, which is a chip-
wide order from a usér to-erase the data in the FPIX and start over. The third 1s an indication
from the Token Control Logic that the pixel has the bus. When this.signal is received, the pixel is
outputting its data, and the recorded data can be erased in preparation for the next hit,



Figure 12: The pixel reser logic

Note that in Figure 12 there are two outputs from the reset logic. One is PixelReset, which
résets the Front Command Cells and the Hit Conditioner. The other is the ADC reset, which
resets the flip-flops in the analog front end. The only difference between the two is delay. In the
Figure, ghusb is the indication from the Token Control Logic that the pixel cell controls the bus.
“delayed_gbusb” is identical to gbusb except that it is delayed by one Read Clock period. This
delay is essential because the ADC data is stored on latches and it cannot be reset until after the
read-out is done,

5.3:4.5 The Passed Command Logic
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Figure 13: The Passed Command Logic showing the outpurs of the four Front Command Cells (far
léfth, the pull-down transistors {bottom), the command decode logic (center right) and the REastOR
transistor (far right).

~In Section 5.3.4.1, the Algorithm for the Command Logic specifically mentions that an
Empty pixel cell must view all four Command Lines with equal pricrity and must respond only to

a Listen Command. A Full pixel cell, on the other hand, must obey only the commands issued o
it by its associated End-of-column Register. The four Front Command Cells accomplish these
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two all-important tasks. First, each Front Command Ceil is connected 10 a different pair of
- Command Lines and each Front Command Cell contains its own Listen Command decoder so
that all four pair ‘of Command Lines are observed equally. Second, an association between o
pixel cell and a particular End-of-column Register is established when one of the Front Command
Cells is teceiving the Listen Command from its Command Lines as a hit occurs’. Under this
specific set of circumstances, a flip-flop internal to that particular Front Command Cell is set, and
CMOS switches are opened iy the Front Command Cell, allowing only its Command Lines to be
passed onward.

These associated Command Lines are passed to the Passed Command Logic shown in Figure
13. This is Hitle more than two two-bit decoders, one-that locks for 01 {Reset) and the other that
looks for 10 (QOutput). If the Reset Command is issued, then the Passed Command Logic
activates the CommandReset signal to the Reset Control Logic. I the Ountput Command is
issued, then the Passed Command Logic activates the NeedToken signal to the Token Control
Logic and pulls down the RFastOR. If the Listen Command or Idle Command are issued, they
have no effect on the Passed Command Logic.

When the pixel cell is Empty, no Command Lines are passed to the Passed Command Logic.
Thig ensures that the pixel cell ignores all commands but Listen while it is empty. However,
floating 1iputs to the Passed Command Logic could cause spuriois errors by dynanycally storing
erroneous commands. This would also be a serious source of Single Event Effect ervors if left
uncorrected. Therefore, the transistors shown on the bottom of Figure 13 are used to force the
inputs to the Passed Command Logic to the Idle Command (00).

5.3.4.6 The FastOR Logic

-~ I

End of Column

o

Pixel3 . | Pwel2 | |

Pixel1 | Pixelo

Figure 14: A schematic of the FastOR Logic

Figure 14 shows a simple schematic of a FastOR system. It is essentially a distributed
pseudo-NMOS NOR gate with an inverter. Each of the four “pixel cells” in the “coluran”
contains a single pull-down transistor. The “End-of-column Logic” contains a pull-up transistor
and an inverter. Whenever a gate of one of the pull-down transistors goes high, the FastNOR line

* It is-the job of the End-of-column Logic to make sure only one End-of-column Register is issuing the Listen
Comimand at any given time.
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is lowered, and the FastOR fine is driven high. If &Ei of the gates of the pmli-ii@wn transistors dré
Tow, then the puii up fransisior raises the Fagt\f@}% inand the FastOR line-is driven Tow.

The key performiance issues are the width-to-length ratio of the puall-up pfer, the width-to-
Tength ratio of the pull-down nfets, and the geometry of the FastNOR line itself. 'In FPIXI, there
was some difficulty with the FastNOR limes due to their irregular shape. This shipe led to a
-hwher«%hamasatmpamd resistance on the RFastOR -and HFastOR lines. Consequently, hit data
oceurfitig in the upper pixel celis {more than 90 — 100 pixel cells away from the End-of- ol
Logic) was not Tecognized By the End-of-column Logic becavse it could not: pull the FastNOR
lines befow the trip point of the inverter (See Figure 14). Thetefore, in preFPIX2 and’ bwaz&d the
geometry of the FastNOR Tines is rigidly defined to be rectangular. The only variables in the
geometry of the FastNOR lines are their length and their width. Ti’m pixel w icth-and the namber
of pixels per ¢olumn, of couise, define the iaaoth It i§, therefore, is-out of the hands of the chip
designer. Simulation and practicality determine FastNOR Tirie width.

Larger nfet width (See Figure 14) increases the drive capability of each-pull-down transistor.
H{}Wewr it also increases the u&p&azt@nm of the FastNOR line, which slows signal propagation.
Larger pmt width decreases the rise tirne of the FastNOR line, but it also incredses the fall time
wid- the minimurn voltage attainable by the pull-down transistors. If this voltnge approaches the
“trip point of the inverter, it thredtens the ability of a-pikel cell to make the FastOR signial,

from upper pixel

1o lower pixel

Figure 457 Pixel Coll Model uyed in simulations of the FastOR circuity

Ty order (o simulate the relative effects of nfet width, pfét width and fine width, numierous
similations were performed. In each simulation, -each pixel cell was modeled as shown in Figure
15. It was decided befors ?&yout began that all signals propagating up or down a column would
be carried by metal2 (second level metal). Since the pixel width is defined to be 50um, the
résistance R in the figure represents the resistance of 25um of metal2. Similarly; the capacitnce
C réprésents. the capacitance of 251m of metal? covered above by metal3 and below by metall
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and ranning parallel to 25um of metl2 on: either side. In-other words, the maximum capacitance
thai could be experierced by a metal2 roni. - It -was also ‘assurned that the width W would be
constrained 0 those widths Obtainable by enclosed geometry transistors. For a 160 pixel cohumn,
‘the conclusions of theése simulations are shown in Tabie 4.

Table 4: FasiOR optimal ge:mné!ﬁé;?

Nfetwidth  [12.95um
Pletwidth  X.0um

Lime width  2.0um

~ Simulations of the dbove geometries undeér sigma-and supply variation are shown m Figure
16 '
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Figure 2o Simulations of the FastOR

The square waves in the figare show the topmost pixel cell activating its nfet pull-down. The
upper set of waves are the signal on. the FastNOR line tight next to the End-of-column Logic,
The lower set of waves are the FastOR output.

The propagation delay z}ﬁ” the rising edge of the FastOR sigral is 2.5 to 3ns. The propagation
“delay of the falliig -edge is 5'to 10ns. ’"‘f‘he mitmom voltage of the FagtNOR line is 04 t0 0.6




vohs, OF considerable ihiportance is.also haw ‘the FastOr behaves over & £20% variation i Hne
width:, This corresponds to 4 $20% 'm_ ation in bath line resistance and capacitance.
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535  TOKENCONTROLLOGIC

Token G I sz’ai N{»‘i
NesdToksh {jg;mﬁinagéﬁ_af '_-'ngr;a;_i}ée- . S ' a _wémeS
) Logic : . -
[ — _ & > & et GUSD

Token ﬂesei Tokan la R@aﬁ C}m:k Mastar Reset

Token Ou ?axe! M
NegdToken | Cmmh&ﬁ&t&fé’a; goEnabie | 1 1o o Ghus
_ Logie i
ch;?:-eﬁ Fesst ToKend b Read Cit}ck
Te%‘:en Gu _
NesdToken _Qﬁmhﬁmatér‘saa guEsable | | b & Gous
Lidtie ; _
[ &> g |- Gbuso
Token Re:sat . Tokenin | Road Clock | ?M&s’eer Reset

Figure 18: The Interactions of several Token Control LogicCells

Freguently, soveral pixels ina single column are Wit simultanecusly. When this happens all
of those hit pixels will -associate themae,]ves with the same End-of-column register. Therefore,
when that Bad-of-column ségister isues the Output Command, all of those pixels will try 1o get
control of the ouipit bus. ~A column token Tmposes a saquemm} arder anto’ the feadoit of those
pixels so they do ot all output their data siultaneously. To reiterate, the readout sequence is as
foliows:

Ty A pixel has recorded data.
2y The pixel receivesthe Output Command from its associdted BEnd-of-column register
3} The pixel teceives the coluimn token

4} When the prévious three-conditions are: met,. at the next rising edge of the Read Clock, the
pixel cell will:

a) fi}m;mt_ris:sﬁata; {address and ADCY;
b) Release the columm token to the next pixel that needs the bus; and

oy Reset Hself.
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To accomplish the above sequence, each pixel needs Token Control Logic interacting as
shown in Figure 18, This logic has thré¢ main goals: 1) to acquire the token when it becomes
available if the pixel cell-needs it; 2) {0 pass the token 4 rapidly 4s possible if the pixel cell does
not need it; arid 3) to clear all token information as rapidly as possible to make the column ready
forthe next readout sequence. Goal number 3 was-a limiting factor for previous versions of FPIX
which did not have the Token Reset shown in Figure 18, In these older versions, the End-of-
column Logic would assert the column token at the beginning of a readout sequence, and then
withdraw it when the readout was finished. The assetted token would propagate’up the column,
being grabbed by pixel cells that needed it and being passed by pixel cells that did not. At the
concliision of the readout sequence, the “withdrawal” of the token would have to propagate up the
column throwgh all pixel cells sequentiaily. Obviously, if a second readout sequenice was issued
too quickly, then it would be possible for more than one pixel cell to think it had control of the
bus-at the same time: The “withdrawal” of the token might not have had enough time to propagate
all thie way up the column, and pixels higher in the column might think that they still had the
tokei.

The Token Control Logic has two parts, a purely combinatorial section and an
asynchronously resettable, positive edge-triggered d-flip-flop that ensures that data output wiil be
synchronous to the Réad Clock. The combinatorial section, labeled ay such in Figure 18, has two
inputs, NeedToken from the Command Logic section of the pixel cell and Tokenln from the
‘previous pixel cell. Tt also has two outputs, gbEnable which is the input to the Token Controt
flip-flop and TokenOut which becomes: the ToKenln of the next pixel cell. Within the Token
‘Control Logic itself, for historical reasons, NeedToken is referred to as “hit” and the inverse of
‘NeedToken as “hith”. Details of the combinatorial section are shown in Figure 19.
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Figure 19: The combinatorial portion of the Token Control Logic
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From E:ﬂmm 18, the Read Clock 1§ distributed to all pixel celis in a column am‘mi&me&)m%
In order to fulfil the tequired readout sequence, ghEnable should only be fctivated when the px\ei
cell has'the token and the pixel cell needs the token. By DeMorgan’s Law,

NeedToken o Tokenin = { NeedToken + Tokenln) Eg‘;ﬁ.&tiﬁn 3

~ ‘This-explains the simple NOR gate driving the gbEnable signal in Figure 19. The TokenOut
1§ ot guite-as simple.

1y Tf NeedToken (hit) is sctive (high), then TokenOut musi be azero. In other words, the token
cannod be passed uintll this pixel cell has gained control of the bus and has beéen reset to
Empty. Theretore, NeedToken (hit) is connected 1o the gate of an nfet transistor that polls
TokenOut down to zero whm NeedToken is 2 one.

2y Regardless of the state of NeedToken, if the token has not yet arrived to a pixel cell (Tokenln
18 weroy then TokenOut-must be zero,  Tokénkn and Token_res are the two inpuis 10 the
NAND o Figure 19, The output of that NAND v connected to the gate of an nfet transistor
that is capable of pulling TokenOut.down to zero. I Token_res is a innactive (Token_res=1),
then 'thf’:'e:mtpm?t of the NAND gate is equal to the inverse of TokenIn. Thérefore, if the token
has not yet arrived {Tokénln is a zeére) then the ou%pm of the NAND gate is a one, aid
TokenOutisa zero.

3y When Token.Res is activated {Token_Res=0), the oitput of the NAND i zfxzémma{émiiy
driven to-a one. Therefore, TokenOur will be pulled 10 & zero by the pull-down tansistor
connécted to the output of the NAND.

4y When the pixel cell does not need the token (Need Token=0)-then hith is a one. When hitb-is
& one, thie “Gate™ transistor connects the. output of the NAND directly to the TokenOut pull-
up transistor. Therefore, as soon as the Tokenin arrives, TokenOut will be pulled 1o 2 one.
This is how fast passing of the token is accomplished.

5} When the pixel cell needs the token (NeedToken=1), then hith is a zéro, and the “Gate”
transistor disconnects the cutput of the: NAND from the TokenOut pull-up transistor. Instead,
the relatively weak “Hold” transistor keeps the gate of the TokenOut ;,mi? ap transistor high,
cutting-off the-pull-up wansistor and leaving the stale of the TokenOut in the hands of the
‘pulbdown transistors.

6y Finally, when a pixel cell needs-the token (NeedToken=1), TokenOut is essentially forced to
azero. Whenthe token does afrive, ghEnable is activated, and on-the next rising edge of the
Read Clock; the pixel cell will get ihe& bus. When the pixel cell getsthe bug, it will reset itself
to Empty via the Reset Lw;m When the pixel cell is Empﬁ, by definition, NeedToken
becomes 4. zero, Therefore, when a. pixel cell gets control of the bus, TokenOut suddénly
becomes free to follow the stite of Tokénln, ind it goes high.

Like the FastOR Logic, numerous simulations were performed to optimize the circuit, In
fact, each transistor . Figure 19 was individually optiriized for the I1BM process, This makes it
less than perfectly optimized Tor the TSMC process. I the vollaboration elects to go with the
TSUN process or with o 236 pixel column, this optimization will have 1o be performed ugain.
Table S-$hows the final wansisior sizes.



Table 5: Optimized Token Passing Widths

“NAND pfet.

NAND nfet

TokenOut pull-down nmi
TokenOut pull-up plet
Gate nfet:

Hold pfet

Token Restrace width

Token_in/Token_Out trace width
Read Clock trace width

Length=0.81m
Width=16.15m

Length=0.8um

Width=3.35wm
Length=08um
Width=15tin

Lendth=0.8um

Width=6.55um
Lendth=08um

Width=1.4um-
Length=08m.
1.01m

0:560m

1.0um

25-Feb-2000 - File : Sokénicom
LEriE8 Token Biasing Roiay

v, ERBUCLEREI + ¥ (£0_60T)

P35 o

S
H 1
LTS

505 K [ i ;
S [+ i [E

1@

-3 LTI |

—
St BUTe

) s
VTR OOTES o VEROK DUTEY 0V OSOR GUPE) o winor STl T |
VPO DUTE) e T LT OTTEY v VITOR QUTT e W ITOR, oUEy oV Imol e
¥ ﬁ&v{wxwwzm &V {TOR_OUESS » W (TOR_DUTEY oV {TUR SO0} o W {T0K_(RTE)
£ i o T
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Figure 20 shows a simulation of an éntire:column of Token Control Logic Cells interacting as
they will in the FPIX chips. Since it is too confusing to show all 160 TokenOut signals at the
same time, the Jower graph in Figure 20 shows every tenth TokenOut. The upper graph shows
the token input to the column, and the final token cutput from the column. The simulation is a
worst case scenario in which pixel0, the pixél cell closest to the End-ofcolumn Logie, and

~pixell59,the p1xe} cell furthest from the End-of-colunm Logic, are both hit simultaneously, and
no pixel cells in between them are hit. Under this specific condition — admittedly very rare, the
token must be passed through 158 pixel cells between the start of one Read Clock cycle and the
start-of the next. In the lower graph, the series of rising edges indicate the token skip frequency —
the frequency at which the Token Control Logic will pass the token through pixe! cells that do not
need the Token. At the rising edge of the Read Clock, pixelQ will grab the bus and begin to pass
the token. The time between the rising edge of TOK_OUTO and the rising edge of TOK_OUTE
1s the time required for the token to skip through 140 pixel cells. This time is 16.5ns, which
corresponds to 118ps per pixel cells or a pixel skip frequency of 8.48 GHz. As a side note, if
there were 256 pixels in a column, the entire column could be traversed in 30.2ns. With a 160-
pixel column, the entire colunin could be traversed in 18.8ns. For the 256-pixel column, the pixel
skip frequency would be alimiting factor for Read Clock frequencies greater than 32.3 MHz. For
the 160-pixel column, the pixel skip frequency would be a limiting factor for Read Clock
frequencies greater than 53 MHz.

The reset time is simiply the difference between the falling edges of the column Token input
and.the column Token output shown in the upper graph of Figure 20. This time is 6.48ns, which
is considerably shorter than any Read Clock frequencies being considered. In fact, it only
becomes a limiting factor for Read Clock frequencies in excess of 155 MHz.

3.3.6  ADDRESSLOGIC

The address logic is very straightforward in the pixel cell. Each pixel cell in the column has
its own unique combination of nmos and pmos transistors that make up its physical address. All
address transistors, whether pull-up (pfét) or pull-down (nfet) are the same physical size. This
mieans that the fall times will be faster than the rise times. However, the physical size and
regularity of the address.transistors are more important than the rélative speeds of the rise or fall
times. As long as an-address settles to its final value within the read ¢ycle, that is all that matters.

The final design specifications are shown below.

Table &: Optimized Token Passing Widths

Transistor Width 2.8um
Trace Width Tpm




54  ADETAILED DESCRIFTION OF A HIT FROM THE PIXEL CELL'S PERSPECTIVE
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Figure 21: A simple schemaric of the Hit Seguence

When a particle. passés -through the Detector, a pulse of electrons is injected into a
pwamphfwr The integral of that pulse of aiec:tmm is, to first order, the amount of charge

dieposited on the detector by the parmia, This charge pulse is arnplified by

Vig o ﬁ»
Cy

‘This voltage is amplified with respect to Viref (set external to the pixe] cell).
Vb = -—fémfiw'{}f’a —Vref )+ Vref

A second means of génerating hit data is to program the Inject logic to thiject a charge into the

preamplificr on 4 ﬁxiimﬁ edge of Vin]. Theeffect on Vb will be thm same a8 if 4 real Hit was seen
by the Detector.

Regardless of how the charge was injected, Vb is simultaneously compared to eight different
voltages by eight-different contparators. Severn of these Compardtors comprise a flash analogsto-

digital converter which produces @ 7-bit thermometér code. These ‘signals are Tatched by Set-
‘Reset flip-flops which will hold the thermometer code indefinitely: Note that this use of S-R flip-
Hops. forms a natural peak detector. The seven outputs of the §-R flip-flops, T1-T7, aré input to

the ADU Encoder which converts them into a 3-bit ?:smarv mumber. Thiy nuinber is passed to the
ADC Output Drivers. Note also that the ADC Encoder and the ADC Output Drivers are purely
combinatorial: The memory of the hit-magnitude is in the seven S-R flip-flops that ldtch the

thermometer code.

The eighth Comparator is the main hit comparator.  If Vb exceeds Vi, then a hit has

occurred. }"% the user has programumied this pixel cell to be Killed, then the hit data will be Blocked
by an AND gate and the digital back enid will never know a-hit occurrad, ‘Consequently, the End-

of-golumm Legm and the rest of the chip will never kiow @ hit has-oceurred. If the vser has not

Dot
A



programmed this pixel esll to be killed, then the hit ddta is passeéd to the Digital Back End of the
pixel cell as the signal AnaNewHit.

A rising edge on AnaNewHit will pass the value of the Accept signal onto the rest of the back
end as the swmi DigHit. Oniy a rising 8dgé on AnaNewHit has any effect. Therefore, the pixet
el cannot be adversely Sffected by g}&ia& duration in the Andlog Fromt End. If Accept is a one,
DigHit becomes a one. I Asccept is 4 zero, Digit remains a zero, and the rest of the cell will
never know a hit otcurred.

DigHit is ANDed with a signal that is a oné if there are no previous hits contained in the pixel
cell and a Zero if there aré previous hits stored 1o the pixel cell. I there are no previous hits, then
this new hit is an interesting hit, and InterestingHit becomes a one, If there were previous hits,

“then this new hit isnot tmarmt:mz, and InterestingHit will remiain a-zero and the rest of the pixel
‘cell will Rever know ahit decureed.

If an End-of-column Command Register is iSstiing a Listen Command, then a Listen Decoder
will output @ one; and the hit will be recorded oito an S-R flip-flop. The Previous Hit signal will
now indicate that thers is a recorded ‘hit in the pztel cell, blocking any fubseguent hits from
affecting the pixel cell.
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Figure 230 A simple schiematic of the Readont Sequence

After the hit has been recorded, the output S-R fi:p~ﬂep that stored the hit closes a switch
connecting the commands of the Bnd-of<column register with the Resét and Output Decoders in
the pixel ¢cell. Whn the Output Command is issued, NeedToken is activated and the pixel cell
waits for the columb token to-arrive. Note that the pixel cell coiild not respond to the Outpai
Command unléss it had alteady received a hit because in the dbsence’of a hit; the Output Decoder
15 distonnected fromall Conmnand Likes.

Wheén the Ti}ixt’}ﬁ arrives, the pixel cell waits for the next rising edge of the Read Clock before
it wetivates Gbus. This causes the Digital Reset Logic to reset the S- R thip flop that had stored the
i, making the pixel csll Eripty agin.. This miamm the Token o the next hit pixel. ‘Gbus also
Lanses é:}*m address data to be driven onto the address bus and the ADC dats to be driven by the
ADC Outpiit drivers.



At-the next rising edge of the Read Clock, Gbus is Jatched by a second flip=flop, the output of
which activates the Analog Reset Logic that resets the Thermometer code in the Analog Front
End. o

If a Reset Command had been issued instead of the Output Command, the Reset Decoder
would have activated the CommandReset line which would have simultaneously reset both the
thermometer code in the Analog Front End and the S-R flip-fiop that recorded the hit in the
Digital Back end.

37



) THE END-OF-COLUMN LOGIC

10

11

12

14

15

6.1  SIGNALS

Cutputs from an End-of-column Logic to the pixel cells in its column.

COMA<1:0>
COMB<1:0>
COMC<1:0>
COMD<1:0>

ACCEPT

COLTOKENIN
COLREADCLK
COLREADCLKB

DATARESET

READRESET

Output. Command State Machine A command pair
Output. Command State Machine B command pair
Output. Command State Machine C command pair
Cuiput. Command State Machine DD command pair

Output. Controls the Hit Data to Recorded Data conversion for all
pixels in the column. If ACCEPT=1, the End-of-column Logic is
ordering pixel cells to accept new hits. If ACCEPT=0 the End-of-
column Logic is ordering pixel cell to ignore new hits

Output. The Column Token for arbitrating bus access

Output. The Read Clock released by the End-of-column Logic to the
pixel cells in the colummn. It is only released when the End-of-column
is “Talking” otherwise, it 15 held at zero.

Output, The Master Reset relayed from the chip nput pads, through
the End-of-column Logic and to all pixel cells. Will cause a reset of
all pixel cell digital back ends and analog front ends.

Output. A Reset specifically for the two flip-flops in each pixel cell’s
Token Control Logic. This Reset is activated when the End-of-
column Logic has “Nothing to Say”

Outputs from an End-of-column Logic to the Core Logic.

HTOKOUT

HAVEDATA

COLDATA<T 0>

COLDATA<I2:8>

COLDATA<20:13>

COLDATA<23:21>

Output. Horizontal Token Output for column-to-column bus
arbitration

Output. Indication of the presence of data to be output from the
column

Qutput. Row address.
Qutput. Column address,
Cutput. BCO Number

Cutput. ADC Magnitude

Inputs to an End-of-columa Logic from the Pixel Cell.



16

17

18

19

20

21

22

23

25

26

27

28

29

HFASTOR

RFASTOR

PIXDATA<T 0>
PIXDATA<10:8>

COLTOKENOCUT

COLDATA<23:21>

Input. Hit Fast OR indicator of the presence of a hit somewhere in the
column

Input. Read Fast OR indicator of the presence of data to be output
somewhere i the column, When this signal goes from active to
inactive, the End-of-column Logic knows that the column is done
Outputting data

Input. Row address.
Input. ADC Magnitude.

Input. The Token Out of the highest pixel cell’s Token Control Logic.
When this activates, the token has passed through all of the pixels.
This signal is used as-a diagnostic. If COLTOKENOUT activates
and the RFASTOR still has not gone inactive, then something is
wrong.

Output. ADC Magnitude:

Inputs to an End-of-columm Logic from the Core Logic.

BCO<T 0>
HTOKIN

BCOCLK_IN
BCOCLKB_IN

READCLK_IN
READCLEB_IN

CHIPSENDDATA

MASTERREJECT

DATARESET IN

CORESILENT

Input. The Beam Cross-over Number; indicator of time.
Input. Horizontal Token Input for colamn-to-column bus arbitration

Input. Beam Cross-over clock.
Input. Read Clock

Input. When active (1) a “Talking” End-of-column Logic can
continue to chliange its data at every rising edge of the Read Cik.
When inactive (0) a “Talking” End-of-columsn Logic must latch the
data being sent and not change it until CHIPSENDDATA goes
active.

Input. When high (1), the ACCEPT signal output to the pixel cells
must be fow (0). When low (0), the ACCEPT signal output to the
pixel ceils will be high (1) uniess all four End-of-column registers are
full. MasterReject is a system-wide throttle.

Input. The Master Reset directly from the chip pads

Input. When high (1), the Core is not ouiputting data. When low (03,
the Core is outputting data. '
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6.2 OVERVIEW

Command Lines

Tatking/Silent Column

e State

Machine

Who's Who's
Next Empty? Full? Next
to io

Listen Output

Listen
Priority
Encoder

Cutput
Priority
Encoder

Figure 23: A Schematic Overview of the End-of-column Logic

The majority of the intelligence in the FPIX Core is located in the End-of-colamn Logic. It
needs to understand what commarnds to issue to the pixel cells and when to issue those
commands. It must also understand time with respect to the BCO clock, the Read Clock and the
BCO number.

Each End-of-column cell consists of

1.

6.

four Command State Machines which issue commands to pixel cells via the Command
Lines,

four Registers which are paired one-for-one with Command State Machines and which
store BCO numbers when necessary,

one Column State Machine which contrels the End-of-column Logic in general,

one Hit Priority Encoder which determines which State Machine/Register pair is the next
to “listen” for hits

one Qutput Priority Encoder which determines which State Machine/Register pair is the
next to output data., and :

necessary support logic.

All of these subcircuits are considerably different from their counterparts in FPIX1. Figure 23
shows the interactions between the major components of the End-of-column Logic.



6.3 THE COMMAND STATE MACHINES

The four Command State Machines opérate independently of one another and their primary
purpose is to generate the four-Command Line pairs. Each is a Mealy state machine that changes
with each rising edge of the BCO clock and that has four states:

1. Empty
2. Listen
3. Fuli
4. Cutput

- No hit has been received and not listening for hits

El

No hit has been received, but listening for-one

- A hit has been received, but not outputting yet

i

A hit has been received and the data is being cutput

The states flow as shown in Figure 24.

. HNext
All transitions ceccur on N
the rising edge of the .
BCO Clock —
ReadDone HNext{Hil+Nol.isten)
ReadDone

RNexi(ReadDone+NoQutput)

| Listen |

RBiNext

Figure 24: The Command State Machine state diagram

At.any given time, only one Command SM can be allowed to be in the Listen state. If there
is a hit somewhere in the column, the pixel cells that are hit are going to ty to associate

41



themselves with whichever Command SM is issuing the Listen Command. If more than one
Command-SM 1s issuing a Listen Cominand,.then any hit pixel cells are going to try to obey more
than one Command SM. The resuits could be unpredictable.

Moreover, there must be.a Command SM in the Listen state unless all four Command SMs
are full. Recall from the description of the pixel cells that they only pull down the HFastOR line
if they get a hit when a Command Ling is issuing the Listen Command. If no Command SMs are
in the Listen state, then no one will be issuing a Listen Command and no pixel cells will pull
down the HFastOR line. The result is a hung chip.

This problem is solved by the Hit Priority Encoder and the HNext and Nol.isten signals that it
generates, There is one NoListen. signal for all four Command SMs. When it is active (1), then
no Command SMs are in the Listen state. There is a unique HNext signal for each Command SM
and it is the job of the Hit Priority Encoder to make sure that a maximum of one of these signals
is active at any time. When HNext is active for a particular Command SM, then that Command
SM will be the next SM to make the transition to the Listen state. The function of these signals
and the state machines is best described by example.

1. If Command SMa is in the Empty state and has an dctive HNext signal and no Command
SMs are in the Listen state, then NoListen will be active. On the next rising edge of the
BCO clock, Command SMa will make the transition to the Listen State.

2. I Command SMa is in the Listen state and Command SMb is in the Empty state and has
an active HNext signal, NoListen will be inactive. At the next rising edge of the BCO
clock dfrer there has been a hit somewhere in the column, Command SMa will make the
transition to the Full state and Command SMb will make the transition to the Listen state.

Similarly, at any given time there can be only one Command SM in the Output state. If more
than one-SM were allowed into the Output state at a given time, then information from more than
one time slice would be output at the same time.

As in the case with the Listen state, these problems associated with the Output state are
solved by the Output Priority Encoder and the Rnext and NoOutput signals that it generates.
There is one NoOQutput signal for all four Command SMs. When it is active (13, then no
Command SMs are in the Output state. There is a unique RNext signal for each Command SM
and it is the job of the Output Priority Encoder to make sure that a maximum of one of these
signals is active at any time. When RNext is active for a particular Command SM, then that
Command SM ‘will be the next SM to make the transition to the Quiput state. The function of
these signals and the state machine is again best described by example.

3. HIf Command SMa is in the Fuli state-and has an active RNext signal and no Command
SMs are 1n the Output state, then NoOutput will be active. On the nexi rising edge of the
BCO clock, Command SMa will make the transition to the Output State.

4. If Command SMa is in the Output state and Command SMb is in the Full state and has an
active RNext signal, NoOutput will be inactive. At the next rising edge of the BCO clock,
after the column 1s done reading out, Command SMa will make the final transition back
to the Empty state and Command SMb will make the transition to the QOutput state.

In the above four examples, two signals are left unexplained. A Command SM receives
information about hits via the HFastOR circuitry, which will be described later. Since hit arrival
is virtually synchronous with the BCO clock, no further conditioning of the HFastOR signal is
necessary. It might be logical to assume that the Command SM receives information gbout the



conclusion of the read cycle directly from the R¥FastOR circuitry. However, since read out is
performed synchronous with the Read Clock and notf the BCO clock, an additional conditioning
step is necessary o ensure stability. This circuitfy is shown in Figure 25, The first part of this
conditioning is performed by the Column State-Machine, which operates at the Read Clock
frequency and which accepts the output of the RFastOR circuitry and generates the colSilent
signal (columnm silent). The edge triggered d-flip-flop in the figure ensures that only the rising
edge of colSilent affects Done and NotDone. This guarantees that only the completion of the
present read .out will activate the Done sigrial. The input to the edge-triggered d-flip-flop is the
Output state signal. This guarantees that Done will only be activated in the SM in the Oatput
state. An S-R flip-flop actua fly creates the Done and NotDone signals. It is reset to NotDone
whenever the Command SM.is in either the Empty state or the Listen state. The Empty state also
resets the edge-triggered d-flip-flop. The S-R flip-flop s set and Done is activated only at the
rising edge of the LOISﬂent signal if the Command SM is presently NotDone. This two-step
process guarantees signal stability in spite of the fact that the Command SMs operate on the BCO
clock and readout occurs on a different clock.

edge-triggered
d-ff

ar-ft
lata q Dry

Tl [
colSilent " set

Dirv
reset } +)O—| >0— reset © NotDone

Empty i

Cutput
Done

- listen

Figure 25 Conditioning Circuitry for Read Done

Finally, the actual commands sent up the Command Lines are generated from the Empty,
Listen, Full and Output states and the Done and NotDone signals.

Com{Q = Listen + Output - Done

Coml = Listen + Output - NotDone Fauation 3
When in the Listen state, Com0 and Com1 will both be high, and 11 is the Listen Command.
When in either the Empty or the Fuall state, Com0 and Com1 will both be low, and 00 is the Idle
Command. When in the Qutput state before-the readout is done, Com0 will be a 1 and Com1 will
be a zero, and 10 is the Output Command. Finally, when in the Output state affer the readout is
done, Com will be a 0 and Com! will be a 1, and 01 is the Reset Command. This last feature
was added to ensure that if there was any communication difficulty with the column token, then
at least the column could be made to function up to the point of the communication difficulty. If
any pixel cells remained unread after the End-of-column Logic thought it was done, then those

pixel cells would be reset and they would not interfere with-further operation of the column.
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Figure 26: End-of-column Logic ar Reser. The signals are, from rop 1o bottom, Master Keset, the
BCO clock, the four pairs of Command Lines, Empty state indicators, Listen state indicators, Full
stafe indicators, Outpur state indicators, the NoListen signal, the RNext signal, the HNext signal, the
Hit indicator, and the column Silent signal. The state indicators decode the state of each of the four
Command State Machines and indicate {with a 1) when a state machine (s in a certain state.

Figure 26 shows an End-of-column Logic cell during.a Master reset, and, in particular, shows
those signals important to the Command SMs. First, during the actual reset (in the first 20 ns of
the graph), all four Command Lines are driven to the Reset Command (01). This is accomplished
not in the state machines themselves, but rather in “override” logic attached to the drivers of the
Comimand Lines. In this fashion, regardiess of the state of the Command SM, the Reset
Command will be driven up the column during a Master Reset. Note that after the completion of
the Master Reset, all four Command Lines are showing the Idle Command (00); the Empty state
indicator is showing that all four Command SMs are in the Empty state (1111); the Listen state

“indicator 1§ showing that no Command SM s in the Listen state {0000); as expected, the NoListen

signal is active (1) because no Command SM is in the Listen state; and, finally, the HNext signal
indicates that Command SMa has been selected as the next state machine to move to the Listen
state (O001). At the next rising edge of the BCO clock, Command Line A changes to the Listen
Command (11}; the Empty state indicator changes to 1110, indicating that Command SMa is no
fonger in the Empty state; the Listen state indicator changes to 0001 indicating that Command
SMa is now in the Listen state; NoListen goes inactive; and HNext indicates that Command SMb
has been selected as the next state machine to move to the Listen state. Finally, note that at the
next rising edge of the BCO clock, everything remains the same because nothing has happened
that would precipitate a state change in any of the Command 5Ms,

e



Figure 27 shows a single Command SM during a hit cycle. All of the signals in the figure are
connected directly to that Command SM. At first; the SM is in the Listen state as indicated by the
Listen state indicator and by the presence of the Listen Command (11) at the Command Line pair.
At approximately 800ns, there is a hit. At the next rising edge of the BCO clock, the SM makes
the transition to the Full state. The Command Line changes to the Idle Command (00). The
Output Priority Encoder selects the SM to be the next to-output by activating the RNext signal at
approximately 850ns. At the next rising edge of the BCG clock (almost 1000ns), the SM makes
the transition to the Output state where it remains until the rising edge of the BCO clock after the
arrival of the colSilent sighal at approximately 1200ns. During the Output state, the Command
Line pair-issues first the Output Command (10), and then the Reset Commmand {01). Finally, af
approximalely 1250ns, the SM makes the transition back to the Empty state, Note that the Listen
Priority Encoder selects this SM (via the HNext signal) to be the next SM to make the transition
tothé Listen state. This is coincidental.
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Figure 27 One Command SM in the End-of-column Logic during a hit cycle. From top to bottom the
signals are-the Read Clock, the BCO clock, the Empty state indicator, the Listen state indicator, the
Full state indicator, the Quiput state indicator, the Hit signal, the NoListen signal, the NoQutput
signal, the RNext signal, the HNext signal, the column silent signal, and the Command Line pair.
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6.4 THE COLUMN STATE MACHINE

Each End-of-colurmm Logic celt has one Column State Machine that, in short, controls the
read out of the column. It changes its state; if necessary, only on the rising edge of the Read
Clock and it has four states:

1. Nothing to Say

2. Something to Say

3. Talking

4. Silent

No pixels need to be read out at this time

Pixels are waiting to be read cut

- Pixels are being read out

- The column is done reading out this event

The states flow as shown in Figure 28.

Read Clock

All transitions ocour ¢h
the rising edge of the

| Nothing |

Any Quiput Command
~issued by any Command SM

_ _ ' Arrival _of
Column Read ® Horizontal Head Token

FastOR goes away

| Talking |

Figure 28: The Column State Machine State Diagram

64.1  NOTHING TO SAY

Upon Reset, the Column State Machine is forced into the “Nothing to Say” state. This is only
logical since, after a Reset, the column cannot possibly need to output data. The SM will remain
in the “Nothing to Say” state until any one of the four Command State Machines issues-an Qutput
Command (10). At the first rising edge of the Read Clock after receiving an Cutput Command,
the Column SM will make the transition to the “Something to Say” state.

Waiting until there is an Output Command has some important implications. First, this
implies that the some Command SM had been in the Listen State; some pixel had received hit



data; the Command SM moved into the Full State and finally into the Output State. Second, the
same circoitry that decodes an Output. Command in each pixel cell is also used to decode the
Output Commands for the Colunin SMi™ Furihermore, the Columin SM decodes the actual
command lines that are sent up the column. Therefore, by the time the Column SM is aware that
some Command SM is issuing the Qutput Command, all pixels associated to that Command SM
are also aware that it is-issuing the Output Command. This eliminates almost all timing-sensitive
problems associated with read out. For example, the Output Command must arrive before the
Column Token. If the Column Token arrives first, then the pixel cell will not yet realize that it
needs to grab the token and it will therefore pass it on. This can lead to more than cne pixel
driving the bus af the same time.

During the “Nothing to Say” state, the Read Clock is blocked from the column via the Clock
Control Locxc which will be explained hereaftcr

642  SOMETHING TO SAY

After the Column SM has received an Output Command and has made the transition to the
“Something to Say” state,. clearly there are pixels in the column that need to be read out.
However, the Core is not ready for this colomn to read out yet. The Core needs to arbitrate
among all of the columns that have “Something to Say”. Like the column which arbitrates via the
Column Token, the Core arbitrates via the Horizontal Token (Htok). The first rising edge of the
Read Clock after the Column State Machine receives-the Htok, it makes the transition into the
Talking state.

During the “Something to Say” state, the Read Clock is stili blocked from the column via the
Clock Control Logic. CoreHasData, a diagnostic signal that indicates when there is data to
output, is activated during this phase. CoreHasData is a distributed OR similar to the HFastOR
and it can be activated by any End-of-column Logic. Finally, and most importantly, the Column
Token is sent up-the column in this phase. Again, this guarantees that the Qutput Command has
been sent to the pixel before the token gets there. Secondly, this makes sure that in each column
the first pixel with output data has the token before the Read Clocks are released into the column.

64.3  TALKING

After the Column SM has received the Horizontal Token and makes the transition to the
Talking state, it is free to output its data. It will remain in this state until the RFastOR circuitry
indicates that the last pixel is-outputting its data. The first rising edge of the Read Clock after the
rising edge of the RFastOR line, the Column SM will make the transformation to the Silent state.

During the Talking state, the Read Clock is finally transmitted up the column via the Clock
Control Logic. CoreHasData, the diagnostic signal that indicates when there is data to output, is
still active during this phase. Tri-state buffers are enabled in this state connecting the column bus
to the Core output bus.

64.4  SILENT

After a Talking Column SM has seen the rising edge of the RFastOR and makes the transition
to the Silent state, it no longer hias data to output, but other columns in the Core may still be
outputting. Therefore, the Column SM rémains in the Silent state until it receives the coreSilent
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signal indicatitig that the whole Core is done outputting. This helps prevent a hot column from
grabbing the Core Cutput bus again-and again while other columns are trying to output. When
the coreSilent signal is received, the Column SM will make the transition back to the “Nothing to
Say” state after the next rising edge of the Read Clock.

During. the Silent state, the Read Clock is still transmitted np the column via the Clock
Control Logic. This ensures that the last pixel cell to output receives enough clock edges.to reset
both the digital back end and the ADC latches. The cohimui token is reset in this phase to prepare
for the next read out cycle. The colSilent signal is issued to the Command SM so they can make
their necessary transition between their Output states and their Empty states. Finally, the ri-state
buffers connecting the column bus to the Core output bus are disconnected.

6.4.5  SIMULATIONS
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Figure 29: Verilog simuldtion of a single Column State Machine.

Figure 29 shows a single Column SM as it progresses through an entire read out cycle. At
approximately -800ns (A), the Column SM is in the “Nothing to Say” state and a hit occurs
somewhere in the column. This has no effect on the state of the Column SM. Also, though the
Read Clock is free running, it does not reach the pixels in the column. At approximately 1000ns
(B}, the AnyRead signal activates indicating that some Command SM is issuing the Quitput
Command. Atthe fmt rising-edge of the Read clock after the arrival of the AnyRead signal, the
Column SM makes the transition to the “Something to Say” state (C). In this state, the celumn
Token is issued (D). After the arrival of the Horizontal Token (E), the Columnn SM makes the
transition to the Talking state (F). Once in the Talking state, the Read Clock is released to the
column (G), and for each rising edge of the Read Clock, one pixel of information is driven to the
Core Output bus (H) until the rising edge of the RFastNOR (1) which indicates that this column is



outputting its last pixel. At this point the Horizontal Token is released (I} and on the next rising
edge of the Read Clock, the Column SM makes the transition to the Silent state (K). While in the
Silent state, other columns continue to drive the Core Qutput bus (L) and the Read Clock remains
active in the Silent column (M). Finally, the coreSilent signal activates (N) (shown here inverted)
and at the next rising edge of the Read Clock, the Column SM makes the transition back to the
“Nothing to Say” state (O).

64,6 HORIZONTAL TOKEN PASSING LOGIC

; sr-H
Nothing —_— Dry
HaveToken _ g _—‘{>—‘ HTokOut
set
Talking
ReadDone
r“ reset
coreSilent gh

Figure 30: Horizontal Token Passing Logic

The Hortzonial Token Passing Logic in the Column SM is complicated enough to warrant
further explanation. It is shown-in Figure 30, The token itself is originally generated by the Core
when the Core makes its own transition from coreSilént to coreTalking. It would be possible to
have a completely combinatorial horizontal token pass. However, it is criticil to the read out
speed of the Core that the horizontal token resets uniformly across the Core. Moreover, since the
horizontal token pass is so critical to proper operation of the Core and in the interest of single
event upset (SEU) tolerance, it is important that one SEU in the-Core Logic cannot hang the chip
by destroying the horizontal token. Therefore, the horizontal token passes through a series of SR
flip-flops, one per columm. These are all reset at once when coreSilent activates.

If a column has “Nothing to Say” and it has the token, it immediately sets the SR flip-flop
and passes the token. If it has “Something to Say”, then when it has the token, HtokOGut will nat
be set. Instead, the Column SM will make the transition to the Talking state and then, when the
RFastOR logic activates the ReadDone signal, the Hortzontal Token Passing Logic will set the
SR flip-flop and pass the token. Note, ReadDone activates while the End-of-column Logic is
outputting the last pixel. Therefore, the next column with “Somiething to Say” will get the
Horizontal Token and be ready to output by the next rising edge of the Read Clock. This is
demonstrated in Figure 29 (L).

Another important note regards the Column SM “having the token”. The signal
“HaveToken” in Figure 30 is not simply the Htokln signal in Figure 29. Instead,

HaveToken= HTokln e HIokOut Equation 4

In other words, a column has the token when it has received the token from the previous
column but has not yet passed the token to the next-column. If a column has passed the token on,
then it.does not have the token any more.
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The Horizontal Token Passing Logic actually poses a.minor pmblem for the FPIX Core. Itis

a limiting factor in the readout speed. By simulation, if there-is a hit in the 17" column, it takes
more than one Read Clock cycle for the horizontal token to reach the 17 column. This is
because the skip frequency of the Horizontal Token Passing Logic is only 22.2 MHz.

Additional simulations have revealed that the majority of the problem is in the driver shown

647 CLOCK CONTROL LOGIC

in Figure 30. If that driver is eliminated and replaced with a properly sized inverter of gb, then
the skip frequency is increased to 34.4 MHz.

Sitent &4 }@
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Talking : e
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Figure 31: The clock conirol logic

The Clock Control Logic needs to do a number of things.

1. When the Column SM is in either the “Nothing to Say” or “Something to Say” states, the
Read Clock must be blocked from the column. Moreover, the column Read Clock must
be a zere duting these states.

2. When the Column SM is in either the Talking or Silent states, the Read Clock must be-

passed to the coluimn,

3. When ChipSendData is inactive (Jow), the Clock Control Logic needs to hold the clock at
its present state regardless of whether that state-is a one or a zero.

4. The Clock Control Logic must be resettable.

5. Itmust be capable of driving the entire column in a timely fashion.

These functions are accomplished in several steps as shown in Figure 31. The two drivers,

bigDrvi and bigDrv0, have enough strength to drive the column’s line capacitance. Moreover,
when either Talking or Silent are active, bigbrv0 drives the colReadClk to a zero and bigDrvl
drivers the colReadClkb to a one.



The circuit cLatch-converts ReadClk to a differential CMOS signal when SendData is active.
When SendData is inactive, cLatch holds the last state of the ReadClk. Finally, at Reset Out and
QOutbar are setto one and zero, respectively.

6.5 THE END-OF-COLUMN REGISTERS

WC‘{!’iH Negative Edge Triggered
Wotr! > D fip-flop Ratrl
npu— D Q SR @ > Qutput
Retrlb
BCO Cli> C>Clk Qb
R8T

Reset >

Figure 32: A single bit of an End-of-column Register

There is one eight bit End-of-column Register for each End-of-column Command State
Machine. When a particular Command SM is in the Listen state and receives a hit, the job of the
Register isto record the current BCO number which acts as a timestamp for the.event. When the
Command SM is in the Output state, then the Register must output the recorded BCO number.

The Command SM makes the fransition from the Listen state to the Full state at the same
time that the BCO namber is changing from “n” to “n+1". (They both change state on the nising
edge of the BCO Clock.) To prevent any race condition from developing, each bit of the End-of-
column register is designed-as shown in Figure 32. The heart of each bit of the End-of-column 1s
a negative edge-triggered d flip-flop. The input to each tlip-flop-1s 4 CMOS 2-to-1 multipiexor.
When the write .control {Wctrl} is active, then on the negative edge of every BCO clock, the
Register will be updated to the present value of the BCO number. When the write control is
inactive, then on the negative edge of every BCO clock, the Register wiil be refreshed to its
present value. The Wetrl signal of each End-of-column Register is equivalent fo the Listen signal
of the corresponding End-of-column Command SM.

The CMOS switch at the output of Figure 32 allows all four End-of-column Registers to be
placed on the same bus. The Retri signal of each End-of-column Register 1s equivalent to the
Output signal of the corresponding End-of-column Command SM.

A simulation of an End-of-column Register is shown in Figure 33, “Datalii” in the figure is

the BCO number. It ¢hanges on every rising edge of the BCO clock. “StoredBCO” is the
number being held by the End-of-column Register. Note that it changes to the current value of
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“Dataln” on every negative edge of the BCO clock as long as the Command SM is in the Listen
state. “DataOut” is the output of the End-of-column Register. It s tristated unless the Command
SM is in the Output state.
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6.6 FAST OR LOGIC

There are two types of FastOR logic used in the End-of-column Logic. ' The first and simplest
is the HFastOR logic shown in Figure 34. In this cifcuit, a weak PMOS transistor serves as the
pull-up for the distributed NOR gate throughout the cofumn. This NOR is inverted to an OR and
then run through a non-clocked d flip-flop. The output, Hit, is a one when the HFastOR is low
(pulled down]).

sr-ff
Drv
it
G
HFastNOR DG cet D
Dirv
reset qb t Nokit

Figure 34: HFastOR Logic

The RFastOR logic is slightly more complicated because it is actually looking for the rising
edge of the RFastNOR signal. On that rising edge, the column is outputting the last pixel that
needs to be output. To accomplish this, the RFastNOR signal is brought directly into the clock
input of a positive edge-triggered d flip-flop. On the rising edge of RFastNOR, the flip-flop
changes ReadDone to active. ReadDone remains active until it is reset, which is accomplished by
either the column going silent or the master reset activating.

positive edge triggered
§ L D
Drv

RFastNOR > ok gb - >_.Readmotz)sne
reset

colSient

DataReset

Figure 35: RFastOR Logic

£7  LISTEN PRIORITY ENCODER

As indicated earlier, there were extensive modifications to Command State Machine in the
development of the FPIX Core. Principle among them was the change in the state structure from
the simple “Empty” and “Full” used in FPIX1 to the more complete “Empty”, “Listen”, “Full”,
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and “Output” used in the FPIX Core. Using the latter allows the complicated, state-machine-
based Priority Encoder used in FPIX1 to be replaced with a simple combinatorial logic block in
the FPIX Core. The logic simply makes State Machine 0 the next to listen if it is currently in the
Ernpty state. If SMO is not Empty, then SM1 is next if it is Empty. If both SM0 and SM1 are not
Empty, then SM2 is next if it is Empty. If SMO, SM1 and SM2 are all not Empty, then SM3 is
next.if it is not Empty. This logic is shown in Figare 36.

Emptyi0] Empty[1] Emptyl2] Empty[3]

Lo

Drv
> Next[C]
& >?W_ Next{1]
e Drv
. > Next[2]
& |
)\ ' >Next[3}
Drv

Figure 36: Listen Priority Encoder

Also, the Listen Priority Encoder is responsible for determining if no Command State
Machines are in the Listen state and if not Command State Machines are free. “NoneFree” is
active (high) if no Command SM is in the Listen state .and no Command SM is in the Empty
state. If NoneFree is active, then the Accept signal to the pixel column is brought low (inactive)
0 that no new hit data will be converted into recorded data until an End-of-column register is
free. This prevents hits from appearing in the wrong BCO number on hot chips.

6.8 QUTPUT PRIORITY ENCODER

One of the inefficiencies in FPIX1 involves how it selects which Command SM to- output
next. External to the End-of-column Logic, the a requested BCO counter incremented through
possible BCO numbers and a Command SM started to output when their was a match between the
requested BCO and its stored BCO number.

In the FPIX Core, there are no requested BCO numbers, so each End-of-column Logic must
have the ability to determine which Command SM goes next. A straightforward priority encoder
such as the one used in the Listen Priority Encoder will not work. Old data could get “trapped” in
Command SM3 and never get out because Command SMO continually receives the right to
output. Instead, what is used is a circular priority encoder in which, at any given time, the



Command SM with the lowest priority is the SM that is currently in the Output state. If no SMis
in the Qutput state, then a “seed” SM establishes the priority.

The algorithm has two parts. The first describes how to pass or withhold the rightto output.

I} If T am not in the Full state and 1 receive the right to output from my
neighbor to my left, 1 pass the right to output to my neighbor on my right.

2} I T am not in the Full state and I am the seed register, I pass the right to
output to my neighbor on my right

3y If I am in the Output state, I pass the right to output to my neighbor on my
right.

4}y If I am in the Full state and I receive the right to output from my neighbor to
my left, I withhold the right to output from my neighbor to my right

5y If I am in the Full state and 1 am the seed register, 1 withhold the right to
output from my neighbor to my right.

The second part of the algorithm describes which register gets to advance to the Qutput state next.

13 If I am in the Full state and not in the Output state and I am the seed register,
then I am the next to Output

2y If T am in the il state and not in the Output state and 1 receive the right to
output from my neighbor to my left, I am the next to Cutput.

Output  Fuil

Output Output

Ful Ful

From Neighbior To Neighbor

To Meighbor From Neighbor

Quiput  Full

Figure 37: A diagram of the Cutpit Prioriry Encoder logic
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The above algorithm can be accomplished with purely combinatorial logic. Four identical
circuits are arranged in a-circle. The seed input of thiée of them are grounded and the Jast 1s tied
to a signal which is high if not Command SMs are in the Output state.

6.9 A DETAILED DESCRIPTION OF A HIT FROM THE END-OF-COLUMN LOGIC’S
PERSPECTIVE

Upon reset, the four Command State Machines are forced to their Empty state and the
Column State Machine is forced to its Nothing-to-say state. The column Token and the column
Read Clock are both forced to a zero. The RFastOR Logic is reset, indicating that any reads are
not done. '

The fact that all four Command State Machines are Empty, NoListen is activated indicating
that nobody is in the Listen State. Moreover, since all of the State Machines are Empty,
NoneFree is inactive, indicating that there are free State Machines. Therefore, at the next rising
edge of the BCO clock, one state machine will be moved to the Listen state. The Listen Priority
Encoder selects SMO for this honor since it is Empty. Recall that an Empty SMO supersedes all
other State Machines. Furthermore, since NoneFree is inactive the Accept signal driven up the
columm is a one (assuming the user is not activating the MasterReiect).

In this state, with no Command State Machines Full or Outputting, the Output Priority
Encoder is indicating that no one will be the next to Output and that everyone has the right to
output. However, nobody is paying attention to the Output Priority Encoder at this peint.

The End-of-column Logic can remain in this state indefinitely, with one Command SM
outputting a Listen Command, the other three outputting the Idle Command, and the Column SM
indicating Nothing-to-say. The Listen Priority Encoder indicates that SM1I will be the next to
Listen, but there has been, as yet, no cause to advance the state machines so the Listen Priority
Encoder will just continue to indicate that SM1 will be the next to Listen. The Cutput Priority
Encoder is still outputting nonsense, but at this point, no one cares. At -every falling edge of the
BCO clock, the BCO number is latched by SM(’s End-of-column Register.

Eventually, the HFastOR logic will indicate that a hit has been received. This will cause
several things to happen.

1} SMO will make the transition from the Listen State to the Full State.

2y SMO will stop outputting the Listen Command and start outputting the Idie
Command.

3) SMI1 will make the trapsition from the Empty State to the Listen state
becanse it was marked as the.next to listen by the Listen Priority Encoder.

4y SM1 will start outputting the Listen Command
5) The Listen Priority Encoder will mark SM2 as the next to listen.

6) Now that something is in the Full state (SMO0), the Output Priority Encoder
will mdicate that SMO 1s marked as the next to output.

7y SMO’s End-of-column Register will hold the last BCO number it latched.



The system -will not remain in this state for long. Since no one is in the Ouiput State,
NoQutput is active. With an active NoQuitput -signal -and an Qutput Priority Encoder which
indicates that someone {SMO) is marked as the next to Gutput, then on the next rising edge of the
BCO clock, SMO will make the transition from the Full State fo the Output state.

For the sake of simplicity, we can assume that no other hits have occurred. However, this is
nGta requirernent of the system. Had their been another hit, SM1 would have moved into the Full
state, SM2 would have moved to the Listen state, etc.

The transition to the Qutput state drives the Output Command up the column. This alerts the
Column State Machine that someone is in-need of outputting. At the next rising edge of the Read
Clock, the column state machine will make the transition from the Nothmg—to—qay state to the
Something-to-say state. This has two effects.

1) The Column Token will be driven up the column to the first pixel that
requires it.

2} The Core Logic will be alerted that the Core “HasData™.

The system can remain in-this state indefinitely with Command SMO in the Cutput state and
the Column SM in the Something-to-say state. What we are waiting for is the horizontal Token
to indicate that this End-of-column Logic can grab the Core bus. When this happens, at the next
rising edge of the Read Clock, the Column SM will make the transition from the Something-to-
say state to the Talking state. This will release the column Read Clocks into the column and data
will begin to pour through the End-of-column to the Core bus. Tt will also release the BCO
number stored in SM0's End-of-column Register to the Core bus.

At the rising edge of the RFastOR, the ReadDone signal is activated. This passes the
Horizontal token to-the next needy column, and on the next rising edge of the Read Clock, the
Column SM will make the transition to the Silent state. This activates the Done signal in
Command SMO.

While Done is active and until the next rising edge of the BCO clock, Command SMO will
output the Reset Command just in case there is some miscommunication between the End-of-
column Logic and the pixels. At the next rising edge of the BCO clock, Command SMO will
make the transition back to the Empty state. This will veset the Done signal, completing SMO’s
Hit cycle.

The Column -SM will remain in the Silent state until it receives the signal from the Core
indicating that the Core has gone silent, i.e. that no other columns are talking. When this
happens, the Column SM makes its final transition back o the Nothing-to-say state completing its
hit eycle. This last transition also resets any flip-flops in the address section of the column that
may still be active. Again, this is just a precautionary measure in case there is some
miscommunication between the End-of-columin Logic and the pixels.
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7 CORE LOGIC

7.1 SIGNALS

Qutputs from the Core Logic to the End-of-column Logic cells.

1 CORETALKING Output. Signals that the Core is Talking

2 CORESILENT Cuiput. Signals that the Core 1s Silent
3 BCO<T:0> Output. The current BCO number
4  COMD<1:(0> Qutput. Command State Machine D command pair

Cutputs from the Core Logic to Periphery.
5  COREHASDATA Ouiput. Signais that the Core has data it needs to output
6 COREHIT QOutput. Stgnals that some pixel the Core has been hit

7  COREERROR Output. Signals that the column Token in some column has exited the
top of the column before Read Done activates.

Inputs tothe Core Logic

8  BCOCLK_IN Input. Beam Cross-over clock.
BCOCIXB_IN

9  READCLE_IN Input. Read Clock
READCLKB_IN

10 DATARESET Input. Reset

7.2 INTRODUCTION

The increased intelligence .of the End-of-column Logic and the decision to design the FPIX
Core as a purely non-triggered system has greatly. simplified the Core design. It consists of a
simple-counter, a very stupid state machine and a trio or diagnostic cutput circuits.

7.3 CORE COUNTER

One of the three principle components of the Core Logic is the Core Counter that is nothing
more than 4 tesettable counter that changes state on thie rising edge of the BCO clock. The
counter has seven bits wide., The reset'is asynchronous.

7.4 CORE STATE MACHINE

The second major component of the Core Logic is the Core State Machine. Its sole purpose
is-to determine when the Core is Talking and when it is Silént. It operales synchronous with the
rising edge of the Read Clock.

There is no chip token as far as the FPIX Core is concerned. Therefore, as soon as the Core
has data to send, the Core SM changes state to Talking on the next rising edge of the Read Clock.



The Talking signal becomes the horizontal token passed among the columns during the Output
sequence. The Core SM remains in the Talking state until the horizontal token comes out of the
last columm in the Core. At the next rising edge of the Read Clock after the horizontal token
comes out of the last coluran, the Core SM.switches back to the Silent state. Its that simple.

ChipHasNoData

coreSilent

Horizontal

5: | ChipHasData
Token Qut | |

coreTalking

Horizontal
Token Not Qut

Figure 38: Core State Diagram

7.5  DIAGNOSTIC SIGNALS

The Core Logic also supports three diagnostic circuits identical to the HFastOR logic in each
column. However, instead of operating within a single column, they operate across all of the
columns. Within each End-of-column Logic, there are three puli-down transistors. One is gated
by the hit signal output from that column’s HFastOR Logic. This transistor will be used to
generate a signal indicative of the presence of a hit anywhere in the Core.
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A second pull-down transistor is gated by :th'e_ _i_gﬁgi_éal ORing of the Column State Machine’s
Something-to-say and Talking signals. - This transistor will be used to generate the ChipHasData
sighal used by the Core State Machine to make transitions between Silent and Talking.

The third pull-down transistor 1s gated by the logical ANDing of Column Token Out with
ReadNotDone. If the column Token comes. out of the top of the column before Read Done
activates, then there has been some kind of error. This pull-down transistor is used to indicate the
presence of such an error.

This is illustrated for three columms in Figure 39.

Talking OR Something-to-say !

ColTokenDut AND ReadNOTDone !

HiFastOR Logic

coraError

HFastOR Logic

coreHaslData

HFastOR Logic

coreHit

Figure 39: Core Diagnostic signals




s VERILOG SIMULATION

The FPIX Core design was subjected to extensivé Verilog simulation both before and after
layout. First, realistic propagation delay values were determined by SPICE simulation for
standard blocks such as inverters, 2- and 3-input Nand gates, 2- and 3-input Nor gates, etc,
Larger components such as flip-flops were created from the building blocks. Other components
such as large drivers were simulated in SPICE driving the maximum conceivable load. The delay
required 1o drive such a load was back annotated to the Verilog model. Finally, special nodes
such as HFastOR lines were individually simulated under realistic conditions (i.e. full sized
transistors and full 160-pixel columns). The delays on such lines were back annotated to the
Verdog model as well.

The Verilog model of the FPIX Core itself is completely structural in nature. No behavioral
modeling was used. The reason for this is simple: since such pains were taken to accurately back
amnotate structural block delays to the Verilog model, it made no sense to short-cut those delays
by modeling circuits behaviorally. Furthermore, Cadence provides a path whereby schematics
can be extracted directly from structural Verilog code. Using this path assured the designers that
layout-versus-schematic comparison was, in effect, a layout-versus-Verilog comparison, and,
therefore, we could be comfortably certain that the final chip would behave as it was simulated.

The Verilog code for the simulation could be broken down into three parts- the Detector, the
FPIX Core, and the DAQ. The stimuli for the Verilog simulation was derived from the results of
Monte Carlo analysis of the BTeV interaction chamber. Each set of stimuli represents 5000 time
stices of operation or approximately 0.7 milliseconds. Three primary sets of stimuli were used,
one at half the expected luminosity, one at full luminosity, and one at double the expected
fuminosity. Each hit includes the row and column number of the hit pixel and the magnitude of
the hit expressed as a 5-bit number.

At the start of each simuiation, all 5000 time slices are read into a memory array, and then at
each rising edge of the BCO clock, 18x160 “pixels” in the Detector are loaded with the hits for
that times slice. Each “pixel”’in the detector is.actually a tiny delay element that connects to one
of the pixel cells in the FPIX Core. Based on the magnitude of the hif, the arrival of the hit data is
delayed from the pixel cell in the FPIX Core. For a very large hit, the delay is very small —
approxirhately 40ns. For a very smalil hit, the delay can be greater than 100 ns. These delays
were determined by tests of earlier FPIX preamplifiers, and they can be adjusted 1o allow for
studies of time walk. In addition-to the hit data, the most significant 3 bits of the 5-bit magnitude
are held by the “analog section” of the pixel cell to be used as the ADC values. Finally, each
pixel in the detector “dies” for a period of time after it has been hit. If the hit was small in
magnitude, the pixel dies for only 50 ns. If the hit was very large, the pixel dies for as muoch as 2
us. This corresponds to the expected behavior of the preamplifier. '

The DAQ 1s a very simple system latches the output of the FPIX Core on the falling edge of
every Read Clock whenever coreTalking is active. It stores all of these values and then compares
them with the original data input to the simulation. It then give an indication of the number of
matches, misses (output data not found in the stimuli), scratches (garbage data), and missed
originals (stimuli not found in the output data). This is shown in the table below:
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Table 7: Simulation Results

) Luminosity Hits Scratches Matches Misses Missed Accuracy
Originals
0.5 1342 0 1341 0 1 99.9%
1.0 2751 0 2748 | 4 99.8%
2.0 11643 0 11537 31 106 99.1%

A detailed-analysis of the data revealed that the majority of the missed originals correspond to
one of two things. One, a second hit occurs on the same “pixel” while the “pixel” is dead. Two,
a second hit occurs on the same pixel while the digital section is waiting to output its data. As a
consequence, these hits, which are real to the Monte Carlo analysis, are never seen by the DAQ
system since FPIX “ignores” them. Hence; they are “missing originals” — i.e. hits present in the
stiruli that do not make it to the DAQ system.

A large percentage of the Misses can be attributed to time walk on small magnitude hits.
In any case, the accuracy of the FPIX Core and its ability to reconstruct its inputs faithfully is

extremely encouraging. Even at twice the luminosity, we should not be limited in any way by the
FPTX Core.





