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Nonadiabatic geometric quantum computation (NGQC) has been developed to realize fast and robust ge-
ometric gate. However, the conventional NGQC is that all of the gates are performed with exactly the same
amount of time, whether the geometric rotation angle is large or small, due to the limitation of cyclic condition.
Here, we propose an unconventional scheme, called nonadiabatic noncyclic geometric quantum computation
(NNGQC), that arbitrary single- and two-qubit geometric gate can be constructed via noncyclic non-Abelian
geometric phase. Consequently, this scheme makes it possible to accelerate the implemented geometric gates
against the effects from the environmental decoherence. Furthermore, this extensible scheme can be applied in
various quantum platforms, such as superconducting qubit and Rydberg atoms. Specifically, for single-qubit gate,
we make simulations with practical parameters in neutral atom system to show the robustness of NNGQC and
also compare with NGQC using the recent experimental parameters to show that the NNGQC can significantly
suppress the decoherence error. In addition, we also demonstrate that nontrivial two-qubit geometric gate can be
realized via unconventional Rydberg blockade regime within current experimental technologies. Therefore, our
scheme provides a promising way for fast and robust neutral-atom-based quantum computation.

DOI: 10.1103/PhysRevResearch.2.043130

I. INTRODUCTION

Neutral atoms that interact via dipole-dipole interactions
have became a potential platform for quantum computation
[1,2]. Rydberg atoms are one kind of neutral atoms that
are excited to high-lying Rydberg states [3], which would
exhibit strong Rydberg dipole-dipole interaction when the
interatomic distance is not very large. And the Rydberg-
Rydberg interaction (RRI) have been studied for construction
of quantum logic gates [4–6]. By using microwave transitions,
single-qubit Rabi oscillation of neutral atoms have been well
studied experimentally [7]. Besides, high fidelity single-qubit
quantum logic gates [8–11] and quantum controls [12] have
also been demonstrated in neutral atoms. Through the laser-
induced transitions from ground state to Rydberg state, many
two- and multiple-qubit gates in neutral atom based on RRI
have also been demonstrated in experiments [13–21]. These
experimental studies show the high-fidelity of single-qubit

*slsu@zzu.edu.cn
†yung@sustech.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

gates and also show how to improve the fidelity of two-qubit
gates step by step. On that basis, if one can design single- and
two-qubit quantum logic gates that are more robust to system-
atic fluctuation error and decoherence, it will be beneficial to
realize quantum computation in neutral atoms.

Geometric quantum logic gates [22,23] based on adiabatic
or nonadiabatic geometric phase [24–27], which depends only
on the global properties of the evolution paths, provides
us the possibility for robust quantum computation [28–34].
In contrast to the earlier adiabatic-process-based geomet-
ric quantum computation [35–38], nonadiabatic geometric
quantum computation (NGQC) and nonadiabatic holonomic
quantum computation (NHQC) based on Abelian [39–46] and
non-Abelian geometirc phases [47–56] in two- and three-
level system, respectively, can intrinsically protect against
environment-induced decoherence, since the the construction
times of geometric quantum gates is reduced. The nona-
diabatic geometric gates of NGQC and NHQC have been
experimentally demonstrated in many systems including su-
perconducting qubit [57–61], NMR [62–65], NV center in
diamond [66–69]. However, there are many theoretical pro-
posals to apply geometric quantum computation [70–73] and
NGQC [42,74–77] in Rydberg atom platform. To further
speed up the NGQC scheme, NGQC is incorporated with
the time-optimal technology to realize the geometric gate
with the minimum gate under the framework of cyclic evolu-
tion [78–80]. However, both NGQC and time-optimal NGQC
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should satisfy the cyclic condition, which leads to neutral-
atom-based quantum logic gates being more sensitive to decay
and dephasing errors compared to the conventional dynamical
counterparts [8–10]. Particularly, the evolution time of NGQC
should be exactly the same for all quantum logic gates no
matter the geometric rotation angle is large or small.

Here, we propose a new scheme, nonadiabatic noncyclic
geometric quantum computation (NNGQC), that all of single-
qubit geometric gate and nontrivial two-qubit can be realized
via noncyclic non-Abelian geometric phase in a Rydberg
system. Comparing with the conventional Rydberg blockade
[4–6], we consider RRI-induced blockade process seriously
by second-order dynamics, which may be more accurate since
we do not discard the stark shifts relevant to the “blockade”.
More importantly, our scheme can further reduce the geomet-
ric gate time of NGQC [42–46] without the limitation of cyclic
condition. Specifically, we found that the certain gate time of
NNGQC can be reduced by half compared with NGQC by
choosing proper control parameter. The numerically thorough
analysis show that, under the same experimental conditions,
the decay and dephasing error caused by the environmen-
tal noise can significantly be suppressed via our NNGQC
rather than the conventional NGQC. Comparing with recently
noncyclic schemes [81,82], (i) our scheme only needs to
adjust the amplitude and phase of microwave field without
complicated pulse sequences in a resonant two-level system;
(ii) the gate speed of our scheme is faster than Ref. [82]
with the same Rabi frequency. Furthermore, our NNGQC can
also be conveniently applied to other physical platforms such
as superconducting qubits [57] and nitrogen-vacancy centers
[66,67].

II. GENERAL MODEL

Here, we consider a 133Cs with magnetically insensi-
tive “clock” states encoding |0〉 ≡ |6S1/2, F = 3, mF = 0〉
and |1〉 ≡ |6S1/2, F = 4, mF = 0〉 [83], which is resonantly
driven by a microwave pulse to realize the transitions of
|0〉 ↔ |1〉 with the Rabi frequency �(t ) and phase ϕ(t ),
as shown in Fig. 1(a). The Hamiltonian for this sys-
tem is (here and after h̄ ≡ 1) H (t ) = ω0

2 (|1〉〈1| − |0〉〈0|) +
�(t ){cos[ω0t + φ(t )]|1〉〈0| + H.c.}, where ω0 denotes the
corresponding transition energy. In the rotating wave approx-
imation and the interaction frame, the system is given by a
time-dependent Hamiltonian,

H = 1

2

(
0 �(t )e−iϕ(t )

�(t )eiϕ(t ) 0

)
. (1)

For a pair of basis vectors {|ψ1(t )〉, |ψ2(t )〉} following the
Schrödinger’s equation as |ψ1,2(t )〉 = T e−i

∫ t
0 H (t ′ )dt ′ |ψ1,2(0)〉,

the time-evolution operator can be given by U (t, 0) =
T e−i

∫ t
0 H (t ′ )dt ′ = |ψ1(t )〉〈ψ1(0)| + |ψ2(t )〉〈ψ2(0)|. Now, we

take a set of auxiliary states |φ1(t )〉 = (cos χ

2 e−i η

2 , sin χ

2 ei η

2 )
T

and |φ2(t )〉 = (sin χ

2 e−i η

2 ,− cos χ

2 ei η

2 )
T
, with the boundary

conditions |φm(0)〉 = |ψm(0)〉 at time t = 0. In this way,
|ψm(t )〉 can be expressed |ψm(t )〉 = ∑

l Clm(t )|φl (t )〉,
and the time-evolution operator becomes U (t, 0) =∑

l,m Clm(t )|φm(t )〉〈φm(0)|. Using the Schrödinger’s
equation, we obtain the final time evolution operator

FIG. 1. The illustration of our proposed implementation. (a) The
two-level energy structure is resonantly driven by a microwave pulse
to realize the transitions of |0〉 ↔ |1〉 with the Rabi frequency �(t )
and phase ϕ(t ). (b) Conceptual explanation for noncyclic geometric
quantum operation. Noncyclic gemetirc phase is given by half the
solid angle enclosed by the trajectory AB(A′B′) and the geodesic
BA(B′A′) connecting the initial and final points.

U (τ, 0) = ∑2
l,m=1 (Tei

∫ τ

0 [A(t )+K(t )]dt )lm|φl (τ )〉〈φm(0)|, with
Alm ≡ i〈φl (t )|(d/dt )|φm(t )〉 being the matrix-valued
connection one-form and Klm(t ) ≡ −〈φl (t )|H (t )|φm(t )〉
being dynamical part. If a special auxiliary state is chosen to
make dynamical part varnished, a noncyclic holonomy matrix
can be obtained [84].

To realize a noncyclic geometric gate, we choose the
auxiliary state |φm(t )〉 to be proportional to the dynamical
states |ψm(t )〉, which satisfies the von Neumann equation [49]:
d
dt 
m(t ) = −i[H (t ),
m(t )], where 
m(t ) ≡ |φm(t )〉〈φm(t )|
denotes the projector of the auxiliary basis. Explicitly, we
found that they are governed by the following coupled dif-
ferential equations:

�(t ) = χ̇

sin (ϕ − η)
, ϕ(t ) = η − arctan

(
χ̇

η̇ tan χ

)
. (2)

In this way, the time-evolution operator becomes

U (τ, 0) = eiγ |φ1(τ )〉〈φ1(0)| + e−iγ |φ2(τ )〉〈φ2(0)|, (3)

where γ (τ ) = ∫ τ

0 (A11 + K11)dt = − ∫ τ

0 (A22 + K22)dt =∫ τ

0
η̇

2 cos χ
dt denotes global phase including the diag-

onal geometric phase γg = ∫ τ

0 A11dt = ∫ τ

0
1
2 η̇ cos χdt

and diagonal dynamical phase γd = ∫ τ

0 K11dt =
− ∫ τ

0 � cos χ cos(ϕ − η)dt . To make evolution gate in
Eq. (3) purely geometric, we set ϕ − η = π/2 for erasing the
diagonal dynamical phase. Therefore, the diagonal geometric
phase γ = ∫ η(τ )

η(0)

∫ χ (τ )
χ (0)

1
2 sin χdχdη = �angle/2 is given by

half the solid angle enclosed by the trajectory and the geodesic
connecting the initial and final points, as shown in Fig. 1(b).
Finally, the evolution operator in the basis {|0〉, |1〉} is found
to be

U =
[

e−i η−
2 (X2γ ,χ− + iY2γ ,χ+ ) e−i η+

2 (iZ2γ ,χ+ − Yχ−,2γ )
ei η+

2 (iZ2γ ,χ+ + Yχ−,2γ ) ei η−
2 (X2γ ,χ− − iY2γ ,χ+ )

]
,

(4)
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where Xa,b ≡ cos a
2 cos b

2 , Ya,b ≡ sin a
2 cos b

2 , Za,b ≡
sin a

2 sin b
2 , χ± = χ (τ ) ± χ (0), and η± = η(τ ) ± η(0).

The initial values of the auxiliary variables η and χ can be
determined by the target geometric gates.

To illustrate the geometric rotation, U is conveniently rep-
resented (ignore a global phase) as

U (θ, α, β ) = ZβXθ Zα, (5)

where θ ≡ sin−1(
√

Z2
2γ ,χ+ + Y 2

χ−,2γ ), α ≡ − tan−1 (
Y2γ ,χ+
X2γ ,χ−

) −
tan−1 (

Z2γ ,χ+
Yχ− ,2γ

) + η−−η+−π

2 , and β ≡ − tan−1 (
Y2γ ,χ+
X2γ ,χ−

) +
tan−1 (

Z2γ ,χ+
Yχ− ,2γ

) + η−+η++π

2 are rotation of angles around

the X and Z axis of the Bloch sphere, respectively.
Any single-qubit SU (2) operation can be realized with
U (θ, α, β ) by choosing the geometric phase γ , the initial
and final value η± and χ±. For example, we can realize
the noncyclic geometric U1 = U (π/2,−π/2, 0) and
U2 = U (π/2, π/2, π/2) (Hardmard gate) by setting the
parameters as {γ = π

4 , χ+ = 0, χ− = π, η± = ∓π
2 }, and

{γ = π
4 , χ+ = − 3π

2 , χ− = π
2 , η± = ∓π

2 }, respectively.
More specifically, we note that Eq. (4) is the Z-rotation
gate Z(−η− ) = exp(i η−

2 Z ) when γ = π, χ− = 0 and is the
X -rotation gate Xχ− = exp(i χ−

2 X ) when γ = π , η− = 0 and
η+ = −π .

To further understand the scheme of our NNGQC, we
found that the nondiagonal parts of A and K satisfy
the relations of unconventional quantum holonomy [50,85]
as

∫ τ

0 Akmdt/
∫ τ

0 Kkmdt = −1 for k 	= m, where Akm(t ) =
1
2�[cos χ cos(ϕ − η) − i sin(ϕ − η)]. Although A + K is a
diagonal matrix, A and K are both nondiagonal in our scheme.
Specifically, A does represent a non-Abelian connection with
nonvanishing commutation relation [A(t ), A(t ′)] 	= 0, which
proves the non-Abelian nature of the gate in Eq. (4) [27]. In
addition, we emphasize that the auxiliary states |φ1,2(t )〉 in our
model are chosen generally for the resonate two-level system
and thus the choice of auxiliary states does not change the
above results.

Now, to construct the NNGQC gate, one simple parame-
ter set of choice is found to be χ (t ) = �0t − χ0, η(t ) =
φ1ε(t ) + φ0, where the step function ε(t ) satisfies ε = 0 with
t ∈ [0,

χ0

�0
] and ε = 1 with t ∈ [ χ0

�0
, τ ] and �0, φ1, φ0 and

χ0 are constants. With the settings, we can obtain the initial
and final value η± and χ± as η+ = φ1 + 2φ0, η− = φ1, χ+ =
�0τ − 2χ0, χ− = �0τ . Meanwhile, the geometirc phase is
taken by γ = ∫ τ

0
1
2 η̇ cos χdt = φ1

2 . For U1 gate, the control pa-
rameters are chosen as χ0 = π/2, φ0 = −π/2, φ1 = π/2, and
τ = π

�0
.In sharp contrast to the conventional NGQC schemes

to construct U1 [42–46] that requires evolution time being 2τ ,
by choosing the same maximum Rabi frequency, we found
that the required gate time of NNGQC to construct U1 is
τ [as shown in Fig. 2(a)], which is reduced by 50% (see
Appendix A for details).

III. GATE PERFORMANCE AND ROBUSTNESS

The performance of the U1 gate can be simulated by us-
ing the Lindblad master equation [86]. In our simulation,
we have used the following set of experimental parameters
[8–10]. The Rabi frequency, decay and dephasing rates are set
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FIG. 2. (a) The Rabi frequency �(t ) and phase ϕ(t ) of U1 gate
for NNGQC and NGQC. State population and state fidelity of
(b) NNGQC and (c) NGQC with the initial state being |0〉. (d) Gate
fidelity of U1 as a function of t/τ (t/2τ ).

as �0 = 2π × 6.25 kHz, γ1 ≈ 2�0 × 10−4, and γ2 ≈ 2�0 ×
10−3, corresponding to T1 = 590 ms and T2 = 50 ms. Sup-
pose that the qubit is initially prepared in the |ψ (0)〉 = |0〉
state, the time-dependence of the state populations and the
state fidelity F = |〈ψI |ψ (τ )〉|2 of realizing the U1 gate for
NNGQC and NGQC are depicted in Figs. 2(b) and 2(c),
where the state fidelities of NNGQC and NGQC are ob-
tained to be 99.87% and 99.75%, respectively. Furthermore,
we have also investigated the gate fidelity of U1 defined by
F = (1/2π )

∫ 2π

0 〈ψI |ρ|ψI〉d� for initial states of the form
|ψ〉 = cos �|0〉 + sin �|1〉, where a total of 1001 different
values of � were uniformly chosen in the range of [0, 2π ],
as shown in Fig. 2(d). We found that the gate error (1 − F ) of
NNGQC can be reduced by as much as 50% compared with
the gate error of NGQC (0.24%).

Now, we start to demonstrate the robustness of our scheme.
We first consider the robustness of our NNGQC against Rabi
errors and assume the amplitudes of control pulse to vary
in the range of �0 → (1 + ζ )�0 with the error fraction ζ ∈
[−0.1, 0.1]. Next, we take the detuning noise to be �σz

with � = δ�0 being static and the fraction is δ ∈ [−0.1, 0.1].
Comparing our NNGQC with the conventional NGQC meth-
ods, we plot the performance of the same geometric gate with
the same pulse error. As shown in Figs. 3(a), 3(b), and 3(c), the
NNGQC is always more robust than the NGQC gate. Further-
more, we also simulated the gate fidelity as a function of decay
rate and dephasing rate γ1 and γ2. For above two schemes as
shown in Figs. 3(d), 3(e), and 3(f), our scheme of NNGQC
can greatly suppress the decoherence effect comparing with
the conventional NGQC.

To further show the noise-resilient geometric feature of our
NNGQC, we also take the above noises to compare the per-
formance of our geometric gate with that of the corresponding
dynamical gate (DG) [87,88] as shown in Appendix B. From
the numerical result, we can clearly see that our NNGQC
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FIG. 3. The performance of U1 gate under imperfections. Gate fidelities of (a) NNGQC, (b) NGQC under the Rabi error ζ and detuning
error δ. Panel (c) is the difference between (a) and (b). The gate fidelities for (d) NNGQC, (e) NGQC, and (f) difference as a function of decay
rate γ1 and dephasing rate γ2, respectively.

scheme is more robust against both the pulse control error and
decoherence error than DG scheme.

IV. NONTRIVIAL TWO-QUBIT GATE

In this section, we proceed to implement nontrivial two-
qubit Rydberg quantum gates free from blockade error with
the pulse similar to that designed in single-qubit case. As
shown in Fig. 4, we consider two 133Cs atoms with magnet-
ically insensitive “clock” states encoding |0〉 ≡ |6S1/2, F =
3, mF = 0〉 and |1〉 ≡ |6S1/2, F = 4, mF = 0〉 [83]. The Ry-
dberg state is chosen as |R〉 ≡ |61S1/2〉. And the C6 parameter
can be evaluated as 126 GHz μm6 [89].

The basic process of two-qubit gate is shown in Fig. 4,
where the control in resonant interaction but the target atom
is large-detuning interaction. The required three steps are as
follows.

Step (i). Turn on the laser on control atom with Hamiltonian

Hc = �1(t )

2
|1〉〈R| + H.c., (6)

where �1(t ) ≡ |�1(t )|eiϕ1(t ). We set ϕ1(t ) = 0 and∫
�1(t )dt = π in step (i).
Step (ii). Turn off the laser on control atom and turn on

lasers with Rabi frequencies �S and �P on target atom. The
Hamiltonian is

Ht = �|R〉〈R| + 1
2 [�S (t )|0〉 + �P(t )|1〉]〈R| + H.c., (7)

where �S (t ) ≡ |�S (t )|eiϕS (t ) and �P(t ) ≡ |�P(t )|eiϕP (t ). Be-
sides, the RRI Hamiltonian

HV = V |RR〉〈RR| (8)

may be in existence conditioned on the control atom
is excited or not. We use |mn〉〈mn| to denote the ab-
breviation of |m〉〈m| ⊗ |n〉〈n| here and throughout the
manuscript for simplify. Thus, the dynamical process can
be classified as two cases in Figs. 4(b) and 4(c), respec-
tively, depend whether the control atom is not excited or
excited.

FIG. 4. (a) Illustration of the two-qubit NNGQC gate based on
unconventional Rydberg blockade with single-atom basis. V denotes
the RRI strength. For control atom, |1〉 is coupled with |R〉 through
two-photon process with Rabi frequency �1(�3) in step (i) [(iii)].
For target atom, |0〉 (|1〉) is coupled with |R〉 with Rabi frequency
�S (�P ) and detuning � via two-photon process in step (ii). � j =
|� j |eiϕ j with j = 1, 3, S, P. (b) [(c)] Dynamical process of step (ii)
under two-atom basis in the without (with) RRI. For conventional
blockade, the dynamical process in panel (b) is resonant while in
panel (c) is detuned by V and always be discarded. However, in our
scheme both of the dynamical processes in panels (b) and (c) are
used for the gate, and thus one can call it “unconventional Rydberg
blockade.”
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The effective Hamiltonian in Fig. 4(b) can be calculated as

Heff,1 = �eff,1

2
|00〉〈01| + H.c., (9)

where �eff,1 = �S�
∗
P/(2�) and the stark shifts are vanished

when |�S| = |�P|. Similarly, the effective Hamiltonian in
Fig. 4(c) would be

Heff,2 = �eff,2

2
|R0〉〈R1| + H.c., (10)

where �eff,2 = �S�
∗
P/[2(� + V )] and the stark shifts are also

vanished when |�S| = |�P|.
Equations (9) and (10) have similar form as Eq. (1). Thus,

we can use the similar pulses to construct the noncyclic nona-
diabatic geometric operations. That is, in step (ii), one can get
the operation

U2 = |0〉c〈0| ⊗ U (θ1, α1, β1) + |R〉c〈R| ⊗ U (θ2, α2, β2),

(11)

with suitable laser parameters.
Step(iii). Turn off the lasers on target atom and at the

same time turn on laser with Rabi frequency �3(t ) on control
atom. If |�3(t − t2 − t1)| = |�1(t )| and ϕ3 = π , in which t1(2)

denotes the evolution time in step (i) [(ii)], one can get the the
whole evolution operator as

U = |0〉c〈0| ⊗ U (θ1, α1, β1) + |1〉c〈1| ⊗ U (θ2, α2, β2). (12)

Therefore, in general, we know that Eq. (12) represents a
nontrivial two-qubit entangled gate, since U in subspace
{|00〉, |01〉} and {|10〉, |11〉} is different.

When θ1 = π/2, α1 = π/2, β1 = π/2 and � = V , we ob-
tain two-qubit entangled gate with matrix representation as

U =

⎛
⎜⎜⎜⎝

0 i 0 0
−i 0 0 0
0 0 eiπ/4√

2
eiπ/4√

2

0 0 eiπ/4√
2

−eiπ/4√
2

⎞
⎟⎟⎟⎠. (13)

Therefore, our scheme is sufficient for universal quantum
computation when assisted by a combination of the single-and
two-qubit gate.

To evaluate the performance of two-qubit entangled gate,
we take the parameters from the state-of-art experiments as
the Rabi frequency �0 = �1 = 2π × 10 MHz and the de-
tuning � ≈ 17�0, where �P and �S are governed by the
Eq. (2) in maintext. As shown in Fig. 5(a), we plot the state
populations and the state fidelity of the two-qubit gate with
the initial state |ψ (0)〉 = 1

2 (|00〉 + |01〉 + √
2|10〉), where the

state fidelity is obtained to be 99.97% without considering
relaxation. Moreover, we have also investigated the gate in-
fidelity [90,91] of two-qubit 1 − F as a function of decay rate
and dephasing rate of Rydberg state as shown in Fig. 5(b),
and found that our two-qubit geometric gate is robust against
decoherence from the environmental noises.

V. CONCLUSION

In summary, we have presented a new framework of
NNGQC, which universal nonadiabatic geometric gates can
be constructed via noncyclic non-Abelian geometric phase.
Comparing with conventional NGQC, NNGQC can further
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FIG. 5. (a) State population and state fidelity of two-qubit gate
with the initial state being 1

2 (|00〉 + |01〉 + √
2|10〉). (b) Gate infi-

delity as a function of decay rate and dephasing rate for Rydberg
state.

reduce the geometric gate time beyond the limitation of cyclic
condition. Consequently, our proposal is more robust against
the decay and dephasing effects from the environmental de-
coherence. Moreover, we construct a nontrivial two-qubit
geometric gate via RRI-induced large detuning process seri-
ously without discarding the process induced by RRI-induced
“blockade” terms. Therefore, our scheme provides a promis-
ing way towards fault-tolerant quantum computation for
neutral-atom-based quantum system.
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APPENDIX A: NONADIABATIC GEOMETIRC
QUANTUM COMPUTATION

Here, we shall succinctly derive NGQC [42–46] in our
framework to provide a unified view on geometric quantu
computation. For conventional NGQC, it should satisfy the
cyclic condition as |φ1(τ )〉 = |φ1(0)〉. Consequently, the Rabi
frequency is governed by the following equation∫ T

0
�(t )dt = 2π, (A1)

where T denotes the gate time. In this way, the cyclic nonadi-
abatic geometric gate becomes

U (τ, 0) = eiγ |φ1(0)〉〈φ1(0)| + e−iγ |φ2(0)〉〈φ2(0)|

= cos γ + i sin γ

(
cos μ sin μe−iη0

sin μeiη0 − cos μ

)

= eiγ �n·�σ , (A2)
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FIG. 6. Gate fidelities of (a) NNGQC and (b) DG under the Rabi
error ζ and detuning error δ. The gate fidelities for (c) NNGQC
and (d) DG as a function of decay rate γ1 and dephasing rate γ2,
respectively.

where μ = χ (0) and η0 = η(0) denotes the initial value of
χ and η at time t = 0; �n = (sin μ cos η0, sin μ sin η0, cos μ),
and �σ are the Pauli matrices.

To realize the U1 gate of NGQC, we take parameters as γ =
3π/4, η0 = π/4, and μ = 7π/20 corresponding the Rabi fre-
quency �(t ) = �0 and the evolution time T = 2π/�0 = 2τ ,
as shown in Fig. 2(a).

APPENDIX B: ROBUSTNESS OF NNGQC
VERSUS DYNAMICAL GATE

Before comparing the robustness of our NNGQC gate with
the dynamical gate (DG) [87,88], let’s briefly talk about how
to realize the U1 dynamical gate. When this Hamiltonian H is
time-independent, we can obtain the evolution operator as

Udg(�τ1, ϕ) =
(

cos
(

�τ1
2

) −ie−iϕ sin
(

�τ1
2

)
−ieiϕ sin

(
�τ1

2

)
cos

(
�τ1

2

)
)

. (B1)

In general, any single-qubit gate can be realized by the
evolution operator. We note that Eq. (B1) is X-rotation Udg =
X�τ1 when ϕ = 0. To realize a Z-rotation gate Udg = Zφ ,
we need to take two sequential evolutions Udg(π, φ/2) and
Udg(π,−φ/2). In this way, the general dyamical gate is given
by

Udg = ZφX�τ1 Zα. (B2)

For the U1 dynamical gate, we take parameters as �(t ) = �0,
τ1 = π/2�0 = 1

2τ , φ = 0, α = −π/2, and T = 5τ/2.
Comparison of the robustness against the detuning error

and Rabi frequency, of all the two implementations are shown
in Figs. 6(a) and 6(b). From the numerical result, we can
clearly see that the NNGQC scheme is more robust against
the pulse control errors than the corresponding DG scheme.
Furthermore, we also consider comparison of the robustness
against the decay rate and dephasing rate caused by environ-
mental noise. From the Figs. 6(c) and 6(d), we know that
our scheme of NNGQC can suppress the decoherence effect
comparing with the DG.
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