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Abstract
In this dissertation, we will look at neutrino production in astrophysical environments and
how we can use these environments to probe neutrino physics. Neutrinos carry information
about the particle physics processes occurring inside the source. As these neutrinos have
energies much larger than those from terrestrial sources and travel cosmological distances
to reach us, they can also be used to look for new physics.

We look at neutrino production in gamma-ray bursts and magnetars in a semi-
analytical way. In both cases, we explore the source parameters that favor neutrino
production and its implications for IceCube and future neutrino detectors. Then, we
present the neutrino time delay approach to explore Beyond Standard Model interactions.
This technique is suitable in multimessenger astrophysics, where we can measure neutrino
delay with respect to a photon signal. We look at the time delay distributions obtained
from Monte Carlo simulations, which can then be used for statistical analyses. We show
an application of this technique in the context of supernova neutrinos and neutrino-dark
matter interactions.
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Chapter 1 |
Introduction

1.1 Neutrino physics
The Standard Model (SM) of particle physics is the theory that describes three of the
fundamental forces: electromagnetic, weak and strong interactions. These forces are
described in the context of quantum field theory, arising from the local SU(3) × SU(2)
×U(1) gauge symmetry. Among the fundamental particles that form the SM, the neutrino
holds a special place as the only fermion with zero electric charge. Neutrinos are only
allowed to interact via the weak force and as such they are known to interact very weakly
with ordinary matter. Furthermore, SM neutrinos are purely left-handed (antineutrinos
are purely right-handed) and massless.

The neutrino was first hypothesized by Wolfgang Pauli in 1930, as a way to explain
beta decay, where a neutron seemingly decays into a proton and an electron. Per
the kinematics of two-body decays, the electron would always come out carrying the
same energy, but experimental observations clearly showed that the electrons were not
monoenergetic. This obvious violation of energy conservation could be avoided if a third
particle carried away the missing energy. The first evidence for the neutrino was not
observed until 1956, as they were so weakly interacting. The neutrino family, consisting
of νe, νµ and ντ was finally completed by the DONUT experiment in 2000.

Neutrino physics has made significant progress since its initial discovery. Originally
believed to be massless, it was even built as such in the SM. In 1957/1958 Bruno
Pontecorvo first proposed the idea that neutrinos could oscillate into antineutrinos,
inspired by the K0 ⇌ K

0 oscillations proposed by Gell-Mann and Pais one year prior [33].
Pontecorvo’s second paper in 1967 introduced the possibility of neutrino oscillations
between different flavors, provided that they had mass and lepton number was not a
conserved quantity [34]. He also predicted that the observed solar neutrino flux would
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be smaller than the theoretical prediction. This so-called "solar neutrino problem" was
confirmed in 1970.

Definitive proof for neutrino oscillations was obtained by the Super-Kamiokande
detector in 1998 [35] and the Sudbury Neutrino Observatory in 2001 [36]. The discovery
implies that neutrinos have mass, which is clear evidence that they exhibit Beyond
Standard Model (BSM) behavior. At this point in time, we are in the precision era, where
we progressively narrow down the values of the oscillation parameters. In the future,
next-generation neutrino experiments such as DUNE and Hyper-Kamiokande (HK) will
continue to improve on the current status of oscillation measurements, particularly the
measurement of the CP-violation phase and determining the neutrino mass hierarchy [37].

1.2 Astrophysical neutrinos and multimessenger astron-
omy
Neutrinos can be produced on Earth via radioactive decays, such as reactor neutrinos or
geoneutrinos. We can also use particle accelerators to force collisions between protons
and nuclei to create pions, which subsequently decay into neutrinos. These neutrino
sources have limited energies, as they do not go past a few tens of GeV. Atmospheric
neutrinos, created from cosmic ray air showers in the atmosphere, reach higher energies,
up to O (10) TeV. However, the atmospheric neutrino flux is known to fall steeply with
neutrino energy. These neutrino fluxes are shown in Fig. 1.1.

We can look at even more energetic neutrinos by looking at faraway sources. Our
closest source of extraterrestrial neutrinos is the Sun. They are produced in the Sun’s
core as a result of nuclear fusion processes. These neutrinos peak in the O(100) keV range
and then quickly decrease with energy, extending to ∼ 10 MeV. Besides solar neutrinos,
the supernova explosion SN1987A became the first event which showed coincident photon
and neutrino emissions, the latter being in the ∼ 10 MeV range [38,39].

Extreme astrophysical environments provide the strongest particle accelerators, able
to accelerate cosmic rays up to ∼ 1020 eV, as observed by the Pierre Auger Observatory
and the Telescope Array. Some examples of these environments include gamma-ray bursts
(GRBs), active galactic nuclei (AGNs) and magnetars. Similar to terrestrial experiments,
we expect these nuclei to create pions via interactions with their environments, leading
to high-energy neutrino production. Within these sources, neutrinos can be produced
with energies up to ∼ 10 PeV. At these high energies, these neutrinos are essentially
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Figure 1.1. Measured and expected neutrino fluxes from various sources as a function of
neutrino energy.

background free as they overtake the atmospheric neutrino flux. However, the flux is
quite low and thus requires ∼ 1 km3 detectors to observe.

The discovery of these high-energy astrophysical neutrinos by the IceCube detector
[40, 41] ushered the era of neutrino astronomy. The result of a recent analysis using
six years of cascade data is shown in Fig. 1.2. Here, we observe that the atmospheric
neutrino events, which is the sum of the expected conventional and prompt neutrino
neutrino events shown in the figure, is insufficient to explain the neutrino events above ∼
30 TeV. The diffuse flux, the cumulative contribution from all neutrino sources, appears
largely isotropic, evenly distributed between the three neutrino flavors, and its energy
spectrum is well-described by a power law from ∼ 10 TeV up to PeV energies [1,10,42,43].
The actual origin of these neutrinos remains unresolved. The observation of the neutrino
event IceCube-170922A coincident with the flaring blazar TXS 0506+056 [44] provided us
with an example of multimessenger observations triggered by a neutrino observation [45].
There is also correlation of IceCube neutrinos with a catalog of gamma-ray emitters, with
a significance of 3.3σ [46]. One of these emitters, the nearby active galaxy NGC1068,
provided the first direct evidence of an AGN as a neutrino source at a significance of
4.2σ [47].

Astrophysical neutrinos provide unique opportunities to study sources that are
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Figure 1.2. Number of neutrino events in IceCube as a function of reconstructed cascade
energy, as shown in [1]. The dataset consists of neutrinos with reconstructed energies above
400 GeV that were collected in 2010-2015. The Monte Carlo event distribution from the sum of
all neutrino fluxes is shown as a solid gray histogram.

otherwise invisible in the electromagnetic spectrum, or behave differently at certain
wavelengths. Neutrinos and gamma-rays are expected to be emitted in tandem from
meson decays, with comparable luminosities. In the case of NGC1068, its neutrino
luminosity is found to be significantly higher than its gamma-ray luminosity as measured
by Fermi-LAT [47], which shows that this source has to be gamma-ray opaque. This
information can then be used to better understand the source (e.g. [48]).

Neutrinos also serve as one of the astrophysical messengers, together with cosmic
rays, photons and gravitational waves. The case of NGC1068 is an example of the use of
photons and neutrinos. The use of two or more of these messengers is the principle of
multimessenger astronomy.

Each messenger possesses its own strengths and drawbacks. Cosmic rays are able
to be detected at extremely high energies, but the highest energy cosmic rays must be
within ∼ 50 Mpc due to attenuation with the cosmic microwave background (CMB). As
they are charged particles, they get deflected by the Galactic magnetic field and will
not point back to its original source. This makes the other three messengers better at
locating sources. Photons interact electromagnetically, so they can be attenuated in
the interstellar medium by dust, the extragalactic background light and the CMB. The
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latter two place a gamma-ray horizon of ∼ 10 Mpc for photons above 1 TeV. However,
they have the best angular resolution among all the messengers. Gravitational waves
have angular resolution of tens of square degrees and their horizon is mostly set by the
detector’s sensitivity.

In the case of neutrinos, the main source of attenuation would be the cosmic neutrino
background (CνB). However, the very small weak-scattering cross section makes the
Universe essentially transparent to neutrinos. Their weak interaction with ordinary matter
also means that they carry information from deep within the source. The limitation of
this particle is that only νµ, which produce muon tracks in the detector, have a moderate
angular resolution of a few degrees. At the same time, the small cross section also means
that the neutrino source has to be nearby and highly luminous to detect a few events.

1.3 Neutrino physics as a probe of Beyond Standard
Model physics
We showed that astrophysical neutrinos can be used as studying tools of their sources.
Applications of this kind mostly focus on the astrophysical side. A natural question is if
they can also be used for particle physics purposes, as they probe an energy scale that is
not accessible by terrestrial neutrino sources.

The IceCube Collaboration reported in 2021 that one of its cascade events was
created as a result of the Glashow resonance [43]. This resonance consists of the on-shell
production of the 80 GeV W − boson via e−ν̄e annihilation. For an electron at rest, this
requires a 6.7 PeV ν̄e. An event of this kind is important as it provides further validation
of the SM. As neutrinos contain BSM physics by virtue of their mass, it is natural to
also study BSM models that can be tested with high-energy neutrinos.

The most immediate issue is generating a mass for the neutrino. In the SM, fermion
masses are generated through Yukawa couplings with the Higgs doublet (after electroweak
spontaneous symmetry breaking), which requires the presence of right handed fermion
fields. On top of this, we also want to explain why neutrinos are so light compared to
their charged lepton counterparts; this disparity between masses is not seen in the quark
sector. Several types of seesaw mechanisms have been proposed as phenomenological
explanations for the smallness of the neutrino mass, but generally require a new physics
scale, mostly through the introduction of a very heavy right-handed neutrino.

We also do not know whether the active neutrinos are Dirac or Majorana fermions,
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and the neutrino is the only elementary particle that may be a Majorana fermion, which
motivates the construction of next generation double beta decay experiments such as
nEXO [49]. In the neutrino oscillation front, the LSND experiment claimed a ν̄e excess
over the expected background, which provided a hint towards a sterile neutrino which
does not interact via the weak force [50]. This so-called LSND anomaly was further
reinforced by the MiniBooNE experiment at Fermilab, which found a 4.7σ excess of
events in νe and ν̄e channels [51]. Moreover, it turns out that both of these anomalies
cannot be simulatenously explained by a 3 active + 1 sterile neutrino scenario.

While several models have been presented to tackle the problems presented above,
this thesis will focus on the class known as neutrino self-interactions (νSI), also known
as secret neutrino interactions. In this class of models, new mediators allow neutrino-
neutrino couplings beyond the weak force. Laboratory limits on these models rely
mostly on meson-decay experiments [22] and allows for νSI to have large effects. The
introduction of a new mediator allows for modifications of the neutrino oscillations in
matter [52] and enable sterile neutrino decays [53, 54], which can potentially explain
the short baseline neutrino anomalies. Vector mediators can explain the muon g − 2
anomaly [55] by introducing additional Feynman diagrams contributing to the calculation
of the anomalous magnetic moment via the gauged Lµ − Lτ model [56–59]. The νSI
model has deep implications in cosmology, due to its ability to alter the CMB power
spectrum, providing limits on the model parameters [22, 60–62].

Astrophysical neutrinos can be used to study νSI through their effect on the diffuse
neutrino flux. As neutrinos propagate from the source to the observer, they will move
through the CνB. Although the weak interaction cross section would normally be too
small for high-energy neutrinos to interact, new physics can change this. A way to create
a significant impact on the ν − ν cross section is to produce new particles via resonances.
In resonant interactions, the cross section spikes, which would create significant neutrino
attenuation at energies close to resonance. This has been applied in the context of
IceCube in several studies [63–67].

Another approach we can take is to study neutrino interactions with dark matter
(DM). DM is clear evidence that the particle content of the Universe is not fully known.
Despite the overwhelming evidence for its, such as Galaxy rotation curves [68,69] and
gravitational lensing [70–73], its particle nature remains unknown [74, 75]. Weakly
Interacting Massive Particles (WIMPs) are one of the most studied DM candidates and
direct and indirect DM searches have extensively probed the WIMP parameter space.
Stringent limits on DM exist via WIMP interactions with SM particles as well as DM
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decay or annihilation to SM particles. Direct-detection searches have not found evidence
for WIMPs [76–78], but are not sensitive to DM masses below 10 GeV. On the other
hand, DM phase-space distribution in dwarf spheroidal galaxies suggests a lower bound
for fermionic DM mass of ∼ 1 keV, while the mass range of 1 keV – 1 MeV remains
poorly constrained. Within this mass range, keV sterile neutrinos may be a suitable DM
candidate via the seesaw mechanism [79–81].

Neutrino couplings to dark matter can also be used to shed some light on the
nature of DM, as such a model allows both νSI and DM self-interactions to take place.
DM self-interactions [82–87] were introduced to alleviate problems with the standard
cosmological model, such as the "too big too fail" problem [88] and the "missing satellite"
problem [89,90]. Neutrino-DM interaction has been extensively considered in cosmology
context [91–103]. In addition, an ongoing neutrino-DM scattering would damp the power
spectrum of primordial fluctuations (see e.g. [100]). Observation of high-energy cosmic
neutrinos provided further power to probe for DM-neutrino interaction [40,41]. Neutrino-
DM interactions were studied in this context [65,104–106], which bestowed competitive
limits with cosmological studies. These searches utilize features induced by DM-neutrino
interaction in energy spectrum [65], energy spectrum and arrival direction [104], and
arrival time [106] of high-energy cosmic neutrinos. The latter has become possible
with recent progress in identification of coincident high-energy neutrinos with transient
astrophysical phenomena [107,108].

In order to probe BSM interactions, we also want to exploit multimessenger astronomy
to extract more information. One of the most recent examples is GRB221009A, which
has the brightest observed prompt emission, located at redshift z = 0.15 and isotropic-
equivalent energy of Eiso ∼ 1054 erg [109]. Even more striking is that LHAASO observed
gamma-rays up to 10 TeV in energy, which should not happen due to photon attenuation
through e+ − e− pair production. Among the several explanations that were proposed,
we focus on the ones involving neutrinos. For example, sterile neutrinos produced at the
source can decay into photons via the neutrino magnetic moment [110, 111], or radiative
decays into active neutrinos and photons [112]. Naturally, any of these explanations
should also be consistent with IceCube’s non-observation of neutrinos coincident with
this GRB [113]. The ability to observe different particles and their arrival times will
prove useful to our study of νSI.
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1.4 Outline
In this dissertation I will present the results from my work on neutrino production in
astrophysical environments. The neutrino sources considered are gamma-ray bursts
and magnetars. In both cases, we will look at source parameters that favor neutrino
production and its implications for IceCube and future neutrino detectors.

Afterwards, I will present the neutrino time delay approach to explore BSM inter-
actions. As neutrinos propagate between source and observer, scatterings with other
particles will naturally elongate the trajectory length. Even if the scattering angle is small,
the large distances are enough to cause a measurable time delay between a scattered and
unscattered neutrino. This technique is suitable in multimessenger astrophysics, where
we can measure neutrino delay with respect to a photon signal. Time delay has been
suggested as a method to constrain the cross section [106] by using the characteristic
time delay of neutrinos at a given energy. We will expand on this by considering the
time delay distribution for a given neutrino spectrum at the source, which can then be
used to perform a detailed statistical analysis in neutrino experiments.

The thesis is structured as follows: in Chapter 2 we will go over the basic theoretical
tools used in this work, such as neutrino oscillations and cosmological features relevant
to neutrino propagation. Chapter 3 discusses neutrino production from cosmic rays
and outline the particle interactions involved in the process. In chapter 4, we look
at neutrino oscillations in choked GRB jets, based on [114]. In chapter 5, we look
at neutrinos originating from charm production in magnetars, which constitutes the
work done in [115]. We discuss a few BSM neutrino interaction models in chapter
6, which will be used in later chapters. We present the code I developed to simulate
neutrino echoes in chapter 7, with applications to high-energy neutrino spectra [116].
In chapter 8 we introduce an application of this code in the context of neutrino-dark
matter interactions, its effect on neutrino emission from supernovae and prospects for
Hyper-Kamiokande [117].
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Chapter 2 |
Theoretical Background

2.1 Introduction
In this section, we will discuss the theoretical tools used throughout the work. The
purpose of this section is not to include extensive details of neutrino physics, instead
focusing on the theory that is applied directly to this work, as well as a brief introduction
of the concepts. Here we will also introduce terminology, parameters and notation
frequently used throughout the discussion of neutrino secret interactions. First, we will
briefly mention the role of neutrinos in the Standard Model, to then set up the stage
for neutrino oscillations. The oscillation phenomenon is vital in particle propagation
and will also play an important role in BSM interactions. As the bulk of this work deals
with astrophysical neutrinos, we will encounter sources located at cosmological distances,
which necessitates an introduction to the basics of Big Bang cosmology, namely expansion
of the Universe and redshift.

Before discussing the theory, we will first point out the units used throughout this
work. For the particle physics content, which includes field theory, Lagrangians, cross
sections and neutrino oscillations, we use natural units, i.e. ℏ = c = 1. When an
exception arises, the units will be shown explicitly. For Einstein summation, we adopt
the Minkowski metric tensor ηµν = diag(1, −1, −1, −1). The zeroth component of our
four-vectors are our timelike components (e.g. time, energy).

For astrophysical parameters, such as luminosities or ejecta speeds we will use cgs units.
When using cgs units, mostly in Section 3, we will often use the notation Qx = Q/10x,
where Q is the parameter in question, in cgs units. The only exception to this rule is the
mass of astrophysical objects, in which case we use Mx = M/10xM⊙.
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2.2 Massless neutrinos in the Standard Model
Within the Standard Model of Particle Physics, we have three neutrinos: νe, νµ and ντ ,
each with its own antiparticle. They belong to the family of leptons, where the neutrinos
are the neutral leptons, while the others are the charged leptons: e, µ and τ . Leptons are
spin 1/2 fermions, where the charged leptons ℓ are known to be Dirac fermions, with free
Lagrangian

Lfree = iℓ̄γµ∂µℓ − mℓℓ̄ℓ, (2.1)

where mℓ is the lepton mass and γµ (µ = 0, 1, 2, 3) are the gamma matrices, with the
defining property {γν , γν} = 2ηµν . The first term in the Lagrangian is called the kinetic
term and the second one the mass term. The important feature of spin 1/2 fermions is
that we can introduce the chirality matrix γ5 = iγ0γ1γ2γ3 and define

PL = 1
2(1 − γ5) PR = 1

2(1 + γ5), (2.2)

where PL(PR) is the left (right) chirality projection operator. For a given Dirac
field Ψ, we can thus define the left-handed field ΨL = PLΨ and the right-handed field
ΨR = PRΨ. By splitting a field into its left and right components, we can write the free
Lagrangian as

Lfree = iℓLγµ∂µℓL + iℓRγµ∂µℓR − mℓ(ℓRℓL + ℓLℓR). (2.3)

Due to the presence of γµ in the kinetic term, left-handed fields couple to left-handed
fields and similarly for the right-handed fields. In the mass term, however, we see that
the left-handed field couples to the right-handed field. This is relevant to neutrinos
because, in the SM, neutrino fields are left-handed: we only have left-handed neutrinos
and right-handed antineutrinos. Therefore, by construction, neutrinos are massless in
the SM, even after electroweak symmetry breaking.

Neutrinos are unique fermions in the SM because they only interact via the weak force.
Through the weak force, neutrinos may only couple to other leptons. Neutrino interactions
with charged leptons are mediated by the W -boson, described by the charged-current
(CC) interaction Lagrangian

LCC = − gW

2
√

2
∑

ℓ=e,µ,τ

νℓγ
µ(1 − γ5)ℓWµ + h.c., (2.4)
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Figure 2.1. Left panel: CC vertex for neutrino interactions with charged leptons. Right panel:
NC vertex for neutrino-neutrino interactions

where Wµ is the W -boson vector field and gW is the coupling constant for the weak
interaction. Similarly, neutrino interactions with other neutrinos are mediated by the
Z-boson, described by the neutral-current (NC) interaction Lagrangian

LNC = − gW

4 cos θW

∑
ℓ=e,µ,τ

νℓγ
µ(1 − γ5)νℓZµ + h.c., (2.5)

where θW is the weak mixing angle. From these SM interactions, whose fundamen-
tal vertices are shown in Fig. 2.1, there are two important observations about these
Lagrangians

1. The fundamental vertex does not allow couplings between different lepton families.
For example, a CC vertex between νe and µ is forbidden.

2. The respective coupling strengths for CC and NC interactions are the same for all
lepton generations.

Both of these arise from the way in which the SM is built. In general, couplings between
different lepton generations are allowed in BSM models, with strengths constrained only
through symmetries of the chosen model or experimental observations.

2.3 Vacuum Neutrino Oscillations
Here, we discuss the main aspects of neutrino oscillations in vacuum, which will be used
for the purpose of neutrino propagation. For a more complete review, of this phenomenon,
see for example [118] and references therein.

Nowadays, it is known that the neutrino flavor eigenstates, which are the ones involved
in weak interactions, are not the same as the neutrino mass eigenstates, which have
definite mass. Since neutrino production and detection necessarily use weak interactions,
we can only make measurements on flavor eigenstates. From a quantum mechanical
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perspective, the flavor eigenstates |να⟩ (α = e, µ, τ) are related to the mass eigenstates
|νi⟩ (i = 1, 2, 3) by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [119], also
known as the neutrino mixing matrix U , which is unitary. Explicitly, a flavor eigenstate
|να⟩ is written as

|να⟩ =
3∑

k=1
U∗

αk|νk⟩. (2.6)

or, in matrix notation, 
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3

 . (2.7)

The matrix notation will come in handy when switching neutrino fields in the Lagrangian
between the mass and flavor basis.

Here we point out that we are assuming that only three neutrino generations exist,
which are known as active because they interact via the weak force. It is possible that
more neutrino states exist, that do not interact via the weak force and are known as
sterile neutrinos, but this case is beyond the scope of this work. We adopt the standard
parametrization of the PMNS matrix with three mixing angles (θ12, θ13, θ23) and one CP
violation phase δCP

U =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13




c12 s12 0
−s12 c12 0

0 0 1

 , (2.8)

where cij = cos θij and sij = sin θij. This PMNS matrix applies to Dirac neutrinos; if
the active neutrinos were Majorana, we would multiply the right hand side of Eq. (2.8)
by Diag(eiη1 , eiη2 , 1) (multiplication from the right), where η1 and η2 are the Majorana
phases.

Assuming that neutrinos are ultrarelativistic, the Hamiltonian for neutrino evolution
in a vacuum is

H = M2

2Eν

(2.9)

where Eν is the neutrino energy, M2 is the squared mass matrix (diagonal in the mass
basis), and the momentum term is proportional to the identity and is not relevant in
neutrino oscillations. The mass eigenstates |νk⟩ are eigenstates of H with eigenvalue
m2

k/2Eν . By solving the time-independent Shcrödinger equation to evolve our initial
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Parameter Best fit value
θ12 33.44◦

θ13 8.57◦

θ23 49.0◦

δCP 195◦

∆m2
21 7.42 × 10−5 eV2

∆m2
31 2.51 × 10−3 eV2

Table 2.1. Best fit values of neutrino oscillation parameters that are will be used in this work,
as reported in [29]. NO is assumed.

states, and using t = l for ultrarelativistic neutrinos and a propagation distance l, the
probability of a να → νβ transition is (in natural units)

P (να → νβ) = |⟨νβ|e−iHt|να⟩|2 =
∑
j,k

U∗
αkUβkUαjU

∗
βj exp

(
−i

∆m2
kjl

2Eν

)
, (2.10)

where ∆m2
kj = m2

k − m2
j is the squared mass difference. This formula applies whether

neutrinos are Dirac or Majorana. An alternative form of Eq. (2.10) is

P (να → νβ) =
∑

k

|Uαk|2|Uβk|2 + 2Re
∑
k>j

U∗
αkUβkUαjU

∗
βj exp

(
−2πi

l

losc
kj

)
, (2.11)

where we have defined the oscillation lengths

losc
kj = 4πEν

∆m2
kj

= 2.47 Eν [GeV]
|∆m2

kj|[eV2]
km. (2.12)

The oscillation formula for antineutrinos can be obtained from Eq. (2.10) and replacing
U → U∗ or, alternatively, δCP → −δCP.

From Eq. (2.11), we see that oscillation probabilities depend on squared mass
differences, so this phenomenon does not provide information on the absolute neutrino
mass. The mass eigenstates are labeled such that m1 > m2, but this leaves us with two
possible mass orderings: the normal ordering (NO) m1 < m2 < m3 and the inverted
ordering (IO) m3 < m1 < m2. With the latest neutrino oscillation experimental data,
there is no significant preference for either ordering. For this dissertation, we will use the
most recent global fit results under the NO assumption [29], which are summarized in
Table 2.1.

It is important to point out that the oscillation phenomenon requires interference
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between the mass eigenstates. The formulas above are derived under the plane wave
approximation, where the wave extends over all of space, such that interference is always
guaranteed. A more formal approach is to use the wave packet treatment (see e.g. [120]),
where interference only occurs if the different wave packets, corresponding to different
mass eigenstates, overlap. Since neutrino are massive, each mass eigenstate propagates
at slightly different speeds, just under the speed of light. Given a sufficiently large
propagation length, the separation between these wave packets will exceed the width
of the packet, effectively killing all oscillations. For wave packets of size σx, there is a
coherence length

lcoh
kj = 4

√
2E2

|∆m2
kj|

σx (2.13)

beyond which the oscillation between νk and νj becomes suppressed. If we have l ≫ lcoh
kj ,

then Eq. (2.11) becomes

P (να → νβ) =
∑

k

|Uαk|2|Uβk|2, (2.14)

describing the suppression known as wave packet decoherence. The formula above is
simply a sum of the probability that να propagates as νk and that νk is detected as νβ.
On the other hand, if l ≫ losc

kj , then oscillations are averaged out and we would also
arrive at Eq. (2.14).

2.4 Neutrino oscillations in matter
If neutrinos propagate through matter, the Hamiltonian has to be modified, leading to
the Mikheyev-Smirnov-Wolfenstein (MSW) effect [121, 122]. Ordinary matter consists of
protons, neutrons and electrons. All three neutrino flavors can scatter off electrons via
NC interactions. However, electron neutrinos may also interact through CC interactions
with ordinary matter. For these interactions, the typical energy scales involved are such
that we may reduce the Hamiltonian to its effective low-energy expression. Furthermore,
we will consider the case of coherent forward scattering, which allows us to treat the
effect of the medium as an effective potential that is added to the vacuum Hamiltonian.

Working through the calculations, which are done in detail in [123] for example, one
finds that the contributions from the NC potential depends on the number density of
neutrons alone and is the same for all three neutrino flavors. If we were to add this
potential to the Hamiltonian, it would be a 3 × 3 matrix proportional to the identity and
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would only lead to global phase shifts on the neutrino states. On the other hand, the CC
contribution does result in an observable effect on the oscillation pattern described by
the Hamiltonian (in the vacuum mass eigenstate basis)

H = 1
2Eν


0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

+ 1
2Eν

U †


ACC 0 0

0 0 0
0 0 0

U (2.15)

where ACC = 2
√

2EνGF ne, ne is the electron number density, GF is the Fermi constant
and we have removed a term proportional to the identity in the mass term, corresponding
to m2

1. Notice that the overall expression for this Hamiltonian is still of the form
H = X/2Eν for some Hermitian matrix X. This means that the Hamiltonian can be
diagonalised by some unitary matrix, different from the PMNS matrix U , which would
require some new effective mixing angles and CP violating phase. The eigenvalues of the
Hamiltonian will thus lead to three effective neutrino masses in matter and the oscillation
probabilities can still be described by the formulas in the vacuum case, but substituting
the oscillation parameters by its effective values. While this substitution works for a
constant density profile, neutrinos generally will propagate through a variable density.
In such cases, we resort to numerical methods to solve the time-dependent Hamiltonian
given by Eq. (2.15), where the time dependence is implicit in ne.

For illustrative purposes, it is worthwhile to highlight the main feature of neutrino
oscillations in matter for two flavors. In the 2-flavor scenario, the only oscillation
parameters are ∆m2 and a single mixing angle θ and we label the flavors νe and νx. The
transition probability formula in this case is

P (νe → νx) = sin2(2θeff) sin2
(

∆m2
effD

4Eν

)
. (2.16)

When matter effects are considered, the effective squared-mass difference ∆m2
eff is given

by
∆m2

eff =
√

(∆m2 cos 2θ − ACC)2 + (∆m2 sin 2θ)2), (2.17)

while the effective mixing angle θeff is determined by solving

tan 2θeff = tan 2θ

1 − ACC

∆m2 cos 2θ

. (2.18)

By looking at the equations above, we see that there is a resonance energy Eν,res =
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∆m2 cos 2θ/2
√

2GF ne which minimizes ∆m2
eff and leads to θeff = π/4, which implies

maximal neutrino mixing.
In reality, astrophysical neutrinos will typically propagate through a progenitor, which

has a non-constant density profile. If the density profile changes slowly, in the sense that
θeff (now time-dependent) changes slowly as the neutrino propagates, then the adiabatic
approximation may be used. Within this regime, each mass eigenstate in matter evolves
independently, which leads to the survival probability

P (νe → νe) = 1
2 + 1

2 cos(2θ
(i)
eff ) cos(2θ

(f)
eff )

+1
2 sin(2θ

(i)
eff ) sin(2θ

(f)
eff ) cos

(∫ x

0

∆m2
eff(x′)

2Eν

dx′
)

, (2.19)

where θ
(i)
eff is the effective mixing angle at the initial position and θ

(f)
eff at the final position.

This approximation is suitable for solar neutrinos and supernova neutrinos.
Outside the adiabatic regime, we have additional effects. Here, we summarize the

results in [124]. For three generations, there are two resonance energies

ER
L ≈ ∆m2

21

2
√

2GF ne

cos 2θ12 ER
H ≈ ∆m2

31

2
√

2GF ne

cos 2θ13 (2.20)

.
When the neutrino energy is below ER

L , we remain in the vacuum oscillation regime.
Between ER

L and ER
H the ν1 − ν2 mixing is important. Above ER

H , all eigenstates can
mix and the interference between the mass eigenstates creates wiggles in the oscillation
probability, as a function of energy. These wiggles will also be revisited in Chapter 4.
In this regime, we have non-adiabatic oscillations, which continues until you reach an
energy where the mass separation grows so large that all mass eigenstates are decoupled.

Having discussed the more fundamental results of neutrino oscillations, we discuss
some of the differences that arise between the normal and inverted mass orderings. In
the context of vacuum propagation, we are dealing with propagation over cosmological
distances where Eq. (2.14) applies and does not depend on ∆m2. We do point out that
there are minor differences between the NO and IO oscillation fits for θ23 and δCP , but
overall the effect on the oscillation formula is small. For θ23, both NO and IO fits are
close to the maximal mixing θ23 ≈ π/4; for δCP the effect between the different values is
suppressed by the small value of θ13. By virtue of Eq. (2.17), IO uses ∆m2

32 < 0, which
would change the effective masses in matter and would have an impact on the oscillation
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patterns. This would also be true for adiabatic oscillations.

2.5 Cosmology
To describe the evolution of the Universe, general relativity is required. Here we discuss
the relevant portions, with a more in-depth approach presented in e.g. [125]. The
starting point is a metric tensor that describes a homogenous, isotropic and expanding
universe (at large scales). The metric that satisfies these conditions is known as the
Friedmann-Robertson-Walker (FRW) metric, with line element

ds2 = c2dt2 − a2(t)
(

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ)
)

, (2.21)

where a(t) known as the scale factor and k is a parameter that describes the curvature
of the universe and has dimensions of length−2. The convention for the scale factor is
that a(t0) = 1, where t0 is the present time. Notice that the line element would be
identical to that of spherical coordinates in the case of k = 0 (flat universe) and a(t)=1
(static universe). The metric is derived from geometrical considerations, but the time
dependence of a(t) must be determined by solving the Einstein equations. For this
particular metric, the Einstein equations are reduced to two Freidmann equations:

(
ȧ

a

)2
= 8πG

3 ρ − k

a2 + Λ
3

ä

a
= −4πG

3 ρ + Λ
3 , (2.22)

where Λ is the cosmological constant and ρ is the energy density of the universe. The
density ρ can be separated into matter and radiation densities, labeled as ρM and ρR

respectively. Define the Hubble parameter

H(t) = ȧ

a
, (2.23)

as well as the following parameters

ΩM = 8πGρM,0

3H2
0

ΩR = 8πGρR,0

3H2
0

Ωk = − k

a2
0H

2
0

ΩΛ = Λ
3H2

0
, (2.24)

where the subscript 0 means that the quantity is evaluated at the present time, t0. H0 is
known as the Hubble constant. The parameters Ω are named density parameters and
are nonnegative dimensionless quantities. We assert that ρM ∝ a−3 and ρR ∝ a−4 (see
e.g. [125] for the proof and assumptions made), which lets us write the first Friedmann
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equation as
H(t) = H0

√
ΩRa−4 + ΩMa−3 + Ωka−2 + ΩΛ, (2.25)

which, by definition of H0, is subject to the constraint

ΩR + ΩM + Ωk + ΩΛ = 1. (2.26)

Eq. (2.25) allows us to solve for a(t) by separation of variables. For our purposes, we will
be using the parameters ΩM = 0.3 and ΩΛ = 0.7 as measured by the Planck collaboration,
which corresponds to a flat Universe that is dominated by matter (rather than radiation)
today [126].

We can use Eq. (2.21) to describe cosmological redshift by relating the redshift z to
the scale factor a. For a light wave moving in the radial direction, we impose ds2 = 0
which leads to

c2dt2 = a2(t) dr2

1 − kr2 (2.27)

If a crest leaves the source at r1 at a time t1 and reaches the observer at r = 0 at t2, we
have ∫ t2

t1

dt

a(t) =
∫ r1

0

dr√
1 − kr2

(2.28)

If a second crest leaves the source at t1 + ∆t1 and reaches the observer at t2 + ∆t2, we
have the above equation, where the right hand side remains unchanged. By splitting the
integration interval into subintervals, we get

∫ t1+∆t1

t1

dt

a(t) =
∫ t2+∆t2

t2

dt

a(t) (2.29)

Since ∆t is many orders of magnitude smaller than the timescales in which a changes,
we can take a to be constant along the interval, leaving us with

∆t1

a(t1)
= ∆t2

a(t2)
(2.30)

Notice that ∆t is the period, so we can rewrite this equation in terms of emitted and
observed frequencies or wavelengths. For an observer in the present, we then have

λ2

λ1
= 1 + z = a(t2)

a(t1)
. (2.31)

From this equation, it follows that photons are redshifted as space itself expands, which
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makes this redshift different from the usual Doppler redshift. By definition, the scale
factor today is a(t2) = 1, so we end up with

a(t) = 1
1 + z(t) . (2.32)

Keep in mind that z is a quantity that can be measured, by comparing spectral lines
from a distant source against those on Earth. As redshift is an observable, it is preferable
to write equations in terms of redshift, rather than a. For instance, we can rewrite H as

H(t) =
∣∣∣∣ ż

1 + z

∣∣∣∣ = H0

√
ΩR(1 + z)4 + ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ, (2.33)

and we can also relate time and redshift by solving the differential equation

dt

dz
= − 1

(1 + z)H0

√
ΩR(1 + z)4 + ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ

, (2.34)

where the negative sign accounts for the fact that as redshift increases we are looking
further into the past.

In an expanding Universe, the distance between two objects is not constant, so
there are multiple ways to define distance between two points. In our case, there are
two relevant distances: comoving distance and light-travel distance. As the neutrino
propagates at speeds ∼ c, space itself is expanding, such that the distance between
neutrino and observer increases over time. For a source at redshift z, the distance
travelled by the neutrino is given by the light-travel distance

D = c
∫ z

0

dz′

H0(1 + z′)
√

ΩR(1 + z)4 + ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ
. (2.35)

This is the distance that we will be using to propagate neutrinos. Finally, the expansion
of the Universe will also cause particles to lose energy as they travel. Just as the photon
is redshifted and has its frequency reduced by a factor 1/(1 + z), so do the neutrinos lose
energy according to

εν(z2)
εν(z1)

= 1 + z2

1 + z1
. (2.36)

In this equation, we point out that εν is the energy in the comoving frame, a special
frame which moves with the Hubble flow and perceives the CMB as isotropic. Thus, a
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neutrino with energy εν at redshift z will be observed with an energy

Eν = εν

1 + z
. (2.37)

We use Eν for observed energy on Earth, to distinguish it from energy in the source
frame which has yet to experience expansion losses. In the limit z ≪ 1, εν ≈ Eν , which
is suitable for sources closer than O(100) Mpc.

2.6 Optical Depth
Both in neutrino propagation and general astrophysical scenarios, the concept of optical
depth is important to assess whether a certain interaction is likely to take place and, if
so, how severely it may attenuate particle fluxes. Consider a flux ϕ of monoenergetic
particles crossing a material with target number density n over a distance D. The optical
depth τ is defined as

τ =
∫ D

0
n(x)σdx, (2.38)

where σ is the cross section. If σ describes an absorption process, τ is useful to determine
the flux as the particles propagate through the material, which is given by

ϕ(x) = ϕ(0)e−τ . (2.39)

For a uniform slab of length D, the flux would thus be reduced by a fraction exp(−τ),
with τ = nσD.

It is also possible that particles are injected at different locations inside the material,
such that each one propagates a different lengths before exiting. In such a situation, it is
more suitable to use an averaged attenuation factor

1
D

∫ D

0
exp[−nσ(D − x)]dx = 1 − exp(−τ)

τ
, (2.40)

with τ = nσD. Even if τ ≫ 1, the overall flux would be reduced by a factor of 1/τ

instead of being fully depleted. This factor is a result of the particles closest to the end
of the slab which manage to escape with little attenuation.

In a more general sense, σ can describe other processes, such as scattering. In this
broader context, when τ ≫ 1 we say that the environment is optically thick and when
τ ≪ 1 it is optically thin. In the optically thin case, the probability for a scattering

20



to take place is τ + O(τ 2). As the probability for multiple scatterings to take place is
negligible, we can also call this case the one-scattering limit.

2.7 Supernova neutrinos
Here we discuss the neutrino production mechanism in supernova. Supernova neutrinos
have a typical energy of ∼ 10 MeV and are produced during the core-collapse process.
This production mechanism is inherently different from the photopion production process
that we will discuss in the next chapter.

A supernova (SN) is a powerful, transient event that occurs when massive stars reach
the end of their lifetime. SNe are classified according to the presence or absence of
spectral lines. Type I SNe show no hydrogen in their spectra, while type II does. Type
Ibc supernovae (SNe) are characterized by the lack of hydrogen (type Ib) or hydrogen
and helium (type Ic) spectral lines (see [127] for a review). The absence of these lines
indicates that these dying stars have stripped their H/He envelopes prior to explosion.
For this reason, they are classified as stripped-envelope supernovae (SESNe). Type Ibc
and II SNe are of particular interest to us, as their explosions occur as a result of the
core-collapse mechanism.

While the progenitors for Type Ibc SNe are not known, they are likely to be Wolf-
Rayet (WR) stars with an initial mass larger than 25M⊙ and lost a significant amount
of mass through strong stellar winds [128]. Among Type Ic SNe we also have broad-line
(BL) Type Ic SNe, with broad features in their electromagnetic spectra.

BL SNe Ic are the only type of CCSNe associated with GRB emissions [129–132].
However, observations suggest that only a small fraction (∼ 10−3) of CCSNe are powered
by jets and form GRBs, (e.g [133,134]). This motivates the possibility that the majority
of these jets are choked, providing a unified picture of the GRB-SNe connection [135–137].
Another alternative is that the jet is off-axis.

The core-collapse mechanism is complex and not fully understood, although the
neutrino-driven mechanism of a supernova explosion is a popular candidate. Here we
describe the process of neutrino production in the core-collapse supernova (CCSN) and
how it is expected to drive the explosion. Underlying details are beyond the scope of
this work and would require a three-dimensional SN hydrodynamical simulation.

The progenitor consists of a core with an existing iron and nickel core. As the iron
core grows and the star begins to collapse, the temperature in the core increases until the
thermal photons have enough energy to allow the photodisintegration of iron, breaking
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Figure 2.2. Schematic setup of core-collapse supernova, starting with the core collapse (top
left), followed by core bounce (top right), shock stagnation (middle left), shock revival (middle
right), explosion (bottom left) and formation of neutrino-driven winds (bottom right). Figure
from Ref. [2].

the iron nuclei into helium nuclei. Once this happens, the star becomes gravitationally
unstable, meaning that its adiabatic index has fallen to the point where hydrostatic
equilibrium cannot be mantained and the collapse forces protons and electrons to combine
to neutrons via electron capture, producing νes.

As the core continues to collapse, densities are large enough to capture neutrinos
through neutral-current neutrino scattering with nucleons. Eventually the core reaches
nuclear density and the core stops collapsing due to the repulsive effects of the nuclear
force. This repulsion causes the inner core to bounce back, generating a shock. Behind
the shock, electron capture takes place, creating additional neutrinos. At the same time,
photodisintegration of iron nuclei continues, so the outward propagation of the shock
is halted at 100-200 km [2]. A stalled shock would cause the explosion to fail, so a
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mechanism to revive the shock is needed. Colgate and White [138] suggested that from
the gravitational binding energy released by the gravitational collapse, which is about a
hundred times larger than the kinetic energy ∼ 1051 erg of traditional SN ejecta, a small
fraction could be reabsorbed by the star for shock revival. One of the methods is the
delayed neutrino-driven explosion [139], where neutrinos can deposit energy ∼ 100 ms
after core bounce and lead to a successful explosion. The schematic setup is shown in
Fig. 2.2.

The simulated supernova spectrum dNν/dEνdt is not well-described by a purely
thermal spectrum. Instead, we use the fit suggested in Ref. [140]

dNν

dEνdt
= Lν

⟨Eν⟩2
(α + 1)α+1

Γ(α + 1)

(
Eν

⟨Eν⟩

)α

exp
(

−(α + 1)Eν

⟨Eν⟩

)
, (2.41)

where ⟨Eν⟩ is the average neutrino energy, α is a pinching parameter, Lν is the
neutrino luminosity, and Γ is the Euler Gamma function. The neutrino luminosity
is a time-dependent quantity, which depends on how the SN explosion was simulated
(e.g. [141,142]).
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Chapter 3 |
High-energy neutrino production

3.1 Introduction
While supernova neutrinos have been briefly mentioned in the previous section, high-
energy neutrino sources have a different production mechanism, which warrants further
discussion. In this section, we cover the generic mechanism of high-energy neutrino
production and how it applies to gamma-ray bursts and magnetars. We then give an
overview of IceCube, how it detects neutrinos and what the measurements tell us about
the neutrino sources.

3.2 Neutrino production channels
The generic mechanism for high-energy neutrino production begins with cosmic rays
(CRs). Within astrophysical sources, we typically expect some CR acceleration mechanism
which varies from source to source. One of the more prevalent mechanisms is the Fermi
acceleration mechanism, which generically predicts an ε−2 CR spectrum [143] (see
also [144] for a review on particle acceleration at shocks).

As CRs continue to propagate in the source, they will undergo scattering with either
protons (pp), or with the ambient photons (pγ). For more complete models, one may
also include interactions involving nuclei instead of protons. Whether the interaction is
pp or pγ, we expect pion production, which leads to neutrinos.

We first analyze the case of pγ interactions. For a proton at rest, the photon energy
threshold is

ϵr,thres = mπ + m2
π

2mp

, (3.1)

which is about 145 MeV for π0. In the case of pγ, resonant production of ∆+(1232)
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Figure 3.1. pγ photopion production cross section as a function of photon energy ϵr with
a target proton at rest. The total cross section is given by the solid black curve. The
resonant, direct and multipion production channels are shown as orange, yellow and teal curves,
respectively. From Ref. [3]

is also possible and occurs slightly above threshold. Assuming such a resonance, the
outgoing particles can be either n + π+ or p + π0, with these two occurring at a ratio
of 1:2. There are other more massive baryons that can be resonantly produced, such
as N+(1440) and ∆+(1700), but the cross section for these channels is not as large.
Excluding resonance, direct pion production is dominant until ϵr ≈ 1 GeV and among
these direct production channels, pγ → nπ+ is almost entirely dominant. Once ϵr > 1
GeV, multi-pion production is the dominant channel. This can be seen in the left panel
of Fig. 3.1

Charged pions then follow the decay chain π+ → µ+ + νµ and µ+ → e+ + νe + ν̄µ.
Neutrons decay via β decay n → p + e− + ν̄e, while neutral pions decay into two photons.
From these decay chains it follows that cosmic rays can produce photon and neutrino
signals, which is main motivation for multimessenger astrophysics.

The energy correspondence between parent proton and daughter neutrino, based
on the mean inelasticity of the pion production process, is εp = 20εν (εp = 25εν) for
pγ(pp) interactions. For π0 decay, each photon carries 1/2 the pion energy. To convert a
proton injection spectrum dNp/dεp into a neutrino spectrum dNν/dεν , we assume that
all cosmic ray protons have been depleted due to pion production. Secondly, in the pion
decay chain, each neutrino carries roughly 1/4 of the charged pion energy. Taking these
considerations into account, we arrive at the formula for the spectrum for each neutrino
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ε2
ν

dNν

dεν

= K

4(1 + K)ε2
p

dNp

dεp

, (3.2)

where K = 1(K = 2) for pγ(pp) interactions. Thus, for pγ the overall factor is 1/8,
where the extra factor 1/2 comes from the approximate π+ : π0 = 1 : 1 ratio for the
pion production channels [145]. For pp the factor is 1/6. This formula is useful for its
simplicity, as well as showing that the shape of the neutrino spectrum follows that of the
CR spectrum.

If we want a more accurate depiction of neutrino production, we need to include
energy distribution details of the pp/pγ collisions and the meson decays. We use the
notation Fi→f to indicate the energy distribution of the final particles f arrising from
a single i → fX collision or decay. These distributions have units of energy−1 and are
normalized so that its energy integrals are equal to particle multiplicity. We will be using
this approach for pp interactions in magnetars, with Fpp→h given by

Fpp→h(εh, εp) = 1
εp

1
σpp(εp)

dσ

dxε

(εh, εp), (3.3)

where σpp(εp) is the total inelastic pp cross section, and xε = εh/εp, where εh is the
hadron energy and εp is the proton energy in the lab frame. The differential cross sections
dσ/dxε depends on the hadronic interaction models, which can be provided analytically
or by software packages (e.g. SIBYLL, PYTHIA, GEANT4). As an example, we show in
Fig.3.2 the inelastic cross sections for pp, π+p and K+p interactions, as given by SIBYLL
2.3 [146–148]. We see that the cross sections are of O(100) mb.

A more accurate depiction of meson decay will also be used for the magnetar scenario,
so we include the formulas that convert a pion spectrum into a neutrino spectrum
[149–151]. The same formulas can be applied to kaons, by substituting mπ → mK and
multiplying the resulting spectrum by the K → µν̄µ decay branching fraction of 0.636.

For the two-body decay of ultrarelativistic pions, the spectrum of the final lepton
ℓ is given by the convolution of the initial spectrum and the energy distribution of the
interaction channel

dNℓ

dεℓ

(εℓ) =
∫ εℓ

π max

εℓ
π min

dεπ
dNπ

dεπ

Fπ→ℓ(Eℓ, Eπ) , (3.4)

where ℓ = µ, ν. In fact, the decay spectra for the 2-body pion decay are

Fπ→µ(εµ, επ) = Fπ→ν(εν , επ) = 1
επ

1
1 − λπ

. (3.5)
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Figure 3.2. Inelastic cross section for pp, π+p and K+p collisions as a function of the target
proton energy Elab in the proton’s rest frame. Cross sections are given by SIBYLL.

for λπ = (mµ/mπ)2. The flat spectrum for ultrarelativistic pions occurs because, as a
scalar, the pion decays isotropically in its rest frame. An isotropic distribution, when
boosted by a Lorentz transformation with a very large Lorentz factor, will give a flat
energy distribution. The kinematic constraints are that εµ/επ > λπ and εν/επ < 1 − λπ,
so the limits in Eq. (3.4) are

εν
π min = εν/(1 − λπ) (3.6)

εν
π max = εp (3.7)

εµ
π min = εµ (3.8)

εµ
π max = εµ/λπ . (3.9)

The differential neutrino spectrum from the π → µ → ν chain in the absence of muon
energy loss processes is

dNν

dεν

(εν) =
∫ ∞

εν

dεµ

∫ εµ/λπ

εµ

dεπ
dNπ

dεπ

Fπ→µ(εµ, επ)Fµ→ν(εν , εµ) (3.10)
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where the muon three-body decay distribution is [149,150]

Fµ→ν(εν , εµ) = 1
εµ

G0

(
εν

εµ

)
+ hπ→µ

(
εµ

επ

)
G1

(
εν

εµ

) (3.11)

The factor hπ→µ is the µ− polarization in π− decays, with

hπ→µ(xµ) = 1 + λπ

1 − λπ

− 2λπ

(1 − λπ)xµ

, (3.12)

When considering µ+ decay, Eq. (3.11) needs the substitution hπ→µ → −hπ→µ. However,
Eq. (3.12) also requires the right hand side to be multiplied by -1, to account for the
opposite polarization of µ+ when compared to µ−. Combining these sign changes, it
follows that the νµ distribution from π− → µ− → νµ is identical to the distribution of ν̄µ

from π+ → µ+ → ν̄µ. The same sign changes apply for νe, so νe and ν̄e distributions are
identical to each other. The formulas for G0 and G1 for µ− are summarized in Table 3.1.

µ → να G0(y) G1(y)
νµ

5
3 − 3y2 + 4

3y3 1
3 − 3y2 + 8

3y3

ν̄e 2 − 6y2 + 4y3 −2 + 12y − 18y2 + 8y3

Table 3.1. Functions used in Eq. (3.11) to calculate the neutrino spectrum from µ− decay.

3.3 Interaction timescales and cooling
To properly account for neutrino production, we need to consider two important factors

• Particle production, in this case pions, is not always efficient. Even if the ambient
photons or protons are such that we achieve threshold energy, target density may
not be enough for a significant number of pions to be produced.

• Since particles at the source are propagating in dense media, interactions with the
surrounding environment can initiate particle cooling. Here, it is important to
know whether the particles in question lose a significant amount of energy before
interacting or decaying.

Here we review some of the relevant processes which can cool particles. Within our
framework, we are mostly interested in proton, pion and muon cooling. As these particles
propagate in the plasma, they will move through magnetic fields, photon fields and
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ambient protons and electrons. The processes reviewed here are also discussed extensively
in textbooks (e.g. [152]).

Synchrotron radiation
As charged particles move through a uniform magnetic field, it will gyrate about

the magnetic field direction. The centripetal acceleration experienced by the charged
particle leads to radiation emission, known as synchrotron radiation. Consider a uniform
magnetic field B and a particle moving with velocity v. Let α be the angle between the
vectors B and v. The energy loss rate for an electron of energy ε is

−dε

dt
= 2σT cβ2UBγ2 sin2 α, (3.13)

where σT is the Thomson cross section, β = v/c, UB = B2/8π is the magnetic field
energy and γ is the particle’s Lorentz factor. In the media of interest, the direction of the
magnetic field is likely to be randomized, so we can average over an isotropic distribution
of pitching angles, giving

−dε

dt
= 4

3σT cβ2γ2UB. (3.14)

We can also define the synchrotron cooling rate for the electron

t−1
e,syn =

∣∣∣∣∣1ε dε

dt

∣∣∣∣∣ = 4
3σT cβ2 ε

m2
e

UB. (3.15)

The definition can also be extended to other charged particles. The constant σT ∝ e4/m2
e

only appears for the purposes of simplifying the factors that appear in the general formula
for dε/dt. Hence, we should substitute e → Ze and me → m for a particle of charge Ze

and mass m. With these changes, we have

t−1
syn = 4

3σT Z4m2
ecβ2 ε

m4 UB. (3.16)

From this expression, we see that the cooling rate is proportional to ε. Secondly, the m−4

behavior shows that more massive particles have significantly slower cooling compared to
light ones, such as the electron.

Inverse Compton scattering
Charged particles will also move through ambient photons. For the purposes of
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producing high-energy neutrinos above 1 TeV, we will be typically working with protons
> 1 TeV to initiate pp and pγ interactions. Within dense environments such as GRB
jets, we typically encounter thermal photons with temperatures in the 100 eV - 1 MeV
range. The case of GRB jets will be analyzed further in Chapter 4.

As the charged particles are more energetic than the target photons, they can lose
energy by upscattering the lower energy photons via the process known as Inverse
Compton (IC) scattering. Assuming an isotropic radiation field, the electron energy loss
rate in this process is

−dε

dt
= 4

3σT cβ2γ2Urad. (3.17)

Notice that this loss rate has the same form as (3.15), with UB → Urad. This result is
only valid for low center-of-mass energies. In the case that the center-of-mass energy
exceeds the electron’s rest-mass energy, the Inverse Compton cross section σIC, obtained
from quantum electrodynamics, must be used instead of σT .

The Compton cross section is

σIC = 4
3σT

(
me

m

)2 1
x

[(
1 − 4

x
− 8

x2

)
ln(1 + x) + 1

2 + 8
x

− 1
2(1 + x)2

]
, (3.18)

where x = (s − m2)/m2 and the Mandelstam variable s is the squared of the center
of mass energy. In the non-relativistic limit, s ≈ m2 and from the Taylor expansion
of ln(1 + x) for x ≪ 1 we recover σT (me/m)2. In the ultrarelativistic limit, x ≫ 1
(Klein-Nishina regime) and the cross section scales as ln(1 + x)/x. This effect is the
Klein-Nishina suppression, whereby the Compton cross section decreases with energy.

Proton-proton and photopion interaction timescales
In the previous section we established that protons undergo pp and pγ interactions.

For pp interactions, the case we consider is high-energy protons interacting with ambient
protons which are assumed to be at rest, implicitly assuming that the surrounding
environment is not hot enough to achieve T ∼ 1 GeV.

The pp timescale tpp is given by

t−1
pp = κppnpσppc, (3.19)

where κpp is the proton’s inelasticity, np is the target proton number density and σpp is
the inelastic pp interaction cross section. For practical purposes, we take κpp ∼ 0.5.

In the case of protons interacting with a photon field, we have to integrate over the
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photon spectrum. We define the pγ timescale tpγ from

t−1
pγ (εp) = c

∫ ∞

0
dεγ

∫
dΩdnγ

dεγ

(ε′, Ω)(1 − βp cos θ)σpγκpγ (3.20)

where σpγ is the photopion production cross section, κpγ is the proton’s inelasticity, θ

is the angle between the momenta of the proton and photon and dnγ/dϵ is the target
photon density per unit energy per unit solid angle. Here, βp = 1 − 1/γ2

p and γp = εp/mp.
If the photon field is isotropic, like in the case of a thermal spectrum, the azimuthal

angle can be integrated over. Using the photon energy in the proton’s rest frame,
ε̄γ = γpεγ(1 − βp cos θ), we get

t−1
pγ (εp) = c

2γ2
p

∫ ∞

0

dεγ

ε2
γ

dnγ

dεγ

∫ 2γpεγ

0
dε̄γ ε̄γσpγ(ε̄γ)κpγ. (3.21)

Writing the equation in this form has the practical advantage that the target photon
spectrum is in the outer integral. The inner integral only depends on the dummy
parameter ε̄γ, so it can be precomputed numerically as a function of εγ.

Particle cooling
Combining all relevant cooling processes, we define

t−1
cool =

∑
i

1
ti

, (3.22)

where the summation runs over all cooling processes. To determine if cooling becomes
important, we have to compare it against the typical time the particle remain susceptible
to these processes. For example, it can be compared against the time the particle spends
inside a region with strong radiation or magnetic fields. In the case of unstable particles,
we are more interested in comparing its decay time against the cooling time. These
situations are encountered in Chapter 4 and Chapter 5 in the context of GRB jets and
magnetars, respectively.

3.4 High-energy neutrino detection
IceCube is currently the largest neutrino telescope. Since the 2013 detection of extrater-
restrial neutrinos by IceCube [40], the collaboration has made several subsequent analyses
on their collected data, as well as refining the algorithms used for their studies. Here we
discuss what is the current status of high-energy neutrino measurements and what are
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Figure 3.3. IceCube detector schematic. It currently consists of 86 strings, each one carrying
60 DOMs to detect light. Image from https://icecube.wisc.edu/science/icecube/.

the open questions remaining.
First, we look at how IceCube detects neutrinos. The detector consists of 86 strings

that extend from 1450m to 2450m in depth, as shown in Fig. 3.3. Each string consists of
60 digital optical modules (DOMs). Incoming neutrinos interact with the nucleons in ice
via deep inelastic scattering. The neutrino interaction channels with nucleons N can be
divided into CC and NC (see Section 2.2):

ναN → ℓαX (CC) (3.23)

ναN → ναX (NC), (3.24)

where X is typically a hadronic shower. The charged particles in the hadronic shower are
highly relativistic and can easily move faster than the speed of light in ice. This motion
results in Cherenkov radiation, which is emitted conically. The radiation is then picked
up by the DOMs, which measure the energy deposited in the module and the arrival
time of the signal, which allows a reconstruction of the neutrino event.

The hadronic shower initiated by the neutrino will typically be observed in a detector
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Figure 3.4. Left panel: Reconstruction of a muon track from a νµ event. Right panel:
Reconstruction of neutral current events or νe and ντ events. Images from Ref. [4]. Large dots
represent a larger amount of energy deposited into the detector.

as a blob, as shown in Fig. 3.4. The hadronic shower is the only component detected in
NC interactions, as the outgoing neutrino is very unlikely to interact a second time within
the detector’s volume. In the case of νe CC interactions, the outgoing electron quickly
deposits its energy inside the detector, so its signal would look similar to a hadronic
shower. In the case of νµ CC interactions, the muon is highly penetrating and will leave
a track. In some cases, the muon can also leave the detector.

The ντ CC interaction case is interesting, because the τ lepton created has a very short
half-life. While the τ does leave a track, it decays so quickly that any signal from this
track will be embedded inside the hadronic shower from the original ντ interaction.The
tau predominately decays into a hadronic shower, which would also be indistinguishable
from the initial shower. If the τ is highly energetic, then the τ track is long enough for
two well-separated showers to be formed in the detector, a signal known as the "double
bang".

The detector can distinguish between two broad topologies: cascades which correspond
to NC interactions, νe and ντ CC interactions, and tracks which are initiated by νµ CC
interactions. Each event topology has its own advantages and disadvantages. While
track-like events have an angular resolution of ∼ 0.4◦ at the highest energies, the muons
do not deposit all their energy in the detector. On the other hand, νe and ντ CC cascades
deposit all their energy in the detector which make them ideal for measuring the incident
neutrino energy. Cascades induced by NC interactions have an outgoing neutrino, so the
measured energy is only a lower limit for the neutrino energy.

The main background in IceCube comes from atmospheric muons entering the detector.
This can be controlled by selecting upgoing muon tracks (i.e. muons that are coming
from below the ground and are moving "up" into the detector) and produced by neutrino
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interactions inside or close to the detector. After atmospheric muons, the remaining
background consists of atmospheric neutrinos, which cannot be distinguished from
astrophysical neutrinos on an event-by-event basis. Above ∼ 300 TeV the atmospheric
neutrino flux is very low, so most of those events are expected to be of astrophysical
origin.

Now that we have discussed the background, we can move on to the detection of
high-energy extraterrestrial neutrinos. The first result we will address is the measurement
of the diffuse neutrino flux. The most common assumption is to take a single power-law
hypothesis, where the flux normalization and the power-law index can be determined
from a likelihood analysis. There are three basic questions of interest regarding the
diffuse flux

• What is the power-law index? Is the flux well-described by a single-power law?
While we should typically expect an E−2

ν neutrino spectrum, this is not always
the case. Other processes, including particle cooling, can modify the power-law
index. Of course, the flux does not have to follow a power law, which indicates
that models have to be refined to include more complete physical processes.

• What is the flavor ratio of this flux? IceCube is not able to distinguish between
neutrinos and antineutrinos based on the topology, so the να + ν̄α flavor ratio is
used instead. In the traditional setup, where neutrinos come from pion decay, the
flavor ratio would be νe : νµ : ντ ≈ 1 : 1 : 1 on Earth after accounting for neutrino
oscillations. Determining the ratio is important because it provides insight on what
processes are occuring inside the source. If muons are cooled inside the source, then
only νµ from the initial pion decay will leave the source. If the emission consists of
mostly neutrons, which can be achieved in neutron-loaded outflows since neutrons
do not cool via electromagnetic processes, then neutron decay leads to a flux of ν̄e

leaving the source. These two alternatives would have a flavor ratio different from
1:1:1 after oscillations.

• Is the diffuse flux truly isotropic? Since neutrinos point back to their source, then
the extragalactic neutrino flux should be fully isotropic. Anisotropy in the diffuse
flux implies that there exist strong neutrino sources, which also points to the
possibility of having a set of Galactic and nearby sources that account for a certain
fraction of the flux.

We look at these points in order. The single-power law flux hypothesis assumes a
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Figure 3.5. Top panel: Astrophysical diffuse neutrino flux single-power-law fits to date,
assuming the fit given by Eq. (3.25). The green curve is the most recent best-fit using through-
going tracks with 9.5 years of data [5]. The other fits use 7.5 years of high-energy starting
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tracks are also included [8]. Panel from Ref. [9]. Bottom panel: Astrophysical neutrino flux per
neutrino flavor given by the six-year cascade data [1]. The best-fit single-power-law fit is given
by the red curve. Other astrophysical neutrino flux models shown by different colors. The
curves are solid within the sensitive energy range of IceCube and dashed in the range outside
of it. Panel from Ref. [10].
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per-flavor flux of the form

Φ(Eν) = Φν+ν̄,per−flavor
@100TeV

(
Eν

100TeV

)−γSPL

, (3.25)

where the normalization is taken to be the per-flavor flux at 100 TeV. The results are
shown in the top panel of Fig. 3.5 for a variety of data sets. We see that the spectrum is
softer than E−2

ν in IceCube measurements. Moreover, there seems to be a slight tension
between the different analyses. The flux parameters are derived from an assumption
of a 1:1:1 flavor ratio, which does not have to be true, specially if cooling processes in
the source are important. Secondly, each data set has its own event selection criteria
and treatment of background events. In our case, it is interesting to consider the former
explanation, as it pertains to astrophysical processes inside the source. Alternative flux
models are shown in the bottom panel of Fig. 3.5 in the context of IceCube’s six-year
cascade data [10].

So far, IceCube measurements cannot exclude any of the traditional flavor ratio
assumptions at a high confidence level. The current status is depicted in Fig. 3.6. In this
case, a large majority of the flavor triangle is still contained within the 95% confidence
level contour.

Regarding the distribution of neutrinos sources, IceCube carried several analyses
looking for clustering of high-energy neutrino events. Two hotspots were reported in
Ref. [46], one in the Northern and one in the Southern hermisphere, but were still found to
be consistent with a background-only hypothesis (i.e. with the astrophysical diffuse flux
plus atmospheric background). The search for neutrinos correlated to a catalog of sources
found a neutrino excess in the direction of the galaxy NGC1068, with a significance of
2.9σ [46].

A subsequent analysis improved by new data processing, data calibration and event
reconstruction method was carried out to search for neutrino sources [47]. There,
NGC1068 was found to be the most significant source in the catalog, with a significance
of 4.2σ. The neutrino excess from the direction of NGC1068 resulted in an expected
79+22

−20 neutrino events above the atmospheric and astrophysical neutrino backgrounds.
The source flux follows an approximate E−3.2 spectrum in the 1.5 TeV to 15 TeV energy
range. One interesting result from this study is that, since neutrinos were detected in the
TeV range, we should also expect TeV photons in light of pγ interactions creating charged
and neutral pions (see discussion in Section 3.2). However, the inferred TeV gamma-ray
flux is more than an order of magnitude above the gamma-ray fluxes (and upper limits at
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Figure 3.6. Flavor constraints on the astrophysical flavor ratio from different measurements.
From [9].

the energies where no gamma-rays were observed) provided by Fermi-LAT and MAGIC.
NGC1068 is therefore an example of a neutrino source that is opaque to gamma-rays.

Having discussed the status of IceCube measurements and how they correlate to
multimessenger astrophysics, we can now develop neutrino source models and calculate
their neutrino emissions. The associated fluxes will then be combined with IceCube
data to extract information about their luminosities and event rates of specific types of
neutrino sources.
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Chapter 4 |
Oscillation of high-energy neutri-
nos from choked jets in stellar and
merger ejecta

4.1 Introduction
Gamma-ray bursts (GRBs) are extremely luminous transients that are powered by
compact objects, such as neutron stars or black holes. When a dying star collapses, the
compact object launches relativistic jets that end up producing the GRB emission. The
mechanism which keeps the central engine going varies. For example, black holes are
powered by mass accretion, while neutron stars are powered by their fast rotation or
their magnetic fields. These environments are expected to launch powerful relativistic
jets.

For us to observe the jet’s gamma-ray emission, the jet has to penetrate the stellar
envelope first. If this occurs, we say that the jet breaks out of the progenitor. There is
the natural possibility that the jet is stalled, in which case we observe no gamma rays
due to photon attenuation within the stellar envelope. These choked jets lead to failed
GRBs. Without an electromagnetic signal, the possibility of detecting a neutrino signal
remains.

The production of relativistic ejecta in the jet is not expected to be steady. This
means that the ejecta speed has some variability over time. Fast ejecta catches up to
slower ejecta and the collision creates shock waves, which propagate into fast and slow
jets. The jet’s kinetic energy is converted into thermal energy, which is then radiated
outwards via synchrotron radiation and IC scattering. This is the so-called internal shock
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Figure 4.1. Graphical representation of GRB jet collimation within the stellar envelope.
Cocoon pressure enables collimation and the jet becomes cylindrical. In the case of radiation
mediated shocks, photons enter the upstream region. As a result, the shock now has a width
determined by the deceleration scale ldec and the strong shock jump which allows for efficient
CR acceleration is lost. Figure from [11].

model [153,154]. The model provides an explanation for the short-scale time variability in
GRB light curves, which is in the order of milliseconds, by connecting it to the variability
time δt of the central engine itself.

We also have to account for the jet’s propagation through different types of media,
as their interaction determines the system dynamics, such as jet head velocity and
collimation. There has been significant progress in understanding this physics, led by
many analytical (e.g., [155–160]) and numerical (e.g., [11, 161–167]) studies. Here we
outline the schematic picture for jet propagation as described in [160] and shown in Fig.
4.1. This will allow us to make more sophisticated models for particle production.

As the relativistic jet propagates outwards, it pushes the matter in front of it, creating
a forward and reverse shock which is separated by a contact discontinuity. This region
is called the jet head. As matter enters the head, it gets heated and flows sideways,
creating a high pressure cocoon. If the cocoon pressure exceeds the jet’s ram pressure
(upstream momentum flux) then the jet becomes collimated, significantly reducing its
opening angle. The collimation also forms oblique shocks at the base of the jet, which
counteract the cocoon pressure at the expense of the unshocked jet being curved towards
the jet’s axis. The point where the unshocked jet converges is called the collimation
shock radius. Beyond it, only the shocked jet remains and the flow is cylindrical. This
scenario is illustrated in Fig. 4.1.

One way to characterize GRBs is via their isotropic-equivalent energy Eiso, the
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energy inferred from the GRB fluence assuming that the emission is isotropic. The
total energy of the GRB can be ∼ 1053 erg. More recently, the most energetic GRB
observed, GRB 221009 A, emitted an isotropic equivalent energy of ∼ 1054 erg [109].
As conical jets are expected to be formed, the GRB emission actually occurs over a
given solid angle. Two jets are expected to be emitted in opposite directions, so for a
jet opening angle θj the solid angle is 4π(1 − cos θj). Since we only observe one of the
jets, only half of the energy actually arrives to Earth. In the limit θj ≪ 1, the one-sided
jet energy is Ej = (θ2/4)Eiso. The examples presented here are low-luminosity GRBs
(LLGRBs) [168, 169] with isotropic luminosities ∼ 1049 erg s−1, and ultralong GRBs
(ULGRBs) that last more than 1000s [170,171]. Both are examples of low power (LP)
GRBs.

GRBs are capable of producing neutrinos via photopion production. CRs accelerate
inside internal shocks. The acceleration mechanism usually relies in the formation of
plasma instabilities to obtain the isotropic particle momenta in the downstream, which
is part of the Fermi first-order acceleration scenario. Shocks of this kind are called
collisionless because they are not mediated by Coulomb scatterings between individual
particles.

Ambient photons in the upstream region allow for pion production and leads to
neutrinos, which escape the source. Afterwards, once the jet breaks out of the progenitor,
photons and cosmic rays will propagate to the observer. Coincident production of photons
and neutrinos means that if were to choose a group of GRBs, identified by their photon
signal, we would expect neutrino emissions from those sources.

The IceCube collaboration looked at neutrinos coincident with sources from GRB
catalogues, concluding that prompt neutrino emission from GRBs do not significantly
contribute to the diffuse neutrino flux [172,173]. Choked GRBs, where the jet does not
escape the progenitor, are able to bypass constraints from such stacking analyses, because
this type of burst emits neutrinos without an accompanying electromagnetic signal [174].

Having discussed the geometry of the jets, we can now address the parameters used
for our studies. The rest of this chapter is the result of the work published in Ref. [114],
showing how neutrino oscillation effects affect the GRB neutrino spectrum as it breaks
out from the progenitor. We take a semi-analytic approach, where the particle physics
for pγ and pp interactions are handled via parametrizations and protons are assumed to
lose a fixed fraction of its energy to the pions.
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4.2 Choked LP GRB jets in a massive star
The schematic setup decribing how LP GRB jets propagate in a massive star follows
Ref. [160]. A relativistic jet of luminosity Lj with an opening angle θj is injected into
the surrounding medium, with ambient density ρa. As the jet pushes the matter in front
of it, the jet head is formed, consisting of a forward and reverse shock. The jet head
velocity βh is [160]

βh =
(

Lj

c5t2ρaθ4
j

)1/5 ( 16ξa

3πξhξ2
c

)1/5

(4.1)

where ξa = 3/(3 − α), ξh = ξc = (5 − α)/3 depend on α = −d ln ρa/d ln r, where the
derivative is evaluated at r, and fcc ≈ 0.01 is a correction factor that is determined by
numerical calculations [11]. One important feature of this analytical formula is that it
cannot be applied when ρa falls faster than r−3, where the parameter χa turns negative.

Matter is heated inside these shocks and will flow across the sides at a high pressure,
creating a cocoon around the jet. If the pressure in the cocoon is sufficiently high, the jet
will become collimated. Within the collimated regime, the cocoon’s pressure reduces the
jet opening angle, creating an oblique shock that exerts sufficient pressure to withstand
the cocoon’s pressure. This collimation shock will then separate the jet in a shocked and
unshocked region, and has a Lorentz factor Γcs ∼ 1/θj. The unshocked region eventually
converges onto the jet’s axis, and after that only the shocked jet remains, maintaining
a constant cylindrical radius. The location where the jet becomes cylindrical is the
collimation shock radius rcs and its location at a time t is given by [11,160]

rcs =
(

L3
j t

4

c5θ2
j ρ3

a

)1/10 ( 6ξhξ2
c

π3/2fccξa

)1/5

. (4.2)

The formula shown above is obtained for a constant cocoon pressure, but cases in
which a pressure gradient exists are treated in Ref. [11]. As for the jet head, its velocity
βh is given by [11,160]

βh =
(

Lj

c5t2ϱaθ4
j

)1/5 ( 16ξa

3πξhξ2
c

)1/5

, (4.3)

which can be used to find the jet head’s position rh as a function of time.
We will assume that CR production and acceleration happens in the internal shocks,

when a fast shell with Lorentz factor Γr collides with a slower one of Γs to form a merged
shell of Γj. In the scenario shown by Fig. 4.1, the internal shock radius ris is inside the
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uncollimated jet (ris ≤ rcs). We will assume that in LP GRB jet case ris = rcs

The internal shocks may be radiation mediated or radiation unmediated. When the
shock is radiation mediated, photons in the downstream region may enter the upstream
region. Inside this region, photons are thermalized by Compton scatterings with the
thermal electrons and these electrons will then decelerate the ambient protons. If the
protons decelerate over a distance that is shorter than the size of the upstream flow,
then CR cannot be accelerated efficiently [14]. We quantify this condition by using the
Thomson depth in the upstream region [14]

τu
T = nuσT lu, (4.4)

where nu is the number density of the upstream region, σT is the Thomson cross section
and lu is the size of the upstream region. For the calculations, that follow, it is also useful
to define the isotropic-equivalent total luminosity Ltot = 4Lj/θ2

j , which is the luminosity
of the source if its emission extended over all directions. Similarly, the isotropic-equivalent
kinetic luminosity is Liso = ΓjLtot/η, where η is the maximum Lorentz factor and Γj is
the pre-collimated jet Lorentz factor.

Imposing the condition τu
T ≲ 1 to this region as the most conservative bound, we get

n′
uσT (ris/Γr) ≲ 1, where σT is the Thomson cross section and n′

u ≈ Liso/(4πr2
isΓ2

jmpc3Γrel−is)
is the comoving upstream electron density, assuming an e − p plasma. Here Γr is the
Lorentz factor of the faster shell and Γrel-is ≈ Γr/(2Γj) is the relative Lorentz factor
between the merged shell and the fast shell (assuming fast and slow shell both have the
same mass). In terms of the LP GRB parameters, the radiation constraint [14] takes the
form 1

Liso,52r
−1
is,10Γ−3

j,2 ≲ 8.5 × 10−3 min[Γ2
rel−is,0.5, 0.32C−1

1 Γ3
rel−is,0.5], (4.5)

where C ≃ 10 is a numerical factor due to the generation of pairs at the shock. For this
work, we ignore high-energy neutrino emission produced by CRs accelerated at collimation
shocks, as these neutrinos would be more important in the GeV-TeV region [14].

Eq. (4.5) marks the location where efficient CR acceleration begins [14]. For successful
CR injection, we need to ensure that the radiation constraint is satisfied before the jet
ends at tdur (that is the GRB duration). In general, tdur is a free parameter; it becomes
constrained by imposing the jet stalling (failed GRB) condition, namely that the breakout
time tbo (when the jet head reaches the stellar radius) is longer than tdur. For LP GRBs,

1There is a small difference in numerical values because σT ∼ 10−24 cm2 is used in Eqs. (4) and (5)
Ref. [14]. In this work we use σT ≈ 6.65 × 10−25 cm2.
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Figure 4.2. Left panel: Progenitor density profiles from [12]. Right panel: Jet head location rh

and collimation shock radius rcs as a function of time. The solid lines correspond to the points
obtained from Eq. (4.2) and Eq. (4.3), while the dashed lines are the associated extrapolations.

this is achieved for a nonrelativistic jet head; it will also move at a near constant velocity.
We use these relations to verify that the chosen GRB parameters and density profile
form bursts with the desired properties.

Results of the semianalytical jet propagation model are shown in Fig. 4.2. We choose
three density profiles from [12]: a 30 M⊙ and 75M⊙ blue supergiant (BSG) and a 45 M⊙

red supergiant (RSG). We also include a 16 M⊙ Wolf-Rayet (WR) profile from [175].
The radius rh is calculated using Eq. (4.3) until we reach the point where the density
profile falls off faster than r−3. Beyond this point, we extrapolate to determine rh. We
then calculate rcs in a similar fashion, using Eq. (4.2).

4.3 Choked SGRB jets in merger ejecta
For a neutron star merger, we follow the method outlined in Ref. [176] and consider the
jet propagation in the merger ejecta with mass Mej and speed βej. For more detailed
numerical studies see, e.g., Ref. [177]. Jets can be launched through the Blandford-Znajek
mechanism [178] and can lead to neutrino emission by CRs accelerated at internal shocks.

We consider a time lag between the ejecta and jet production, which is given by tlag,
such that the ejecta radius is

Rej = cβej(t + tlag) (4.6)
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and the density profile of the ejecta is wind-like as

ϱej = Mej

4πR3
ej

(
r

Rej

)−2

. (4.7)

On the other hand, the jet head position is estimated to be

rh ≃ 2.2 × 1010 L
1/3
iso,51θ

−2/3
j,−0.52M

−1/3
ej,−2 β

1/3
ej,−0.48t

4/3
0.3 χlag,0.18 cm, (4.8)

where Mej is the ejecta mass and χlag = 1 + tlag/t. Again, CR acceleration occurs at the
internal shock radius ris ≃ 8.4 × 109 tvar,−4Γ2

j,2.48Γ−2
rel-is,0.6 cm, where tvar is the variability

time. Internal shocks can form either in the precollimated jet or the collimated jet;
however, the Lorentz factor in the collimated jet is so low that the shock will be radiation
mediated. For this reason, as in the LP GRB case, we assume that internal shocks occur
in the unshocked jet (ris ≤ rcs) where the radiation constraint reads

Liso,51r
−1
is,10Γ−3

j,2.48 ≲ 2.3 min[Γ2
rel−is,0.5, 0.32C−1

1 Γ3
rel−is,0.5]. (4.9)

Finally, the jet stalling condition is imposed by rh < Rej.

4.4 CR injection, timescales and neutrino production
CRs are initially injected as an dN ′

p/dε′
p ∝ ε′−2

p proton spectrum, where the primes
indicate that the quantities are evaluated in the comoving frame of the injection site (i.e.,
in the rest frame of the jet). The minimum proton energy is Γrel-ismpc2. Protons have a
characteristic cooling time t′

cool, which should not be shorter than the acceleration time
t′
p,acc = ε′

p/(eBc). By setting t′
p,acc = t′

cool, we can determine the maximum proton energy
ε′

p.max. The energy injection rate is equal to ϵpLiso, where ϵp is the fraction of Liso carried
by protons. We thus have

dN ′
p/dε′

p = ϵpLiso

ln(ε′
p,max/ε′

p,min)ε′−2
p exp

(
ε′

p

ε′
p,max

)
. (4.10)

Protons will create pions through pγ, with characteristic timescale tpγ given by
Eq. (3.21). Additionally pp collisions may occur with a characteristic timescale t′

pp =
(κppσppn′

jc)−1. We take κpp ∼ 0.5 as a constant, while the inelastic pp cross section σpp is
parametrized by the formula given in Ref. [179].
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To calculate both timescales, we need to specify the target photon (proton) density
for pγ(pp) timescales, with all quantities being calculated in the jet rest frame. In pp

collisions, the target protons are at rest, with density n′
j = Liso/(4πΓ2

jr
2
ismpc3).

For the target photons, we first consider the thermal component which is generated
by the collimation shocks. For choked LP GRB jets, we use

kT ′
cj ≃ 0.70 Liso,49.5r

−1/2
cs,11.5(θj/0.2)1/2keV. (4.11)

In the case of choked SGRB jets, the thermal photons have a temperature

kT ′
cj ≃ 9.7 θ

1/2
j,−0.52M

1/4
ej,−2β

−1/4
ej,−0.48t

−3/4
dur,0.3χ

−1/4
lag,0.18keV. (4.12)

Note that in both cases, these temperatures are given in the collimation shock frame. To
obtain the photon density in the jet frame where pγ collisions take place, we apply a
Lorentz boost of Γrel−cs ≈ Γj/(2Γcs). In addition, the photons have to diffuse across a
region with optical depth τcj ∼ n′

cjσT rcsΓcj, where n′
cj ≈ Γrel,csLiso/(4πΓ2

jr
2
csmpc3) is the

density in the collimated jet [14]. This modifies the target photon density by a factor
Γrel−cs[1 − exp(−τcj)]/τcj. With these two modifications, we can obtain dn′

γ/dε′
γ to be

used in Eq. (3.21).
We also have a non-thermal photon component. Non-thermal electrons are initially

produced at the internal shock. A fraction ϵe of the thermal photon energy can be
transferred to these electrons via photon-electron couplings and is then radiated as a
non-thermal photon spectrum. We can describe this photon distribution by a broken
power law dnγ/dεγ ∝ ε−α1

γ (ε−α2
γ ) for εγ < εγ,pk(εγ > εγ,pk), normalized such that its total

energy is Uγ,NT = ϵe(Γrel-is −1)n′
ismpc2, where n′

is ≈ Liso/(4πΓ2
jr

2
ismpc3) is the downstream

density of the internal shocks. We assume that the minimum (maximum) photon energy
of the non-thermal component is 0.1 eV (1 MeV) and the spectral indices are α1 = 0.2
and α2 = 2.0 [176].

Using the interaction timescales tpp/pγ, we can define the effective optical depth as

fpγ + fpp = t′
cool(t′−1

pγ + t′−1
pp ), (4.13)

The calculation of t′
cool used to calculate ε′

p,max in Eq. (4.10) and the effective optical
depth is done via Eq. (3.22). For protons, we consider adiabatic cooling with timescale
t′
ad ≈ t′

dyn ≈ ris/cΓj and synchrotron losses with timescale t′
syn given by Eq. (3.16). The

calculation of t′
syn also requires the magnetic field strength B′ in the comoving frame.
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We assume that a fraction ϵB of the isotropic luminosity is converted to magnetic field
energy, such that B′ satisfies the relation

ϵB =
(

B′2

8π

)(
Liso

4πr2
isΓ2

jc

)−1

. (4.14)

The expressions (4.10)-(4.13) provide the information about the initial proton spec-
trum and how efficient pp and pγ are at producing pions. Pions produced from these
processes will lose energy as they propagate and may not be able to decay into high-energy
neutrinos. The same applies for muons. The relevant processes for these particles are
adiabatic losses, synchrotron cooling and hadronic cooling. The first two are handled in
the same way as the protons, but using their respective particle masses. For hadronic
cooling, we use the timescale t′−1

πp = κπpσπpn′
jc where we take the values κπp ∼ 0.8 and

σπp ∼ 5 × 10−26 cm2 as constants for our energy range of interest. We assume that
tµp = tπp.

The pion and muon cooling timescales are compares against their decay timescales
t′
dec = γτdec, where γ is the Lorentz factor of the particle in the comoving frame, leading

to a suppression factor fsup = 1 − exp(−t′
cool/t′

dec). For neutrinos originating from muon
decay, we require two suppression factors: one for pion cooling and another for muon
cooling. The muon spectrum is therefore significantly suppressed with respect to the
pion spectrum at high energies.

We assume that the correspondence between the parent proton and daughter neutrino
is ε′

p ≈ 20ε′
ν(ε′

p ≈ 25ε′
ν) for pγ(pp) interactions. In reality neutrinos from a proton with ε′

p

may have energies below 0.05ε′
p (or 0.04ε′

p) due to meson and muon cooling. Meson and
muon cooling modifies neutrino injection fluxes at high energies, while the production
efficiency factors fpp/pγ modify the low-energy regions. Once we take these considerations
into account, the generated neutrino spectrum “per flavor” in the jet frame is given by

ε′
ν

2 dN ′
ν

dε′
ν

≈ K

4(1 + K)ε′
p

2 dN ′
p

dε′
p

fsup(fpγ + fpp) (4.15)

where K = 1 (K = 2) for pγ (pp) interactions, fsup = fπ
sup for the νµ spectrum arising

from pion decay and fsup = fπ
supfµ

sup for the neutrinos produced as a result of muon decay.
After we obtain the neutrino fluxes in the jet comoving frame, we perform an appropriate
Lorentz boost to switch to the observer frame. LP GRB neutrinos are injected at rh,
while SGRB neutrinos are injected at ris.

46



103 104 105 106 107 108

Eν [GeV]
10-5

10-4

10-3

10-2

10-1

100

E
2 ν
d
N
ν
/d
E
ν
 [a

rb
. u

ni
ts

]

Injection at rh = 1.6× 1011cm
Φµ, S

Φe, S

Φe, ∗

Φµ, ∗

Φτ, ∗

103 104 105 106 107 108

Eν [GeV]
10-5

10-4

10-3

10-2

10-1

100

E
2 ν
d
N
ν
/d
E
ν
 [a

rb
. u

ni
ts

]

Injection at rh = 1.6× 1011cm
Φµ, S

Φe, S

Φe, ⊕

Φµ, ⊕

Φτ, ⊕

Figure 4.3. Neutrino energy spectrum from a choked LP GRB jet inside a BSG. Left panel:
Neutrino spectrum after propagating from the injection site, rh = 1.6 × 1011 cm, to edge of the
source. Right panel: Same as left panel, showing the flux arriving at Earth after averaging out
due to long distance propagation. The proton flux is normalized such that E2

pdNp/dEp = 1.
The να + ν̄α spectra at injection are represented by the dashed curves, combining contributions
from π and µ decay after accounting for cooling.

4.5 Neutrino propagation
For neutrino propagation, we assumed the NuFIT 2019 NO oscillation fit values [180].
The effects of δCP are expected to be nonsignificant compared to other considerations in
neutrino production, namely the π+/π− ratio and kaon production [181,182]. Without
these considerations, there is little benefit in making a distinction between neutrinos and
antineutrinos. We therefore treat the injection flux Φν + Φν̄ as if it contained neutrinos
and no antineutrinos and set δ = −π/2 [183].

For resonance effects inside the source, we use the following estimate for the ν1 − ν3

resonance energy εH
R [124]:

εH
νR ≈ ∆m2

31 cos 2θ13

2
√

2GF ne

= 32GeV
(ρ/g cm−3) (4.16)

The right hand side of Eq. (4.16) uses the best fit values of the oscillation parameters
and ne = Yeρ/mpc2, where ρ is the matter density, mp is the proton mass and Ye is the
electron fraction. The electron fraction is assumed to be 1/2 both in Eq. (4.16) and our
numerical simulations.

During propagation, NC interactions are considered as they contribute to neutrino
attenuation, but not oscillations (see discussion above Eq. (2.15)). For CC interactions,
we are not tracking the charged leptons formed in the process since they will have less
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energy than the incident neutrino and will also be quickly cooled, particularly the electron.
The propagation from the injection radius to R∗ (or to Rej for SGRBs) is handled by
nuSQuIDS [184], giving the oscillated spectra Φνα,∗ at the progenitor’s surface. In the
SGRB case, we have to keep in mind that the ejecta radius and density profile are time
dependent quantities, in the sense that both the location of the neutrino and time elapsed
since injection have to be used to impose the neutrino escape condition.

After escaping the source, wave packet decoherence will cause subsequent vacuum
oscillations to be suppressed as neutrinos make their way to Earth. The observed flavor
flux Φνα,⊕ is found via

Φνα,⊕ =
∑

i

|Uαi|2Φνi,∗, (4.17)

where Φνi,∗ is the neutrino flux of the vacuum mass eigenstate i [124] at the edge of the
progenitor. This expression is a variant of Eq. (2.14).

4.6 Results on neutrino oscillation and flavor ratios at
Earth
The parameter set used for LP GRBs is shown in Table 4.1 and the density profile
corresponds to a 30 solar mass blue supergiant (BSG) from Ref. [12]. By taking a variety
of injection radii, we obtain the propagated spectra both at escape and on the Earth. Our
choice of parameters indicate that efficient CR acceleration happens at rcs ∼ 5.9 × 108

cm at ∼ 10 s and breakout at ∼ 4600 s. Based on previous studies, which obtained the
E2

νdNν/dEν flux peak in the 100 TeV range [14,185], we will study the spectrum in the 1
TeV - 100 PeV energy range. Throughout this energy range, pion production is highly
efficient. Using Eq. (4.16), we find that, at the injection site, EH

R ≈ 6 MeV when the
shock becomes radiation unmediated and EH

R ≈ 160 TeV at tdur.
We show the oscillated neutrino spectra in Fig. 4.3, with proton fluxes normalzied

such that ε2
pdNp/dεp = 1. The observed oscillation pattern for our injection radius of

1.6 × 1011 cm is not a mere result of the MSW resonance: the ν1 − ν3 resonance occurs
at < 430 GeV at injection, below the energy range of interest. During propagation, we
can satisfy the resonance condition in the TeV range, which may explain the peaks at 1
TeV and 3 TeV in the νe flux. What we observe are nonadiabatic oscillations, in which
oscillations are caused by the ν2 − ν3 mixing in matter induced by adiabaticity breaking
of the ν1 − ν3 resonance, the so-called H-wiggles mentioned in Ref. [124], whose effect
decreases as we go to energies above 10 TeV.
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Choked LP GRB jet parameters
Liso,48 θj Γj tdur ϵB ris Γrel-is ϵp

1 1.0 50 1800 s 0.1 rcs 4 0.2

Choked SGRB jet parameters
Liso,51 θj Γj tdur ϵB ris

1 0.3 300 1.8 s 0.1 8.4 × 109 cm
Γrel-is ϵe ϵp α1 α2 εγ,pk

4 0.1 0.2 0.2 2 1.7 keV

Table 4.1. Relevant parameters assumed for our choked LP GRB and choked SGRB models.
For the special case of SGRBs, we have the additional parameters Mej = 0.02M⊙, βej = 0.33
and tlag = 1 s.

In the high-energy regime, we observe the attenuation of the neutrino flux as a result
of both pion/muon cooling and the increase in the CC cross section. The effect of NC
interactions slightly modifies the slope of the spectrum and we found that the changes are
in the order of 10%. Naturally, the attenuation effects become more significant at lower
injection radii; if injection occurs at 1010 cm, we would have negligible flux at 1TeV.

On the other hand, at high energies, matter effects enhance the mass splittings inside
the progenitor, effectively suppressing oscillation effects. This phenomenon typically
occurs in the PeV range. If we consider the propagation close to the edge of the progenitor,
where the density is the smallest, we would still find little oscillations because the vacuum
oscillation lengths losc

jk = 4πEν/|∆m2
jk| ≳ 1014 cm are much larger than the progenitor

radius.
Looking at the flavor ratios, it is traditionally assumed that the neutrino spectrum at

escape (for pγ interactions) follows the ratio (νe : νµ : ντ ) = (1 : 2 : 0) at escape for low
energies and (0, 1, 0) at high energies [186]. Under vacuum neutrino oscillations and Eq.
(4.17) takes the form

Φα,⊕ =
∑

i

|Uαi|2|Uβi|2Φβ,∗, (4.18)

which is essentially Eq. (2.14) and leads to the flavor ratios (1 : 1.08 : 1.06) for low
energies and (1 : 2.03 : 1.87) at high energies. In our case, we inject neutrinos inside the
source so matter effects will alter the low-energy ratio. We show the flavor ratios for our
model in Fig. 4.4. We see that nonadiabatic oscillations shown in Fig. 4.3 also induce
oscillations in the flavor ratios.

One feature that still persists even in the presence of matter effects is that Φνµ and Φντ

49



103 104 105 106 107 108

Eν [GeV]
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Fl
av

or
 ra

tio

Injection at rh = 1.6× 1011cm

Φνµ, ⊕ /Φνe, ⊕ Φντ, ⊕ /Φνe, ⊕

Figure 4.4. Observed Φνα/Φνe flavor ratios at Earth. Neutrino spectra are injected at
rh = 1.6 × 1011 cm. The blue line is a line for the (1:1) ratio and is added as a reference.

fluxes are approximately equal after averaging, for low Eν . The transition in the flavor
ratio and the splitting between the νµ and ντ fluxes occurs close to 100 TeV, consistent
with our theoretical expectation that the ratio approaches (1 : 2.03 : 1.87) when muons
are significantly cooled in the GRB. This transition would be hard to spot since the
neutrino flux is heavily suppressed at these energies due to inelastic collisions with matter.
Additional simulations using a 25 and 35 solar mass BSG (all other parameters fixed)
show that the flavor ratio is only mildly affected by choosing different BSG progenitor
models. Similar results hold for a red supergiant progenitor as well. We expect this
because most of the neutrino injection happens above 1011 cm, where the density profiles
are similar (see Fig. 4.2).

Upon time integration up to tdur = 1800 s, the flavor ratio oscillations get smeared.
This can be seen in Fig. 4.5, where the oscillations in νe are less prominent. In the 1 TeV
- 10 TeV range, some flavor ratio oscillations remain, with slightly more νµ and ντ than
νe. In the 10 TeV - 100 TeV range we see that the νe excess can enhance the shower to
track ratio, which could alleviate the tension between the shower and muon data (see
Section IV.B). This excess that covers a wide energy range is present because the jet is
choked and matter effects are important: as we increase tdur, more neutrinos are injected
closer to the progenitor’s edge and the fluence would approach the vacuum oscillation
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Figure 4.5. Left panel: Fluence of a choked LP GRB at a distance of 10 Mpc, using the
parameters of Table 4.1. Right panel: Same as left panel, but showing the flavor ratio of the
fluence.

limit. Strong neutrino attenuation starts around 100 TeV, while at 1 PeV muon cooling
occurs and the flavor ratio approaches (1 : 2.03 : 1.87).

In the case of a WR star progenitor, we have ϱa > 103 g cm−3 until r ∼ 1010cm.
Neutrino attenuation is important and very few neutrinos are present in the TeV range,
so the only contributions come from injection close to the edge. We thus conclude that
most of the injected neutrinos would be subject to vacuum oscillation mostly. If we insist
on having observable matter effects, attenuation would be so strong that attempting a
fit with IceCube data would inevitably overshoot the astrophysical flux in the low-energy
range. Furthermore, we also get a lower bound on the allowed values of tdur if we are to
have observable neutrinos. This restriction can be avoided if the WR star has additional
surrounding material outside of its core, allowing for further jet propagation [137].

The parameters chosen for the choked SGRB jets are summarized in Table 4.1 and
the resulting oscillation pattern is shown in Fig. 4.6. It is instructive to point out the
oscillation pattern differences with respect to the LP GRB case. First, we find that
the neutrino flux does not vary significantly over time; unlike LP GRBs, in which the
injection begins at ∼ 10 s, the constraint ris < rcj forbids CR injection in the early phases,
beginning at the neutrino onset time tonset = 1.7 s and the duration of the neutrino
injection phase is shorter in SGRBs. The mild variations in the spectra mean that the
oscillations patterns are not smeared out after time integration. The ν1 − ν3 resonance
energy at the injection site occurs at 18 GeV at tonset and 27 GeV at tdur.

The particular parameter set that we have chosen allows for an interesting pattern
to form. In the LP GRB case, the oscillation lengths are shorter than the size of the
progenitor, so oscillations in the flavor ratio could be observed early, at t = 102 s, but
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Figure 4.6. Left panel: Neutrino fluence from a failed SGRB at a distance of 10 Mpc.
Contributions are integrated over tdur = 3 s. The neutrino injection rate varies mildly over time.
Right panel: Same as left panel, but showing the neutrino flavor ratio instead of the fluence.

get smeared out when integrating over tdur. In the SGRB case, such flavor oscillations
occur between 100 GeV and 1 TeV, which is advantageous because we can observe in Fig.
4.6 a ∼ 10% νe excess over νµ/τ that persists through a wide energy range after time
integration. Resonance happens at O(10) GeV, outside our range of interest. We also
show the flavor ratio in Fig. 4.6, showing the νe excess at 1TeV. In principle, such an
excess could be observed by IceCube over the 500 GeV - 30 TeV energy range.

4.7 Detectability of individual bursts with next-generation
detectors
It is useful to see if our predictions can be tested in future detectors such as IceCube-Gen2
and KM3Net. In the case of an ideal detector, for instance IceCube-Gen2, we estimate
the number of events as

N =
∫ Eν,max

Eν,min
dEνV(ϱiceNA)σ(Eν)ϕν (4.19)

where σ(Eν) is the neutrino-nucleon cross section, ϕν is the (time integrated) neutrino
fluence, ϱice is the ice density, V = 10 km3 is the detector volume and NA is the Avogadro’s
constant. From an experimental point of view, it is often more meaningful to calculate
the number of events as a function of the deposited energy. The energy deposited in the
detector will depend on the neutrino flavor and on the neutrino topology. In our case,
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Choked LP GRBs
Edep > 1 TeV Edep > 10 TeV

Shower 88 25
(120) (47)

Track 28 5
(40) (12)

Choked SGRBs
Edep > 1 TeV Edep > 10 TeV

Shower 65 10
(124) (19)

Track 22 3
(123) (28)

Table 4.2. Expected number of events in IceCube-Gen2-like detectors as a result of a single
choked LP GRB or choked SGRB jet that occurs at a distance of 10 Mpc, over the duration
tdur and assuming that the jet points towards us. We use the parameters in Table 4.1 and, in
the case of a choked LP GRB, we use a 30 M⊙ progenitor. The event numbers are shown for
two different thresholds in deposited energy. The quantities in brackets correspond to the event
numbers without attenuation and oscilation.

we consider fully contained events for both showers and tracks. Inclusion of partially
contained events depends on selection criteria, which are not discussed in this work.

We use the neutrino-nucleon cross sections in Ref. [187]. The relevant shower/track
channels are listed in Ref. [63] and the deposited energy Edep for each channel is given
as functions of the neutrino energy Eν and the mean inelasticity ⟨y⟩, where the latter
is obtained from Ref. [187]. We compute the event numbers using the fluxes calculated
in our work (referred to as “with attenuation and oscillation”), as well as the fluxes
obtained if we ignore matter effects and radiation constraints, while assuming that
neutrino production is constant in time (i.e., we calculate the flux at tdur and multiply
this result by tdur to find the time integrated fluence). We will refer to the latter scenario
as the case “without attenuation and oscillation”.

For both our sources, we used the parameters in Table 4.1. The results are summarized
in Table 4.2, where event numbers with Edep > 1 TeV and Edep > 10 TeV are presented.
Since tdur ∼ 1000 s, the expected number of background events is less than one.

In choked LP GRB jets, we see that the difference is less than a factor of 2 between
the case with attenuation and oscillation and the one without. This comes from matter
attenuation. The feature becomes more prominent as we increase the energy threshold
for Edep (see blue curve in Fig. 4.7).

In the case of choked SGRB jets, we notice that a scenario without attenuation and
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oscillation overestimates the total number of events by a factor of ∼ 2. By ignoring the
time dependence of the problem, this case assumes neutrino emission throughout tdur,
but the constraint ris < rcs reduces this time interval by about 1/2. Without matter
attenuation effects, we also overestimate the flux and this overestimation increases with
energy. In terms of flavor ratios, we observed that the percentage of shower events
increased significantly compared to the number of track events and is a feature that
persists for all Edep > 1 TeV. This is caused by the νµ → νe conversion above 1 TeV,
reducing the number of track events, while increasing shower events. In the absence of
matter effects, the νe flux is below νµ/τ flux at all energies, causing shower and track
event numbers to be comparable. Note that the non-detection of neutrinos from GRB
170817A is consistent with our model, because the SGRB jet was off-axis, preventing us
from making stringent constraints from this particular event.

4.8 Choked LP GRB jet contribution to the diffuse neu-
trino flux
We test the possibility of our oscillated neutrino spectra to match IceCube’s unfolded
diffuse neutrino spectrum with six years of shower data [1] and six years of high energy
starting event (HESE) data [13]. In particular, the origin of medium-energy neutrinos has
been of interest, because the multi-messenger analyses have indicated that the sources
are hidden CR accelerators [188, 189], which include choked GRB jets [14, 190] and cores
of active galactic nuclei [191,192].

We probe the Liso − Γj space, keeping all other parameters and the progenitor model
fixed. Our spectrum is time averaged, from the time that CR acceleration becomes
efficient (see Eq. (4.5)) to tdur. The normalization is left as a free parameter; we
optimize it to provide a best fit to the unfolded spectrum between 10 TeV and 100 TeV.
Exploration of the parameter space is limited by the requirement tdur < tbo and that
efficient acceleration has to occur before breakout.

For this work, the normalization is set by an energy constraint that relates the total
extragalactic diffuse flux to the GRB rate density as

E2
νΦν ∼ 4 × 10−8 GeV cm−2s−1sr−1ϵp × Ek,51

(
fchoρ

1000 Gpc−3yr−1

)(
fz

3

)
,

where Ek = Lisotdur is the isotropic-equivalent kinetic energy, fz is the redshift evolution

54



104 105 106 107

Eν [GeV]
10-9

10-8

10-7

10-6

E
2 ν
Φ
ν
 [G

eV
 c

m
−

2
 s
−

1
 sr

−
1
]

Choked LP GRB IS (π/µ cooling scenario)
Choked LP GRB IS (ν attenuation scenario)
Choked UL GRB CS (Murase & Ioka 2013)
6 - year IceCube HESE
6 - year IceCube Shower

Figure 4.7. All-flavor choked LP GRB diffuse neutrino fluxes in comparison with the IceCube
astrophysical neutrino spectra. The data from the 6-year shower analysis [1] is shown by the
green bars, while the result of the 6-year HESE analysis [13] is shown by the red bars. The
per-flavor neutrino flux from [13] was multiplied by a factor of 3 to estimate the all flavor flux.
The π/µ cooling scenario uses Liso,48 = 2, Γj = 70, θj = 0.2, tdur = 2000 s and a 75 M⊙ BSG
progenitor, while the ν attenuation scenario assumes Liso,48 = 1, Γj = 50, θj = 1, tdur = 1800 s
and a 30 M⊙ BSG progenitor. The remaining parameters are given in Table 4.1. For comparison,
we show the spectrum of the choked UL GRB neutrinos from the collimation shock (CS) in
Ref. [14] but the flux is rescaled.

factor [145, 193], ϵp is the energy fraction carried by CR protons, ρ is the local rate
density of successful LP GRBs, and fcho is the fraction of choked GRB jets compared to
the successful ones. LP jets are preferred not only theoretically to satisfy the radiation
constraints and jet stalling condition, but also observationally to be consistent with the
IceCube data. The failed LP GRB rate density should be above ∼ 60 Gpc−3 yr−1(fz/3)−3

because a lower rate density contradicts the nondetection of multiplet sources [194–197].
We find that our LP GRB jet parameters can explain the medium-energy neutrino

data, which is consistent with the results of Ref. [14]. Ref. [198] had difficulty in explaining
the 10-100 TeV data but their parameter space is different. We show in Fig. 4.7 the
result with Liso,48 = 1, Γj = 50, tdur ≈ 1800 s, θj = 1 and (ρ/1000 Gpc−3 yr−1)fcho ∼ 20.
By choosing a duration time smaller than the breakout time, we obtain a spectral cutoff
due to the neutrino attenuation in the progenitor star, as expected in Ref. [14]. For a
75M⊙ BSG, we choose the parameters Liso,48 = 2, Γj = 70, θj = 0.2 and tdur ≈ 2000 s, in
which the neutrino spectrum extends to the higher-energy regions. The associated rate
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density is (ρ/1000 Gpc−3 yr−1)fcho ∼ 6. In this case, neutrino attenuation is weak and
the suppression is caused mainly by pion and muon cooling. We also point out that the
neutrino flavor ratio is not exactly ≈ 1 : 1 : 1 thanks to matter effects in the neutrino
oscillation, and a νe excess is expected in the 10 – 100 TeV range. This could help us
explain the diffuse neutrino flux suggested by the shower analysis is higher than that
from the upgoing muon neutrino analysis.

In both of these cases, our models are not yet constrained by the stacking limits [172,
196,199] as well as multiplet constraints [194–197]. Note that our LP GRB simulations
are shown as the all-flavor diffuse neutrino fluxes; any possible flavor ratio oscillation in
the low-energy region is smeared out by the summation over flavors, leaving neutrino
attenuation as the relevant effect.
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Chapter 5 |
Charm production in newborn mag-
netars

The work in this chapter was published in [115].

5.1 Introduction
Magnetars are neutron stars with the highest magnetic fields in the Universe [200–202].
The magnetar birth rate is expected to be more than ∼ 10% of the CCSNe rate. While
the fast-rotating magnetar event rate is unknown, it would not exceed the rate of Type
Ibc SNe. For fast rotating magnetars with initial periods Pi ∼ 1 ms at birth, one can
expect magnetic fields as high as 1014 − 1016 G, due to the amplification of the field by a
dynamo mechanism [203,204], although a significant fraction of the magnetars may be
explained by the fossil field hypothesis [205].

The rotational energy can be extracted in a form of Poynting energy and fast-rotating
neutron stars or magnetars may provide a site for efficient UHECR acceleration [206].
These CRs do not escape the SN ejecta, instead losing their energy through pp and/or
pγ interactions, to secondary particles. Previous studies on neutrino production in
magnetars mainly considered pion decays, [207–210] where the pions come from pp and
pγ interactions (but see also Ref. [211]). Here, we mainly focus on magnetar scenarios
where pp interactions dominate at early times and in addition to pion decays, we also
consider kaon decays and charmed hadron decays as neutrino sources. Typically, charm
production in various astrophysical scenarios can be neglected because its production
cross section is small when compared to pion/kaon production, but may not always be
the case as considered for choked GRB jets [212,213]. In magnetars, for energies above
O(109) GeV, pions and kaons are subject to strong cooling due to interactions with
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surrounding protons and photons, while charmed hadrons decay promptly without any
significant energy loss. If sufficient cooling is present, prompt decays of charm hadrons
can dominate the neutrino fluence at ultrahigh energies.

We will show that charm hadron contributions become important in the context of
next generation detectors, such as IceCube-Gen2 [15], Probe Of Extreme Multi-Messenger
Astrophysics (POEMMA) [214] and Giant Radio Array for Neutrino Detection (GRAND)
200k [17], which are sensitive to 109 GeV - 1011 GeV neutrinos.

In what follows, we assume that the UHECRs accelerated in newborn magnetars are
protons, but nuclear composition has been considered in other works (e.g. Ref. [209]).
We will consider nearby magnetars, so we consider ε = E. We evaluate neutrino injection
rates from a given proton injection spectrum dNp/dEp by calculating the particle spectra
of the chain pp → hX → νY , where h is a hadron (pion, kaon and charmed hadron) that
decays into neutrinos. The initial proton spectrum is a time-dependent function that
depends on the magnetar’s parameters, e.g., the magnetic field, radius, initial period,
moment of inertia, efficiency of acceleration and shock velocity, as discussed later.

To determine the proton injection spectra, we start by considering properties of the
magnetars and their mechanism for accelerating protons to high energies. The magnetar
consists of a rapidly rotating neutron star, with an initial angular frequency Ωi = 2π/Pi

and initial period Pi ∼ 1 ms. Neutron stars are known to spin down, and their rotational
energy is carried by the wind, consisting of the outflowing plasma and magnetic fields.
Charged particles are accelerated by tapping a fraction of the voltage available in the
wind, via the wake-field acceleration mechanism [206].

The spindown luminosity at time t is given by

L(t) = B2
NSR6

NSΩ4
i

4c3 (1 + sin2 χ)
(

1 + t

tsd

)−2

≃ 1.5 × 1050erg s−1 B2
NS,15R

6
NS,6Ω4

i,4

×(1 + t/tsd)−2 , (5.1)

where χ is the angle between the rotation and magnetic axes. Note that the above formula
based on magnetohydrodynamics simulations [215–217] is analogous to the well-known
vacuum dipole formula. Our numerical values are obtained with ⟨sin2 χ⟩ = 2/3.

From Eq. (5.1), it follows that for t ≫ tsd, the luminosity will decrease as t−2 and
does not depend on Ωi, since the spindown time tsd depends on Ω−2

i . In particular, for a
neutron star with magnetic field BNS, radius RNS and moment of inertia I, the spindown
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time is [218]

tsd = 6Ic3

5Ω2
i B

2
NSR6

NS
≃ 102.5 s I45B

−2
NS,15R

−6
NS,6Ω−2

i,4 . (5.2)

As noted above, we assume a proton composition of cosmic rays, and for simplicity,
we assume that all accelerated protons at t have a monotonic energy [206,207]

EM(t) = facceBNSR3
NS

2c2 Ω2
i

≃ 1.3 × 1013 GeV facc,−1BNS,15R
3
NS,6Ω2

i,4 (1 + t/tsd)−1 , (5.3)

where facc parametrizes the efficiency of the acceleration process.
We assume that the proton injection rate is determined by the Goldreich-Julian

rate [219], in which the proton injection rate spectrum at t is written as

dNp

dEp

= BNSR3
NSΩ2

i

ec(1 + t/tsd)δ[Ep − EM(t)], (5.4)

which roughly gives

dNp

dEp

∼ 7 × 1039 GeV−1 BNS,15R
3
NS,6Ω2

i,4

(1 + t/tsd)−1δ[(Ep − EM(t))/GeV]. (5.5)

In the limit t ≫ tsd, we see that EM(t) ∝ t−1 and is independent of Ωi. The time
integration of dNp/dEp gives a proton time-integrated injection spectrum that scales as
E−1

p [207].
Magnetar-driven supernovae
At the birth of the magnetar, the SN ejecta propagates outward with speed βejc. We

estimate the SN ejecta radius as

rej ≈ βejct ≃ 1013.5 cm βej,−1t4. (5.6)

Although βej may depend on time, we assume time-independence for simplicity. The nu-
cleon density in the ejecta is assumed to be homogeneous, such that nN = 3Mej/(4πr3

ejmp),
where Mej is the ejecta mass and mp is the proton mass. We may assume that the SN
ejecta masses typically lie between 10M⊙ and 35M⊙ [220].

Magnetar-driven merger novae
Rapidly rotating magnetars could be born at the merger of low-mass neutron star
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binaries. A significant amount of the mass would be ejected during the merger by
dynamical interactions and/or disk winds, with typical ejecta masses lying in the range
10−2M⊙-10−1M⊙ [221]. In the merger case, the rotational energy can be used to accelerate
the ejecta. Thus, the ejecta speed βej is time dependent in general, and is found by
solving

Γej(βej)Mejc
2 = Γej(βej,0)Mejc

2 +
∫ t

0
L(t)dt, (5.7)

where Γej(β) = (1 − β2)−1/2 is the Lorentz factor of the ejecta. We then calculate the
ejecta radius

rej(t) =
∫ t

0
β(t′)cdt′, (5.8)

which determines the time-dependent nucleon density nN .

5.2 Hadronic spectrum
The time-dependent hadronic spectrum at the source is found via convolution of Eq.
(3.3) with the proton injection rate:

dNh

dEh

(Eh) =
∫ ∞

Eh

dEp
dNp

dEp

Fpp→h(Eh, Ep). (5.9)

We include h = π, K and charm hadrons h = D0, D±, Ds, Λc. For charmed hadron
production, we use the relation between differential energy distributions of the charm
quark and charmed hadron (see, e.g., Ref. [222,223]),

dσ

dxE

(xE, Ep) =
∫ 1

xE

dz

z

dσ

dxc

(xc, Ep)Dh
c (z), (5.10)

where xc = Ec/Ep = xE/z, dσ/dxc is the pN → cX production cross section and Dh
c

is the fragmentation function. The quantity xE translates to the hadron energy by
Eh = xEEp. We use the fragmentation function Dh

c of Kniehl and Kramer [30]. This
fragmentation function was also used, for example, in the evaluation of the prompt
atmospheric neutrino flux from charm in ref. [222, 223]. The fragmentation function
includes the corresponding fragmentation fractions for charm quarks to fragment into D+,
D0, D+

s and Λ+
c , equal to the fragmentation functions for antiquarks to the corresponding

antiparticle hadrons [31].
There are large uncertainties in the theoretical predictions of hadronic production

of charm. The strong interaction corrections depend on powers of the strong coupling
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constant, evaluated at characteristic energy scales comparable to the mass of the produced
quark. The charm quark mass mc, taken here to be 1.3 GeV, means that the theoretical
uncertainties are large, even in the next-to-leading order (NLO) QCD evaluation in the
collinear parton model [224–226].

Another source of uncertainty at high energies is the fact that the neutrino fluence
from charm contributions depends on the small momentum fraction (small-x) parton
distribution functions (PDFs), especially the gluon PDF, of relevance to evaluating
dσ/dxE in Eq. (3.3). At these high energies, the values of x probed in the pp interactions
are extremely small, beyond the range which was probed in the high energy accelerators.
Thus the PDFs are largely unconstrained in this region and need to be extrapolated.
One theoretical approach to small-x PDFs is the kT -factorization framework [227–230] in
its linear formulation that accounts for resummation of large logarithms ln(1/x), and
in its non-linear formulation that also accounts for saturation effects [231] of the gluon
density at very small-x.

In the results shown here, we perform a NLO QCD evaluation of dσ/dxc in the
collinear approach. This is our central result, which is in reasonable agreement with
SIBYLL after fragmentation is included. We also evaluate the differential cross section for
charm production in the kT factorization framework with linear and non-linear evolution
of the gluon PDF density. Details are included in appendix . The result is that the span
of predictions is a factor of ∼ 1/3 − 3 of the central NLO QCD curve for most of the
range of xE values. This factor of 1/3 − 3 uncertainty is represented by the shaded blue
band in the results from charm shown below. We discuss the evaluation of the charmed
hadron contribution in more detail in appendix .

Inside the ejecta, hadrons will interact with the ambient protons, leading to hadronic
cooling. Since the magnetic field in the SN shock is weak, we neglect synchrotron losses.
We account for hadronic cooling by comparing the cooling timescale tcl to the decay
timescale th

dec = Ehτh/mh, where τh is the lifetime of the hadron. For example, the pion
cooling timescale is given by tcl ≈ tπN ≈ (κπpσπpnNc)−1, where σπp is the pion-proton
inelastic cross section and κπp is the average inelasticity, and nN is the nucleon density.
We can then modify the hadronic injection rate with a cooling factor 1 − exp(−tcl/th

dec).
Analogous expressions are obtained for kaon and charmed hadron cooling timescales.
The πp, Kp inelastic cross sections are obtained from SIBYLL, while the charmed
hadron-proton cross sections are assumed to be equal to the Kp cross section. The
typical energy range of interest is 1010 GeV-1012 GeV. The inelasticities are assumed to
be energy-independent, with κhp = 0.8 for all hadron-proton interactions, including for
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charmed hadrons.
The hadronic injection rates are also modified by the effective optical depth of the pp

reaction, which is fpp ≈ κppσppnNrej ≃ 5.7 × 104 Mej,1β
−2
ej,−1t

−2
4 for σpp ∼ 10−25 cm−2 and

κpp ∼ 0.5 in the case of a magnetar driven supernova. The modification of the hadronic
injection rate is thus

dNh

dEh

(Eh) −→ fpp
dNh

dEh

(Eh)
[
1 − exp

(
− tcl

th
dec

)]
. (5.11)

Cooling in the merger case is treated in a similar fashion. Secondary pion production
from πp interactions are neglected, which can affect the spectra by a factor O(1) at
earlier times [207].

5.3 Neutrino production
In Section 3.2 we presented formulas that accurately depict the neutrino spectra from
ultrarelativistic pion and muon decays. When determining the neutrino spectrum from
muon decays, Eq. (3.11) uses the muon polarization. Here we note that this polarization
is determined at production, but the neutrino spectrum is determined when the muon
decays, which happens after muon cooling.

To include cooling, we define the average polarization

⟨hπ→µ⟩ =

∫ Eµ/λπ

εµ
dEπ

h(Eµ/Eπ)
Eπ(1 − λπ)

dNπ

dEπ

∣∣∣∣∣
prod

(Eπ)

∫ Eµ/λπ

Eµ
dEπ

1
Eπ(1 − λπ)

dNπ

dEπ

∣∣∣∣∣
prod

(Eπ)
, (5.12)

where dNπ/dEπ |prod is the pion spectrum at production, ignoring cooling effects. The
neutrino spectrum is thus given by the formula

dNν

dEν

=
∫ ∞

Eν

dEµ
dNµ

dEµ

1 − exp
(

− tcl

tµ
dec

)⟨Fµ→ν⟩, (5.13)

where dNµ/dEµ is found from Eq. (3.4), with the cooling factor for the pion included in
dN/dEπ and the function ⟨Fµ→ν⟩ is given by Eq. (3.11) with the substitution hπ→µ →
⟨hπ→µ⟩. This is valid under the assumption that the muons are not depolarized.
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Figure 5.1. All-flavor neutrino light curve E2
ν ϕ̇ν at Eν = 109 GeV of a magnetar at a distance

of 3.5 Mpc. The charm uncertainty factor of 1/3–3 around the central curve is given by the
shaded blue region. For the case of neutrinos from pion (kaon) decay, we include an additional
dashed red (black) curve to isolate the νµ component from π+ (K+) → µ+νµ and charge
conjugate, without taking into account the contributions from the muon decay. The dot-dashed
vertical lines indicate the locations where decay time and cooling time are equal, based on our
estimate given by Eq. (5.14). Here, the spin-down time is tsd = 103.5 s.

5.4 Magnetar-driven supernovae
Our first magnetar model assumes Mej = 10 M⊙, βej = 0.1, I = 1045 g cm2, BNS =
1014.5 G, RNS = 106 cm and facc = 0.1. The initial angular frequency is Ωi = 104

s−1, an optimistic value because its corresponding period Pi = 0.6 ms is close to the
minimum period of a neutron star [18]. The associated spindown time is tsd = 103.5 s.
For the purposes of observation estimates, we consider a nearby magnetar at a distance
of d = 3.5 Mpc. We calculate the neutrino injection rate dNν/dEν and convert it to the
observed single source flux ϕ̇ν = (1/4πd2)dNν/dEν , where d is the source distance.

The neutrino optical depth can be estimated as τνN = nNσνprej ≃ 3.1×10−2Mej,1β
−2
ej,-1t

−2
4 ,

where we take σνp ∼ 10−32 cm−2, which is the order of magnitude for the neutrino-nucleon
charged current cross section in the 109 GeV - 1010 GeV range. We can thus neglect
neutrino attenuation effects in our calculations, except for t < 103 s. Fortunately, for
such early times, the flux does not significantly contribute to the fluence. For this work,
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we consider the all-flavor neutrino flux, so neutrino oscillation effects are ignored. While
we won’t separate the fluxes from a single source by flavor, we will separate it into its
source components from pion, kaon and charm, namely, ϕ̇ν,π, ϕ̇ν,K and ϕ̇ν,c respectively.
Similar notations will be used when referring to the fluence and the diffuse neutrino flux.

We show the neutrino light curves from pions, kaons and charm at Eν = 109 GeV in
Fig. 5.1. Here we observe the expected pattern of neutrinos from charm decay dominating
first, followed by contributions of kaon and pion decay at later times. We also found that
D0 decays contribute the most to the charm component of the neutrino flux, due to its
larger production cross section compared to other charmed hadrons.

We see that for t < tsd, all fluxes are suppressed. In this regime, where we can assume
L(t) and EM(t) are time independent, the time dependence is carried by the cooling
factor. The large matter density leads to a short cooling time, and the cooling factor
is well approximated by tcl/tdec ∝ t3, where the t3 power law comes from the nN ∝ t−3.
The charm flux peaks slightly after tsd, when cooling time and decay time are equal, and
will continuously decrease afterward, as a result of the luminosity decrease. The time
dependence of the spectral function Fpp→h due to its dependence on Ep will also mildly
contribute to the flux suppression (see Eq. 5.9).

In the case of the kaon and pion components of the neutrino flux, the impact of
the luminosity decrease is not as significant as the exponential increase in the cooling
factor, causing the t3 behavior to shift to an approximate t2 power law above tsd. We
stress that this tail of the pion component of the light curve, and its t2 dependence, can
be significantly modified by secondary pion production and cause a flatter light curve.
At t ∼ 3 × 105 s, pion and kaon cooling stops, and the flux suppression is caused by
the luminosity decrease. At t ∼ 5 × 106 s there is a sharp cutoff that is caused by the
corresponding cutoff in the pion/kaon flux due to Eπ/K/Ep approaching unity, as well as
the decrease in the efficiency fpp. A similar effect occurs for the charm component, but
is not shown in the figure.

Above t ∼ 105 s, we observe a small bump in the pion flux, which is caused by the
muon decay component that is no longer suppressed by its corresponding muon cooling
factor (see dashed red line in Fig. 5.1). This feature is less prominent with kaons;
contributions from muon decays in this case are much smaller because they come from
the high yK = Eµ/EK region, where the distribution function is much smaller.

In Fig. 5.1, for our parameter choices and Eν = 109 GeV, the pion, kaon and charm
sources of the fluxes have approximately the same E2ϕ̇ peak. This is not a general
feature, as these peaks are related to the interplay between the spindown luminosity
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and cooling factors for each particle. The spindown luminosity determines the injected
proton flux, while the cooling factor is in general different between particles since they
have different masses and decay rates.

The peak flux is approximately determined by the critical time, when tdec = tcl.
Because of the different t dependence of the fluxes, at higher (lower) neutrino energies,
the pion and kaon peak fluxes are lower (higher) than the charm peak flux.

However, we note that the relative positions of the peaks, for any neutrino energy,
is the same, since it depends on the ratios of the hadron masses and their lifetimes,
neglecting small difference in the energy dependence of the cross section, σhp for different
hadron. The exception to this rule occurs when the neutrino energy is close to the proton
energy.

The critical time, tcr
h , which is the time at which the decay time, τhEh/mhc2, is equal

to the cooling time, tcl ≈ (κhpσhpnNc)−1, is given by

tcr
h ≃ 68 s

(
Eh

mhc2

)1/3
M

1/3
ej,1 σ

1/3
hp,−25β

−1
ej,−1τ

1/3
h,−9. (5.14)

A slight deviation from this relationship is present in our simulations because of the
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Figure 5.3. Neutrino fluence in the interval 102 −105 s compared to the long burst sensitivities
of various experiments. A band in the charm spectrum is shown, spanning a factor of 1/3 − 3
times the central result. The IceCube 90% CL upper limit on the spectral fluence from
GW170817 on a 14-day window [15] (dotted brown line), while the IceCube-Gen2 curve is the
90% sensitivity for an event at a similar position in the sky [15] (dotted green line). The best 90%
unified CL sensitivity per energy decade for long bursts for POEMMA is given by the dashed
purple line, while its the purple band is the sensitivity range over most portions of the sky [16].
The 90% CL sensitivity for GRAND 200K in the optimistic case of a source at declination
δ = 45◦ is shown by the dashed yellow line, and the yellow band is the declination-averaged
sensitivity 0◦ < δ < 45◦ [17].

inherent time dependence of the hadron-proton cross section σhp. We can estimate the
critical energy Ecr

h at which cooling time is equal to decay time. We use Eq. (5.14),
substituting tcr

h with t and Eh with Ecr
h and solving for Ecr

h . The estimated value of Ecr
h

increases with time.
We applied these estimates to Fig. 5.1 and marked these critical times with dot-dashed

lines. To convert the neutrino energy Eν = 109 GeV to a hadron energy, we estimate
Eh = 4Eν for h = π, K and Eh = 3Eν for D0. Eq. (5.14) somewhat overestimates the
time at which the peak flux occurs because of the simplified form of the equation, which
does not include time dependence of the luminosity, for example.

The all-flavor fluence, ϕν , scaled by neutrino energy squared for the model is shown
in Fig. 5.2, for three time intervals. We observe that the pattern in Fig. 5.1 extends over
a wide energy range: pion and kaon fluxes are suppressed below 104 s, when the neutrino
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flux is predominantly from charm decay. The most energetic protons are accelerated
at early times, where strong hadronic cooling of pions and kaons occurs. Consequently,
the neutrino flux is dominated by charm decay at the highest energies, followed by kaon
decay and finally pion decay, in order of their respective decay times. Unlike the neutrino
light curves, the time dependent proton energy cutoff effects are not seen in Fig. 5.2 as
they get smeared out by the time integration, with the exception of the absolute cutoff
given by EM(t = 0), which lies outside the chosen energy range.

For t > 105 s, the proton number density is very low and cooling effects become
negligible. At late times, we see pion contributions dominating the neutrino fluence, with
a maximum of E2ϕν at 109 GeV for this model. We expect the maximum value of E2ϕν

from the pion contribution to be at a lower energy than that from charm because proton
injection energy decreases with time.

We also varied the mass Mej to 20M⊙ and 30M⊙ and compared the fluences with those
of Fig. 5.2. In the time interval 103 − 104 s, all fluxes are suppressed by approximately
the same factor above 109 GeV, while charm is not very sensitive to Mej below this energy.
At larger times, fluence become less sensitive to mass. This insensitivity manifests itself
at lower energies first, where decay time is shorter. The total fluence is very insensitive
to mass, and the fluence does not vary more than a factor ∼ 2 − 3 because late time
emissions contribute the most to the total fluence, when the cooling time is very large.

A separate all-flavor fluence calculation was made with BNS = 1015 G (other parame-
ters remain the same). Our results for t > tsd are in agreement with those of Ref. [207],
which use the same parameter set.

In Fig. 5.3 we compare the neutrino fluence, in the interval 102 s - 105 s, with the
sensitivities of various experiments to a long burst. We show the IceCube 90% CL
upper limit on the spectral fluence from GW170817 in a 14 day window [15] to illustrate
IceCube’s current sensitivity. The projected 90% CL sensitivities for IceCube-Gen2 for
a similar position in the sky (green dotted histogram) [15], for POEMMA’s best case
scenario (purple dashed curve) and sensitivity range over most portions of the sky (purple
band) [16], and for GRAND 200K for the declination average over 0◦ < δ < 45◦ (yellow
band) and for δ = 45◦ (dashed yellow curve) [17] are also shown.

We see in Fig. 5.3 that the pion component can be detected in IceCube in the 1 PeV -
10 PeV range, but the kaon component will be below the sensitivity curve for this model.
IceCube Gen-2, however, would pick up all the components above 108 GeV. If we have a
magnetar at a distance of 1 Mpc, POEMMA and GRAND 200K can detect the charm
component, although such an event would be rare. In the case of a shorter burst of less
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Figure 5.4. Left panel: Contour plots where ϕ̇ν,π + ϕ̇ν,K = ϕ̇ν,c at the injection time t = 104.5

s. We have also marked the line where t = tsd. The lower limit in the period corresponds to
the minimum spin period of a neutron star, Pi ∼ 0.6 ms [18]. The parameter space below the
solid curves have ϕ̇ν,c > ϕ̇ν,π + ϕ̇ν,K for a given energy. Right panel: Same as left panel, but
using the total fluence ϕ instead of the flux ϕ̇ at a fixed time. The parameter space to the right
of the solid curves have ϕν,c > ϕν,π + ϕν,K for a given energy.

than 103 s, where the POEMMA and GRAND 200K sensitivities are better, we find that
the fluence is not large enough to reach these sensitivities.

We also studied the parameter sets where we can get significant charm contributions.
To do this, we look at the BNS − Pi parameter space, keeping all other parameters listed
at the beginning of the section fixed. For each (BNS, Pi) pair, we look at the energy where
ϕν,π + ϕν,K = ϕν,c, that is, the energy where the neutrino flux from pions and kaons falls
below the neutrinos from charm. We first look at these contours for t = 104.5 s, which
are shown in the left panel of Fig. 5.4. With a fixed injection time, the cooling factors
depend primarily on the Lorentz factor Eh/mh because the hadron-proton inelastic cross
section grows slowly with energy. Thus, the proton energy becomes the relevant variable
when scanning the parameter space, as this determines the hadronic spectrum. The
region of BNS − Pi parameter space below the solid curves have ϕ̇ν,c > ϕ̇ν,π + ϕ̇ν,K for a
given energy. The diagonal black dashed line in the left panel of Fig. 5.4 shows t = tsd.
To the left of the black dashed line, the luminosity L(t) is constant and to the right, it is
proportional to t−2 (see Eq. (5.1)). As mentioned above, for t ≫ tsd the proton energy
EM (t) becomes independent of Pi, which is why we get the vertical lines on the contours.

In the right panel of Fig. 5.4, we make a similar study using the total fluence,
where the region of BNS − Pi parameter space to the right of the solid curves have
Φν,c > Φν,π + Φν,K for a given energy. When comparing fluence, the value of the tsd is
important: strong magnetic fields and small values of Pi are preferred, as this increases
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the proton energy and enhances the charm spectrum. Late time emission is dominated
by pion and kaon contributions, when t ≫ tsd. It follows that these fluences depend on
BNS, but are independent of Pi (see Eq. (5.1) and Eq. (5.3)). On the other hand, charm
contributions depend on both parameters, where smaller Pi increases the proton energy
and the luminosity at early times, where charm production is relevant.

We emphasize that if the spindown time falls below 102 s, the neutrinos need to come
from early decays, however, at early times, the proton density is high enough to cool even
the charm hadrons. In addition, if the spindown time is small as a result of a large BNS,
the luminosity will be much lower at later times because L(t) ∝ B−2

NSt−2 for t ≫ tsd (see
Eq. (5.1)). We thus find that, while stronger BNS is preferred to get a charm dominated
flux at the highest energies, such a choice would hinder our ability to detect the neutrino
flux.

5.5 Magnetar-driven merger novae
Another scenario of interest is neutrino production from merger ejecta. We use I =
1045 g cm2, BNS = 1015 G, RNS = 106 cm, facc = 0.1 and Ωi = 104 s−1. For the ejecta
mass, we use Mej = 0.01 M⊙ and initial speed βej,0 = 0.1. Changing the ejecta mass by a
factor of 2 has negligible impact on the fluence.

The ejecta is less massive than the magnetar case and its speed increases with time,
so cooling effects are weaker. This allows for enhanced neutrino production at earlier
times, because charm hadrons will decay before cooling. We see in Fig. 5.5 that, for
a nearby merger, next generation experiments could see the charm component, within
a 1000 s time window, for sources optimally located for detection. The pion and kaon
components, on the other hand, are suppressed below the sensitivity curve and would
only be observable at later times.

5.6 Diffuse neutrino intensity
The sources discussed in Section III will also contribute to the diffuse neutrino flux. The
corresponding all-flavor diffuse neutrino flux, Φν is given by

Φν = cfs

4π

∫ zmax

0
R(z) dN

dE ′ [E(1 + z)](1 + z)
∣∣∣∣∣ dt

dz

∣∣∣∣∣ dz (5.15)
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Figure 5.5. Neutrino fluence of a nearby neutron star merger at a distance of 3.5 Mpc,
in the interval 102 − 103 s, compared to the short burst sensitivities of various experiments.
The IceCube 90% CL upper limit on the spectral fluence from GW170817 on a ±500 s time
window [15] is shown with a dotted brown line, while the IceCube-Gen2 curve is the 90%
sensitivity for an event at a similar position in the sky [15] (dotted green line). The best 90%
unified CL sensitivity per energy decade for short bursts for POEMMA is given by the dashed
purple line, while its the purple band is the sensitivity range over most portions of the sky [16].
The 90% CL sensitivity for GRAND 200K in the optimistic case of a source at zenith angle
θ = 90◦ is shown by the dashed yellow line [17].

where R(z) is the local rate density of magnetar sources, fsR(0), is a free parameter and
its functional form can be parametrized as [232]

R(z) = R(0)(1 + z)2.7 1 + [1/2.9]5.6

1 + [(1 + z)/2.9]5.6 . (5.16)

We take fsR(0) = 500 yr−1 Gpc−3 in our evaluation below. This value is consistent
with observations as long as not all of the supernova and merger events are bright. The
prefactor fs takes into account effects from pair loading, particle acceleration mechanisms
and other phenomena that could affect flux normalization. The derivative |dt/dz| is
given by Eq. (2.34) with ΩM = 0.3, ΩΛ = 0.7 and H0 = 67 km s−1 Mpc−1.

Contributions to the diffuse flux are shown in Fig. 5.6. We include the results from the
IceCube six-year HESE [19] and six-year shower [1] analyses. The diffuse flux sensitivities
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Figure 5.6. Left panel: Magnetar-driven supernovae contributions to the all-flavor diffuse
neutrino flux. The red error bars show the results of the IceCube 6-year HESE analysis, obtained
by multiplying the per-flavor neutrino flux in Ref. [19] by a factor of 3. The green error bars
correspond to the IceCube 6-year shower analysis [1]. The 5-year IceCube-Gen2 sensitivity is
shown by the red band [15], while the 10-year GRAND200k sensitivity is shown by the yellow
curve and is scaled from the 3-year sensitivity [17]. The orange curve is the IceCube nine-year
90% CL EHE diffuse flux upper limit [20]. Right panel: Same as the left panel, showing instead
magnetar-driven merger novae contributions to the diffuse neutrino flux.

for IceCube-Gen2 (5-year) [15] and GRAND 200K (10-year) [17] are shown by the red
band and yellow curve, respectively, while the IceCube extremely-high-energy (EHE)
diffuse flux upper limit (9-year) is shown by the orange curve. For both magnetar-driven
supernovae and merger novae, we see that charm decay does not significantly contribute
to the diffuse flux, because the flux is dominated by pion decay at late times. The fluxes
for both types of supernovae and merger novae can remain below current IceCube limits
if the rate is fsR(0) = 500 yr−1 Gpc−3, and next-generation detectors can see the pion
component up to Eν ∼ 1010 GeV. In the case of merger novae, cooling at early times is
not as strong as the supernova case. At times t > 104 s, pions and kaons will decay before
cooling, and will contribute significantly to the fluence, even at the highest energies. For
magnetar-driven supernovae, the separation between charm and pion components is more
pronounced, but the diffuse flux from charm hadron decay is not sufficiently high to be
detected by IceCube-Gen2.

We point out that, for both scenarios, there is some tension between our models and
the IceCube EHE limits, because the model dependent limits would be more stringent
than the differential limit shown in Fig. 5.6 [20]. However, given model uncertainties
such as the local rate density, one can evade these constraints.
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5.7 Effects of the photomeson production
One of the possible caveats of this work is that we ignore the photomeson production.
Details are model dependent and in principle depend on two kinds of radiation fields.
One is radiation thermalized in the ejecta, while the other is thermal or nonthermal
radiation from the wind bubble. If the radiation is thermal, the ejecta temperature
is estimated to be kT ≈ 0.4 keV E1/4

rad,51(βej/0.1)−3/4(t/1000 s)−3/4, where Erad is the
radiation energy. The threshold photomeson production is Ep ∼ 0.2 GeV2/(3kT ) ∼
0.2 × 106 GeV E−1/4

rad,51(βej/0.1)3/4(t/1000 s)3/4, which is typically lower than the proton
energy given by Eq. (5.3).

Above the threshold, the photomeson production optical depth is approximately given
by Ref. [207]

fpγ ≈ κpγσpγnγRej

≃ 380 (Erad/1051 erg)3/4(βej/0.1)−5/4

× (t/104 s)−5/4
, (5.17)

where κpγ ∼ 0.2 is the inelasticity and σpγ is the photomeson production cross section.
Note that the multipion production is important in the case of the thermal radiation
field. This can be compared to the effective pp optical depth, which is given by

fpp ≈ κppσppnejRej

≃ 5.7 × 104 (Mej/10 M⊙)(βej/0.1)−2

× (t/104 s)−2
, (5.18)

where κpp ∼ 0.5 is the inelasticity and σpp is the pp cross section. Thus, as long as energy
injected by the central engine is thermalized, interactions with baryonic matter are more
important at early times. The transition occurs at

ttr ∼ 8 × 106 s (Mej/10 M⊙)4/3(Erad/1051 erg)(βej/0.1)−1. (5.19)

This implies that our results on the charm contribution are unlikely to be affected even
if the thermal radiation field is included. This is because energy losses due to inelastic
pp collisions are dominant in the early phase during which the charm contribution is
dominant at the highest energies.
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In addition, nonthermal particles may be generated at the termination shock inside
the magnetar nebula (e.g., Refs. [233–235]). Analogous to the Crab pulsar wind nebula,
a significant fraction of the Poynting energy could be dissipated. If this is the case, the
thermalization in the nebula matters, which could happen if the nebular Thomson optical
depth satisfies τnb

T ≳ β−1
nb , i.e., t ≳ 2 × 104 s M

1/2
nb,−7β

−1/2
nb,−1, where Mnb is the nebular mass

and βnb is the nebular velocity. For example, in the merger case, this can happen if
almost all the spindown energy is dissipated with the production of electron-positron
pairs (see Ref. [211] for such a case). Then, the model would need to be adjusted to
include contributions from pγ interactions, where charmed hadrons are not produced.
However, such a situation can be realized only if the nebula is compact, in which most
of the thermalization occurs in the ejecta. Details depend on the magnetization and
pair-loading of the wind that are uncertain. Also, if only a fraction of the spindown
energy is dissipated in the nebula [236], our assumptions can be justified. Note that our
setup for the calculations is similar to those in the previous works [209,210]. See Fig. 1
of Refs. [207] for effects of the photomeson production (see also Ref. [211] for the merger
case).

5.8 Conclusions
We presented a study of ultrahigh-energy neutrino production by newborn magnetars,
accounting for pion, kaon and charmed hadron production from pp interactions in the
supernova and merger ejecta. The charm component was obtained in the QCD calculation
at NLO accuracy, together with an uncertainty band, a factor of 1/3 − 3 around the NLO
QCD flux that encloses the results obtained from kT factorization approaches and the
SIBYLL Monte Carlo simulations. The evolution of the proton injection spectrum and
the ejecta expansion was included in the calculations, as well as the energy dependence
of the various production cross sections. Using a benchmark parameter set, we found
that for neutrino energies above 109 GeV, charm contributions are much higher than
the pion and kaon contributions at early times because hadronic cooling suppresses the
neutrino fluxes from these latter contributions. When t > tsd, the relative importance
of kaon contributions increases as the ejecta’s proton density decreases, followed by the
pion contributions, in line with our expectations based on their lifetimes. The highest
energies, above 1010 GeV, are dominated by charm contributions, essentially independent
of pion/kaon contributions, and come from the most energetic protons which are injected
at times t < tsd.
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We found that for BNS = 1014.5 G and Pi = 2π × 10−4 s, IceCube-Gen2 is projected
to be sensitive to the charm component of the all-flavor neutrino fluence from a nearby
magnetar at a distance ∼ 3.5 Mpc, for locations such as that of GW17081. POEMMA
and GRAND200k would be sensitive to such an event if it was located at a distance of
∼ 1 Mpc. For the benchmark magnetar parameters, the accompanying pion and kaon
contributions to the neutrino fluence at energies below 109 GeV could also be observed
by IceCube (pion only) and IceCube Gen-2 (both).

We scanned the Pi − BNS parameter space, to see at what energy the charm con-
tributions to the neutrino flux overcome those of pions and kaons. Stronger magnetic
fields and shorter periods are preferred, as this increases the proton energy at early times.
However, these choices reduce the spindown time and cause cooling of charm hadrons,
reducing their flux contributions below POEMMA and GRAND sensitivity curves.

In the case of a nearby neutron star merger, we found that neutrinos from charm
hadron decay are likely to be observed by next generation detectors, within a time
window of ∼ 1000 s, without the accompanying lower energy neutrinos from pion and
kaon decays. Both magnetar-driven supernovae and merger novae neutrino fluxes are
consistent with IceCube’s diffuse flux measurements.

Newborn magnetars have been expected to be the promising sources of gravitational
waves, which is especially the case in the merger scenario (see Ref. [237] for a review).
Even for the magnetar-driven supernova case, gravitational waves from a nearby event
may be detected by current and future detectors if a magnetar is deformed and/or
subject to instabilities [235]. Our model demonstrates that newborn magnetars are
interesting targets for multimessenger searches with gravitational waves and ultrahigh-
energy neutrinos, as well as electromagnectic waves.
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Chapter 6 |
BSM Neutrino interaction models

In this dissertation we consider BSM neutrino interactions at the phenomenological
level. Our models are not intended to be UV complete or to be used as a means of
explaining phenomena such as neutrino masses. Astrophysical neutrinos are expected to
collide with two potential targets in transit: the CνB and dark matter χ. Among the
possible interactions between neutrinos and these targets, we focus on scalar mediators ϕ

and vector mediators V µ only, with interactions terms of the form f̄f ′ϕ and f̄γµf ′Vµ,
respectively, for bispinors f, f ′. Among the possible combinations of f, f ′, we allow ν − ν

and χ − χ couplings, but we do not consider ν − χ direct couplings. We show the typical
Feynman diagrams in Fig. 6.1.

Active neutrinos are left-handed in nature, so some of these interactions are forbidden,
depending on whether the neutrino is Dirac or Majorana. Taking Dirac neutrinos as an
example, ν̄νϕ requires us to couple νL with νR, but νR does not exist without invoking
BSM physics, such as sterile neutrinos or the seesaw mechanism. On the other hand, a
vector mediator would use ν̄γµνVµ, which couples νL with νL, just like in the Standard
Model. Majorana neutrinos have the interesting feature of allowing the existence of a

Figure 6.1. Left panel: Neutrino-neutrino interactions mediated by a scalar or vector mediator.
Right panel: Same as right panel, but showing neutrino-dark matter interactions. In both
cases, we account for the general situation where neutrinos of different flavors can couple to the
mediator.
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right handed neutrino, νC
L , which can be built from νL alone and does not require BSM.

To compute the cross sections, we begin with the kinematics. Our targets are taken
at rest, so for an incident neutrino of energy εν , its scattered energy ε′

ν is given by

ε′
ν = εν

1 + εν

mν,χ

(1 − cos θ)
, (6.1)

where θ is the scattering angle. This equation implies that the lower the scattered energy,
the larger the scattering angle. With this, we have the differential cross section

dσ

d cos θ
= ⟨|M|2⟩

32π

1
(mν,χ + εν(1 − cos θ))2 , (6.2)

where ⟨|M|2⟩ is the spin averaged squared amplitude of the interaction. The amplitude
depends on the mediator type and the interaction channel. For the first examples, we
assume a coupling g for all processes for simplicity, consider a single neutrino generation,
and assume the incoming neutrino to be ultrarelativistic. The Mandelstam variables s, t

and u are

s = 2mνεν t = −2ενε′
ν(1 − cos θ) u = −s − t (6.3)

for νν scattering, assuming m2
ν ≪ s, t, u and

s = m2
χ + 2mχεν t = −2ενε′

ν(1 − cos θ) u = 2m2
χ − t − u (6.4)

for νχ scattering.

6.1 ν − ν̄ s-channel scattering with a scalar mediator
The standard cosmological model, ΛCDM, provides a reasonable explanation for the
evolution of the Universe while remaining consistent with the cosmic microwave back-
ground, large-scale structure in galaxy distribution and the observed nuclei abundances.
Through cosmic microwave bacgkround (CMB) observations, the Planck experiment
measured a value of H0 = 67.4 ± 0.5 km s−1 Mpc−1 [126], which is in stark contrast to
the value H0 = 73.04 ± 1.04 km s−1 Mpc−1 derived from Cepheid-SN data [238]. This
discrepancy is known as the Hubble tension, which shows that the ΛCDM model is
incomplete. Neutrino self-interactions provide a way to alleviate the tension, but not
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fully solve it. While the ΛCDM has neutrinos decouple from other particles once the
Hubble rate exceeds the weak interaction rate, neutrino secret interactions can delay this
decoupling. This affects the CMB power spectrum by enhancing it at smaller scales and
shifting its acoustic peaks [239].

Here, we will focus on s-channel scattering with a scalar mediator, which requires an
MeV-scale mediator to ammeliorate the Hubble tension [22]. This interaction channel
is of interest because of the simplicity in the angular distribution and its cross section
formula, which allows for fast Monte Carlo simulations of neutrino propagation. We will
also discuss the basics of this interaction channel, how the MeV-scale mediator is relevant
for IceCube neutrinos.

6.1.1 One neutrino generation

The interaction Lagrangian for this process is of the form ν̄νϕ. Under the assumption of
s-channel scattering, the differential cross section in the lab frame as a function of the
scattering angle θ is

dσ

d cos θ
= g4

32πm2
ν

s2

(s − m2
ϕ)2 + m2

ϕΓ2
ϕ

(
1 + εν

mν

(1 − cos θ)
)−2

, (6.5)

Alternatively, we can use the differential cross section dσ/dε′
ν as a function of ε′

dσ

dε′
ν

(εν → ε′
ν) = g4

32π

s2

(s − m2
ϕ)2 + m2

ϕΓ2
ϕ

1
mνε2

ν

, (6.6)

where Γϕ = g2mϕ/16π is the resonance width. Since we are assuming s channel scattering
and a scalar mediator, the neutrino angular distribution in the center of mass frame is
isotropic, which is why the energy distribution in the lab frame is flat. The invariant
cross section is

σ(εν) = g4

16π

s

(s − m2
ϕ)2 + m2

ϕΓ2
ϕ

, (6.7)

which we use to compute the angular distribution

1
σ

dσ

d cos θ
= εν

mν

(
1 + εν

mν

(1 − cos θ)
)−2

. (6.8)
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When computing the time delays of scattered neutrinos with respect to unscattered ones,
we need the average of θ2

⟨θ2⟩ ∼ 2
∫ 1

−1
(1 − cos θ) 1

σ

dσ

d cos θ
d cos θ ≈ 2mν

εν

[ln(2εν/mν) − 1] . (6.9)

This average assumes that we are collecting all particles, i.e. with scattered energies
in [0, εν ]; if we impose an energy threshold in our study, the lower bound of the scattering
angle has to be modified in accordance to Eq. (6.1). This cross section is maximal when
εν is equal to the resonance energy

εν, res =
m2

ϕ

2mν

= 1PeV
(

mϕ

10MeV

)2 ( mν

0.05eV

)−1
. (6.10)

The resonance cross section σres = 8π/m2
ϕ is independent of g. The coupling will, however,

determine the resonance width and how sharply the cross section decreases as we move
away from resonance.
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Figure 6.2. Neutrino mean free path λν , at redshift z = 0, as a function of neutrino energy.
We set the parameters mν = 0.1 eV, mϕ = 10 MeV, and choose a variety of coupling parameters
g. As a reference, we use the light travel distances corresponding to 100 Mpc, 1 Gpc and z = 1.

Boson masses lying in the 1-10 MeV range would put the resonance energy in the
10 TeV - 1 PeV range, ideal for IceCube detection. While ν − ν scattering in the t-
channel is possible, the parameter space of interest causes t-channel contributions to be
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subdominant [63,64,99].
Neutrino propagation depends on the mean free path length λν = 1/nνσν , where

nν = 56(1 + z)3cm−3 is the CνB target density at redshift z. In the case of a Majorana
neutrino, the density is doubled. We show the interaction length at redshift z = 0 in
Fig. 6.2. We chose the values of mϕ = 10 MeV and mν = 0.1 eV, which sets the neutrino
resonance energy to εres = 500 TeV in the cosmic rest frame. The resonance length is
λres ∼ 1.5 × 1021 cm at εres =500 TeV and increases sharply off-resonance. The length is
symmetric about εres, since σ ∝ s for s ≪ m2

ϕ and σ ∝ 1/s for s ≫ m2
ϕ. As the value

of g increases, the width of the resonance region increases, which allows for multiple
scatterings. We included the light-travel distances corresponding to 100 resonance lengths,
1 Mpc and z = 1.

In general, the neutrino-neutrino cross section also has t-channel contributions and
an additional u-channel term for Majorana neutrinos. However, our applications lie in
the regime g < 0.2, where these terms are subdominant compared to the s−channel
term [63].

6.1.2 Three neutrino generations

As mentioned before, in the case of multiple generations, instead of a single coupling
we use a coupling matrix gαβ, which reflects the general case where the interaction can
change neutrino flavor. For example, the Lagrangian for νν coupling with a scalar is
Lint = −∑

α,β gαβ ν̄ανβϕ. We switch to the mass basis because neutrino masses appear in
the differential cross sections. Using Eq. (2.7), we have

Lint = −
3∑

i,j=1

 ∑
α,β=e,µ,τ

U∗
αigαβUβj

 ν̄iνjϕ, (6.11)

where the term in brackets becomes the coupling matrix in the mass basis

gij =
 ∑

α,β=e,µ,τ

U∗
αigαβUβj

 . (6.12)

As an example, the differential cross section for the process νiνj → νkνl in s−channel
scattering is

dσijkl

d cos θ
= |gij|2|gkl|2

32πm2
ν

s2

(s − m2
ϕ)2 + m2

ϕΓ2

(
1 + εν

mj

(1 − cos θ)
)−2

, (6.13)
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Figure 6.3. Constraints on coupling constant and mass of the scalar mediator of νSI. The
red shaded region is disfavored by the IceCube six-year HESE sample [13]. Constraints which
do not specify flavor assume gee = gµµ = gττ . The constraints from CMB [21], BBN [22], lab
measurements [23], SN1987A [24,25] and the neutrino event coincident with the blazar TXS
0506+056 [26] are also included. Image from [27].

with s = 2mjεν . This is the same formula for one neutrino generation, but instead of
g we used gij(gkl) for the νiνj(νkνl) coupling in the Feynman diagram, and mj as the
target neutrino mass. The resonance width also needs to be adjusted to

Γϕ = mϕ

4π

∑
i,j

g2
ij, (6.14)

to account for the multiple decay nodes ϕ → νiνj.
In the three flavor case, it is also worthwhile to assess the current constraints of the

model. We show in Fig. 6.3 the results of Ref. [27] based on IceCube data, assuming a
diagonal coupling matrix. The CMB limits come from νSI effects on the CMB angular
power spectrum [21], while the BBN constraints rely on the relationship between νSI
and Neff [22]. The lab constraints from Ref. [23] come from kaon decays K → eνϕ for
gee, K → µνϕ for gµµ and τ decay τ → lννϕ for gττ . We see from these constraints that
gττ is the least constrained out of the three. SN1987A constraints in Ref. [24] use the
supernova as a neutrino source to constrain νSI interactions with the CνB, while those
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in Ref. [25] also use the νSI’s ability to halt the supernova explosion by preventing the
shock revival. The neutrino event coincident with the blazar TXS 0506+056 also leads
to constraints of the scalar mediator parameter space [26].

In the case of neutrino coupling to fermionic dark matter, the couplings are of the
form gαν̄αγµχVµ + h.c.. By switching to the mass basis, we see that to find the cross
sections for νiχ → νjχ, the change to the one-flavor formulas is g2 → g2

ij for the νiνj

coupling in the Feynman diagram.

6.2 ν-DM t-channel scattering
Besides neutrino-neutrino scattering with the CνB, neutrinos can also interact with a
DM particle χ. In this case, we have no neutrino cascade but the scattering with χ will
still lead to a time delay. Consider χ to be a Dirac fermion, with mass mχ. Unless we
are considering ultralight DM, we are dealing with mν ≪ mχ, so the scattering angles
are expected to be significantly larger than in the case of neutrino-neutrino scattering.
The typical propagation distances that we will be using are shorter than 1 Mpc. For this
reason, we will assume ε = E (i.e. no redshift energy loss).

Using the right panel of Fig. 6.1 as a guide, we consider three particle physics models
for neutrino-DM interactions. First, we consider fermionic DM that interacts via a vector
mediator Vµ, and the interaction Lagrangian of the form

Lint ⊃ gν ν̄γµνVµ + gχχ̄γµχVµ, (6.15)

where gν and gχ are dimensionless coupling constants of the vector mediator to neutrinos
and DM, respectively. We will also consider fermionic DM with a scalar mediator

Lint ⊃ gν ν̄νϕ + gχχ̄χϕ, (6.16)

and scalar DM with a scalar mediator

Lint ⊃ gν ν̄νϕ + gχΛχ∗χϕ (6.17)

For the scalar DM and scalar mediator case, we included an energy scale Λ (with
dimensions of energy) for the Lagrangian density to have the correct dimensions.

For a neutrino-DM scattering with fermionic DM and a vector mediator, the differential
cross section for the interaction takes the form
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Figure 6.4. Left panel: Neutrino-DM differential cross section as given by Eq. (6.18), scaled
by sin θ. We fixed mχ= 1 keV, mV = 1 MeV and gν = gχ = 0.01. Cross sections are shown for
energies Eν = 5 MeV, 10 MeV and 20 MeV. Right panel: Total cross section for νχ interactions
via t−channel scattering, with gν = gχ = 0.01 and a vector mediator of mass MV .

dσ

d cos θ
=

g2
νg2

χ

4π

E2
ν + E ′2

ν − EνE ′
ν(1 − cos θ)

(EνE ′
ν(1 − cos θ) + m2

V )2

(
E ′

ν

Eν

)2

, (6.18)

where E ′
ν is given by Eq. (6.1). For the application of the time delay approach of

supernova neutrinos (O(10) MeV neutrinos), the parameter range of interest will be
mχ ∈ [1 keV, 100 keV] and mV ∈ [10 keV, 10 MeV].

The differential cross sections for this interaction process are shown in the left panel
of Fig. 6.4 to provide insight into its angular distribution. The most notable difference
is that the location of the peak of the distribution decreases with Eν , which is to be
expected in light of the Eν(1 − cos θ)/mχ term in E ′

ν . From these distributions, we
also find that the typical scattering angle is below 0.1. As for the total cross section,
we see that for low neutrino energies the cross section has a power law scaling and for
high energies the cross section flattens out. The effect of mV at the highest energies is
to scale the value of the cross section, scaling as m−2

V . At low energies, the behavior
depends on the combination of mχ and mV in a non-trivial way, as given by the analytic
expression [104]

σ =
g2

νg2
χ

16πE2
νm2

χ

[
(m2

V + m2
χ + 2Eνmχ) log

(
m2

V (2Eν + mχ)
mχ(4E2

ν + m2
V ) + 2Eνm2

V

)

+ 4E2
ν

(
1 +

m2
χ

m2
V

−
2Eν(4E2

νmχ + Eν(m2
χ + 2m2

V ) + mχm2
V

(2Eν + mχ)(mχ(4E2
ν + m2

V ) + 2Eνm2
V )

)]
. (6.19)
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For scalar DM and scalar mediators, the differential cross section is [104]

dσ

d cos θ
=

g2
νg2

χΛ2(1 − cos θ)E2
νmχ

16π ((1 − x)Eν + mχ)
(
(1 − x)Eνm2

ϕ + mχ

(
m2

ϕ − 2(cos θ − 1)E2
ν

))2 , (6.20)

and the total cross section is

σ = −g2
νg2

χΛ2
4E2

νmχ + (2Eνm2
ϕ + 4E2

νmχ + m2
ϕmχ) ln

(
m2

ϕ(2Eν+mχ)
2Eνm2

ϕ
+4E2

νmχ+m2
ϕ

mχ

)
64πE2

νm2
χ(2Eνm2

ϕ + 4E2
νmχ + m2

ϕmχ) . (6.21)

In the case of fermionic DM and a scalar mediator, we have

dσ

d cos θ
=

g2
νg2

χ(cos θ − 1)E2
νm2

χ

(
2(cos θ − 1)Eνmχ + (cos θ − 1)E2

ν − 2m2
χ

)
8π (mχ − (cos θ − 1)Eν)2

(
(cos θ − 1)Eνm2

ϕ − mχ

(
m2

ϕ − 2(cos θ − 1)E2
ν

))2 ,

(6.22)
and

σ =
g2

νg2
χ

32πE2
νm2

χ

[
Eνmχ −

Eνm2
χ

2Eν + mχ

−
Eνm2

χm2
ϕ

(
m2

ϕ − 4m2
χ

)
(
2Eνmχ + m2

ϕ

) (
4E2

νmχ + 2Eνm2
ϕ + mχm2

ϕ

)
+

Eνmχ

(
m2

ϕ − 4m2
χ

)
2Eνmχ + m2

ϕ

+
(
m2

ϕ − 2m2
χ

)
log

(
m2

ϕ(2Eν + mχ)
4E2

νmχ + 2Eνm2
ϕ + mχm2

ϕ

)]
. (6.23)

The models introduced in this chapter will be used in the context of CνB or DM-
induced scattering of astrophysical neutrinos as they travel from the source to the observer.
In chapters 7 and 8 we will show how to simulate neutrino propagation and how to
incorporate these BSM models. We will be using the total cross sections to determine
the neutrino optical depth and the locations along the trajectory where neutrinos get
scattered. Likewise, the differential cross sections will determine the angular distribution
of neutrinos. The angular distributions in particular will be crucial to determine the
elongated trajectory length of scattered neutrinos, and are going to be used extensively
in Chapters 7 and 8.
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Chapter 7 |
Simulating neutrino echoes induced
by secret neutrino interactions

In this chapter, we will consider the case of neutrino echoes caused by νSI for 10 TeV
neutrinos and above. We also outline the numerical techniques used to implement
neutrino time delay for this model. The text in this chapter is based on my work in
Ref. [116].

We assume that the ν − ν scattering is mediated by a scalar boson ϕ, of mass mϕ.
High-energy neutrinos will scatter off the CνB via νν → νν [63–65]. Assuming that
neutrinos are Majorana fermions, we consider the effective Lagrangian for one neutrino
generation, L ⊃ −1

2gνc
LνLϕ + c.c., where g is the coupling constant. This model is used

for its simplicity, as there is only one neutrino mass and allows us to separate neutrino
mixing effects from intrinsic features of the BSM scattering. The three-generation case is
discussed later. While the high energy neutrinos are ultrarelativistic and left-handed, the
CνB kinetic energy is assumed to be lower than the neutrino mass, so these neutrinos
are taken as unpolarized and at rest [240].

Given the angular distribution and our interest in neutrinos above 10 TeV, we expect
the scattering angles to be of order O(10−7) and below, as is seen from equation (6.8) and
(1 − cos θ)εν/mν ∼ 1. If neutrinos interact via a vector mediator, the total cross section
would only increase by a constant factor. On the other hand, the angular distribution
in the center-of-momentum frame is no longer isotropic: the left-handed neutrino is
more likely to scatter in the forward direction. For the same g and source distance D,
more (less) scatterings would take place in the vector (scalar) mediator case, resulting in
typically longer (shorter) delays.
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Figure 7.1. Geometrical setup for our MC simulations. The source is located at the origin,
while the observer is at (0, 0, D). An outgoing neutrino in the +x3 direction is emitted. Upon
scattering, the neutrino is deflected and an additional neutrino is upscattered. Neutrinos stop
propagating when they reach the sphere of radius D. The angles α and β used to compute the
time delay are also marked. For illustrative purposes, in this Fig.the initial neutrino scatters
only once.

7.1 Method
In the astrophysical context, time delay due to small-angle scattering was studied e.g.,
for X-ray scattering [241,242], and some techniques are applicable to the current problem
of neutrino scattering by using the appropriate differential cross section.

We create a Monte-Carlo code to scatter the neutrinos from a given source and
obtain the time delay distributions caused by BSM neutrino interactions. We adopt the
geometrical setup of Ref. [241]. In Cartesian coordinates, the source is located at the
origin, while the observer is at (0, 0, D), as shown in Fig. 7.1. Neutrinos are emitted
individually from the source and are tracked until they reach the observer. For a given
neutrino path between source and observer, we can make appropriate rotations so that
the initial neutrino is always emitted in the +x3 direction, while the final location is
some point on the surface of a sphere of radius D with the source as its center.

Let p̂ be the three-dimensional momentum unit vector of the neutrino and α be the
angle that its projection on the x1x3 plane makes with the x3-axis. Likewise, we define β

as the angle between the x3-axis and the projection of p̂ on the x2x3 plane. Under the
assumption of small-angle scattering, α, β ≪ 1, which applies to our case, we neglect
terms of third order and higher in α and β, such that the time delay t of a scattered
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neutrino compared to an unscattered one is [241]

t = 1
2

∫ D

0
(α2(x3) + β2(x3))dx3 − 1

2D

(∫ D

0
α(x3)dx3

)2

+
(∫ D

0
β(x3)dx3

)2
 . (7.1)

The x3 dependence in α and β represents the changes in these angles whenever a scattering
takes place, thus being applicable for an arbitrary number of scatterings. Equation (7.1)
is evaluated in the MC simulation by splitting into a discrete sum, where the steps dx3

correspond to the distance traveled between scatterings. When a scattering takes place,
a scattering angle θ is chosen based on equation (6.8), which changes the neutrino’s
momentum p̂ and hence the values α and β. Neutrino propagation stops upon reaching
the sphere of radius D.

To determine distances, we choose the cosmological density parameter ΩΛ = 0.7, the
matter density parameter ΩM = 0.3 and the Hubble constant H0 = 67 km s−1 Mpc−1.
With these values, a source at redshift z corresponds to a particle-travel distance defined
by Eq. (2.35). We also use this integral to establish a one-to-one correspondence between
redshift and neutrino location.

Let εν be the neutrino energy at some redshift. A neutrino initially at position r may
experience a scattering at r′ = r+ p̂dD for some traveled distance dD and r = (x1, x2, x3).
To identify dD, we also define the optical depth

τν =
∫ x3

x3−dD
nν(x′′

3)σν(εν(x′′
3))dx′′

3, (7.2)

where nν(x3) = 112 cm−3 (1 + z(x3))3 is the ν + ν̄ number density of the CνB and εν

becomes position dependent as a result of expansion losses. Notice that equation (7.2) is
a line-of-sight integral and can be used instead of a three-dimensional approach because
motion in the other axes is negligible in the small scattering approximation and has little
effect in redshift losses.

The probability of an interaction occurring after propagating a distance corresponding
to an optical depth τν is 1 − exp(−τν). We can thus calculate dD in the MC simulation
by drawing τν from an exponential distribution and solving equation (7.2) for dD.

The main issue when solving for dD is that the cross section can increase by several
orders of magnitude as the neutrino energy approaches εres. The optical depth of a
neutrino with energy εν > εres will then spike as expansion losses cause the neutrino to
reach resonance energy. For small g, the resonance region is so narrow that a poor choice
in dx′′

3 when carrying out the numerical integration of equation (7.2) will cause us to
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miss the resonance entirely.
To tackle this problem, we tabulate the cross section over as a function of the node

energy in the range [ϵ0, ϵN ], for some number of bins N , which contains εres and choose
a node k such that ϵk = εres. We consider k = N/2 or the integer closest to N/2. We
find the nearest resonance at ϵk, and the cross section decreases as we move away from
ϵk. With ϵ0 and ϵN fixed, given that ϵk is determined, we then find the value of ϵi that
satisfies

σν(ϵi) =
(

σν(ϵ0)
σν(ϵk)

)i/k

σν(ϵ0), i ≤ k, (7.3)

and

σν(ϵi) =
(

σν(ϵk)
σν(ϵi)

)(N−i)/(N−k)

σν(ϵN), k < i ≤ N. (7.4)

With this method, we get a larger bin density near resonance as we increase N . In this
work, we choose ϵ0 = 1 GeV and ϵN = 109 GeV

We now proceed to outline the method to determine dD. We draw a random number
by setting τν = − ln u for a random number u uniformly distributed in (0,1]. Let r be
the position of our neutrino with energy εν . As the particle propagates in steps dx′′

3, it
accumulates contributions to the optical depth integral τ ν , following equation (7.2) and
computed via the trapezium rule. Thus, dD becomes the sum of steps dx′′

3 required to
make τ ν = τν . As for the choice of the spacing dx′′

3 used for each contribution to τ ν , we
use the energy nodes ϵi to account for redshift energy losses. For the first dx′′

3 we first
identify the node ϵi closest to εν with εν ≥ ϵi. dx′′

3 is the distance required so that εν

decreases to ϵi as a result of redshift energy losses alone. The next step dx′′
3 is then chosen

so that redshift reduces neutrino energy from ϵi to ϵi−1. Each step calculated via this
method keeps increasing the value of τ ν and this process is repeated until either reach
the sampled τν or exceed it. If τ ν ≥ τν , we interpolate to τν and find its associated step
dx′′

3. It is possible that τ ν ≤ τν throughout the remaining propagation length, in which
case the particle is tracked up to the sphere of radius D without further scatterings.

With dD determined, the particle is moved from r to r′, the contributions of α and
β to the integrals

∫
α2dx3,

∫
β2dx3,

∫
αdx3 and

∫
βdx3 in equation (7.1) are computed,

and the neutrino energy is redshifted to ε′
ν to account for the new position. To perform

a scattering, we pick the scattered neutrino energy from a uniform distribution in the
interval [0,ε′

ν ], since the scattered energy distribution is flat in the cosmic rest frame.
From the scattered energy, we can determine the momentum four-vector for both the
scattered and upscattered neutrinos, and the upscattered neutrino is injected at r′.
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To find time delay distributions in our examples, we inject neutrinos until the observer
collects 107 neutrinos. The energy threshold, below which we do not collect particles, is
specified in each example as Eth.

Henceforth, we choose the values of mϕ = 10 MeV and mν = 0.1 eV, which sets the
neutrino resonance energy to εres = 500 TeV in the cosmic rest frame. In Fig. 6.2, we
show the neutrino mean free path, λν = 1/nνσν(εν), using the CνB density at z = 0, as a
function of the neutrino energy εν . We include the particle-travel distances corresponding
to 100 Mpc, 1 Gpc and z = 1, which will be used in our examples. To describe the regimes
of interest, we also introduce the inelasticity parameter y, where y = 0 means that the
incident neutrino loses no energy after the scattering. We will also make a distinction
between the energy εν at redshift z, which changes due to cosmological redshift, and the
observed neutrino energy Eν = εν(z = 0) at z = 0. In the first cases, where propagation
distances are less than 1 Gpc, adiabatic energy losses do not play a significant role and
we have εν ≈ Eν . The distinction will be necessary in our examples with sources at
z = 1.

7.2 Results

7.2.1 Scattering in the optically thin limit

As the first example, we consider the propagation of neutrinos with an optical depth of
τν ≪ 1, corresponding to the optically thin limit. In this regime, neutrinos are unlikely
to scatter more than once and only a fraction τν of all neutrino events will experience a
scattering.

Analytically, the time delay t follows, to a good approximation, the distribution,

P (t, φ; D) = 1
2t/D + φ2

1
σν

dσν

dθ

∣∣∣∣∣
θ=φ+2t/(Dφ)

(7.5)

where φ is the arrival angle on Earth, with respect to the direction of the source. See
Ref. [243] for the derivation. Integrating over φ will yield the delay distribution P (t).
The characteristic time delay in the optically thin regime is [106]

∆t ≈ 1
2

⟨θ2⟩
4 D ≃ 77 s C 2

(
D

3 Gpc

)(
mν

0.1 eV

)(100 TeV
Eν

)
, (7.6)

where ⟨θ2⟩ is the mean squared angular deflection from a single scattering. The constant
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Figure 7.2. Time delay probability distribution, for different optical depths with D = τν Gpc.
The histograms are the results from the MC simulations. The solid curves are obtained by
integrating equation (7.5) over φ, while the dashed lines are the characteristic time delays given
by equation (7.6).

C ∼ 1 comes from the angular distribution of the interaction and thus depends on the
mediator used. In the case of s−channel scattering, we have ⟨θ2⟩ = 2C 2mν/Eν , with
C = 0.62 for leading scattered neutrinos [106,243].

To demonstrate our simulation results, we inject neutrinos with εν = 170 TeV and
assume g = 0.1, which leads to λν = 1 Gpc. We choose Eth = 0 and construct the time
delay distribution P (t), which are shown in Fig. 7.2 as histograms for different source
distances D = τνλν = τν Gpc. As expected, as D increases, the probability density
decreases for shorter t. Second, for long time delays we get P (t) ∝ t−2. This is also
verified by integrating equation 7.5 over φ, which is shown as solid curves, and we see the
excellent agreement between analytical and numerical results in this optically thin limit.
The characteristic time delays in equation (7.6) are also presented as dashed lines. With
this example, we also see that our simulation results are consistent with the analytical
estimate with leading particles.

We note that for τν ≳ 0.1 one can see a visible difference between the numerical and
analytical results. At this point, the Poisson probability of two scatterings taking place is
τ 2

ν e−τν /2, such that roughly 5% of the scattered events will scatter twice, causing them to
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experience longer delays. At τν = 1, the effect of multiple scatterings becomes apparent
as we leave the optically thin regime. We note that τν = 1 corresponds to 1 Gpc, where
the redshift effect may take place. In this example we ignore redshift energy losses, which
will be addressed later.

7.2.2 Scattering in the optically thick limit with zero inelasticity

Let us consider the case where neutrinos do not lose energy, in such a way that the angular
distribution in equation (6.8) holds but there are no upscattered neutrinos. Assuming
that multiple scatterings take place, the characteristic neutrino time delay in the large
τν limit can be estimated as [106]

∆t ≃ 500 s C 2
(

τν

10

)(
D

3 Gpc

)(
mν

0.1 eV

)(0.1 PeV
Eν

)
, (7.7)

implying ∆t ∝ τ 2
ν for a given λν .

The time delay distribution can be expressed as [241,242]

P (t; D) = 4π2

3⟨φ2⟩D

∞∑
n=1

(−1)n+1n2 exp
(

− 2n2π2t

3⟨φ2⟩D

)
, (7.8)

where ⟨φ2⟩ = τν⟨θ2⟩/3. When nνσνt ≫ τ 2
ν ⟨θ2⟩, which corresponds to long time delays,

only the first term of the series is relevant and the probability distribution decreases
exponentially. In Ref. [241], this distribution is satisfied for the Brownian motion, where
(1/σν)dσν/dθ follows a Gaussian distribution with mean 0 and variance ⟨θ2⟩. On the
other hand, Ref. [242] derives equation (7.8) under the assumption that the width of the
angular distribution of the particles in transit is large when compared to the width of the
angular distribution of a single scattering (see Ref. [242] for details on the assumptions).
Our simulations show good agreement with equation (7.8) when the angular distribution
is assumed to follow a Gaussian distribution for τν = 20 – 1000.

In Fig. 7.3 we show the time delay distribution for 300 TeV neutrinos and g = 0.5,
which gives λν = 1024 cm. We choose D = 100 Mpc to achieve τν = 310 and the angular
distribution used in our simulation follows equation (6.8). We also compare our result
with equation (7.8) by setting ⟨θ2⟩ = 0.77mν/Eν , where we assumed C = 0.62, and
include the typical delay from equation (7.7). We find that the time delay distribution
is significantly different from equation (7.8): while the analytic expression predicts an
exponential decay for large time delays, our simulation suggests that P (t) ∝ t−2.1.
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Figure 7.3. Time delay probability density function for the scattering of 300 TeV neutrinos in
the y = 0 regime, with the CνB at the optical depth τν = 310. The blue curve is the analytical
expression of equation (7.8), while the blue dashed line is the typical delay in equation (7.7).
We also include the results from our MC simulations which do include the finite inelasticity.

We note that in the y = 0 limit, equation (7.7) underestimates the characteristic
time delay in the sense that the expression relies on ⟨θ2⟩ to be proportional to the
mean number of scatterings M = τν , which is true in the case of the Gaussian angular
distribution. When we use equation (6.8), the tail for large θ is responsible for causing
⟨θ2⟩ to follow an approximate power law dependence τα

ν with α ≈ 1.2, increasing the
typical time delay.

As a comparison, we also include the results from the MC simulations with y > 0,
allowing for energy losses and upscatterings of CνB neutrinos. In this case, the neutrino
time delay distribution can be split into the leading and non-leading components. A
leading neutrino is ranked based on its energy; at the injection site, the initial neutrino is
considered the leading particle. Whenever a leading neutrino scatters, the most energetic
of the two outgoing neutrinos is tagged as the leading particle, while the other is tagged
as a non-leading particle. When a non-leading neutrino scatters, both outgoing neutrinos
are tagged as non-leading. From this definition, at any point in the cascade development
there can only be one leading neutrino. The time delays in y > 0 are significantly smaller
because neutrinos quickly enter the optically thin regime after a few scatterings, so they
do not experience O(300) scatterings as in the y = 0 case. The leading component has
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the shortest time delays because the typical scattering angle decreases with εν . In this
case, the analytical expression falls in between the y = 0 and y > 0 regimes.

7.2.3 Scattering in the optically thick limit with finite inelasticity

In realistic scenarios, an incident neutrino loses energy at each scattering, and the energy
is transferred to the upscattered neutrino from the CνB. Multiple scatterings then lead
to so-called neutrino cascades [64,65,244]. In this example we set g = 0.1 and D = 500
Mpc, and look at the scattering of neutrinos with initial energy εν = 500 TeV.

We note that as the incident neutrino loses energy and leaves the resonance region,
the cross section will continue to decrease. It is therefore possible that a particle may
start off in the optically thick regime, yet ending up in the optically thin regime after a
few scatterings, when the mean free path exceeds the propagation length. We can select
neutrinos that remain in the optically thick regime by choosing an energy window that
is sufficiently close to the resonance, thus avoiding the possibility of a neutrino entering
the optically thin regime.

In the limit that neutrinos cascade down to energies such that the optical depth is
below unity, the shortest time delay can be estimated with the conservative estimate [106],

∆t ∼ 1
12M⟨θ2⟩λν , (7.9)

where M is the mean number of scatterings and can be determined from the MC
simulation.

To account for energy losses, we define the effective optical depth τν eff as the optical
depth using the average cross section over the energy window, which we choose as 200 TeV
– 500 TeV. The quantity τν eff is defined for illustrative purposes to explain the physics by
using a single optical depth and is not used in the simulations themselves. We show our
results in Fig. 7.4, where the source distance D = 500 Mpc corresponds to τν eff = 600.
The resulting distribution is shown by the black curve and the neutrinos that generate
this distribution are mostly leading particles. By definition there are no non-leading
particles with energies above εres/2 = 250 TeV, because when the first scattering occurs,
only the leading neutrino will have energy above 250 TeV. Any non-leading neutrino
from the cascade will never have more than half the energy of the initial neutrino. The
drop in the distribution for long time delays is caused by the threshold, as particles with
less energies are typically the ones with the larger scattering angles and time delays, by
virtue of equation (6.8).
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Figure 7.4. Left panel: Time delay probability distribution, scaled by t, for a source distance
D = 500 Mpc and initial neutrino energy εν = 500 TeV. The distribution of all particles above
200 TeV (mostly leading particles) is shown by the black curve, as well as the leading and
non-leading components for neutrinos with energy above 50 TeV, by the blue and red curves
respectively. Right panel: MC average time delay of Eν > 200 TeV neutrinos, as a function of
the effective optical depth in the 200 TeV – 500 TeV energy range. This time delay is compared
to the large optical depth estimate and the conservative estimates, given by equations (7.7)
and (7.9), respectively.

We also include the leading and non-leading components at energies above 50 TeV.
For this threshold we cannot guarantee the optically thick regime, but including these
highlight the shift to longer time delays as the energy threshold decreases. As expected,
the leading component is associated with shorter time delays when compared to the
non-leading.

On the right panel of Fig. 7.4, we compare the average time delay with the estimates
provided by equations (7.7) and (7.9). The time delays are given as a function of the
effective optical depth in all three cases, using the energy range 200 TeV – 500 TeV. Since
almost all the neutrinos in this energy range are leading particles, the MC average will
not change if we only consider leading neutrinos. For the conservative estimate, we find
that M increases slowly, from 1.8 at τν eff = 100 to 2.7 at τν eff = 800. For y = 0, we would
have M ∝ τν , but in the presence of energy losses, most of the particles that experience
multiple scatterings lie below the threshold and are not counted in the calculation of M.

7.2.4 Scattering over cosmological distances

When the source is located at non-negligible redshifts, we must account for neutrino
energy losses due to the expansion of the Universe. Here, we use a coupling constant of
g = 0.01, providing a very small energy window for the neutrino to interact (see Fig. 6.7).
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As an example, we consider a neutrino source at z = 1, which corresponds to a
particle-travel distance of D = 2.5 Gpc, emitting 800 TeV neutrinos. Assuming redshift
losses only, the neutrino energy reaches εres at z = 0.25. In the vicinity of z = 0.25, a
scattering will take place and the neutrino will then lose energy such that it is no longer
in the resonance window.

The resulting time delay distribution is presented in Fig. 7.5. Together with the MC
simulation, we include the case without the redshift effect, where we ignore redshift loss,
but manually change the neutrino energy to εν = εres at z = 0.25 and allow the particle
to scatter the CνB. The distribution shown by the red curve shows the redshift effect in
the transition from the optically thick to the optically thin regime. We also show the case
of the single scattering approximation, which treats the cross section as a Dirac delta
function that spikes at εres, and this is represented by the blue curve. We see that the
single scattering approximation correctly predicts the MC results, except for short time
delays of t < 1 s. In the single scattering approximation, the short time delay portion
originates from particles that experience small-angle scatterings and keep their energies
very close to εres within less than 1%. In reality, these particles should scatter again,
since they are still within the resonance region. Upon the second scattering, the time
delay is expected to increase, which is why the scenario ignoring redshift losses has a
deficit in events with t ≲ 0.3 s. If we then compare the red curve to the MC distribution,
we see that this deficit is less significant. Once adiabatic energy losses are considered,
small changes in z as the neutrino propagates are enough to shift the energy away from
the resonance, and increase the mean free path, facilitating the transition to the optically
thin regime.

Our treatment is applicable to cosmological sources as long as particles travel almost
along the line of sight. When the scattering angle is not small, due to cosmological
expansion, the delay due to one scattering may scale as, e.g., ∝ (1 + zsc)lprop instead
of the particle-travel distance, where lprop is the proper scattering length and zsc is the
redshift where the scattering occurs. However, this effect would increase the delay by
∼ 10% for z ≲ 1.

7.2.5 Applications

7.2.5.1 Source spectra

In the previous section, we have focused on monoenergetic spectra at the source. Here,
we analyze effects of neutrino-neutrino scattering assuming an ε−2

ν power law spectrum
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Figure 7.5. Time delay distribution of 800 TeV neutrinos starting at z = 1 and scattering
off the CνB. The black histogram is the result from our MC simulation. The red histogram is
a separate simulation, where redshift energy losses are ignored and the neutrino’s energy is
manually changed to εν = εres at z = 0.25. The single scattering approximation, which assumes
that the cross section is a Dirac delta function spiking at εres, is shown as the blue histogram.

from a source at redshift z = 1 and set a threshold energy of 1 TeV.
As examples, we consider values of the coupling, g = 0.01, 0.05 and 0.2, as they

represent the τν ≪ 1, τν ∼ 1 and τν ≫ 1 regimes in the 100 TeV–1 PeV range, as shown
in Fig. 7.6. The results from the MC simulations are shown by the blue curves, while
separate simulations ignoring redshift effects, meaning no expansion losses and assuming
a uniform CνB number density of 112 cm−3, are shown by the red curves.

Starting with g = 0.01, we see that the time delay distribution close to the tP (t) peak
is not very sensitive to redshift effects and P (t) ∝ t−2 past the peak. Below the peak,
we see there are more events with t < 1 s when we neglect redshifts. In the absence
of redshifts there is a sharp decrease at 500 TeV due to the resonance, together with
the corresponding pileup in the 400 TeV region. This occurs over a very narrow energy
region, and the pileup is not very significant because few neutrinos lie in the resonance
windows. In the realistic scenario we see the expected decrease in the normalization, with
E2

νΦν scaling as 1/(1 + z). The pileup region shifts towards lower energies, and the peak
is more prominent. Because neutrinos from the higher-energy tail get redshifted into the
resonance region and scatter, it follows that the total number of scattered neutrinos in
the presence of redshift is larger than the case without. There is also a distinct break
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Figure 7.6. Time delay distributions (left panels) and observed energy spectra (right panels)
of an ε−2

ν source at z = 1, for coupling constants g = 0.01, 0.05 and 0.2 (top,middle and bottom
row, respectively). The source spectrum is normalized such that ε2

νΦν = 1. The blue curves
represent the results of our MC simulation, while the red curves correspond to a case where the
redshift energy loss and CνB density dependence on z are neglected. The dotted black lines in
the energy spectra are the neutrino spectra at the source.

in the spectrum at the 250 TeV mark, which is understood by differentiating between
scattered and unscattered neutrinos. The component of the initial ε−2

ν spectrum that
was below 500 TeV remains unscattered and is simply redshifted to 250 TeV and below.
On the other hand, neutrinos between 500 TeV and 1 PeV will eventually scatter as
they get redshifted into the resonance window, while those above 1 PeV are redshifted
to a minimum energy of 500 TeV and do not interact. Therefore, the observed energy
spectrum of unscattered neutrinos is an ε−2

ν spectrum with a gap in the 250 TeV– 500
TeV region, which is to be filled by the scattered component. For couplings this small,
there are not enough upscattered neutrinos to cover this gap, causing the discontinuity.

For g = 0.05 we have multiple scatterings, typically four to five, which causes the
tP (t) peak to appear at t ≈ 20 s. For long time delays, we also see a sudden drop
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around 5000 s. This is caused by the 1 TeV energy threshold, which removes lower-energy
neutrinos that would have a larger scattering angle and longer time delay. The energy
spectrum shows features similar to g = 0.01, but the pileup region is wider as a result
of multiple scatterings. The spectrum between 100 and 500 TeV in the MC case is
dominated by the scattered component, so we no longer see the break in the spectrum
observed when g = 0.01.

The case where g = 0.2 shows a large separation in the time delay distribution peaks
between the redshift and no redshift cases. Here, the number of neutrino scatterings is
much higher, many of them experiencing over 15 scatterings. In this case, redshift losses
decrease the neutrino energy before the next scattering takes place, at which point larger
scattering angles are preferred, according to equation (6.8). The threshold effect on the
delay distribution occurs close to 104 s, but does not have an effect on the location of
the distribution peaks, which is also true for g = 0.05 and g = 0.01. Setting the energy
threshold to 10 TeV, however, would shift the peak locations to lower t for g = 0.2 only.
Looking at the energy spectrum, we see that the pileup region is much wider. We also
note that E2

νΦν is no longer flat in the 1 TeV region and the MC result overcomes the no
redshift case at low energies. Now that the number of scatterings is so large, particle
multiplicity allows the MC peak to compensate for the redshift factor 1/(1 + z). On
the other hand, there is a drop in the case without the redshift effect, because TeV
neutrinos experience scatterings at such large couplings, and the higher-energy neutrinos
that cascade downward are unable to compensate. After repeating these simulations
with the inclusion of the t−channel contributions to the cross section, we find negligible
differences for g = 0.01 and g = 0.05 and a slight shift to longer time delays for g = 0.2.
The differences only appear at large couplings, where the resonance width is large and
the t−channel term is comparable to the s−channel away from εres.

7.2.5.2 Flavors

If we consider three neutrino flavors, the cross section has to be modified for different
mass eigenstates mi. The oscillation parameters are fixed to the best-fit oscillation
results from NuFIT 2021 [29, 180]. While there are three mass eigenstates, neutrino
oscillation data tell us that two of these are close together. We should then expect two
well-separated resonance dips. To comply with the cosmological bound of ∑mν < 0.12
eV [126], we choose the masses m1 = 0.022 eV, m2 = 0.024 eV and m3 = 0.055 eV. In
addition, to obtain the dips in the energy spectrum between 100 TeV and 1 PeV, we
choose mϕ = 5 MeV.
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Figure 7.7. Time delay distributions (left panel) and observed energy spectra (right panel) of
an ε−2

ν source at z = 1, for gττ = 0.05 and mϕ = 5 MeV. The source spectrum is normalized
such that ε2

νΦνe = 1.

The CνB density for each mass eigenstate is 112(1 + z)3 cm−3, as before. Regarding
the ε−2

ν source at z = 1, we will assume that the flavor ratio at the source is (1:2:0), which
quickly decoheres into mass eigenstates as the neutrino oscillation and coherence lengths
are shorter than the interaction length. The propagation and interactions can thus be
carried out in the mass eigenstate basis and then converted to the flavor eigenstate basis
when it reaches the source.

The neutrino coupling now becomes a 3 × 3 coupling matrix, and we assume the
coupling only for ντ : gαβ = diag(0, 0, gττ ). Such secret neutrino interactions involving
only ντ are of interest as they are the least constrained by laboratory experiments [22].
Under this assumption, the invariant cross section for the process νiνj −→ νkνl is [63]

σijkl
ν = |Uτi|2|Uτj|2|Uτk|2|Uτl|2g4

ττ

32π

sj

(sj − m2
ϕ)2 + m2

ϕΓ2
ϕ

, (7.10)

where sj = 2mjEν , Γϕ = g2
ττ mϕ/16π and U is the Pontecorvo-Maki-Nakagawa-Sakata

matrix.
The results of the MC simulation are shown in Fig. 7.7 for gττ = 0.05. The energy

spectrum shows two dips due to the three resonances. Besides that, the spectral shape is
about the same for all three neutrino flavors, separated by factors which correspond to
the observed flavor ratio at Earth after oscillations are averaged out. When a scattering
takes place, the outgoing mass eigenstates νk and νl depend on |Uτk|2 and |Uτl|2 only.
For our choice of oscillation parameters, we have |Uτ1|2 < |Uτ2|2 < |Uτ3|2. As a result,
there is a slight tendency for ν3 to be produced over the other states, which builds up
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over several scatterings, creating the deficit in νe when we convert the ν3 flux to a flavor
flux. Our results on the spectra are consistent with those by Ref. [63].

For the time delay, the delay distributions are almost identical. One could see that
P (t) is slightly larger for νe in the 0.01 s – 1 s range. This part of the distribution comes
from neutrinos that only scatter once, while the long time-delay tail consists of particles
that scatter multiple times.

7.3 Summary and Conclusions
We have presented a numerical study of secret neutrino interactions of TeV–PeV neutrinos
and their associated time delays. We developed a MC simulation code that accounts for
the sudden changes in the s-channel interactions as we approach the resonance energy,
allowing us to accurately calculate the scattering locations. The developments can be
applied to various astrophysical neutrino sources, by which constraints on νSI can be
placed with neutrino data (see Ref. [117] as an application to the Galactic supernova).

As the first example, we have shown that in the optically thin limit the simulation
result is in agreement with the analytical expression. Deviations from it become apparent
at τν ∼ 0.1, when multiple scatterings become more relevant. In the optically thick
limit with y = 0, there is a significant difference in the time delay distribution between
our result from the MC simulation and the analytical expression, because the angular
distribution is not a Gaussian. The case y = 0 predicts longer delays than y > 0 as energy
losses allow particles to leave the resonance window, causing less scatterings to take place.
In the case τν ≫ 1 and y > 0, we have found that the time delay distribution is also
sensitive to the energy threshold: lowering it leads to the inclusion of the lower-energy
particles that experience more scatterings and longer time delays. A clear separation
between the distribution peaks for leading and non-leading components is seen at an
energy threshold of 50 TeV. The characteristic time delays in the MC simulations are
found to lie between the large optical depth and conservative estimates.

Considering sources at cosmological distances, we have shown that for a source at
z = 1 and the coupling strength g = 0.01, redshift effects are most important for neutrinos
in the short time-delay tail. We have also highlighted the difference between the MC
simulation and the single scattering approximation, and the latter predicts more events
in the short time-delay tail, compared to the former. For a source at redshift z = 1 with
an ε−2

ν spectrum, the observed neutrino spectrum presents the expected pileup region
below the resonance energy. As the coupling strength increases, the resonance width
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increases and the location of the pileup moves to lower energies. Breaks in the spectrum
at coupling strengths g = 0.01 and g = 0.05 are present, at energies slightly above the
pileup region, where the scattered and unscattered components of the spectrum intersect.
This effect is not present when we ignore redshift effects. The time delay distributions
for larger couplings lead to longer delays, as more scatterings occur, with delays of
approximately 1 hour for g = 0.05.

The MC simulation code developed in this work can also be applied for a broader set
of BSM interactions. As long as the small-angle scattering approximation is satisfied,
then the MC code presented here can be applied to neutrino scattering with dark matter
or axions, as discussed in Refs. [106,245]. Other BSM interactions which produce SM
particles such as muons and pions, which decay into neutrinos, can also be accommodated
readily. The code is expected to be publicly available in the near future.
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Chapter 8 |
Time-delayed neutrino emission
from supernovae as a probe of
dark-matter neutrino interactions

In this chapter we will apply the time delay approach described in chapter 7 and use it in
the context of supernova neutrinos. The ∼ 10 MeV neutrinos will interact with galactic
DM and be delayed. We look at the delayed signal and how it can be used to constrain
neutrino-DM scattering. The text in this chapter is part of the work in Ref. [117].

8.1 Method
We consider a neutrino emitted by a source at a distance D, propagating through a
bath of DM particles χ. We define the optical depth τ = nχσνχD, where nχ is the DM
number density and σνχ is the total cross section for DM-neutrino interaction. Suppose
that the interactions happen in the optically-thin limit, i.e., τ ≪ 1, such that neutrinos
would at most experience one interaction as they travel towards the Earth. In this
limit, if N neutrinos are emitted at the source, the majority will arrive together, while a
fraction of ∼ τN neutrinos will scatter and arrive later because of the increased trajectory
length [106]. The time delay t for the arrival of scattered neutrinos depends on the
scattering angle, with a typical delay ∆t given by [106]

∆t ≈ 1
2

⟨θ2⟩
4 D ≃ 1.3 × 107s

(
⟨θ2⟩
10−4

)(
D

10 kpc

)
, (8.1)
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where ⟨θ2⟩ is the mean of θ2, for a given differential cross section, and θ is the scattering
angle. See also Refs. [116,243].

In the SN frame, DM is at rest and the incident neutrino’s energy is Eν . For a
scattering angle θ, the scattered energy E ′

ν is given by

E ′
ν = Eνmχ

mχ + Eν(1 − cos θ) , (8.2)

where mχ is the DM mass and we neglect neutrino mass. The differential cross section
for a neutrino of incident energy Eν to have a scattered energy E ′

ν is

dσνχ

dE ′
ν

(Eν , E ′
ν) = dσνχ

d cos θ

d cos θ

dE ′
ν

, (8.3)

where
dσνχ

d cos θ
= 1

32πm2
χ

(
E ′

ν

Eν

)2

|M|2. (8.4)

Here the squared matrix element |M|2 depends on particle physics models that we
discuss below. We will explore the range of mediator masses ∈ [1 eV, 100 MeV] and
mχ ∈ [10 eV, 100 keV] in this work.

We consider three particle physics models in this work. First, we consider fermionic
DM that interacts via a vector mediator Vµ, and the interaction Lagrangian of the form

Lint ⊃ gν ν̄γµνVµ + gχχ̄γµχVµ, (8.5)

where gν and gχ are dimensionless coupling constants of the vector mediator to neutrinos
and DM, respectively. Neutrino coupling to a vector mediator has also been used for
example in the gauged U(1)Lµ−Lτ model [28,246,247]. DM couplings to vector mediators
have also been considered in the cosmological context [98, 101, 248]. The Lagrangian
in equation (8.5) implies that DM-neutrino scatterings are mainly forward scatterings,
allowing us to remain within the small-angle scattering approximation. In addition, mV

has little effect on the angular distribution for mV > 5 MeV.
In addition to the Lagrangian in equation (8.5), we will also consider fermionic DM

with a scalar mediator
Lint ⊃ gν ν̄νϕ + gχχ̄χϕ, (8.6)

and scalar DM with a scalar mediator

Lint ⊃ gν ν̄νϕ + gχΛχ∗χϕ. (8.7)
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Figure 8.1. Time delay distribution of 15 MeV neutrinos for mχ = 10 keV and a 10 MeV
mediator. The distribution is multiplied by t. For each model, gχ and gν have been chosen
such that τ = 10−3 for D = 10 kpc. These results are, in fact, independent of τ , provided that
τ ≪ 1

The differential and total cross sections for these interactions can be found in Ref. [104].
For the last Lagrangian, we note that the coupling is split into a dimensionless coupling
gχ and an energy scale Λ = 100 GeV. In scalar mediator models, if neutrinos are Dirac
fermions we would need to consider mixing with sterile states; for Majorana neutrinos,
ν̄ν should be interpreted as νc

LνL/2 + c.c. For example, DM interactions with scalar
mediators arise in Standard Model extensions, where DM couples to the Higgs sector
and protected by a Z2 symmetry [249]. This leads to Higgs portal models for fermionic
DM [82] or scalar DM [249,250] after the spontaneous electroweak symmetry breaking.

Let P (t) be the probability density function of the neutrino time delay t of the
neutrinos within the arrival energy range of interest. By working in the τ ≪ 1 limit, P (t)
depends on (1/σνχ)dσνχ/d cos θ and is therefore independent of the coupling strength
[106,242,243]. In Fig. 8.1 we show the time delay distribution of neutrinos with an initial
energy of 15 MeV, a dark matter mass mχ = 10 keV and a 10 MeV mediator. Each model
has values of gχ and gν such that τ = 10−3, in the optically-thin regime. Here we see
that among the three models, the fermionic DM with a vector (scalar) mediator yields
shorter (longer) time delays. This is related to the details of the angular distribution of
the model, where smaller scattering angles lead to shorter time delays. For fermionic
DM with a scalar mediator, we see that the ∆T decreases for DM masses above 100 keV
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and mϕ in the 100 eV – 10 keV range. This decrease is caused by the energy threshold
used in the analysis, which we address in the next section.

In order to estimate the temporal profile for the arrival of neutrinos from a SN, we
adopt a SN neutrino spectrum at the source of the form [140,251,252],

Φν(Eν) = Lν

⟨Eν⟩2
(α + 1)α+1

Γ(α + 1)

(
Eν

⟨Eν⟩

)α

exp
(

−(α + 1)Eν

⟨Eν⟩

)
, (8.8)

where ⟨Eν⟩ is the average neutrino energy, α is the pinching parameter, Lν̄α is the neutrino
luminosity, and Γ is the Euler Gamma function. Hereafter, we assume α = 2.3 and
⟨Eν⟩ = 16 MeV, although in general the values of α and ⟨Eν⟩ are different among neutrino
flavors [140]. The total neutrino energy is set to Eν = LνTdur = 3 × 1053 erg, where
Tdur = 10 s is the duration of the neutrino emission.Neutrino emission consists of several
stages. Around the core bounce, the so-called νe neutronization burst is expected, which
lasts for ∼ 20 ms. This is followed by the accretion phase with significant production of
νe and ν̄e, which lasts for a few seconds (e.g., [253–255]). Then, the protoneutron star
cools and neutrino luminosities of all flavors become similar, lasting for ∼ 10 − 100 s
(e.g., [251,256,257]). The total energy we are considering here can also be matched to
the simulation results presented in Ref. [258] within 1 s after the bounce.

The supernova spectrum consists of ν̄e and ν̄x (non-electron antineutrinos). We
assume that both fluxes are related by Φν̄x = 0.3Φν̄e [255], such that they have the
same production spectra. This assumption is made for simplicity because using separate
spectra would require us to look at ν̄e and ν̄x with different pinching parameters α.
The flux is normalized so the total neutrino energy in all three flavors is equal to Eν .
For pure adiabatic transitions, the fluxes at the surface of the star are Φν̄1 = Φν̄e and
Φν̄2 = Φν̄3 = Φν̄x , assuming normal mass ordering [259]. The ν̄e flux on Earth becomes
Φν̄e = ∑

i Φν̄i
|Uei|2, where U is the neutrino mixing matrix.

For a nearby SN of D ∼ O(10) kpc, we can assume a local DM density nχ = 0.3
cm−3(mχ/1 GeV)−1. As we show in our results, within our parameter space the typical
time delays would lie in the 102-108 s range. While the SN neutrino spectrum is time-
dependent (see e.g., Ref. [258]), the characteristic time delays are much longer than Tdur,
so we use the time-integrated flux on Earth

dNν

dEν

= ΦTdur

4πD2 . (8.9)
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The number of neutrino events in Hyper-Kamiokande is

Nevents = NT

∫ 50 MeV

10 MeV

dNν̄e

dEν̄e

σQE(Eν)dEν̄e , (8.10)

where NT is the number of targets (1.25 × 1034 for the 187 kton HK detector fiducial
volume [258]) and σQE is the quasi-elastic inverse beta decay cross section. We have
assumed 14 MeV as the neutrino energy threshold. These are the total number of
events, which accounts for both scattered and unscattered neutrinos. For our chosen
parameter set, we get Nevents = 48200. This is consistent with Ref. [258], which obtained
Nevents ≈ 20000 for Tdur = 500 ms, although we use a larger total neutrino energy (in all
flavors) of Eν = 3 × 1053 erg.

To calculate the delayed neutrino spectrum dNscatt/dEν , which is the time-integrated
spectrum of all scattered neutrinos, we use

dNscatt

dEν

=
∫ ∞

0
dt
∫ E′max

ν (Eν ,t)

Eν

dE ′
ν

dNν

dE ′
ν

P (t, E ′
ν)dσνχ

dEν

(E ′
ν , Eν)nχD, (8.11)

where the integrand is the product of the SN spectrum at E ′
ν and the probability that a

neutrino of energy E ′
ν scatters once and arrives with an energy Eν , in the optically-thin

limit. The spectrum dNν/dEν is inserted into equation (8.10) to obtain the number of
events that undergo scatterings. We point out that the relationship between Nscatt and
Nevents is not trivial due to the threshold, as some of the scattered neutrinos will fall
below that energy, but the relationship Nscatt ∼ τNevents provides an order of magnitude
estimate. We may write Nscatt = κτNevents, where κ is the fraction of scattered events
with Eν > 14 MeV and is determined from simulations. Given that effects of P (t, Eν)
and E ′max

ν are included in κ, the rest will only depend on mχ and the mediator mass
when τ ≪ 1. Within this approximation, for fixed DM and mediator masses, we have
Nscatt ∝ g2

νg2
χLνTdur/D.

We constrain the (g, mV , mχ) parameter space under the assumption that no significant
background excess has been observed within a time window ∆T after the SN neutrino
burst is detected.

We use the Feldman-Cousins upper limits [260] to obtain constraints on the parameters
of DM-neutrino interactions. The background rate is obtained from the different channels
provided in [261]: invisible muons, neutral current, atmospheric neutrinos, lithium, reactor
neutrinos and diffuse supernova neutrinos. For a 187 kton detector with Gadolinium in
the energy range [14 MeV, 50 MeV], the total rate would be 3.41×10−6 Hz. We use this
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rate to estimate the expected number of background events µb over a time ∆T after the
MeV burst. Starting from the arrival time of the unscattered signal, we take the time
window ∆T that encloses a factor 0 < β ≤ 1 of Nscatt. Our calculations of ∆T enforce
an Eν > 14 MeV threshold. The different interaction models affect ∆T only through the
distribution P (t), so the choice of time window depends on DM and mediator masses
only. Within this ∆T , we find the Feldman-Cousins upper limit µs, assuming that the
expected number of events is µb (i.e., background only) and the observed number of
events is also µb. This µs would then correspond to the expected number of delayed
neutrino events within ∆T . We set µs = βNscatt and adjust g2

νg2
χ to get this equality to

hold. This equation for µs relies on the scaling of Nscatt ∝ g2
νg2

χ, which is only valid in
the optically thin regime. Therefore, this method cannot be applied for τ ≥ 1. Within
the parameter space shown in Fig. 8.2, only the fermion DM with a scalar mediator has
such a region for mχ > 0.8 MeV and mϕ ≳ 10 MeV. In the case of heavier dark matter
mχ ≳ 100 keV, ∆T > 108 s for heavy mediators. For these cases, we set ∆T = 108 s and
adjust β accordingly.

8.2 Results
We calculate the 95% confidence level (CL) upper limit on the coupling constant in
Hyper-Kamiokande in the event of a 10 kpc SN, assuming no significant delayed neutrino
signal is detected. For this purpose, we define the effective coupling g = (gνgχ)1/2, and
set β = 0.5. Our choice of β is motivated by the Monte Carlo simulation results [116]
which suggest that ∆T will coincide with the peak of the tP (t) distribution (see Fig. 8.1
as an example). We show the upper limit on the coupling for different DM and mediator
mass in Fig. 8.2. We mark the set of points for which ∆T = 108 s and ∆T = 10 s, where
the latter corresponds to the duration of the neutrino emission. We consider a maximum
time window of 108 s as this leads to exceedingly long delays. In this sense, we are only
truly sensitive to DM lighter than 1 MeV for heavy mediators, where ∆T < 108 s. We
also shade the region where τ ≥ 1, where the optically thin approximation is not satisfied
and our results are not applicable. This region is only present within our parameter
space when we assume fermionic DM with a scalar mediator. For fermionic DM and a
vector mediator, we see that when mV ≲ 100 eV, the time window used is too short for
the delayed signal to be well separated from the initial MeV burst. This is not the case
for scalar mediators, where the scattering angles remain relatively large for very light
scalars.
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Figure 8.2. Neutrino-DM coupling constraints on g = (gνgχ)1/2 for the models described by
equations (8.5) (top), (8.6) (middle) and (8.7) (bottom). The time window ∆T is the time
taken to enclose 50% of the scattered neutrinos with energy above 14 MeV. The region τ ≥ 1
has been shaded for the Fermion DM and Scalar Mediator case. This is a very small region in
the top right corner. The other models do not have τ ≥ 1 within the parameter space shown.

107



We also compare our constraints against limits from other observables. The first
one is the neutrino self-interaction bound gττ < 0.27 from [22], which only applies to ντ

coupling. To convert gττ into an effective coupling geff
ν and then into the ν-DM coupling

g, we proceed as follows. The ν̄e flux from ν−DM scatterings, Φν̄e,scatt, is given by the
probability that ν̄i interacts via gττ , becomes ν̄j and is detected on Earth as ν̄e. In
the limit τ ≪ 1, this probability is simply an effective optical depth. We then write
Φν̄e,scatt = ∑

i τiΦν̄i
, which is the sum of fluxes of scattered ν̄i which are detected as ν̄e.

With the assumption that ν̄e and ν̄x are proportional to each other, we may also simplify
this expression to Φν̄e,scatt = τ effΦν̄e for an effective optical depth

τ eff = nχσeff
νχD = nχ

σνχD

g2
ν

∑
i,j

|Uej|2|Uτj|2|Uτi|2g2
ττ Pi, (8.12)

where Pi = Φν̄i
/Φν̄e . Note that the cross sections involved have negligible contributions

from neutrino mass, so σνχ is the same regardless of the neutrino mass eigenstate involved.
The cross section σeff

νχ is now proportional to (geff
ν )2. We can thus absorb neutrino mixing

effects into this coupling, such that

(geff
ν )2 = g2

ττ

∑
i,j

|Uej|2|Uτj|2|Uτi|2Pi. (8.13)

With the current values of the oscillation parameters, this leads us to geff
ν = 0.1. To get

the upper bound of g, we use geff
ν together with the upper bound gχ < 4π originating

from the perturbative limit. This then leads to a bound g <
√

4πgeff
ν = 1.11.

We also have the BBN constraint on mediator masses, given in [22,28]. Finally, we
also consider the constraints for merging galaxy clusters, which requires σχχ/mχ < 0.1
cm2 g−1 [262,263]. Here σχχ is DM self-scattering cross section in the low velocity limit.
The cluster constraints provide upper bounds on gχ for fixed DM and mediator masses.
To convert this into a bound for g, we need to assume a ratio gν/gχ. Since the constraints
are on gχ only, choosing small (large) gν/gχ will strengthen (weaken) the bounds on g.

In Fig. 8.3, we show the 2D projections for selected DM masses assuming fermionic
DM and show the aforementioned bounds from laboratory measurements, BBN and
cluster constraints. For the case of fermionic DM, we take gν/gχ = 1/125, the ratio
corresponding to gχ = 4π and gν = 0.1. For this choice, our constraints are stronger
than laboratory and cluster bounds for mχ < 20 keV (mχ < 1 keV) for a vector (scalar)
mediator. In the case of scalar DM with a scalar mediator, as shown in figure 8.4, we
find that the cluster bounds required a gν/gχ ratio above 104 for the echo limits to be
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Figure 8.3. Neutrino-DM coupling constraints on g = (gνgχ)1/2 for the models described by
equations (8.5) (left panel) and (8.6) (right panel). Cluster constraints are shown as dotted
lines for each DM mass, assuming 125gν = gχ, corresponding to the ratio of gν = 0.1 and
gχ = 4π. BBN nucleosynthesis constraints [22,28] correspond to the shaded region (magenta).

competitive. For these large ratios, we easily reach the laboratory bound on gν , as shown
by the dashed lines. In the end, our constraints are stronger than laboratory and cluster
bounds when mϕ ≲ 3 MeV for gν/gχ = 7 × 104(gν/gχ = 5 × 105) for mχ = 20(1) keV. For
mχ = 10 eV and gν/gχ = 3 × 107, laboratory bounds are stronger than our bounds when
mϕ ≳ 1.3 MeV. Overall, given the BBN bound, there is a limited range of mϕ, in which
the constraints in our work are the strongest.

If the water detector does not have Gadolinium, the energy threshold would be at
around 17 MeV, since below it the spallation background is large [261]. Taking this energy
threshold into account, the background is dominated by invisible muons, increasing µb.
Likewise, the increased energy threshold means that a larger fraction of the scattered
events will lie below it. In this scenario, depending on mχ and mediator mass, we may
require up to 3 times as many scattered events. In turn, the couplings presented in our
results would have to be increased by up to 30%.

A general feature is that for a fixed mχ, the constraint on the coupling weakens for
larger mediator masses. The delayed neutrino spectrum is proportional to σνχ in the
small optical depth limit, so a larger value of g is needed to account for heavier mediators.
On the other hand, for a fixed mediator mass, the constraint gets weaker for heavier
DM and this weakening becomes more dramatic for lighter mediators. The total cross
section monotonically decreases with mχ, which contributes to weaker constraints. In
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Figure 8.4. Neutrino-DM coupling constraints on g = (gνgχ)1/2 for scalar DM and scalar
mediator. Here, we present the constraints for three DM masses. BBN constraints [22, 28]
correspond to the shaded region (magenta). The cluster lines (dotted) show the limits for
different ratios of gν and gχ. The laboratory bounds with the same ratios used in each cluster
line are shown as dotted lines. The energy scale is Λ = 100 GeV.

all three models considered, we see that there is a region of parameter space that is
not constrained by BBN or laboratory measurements that can be probed by the echo
approach.

The time window ∆T used to constrain g is shown in Fig. 8.5 for fermionic DM with
a vector mediator. We find that for O(10 keV) mediators, we need time delays between
a few weeks and a month. We see that ∆T goes up to a year for mediators heavier than
100 keV, and remains constant for a fixed mχ, for which the angular distribution becomes
less dependent on mV . The typical scattering angle is sensitive to mχ, and heavier DM
monotonically increases the time window ∆T to achieve a given β, for a fixed mediator
mass. For DM above 100 keV, however, a local maximum can be reached and then ∆T

decreases. The reason behind this is that ∆T is determined by the delayed neutrino
signal, which incorporates a neutrino energy threshold of 14 MeV. As mχ increases, the
scattering angle increases and a larger number of neutrinos are scattered to energies
below the threshold. Neutrinos below the energy threshold are not considered part of
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Figure 8.5. Time window ∆T as a function of the mediator mass and DM mass, for 50% of
the delayed neutrino signal to reach Earth in the event of a SN at a distance of 10 kpc. We
show the case for fermion DM and a vector mediator.

the delay distribution used to determine ∆T , and the removal of these events with large
delays causes ∆T to decrease. This effect is clearly visible in the case of fermionic DM
with a scalar mediator (see Fig. 8.2), where the time delay distributions tend to have a
large peak close to 108 s for mχ > 100 keV, even for light scalar masses.

To get a better view of the comparison between signal and background events, we
present in Fig. 8.6 the cumulative number of signal events for 10 keV DM and a 10
MeV mediator. This choice of these parameters corresponds to the region with longer
time delays, where delays get closer to 108 s. Each model is normalized to the number
of events required by the Feldman-Cousins upper limit. Similar to Fig. 8.1, the vector
mediator has several neutrino events early on, as the forward scattering is predominant.
Even though the signal to background ratio is quite small, the upper limit µs grows
roughly with √

µb, so fewer signal events are needed.
We note that the constraints shown were obtained for a SN with total neutrino energy

of 3 × 1053 erg at D = 10 kpc. Our approach relies on determining µs, which depends
only on the chosen time window (i.e. on mχ and mV . Once mχ and mV are fixed,
Nscatt ∝ g2

νg2
χEν/D, so we can get constraints for other SNe by the appropriate scaling.

Thus, choosing different SNe models, namely changing α and ⟨Eν⟩, mildly affects the
constraints, as long as the majority of the SN neutrinos is above the neutrino energy
threshold for Hyper-Kamiokande.
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Figure 8.6. Cumulative number of delayed signal events in Hyper-Kamiokande, compared to
the background, which has a rate of 3.41×10−6 Hz. Here, we show the three different models
used for mχ = 10 keV, mV = 10 MeV, mϕ = 10 MeV. Each distribution has a total number of
events corresponding to the time windows used for our upper limits. In the case of the vector
mediator, this corresponds to 10 events and ∆T = 1.7 × 106 s; for the scalar mediator with
scalar (fermionic) DM, this is 17 (58) events and ∆T = 3.9 × 106 s (5.1 × 106 s).

8.3 Discussion
The presence of DM-neutrino interaction may affect the effective number of relativistic
species, Neff , which provides additional constraints. If DM particles are in equilibrium
with the SM bath prior to the neutrino-photon decoupling, the dark matter mass is
constrained to be mχ > 1 MeV [22]. However, it was shown that if the equilibrium
between DM and the SM neutrinos occurs after the neutrino-photon decoupling, then Neff

constraints on the interactions can be significantly relaxed [264], allowing for sub-MeV
DM.

We also point out that, contrary to the assumption in [22], the parameter space for
the models presented also covers the region where DM is lighter than the mediator, in
which case DM freeze-out through χ − χ annihilation to two mediators is kinematically
forbidden. Also, as we provide bounds on the effective coupling g, gχ could be a lower
value to be compliant with other constraints by increasing gν or vice versa. Note that,
due to this interplay between both couplings, it is possible for our constraints to provide
competitive or stronger bounds than clusters constraints.

If we relax the assumption of a homogenous DM density, we would need to perform
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a column integral of nχσνχ to get the optical depth. In this scenario, the neutrino is
more likely to interact in the regions with the largest DM density. In particular, if
the source is located such that the signal has to cross the Galactic Center, the optical
depth would increase by a factor of ∼ 20 compared to the assumption of constant DM
density [265]. Since our number of scattered events is proportional to τ , we would expect
our constraints on the coupling to be stronger by a factor ∼ 201/4 ≈ 2. When mϕ > 1
MeV and mχ >100 keV and the delays become larger than 108 s, the increased optical
depth may not give a stronger constraint. The time delay also depends on where the
scattering takes place. If a very dense DM region is located close to the source such that
the scattering is likely to occur far away from Earth, the typical time delay will be longer.
For heavier DM, longer delays would force us to adopt ∆T = 108 s and would begin to
lose signal events to this time cut, which in turn can weaken our constraints.

For the specific case of SN 1987A, neutrino-DM interaction constraints are discussed
in Ref. [95]. For MeV DM, it was found that for a constant scattering cross section,
cosmological data provide stronger bounds than SN1987A data. As the total number of
neutrinos detected from this SN is relatively small, the bounds are obtained from the
assumption that there was no significant neutrino absorption in the observed spectrum.
Compared to the bound on the cross section σνχ/mχ < 10−25 cm2 MeV−1 from SN1987A,
our projected bound with HK is σνχ/mχ < 1.2 × 10−27 cm2 MeV−1 for fermionic DM and
a scalar mediator case, with mχ = 1 keV and mϕ = 10 MeV. For this projected bound we
assumed a neutrino energy Eν = 15 MeV, but within 10 MeV and 25 MeV of neutrino
energy, the cross section does not vary significantly for the chosen mχ and mϕ. Also, for
this choice of masses our forecasted bound is stronger than the cluster and laboratory
constraints. In our case, the expected number of neutrino events in Hyper-Kamiokande
in the detector is significantly larger, which allows us to reach unexplored parameter
space with the echo method.

8.4 Conclusions
We have shown that in the event of the next Galactic SN, we can constrain neutrino-DM
coupling by looking for the delayed neutrino signal from MeV neutrinos echoing off the
local DM in the Galaxy. Depending on the model parameters, the signal can be spread out
over a duration of O(108) s. For fermionic DM-neutrino interaction via a vector mediator,
we can constrain the effective mediator coupling to g ≲ 1 for ∼ 10 − 100 keV DM and
O(10) MeV mediators. In this model, the bounds from our work are more stringent
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than those from cluster constraints for mχ < 20 keV. We lose the ability to constrain
mediators masses, mV ≲ 100 eV, where most of the delayed signal is contained in a time
window shorter than the duration of the neutrino burst. For fermionic DM and a scalar
mediator, constraints for mχ ≲ 1 keV are stronger than other bounds for mϕ between
1 and 20 MeV. Above this DM mass, cluster constraints are stronger for gν/gχ ratios
consistent with gν < 0.1. For scalar DM and a scalar mediator, constraints can be better
than cluster constraints for ∼ 10 − 100 keV DM and O(10) MeV mediators, provided
that we adjust the gν/gχ ratio accordingly. In this model, however, the laboratory bound
on gν becomes much stronger for the large gν/gχ ≳ 105 − 107 ratios used, such that only
mϕ ≲ 2 MeV can be explored for DM masses below 20 keV.

This study has presented a novel approach to probe DM-neutrino interaction with
MeV neutrinos from SNe. The neutrino echo method may access the parameter space that
have not been explored by DM direct detection searches due to their energy threshold or
cosmology. Next-generation neutrino detectors such as Hyper-Kamiokande and DUNE
as well as JUNO would be able to explore the keV-MeV DM region due to the large
number of expected SN neutrino interactions in these detectors.

114



Chapter 9 |
Summary and Conclusions

In this dissertation we outlined the importance of neutrino physics to understand sources
of UHECR and gamma-rays. We first provided a theoretical background to explain the
basics of neutrino production in astrophysical environments, covered in chapters 2 and 3.
We then looked at ways to use neutrinos in the context of IceCube and future detectors
to look at source parameters in GRBs and magnetars. We then explored BSM neutrino
interactions by using high-energy neutrino sources. Through multimessenger astrophysics,
we looked at the potential of neutrino echoes to probe this kind of interactions. We
summarize below the results from the published works that form this dissertation.

In chapter 4, we studied the production of high-energy neutrinos in stellar and merger
ejecta. Considering particle acceleration at the collimation shock, neutrinos can be
injected to energies above 100 TeV. As neutrinos propagate through the stellar progenitor,
neutrino oscillations with matter effects can impact the observed flavor ratios on Earth. In
particular, we saw that in the 10 TeV – 100 TeV energy range we get significant differences
in the flavor ratio, compared to the case where only vacuum oscillations are applied. We
looked at low-power choked jet GRB contributions to the diffuse neutrino flux, finding
that some jet parameters can explain the 100 TeV scenario, using either strong neutrino
attenuation from the progenitor or strong muon cooling via electromagnetic interactions.

Chapter 5 focused on the charmed hadron contributions to the neutrino spectrum
in newborn magnetars. We found that most charmed particles are produced within the
first few hours after spindown initiates, when protons are injected at very high energies
and pions and kaons are too long lived to decay before cooling due to scatterings with
ambient nucleons. This signal from charmed hadrons appears above EeV energies. For a
source at ∼ 3.5 Mpc, the neutrino flux can be detected in IceCube-Gen2, GRAND and
POEMMA. The parameter choices for these sources can be consistent with the IceCube
diffuse flux limits by tuning the local rate density of magnetar sources.
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In chapter 6 we presented the neutrino BSM interaction models used in this work.
This included neutrino self-interactions with a scalar mediator, as well as neutrino-DM
scattering via a scalar and vector mediator. We discussed the cross sections and angular
distributions associated with these processes.

We then showed the geometrical setup for neutrino echoes induced by neutrino self-
interactions in chapter 7. Our Monte Carlo simulation proved that analytical estimates
in the optically thick regime are insufficient to describe the typical neutrino delay. The
difference is dependent on the assumed angular distribution, which in turn depends on
the assumed particle physics model. In the case of an ε−2

ν spectrum and a 10 MeV scalar
mediator, neutrinos in the 100 TeV region are delayed by 10s – 1000s, depending on the
coupling strength. The neutrino flavor composition was found to be largely unaffected
by the presence of self-interactions.

As an application of the Monte Carlo code developed in chapter 7, we looked at
neutrino-DM scattering with supernova neutrinos. Chapter 8 looks at the use of time-
delay distributions to obtain time windows that encompass half of the delayed neutrino
signal. If the signal does not produce excess neutrinos with respect to the expected
background, then we can derive bounds on the neutrino-DM coupling strength. In
our case, we are only sensitive to DM lighter than ∼ 1 MeV, as heavier DM would
result in time delays longer than 1 year. The parameter space that can be probed with
this approach can be more stringent than the ones derived from the BBN and cluster
measurements.

Within the next decade, multiple next-generation neutrinos detectors will go online,
such as IceCube-Gen2 and KM3NeT. The increased sensitivity to the diffuse neutrino
flux will allow for even stronger statistics. Some experiments are aimed at looking for
neutrinos above the PeV range, into EeV energies and beyond. These detectors include
Trinity, GRAND and RNO-G. The neutrino flux at ∼ 1 EeV is not fully known, but
we have an idea of this cosmic neutrino flux from cosmic ray observations. Observation
of these neutrinos opens the window to neutrino physics at energy scales previously
unexplored.

One of the exciting opportunities with IceCube-Gen2 is to look further into the most
energetic neutrino sources. Currently, the measured flux above 1 PeV mostly consists of
upper limits. Measuring the flux in this region provides a great opportunity to test the
choked jet GRB scenarios discussed in chapter 4. On the other hand, the improved point
source sensitivities in new detectors can be used to look for charmed hadron production,
whose neutrino emission can be observed at the early times of the prompt phase.
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Appendix |
Charm production and decay into
neutrinos

In this Appendix, we include some of the details of our evaluation of charm production.
The spectrum of neutrinos from charm hadron decays begins with the energy distribution
of these hadrons in pp collisions, dσ/dxE to evaluate Fpp→h in Eq. (3.3). The charm
quark distribution is evaluated in NLO QCD collinear approach [224–226], and with the
kT factorization formalism [227–230].

In the latter case, calculation was based on the approach developed in [223, 266] and
two scenarios were considered for the evolution of the unintegrated parton density, the
linear case as well as the non-linear case which includes corrections due to the large
parton density [267]. The unintegrated densities from [268] were used, which were fitted
to the inclusive HERA data. The charm quark distribution is then fragmented using
fragmentation functions Dh

c . In Eq. (5.10), the fragmentation function Dh
c used is that

of Kniehl and Kramer [30],

Dh
c (z) = Nz(1 − z)2

[(1 − z)2 + ϵz]2 , (I.1)

with the fit parameters given in Table I.1. This parametrization of the fragmentation
functions is also used in the evaluation of the prompt atmospheric neutrino flux from charm
in Ref. [222,223]. The constant N for each hadron H includes the fragmentation fractions
fH for each particle [31]: fD0 = 0.606, fD+ = 0.244, fD+

s
= 0.081 and fΛ+

c
= 0.061.

As a representative case, in Fig. I.1 the distribution xEdσ/dxE for xE = ED0/Ep for
three QCD approaches: linear and non-linear kT factorization and NLO QCD collinear
calculation for protons with energy Ep = 1011 GeV incident on a fixed proton target. Also
shown are the SIBYLL 2.3c xE distributions for the D0. The blue band shows a factor
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Particle N ϵ
D0 0.577 0.101
D+ 0.238 0.104
D+

s 0.0327 0.0322
Λ+

c 0.0067 0.00418

Table I.1. Parameters for the charm quark fragmentation function [30]. The factor N is scaled
to reproduce the fragmentation fractions of Ref. [31].

of 1/3 − 3 of the NLO QCD collinear result, representative of the range of theoretical
uncertainties in the prediction for charm meson production. The band includes the
predictions from the other three approaches, except at very large xE. There, the
predictions differ more, and the small parton-x extrapolation of the parton distribution
functions in the collinear parton model show an effect. This very large xE region does
not make a significant contribution to the neutrino fluence. The blue uncertainty band in
Fig. I.1 is translated to neutrino fluence calculations from charm production and decay.
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Figure I.1. As a function of xE = ED0/Ep, the differential distribution of D0 mesons produced
in collisions of protons with Ep incident of fixed target protons for Ep = 1011 GeV. The four
curves show the evaluation using NLO QCD, the linear and non-linear kT formulations and the
SIBYLL result. The blue band spans a factor of 1/3 − 3 times the NLO QCD result.

The charmed hadrons mentioned have semileptonic decay channels which include
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neutrinos. The semileptonic decay distributions as a function of neutrino energy are
approximated by three-body decay formulas [223,269] with effective final state hadronic
mass [32], derived from the pseudoscalar three-body semileptonic decay to a lighter
pseudoscalar meson, such as D → Klνl. Neglecting lepton masses, the distribution is of
the form Fh→ν(Eν , Eh) = F̃h→ν(y)/Eh where y = Eν/Eh, with

F̃h→νl
(y) = 1

D(λh)
[
6(1 − 2λh)(1 − λh)2 − 4(1 − λh)3

−12λ3
h(1 − λh) + 12λ2

hy − 6(1 − 2λh)y2

+4y3 + 12λ2
h ln((1 − y)/λh)

]
, (I.2)

and
D(λh) = 1 − 8λh − 12λ2

h ln λh + 8λ3
h − λ4

h. (I.3)

The parameter λh = seff
h /m2

h is defined in terms of an effective mass
√

seff
h , shown for

charm hadron decays in Table I.2. The kinematic limits on y are 0 < y < 1 − λh.

Decay
√

seff
h [GeV]

D0 → νl 0.67
D+ → νl 0.63
D+

s → νl 0.84
Λ+

c → νl 1.3

Table I.2. Effective masses
√

seff
h used to calculate the neutrino spectrum from charmed hadron

decay [32].
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