
Spinor calculus on 5-dimensional spacetimes
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1 Centro de Matemática, Universidade do Minho. 4710-057 Braga, Portugal
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Abstract. We explain how Penrose’s spinor calculus of 4-dimensional Lorentzian geometry is
implemented in a 5-dimensional Lorentzian manifold. A number of issues, such as the essential
spin algebra, the spin covariant derivative and the algebro-differential properties of the curvature
spinors are discussed .

1. Introduction
Recently, the study of General Relativity in dimensions higher than four has experienced
much progress. Specific fields which have been the subject of interest are the discovery and
classification of new exact solutions [3], the generalisation of the Petrov classification [1] and
the Newman-Penrose formalism [6, 9] or the study of isolated bodies. When the spacetime
dimension is five one may expect that the study of these subjects become simpler than when
one works in generic dimension N . Indeed, there are important discoveries which took place
first when the spacetime dimension was assumed to be five. Perhaps the best known example is
the discovery of the black ring solution [2] which led to the realisation that the stationary black
hole uniqueness theorems known in four dimensions are not generalisable to higher dimensions.
In this work we contribute to this trend by showing how the spinor calculus of Penrose [7] which
was developed on a four-dimensional spacetime is formulated in a spacetime of five dimensions.

2. Spinor algebra
Let L be a 5-dimensional real vector space endowed with a real scalar product g( , ) of Lorentzian
signature (signature convention (+,−,−,−,−)) and let S be a complex vector space whose
dimension is for the moment left unspecified (complex conjugate of scalars will be denoted by
an overbar). Using the vector space L and its dual L∗ as the starting point one builds a tensor
algebra in the standard fashion. Similarly a tensor algebra is built from S and its dual S∗. We
denote these algebras by T(L) and T(S) respectively 1. In this work abstract indices will be used
throughout to denote tensorial quantities: in this way small Latin indices a, b, . . . will denote
abstract indices on elements of T(L) and capital Latin indices A,B, . . . will be used for abstract

1 Strictly speaking only the algebras Tr
s(L) of tensors r-contravariant s-covariant can be defined (and the same

applies to Tr
s(S)). To lessen the notation we will suppress the labels r, s in the notation and they will only be

made explicit when confusion may arise.
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indices of elements in T(S). The tensor algebra T(S) will be referred to as the spin algebra and
its elements will be called spinors. One can also build tensor algebras by taking tensor products
of elements in T(L) and elements in T(S). Quantities in these tensor algebras will be referred
to as mixed tensors and they will carry abstract indices of both types. The algebras T(L) and
T(S) shall be regarded as complex vector spaces.

Our departure point is a mixed tensor γ C
aB fulfilling the algebraic property

γ B
aA γ C

bB + γ B
bA γ C

aB = −δ C
A gab, (1)

where δ C
A is the identity tensor (also known as the Kronecker delta) on the vector space S (note

that each tensorial quantity has a number of slots arranged sequentially on which the indices
are filled). Eq. (1) means that γ B

aA belongs to a representation on the vector space S of the
Clifford algebra Cl(L, g). When this representation turns out to be irreducible then there are
strong constraints on the vector space S which we summarise in the following result.

Theorem 1. If the quantity γ C
aB belongs to an irreducible representation of Cl(L, g), then

the dimension of S is 4 and there exist two antisymmetric spinors εAB, ε̂AB, unique up to a
constant, such that

εAB ε̂
CB = δ C

A . (2)

These antisymmetric spinors are related to γ C
aB by means of the algebraic property

γ A
aD γa B

C =
1
2
δD

AδC
B − δC

AδD
B + εCD ε̂

AB. (3)

This theorem is a particular case of a more general result described in appendix B of [8].
Another important consequence of the irreducibility of the Clifford algebra representation is
that the quantity γ A

aA must vanish, for otherwise the 1-form γ A
aA would be invariant under the

action of any endomorphism of L keeping gab invariant (orthogonal group), and this can only
happen for scalars and 5-forms [8].

Previous ideas lead naturally to the concept of spin structure.

Definition 1. Under the conditions stated in theorem 1 we will refer to γ B
aA as a spin structure

on L. The complex vector space S is then called the spin space of the spin structure.

The spinors εAB and ε̂AB can be regarded as a metric tensor and its inverse in the vector
space S and therefore they can be used to raise and lower spinorial indices. Since they are
antisymmetric quantities we must pay close attention to the conventions introduced for these
operations, which in our case are

ξAεAB = ξB , ξA = ε̂ABξB.

In particular we can raise the indices of εAB getting εAB = ε̂AB and from now on, only the
symbol ε will be used for the symplectic metric and its inverse. Note also the property

δA
B = −δ A

B . (4)

Here the quantity δ A
B is the Kronecker delta on S and δA

B is a derived quantity obtained from
it by the raising and lowering of indices It is possible to use the quantity γa

AB to relate spinors
to tensors and back. For example for a vector va, its spinor counterpart is given by

vAB = γ AB
a va.

A consequence of (3) is that γa
[AB] = γa

AB which means that vAB is anti-symmetric and also
traceless, because γ A

aA = 0. Reciprocally, any antisymmetric and traceless spinor ξAB has a
unique vector counterpart given by ξABγa

AB. It is straightforward to generalise this simple
example to spinors and tensors of higher rank (see [4] for the precise statement).
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3. Spinor calculus
In this section we explain how the algebraic considerations discussed before are translated to a
5-dimensional Lorentzian manifold This requires the introduction of the concepts of spin bundle
and spin structure. Once these are defined we will go on to show how a calculus involving spinors
is developed.

3.1. Spin structures on a 5-dimensional Lorentzian manifold
Suppose that (M, g) is a 5-dimensional Lorentzian manifold and let Tp(M) be the tangent space
at a point p. This is a vector space which can be endowed with the Lorentzian scalar product
g( , )|p. Therefore the vector space Tp(M) has properties similar to L and we can introduce a
spin space Sp and a spin structure γ B

aA |p at each point p.

Definition 2 (Spin bundle). The union

S(M) ≡
⋃

p∈M
Sp, (5)

is a vector bundle with the manifoldM as the base space and the group of linear transformations
on C4 as the structure group. We will call this vector bundle the spin bundle and the sections of
S(M) are the contravariant rank-1 spinor fields on M.

One can now formulate a similar definition starting from spin spaces of spinors of arbitrary
rank and we will use the name “spin bundle” for any of the vector bundles constructed in this
way. Also it is possible to construct new vector bundles by combining spin bundles and vector
bundles of tensors, using the tensor product operation. We will use the symbol S(M) to denote
generically any of these vector bundles.

Definition 3 (Spin structure on a 5-dimensional manifold). If the quantity γ B
aA |p varies

smoothly on the manifoldM, then one can define a smooth section on the bundle S(M), denoted
by γ B

aA . We call this smooth section a smooth spin structure on the Lorentzian manifold (M, g).

A necessary and sufficient condition for the existence of a spin structure is that the second
Stiefel-Whitney class of M vanishes (see e.g. [5]).

3.2. Spin covariant derivative
One can introduce a covariant derivative in the bundle S(M) by following the standard axioms
which define a covariant derivative in any vector bundle.

Definition 4 (Spin covariant derivative). Suppose that S(M) admits a spin structure γ B
aA .

We say that a torsion-free covariant derivative Da defined on S(M) is compatible with the spin
structure γ B

aA if it fulfils the property

Daγ
D

bC = 0. (6)

The covariant derivative Da is then called a spin covariant derivative with respect to the spin
structure γ B

aA .

Elementary properties of a spin covariant derivative are Dagbc = 0 and DaεAB = εABDaY ,
for some scalar function Y . The first property means that Da is just the Levi-Civita covariant
derivative when acting on tensors. From these properties is clear that a spin covariant derivative
with respect to a given spin structure is not unique unless additional restrictions are imposed.
The next result, proven in [4] spells out which these restrictions are.
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Theorem 2. There is one and only one spin covariant derivative ∇a on S(M) with respect to
the spin structure γ B

aA which fulfils the property

∇aεAB = 0. (7)

From now on we will work with the spin covariant derivative described in theorem 2.
Some spinor equations adopt a simpler form when written in terms of the differential operator
∇AB ≡ γa

AB∇a.

3.3. The curvature spinors
The curvature of ∇a has two contributions: one coming from its role as a connection in the
spin bundle and another from its role as a connection in the tensor bundle. The latter is just
the Riemann tensor of the Levi-Civita covariant derivative whereas the former is characterised
by a certain set of irreducible spinors called curvature spinors. The Riemann tensor and the
curvature spinors are related as shown in the following theorem, proven in [4].

Theorem 3. Define the quantity Gab
AC ≡ −γa B

(A γb
C)B. Then the Riemann tensor Rabcf of

the covariant derivative ∇a can be decomposed in the form

Rabcf = Λ(gafgbc − gacgbf )− 1
2
Gab

ABGcf
CDΨABCD −Gab

ABGcf
CDΩACBD. (8)

The quantities Λ, ΩABCD and ΨABCD are known as the curvature spinors. They fulfil the
algebraic properties

Ψ(ABCD) = ΨABCD , ΩABCD = Ω[AB]CD = ΩCDAB , Ω C
AB C = Ω C

A CD = 0 ,
ΩABCD + ΩBCAD + ΩCABD = 0 , (9)

which correspond to the first Bianchi identity of Rabcd, and the differential identity

∇(Z
W ΨV )BAW −∇(Z

W ΩV )ABW −∇(Z
W ΩV )BAW − 2ε(A|(V∇Z)|B)Λ = 0 , (10)

which corresponds to the second Bianchi identity of Rabcd.
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[4] Garćıa-Parrado A and Mart́ın-Garćıa J M 2009 Spinor calculus on 5-dimensional spacetimes J. Math. Phys.

in press
[5] Nakahara M 1990 Geometry Topology and Physics (Bristol: IOP Publishing Ltd.)
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