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Abstract

Confinement in four-dimensional gauge theories is considered from
several points of view. General features are discussed, and the mech-
anism of confinement is investigated. Dualities between field theories,
and duality between field theory and string theory, are both put to use.
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1 Introduction to Confinement

One of the most important discoveries of the twentieth century is that our
world consists of atoms, of size 107'° meters, made from electrons bound
to positively charged nuclei. The size of the atom is set by the uncertainty
principle; the electron is nonrelativistic, with a velocity of order «, so the size
of the atom is of order 6z ~ 1/dp ~ (mea) !, where « is the QED coupling
constant. While all experiments to date indicate that the electron itself has
a size smaller than 10~ meters, nuclei of atoms have a definite size, of order
10~ !5 meters. They consist of weakly-bound clumps of protons and neutrons.
It was learned in the 1950s that the protons and neutrons have a size compa-
rable to the nuclei which contain them. In the 1960s, evidence emerged that
nucleons have pointlike constituents, weakly coupled in high-energy scatter-
ing processes, but highly relativistic, and therefore strongly bound, inside
the proton. By the 1970s the theory of QCD emerged to explain how this
strange effect was possible. The QCD interaction is weak in high-energy
processes, and grows, through renormalization effects, to become strong in
the low-energy processes that bind the quarks in the nucleons. The energy
scale Agcp at which it becomes strong is a few hundred MeV, correspond-
ing to the size of the nucleon. The pointlike objects in the nucleons are the
quarks suggested by Gell-Mann, interacting through the color charge sug-
gested by Greenberg. These quarks are now themselves known to be smaller
than 107'8 meters. They are also very light; most of the mass of the proton
comes from their kinetic energy and from the powerful interactions binding
the quarks together.

Yet no one has ever seen a quark, or its fractional electric charge, sitting
by itself somewhere. So why should we believe this story? We all know
the words: quarks are confined in hadrons — nucleons, pions, etc. — and
never come out. But all too often we overlook the subtleties involved in
this statement. What actually happens if we send an electron deep into a
proton and try to kick a quark away from its two friends? A large amount
of energy, in the form of chromoelectric field, appears in the region between
the escaping quark and the remaining parts of the proton. Then what?
We are familiar with the idea that large electric fields beyond a certain
magnitude cannot survive; sufficiently strong fields, with energy densities
bigger than m? ~ 1 MeV*, are able to decay by producing pairs of electrons
and positrons, the lightest electrically charged particles. The same holds for
chromoelectric fields; when they become sufficiently strong, of order A‘éc D~
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(300 MeV)*, they can pair-produce light quarks and antiquarks. How does
this affect the departing quark? Well, as it moves away, the field between
it and the other two quarks starts producing pairs. If for example a single
pair is created, the new antiquark can end up bound to the escaping quark,
and the new quark can end up bound to the other two quarks in the proton,
making a new nucleon. Or perhaps multiple pairs will be created, and many
quark-antiquark bound states will result. But in any case, the original quark
succeeds in its escape. The force between it and the remaining quarks in the
proton drops to zero as it moves away. Is this really “confinement”?
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Figure 1: As with pair production of electrons in a strong electric field, pair production
occurs as a quark tries to escape from a proton.

Let’s contrast this with what might happen in an imaginary world in
which all of the quarks had masses much larger than 100 MeV. In fact, let’s
take all of their masses to all be, oh, say, about 1000 GeV. Now the proton is
a very heavy object, with mass of order 3000 GeV, and it is now quite a bit
smaller than usual, about 10™'7 meters in size (the factor of ten compared
to (1000 GeV) ™! comes from the fact that the strong coupling constant is
about 1/10 at these energies.) But let’s imagine trying to kick a quark out
of the proton now. As it rushes away, the chromoelectric field becomes very
large, but the energy density, of order A‘éCD ~ (300 MeV)*, is far too low
to produce pairs of 1000 GeV quarks. (Notice that for pair-production to be
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impossible, it is essential that all flavors of quarks be heavy; if even one type
of quark is light, the field will pair-produce it, independent of whether the
quarks in the proton are themselves heavy.) So what happens now? Does
the quark escape?

Noj; it cannot — or at least, it is extremely difficult. In this imaginary
world, where all the quark masses m, are very large compared to Agcp, the
quark is truly imprisoned. The force between the escaping quark and the
remains of the proton goes to a constant; as we will discuss further, a “string”
or “tube” of chromoelectric flux, of thickness Aélc p ~ 10715 meters, and of
tension (energy per unit length) A2QC’ D, connects the two colored objects to
one another. Unless the tube becomes very long, of length m, /A% p (which
in this case ~ 10 '? meters, many times larger than the proton radius), there
is insufficient energy in the chromoelectric field to pair-produce quarks. Even
if the string does become this long, there is an exponentially low probability
that all of its energy, spread out over 10712 meters, will find itself localized
in a region of radius m;l ~ 1078 meters, as would be necessary to produce
a pair of heavy quarks. So this tube of flux, stable if short, metastable if
long but with a exponentially long lifetime, makes it essentially impossible
for the kicked quark to escape. Eventually, the constant force from the flux
tube will bring it to a stop, and pull it back into its protonic prison. This
is true confinement, no doubt about it. The word really means something
here.

Notice that it is not just the quarks which can be said to be “confined”.
The chromoelectric field emitted by the quarks, rather than spreading out
across space as in electromagnetism, is confined into “tubes,” or “strings”.
This is important, because even when we take the quarks away — say, by
taking their masses to infinity — it might still be true that flux is confined,
though there are no confined particles. In fact, we will soon see this is a
more precise definition of confinement.

(300 MeVy 1TeV
* o

Figure 2: If all quarks were heavy, then flux tubes would break much less readily.

Strict confinement, of flux and of quarks, is thus a property of QCD only
when all of its quarks are heavy. [More precisely, it is seen in the limit where
the number of flavors Ny of light quarks is much smaller than the number
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of colors N; the number of flavors need not be strictly zero, because the
amplitude for the pair production process that splits flux tubes is of order
N;¢/N.] QCD with at least one light quark shows only a few remnants of
these properties; there are hints of flux tubes between an escaping quark
and the proton it leaves behind (though they break very quickly and never
become long); and there are hints that some of the bound states of the
theory behave as bits of spinning flux tube (though this is a very imprecise
statement, and has as its strongest merit that it helped to motivate string
theory).

So what is the right way to describe what happens in real-world QCD?
We do not live in a truly confining world, and it might have been better for
our own conceptual thinking if we had come up with another word for what
QCD does to quarks. “Cloaking” or “maximal screening” might have been
a better term. What QCD really does is ensure that a quark seeking to be
free has a region in its vicinity, of size AZ?% p in volume, with chromoelectric
energy density that is of order Aézc p- This by itself will cause an antiquark
(and its partner quark) to pop out nearby, cloaking — that is, completely
screening — the charge of the original quark. Compare this with electrons;
in their vicinity there are regions with energy density of order m?, but since
the energy density is («/r?)2, the size of the region with this energy is too
small to pair-produce electrons and positrons by a factor of &®2. Thus to
have this cloaking effect we need a strong coupling constant, but it hardly
requires something as drastic as the flux tubes and the imprisonment found
in worlds with only heavy quarks. (Indeed you might amuse yourselves by
considering the possible physical properties of a hypothetical point particle
of electric charge greater than v/137e.)

In these lectures, we are going to explore truly confining gauge theories
in some detail. Such theories may indeed exist in nature, but it is important
to remember that real-world QCD is not among them.

1.1 Confinement in pure Yang-Mills

How do we even know that true confinement does in fact occur in some
theories? This is a long story, and there are many ways to tell it. Let us
begin in the middle, by assuming that confinement of flux occurs in pure
Yang-Mills (YM) theory.

So instead of QCD, let us discard the quarks, leaving only a gauge boson
A, in the adjoint of SU(N). The group SU(N) consists of N x N matrices
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Ug (with row indices o and column indices 3.) which are special (det U = 1)

and unitary (U! = U™1). The “gluon” field A, takes values in the algebra
of SU(N),

(A,)% = AL(T®)° .
Here T is a generator of the group SU(N), also an N x N matrix (normalized
to tr ToT? = %6“”,) and the group index a runs from 1 to the dimension of
SU(N), namely N? — 1. The theory has the simplest possible Lagrangian;
defining F,,, = 0,A, — 0, A, +i[A,, A)] (here F' and A are matrices and the
brackets indicate a matrix commutator), we write the Lagrangian as

L= —itr F,F*

292 M '

This normalization of the field A, differs from the one in standard text-
books on perturbation theory. There is good reason for this. We will not
be doing perturbation theory. In perturbative calculations, it is more conve-
nient to absorb the 1/g into A; then F,, = 0,A, —0,A, +ig[A,, A)). The
quadratic terms in the Lagrangian are then the free Maxwell equations, and
do not depend on g. We may then think of the theory as a set of free fields
— simply (N? — 1) independent photons — coupled together by interactions
of order g. However, in these lectures we will not assume small g, and will
rarely expand in powers of g. The normalization chosen here is more pro-
found; it puts the coupling constant in its proper place, multiplying & and
therefore determining the size of all quantum effects. Most nonperturbative
properties of the theory will involve either 1/¢? or e/ 92, as we will soon
see.

Pure Yang-Mills theory is weakly coupled at high energy, like QCD, and
becomes strongly coupled at a scale A. More accurately, we can show, using
perturbation theory, that it cannot become strongly coupled at energies above
a scale A; below this point we simply don’t know what it does. The scale
A can be estimated using one-loop graphs; at this order, the running of the
gauge coupling is given by

dg g ( 11 )
= — __N
By Olnpy 1672 3

for SU(N). The solution is

82 82 11
= 4+ —NIn(u/u
P~ Py T3 mluli)
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Figure 3: The coupling constant o versus energy scale p; the one-loop calculation is valid
at g > A but becomes only approximate at low energy.

where pg is an arbitrary starting point. Thus, the coupling is small above
the energy scale y ~ A, where

—872
AN NS oy . 1
fo P 192 (o) @

This is reliable since higher loop graphs and nonperturbative effects are
comparatively small above A.

As is standard in renormalization, the scale A is physical and thus in-
dependent of the arbitrary starting point pg. Near and below this energy
regime, the coupling constant is strong; above it, perturbation theory in g2
is possible. Also, notice that A involves e~/ 9*. All of the really interesting
physics in Yang-Mills theory is related to A; it is therefore nonperturba-
tive in g2, and cannot show up at any order in an ordinary Feynman graph
expansion.

Now we must consider two more profound claims, which are fully non-
perturbative, and are based on a combination of experiment, theoretical
reasoning, and both analytic and especially numerical lattice gauge theory.
First, the quantum Yang-Mills theory is known to develop a mass gap (that
is, it has no massless fields in its spectrum, and instead has a discrete set
of states with masses of order A) and second, it apparently becomes con-
fining, in the true sense, at the scale A. Both of these effects are through
strongly-coupled physics not visible semiclassically.

Both statements are strange. The gluons in the above Lagrangian are
massless; how can there be no massless particles in the spectrum of the
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Figure 4: Classically the theory has many massless particles, but the quantum theory
has a mass gap and a spectrum of gauge-neutral hadrons.

theory? Well, let us assume that, as in QCD, the effect of the strong in-
teractions will be that we will observe only colorless bound states. What
kinds of bound states can we make from gluons? We might say that we can
make a bound state of two gluons, or three gluons, or four. But this is surely
wrong. The interactions of the theory do not conserve the number of gluons
even in perturbation theory; there are terms cubic and quartic in A, in the
Lagrangian, so one gluon may become two or three, and vice versa. The
situation will be worse once the interactions of Yang-Mills become strong.
We clearly cannot use “gluon number” as a quantum number describing a
state. In fact, the strong coupling dynamics makes it impossible to talk
about gluons at low energies. Instead, we have only bound states, whose
name “glueballs” is reasonably accurate, in that these gluey states do not
really consist of a fixed number of gluons, but rather of a shifting mass of
chromoelectric flux lines. There are a large number of these states. Below
the scale A we might try to write an effective theory of these glueballs. Un-
like the gluons, for which mass terms are forbidden (since they have only two
polarization states and massive vectors require three), the glueballs include
scalars (for which mass terms cannot be forbidden) and vectors with three
polarizations (for which mass terms also cannot be forbidden) and similar
higher spin particles. Their masses can’t be much larger than A since that
would contradict perturbation theory, but nothing stops them from having
masses of order A. Essentially, there is a mass gap because there are no
symmetries which forbid mass terms for any of the glueballs.

The statement about confinement is also, at first, strange. The theory
has only gluons; are they confined? What happens when we try to pull a
gluon out of a bound state? Does a flux tube form between it and the other
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gluons? What does this mean, since the flux tube itself is made from gluons?
How is it possible that pair-production of gluons is forbidden? In fact, it
is not forbidden, but that is fortunately irrelevant. The statement about
confinement has nothing to do with the gluons. The gluons are no more
confined in Yang-Mills than light quarks are in real-world QCD; in fact they
are even less so, since there is no parameter analogous to the quark mass
which when large can make the gluons confined. “Confinement” means that
chromoelectric field is confined; it cannot spread out in space over regions
larger than about A~' in radius.

One might ask if there is a connection between the mass gap and the
confinement of flux. We will return to this issue later.

r

(® @)
q q
V(r)

Figure 5: The confined field lines between a heavy quark and antiquark form a tube;
the potential energy of the system goes as 1/r at distances short compared to A~ but
becomes linear at larger distances.

Now, how can we detect the presence of the strings which contain the
chromoelectric flux? Ideally we would like to find a long and straight flux
tube and find its tension (energy per unit length) but we might have trouble
convincing one to stay straight long enough to do this measurement. So
here we need a new idea. Recall how the heavy quarks of QCD-with-no-light-
quarks were truly confined. This suggests that the way to detect confinement
of flux in Yang-Mills theory is to put some extremely heavy quarks in it —
so heavy that they can’t affect the dynamics of the Yang-Mills theory —
and see that these quarks are confined! That is, we can compute the quark-
antiquark potential V(r) and see that it grows without bound (indicating
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confinement) and more specifically is linear in 7 (indicating confinement by
flux tube.) Why is the linear potential characteristic of a flux tube? Well,
consider Gauss’s law. In an unconfined theory, the electric flux is uniformly
distributed over a sphere surrounding a charge, and therefore falls off as 1/72.
In a confining theory with flux tubes, the flux tube has a fixed cross-sectional
area of order A2 no matter how long it is; and thus, for any sphere of radius
r > A~! surrounding a charge, the flux on the sphere is zero everywhere
except in a region of area A2 where the flux tube passes through the sphere.
From this we conclude that the electric field in that region has a magnitude
which is r-independent! In turn, this implies the force that it generates on
a test charge is also r-independent, and finally, that the potential between
charges grows linearly with r.

So, let us add a charged fermion (or scalar) to the Yang-Mills theory, one
whose mass M is so much larger than A that it cannot play a role in the
strong-coupling physics. Adding a quark ¢ we make the Lagrangian

1 L _
EZ—@tI‘ FIH/FN +Z’(ﬁlp’¢—M¢’(ﬁ .

The quark 1) is charged under SU(N), but for the moment let us not specify
the representation R of SU(N) under which it transforms. Now let us con-
sider the potential V(r) between 1, placed at one position, and 1, placed a
distance r away. Since the quarks are very heavy, we can expect that they
can be placed at rest and will move only very slowly, allowing us to do this
computation. Confinement means that when r is large, a string — a tube of
chromoelectric flux — stretches between v and 1, of constant tension T,
such that the potential V' (r) = Tgrr [1]. The force between two such fermions
goes to a constant, and never drops off to zero. (That these facts are true
in Yang-Mills theory does not follow from any direct theoretical calculation.
Highly quantum mechanical in nature, they have only been checked using
direct numerical simulation of Yang-Mills theory.)

In the limit where M — oo, the quarks become completely non-dynamical
[1]; they are what we may call “chromoelectrostatic sources”, probes which
never appear in any loop diagram and thus are purely classical. What re-
mains dynamical is the flux tube. Thus, we didn’t really need the quarks
as physical particles; using nondynamical chromoelectric sources, we could
have detected the confinement of chromoelectric field, which is a property
of the Yang-Mills theory without the added quarks. (An equivalent way to
make this statement, without introducing the quarks, is to talk about Wil-
son loops in various representations R; in a confining theory the value of
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Figure 6: Gauss’s law for unconfined and confined flux.

the Wilson loop is proportional to the exponential of minus its area, with
proportionality constant Tg [1].)

In general, the string tension, and the corresponding force, between quark
and antiquark can depend on the representation R. After all, why not? In
particular, for R the adjoint, we already know Tygjpint = 0: any fermion in
the adjoint can combine with a light gluon to make something gauge neutral,
so two such fermions will each cloak themselves with a gluon and will feel
no long-range force as we pull them apart. So clearly we need to think
about how things depend on the representation R. Clearly the map from
representations to flux tubes cannot be one-to-one (since both the trivial
representation and the adjoint representation have T = 0.) Lie groups
have an infinite number of representations, but the stable flux tubes number
at most dim C, the dimension of the center of the gauge group. Let us see
why this is so.

What is the center of SU(N)? A matrix UOZ; = ezmk/Né"‘B, k=0,...,N—
1, is an element of SU(N). Being proportional to the identity, it obviously
commutes with everything in SU(N); in short, U is in the center Cgy(ny-
The elements of the center are thus labelled by the integer k, which from
the definition of U is only determined modulo N, so the labels form the
group Zy, the additive integers mod N. Now consider any representation
R. An element p of this representation is labelled by a certain number n
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of unbarred (upper) and 7 of barred (lower) indices; that is, it takes the

form pgllgjg“ Under a group transformation, each unbarred index is ro-

tated by the matrix U, while each barred index is rotated by UT. Conse-
quently, the transformation of the representation R under the center Cg
is by the phase e2mik(n—n)/N where n — 7 is called the “N-ality” of the
representation. The adjoint representation, with one upper and one lower
index, is invariant under the center. The fundamental N representation
(one unbarred index) rotates by e2mk/N . the antifundamental N rotates by
e~2mk/N Both the antisymmetric-tensor and symmetric-tensor representa-
tions N(N =+ 1)/2, which have two unbarred indices, rotate by e2™(k)/N,
Indeed, all p-upper-index tensors carry charge p under Zy — that is, they
rotate by e2™P%/N under the k"
tions R of SU(N) break up into equivalence classes under the center, and
can be labelled by their “N-ality” charge p [2, 3]. Note that the conjugate
representation of R has “N-ality” N — p, since the number of barred and

unbarred indices is exchanged.

element of Zy. In short, the representa-
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@ @
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Figure 7: The flux between different quarks, or combinations of quarks and gluons, all
with N-ality 2.

Why is this interesting? First consider, for example, adding a heavy
quark 14, in the antisymmetric representation, to Yang-Mills theory; the
potential between 14 and 14 is V(r) = Tar. Now consider instead adding
a heavy quark g in the symmetric representation; the quark-antiquark po-
tential between 15 and 15 is now V(r) = Tsr. Suppose that Ts > T4 in
Yang-Mills theory. (This is probably true, but what I’'m about to say won’t
depend on the specific assumption.) Nothing prevents the theory from tak-
ing one of its light gluons (remember their number is not conserved so it
need not be pair-produced) and putting it very near 1g. The combination
of the gluon A, and the fermion 15 looks, from a distance, as though it were
a single object. What is its charge? Well, we must consider the group theory
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of SU(N); what is (adjoint)®(symmetric)? It is a direct sum of a number of
representations, all of which have the same “N-ality” as the symmetric rep-
resentation, namely 2. Said another way, the product of (Au)ag and ¢g5 can
lead, no matter how the indices are contracted, only to representations with
two more upper indices than lower indices. Among these representations is
the antisymmetric representation. (In SU(3), for instance, the symmetric
tensor is 6, the antisymmetric tensor is 3, and 8 ®6 = 3+6+15+24.) But
then, since we assumed Ty < T, there exists a dynamical process by which
the theory may lower its energy! By popping a gluon out of the vacuum and
putting it near g, the theory can make g look more like a fermion in the
antisymmetric representation. The same goes for 1g. Then, instead of a
string of tension Ty, a string of tension T4 can link these two fermion-gluon
combinations. The energy cost is that of making two extra gluons — at most
of order A — while the energy gain is (T's — T4)r, which for r sufficiently
large always wins. The reverse process will hold if Ty > Tg.

More generally, the fact that gluons are in the “N-ality”-zero adjoint
representation implies that the presence of nearby gluons can change one
representation to another but only in a way that conserves N-ality. Thus
in Yang-Mills, the representation R of a chromoelectric source is not a con-
served quantum number; only its “N-ality” is actually conserved. Conse-
quently, we should expect that for the entire class of representations with
the same N-ality charge, there will be only one stable configuration of strings
(which might involve one or more tubes — for “N-ality” =2 there might be
one tube with two units of flux or two tubes with one unit each.) The ten-
sions of the stable strings, or combinations of strings, are labelled not by R
but by the N-ality p of R. Charge conjugation symmetry also ensures that
T, = Tn—p; thus we have of order N/2 stable flux tube configurations in
SU(N) Yang-Mills theory.

Can we see this in SU(3) Yang-Mills? Yes and no. There is N-ality 0,1,
and 2; but Ty = 0 while T5 = T7, so only one confining string is predicted.
The nontrivial statements are then only that, for example, the symmetric
6 representation of SU(3) is confined by the same string tension as the
antisymmetric tensor, the 3; this in turn has the same tension as the funda-
mental 3. To have a nontrivial set of strings we must go to SU(4); here the
antisymmetric tensor 6 should have a tension Ty different from that of the 4
and 4, Ty. There is still a question as to whether Ty < 2T}; if not, the flux
between two 6 fields may be carried by two strings of N-ality 1 rather than a
single string of N-ality 2. Theoretical arguments [4] and lattice calculations
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[5, 6, 7] support the view that T < 2T} (and similarly in other theories) so
that there really are two independent stable flux tubes, of N-ality 1 and 2
(and again T3 = T1.)

To summarize, we expect that Yang-Mills theories have stable flux tubes
labelled by a charge in the center of the group [2]; for SU(N) this is its
N-ality, a charge under the Csy(y) = Zpy group action. While the gluons
are not confined by these strings, any heavy quark with nonzero N-ality will
experience a linear potential energy and a constant force which will confine
it to an antiquark, or more generally, to some combination of quarks and
antiquarks which have the opposite N-ality. (For example, it could combine
with NV — 1 other quarks to form a baryon. As another example, a 6 of
SU(4) could combine with two 4 quarks to form an exotic object not found
in real-world SU(3) QCD.)

1.2 Confinement in N' =1 Super-Yang-Mills

Let us now consider N’ = 1 supersymmetric Yang-Mills theory (SYM.) This
theory is very interesting in that (1) many of its properties can be exactly
or approximately determined, (2) it resembles Yang-Mills theory, in that it
has confinement and flux tubes, has a mass gap, and lacks light particles
similar to pions, yet (3) it resembles QCD in that it has chiral symmetry
breaking and an anomaly which makes a would-be Nambu-Goldstone boson,
the ', massive, while (4) it differs from both in that it has multiple isolated,
degenerate vacua.

The SU(N) SYM theory is nothing more than SU(N) gauge theory with
a vector boson (gluon) A, and a massless Majorana spinor (gluino) A,, both
in the adjoint representation of the gauge group. The Lagrangian is simply

1 L
L= ﬁ [tr FuyFu +ZAlD A] (2)

Pure N = 1 SYM, like pure non-supersymmetric YM, is a confining
theory. (Convincing arguments confirming earlier expectations are given in
[8, 9].) It will have stable flux tubes, just like YM, despite the presence of
the gluinos. The gluino carries the same gauge charge as the gluon, and is
neutral under Cgy(y) = Zy. Therefore, like the gluon, it does not break
flux tubes carrying Zy; no flux tube which carries such a charge can end on
a Zy-neutral gluino. (This is in contrast to SU(3) QCD, where the quarks,
which carry charge under the Zs3 center, do indeed break the flux tubes.)
Thus SYM is a good place to study confining strings.
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The theory also has an anomalous U (1) global symmetry, just like QCD.
We won’t need this, but it is useful for you to know a bit about it. How does
this work? Classically, the Lagrangian of the theory has a global symmetry
X — Xe'®, where « is any real number. However, the path integral of SYM
does not have this symmetry. There isn’t time in these lectures to study
anomalies in detail, so let me just quote the classic result: under this rota-
tion, the path integal itself is not invariant unless 2N« is a multiple of 2.
(A similar statement applies in QCD with Ny massless flavors of quarks ;
and 1%5; under the global rotation 1; — 1;e*®, 1&; — zz;em, the path integral
is not invariant unless 2Ny« is a multiple of 27.) Thus the U(1) is a fake;
only a discrete Zyxy subgroup of this U(1) is actually a symmetry.

In QCD, with Lagrangian'

Ny Ny .
L= st Bl + S i i+ 3 5005 — S
i=1 G=1 i)
there is an entire SU(Ny) symmetry for the quarks 1);, another SU(Ny) for
the antiquarks 'LZ;, a U(1) “baryonic” symmetry under which the 1; and '&3
have opposite charge, and finally the fake “axial” U(1) mentioned above of
which only a Zyy, is a true symmetry. These symmetries do not all appear at

low energy, however. First, the nonzero quark masses m* 1%1/1, break most of
the two SU(Ny) symmetries; but the masses are relatively small for the up,
down, and strange quarks, so let us imagine for a moment that they are zero,
and, forgetting the heavier quarks (which are dynamically less important,)
take Ny = 3. But even then, for m% = 0, the vacuum does not show all of
the symmetries of the theory. For reasons not entirely understood, a quark-
antiquark bilinear operator 1&3% develops a nonzero expectation value? pro-
portional to (5i3, with a magnitude of order (Agcp)?. This quark-antiquark
condensate is not invariant under the SU(Ny) symmetries mentioned above;

'Note the fermion fields 1, written here are not each others’ complex conjugates!
They are left-handed quarks and left-handed antiquarks; they form two separate sets
of two-component Weyl fermions, transforming in the N and N representations. Mass
terms m% 15;% make them into massive four-component Dirac fermions, but without the
masses they are independent fields, with independent generation indices ¢ = 1,..., Ny and
3 =1,...,Ny.

2All of the following statements about chiral symmetry breaking apply at least for
small Ny; they are certainly not true for Ny > (11/2)N, at which point SU(N) QCD has
a positive one-loop beta function and can’t possibly be strongly-coupled in the infrared.
At what value of Ny they stop being true is not known, although most guesses these days
for N = 3 range from 5 to 12.
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it is only invariant under simultaneous rotations of the quarks v; by a ma-
trix U in their SU(Ny) and of the antiquarks 153 by the conjugate matrix UT
in the other SU(Ny). These “diagonal” rotations define a group SU(Ny)p,
which remains a symmetry of the vacuum. All other SU(Ny) x SU(Ny) ro-
tations change the vacuum, and thus are not symmetries of it. This is known
as “spontaneous chiral symmetry breaking”; the equations of the theory still
have an SU(Ny) x SU(Ny) symmetry, but the vacuum itself, a particular
solution of those equations, is invariant only under its SU(Ny)p subgroup.
As both Nambu and Goldstone taught us years ago, this implies, as an au-
tomatic consequence, that there are massless particles corresponding to the
broken rotations. These are the pions. They tell us that QCD has not one
vacuum, but in fact a continuous set of degenerate vacua (if the quarks are
strictly massless!) The pions are massive in nature only because the quark
masses are in fact not zero, and the SU(Ny) x SU(Ny) flavor symmetry is
only approximate. Note that the baryonic U(1) is unbroken. If the axial
U(1) had been a true symmetry, it would have been broken, and we would
have expected a Goldstone boson for it, the ', which corresponds to shifts
of the phase of the condensate (&5%5” ). However, the U(1) is a fake; and
although the Zyy, axial symmetry mentioned above is also spontaneously
broken by the condensate to a Zs subgroup, only continuous symmetries
give continuous sets of degenerate vacua and corresponding massless parti-
cles. The 7' in fact has a periodic potential, with Ny minima rotated by
the Zyy, symmetry. In each of these minima the potential has some upward
curvature, so the 1’ has a mass. Note however, that these minima are not
actually isolated since they are connected via SU(Ny) x SU(Ny) rotations.

What happens in SYM? In this case the operator A\ develops an expec-
tation value (this is a largely rigorous statement, for which there are many
fairly strong proofs; see for example [10].) The Zyx axial symmetry is bro-
ken to Zs. Because there are no continuous global symmetries, we have no
continuous space of vacua. Instead we have N isolated, degenerate vacua,
in which

(AN o< 3™ /N =0,1,2,...,N—1.

In this theory, the beta function has coefficient 3N, so the strong-coupling
scale satisfies A3V = ,ugN e~ 87°/9°(m0)  Notice that the Zsn symmetry ro-
tates one vacuum into the next, so the N vacua, though distinct from one
another, are isomorphic. This guarantees they are degenerate with one an-
other. Again, in each vacuum the Zsy is broken, but the space of N vacua is
Z5n symmetric, and the symmetry rotates one vacuum into the next. The
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n' particle in this theory is the phase of (A)), and it has a periodic potential,
with N degenerate minima. Thus, like QCD, SYM has a fermion bilinear
condensate which breaks global symmetries, and it has an 1 with a periodic
potential; but unlike QCD, and similar to YM, it has no massless or very
light particles.

Figure 8: The vacua of ' = 1 SU(N) SYM (shown in the complex (A\) plane) are
rotated by a Zy global symmetry.

2 Confinement of Magnetic Flux

Now let us try to understand why and how confinement occurs. In Yang-
Mills theory it occurs through a process requiring strong coupling; detailed
investigations have revealed no small parameter in which we can do pertur-
bation theory, and no simple calculation that we can perform. From where
can we gain some insight? We might ask: where we have seen tubes of
confined flux before?

2.1 Superconductors and the Abelian Higgs Model

In Type I superconductors, magnetic flux is excluded from the material.
This occurs through the appearance of surface currents, which can exist
without energy cost due to the absence of any resistance in the material.
These currents generate an exactly-compensating magnetic field which can-
cels any external magnetic field trying to penetrate the material, and instead
produces some additional magnetic field outside. This makes it appear that
all external magnetic fields are “expelled” from the superconductor. This
famous piece of physics is called the “Meissner effect.”

In Type II superconductors, however, the situation is a bit more compli-
cated. Flux can indeed penetrate the superconductor in this case, although
only in a very specific way. The material becomes nonsuperconducting in
a narrow tube running from one side of the material to another, and the
magnetic flux threads that tube. The magnetic field, which would have been
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free to roam in a normal material, is trapped inside “Abrikosov vortices” [11]
traversing the superconductor. These vortices carry one or more quanta of
flux; in short, they carry an integer charge, g € Z. Superconductors confine
magnetic fluz into quantized vortices.

Indeed this looks familiar. We have learned that SU(N) YM and N’ =1
SYM both confine electric flux into tubes which carry a discrete charge in
Zy . This looks similar enough to set off alarm bells. We had better look at
this more closely.

Figure 9: Normal materials can sustain magnetic fields.

How does a superconductor accomplish this? The superconductivity oc-
curs because electrons form Cooper pairs, which are bosons. Let us call the
density of these pairs ¢. Since the pairs carry electric charge 2, ¢ must be
complex, and couples to the photon. More specifically, the photon must
couple to a conserved current, namely

JH = ¢lore — (049" ¢ (3)

Now suppose that there were a magnetic field attempting to pass through
the material. Since the Cooper pairs can flow without resistance, they can
respond by creating a compensating current. For instance, suppose we have a
long cylinder of material of radius R; let us use cylindrical coordinates r, 0, z.
Suppose we attempt to apply a uniform magnetic field B, > 0 along the axis
of the cylinder. The Cooper pairs can respond by generating a current J?,
which can propagate without resistance, at the surface of the cylinder r = R.
This completely cancels the applied field, reducing the energy density inside
the superconductor. It also generates a dipole field outside the cylinder. The
field appears to have been “expelled” from the material.

However, the material could also respond in an additional way, and does
so in the type II case. In addition to generating a current at r = R, it could
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Figure 10: In superconductors, Cooper pair currents (shown into and out of the plane
of the paper) are induced, causing the magnetic flux to be expelled or trapped in vortices.

also generate a current in the opposite direction at r = ry < R, deep within
the material. This current, like the current in a solenoid, generates a field
in the positive B, direction, all confined within the region r < ry. This is a
magnetic flux tube.

What does ¢ do near this flux tube? Consider a circle of radius r1 > r¢.
The integral of the magnetic flux inside this circle, [ . B, r dr df, should
be independent of r; if flux is indeed confined. On the other hand, it is also
equal to §T:” df Ay. By cylindrical symmetry, Ay can be only a function of r.
From this we learn that Ay is a constant for large . But this poses problems.
The kinetic terms for ¢ itself surely include ﬁqﬁ . ﬁcﬁ, where V; = 0; +i4;,
and thus A2|¢%|/r?. If ¢ is a constant v at infinity, then the integral of such
a term in the Hamiltonian density is divergent! So this cannot give a finite
energy solution. The only way out is to have 9p¢p = —i Ay, which can be
accomplished if ¢(r) = ve’? at large r, where s a real constant. Furthermore,
we can avoid a divergent potential energy only if v is at a potential minimum;
and at the minimum v # 0 (or we would not have superconductivity!) But
then single-valuedness of ¢ requires that s is an integer. Therefore this
approach only works if Ag = s € Z, and thus if [ B, rdrdf is an integral
multiple of a fundamental flux quantum.

From Eq. (3), we see that J? is now nonzero; as advertised, the flux is
of necessity enclosed by a current of Cooper pairs. Furthermore, because
the phase of ¢ is winding as we go once around in 6, the radial derivatives
of ¢ will be ill-defined at » = 0 unless ¢ has a zero there. Thus we have
¢ = ve’? f(r), where f(0) = 0 and f(r — oc) — 1, and s an integer. The
material becomes nonsuperconducting at the vortex core, paving the way for
the magnetic field to pass through unobstructed.
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Figure 11: A flux tube of radius ro; the phase of ¢ winds as one circles the core, in which
the magnetic flux is trapped and |¢| < v.

This configuration, with quantized magnetic flux and a zero for ¢ at its
center, and a winding of Ay and a corresponding winding of the phase of
¢ outside its core, is the Abrikosov vortex. Let us consder the topology
associated with this vortex. We have a U(1) gauge group, under which ¢ is
charged. When the vacuum expectation value of ¢ is nonzero, the U(1) group
is broken spontaneously; gauge transformations will rotate the phase of ().
[However, remember that gauge transformations are not real symmetries!
Therefore, unlike the case of sponaneously broken global symmetries, we
do not have a continuous set of physically distinct vacua and associated
Nambu-Goldstone bosons. Instead we will get a massive photon!] To make
a magnetic flux tube, it must be that as we traverse a circle around the flux
tube in space, the phase of the field ¢ makes a closed loop inside the U(1)
group. We may think of this as a map from a circle in space to a closed loop
in the broken gauge group. Such a map may wind s times around the U(1)
as we make a single circle in space. In short, the topology of such maps,
given by the first homotopy group of U(1), is the group m1[U(1)] = Z. Every
element in the group is labelled by an integer, the winding number s.

To round out the story, it is a bit more convenient to look at a slightly
different system. Instead of studying superconductors — three-dimensional
nonrelativistic systems — I will take us on a quick tour of the relativistic
version, the “abelian Higgs model”. This model has Nielsen-Olesen vortices
[12], magnetic flux tubes very similar to those of Abrikosov.

Let us take a photon — a U(1) gauge field — and a charged scalar field ¢.
The action for ¢ must be invariant under local U(1) rotations ¢ — peie@)
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which can only happen if all derivatives of ¢ are covariant, that is, of the form
D,¢ = (0, +1iA,)p, where A, is the photon vector potential. In particular,
the kinetic term for ¢ must be of the form

(Du¢) D ¢ .

There can also be a potential for ¢, but gauge invariance requires it be a
function only of ¢!$. In addition we should add the action for the photon.
The action is thus of the form

1 P+ (D) D= V(619)

The potential V may have its minimum at ¢'¢ = 0. In this case the
vacuum of the theory is much like the one we live in; the photon is massless,
propagates at maximum speed, and generates a long-range force. Magnetic
and electric fields are related by a symmetry; both fall off as 1/r2 from
magnetic and electric point charges.

However, the potential might instead have its minimum at ¢'¢ = |v|? #
0. Now the physics is very different. First, the photon is now massive. To
see this, consider small fluctuations of electric fields A4, for fixed ¢ = ve'.
The Lagrangian for these modes is

1

—@FWFW — [v[* (4, 4%)

A massive photon, which can be brought to rest, must have three polarization
states (J3 = 1,0, —1) unlike a photon which has only two, J3 = £1. Where
does this extra state come from? It comes from o, the phase of ¢! Let us
see this; if we write ¢ = ve'(*) the Langrangian density now becomes

_éFNVFW — [v*(9uo + Aﬂ)’f(aua + Ay)

from which we see that ¢ and A, mix. We cannot think of them any
longer as separate fields, and thus o and A, together form a massive, three-
polarization-state spin-one particle. (If we like, we can use a gauge transfor-
mation to set o = 0 and absorb it into A,, but this merely puts the degree
of freedom of ¢ into A,. It will not always be useful to do this.) This is
the Higgs mechanism, discovered by Anderson (always remember that con-
densed matter physicists have much to teach us) and then rediscovered by
many others independently, including Higgs.
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Finally, we still have the magnitude of ¢. Writing ¢ = v + §¢, we can
quickly see from the Lagrangian that §¢ acts as a neutral, massive field. I
will leave this as an exercise. This means the theory has a mass gap! There
are no massless modes and no long-range forces.

Now, what happens to electric fields in this context? Suppose I put an
electric charge at the origin. The equation of free electrostatics

V2A? = ¢%5(x)

whose solution is the usual 1/r electrostatic potential, is now modified. The
new equation is

[V + (gv)*]A° = g°6(x)

The solution to this equation is the Yukawa potential for a massive field with
mass m, = gv, V(r) oc ™" /r. The electrostatic field falls off exponen-
tially rapidly at distances larger than the inverse of m.. Electric fields are
screened!.

What about magnetic fields? We cannot expel magnetic fields from an
infinite system, but we can make currents, just as in superconductors, from
the charged scalar ¢, and use them to confine magnetic flux. Since the
photon is massive, it is energetically preferable for the magnetic field to be
localized in tubes where ¢ shrinks to zero and the photon is lighter than
m,. On the other hand, the presence of the magnetic field in a confined
region requires, as we saw, that the phase of ¢ wind an integer number
of times around the center of the vortex. Classical solutions to the above
equations satisfying these conditions can be found; they are called Nielsen-
Olesen vortices. Their tensions can be calculated, and are proportional to
1/¢?. Thus, magnetic fluz is confined! The topological analysis that we did
for the Abrikosov vortex — that the charges of these vortices is given by the
first homotopy group of U(1), the group m1[U(1)] = Z — goes through here
as well, without alteration.

Magnetic flux tubes can arise in other gauge groups as well when they
are broken via the Higgs mechanism. If we have a gauge group G broken
down to a smaller gauge group H (which might be the identity, as in the
example above) we will get magnetic flux tubes if 71(G/H) is not trivial.
For example, if we have the group SU(N), and it is broken down to nothing,
then there are no flux tubes; SU(N) is simply connected, so all closed curves
on it can be shrunk down to nothing, and all of its homotopy groups are
trivial. However, if we break SU(N) down to its center Zy, then since
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m1(G/H) = mo(H) if G is simply connected, and since my(H) is the number of
distinct components of H, we have simply 71 (SU(N)/Zy) = Zy. Magnetic
flux tubes are generated, and they carry a charge in Zy, the integers modulo
N [2]. [As an example, consider SU(2). The matrices diag(e‘®,e~*®) are in
SU(2); for @« = 0 and 7 they are in the center. The path from o = 0 to
a = 27 is a closed path in SU(2), but the path from @« = 0 to @ = 7 is
not closed. However, in SU(2)/Z,, the matrices with & = 0 and o = 7 are
identified, so the second path is also closed and forms the nontrivial element
of ™ (SU(Q)/ZQ) = Z2.]

2.2 Electric Sources and Fluxes

Let us review what we learned in the first lecture, but a bit more formally.
Consider a pure gauge theory with gauge group G. Suppose we have a
source — an infinitely massive, static, electrically charged particle — in a
representation R of G. If we surround the source with a large sphere, what
characterizes the flux passing through the sphere? If G is U(1), the flux
measures the electric charge directly. However, in non-abelian gauge theo-
ries the gauge bosons carry charge. Since there may be a number (varying
over time) of gauge bosons inside the sphere, the representation under which
the charged objects in the sphere transform is not an invariant. But, by defi-
nition, the gauge bosons are neutral under the discrete group C¢, the center
of G. It follows that the charge of R under the center is a conserved quan-
tity, and that the total flux exiting the sphere carries a conserved quantum
number under Cg.

Electric sources and fluxes in pure gauge theories carry a conserved Cg
quantum number. If the gauge group confines, then the confining electric
Sfluz tubes will also carry this quantum number.

If the theory also contains light matter charged under C¢ but neutral
under a subgroup C, of Cg, then the above statements are still true with
C¢ replaced with C,. For example, if we take SU(N) with light fields in
the N representation, then Cy, is just the identity, reflecting the fact that
all sources can be screened and all flux tubes break. If we take SO(10)
with fields in the 10, then the center Z, is replaced with spinor-number Zs.
Sources in the 10 will be screened and have no flux tube between them,
while sources in the 16 or 16 will be confined by a single type of flux tube.
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2.3 Magnetic Sources and Fluxes

Before discussing the magnetic case, I review some basic topology. [The
presentation which follows is overly naive, though it serves for present pur-
poses. A more rigorous story requires a study of the relevant fiber bundles.]
The p-th homotopy group of a manifold M, m,(M), is the group of maps
from the p-sphere into M, where we identify maps as equivalent if they are
homotopic (can be continuously deformed into one another) in M. All we
will need for present purposes are the following examples. Suppose a Lie
group G has rank 7, so that its maximal abelian subgroup is U(1)"; then

mG =1 = m[G/UQA) | =mUL)|=ZxZx---xZ=[Z]". (4)

Similarly,

m[G =1 = m[G/Cq]=m|Cq]=Cg . (5)

Gy ——=G
\

Figure 12: A magnetic monopole soliton of size v™".

We will need to investigate both monopole solitons and string solitons
below. The classic monopole soliton is that of 't Hooft and of Polyakov,
which arises in SU(2) broken to U(1); in this case the important topological
relation is mo[SU(2)/U(1)] = m1[U(1)] = Z. This leads to a set of monopole
solutions carrying integer charge. Note that the stability of, for example,
a single monopole which has charge two against decay to two monopoles,
each of charge one, is determined not by topology but by dynamics. The
situation is similar for the Nielsen-Olesen magnetic flux tube of the abelian
Higgs model; here the relevant topological relation is 71[U(1)] = Z. This
again leads to solutions with an integer charge, whose stability against decay
to minimally charged vortices is determined dynamically.
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Gy, ———=G
v ——> infinity

Figure 13: A pointlike Dirac monopole, with its unphysical Dirac string.

More generally, if we have a simply connected gauge group Gy which
breaks to a group G at a scale v, there will be solutions to the classical
equations in the form of magnetic monopoles carrying a quantum number
in m9[Go/G] (see, for example, [13].) These will have mass [radius| propor-
tional to v [1/v]. Now imagine that we take v — oo. In this limit the gauge
group Gy disappears from the system. The monopoles become pointlike
and infinitely massive; their only non-pointlike feature is their (nonphysical)
Dirac string, which stems from our having discarded Gy, and which carries
a quantum number in 71[G]. In short, the solitonic monopoles become fun-
damental Dirac monopoles in this limit. Note that since m3[Go/G] = m1[G],
the charges carried by the solitonic monopoles and their Dirac monopole
remnants are the same. At this point, we can forget about Gy, which is only
relevant at infinitely high energies. Since the Dirac monopoles are heavy, we
may use them as magnetic sources in a theory with gauge group G.

Let’s further suppose that the gauge group G is broken completely at
some scale v'. In this case no Dirac strings can exist in the low-energy
theory, and so the monopoles allowed previously have seemingly vanished.
However, solitonic magnetic flux tubes, carrying charges under m[G], will
be generated; they will have tension [radius] of order v2 [1/4']. Their m[G]
quantum numbers are precisely the ones they need to confine the m1[G]-
charged Dirac monopole sources of the high-energy theory. Thus, when G is
completely broken, the Dirac monopoles disappear because they are confined
by flux tubes.

Magnetic sources and fluzes in pure gauge theories carry a conserved
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m1[G) quantum number. If the gauge group is completely broken, then the
confining magnetic flux tubes will also carry this quantum number.

Figure 14: Confined monopole solitons in a theory with flux tubes.

3 Electric-Magnetic Duality?

So let us observe something about SU(N). The electric fluxes of SU(N)
are in Cgy(ny = Zn, while its magnetic fluxes are in m1[SU(N)] = 1. The
electric fluxes of SU(N)/Zy are in Cgy(ny/z, = 1, while its magnetic fluxes
are in 71 [SU(N)/Zy] = Zn. In fact, more generally, for k a divisor of N, a
theory with SU(N)/Z has electric fluxes in Z(y/;) and magnetic fluxes in
Z,. This electric-magnetic symmetry appears very interesting. What does
it mean?

3.1 Duality in Maxwell’s theory

The symmetry between electric and magnetic fields in the case of classical
electromagnetism is well known. If there are no electric charges present, the
Maxwell equations have a symmetry £ — B, B — —FE. This is physically
meaningful, since F and B are both gauge invariant. Without charges, there
is no way to say which type of field is which.

Let us be more explicit. Under this transformation, the Bianchi identities
VxE+B=0,V-B = 0 are exchanged with the equations of motion
VxB—FE=0,V-E=0. Said more covariantly,

Fu = Fuy = €uupe F*°



132 M.J. Strassler

and the Bianchi identity e**??0,F,, = 0 goes to the equation of motion
0" Fy, = 0.

None of this is particularly obvious if one uses the formalism of potentials,
and with good reason. Because of the Bianchi identities, we are free to write
F,, = 0,A,—0,A,, which defines A,,. The symmetry of the equations under
Ay (z) = Au(z) + 0ux(z) is the U(1) gauge symmetry — let us call it the
“electric” gauge symmetry. Notice it is not a symmetry of anything physical!
It is a symmetry of the variables A,! The physical quantities — FE and B —
are gauge invariant, and are trivial under this “symmetry.” This is a good
thing, because under exchange of F and B, we cannot exchange A, with
anything. We must introduce a new, and entirely different, vector potential
Cy, with ﬁ’,w = 0,C, — 0,Cy. No local expression will convert A, to C,.
Furthermore, C), has its own U(1) symmetry — let us call it “magnetic” —
Cu(z) = Cu(z)+0up(x). This is just as unphysical as the first U(1). Even if
we were to find a transformation from A, to C),, nonlocal as it would be, we
are free to redefine C, through a magnetic U(1) transformation separately
from any redefinition of A, through an electric U(1) transformation! There
are two U(1) groups here; they are two entirely distinct symmetries of two
entirely distinct sets of variables, and both are unphysical. When we say
that the Maxwell equations are the equations of a U(1) gauge theory, we are
being extremely careless with the truth.

Let’s see this as a path integral statement. (I learned the following from
Seiberg and Witten’s first paper [9].) They start with the free Maxwell
theory

g2
/DA iz 5. a)

(I will suppress indices except where clearly needed.) Notice the gauge fixing
term. This expression is just a number. Let us instead write something more
useful. Let’s introduce a source J* for F),,, and write

Z0J] = /DA I 59, a)

Functional derivatives of InZ with respect to J now give the correlation
functions of F'.

Let us now change variables in this path integral. Up to an overall
constant. the path integral can be rewritten as an integral, not over A, but
over F. We have to be careful, though, because F' is subject to the Bianchi
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identities, which are exact operator identities. Consider the expression
g2
—i [E5+[JF
Z10] = / pF ¢ i /I s FL)

There’s no gauge fixing needed now, but the Bianchi identities must be
implemented through a delta function. Let us rewrite this Bianchi identity
using a Lagrange multiplier which we will for some unknown reason call C,,,

: 2 i vpo
Z[J] = /DFDC o At g [0 5 oy

Notice that the integral over C enforces the Bianchi identity, but since
€*P?0,0,F,, = 0, the Langrange multiplier field C' itself has a gauge invari-
ance, which must be fixed by the new delta function. Now let us integrate
by parts

1~
7 CypFruy = =90, Co Fyyy + O () = —5 FoF + ()

where F( is the field strength of C' and ~ represents contraction with an e
tensor. We next carry out the integral over F', obtaining

2 2 ~
Z[J) = e_ingJQ/DC e EateR e 5. )

where I have used Fé = FZ. Thus we recover a free Maxwell theory for C!
It looks identical to the original one, except (1) g has been replaced with
g = 4m/g — weak coupling and strong coupling have been exchanged — (2)
the source J, which coupled to F', now couples to %ﬁ’c, so the electric field
F/g of A, is proportional to the magnetic field Fiz/g for C,, and (3) there
is a contact term proportional to J? (a typical quantum subtlety which does
not affect Green’s functions of fields at different points — you may want to
experiment with Fourier transforms of Gaussian integrals to see why it is
there.) Thus we have found that we can express a single quantum theory (in
the form of a generating function for gauge-invariant correlation functions)
using two, entirely distinct, integral representations, both of which are nice-
looking and well-behaved. One theory, two descriptions, each with its own
U(1) gauge (non-)symmetry. This is duality.

3.2 The addition of charged fields

Only when we add charges to the theory do we start to learn the distinction
between electric and magnetic fields. We know that in nature we have only
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electric charges, and all symmetry between electric and magnetic charges is
lost. And yet — what if there are magnetic monopoles? Could the symmetry
be restored?

Yes, and no. If we put both electric and magnetic currents in the classical
Maxwell equations, they look beautifully symmetric: the Bianchi identity
P9, F,, = Jj, is exchanged with the equation of motion 0,F* = Jy.
All seems well. Electric charges have charge e, while magnetic charges are
proportional to 1/e; thus if electrons are weakly coupled, monopoles are
strongly interacting with the photon, and vice versa.

So let us return to the question of confinement. We have seen that we
can use condensing electric charges to cause electric charge to be screened,
and make magnetic flux confined through the Meissner effect. Clearly, there
should be a “dual” Meissner effect; if we have condensing magnetic charges,
then magnetic charge will be screened and electric fluz will be confined. In
both cases there will be a mass gap in the theory. Thus we now have a guess
as to how confinement will occur: if there are some magnetically charged
objects around — perhaps composite ones not visible even semiclassically
— then their condensation would cause electric flux to be confined via the
dual Meissner effect. All we have to do now is write down the equations
governing this process, and see that in such a world, electrons are confined
by flux tubes...

But there’s a problem. The Bianchi identities are now V x E+B= Jmags
V - B = ¢mag- This means we cannot introduce A, anymore; the very
introduction of the vector potential imposes the Bianchi identities with zero
for the right-hand sides. If we want to introduce a magnetically charged
field, we will have to use C,. In this case, the equations for C}, will look
exactly the same as they did before for A, simply relabelled. And that’s
not good, if we want to see that electrically charged particles are confined.
Fields for electrically charged particles must have kinetic terms defined using
covariant derivatives which contain A,! We cannot write a local expression
for an electron’s kinetic terms if we only have C),. Even worse, the presence
of the electron field ruins the Bianchi identity for C,, so we can’t really
introduce C), either. There isn’t going to be a local Lagrangian, and there
isn’t going to be an ordinary, classical analysis. All we have is a mess.

And that’s before quantum mechanics. These complications prevent us
from repeating the argument for duality using the path integral. Once there
are charged fields, we do not know how (as of yet — though see [14]) to write
a path integral which converts an electric description of a theory to an mag-
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netic one. (Furthermore, in contrast to U(1) without charged matter, there
is in fact little reason to expect that a U(1) theory with charged matter is
actually quantum-mechanically dual to an identical theory; it could easily be
dual to a nonabelian gauge theory, and /or have multiple dual representations
[15].)

We could, of course, forgo the electrically charged particles. Then we
would just have a photon coupled to magnetically charged particles; but
this would look exactly the same as the superconductor we just considered.
That won’t help us with Yang-Mills theory, or any other theory with electric
confinement that we would like to understand. In such theories, the gluons
themselves are chromoelectrically charged, and we can’t simply choose to
discard all possible chromoelectrically charged objects.

3.3 Duality in pure Yang-Mills?

Can we find a similar duality for the pure Yang-Mills theory? We know that
Yang-Mills has the property that it generates electric flux tubes with Zy
quantum numbers. We might hope that Yang-Mills has an obvious duality
to some theory with a gauge group H which has 7 (H) = Zy, so that when
H is broken by a condensing field, it generates magnetic flux tubes with
Zy charges. A natural guess for H would be SU(N)/Zy. Of course we
will need some additional matter — at least a couple of scalar fields — if
we are to break this gauge group completely, so the dual description of this
theory can’t itself be pure Yang-Mills. Is there any hope that there exists a
dual SU(N)/Zx gauge theory of some type, which gives a weakly-coupled
(and therefore calculable) dual description analogous to the Meissner effect
of confinement in Yang-Mills?

This type of idea, popular briefly in the 1970s, has a few serious problems.
First, unlike the case of U (1) gauge theories, the electric and magnetic fields
of SU(N) are in the adjoint representation of the gauge group and are not
themselves gauge-invariant. This makes the Bianchi identities e#*?? D ,F* =
0 nonlinear. Secondly, their equations of motion D,F*” = ( are nonlinear.
In both expressions, covariant derivatives appear, which means we always
have to write expressions using the vector potential A,. This means we
cannot simply exchange electric and magnetic fields as we did in the classsical
Maxwell equations; the potential appears in the classical equations. At the
quantum level, this is equally problematic; the path-integral trick used above
for U(1) is useless here, since it required we write the path integral only in
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terms of F. (Note Halpern [16] showed in the 1970s that it is consistent
to write A nonlocally in terms of F' inside a path integral, but no one has
figured out how to make use of this fact.)

Another complication is that Yang-Mills theory has a running coupling
constant. At high energies it is weak. (Any magnetic description therefore
will be strongly coupled at these high energies, but we don’t mind that,
since the original description is weakly coupled, and extremely useful, in
this regime.) At low energies, below A, it is strong — but how strong? Is it
infinite, or merely order 17 This is important, because we are interested in
trying to find a dual description of confinement which presumably inverts the
coupling constant ¢ — 1/g. Unless the gauge coupling is much larger than
one, our dual description will itself have a large coupling (of order one) and
we won’t be able to use it for a semiclassical description of the physics. In
this case the dual magnetic description will be as hard to use as our original,
electric one.

Unfortunately, all indications are that the coupling in the region near A
is closer to /4w than to infinity. There is no evidence that the theory at low
energies has a weakly-coupled magnetic description, and the dynamics of the
theory does not seem to have any small parameters, or large separations of
scales, which could make it easier to analyze. The nonperturbative physics
of Yang-Mills may just be a hard problem.

We might be stuck. But here’s an idea. What happens if we make the
gauge coupling ¢ artificially large? Maybe in that limit a dual description
can be found, and its description of confinement will be easier to study and
to use. And maybe from there we can get back to the Yang-Mills theory
that we want to understand.

How could we do this? Well, let’s review... why does the coupling become
small in the ultraviolet? It does so because the theory is asymptotically free;
its beta function is negative, so the coupling becomes smaller and smaller as
we go to high energy. We can’t avoid this region of small coupling unless we
do something drastic...

Well, one drastic thing we can do is put the theory on a lattice. This
means there is a shortest distance below which there can be no vibrations; the
theory only looks like pure Yang-Mills at much longer scales. The ultraviolet
modes are simply removed, so we won’t have to worry about the theory
becoming weakly coupled at high energy. In fact, we are free to choose

1

the coupling constant g(a~!) at the energy a~! corresponding to the lattice

spacing a. Instead of choosing it small and allowing the theory to run to
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strong coupling at low energy, let’s just choose g(a™!) very large. What
happens?

In this case we can do a “strong-coupling expansion”. I won’t review
this here, but the expansion on the lattice in powers of 1/¢g? can in fact
be performed [1], and one sees the existence of confining strings right away.
There, we’re done. Yang-Mills confines chromoelectric field, and Strassler’s
lectures are over.

Or does it? The problem is that the theory on the lattice has very
different dynamics from that of pure Yang-Mills. If g(a™!) is very large,
then the confinement scale A will be at the same order as 1/a. This can be
seen from Eq. (1) with pg = a™!, using the fact that e 879" L 1if g2 > 1.
There will be no separation between the scale of the lattice and the scale
of confinement. The mass gap will be at this scale also, so there will be no
long-distance physics at all. All of the glueball spectrum will be sensitive to
the lattice. Thus the theory is very different from Yang-Mills, in fact. If we
change the lattice from a square lattice to a triangular one, we will change
the glueball spectrum significantly. So why should the fact that the lattice
theory confines convince us that when we take the limit

a—0, g2 =0, AUN/3 = a " 11N/3=8n%/g(a) fixed,

thereby recovering the pure Yang-Mills theory, that the confinement, the
flux tubes, and the mass gap will actually survive? Couldn’t there easily
be a phase transition at some value of g which would change the physics
completely?

It’s a serious objection. Indeed, we see here a general approach at work,
and its basic advantages and disadvantages. Let’s review them. We can'’t
study Yang-Mills directly; it is too hard. But let’s change the theory in a way
that allows us to artificially make a parameter small (in this case 1/¢%.) By
doing so, we permit a new expansion in powers of the small parameter. This
gives us a calculational technique in which it may be possible to show that
confinement and other nonperturbative properties do actually occur, and
explain how and why they arise. That’s a great idea; and it works, too! But
we changed the theory; it is related continuously to Yang-Mills, but that’s all.
Let’s now try to go back to Yang-Mills itself. The problem is that our small
parameter will become large again as we do so, and we have no guarantee
that confinement, etc., and especially the explanation for confinement, will
survive as we make our way back to our starting point. This is especially
true since the dynamics of the theory with the small parameter depends in
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detail on how we changed the theory.

In fact, experience shows that in considering a variety of weakly-coupled
variations on pure Yang-Mills, one finds (1) all of the reasonable variations
confine, tending to confirm that Yang-Mills confines, and (2) each variation
has its own, separate explanation as to how confinement happens. The vari-
ous explanations have a few things in common but their details are different.
Is this progress? I leave this as a question for you to decide.

Similar issues arise for ' = 1 SYM. There are many ways to distort the
theory (see for example [17, 3, 9]) so that it becomes easier to study; each
shows that the theory confines, although each gives a somewhat different
explanation. In the remaining part of these lectures, we will be choosing
a couple of these variations, and studying how confinement occurs in these
cases. We will embed the N' =1 SYM theory into N' =4 SYM — the most
symmetric of all gauge theories — and use the dualities of N' = 4 to study
the confinement in A" = 1 (and possibly, if the mathematics is kind, of pure
Yang-Mills itself.)

3.4 N =4 Supersymmetric Gauge Theory

We now need to review some properties of N' = 4 supersymmetric gauge
theory. We will take the gauge group to be SU(N) unless otherwise noted.
The theory consists of one gauge field, four Majorana fermions, and six real
scalars, all in the adjoint representation. It is useful to combine these using
the language of N' = 1 supersymmetry, in which case we have one vector
multiplet (the gauge boson A, and one Majorana fermion \) and three chiral
multiplets (each with a fermion %° and a complex scalar &%, s = 1,2, 3.)

These fields have the usual gauged kinetic terms, along with additional
interactions between the scalars and fermions. I won’t write them all here
(vou can find them in many books and review articles on supersymmetry)
and will instead focus on the potential energy for the scalars.

dim G 3
V(@)= > Dl + ) IF[ (6)
a=1 s=1

where ;
D, = (Z[‘PST,@SO (7)
s=1 a
(here a is an index in the adjoint of G) and

Fy = €44, [®, Y] . (8)
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Supersymmetry requires that (V(®%)) = 0, and so all D, and F; must vanish
separately. The solution to these requirements is that the matrices are all
diagonal, namely

(@%) = diag(v‘f, V3, 7“?\7) : (9)

If the v}, thought of as N vectors @;, i« = 1,... N, in a three-dimensional
complex space, are all distinct, this breaks G to U(1)". Since mo[G/U(1)"] =
[Z]" [see Eq. (4)] the theory has monopoles carrying r integer charges under
U(1)". (Quantum mechanically, the theory also has dyons, carrying r electric
and r magnetic charges (ne, ny,) [18].)

The space of vacua written in Eq. (9) is not altered by quantum mechan-
ics. In the generic U(1)" vacuum, each U(1) has no charged matter, and
consequently has the usual electric-magnetic duality of the Maxwell equa-
tions.

When all v] are zero, the gauge group is unbroken. The theory is con-
formally invariant. All reasonable Green’s functions are power laws. All
reasonable operators have a definite, fixed, dimension. The gauge coupling
¢ has an exactly-zero beta function, and does not run. Thus, in contrast to
QCD, YM, and N =1 SYM, the N = 4 SYM theory has a truly dimension-
less coupling constant; there is no strong-coupling scale A, no dimensional
transmutation. We can dial this truly dimensionless g to be whatever we like
— it can be small, or it can be large — and it will stay that way at all energy
scales. And this nonabelian gauge theory, with lots of charged matter, has a
generalization of electric-magnetic duality, suggested first by Montonen and
Olive in 1977 [19], in which this coupling constant is inverted.

3.5 Montonen-Olive Duality

Like the pure Maxwell theory, the N' = 4 theory has more than one de-
scription. There’s lots of evidence for this, although it has not been proven
directly. Consider this an open challenge.

There is actually an infinite set of alternate descriptions (one has to talk
about the 8 angle of the theory to obtain them, and I will not have time
to cover this here) but the most important one, for our purposes, exchanges
electric and magnetic charges. It is generated by a change of variables S
analogous to the one we discussed above for electromagnetism, but whose
explicit form remains a mystery. It has the effect

4
S:g—);ﬂ;qeﬁqm;G—)G. (10)
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S exchanges electric and magnetic charge, inverts the gauge coupling [19],
and changes the gauge group [20, 21] from G to its dual group G, as defined
below.

The group G has a root lattice I'¢ which lies in an 7 = rank(G) dimen-
sional vector space. This lattice has a corresponding dual lattice (I'g)*. It is
a theorem that there exists a Lie group whose root lattice I'; equals (T'g)*
[20]. Here are some examples:

SU(N) <> SU(N)/Zy ; SO@2N + 1) < USp(2N) ; )
SO@2N) < SO2N);  Spin(2N) <> SO@2N)/Z .

Notice that this set of relationships depends on the global structure of the
group, not just its Lie algebra; SO(3) (which does not have spin-1/2 repre-
sentations) is dual to USp(2) ~ SU(2) (which does have spin-1/2 represen-
tations.) These details are essential in that they affect the topology of the
group, on which Montonen-Olive duality depends.

In particular, there are two topological relations which are of great im-
portance to Montonen-Olive duality. The first is relevant in the generic
vacuum, in which G is broken to U(1)". The electric charges under U(1)"
of the massive electrically charged particles (spin 0, %, 1) lie on the lattice
I'¢. The massive magnetic monopoles (also of spin 0, %, 1) have magnetic
charges under U(1)" which lie on the dual lattice (I'¢)* [20, 21]. Clearly,
for the S transformation, which exchanges the electrically and magnetically
charged fields and the groups G and G, to be consistent, it is essential that
I'z = ([g)* — which, fortunately, is true.

The second topological relation is the one we will use below. We have
seen that the allowed electric and magnetic sources for a gauge theory with
adjoint matter (such as N' = 4) are characterized by quantum numbers in C
and 71 (G) respectively. Counsistency of the S transformation would not be
possible were these two groups not exchanged under its action. Fortunately,
it is a theorem of group theory that [20]

7T1(G)=Cé; Wl(é):CG . (12)

For example, m1[SU(N)] = Csy(ny/zy = 1 while Cgyyy = m[SU(N)/Zn] =
Zy.

Thus, as a consequence of Eq. (12) and the results discussed in our earlier
discussions of electric and magnetic fluxes and sources, the allowed magnetic
sources of G are the same as the allowed electric sources for G, and vice
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Figure 15: N D3 branes have a U(N) N =4 SYM on their world volume.

versa. This is a significant piece of evidence in favor of S-duality, and will
be essential later on.

Now, this is not the only way to approach N' = 4 SYM, as you have
already heard in Prof. Maldacena’s lectures. As he showed you, the world-
volume theory on a stack of N D3 branes of Type IIB string theory has
a complicated action, but at low energy it reduces to N' = 4 U(N) SYM
theory. The extra U(1) decouples, and all of the interesting physics is in the
SU(N) part of the theory.

Do we see signs of S-duality in this string construction of N’ =4 SYM?
We certainly do! Type IIB string theory itself has an S-duality — for which,
again, there is tremendous evidence but no proof (see for example [22] and
[23].) The duality inverts the string coupling: gs — 1/gs. It also changes
various extended objects into one another. The theory has (among other
things) fundamental strings, Neveu-Schwarz 5-branes, and D1, D3 and D5
branes. (It also has D(-1) and D7 branes but we won’t discuss them.) Now,
under S-duality, the D1 and F1 (fundamental) strings are exchanged, as are
the D5 and NS5 branes. The D3 branes, however, are unchanged. The
N = 4 SU(N) SYM theory goes back to itself, except that its coupling
constant g2 ,, = gs/4n is inverted — just as we expected! Furthermore, a
fundamental string ending on a D3 brane looks like a point electric charge
from the perspective of an observer stuck on the D3 brane. A D1 brane
ending on a D3 brane looks like a point magnetic charge. Thus S-duality in
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Type IIB string theory correctly inverts the N'=4 SYM coupling constant,

exchanges its electric and magnetic charges, and exchanges the gauge groups
3

of the electric and magnetic descriptions.

Figure 16: F1 (D1) strings appear as electrically (magnetically) charged particles.

A word of warning about this beautiful structure. Most examples of
duality are much more complicated than this! The identification of the dual
group is vastly more difficult, and the relations which we have used in arguing
that it is @ do not work. So don’t be fooled into thinking that most of the
other known dualities are this elegant. They are both less straightforward
and much richer in content. A good example for you to look at is the Seiberg
duality of N’ = 1 supersymmetric gauge theories [17, 24, 25], which could
actually be relevant in nature. But the example of A’ = 4 duality proves to
be a good one for examining confinement in A/ = 1 SYM and pure YM, so
we’ll stick with it.

4 Breaking N =4to N =1

It’s time to return to our goal of discussing confinement in ' = 1 SYM
theory. Let’s try to apply the trick we discussed earlier in the context of the
strong-coupling expansion on the lattice. Is there, perhaps, a way to take
N =1 SYM, make its coupling artificially large, and do a strong-coupling
expansion? The lattice badly breaks supersymmetry, so it won’t help us very

3Well, almost. Actually, the D3-branes give U(N), whose dual is U(N) again. To
remove the U(1) factors, and see the Zy, is subtle. It is much easier to see that SO(2N +1)
is exchanged with USp(2N), so you might try that instead.
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much (although it might be worth revisiting this point after recent advances
in lattice theory [26].) A different approach would be to put N/ = 1 Yang-
Mills theory inside of N' =4 Yang-Mills. How might we do this?

We could add to the N/ =1 SYM theory three chiral multiplets (that’s
three Majorana fermions and six real scalars) in the adjoint representation
of the group, all with a common mass m. We’ll also add some additional
interactions, so that when m goes to zero the theory has N' = 4 supersym-
metry. We take all scalars to have expectation values less than or of order
m (an assumption which will be justified later.)

At energies well above m, the theory is approximately N' = 4 SYM.
Since the masses m are comparatively tiny at these energy scales, the theory
will be approximately conformally invariant. The gauge coupling will run
very little for energies bigger than m, and for very high energy it goes to a
constant go. But at energies well below m, the classically massless particles
will be those of N = 1 SYM. Quantum mechanically, the gauge coupling
will run below the scale m, and confinement will presumably occur at some
scale A < m.

Thus this A/ = 1 supersymmetric theory — which we will call “N = 1*”,
for short — interpolates between N' =4 SYM and N’ = 1 SYM. As required
for our trick, we have kept the basic ' = 1 SYM infrared dynamics but
have changed the ultraviolet behavior of the theory in such a way that we
can, if we wish, ensure the coupling constant is always large! In particular,
we can simply choose the ultraviolet value of the coupling gg much larger
than one. Since g(u) = g¢ for u > m, the coupling constant at p = m will
also be large — and thus, just below the scale m, we obtain a theory with
the matter content of N' = 1 SYM, but with an artificially large coupling
constant. All we have to do now is expand in 1/gg. But that’s exactly what
Montonen-Olive duality allows us to do! The magnetic dual description of
this physics will be weakly coupled, with coupling constant 1/gy < 1.

But how close will the N/ = 1* theory be to N' = 1 SYM? What properties
will they share? It is worth examining the strong coupling scale of the
N = 1* theory. Below the scale m, the coupling constant g(u) will run as it
does in pure N = 1 SYM theory, so the one-loop relation between g(u) at
the scale 4 = m and the scale A reads

ASN m3Ne—87r2/g2(m) ~ mSNe—SWQ/gg

Notice that if gy is small, A < m, but if gy is large, as we will want for
our strong-coupling expansion, A ~ m. Thus, just as in the lattice strong-
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pure N=1

confinement

Figure 17: N =1 for small go.

coupling expansion, there will not be a separation of scales between the new
physics (in this case the three massive adjoint multiplets) and the scale of
confinement, glueball masses, etc. We will not be doing much better than
the lattice case. Our strong-coupling expansion will depend on the details
of our the mass scale m. For example, if we give the extra chiral multiplets
different masses instead of a common mass m, the glueball spectrum will
reflect this change, although there would be no such change at small g
where m > A. This is the standard limitation; we accept it and move on.

M N=4

confi qement

an a
Figure 18: N = 1* for large go.

You might wonder if there is some danger that the massive chiral mul-
tiplets will ruin the confinement we want to study. In fact, there is not
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much to worry about. As we noted earlier, ' = 1 SYM has confining
strings because neither gluons nor gluinos can break these flux tubes; fields
in the adjoint representation are neutral under the center of the gauge group
Cg. The addition of massive matter in the adjoint representation does not
change this; heavy particles would only obstruct confinement by breaking
flux tubes, which adjoint matter cannot do. We therefore can expect that
N = 1* should share some qualitative features with pure ' =1 SYM: both
should have mass gaps and confine flux into tubes carrying a Cg quantum
number.

Now let’s examine things more closely. Let’s first take gy very small so we
can do a semiclassical analysis. When we break the N’ = 4 supersymmetry
by adding masses m for the fields ®*, the F; functions of (8) become

Fy = €54, [®, ®Y] + m®® | (13)

so that Fy = 0 implies €, [®, ®%] = —m®® [8]. Up to normalization, these
are the commutation relations for an SU(2) algebra; thus solutions will take
the form

3! = —imJ, ;8% = —imJ, ; ®* = —imJ, , (14)

where Jy, Jy, J, are N x N matrices satisfying [J;, J,] = iJ;, etc., a repre-
sentation of SU(2). Each possible gauge-inequivalent choice for the J’s gives
a separate, isolated vacuum of the classical N’ = 1* theory [8].

How does this work, explicitly, in SU(N)? We can write the ®° as
N X N traceless matrices, so the J; should be an N-dimensional (generally
reducible and possibly trivial) representation of SU(2) [8, 3]. The trivial
choice corresponds to J; = 0; clearly if ®* = 0 the JJ commutation relations
are satisfied. We will call the corresponding vacuum the “unbroken” vacuum,
since the SU(N) gauge group is preserved. Another natural choice is to take
the J; in the irreducible spin—% representation of the SU(2). In this case
SU(N) is completely broken (this is left as an exercise); we will call this the
“Higgs vacuum”. We may also choose the J; in a reducible representation

Os | 0
Js = l—— —|- ——] ; (15)

here the o, are the Pauli matrices. In this case SU(N) is partly broken.
There are many vacua like this last one, but they will play no role in today’s
story; we will only need the unbroken vacuum and the Higgs vacuum.
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Figure 19: A few of the classical vacua of ' = 1*, including the unbroken (U) and
completely Higgesd (H) vacua.

In all of these vacua, the scalar fields are massive, as are most of the
fermions. However, in any vacuum with unbroken gauge symmetry, there
are both massless gauge bosons and their massless fermionic superpartners.
Thus, the Higgs vacuum has a mass gap — there are no massless fields —
while the unbroken vacuum has the massless gauge bosons and fermions of
an SU(N) N =1 SYM theory.

As an example, let’s take the case of an SU(2) gauge group [8]. This is
a rather degenerate one, but it has all the essential features. In this case we
need two-by-two matrices which satisfy the above commutation relations; the
only solutions are J; = 0 and Js; = imo;. We thus have two classical vacua,
one with unbroken SU(2) gauge symmetry, and one in which the SU(2) is
completely broken by the Higgs mechanism. (The expectation value for ®3
breaks SU(2) to U(1), while the expectation values for ®! and ®? break the
remaining U(1).)

In summary, the classical analysis of the SU(N) N = 1* theory shows
that it has isolated supersymmetric vacua scattered about, with the unbro-
ken (U) vacuum at the origin of field space and the Higgs vacuum (H) at
large ®° expectation values (of order m) [8, 3]. The Higgs vacuum has a

mass gap, while the unbroken vacuum has the matter content of an SU(N)
N =1 SYM theory.

4.1 OM Duality and the Yang-Mills String

The above picture is modified by quantum mechanics. The U vacuum has
the matter content of SU(N) N =1 SYM theory. Remember we are still
working at small go. We know this theory is asymptotically free, so at an
energy scale exponentially small compared to m — more precisely, at an
energy A ~ me=8°/3N% « m — the gauge coupling will become strong.
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Figure 20: Quantum mechanically, the vacua with unbroken gauge groups split; the U
vacuum splits into IV, one of which (C) has confinement via magnetic monopole conden-
sation.

Since this scale is so small, the physics at energies of order m cannot affect
it. We already know, then, what this theory will do; it will confine, generate
a mass gap of order A, and it will have not one but N vacua due to the
breaking of the Zsy axial symmetry down to Zs. As we noted earlier, these
vacua are related by this Zoy symmetry, so we can focus on just one of
them.? Let’s call it the confining (C) vacuum.

By contrast, in the H vacuum the gauge group is completely broken at
the scale m > A, and there is a mass gap of order m, so there is no way for
non-trivial low-energy dynamics to take place. Consequently, the H vacuum
remains a single vacuuin.

Now let’s compare the Higgs vacuum and the confining vacuum. Recall
that we took the gauge group to be SU(N). The confining vacuum has
a strongly-coupled process of confinement and generation of a mass gap of
order A < m. We expect the confining electric flux tubes to have tension
of order A, and for them to carry a Zy charge. In the Higgs vacuum, on
the other hand, there is a weakly-coupled breaking of the gauge group. We
can see classically that a mass gap is generated. But actually the gauge
group is not completely broken. The adjoint scalar fields carry no charge
under the center of the group, so SU(N) is in fact broken down to its center
Zy! Now, we have already learned that there will be solitonic magnetic flux
tubes in any breaking of a gauge theory G — H if w1 (G/H) is nontrivial, and
these strings will carry charges in 71(G/H). Here we have SU(N) — Zy,
and m[SU(N)/Zy] is Zy. So the Higgs vacuum has confining magnetic
fluz tubes, carrying charge Zy, as a result of condensation of the electrically

4A caution: this symmetry is actually only exact when m — oo, and is approximate if
m > A. However, for reasons explained below, the number of vacua cannot change when
'm varies, so our counting of vacua is correct for any m. The vacua are actually related by
shifting the 6 angle by 27k, k € Z.
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charged fields ®°. The scale of these flux tubes and of the mass gap is ~ m.

This is extremely suggestive. Let us attempt to rewrite this physics using
the magnetic description of the theory. Montonen-Olive duality converts g
to 1/go > 1... oops. The physics we were just discussing for small gy will
now be converted to a very strongly coupled description. In such a highly-
fluctuating set of variables, we won’t know how to calculate anything. Bad
move.

So instead, let’s first continously vary gg from small to large, as we had
discussed doing earler. Now A and m will gradually become of the same
order. The classical analysis we performed of the Higgs vacuum will become
invalid, as will our semiclassical analysis of the unbroken vacuum. However,
we may now appeal to a special property of supersymmetric field theories.
Even an N' = 1 supersymmetric theory has the property that the energy of
any field configuration is positive. All supersymmetric vacua have exactly
zero energy, and are global minima of the potential. Furthermore, the po-
tential energy is proportional to the square of a complex function, whose
zeroes are controlled by complex analysis. These zeroes cannot simply dis-
appear. Even if we change gy (which, when combined with the 8 angle of
the gauge theory, is actually complex) the number of zeroes cannot suddenly
change. (This hand-waving argument is vastly improved by consideration of
Witten’s index [27], discovered around 1980.) This gives us great confidence
that even at large go, the H vacuum will still exist, with a mass gap and
confining magnetic flux tubes, and so will the C vacuum, with its own mass
gap and confining electric flux tubes. This is not quite a proof, but the
evidence is very strong. (The mathematics of [3] elevates the argument to a
near-proof.)

Now, having moved to a theory with ¢ > 1 which still has the flux
tubes of interest, let’s apply a strong-coupling expansion by switching over
to the magnetic description of the theory, using SU(N)/Zy variables whose
gauge coupling is § = 47 /go. What happens in the magnetic description?
Not only does Montonen-Olive duality invert the gauge coupling, exchange
electric and magnetic charge, and switch SU(N) with SU(N)/Zy, giving a
new description in terms of new adjoint gauge, spinor, and scalar fields &%,
magnetically charged, it also exchanges the H vacuum with the C vacuum
8, 3]!

It’s important not to get confused, so let’s review. In the electric theory,
there is an H vacuum, described at small gy by simple breaking of a gauge
group by condensation of the ®° fields. We don’t have a good electric de-
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Figure 21: The Higgs and Coulomb vacua, in the regions of large and small go, as
described by the two different sets of variables.

scription of it at large g, but we know it still exists. We also know there is a
C vacuum, and we don’t have a good electric description of it even at small
go, much less at large go. Each of these two vacua may also be described
using the magnetic variables of the ' = 4 theory. In these variables, we do
not have any good descriptions when gy is small, since 1/gq is big. However,
when gg is large, and 1/go is small, we have a good description of the C
vacuum (1) which is exactly isomorphic to the small-gy electric description
of the H vacuum at small gy. And that’s what we want: a magnetic de-
scription of the C vacuum, valid at go > 1, which makes it easy to see the
confining electric flux tubes of the C vacuum. In this magnetic description of
the C vacuum, the electric flux tubes are simply the semiclassical (remember
go < 1) solitonic strings which emerge from the condensation of the scalars
@DS, which are magnetically charged and break the magnetic gauge group from
SU(N)/Zy to nothing. These solitons carry Zy = m1[SU(N)/Zy] charge
— which is exactly what we need! Furthermore, we can easily see how the
mass gap is generated in this context, just as it is generated classically at
small gg in the H vacuum.
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So we have found our strong-coupling description of confinement, and
it is precisely as we originally suggested: it is a non-Abelian generalization
of the dual Meissner effect, in which condensation of magnetically charged
scalar fields generates a mass gap and confines electric flux. The picture
even gives us flux tubes with the correct charges!

Can we go back to N/ =1 SYM? No; that would require varying m —
00,90 — 0, which would make the magnetic description of the C vacuum
strongly coupled and unreliable. But by supersymmetry, the physics should
not change too much as we vary go. We may therefore consider this a near-
proof that N/ = 1 SYM does indeed have a mass gap and confinement. It is a
strong argument that the corresponding flux tubes carry Zy charges for the
flux tubes. However, it is no proof at all that confinement occurs via a simple
picture of condensing, weakly-coupled magnetically-charged objects. In fact,
it firmly suggests that the magnetic condensation process is strongly coupled.
This means, for example, that any calculation of the string tension, or even
of ratios of tensions of different flux tubes, will be suspect. Qualitatively
things look great; but a quantitative tool this is not.

Should we expect this picture to survive to the non-supersymmetric case?
Take the theory with A/ = 4 supersymmetry broken to N' = 1, and futher
break N' = 1 supersymmetry by adding an SU(N) gluino mass my < m.
Duality is in fact enough to tell us how to implement this breaking at leading
order in my/m. However we don’t need to think very hard. We know
that the theory has a mass gap, so small supersymmetry-breaking can only
change some properties of the massive fields, without altering the fact that
SU(N)/Zy is completely broken. The strings, whose existence depends only
on this breaking, thus survive for small my. To reach pure YM, however,
requires taking m,m) all to infinity together as go — 0. It seems probable,
given what we know of YM physics, that the strings undergo no transition
as these masses are varied. In particular, we may hope that there is no phase
transition for the strings between pure N' = 1 SYM and pure YM. Note that
this conjecture can, and should, be tested numerically on the lattice.

If in fact the strings of ' =1 SYM and of YM are continously related,
without a transition as a function of the gluino mass, then the arguments
given above for ' = 1 SYM extend to YM, establishing a direct link between
Montonen-Olive duality of N' = 4 gauge theory and the confining Z y-strings
of pure YM theory.
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4.2 A gravitational description of confinement

We have used up most of these lectures, and yet still not reached the latest
developments. I will give an overview of some recent work with Polchingki
[28] which gives a new and remarkable picture of confinement. A somewhat
different picture emerged earlier in this context [29], and other pictures were
discovered later [30, 31, 32]. The reason for the existence of all of these
different pictures is the same as before: each of them represents a distinct
modification of the confining theory of interest into a regime where there is
a new small parameter, and each therefore agrees that confinement occurs
but disagrees on the precise mechanism.

Let me comment on these disagreements. We should abstract a lesson
from all this, namely that confinement is a generic property of gauge theo-
ries for which there can be many causes. The various causes we are learning
about need not be directly relevant for pure YM, or N’ = 1 SYM, which is
too bad, since it means that we are not yet learning any quantitative method
for computing in such a theory. But it may be that neither of these theories
has enough small parameters to permit simple computation. We are not
guaranteed that a given physical phenomenon has a perturbative expansion
in some parameter, any more than we are guaranteed a similar property for
a generic function. It may be that the only way to understand Yang-Mills
theory is either to simulate it or solve it exactly. The latter goal is far be-
yond any mathematical problem ever solved. Simulation may be the end of
the line. [Fortunately, in real-world QCD, there are large global symmetries
among the quarks which are only weakly broken. Expansions around an
exactly-globally-symmetric theory in the small symmetry-breaking parame-
ters has allowed many relations between quantities in nonperturbative QCD
to be predicted. This was essential in the development of the theory of the
strong interactions.]

But even if our new descriptions of confinement are less relevant for YM
and N =1 SYM (and we already know they are even less relevant for QCD,)
they still provide new phenomena for us to think about, ones which could
be relevant in yet other contexts. The goal of these lectures is not merely
to explore confinement in YM and SYM. It is to show you the variety of
phenomena in gauge theories, and encourage you to consider the possibility
that confinement occurs elsewhere in nature, perhaps in unexpected ways
and in unexpected places.

In particular, the most strange and wonderful of all of the developments
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of the 1990s has been the discovery that string theory and field theory are
not even distinct mathematical entities. In the Maldacena [33] conjecture,
sharpened further by Witten [34] and by Gubser, Klebanov and Polyakov
[35], there is strong evidence for a new form of duality. We saw earlier that
we may take a generating functional and give it multiple integral representa-
tions, each of them with a four-dimensional local Lagrangian in its integrand,
giving us a local quantum field theory. But it turns out that we may also
rewrite this functional as a well-known string theory in 941 dimensions, with
five of the dimensions compact. Even though Polyakov [36] has argued for
years that we should seek a five-dimensional string to describe gauge theo-
ries in four-dimensions, it is astonishing that the needed string is one that
we already know. (Of course the string theory has its own dualities, so we
mustn’t limit ourselves to a single set of variables for it either.)

There are many technical problems with this duality. First, we don’t
know how to write a path integral for string fields. (The usual two-dimensional
world-sheet path integral is analogous to a one-dimensional particle world-
line path integral, not to the path integral of a four-dimensional field theory.
The first is “first-quantization”, the second is “second-quantization”.) We
therefore have no explicit way to write the equating of the field theory and
the string theory. Second, the string theory is particularly nasty. The pres-
ence of large curvatures and large Ramond-Ramond fields makes the usual
techniques of classical string theory invalid. But fortunately there is a limit
in which these issues are unimportant, and it is in that limit that we may
hope to study new properties of field theory. This is the limit in which the
quantum string theory reduces simply to classical supergravity. (Actually
this is too restrictive as has been shown very recently [37, 38].) In the re-
maining time, we will seek to study the A/ = 1* theory in a regime where it
is simply described by semiclassical supergravity coupled to strings and to
branes.

Both pure YM and the ' = 1 SYM theory have two parameters, the
QCD scale A and the number of colors N. (The coupling g(x) runs with
scale and is a determined function of y and A; thus it is not an independent
parameter.) However, A is simply the only scale in the problem, so it is
not a dimensionless quantity that it is meaningful to vary. The only other
parameter available is N, and it has long been suggested that as N — oo
gauge theory might simplify, and might even be soluble. The solution to
large N gauge theory has remained elusive, however.

By contrast, the N' = 4 theory has two dimensionless parameters: N
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and the high-energy coupling go. As Maldacena has shown you, the two
parameters play an essential role in the string theoretic description of the
N = 4 theory. The coupling g3 /47 is the string coupling gs, which when
small makes the string theory classical. However, this is not enough, since
even the classical theory in background Ramond-Ramond fields is too com-
plicated. When g3 N/4m = ), the 't Hooft coupling, is large, then the space
on which the classical string theory is defined becomes very large, with very
low curvature; then the string theory reduces to its low-energy limit, namely
type IIB supergravity.

Here we see that the hope of the previous paragraphs, that the large
N limit of gauge theory might simplify, appears to be partially realized.
At large N we do indeed find a new description, a classical string theory.
But only if we simultaneously take A large do we obtain a well-understood
theory, one in which anything can be calculated. At small A the theory is
very complicated. This is unfortunate, because the YM and SYM theories we
might want to study do not have a dimensionless parameter corresponding
to A. The gauge coupling runs from small to large, so we are guaranteed
that at high energy y > A the running A\(x) will be small (which is not a
problem, because we can use field theory perturbation theory in that regime)
and that A\(s) becomes potentially large only near to the energy scale A.
Unfortunately, there is no evidence that A > 1 at 4 ~ A. More likely,
it is only of order 2w, which (when you check the factors of 27) is not
sufficiently large for gravity to work. In particular, in A/ = 1 SYM, the scale
of confinement and the mass gap is

A~ 'u6727r/3)\(u)

(in pure YM, replace 3 with 11/3) so the energy scale y is of the same order
as the confining scale when A is of order 2. Thus, even if gravity were to
actually describe confinement in YM or N' = 1 SYM, it could only do so
at energy scales extremely close to A, corresponding to a ten-dimensional
space whose curvature would be large everywhere except (at best) in a small
region.

If this is true, then gravity cannot provide a nice description of confining
YM or N = 1 SYM. The confinement occuring in these theories can only
be studied using the classical but extremely complicated theory of strings
in Ramond-Ramond fields and on a highly curved space. This duality is
not much better than the electric-magnetic duality we had before. But we
can consider our by-now familiar trick; can we find a way to distort YM or
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N =1 SYM in such a way that we can take \ artificially large?

Yes; just as before, let us consider N' = 1*. The N/ = 1* theory has
three parameters: N, go and m. The first two are those of ' = 4 and
are the important ones in the ultraviolet. In the infrared, gy and m are
combined into A, leaving N as the only dimensionless constant. As in our
earlier discussion, we may take go small but g3 N large; then the ultraviolet
theory will be approximately N' = 4 SYM in the supergravity regime! We
can then consider the effect of m # 0 in the context of supergravity, and
see if we can obtain a picture of how confinement occurs. As always, the
corresponding picture will be special to this particular deformation of N' =1
SYM — note that A ~ me=87"/3N9% and m will be of the same order, so
as usual our confining scale will not be well-separated from the physics of
the massive adjoint chiral multiplets — but we’ll accept this limitation and
move forward.

4.3 Confinement in the supergravity regime of N’ = 1*

This is a long story, and I can’t describe it all here. One needs a nice
discussion of branes, fluxes, and all the rest. So let me be schematic, and
give you a brief but telling overview of what happens in this theory. Needless
to say, a significantly more rigorous discussion appears in our paper [28].

The key idea was provided by Rob Myers, in a slightly different context
[39]. What he showed was this. Suppose you take a collection of flat Dp
branes, forming p+ 1 dimensional Minkowski space MP*! embedded in 941
dimensional flat space. Now subject them to a certain electric field, not an
ordinary Fy,, = 9,4, but rather a derivative of an antisymmetric-tensor
potential with p+ 3 indices — in short, an electric field with p+4 indices. In
this background field, the Dp branes link together and expand into a D(p+2)
brane, with a p+ 3-dimensional worldvolume in the form of a two-sphere [40]
times MPT1L.

Myers called this “dielectric branes”, and with good reason. Take an
atomy; it is electrically neutral, but carries a global charge, its atomic number.
Now subject it to an electric field. It will polarize, as in a dielectric. It is
still electrically neutral, but it locally has electric charge. Also, it still has its
atomic number charge, which is unaffected. Here, our N Dp branes carry a
charge, the total number N. After they expand into a D(p + 2) brane, what
do they have? First, the number of Dp branes hasn’t changed; that charge
remains. Second, the total D(p + 2) brane charge hasn’t changed; a brane
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Figure 22: The Myers effect for D3-branes.

in the form of a two-sphere can collapse and disappear, so our D(p + 2)-
brane will vanish if we turn off the electric flux, and there is no net charge
associated with it. Still, locally on the two-sphere, there is D(p + 2) brane
charge. Go near to the two-sphere and you can feel it; the other side of
the sphere, with cancelling charge, is far away. Thus the Dp branes have
expanded into a D(p + 2)-brane dipole! Particles form dipoles by moving
apart a certain distance; strings and other branes form dipoles by forming
closed surfaces; but the idea is the same.

What’s the connection? Take the N = 4 theory, described as type IIB
string theory on AdSs x S°. Now modify the gauge theory by adding mass
terms as in A/ = 1*. Tt turns out that the modification of the Lagrangian by
the mass operators corresponds, in supergravity, to turning on a background
electric field, a tensor with 7 indices. The D3-branes, whose near-horizon
geometry formed the AdSs x S° spacetime, expand, as Myers suggested,
into a 5-brane. However, they have two choices (actually many more, but
we’ll only consider these two for now.) They can expand into a D5-brane.
But by S-duality, under which D3-branes are invariant and D5-branes are
exchanged with NSb5-branes, it must also be possible for the D3-branes to
expand into an NSh-brane. Solving the equations, one finds that both of
these possibilities are realized. The first corresponds to the Higgs vacuum
of N = 1%, the second to the confining vacuum!

What does this do to the supergravity? The full supergravity solution
has still not been found. However, we were able to show that there exists a
good perturbative expansion in this theory which allows us to demonstrate
solutions of the following form: at large AdS radius r, near the boundary,
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we have AdSs x S° modified slightly by corrections of order 1/r to a power.
At a radius of order ma’N these corrections become large. A singularity
is avoided, however, by the presence of a D5-brane (or NS5-brane) carrying
N units of D3-brane charge. The brane has world-volume S? (placed on an
equator of the S°) times M* (parallel to the boundary of AdSs.) Specifically,
this prevents the 7-form electric flux from diverging and causing the metric
to do the same. Instead, there is a smooth solution (except at the position
of the 5-brane, where there is a standard and understood singularity) which
rounds off nicely at » = 0, without a horizon or singularity at that point.
In fact, for r < ma’N, the spacetime is approximately flat ten-dimensional
space.

AdSx S

AdS

radius 5-Brane /

10

SZ

d=4 Minkowski space

Figure 23: A useful geometrically-reduced representation of a 5-brane of the sort found
in the /' = 1* solution.

What about confinement? Can we see that magnetic flux is confined in
the H vacuum and that electric flux is confined in the C vacuum? Indeed we
can. D-branes, by definition, are places where strings can end. In particular,
F1-strings can end on D3- and D5-branes. But then, by S-duality, D1-branes
can end on D3- and NS5-branes. On the other hand, F1-strings cannot end
on NS5 branes, nor D1-branes on D5-branes. Another important feature is
that D1 branes, and F1-strings, if placed parallel to D3-branes, can dissolve
in them. But D1-branes cannot dissolve into D5-branes, nor can F1-strings
dissolve into NS5-branes.

All of these facts have physical implications for the N’ = 4 and N = 1*
field theories. F1-strings ending on D3-branes look like electrically charged
particles; D1-strings look like magnetic monopoles. We can create a pair of
oppositely-oriented F1-strings, for example, and move them apart without
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large energy cost; thus the electric charges are unconfined, as expected in
N =4 SYM. An Fl-string placed parallel to and inside a stack of D3-branes
corresponds to putting a line of electric flux into the N' = 4 theory. The dis-
solving of this line indicates that electric flux prefers to minimize its energy
by expanding to infinity. Thus electric flux is, as expected, unconfined. The
same holds for magnetic flux, a dissolving D1-brane.

However, in the A/ = 1* theory the vacua of the theory correspond to
5-branes with D3-brane charge. Now, in the H vacuum, we have a spherical
D5-brane, on which D1-branes cannot end! Magnetic charges can no longer
appear with finite energy. And suppose we put a D1-brane parallel to and
near a Db-brane which also carries D3-brane charge. Here a remarkable
thing happens; the D1-brane can only partially dissolve. The D3-branes try
to make the D1-brane expand, but the D5-brane charge prevents its complete
dissolution. We are left with a diffuse, but nonetheless finite-thickness, D1-
brane-D5/D3-brane bound state. The magnetic flux corresponding to the
D1-brane expands, but only to a tube of fixed size; it is confined in this
tube. Furthermore, if we attempt to produce a pair of magnetic monopoles
in the form of D1-branes ending on this D5/D3-brane composite, we will
find instead that they are connected by this diffuse flux tube. The charges,
kinematics and dynamics of D-branes tell us that magnetic charge is confined
in the Higgs vacuum of N' = 1*!

D1
string

anti-monopole
' (monopole) \ ( POie,

NS5-brane ’

Figure 24: Monopoles (D1 strings) can end on NS5-branes; they are not confined.

The S-dual story holds in the confining vacuum. We can repeat the entire
previous paragraph, exchanging D1 with F1, D5 with NS5, and magnetic
with electric. The conclusion is also exchanged: the charges, kinematics and
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dynamics of NSh-branes, D3-branes and fundamental strings tell us that
electric charge is confined in the appropriate vacuum of N' = 1*. We have
found a new picture for confinement. It occurs through the appearance of
an NSb5-brane dipole in the 9+1-dimensional spacetime. The dipole prevents
flux tubes, in the form of fundamental strings, from dissolving into the D3-
branes contained within the dipole, and instead makes them into flux tubes
which are fundamental strings bound to the NS5-brane!®

F1 !

' string ' (anti-quark)
Y (quark) i

flux tube \

NS5-brane '

Figure 25: Heavy quarks (fundamental strings) cannot end on NS5-branes; however,
there is an NS5-F1 bound state that serves as a flux tube connecting the quark and
antiquark.

Of course this is not the end of the story. One should (and can) check that
there is a mass gap, that strings carry Zy charges, that various expectation
values come out correctly, etc. For a few quantities, there are exact results
from field theory that are complicated functions of A and N; comparison
with our gravity solution shows precise agreement, even for the numerical
coefficients. There is also an exciting new form of duality, which is beyond
the scope of these lectures, which takes not go — 1/go but A — 1/A! This is
still largely unexplored territory, although it has been discussed further in
[41].

It is important to remember that we have not been constructing an anal-
ogy. We have not found a new “model” for confinement in field theory.
This is confinement in field theory. The string theory is just a convenient

5In principle it is also possible to break supersymmetry. If the supersymmetry breaking
is small the story does not change much. For large supersymmetry breaking, of order m,
the technical challenges become greater. It is not known whether reliable computations
can be done in that regime, although there are no known obstructions.
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description of it; but we are not dealing with a different theory, just an al-
ternative description of the same theory. This mechanism for confinement is
a new behavior of ordinary, four-dimensional continuum field theory which
was not previously known. It is one of several which have been uncovered in
the regime of large 't Hooft coupling.

However, as always, this is not confinement in pure N = 1 SYM. To
reach that theory, we would have to take the 't Hooft coupling A small. In
that limit, the NS5-brane dipole would shrink in size, its radius becoming
of order the string scale. All calculational control would be lost. That’s the
price we paid for our new picture. Like Moses, we can see the promised land
but never quite manage to reach it.

5 Wrap-up

In these lectures I have given you an overview of some of the key ideas un-
derlying confinement as a property of field theory, and now, of string theory
as well. This is a tiny fraction of what field theory (and now string theory)
is capable of, and we are still uncovering new features on a monthly basis. In
fact, most field theories do not have confinement, for reasons entirely differ-
ent from those of QCD. Many become nontrivial conformal field theories at
low energy. Others become composite, weakly-coupled gauge theories (the
so-called “free-magnetic phase” [17].) Dualities of many stripes are found
everywhere. Ordinary dimensional analysis in string theory is totally wrong
in the regime where it looks like weakly-coupled field theory, and ordinary
dimensional analysis in field theory is totally wrong in the regime where it
looks like weakly-coupled supergravity. There’s much more. You are en-
couraged to stride into the midst of these developments, to search with us
for new features of both field theory and string theory (or, better said, of
the single theory of which both are a part,) and most importantly, and most
difficult, to explain to us what all these dualities really mean, and where
they come from. Good hunting.
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