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Abstract. We review properties of theories for the variation of the gravitation and fine
structure ’constants’. We highlight some general features of the cosmological models that exist
in these theories with reference to recent quasar data that is consistent with time-variation in
the fine structure ’constant’ since a redshift of 3.5. The behaviour of a simple class of varying-
alpha cosmologies is outlined in the light of all the observational constraints. We also discuss
some of the consequences of varying ’constants’ for oscillating universes and show by means of
exact solutions that they appear to evolve monotonically in time even though the scale factor
of the universe oscillates.

1. Introduction
There are several reasons why the possibility of varying constants should be taken seriously [1].
First, we know that the best candidates for unification of the forces of nature in a quantum
gravitational environment only seem to exist in finite form if there are many more dimensions
of space than the three that we are familiar with. This means that the true constants of
nature are defined in higher dimensions and the three-dimensional shadows we observe are no
longer fundamental and do not need to be constant. Any slow change in the scale of the
extra dimensions would be revealed by measurable changes in our three-dimensional ’constants’.
Second, we appreciate that some apparent constant might be determined partially or completely
by spontaneous symmetry-breaking processes in the very early universe. This introduces an
irreducibly random element into the values of those constants. They may be different in different
parts of the universe. The most dramatic manifestation of this process is provided by the chaotic
and eternal inflationary universe scenarios where both the number and the strength of forces
in the universe at low energy can fall out differently in different regions. Third, any outcome
of a theory of quantum gravity will be intrinsically probabilistic. It is often imagined that the
probability distributions for observables will be very sharply peaked but this may not be the case
for all possibilities. Thus, the value of the gravitation ’constant’, G, or its time derivative, Ġ,
might be predicted to be spatial random variables. Fourth, a non-uniqueness of the vacuum state
for the universe would allow other numerical combinations of the constants to have occurred in
different places. String theory indicates that there is a huge ’landscape’ (> 10500) of possible
vacuum states that the universe can find itself residing in as it expand and cools. Each will
have different constants and associated forces and symmetries. It is sobering to remember
that at present we have no idea why any of the constants of Nature take the numerical values
they do and we have never successfully predicted the value of any dimensionless constant in
advance of its measurement. Fifth, the observational limits on possible variations are often
very weak (although they can be made to sound strong by judicious parametrisations). For
example, the cosmological limits on varying G tell us only that Ġ/G ≤ 10−2H0, where H0 is
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the present Hubble rate. However, the last reason to consider varying constants is currently the
most compelling. For the first time there is a body of detailed astronomical evidence for the
time variation of a traditional constant. The observational programme of Webb et al [2, 3] has
completed detailed analyses of three separate quasar absorption line data sets taken at Keck
and finds persistent evidence consistent with the fine structure constant, α, having been smaller
in the past, at z = 1− 3.5. The shift in the value of α for all the data sets is given provisionally
by ∆α/α = (−0.57± 0.10) × 10−5. This result is currently the subject of detailed analysis and
reanalysis by the observers in order to search for possible systematic biases in the astrophysical
environment or in the laboratory determinations of the spectral lines.

The first investigations of time-varying constants were those made by Lord Kelvin and others
interested in possible time-variation of the speed of light at the end of the nineteenth century.
In 1935 Milne devised a theory of gravity, of a form that we would now term ’bimetric’,
in which there were two times – one (t) for atomic phenomena, one (τ) for gravitational
phenomena – linked by τ = log(t/t0). Milne [4] required that the ’mass of the universe’ (what
we would now call the mass inside the particle horizon M ≈ c3G−1t) be constant. This
required G ∝ t. Interestingly, in 1937 the biologist J.B.S. Haldane took a strong interest in
this theory and wrote several papers [5] exploring its consequences for the evolution of life.
The argued that biochemical activation energies might appear constant on the t timescale yet
increase on the τ timescale, giving rise to a non-uniformity in the evolutionary process. Also
at this time there was widespread familiarity with the mysterious ’large numbers’ O(1040) and
O(1080) through the work of Eddington (although they had first been noticed by Weyl [6] –
see ref. [7] and [1] for the history). These two ingredients were merged by Dirac in 1937
in a famous development (supposedly written on his honeymoon) that proposed that these
large numbers (1040) were actually equal, up to small dimensionless factors. Thus, if we form
N ∼ c3t/Gmn ∼ 1080, the number of nucleons in the visible universe, and equate it to the
square of N1 ∼ e2/Gm2

n ∼ 1040, the ratio of the electrostatic and gravitational forces between
two protons then we are led to conclude that one of the constants, e, G, c, h, mn must vary
with time. Dirac [8] chose G ∝ t−1 to carry the time variation. Unfortunately, this hypothesis
did not survive very long. Edward Teller [9] pointed out that such a steep increase in G to
the past led to huge increases in the Earth’s surface temperature in the past. The luminosity
of the sun varies as L ∝ G7 and the radius of the Earth’s orbit as R ∝ G−1 so the Earth’s
surface temperature T⊕ varies as (L/R2)1/4 ∝ G9/4 ∝ t−9/4 and would exceed the boiling point
of water in the pre-Cambrian era. Life would be eliminated. Gamow subsequently suggested
that the time variation needed to reconcile the large number coincidences be carried by e rather
than G, but again this strong variation was soon shown to be in conflict with geophysical and
radioactive decay data. This chapter was brought to an end by Dicke [10] who pointed out
that the N ∼ N2

1 large number coincidence was just the statement that t, the present age
of the universe when our observations are being made, is of order the main-sequence stellar
lifetime, tms ∼ (Gm2

n/hc)−1h/mnc2 ∼ 1010yrs, and therefore inevitable for observers made out
of chemical elements heavier than hydrogen and helium. Dirac never accepted this anthropic
explanation for the large number coincidences (believing that ’observers’ would be present in
the universe long after the stars had died) but curiously can be found making exactly the same
type of anthropic argument to defend his own varying G theory by highly improbable arguments
(that the Sun accretes material periodically during its orbit of the galaxy and this extra material
cancels out the effects of overheating in the past) in correspondence with Gamow in 1967 (see
[1] for fuller details).

Dirac’s proposal acted as a stimulus to theorists, like Jordan, Brans and Dicke [11], to develop
rigorous theories which included the time variation of G self-consistently by modelling it as
arising from the space-time variation of some scalar field φ(x, t) whose motion both conserved
energy and momentum and created its own gravitational field variations. In this respect
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the geometric structure of Einstein’s equations provides a highly constrained environment to
introduce variations of ’constants’. Whereas in Newtonian gravity we are at liberty to introduce
a time-varying G(t) into the law of gravity by

F = −G(t)Mm

r2
(1)

This creates a non-conservative dynamical system but can be solved fairly straightforwardly
[12]. However, this strategy of simply ’writing in’ the variation of G by merely replacing G by
G(t) in the equations that hold when G is a constant fails in general relativity. If we were to
imagine the Einstein equations would generalise to (Gab is the Einstein tensor)

Gab =
8πG(t)

c4
Tab (2)

then taking a covariant divergence and using ∇aGab = 0, together with energy-momentum
conservation (∇aTab = 0) requires that ∇G ≡ 0 and no variations are possible in eq. (2).
Brans-Dicke theory is a familiar example of how the addition of an extra piece to Tab together
with the dynamics of a G(φ) fields makes a varying G theory possible. Despite the simplicity
of this lesson in the context of a varying G theory it was not taken on board when considering
the variations of other non-gravitational constants and the literature is full of limits on their
possible variation which have been derived by considering a theory in which the time-variation
is just written into the equations which hold when the constant does not vary. These ’limits’
are clearly invalid but they will play an important role in guiding us towards the areas where a
full theory will find the strongest rigorous bounds. Recently, the interest in the possibility that
α varies in time has led to the first extensive exploration of simple self-consistent theories in
which a variations occur through the variation of some scalar field.

2. A Simple Varying-Alpha Theory

We are going to consider some of the cosmological consequences of a simple theory with
time varying α. Such a theory was first formulated by Bekenstein [13] as a generalisation
of Maxwell’s equations but ignoring the consequences for the gravitational field equations.
Recently, Magueijo, Sandvik and myself have completed this theory [14, 15, 16, 17, 18] to include
the coupling to the gravitational sector and analysed its general cosmological consequences.
This theory considers only a variation of the electromagnetic coupling and so far ignores
any unification with the strong and electroweak interactions. Extensions to include the weak
interaction via a generalised Weinberg-Salam theory have also been developed recently, see refs.
[19, 20].

Our aim in studying this theory is to build up understanding of the effects of the expansion
on varying α and to identify features that might carry over into more general theories in which
all the unified interactions vary [21, 22, 23]. The constraint imposed on varying α by the need to
bring about unification at high energy is likely to be significant but the complexities of analysing
the simultaneous variation of all the constants involved in the supersymmetric version of the
standard model are considerable. At the most basic level we recognise that any time variation
in the fine structure could be carried by either or both of the electromagnetic or weak couplings
above the electroweak scale.

The idea that the charge on the electron, or the fine structure constant, might vary in
cosmological time was proposed in 1948 by Teller, [9], who suggested that α ∝ (ln t)−1

was implied by Dirac’s proposal that G ∝ t−1 and the numerical coincidence that α−1 ∼
ln(hc/Gm2

pr), where mpr is the proton mass. Later, in 1967, Gamow [24] suggested α ∝ t
as an alternative to Dirac’s time-variation of the gravitation constant, G, as a solution of the
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large numbers coincidences problem and in 1963 Stanyukovich had also considered varying α,
[25], in this context. However, this power-law variation in the recent geological past was soon
ruled out by other evidence [26].

There are a number of possible theories allowing for the variation of the fine structure
constant, α. In the simplest cases one takes c and � to be constants and attributes variations
in α to changes in e or the permittivity of free space (see [27] for a discussion of the meaning
of this choice). This is done by letting e take on the value of a real scalar field which varies in
space and time (for more complicated cases, resorting to complex fields undergoing spontaneous
symmetry breaking, see the case of fast tracks discussed in [28]). Thus e0 → e = e0ε(xµ),
where ε is a dimensionless scalar field and e0 is a constant denoting the present value of e. This
operation implies that some well established assumptions, like charge conservation, must give
way [29]. Nevertheless, the principles of local gauge invariance and causality are maintained, as
is the scale invariance of the ε field (under a suitable choice of dynamics). In addition there is
no conflict with local Lorentz invariance or covariance.

With this set up in mind, the dynamics of our theory is then constructed as follows. Since e
is the electromagnetic coupling, the ε field couples to the gauge field as εAµ in the Lagrangian
and the gauge transformation which leaves the action invariant is εAµ → εAµ +χ,µ, rather than
the usual Aµ → Aµ + χ,µ. The gauge-invariant electromagnetic field tensor is therefore

Fµν =
1
ε

((εAν),µ − (εAµ),ν) , (3)

which reduces to the usual form when ε is constant. The electromagnetic part of the action is
still

Sem = −
∫

d4x
√
−gFµνFµν . (4)

and the dynamics of the ε field are controlled by the kinetic term

Sε = −1
2

�

l2

∫
d4x

√
−g

ε,µε,µ

ε2
, (5)

as in dilaton theories. Here, l is the characteristic length scale of the theory, introduced for
dimensional reasons. This constant length scale gives the scale down to which the electric field
around a point charge is accurately Coulombic. The corresponding energy scale, �c/l, has to lie
between a few tens of MeV and Planck scale, ∼ 1019GeV to avoid conflict with experiment.

Our generalisation of the scalar theory proposed by Bekenstein [13] described in refs.
[15, 16, 17, 18] includes the gravitational effects of ψ and gives the field equations:

Gµν = 8πG
(
Tmatter

µν + Tψ
µν + T em

µν e−2ψ
)

. (6)

The stress tensor of the ψ field is derived from the lagrangian Lψ = −ω
2 ∂µψ∂µψ and the ψ field

obeys the equation of motion

�ψ =
2
ω

e−2ψLem (7)

where we have defined the coupling constant ω = (c)/l2. This constant is of order ∼ 1 if, as in
[14], the energy scale is similar to Planck scale. It is clear that Lem vanishes for a sea of pure
radiation since then Lem = (E2−B2)/2 = 0. We therefore expect the variation in α to be driven
by electrostatic and magnetostatic energy-components rather than electromagnetic radiation.

In order to make quantitative predictions we need to know how much of the non-relativistic
matter contributes to the RHS of Eqn. (7). This is parametrised by ζ ≡ Lem/ρ, where ρ is the
energy density, and for baryonic matter Lem = E2/2. For protons and neutrons ζp and ζn can be
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estimated from the electromagnetic corrections to the nucleon mass, 0.63 MeV and −0.13 MeV,
respectively [30]. This correction contains the E2/2 contribution (always positive), but also
terms of the form jµaµ (where jµ is the quarks’ current) and so cannot be used directly. Hence
we take a guiding value ζp ≈ ζn ∼ 10−4. Furthermore the cosmological value of ζ (denoted ζm)
has to be weighted by the fraction of matter that is non-baryonic. Hence, ζm depends strongly on
the nature of the dark matter and can take both positive and negative values depending on which
of Coulomb-energy or magnetostatic energy dominates the dark matter of the Universe. It could
be that ζCDM ≈ −1 (superconducting cosmic strings, for which Lem ≈ −B2/2), or ζCDM 	 1
(neutrinos). BBN predicts an approximate value for the baryon density of ΩB ≈ 0.03 (where
ΩB is the density of matter in units of the critical density 3H2/8πG) with a Hubble parameter
of H = 60Kms−1Mpc−1, implying ΩCDM ≈ 0.3. Thus depending on the nature of the dark
matter ζm can be virtually anything between −1 and +1. The uncertainties in the underlying
quark physics and especially the constituents of the dark matter make it difficult to impose more
certain bounds on ζm.

We should not confuse this theory with other similar variations. Bekenstein’s theory does not
take into account the stress energy tensor of the dielectric field in Einstein’s equations. Dilaton
theories predict a global coupling between the scalar and all other matter fields (not just the
electromagnetically charged material) [31, 32, 33, 34, 35]. As a result they predict variations in
other constants of nature, and also a different cosmological dynamics.

2.1. The cosmological equations
Assuming a homogeneous and isotropic Friedmann metric with expansion scale factor a(t) and
curvature parameter k in eqn. (6), we obtain the field equations (c ≡ 1)

(
ȧ

a

)2

=
8πG

3

(
ρm (1 + ζm exp [−2ψ]) + ρr exp [−2ψ] +

ω

2
ψ̇2

)
− k

a2
+

Λ
3

, (8)

where Λ is the cosmological constant. For the scalar field we have the propagation equation,

ψ̈ + 3Hψ̇ = − 2
ω

exp [−2ψ]ζmρm, (9)

where H ≡ ȧ/a is the Hubble expansion rate. We can rewrite this more simply as

(ψ̇a3)̇ = N exp[−2ψ] (10)

where N is a positive constant defined by

N = −2ζmρma3

ω
(11)

Note that the sign of the evolution of ψ is dependent on the sign of ζm. Since the observational
data is consistent with a smaller value of α in the past, we will in this paper confine our study
to negative values of ζm, in line with our recent discussion in Refs. [14, 15, 16, 17, 18]. The
conservation equations for the non-interacting radiation and matter densities are

˙ρm + 3Hρm = 0 (12)
ρ̇r + 4Hρr = 2ψ̇ρr. (13)

and so ρm ∝ a−3 and ρr e−2ψ ∝ a−4, respectively. If additional non-interacting perfect fluids
satisfying equation of state p = (γ − 1)ρ are added to the universe then they contribute density
terms ρ ∝ a−3γ to the RHS of eq.(8) as usual. This theory enables the cosmological consequences
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of varying e, to be analysed self-consistently rather than by changing the constant value of e in
the standard theory to another constant value, as in the original proposals made in response to
the large numbers coincidences.

We have been unable to solve these equations in general except for a few special cases.
However, as with the Friedmann equation of general relativity, it is possible to determine the
overall pattern of cosmological evolution in the presence of matter, radiation, curvature, and
positive cosmological constant by matched approximations. We shall consider the form of the
solutions to these equations when the universe is successively dominated by the kinetic energy
of the scalar field ψ, pressure-free matter, radiation, negative spatial curvature, and positive
cosmological constant. Our analytic expressions are checked by numerical solutions of (8) and
(9).

There are a number of conclusions that can be drawn from the study of the simple BSBM
models with ζm < 0. These models give a good fit to the varying α implied by the QSO data of
refs. [2, 3]. There is just a single parameter to fit and this is given by the choice

−ζm

ω
= (2 ± 1) × 10−4 (14)

The simple solutions predict a slow (logarithmic) time increase during the dust era of k = 0
Friedmann universes. The cosmological constant turns off the time-variation of α at the redshift
when the universe begins to accelerate (z ∼ 0.7) and so there is no conflict between the α
variation seen in quasars at z ∼ 1 − 3.5 and the limits on possible variation of α deduced from
the operation of the Oklo natural reactor [36] (even assuming that the cosmological variation
applies unchanged to the terrestrial environment). The reactor operated 1.8 billion years ago at a
redshift of only z ∼ 0.1 when no significant variations were occurring in α. The slow logarithmic
increase in α also means that we would not expect to have seen any effect yet in the anisotropy
of the microwave backgrounds [37, 38]: the value of α at the last scattering redshift, z = 1000,
is only 0.005% lower than its value today. Similarly, the essentially constant evolution of α
predicted during the radiation era leads us to expect no measurable effects on the products of
Big Bang nucleosynthesis (BBN) [39] because α was only 0.007% smaller at BBN than it is today.
This does not rule out the possibility that unification effects in a more general theory might
require variations in weak and strong couplings, or their contributions to the neutron-proton
mass difference, which might produce observable differences in the light element productions and
new constraints on varying α at z ∼ 109 − 1010. By contrast, varying-alpha cosmologies with
ζ > 0 lead to bad consequences unless the scalar field driving the alpha variations is a ’ghost’
field, with negatively coupled kinetic energy, in which case there are interesting cosmological
consequences, [44], which we will describe in section 5 below. If ψ is not a ghost then the fine
structure ’constant’ falls rapidly at late times and the variation is such that it even comes to
dominate the Friedmann equation for the cosmological dynamics. We regard this as a signal
that such models are astrophysically ruled out and perhaps also mathematically badly behaved.

We should also mention that theories in which α varies will in general lead to violations of the
weak equivalence principle (WEP). This is because the α variation is carried by a field like ψ and
this couples differently to different nuclei because they contain different numbers of electrically
charged particles (protons). The theory discussed here has the interesting consequence of leading
to a relative acceleration of order 10−13 [40] if the free coupling parameter is fixed to the value
given in eq. (14) using a best fit of the theories cosmological model to the QSO observations of
refs. [2, 3]. Other predictions of such WEP violations have also been made in refs. [41, 30, 42, 43].
The observational upper bound on this parameter from direct experiment is just an order of
magnitude larger, at 10−12, and limits from the motion of the Moon are of similar order, but
space-based tests planned for the STEP mission are expected to achieve a sensitivity of order
10−18 and will provide a completely independent check on theories of time-varying e and α.This

258



is an exciting prospect for the future.

2.2. The nature of the Friedmann solutions
Let us present the predicted cosmological evolution of α in the BSBM theory, that we
summarised above, in a little more detail. During the radiation era the expansion scale factor
of the universe increases as a(t) ∼ t1/2 and α is essentially constant in universes with an
entropy per baryon and present value of α like our own. It increases in the dust era, where
a(t) ∼ t2/3. The increase in α however, is very slow with a late-time solution for ψ proportional
to 1

2 log(2N log(t)), and so

α ∼ 2N log t (15)

This slow increase continues until the expansion becomes dominated by negative curvature,
a(t) ∼ t, or by a cosmological vacuum energy, a(t) ∼ exp[Λt/3]. Thereafter α asymptotes rapidly
to a constant. If we set the cosmological constant equal to zero and k = 0 then, during the dust
era, α would continue to increase indefinitely. The effect of the expansion is very significant at
all times. If we were to turn it off and set a(t) constant then we could solve the ψ equation to
give the following exponentially growing evolution for α, [45]:

α = exp[2ψ] = A−2 cosh2[AN1/2(t + t0)]; A constant. (16)

From these results it is evident that non-zero curvature or cosmological constant brings to
an end the increase in the value of α that occurs during the dust-dominated era. Hence, if the
spatial curvature and Λ are both too small it is possible for the fine structure constant to grow
too large for biologically important atoms and nuclei to exist in the universe. There will be a
time in the future when α reaches too large a value for life to emerge or persist. The closer a
universe is to flatness or the closer Λ is to zero so the longer the monotonic increase in α will
continue, and the more likely it becomes that life will be extinguished. Conversely, a non-zero
positive Λ or a non-zero negative curvature will stop the increase of α earlier and allow life to
persist for longer. If life can survive into the curvature or Λ-dominated phases of the universe’s
history then it will not be threatened by the steady cosmological increase in α unless the
universe collapses back to high density.

There have been several studies, following Carter, [46] and Tryon [47], of the need for life-
supporting universes to expand close to the ’flat’ Einstein de Sitter trajectory for long periods of
time. This ensures that the universe cannot collapse back to high density before galaxies, stars,
and biochemical elements can form by gravitational instability, or expand too fast for stars and
galaxies to form by gravitational instability [48, 7]. Likewise, it was pointed out by Barrow and
Tipler, [7] that there are similar anthropic restrictions on the magnitude of any cosmological
constant, Λ. If it is too large in magnitude it will either precipitate premature collapse back
to high density (if Λ < 0) or prevent the gravitational condensation of any stars and galaxies
(if Λ > 0). Thus, we can provide good anthropic reasons why we can expect to live in an old
universe that is neither too far from flatness nor dominated by a much stronger cosmological
constant than observed (|Λ| ≤ 10 |Λobs|).

Inflationary universe models provide a possible theoretical explanation for proximity to
flatness but no explanation for the smallness of the cosmological constant. Varying speed of light
theories [49, 27, 50, 51, 52] offer possible explanations for proximity to flatness and smallness of
a classical cosmological constant (but not necessarily for one induced by vacuum corrections in
the early universe). We have shown that if we enlarge our cosmological theory to accommodate
variations in some traditional constants then it appears to be anthropically disadvantageous for
a universe to lie too close to flatness or for the cosmological constant to be too close to zero.
This conclusion arises because of the coupling between time-variations in constants like α and
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the curvature or Λ, which control the expansion of the universe. The onset of a period of Λ or
curvature domination has the property of dynamically stabilising the constants, thereby creating
favourable conditions for the emergence of structures. This point has been missed in previous
studies because they have never combined the issues of Λ and flatness and the issue of the values
of constants. By coupling these two types of anthropic considerations we find that too small a
value of Λ or the spatial curvature can be as poisonous for life as too much. Universes like those
described above, with increasing α(t), lead inexorably to an epoch where α is too large for the
existence of atoms, molecules, and stars to be possible [16].

Surprisingly, there has been almost no consideration of habitability in cosmologies with
time-varying constants since Haldane’s discussions [5] of the biological consequences of Milne’s
bimetric theory of gravity. Since then, attention has focussed upon the consequences of universes
in which the constants are different but still constant. Those cosmologies with varying constants
that have been studied have not considered the effects of curvature or Λ domination on the
variation of constants and have generally considered power-law variation to hold for all times.
The examples described here show that this restriction has prevented a full appreciation of
the coupling between the expansion dynamics of the universe and the values of the constants
that define the course of local physical processes within it. Our discussion of a theory with
varying α shows for the first time a possible reason why the 3-curvature of universes and the
value of any cosmological constant may need to be bounded below in order that the universe
permit atomic life to exist for a significant period. Previous anthropic arguments [7] have shown
that the spatial curvature of the universe and the value of the cosmological constant must be
bounded above in order for life-supporting environments (stars) to develop. We note that the
lower bounds discussed here are more fundamental than these upper bounds because they derive
from changes in α which have direct consequences for biochemistry whereas the upper bounds
just constrain the formation of astrophysical environments by gravitational instability. Taken
together, these arguments suggest that within an ensemble of all possible worlds where α and
G are time variables, there might only be a finite interval of non-zero values of the curvature
and cosmological constant contributions to the dynamics that both allow galaxies and stars to
form and their biochemical products to persist.

3. The Observational Evidence

New precision studies of relativistic fine structure in the absorption lines of dust clouds
around quasars by Webb et al., [2, 3], have led to widespread theoretical interest in the
question of whether the fine structure constant, αem = e2/�c, has varied in time and, if
so, how to accommodate such a variation by a minimal perturbation of existing theories of
electromagnetism. These astronomical studies have proved to be more sensitive than laboratory
probes of the constancy of the fine structure ’constant’, which currently give bounds on the
time variation of α̇em/αem ≡ −0.4 ± 16 × 10−16yr−1, [53], |α̇em/αem| < 1.2 × 10−15yr−1,
[54], α̇em/αem ≡ −0.9 ± 2.9 × 10−16yr−1, [55] by comparing atomic clock standards based on
different sensitive hyperfine transition frequencies, and α̇em/αem ≡ −0.3 ± 2.0 × 10−15yr−1

from comparing two standards derived from 1S-2S transitions in atomic hydrogen after an
interval of 2.8 years [56]. The quasar data analysed in refs. [2, 3] consists of three separate
samples of Keck-Hires observations which combine to give a data set of 128 objects at redshifts
0.5 < z < 3. The many-multiplet technique finds that their absorption spectra are consistent
with a shift in the value of the fine structure constant between these redshifts and the present
of ∆αem/αem ≡ [αem(z)−αem]/αem = −0.57± 0.10× 10−5, where αem ≡ αem(0) is the present
value of the fine structure constant [2, 3]. Extensive analysis has yet to find a selection effect that
can explain the sense and magnitude of the relativistic line-shifts underpinning these deductions.
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Further observational studies have been published in refs. [57, 58] using a different but smaller
data set of 23 absorption systems in front of 23 VLT-UVES quasars at 0.4 ≤ z ≤ 2.3 and have
been analysed using an approximate form of the many-multiplet analysis techniques introduced
in refs. [2, 3]. They obtained ∆αem/αem ≡ −0.6 ± 0.6 × 10−6; a figure that disagrees with the
results of refs. [2, 3] . However, reanalysis is needed in order to understand the accuracy
being claimed and ensure that all spectral lines are being identified. Other observational
studies of lower sensitivity have also been made using OIII emission lines of galaxies and
quasars. The analysis of data sets of 42 and 165 quasars from the SDSS gave the constraints
∆αem/αem ≡ 0.51±1.26×10−4 and ∆αem/αem ≡ 1.2±0.7×10−4 respectively for objects in the
redshift range 0.16 ≤ z ≤ 0.8 [59]. Observations of a single quasar absorption system at z = 1.15
by Quast et al [60] gave ∆αem/αem ≡ −0.1 ± 1.7 × 10−6 , and observations of an absorption
system at z = 1.839 by Levshakov et al [61] gave ∆αem/αem ≡ 2.4 ± 3.8 × 10−6. A preliminary
analysis of constraints derived from the study of the OH microwave transition from a quasar at
z = 0.2467, a method proposed by Darling [62], has given ∆αem/αem ≡ 0.51±1.26×10−4, [63].A
comparison of redshifts measured using molecules and atomic hydrogen in two cloud systems
by Drinkwater et al [64] at z = 0.25 and z = 0.68 gave a bound of ∆αem/αem < 5 × 10−6 and
an upper bound on spatial variations of δαem/αem < 3 × 10−6 over 3 Gpc at these redshifts. A
new study comparing UV absorption redshifted into the optical with redshifted 21cm absorption
lines from the same cloud in a sample of 8 quasars by Tzanavaris et al [65]. This comparison
probes the constancy of α2gpme/mp and gives ∆αem/αem ≡ 0.18 ± 0.55 × 10−5 if we assume
that the electron-proton mass ratio and proton g-factor, gp, are both constant.

Observational bounds derived from the microwave background radiation structure [66] and
Big Bang nucleosynthesis [39, 67] are not competitive at present (giving ∆αem/αem � 10−2 at
best at z ∼ 103 and z ∼ 109−1010) with those derived from quasar studies, although they probe
much higher redshifts.

Other bounds on the possible variation of the fine structure constant have been derived from
geochemical studies, although they are subject to awkward environmental uncertainties. The
resonant capture cross-section for thermal neutrons by samarium-149 about two billion years
ago (z 
 0.15) in the Oklo natural nuclear reactor has created a samarium-149:samarium-147
ratio at the reactor site that is depleted by the capture process 149Sm + n →150 Sm + γ to
an observed value of only about 0.02 compared to the value of about 0.9 found in normal
samples of samarium. The need for this capture resonance to be in place two billion years
ago at an energy level within about 90meV of its current value leads to very strong bounds
on all interaction coupling constants that contribute to the energy level, as first noticed by
Shlyakhter [68, 1]. The latest analyses by Fujii et al [69] allow two solutions (one consistent
with no variation the other with a variation) because of the double-valued form of the capture
cross-section’s response to small changes in the resonance energy over the range of possible
reactor temperatures: ∆αem/αem ≡ −0.8 ± 1.0 × 10−8 or ∆αem/αem ≡ 8.8 ± 0.7 × 10−8.
The latter possibility does not include zero but might be excluded by further studies of other
reactor abundances. Subsequently, Lamoureax [70] has argued that a better (non-Maxwellian)
assumption about the thermal neutron spectrum in the reactor leads to 6σ lower bound on the
variation of ∆αem/αem > 4.5 × 10−8 at z 
 0.15.

Studies of the effects of varying a fine structure constant on the β-decay lifetime was first
considered by Peebles and Dicke [71] as a means of constraining allowed variations in αem by
studying the ratio of rhenium to osmium in meteorites. The β-decay 187

75 Re →187
76 Os + ν̄e + e−

is very sensitive to αem and the analysis of new meteoritic data together with new laboratory
measurements of the decay rates of long-lived beta isotopes has led to a time-averaged limit
of ∆αem/αem = 8 ± 16 × 10−7 [72, 73] for a sample that spans the age of the solar system
(z ≤ 0.45). Both the Oklo and meteoritic bounds are complicated by the possibility of
simultaneous variations of other constants which contribute to the energy levels and decay
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rates; for reviews see refs. [74, 75]. They also apply to environments within virialised structures
that do not take part in the Hubble expansion of the universe and so it is not advisable to use
them in conjunction with astronomical information from quasars without a theory that links
the values of αem in the two different environments that differ in density by a factor of O(1030).
Detailed discussions of this problem when G and α vary have been made in refs. [76, 77, 78].

4. The Role of Inhomogeneities

All early studies of the cosmological consequences of varying constants have assumed that they
vary homogeneously. Such an assumption is also implicit when laboratory data or solar system
observations are used to constrain cosmological theories of varying G and α. In reality such a
simple approach is very dangerous. Our local observations are made inside a gross cosmological
overdensity – 1030 times denser than the mean density of the background universe – that is not
taking part in the universal expansion. We should no more expect laboratory observations of
the constancy of α to reflect what is happening on extragalactic scales than we should expect a
measurement of the density of the Earth to give a good estimate of the density of the universe. In
order to use our local observations effectively we need a theoretical description of how variations
in, say, α will vary with the local density of matter as a result of the process of galaxy, star,
and planetary formation. For example, when a cosmological overdensity separates out from
the expansion of the universe, and collapses under its own gravity, it will eventually come into
a stationary virial equilibrium. If α is a space-time variable it will continue changing in the
background universe after it has ceased to change in the virialised protogalaxy with a density
contrast of about 106 with respect to the background universe. In this way we see that the
process of galaxy formation leads us to expect that any time variation in fundamental constants
will be inevitably accompanied by a space variation that is potentially much more marked.
In particular both α and α̇ will exhibit different values inside and outside galaxies and galaxy
clusters. Moreover, we expect the residual time variations inside galaxies (and hence in terrestrial
laboratories) to be significantly smaller than those to be found in extragalactic systems that take
part in the expansion of the universe [77, 78].

These theoretical developments, together with the appearance of new observational probes of
the constants of physics at high redshift, coupled with recent rapid progress in direct laboratory
probes of the stability of atomic systems that depend sensitively on the value of the fine structure
constant here and now, promise to create an exciting new focal point in our quest to understand
the nature (as well as the number) of the fundamental constants of Nature.

5. Bouncing Universes

Finally, we turn to a rather speculative subject. The ”bouncing universe” is a modern
cosmological reincarnation of an ancient fascination with the cyclic patterns of nature and the
myth of the ”eternal return” [79, 7, 80]. Gravitation theories like general relativity allow us to
make precise models of this popular conception of a “phoenix” cosmology, in which a universe
periodically collapses to a Big Crunch, only to rebound into a new state of expansion, as if
emerging from a unique Big Bang [81]. Multiple bounces are possible but each cycle lasts
longer and expands to a larger maximum size than the previous one, a consequence of a simple
application of the second law of thermodynamics [81, 82, 83, 84], unless there is a finite positive
cosmological constant, in which case the oscillations must eventually cease [85] and are replaced
by eternal de Sitter expansion. A sequence of many oscillations will drive the bouncing closed
universe closer and closer to flatness. This provokes us to ask what happens to varying constants
over a succession of bounces?
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“Quantum gravity” effects are invariably invoked to justify the bounce; possible detailed
calculations, however, have only recently emerged. In loop quantum gravity, the semi-classical
Friedmann equations receive corrections that produce a bounce [86]. The ekpyrotic model of the
universe, inspired by string/M-theory, is another possible realization of phoenix cosmology [87].
It is also possible that ghost fields – fields endowed with negative energy – are capable of
producing a classical bounce (this idea has been often rediscovered; see [88] for a good review).
Classical bounces produced by conventional scalar fields with potentials which only violate
the strong energy condition are difficult to produce in universes that grow large enough to
be realistic: typically the probability of bounce is of order the ratio of the minimum to the
maximum expansion size [89, 90].

It has been speculated that whatever causes a collapsing universe to bounce can reprocesses
some aspects of physics, either randomly [91], or systematically [92], by changing the particle
spectrum or resetting the dimensionless “constants” of Nature. Both of these options are severely
constrained by anthropic requirements but it is interesting to ask whether there are monotonic
or asymptotic trends in the values of some quantities, as seems to be the case for the degree
of flatness of the universe, over many bounces. This matter is clearly of great importance
in the context of varying-constant theories. Here, quantities which are traditionally constants
become space-time variables and if singularities are avoided in the bounce then their evolution
from cycle to cycle is predictable by the field equations rather than the outcome of effectively
random reprocessing. The values of any dimensionless ’constants’ of Nature could evolve towards
asymptotic attractors if they are allowed to be variables in a self-consistent theory. Studies of
these theories are also important in assessing the stability and level of fluctuations in a bouncing
universe. It has been suggested that thermal fluctuations in bouncing models could be the origin
of the cosmic structure [94, 93]; this would provide a distinct alternative to an origin from vacuum
quantum fluctuations in a de Sitter phase of cosmological expansion.

Although these claims are intriguing, it is difficult to evaluate them in the absence of a
concrete model for the bounce, which is usually viewed as a black box from which anything
can emerge [91]. First, we consider a simple bouncing cosmology following from an edition of
the simplest BSBM varying-constant theory we described earlier. We derive the result that for
suitable couplings (indeed those favoured by the observations reported in refs. [2, 3]) the theory
leads to a bouncing universe. We were able to find exact non-singular bouncing solutions both in
the presence and in the absence of dissipation. They describe the evolution of the fine structure
’constant’, α, and the expansion scale factor of the universe from cycle to cycle. In the presence
of dissipation the size of each expansion cycle is bigger than its predecessor in accord with the
Second Law of thermodynamics.

Crucial to our models is the idea that cosmological fields may have a negative energy. Such
fields are called ghosts [88], and are far from new, having found widespread application in the
study of steady-state cosmology [95], phantom dark matter [96, 97], and κ-essence [98]. In the
cosmological solutions discussed above we require that the ratio of free parameters ζ/ω < 0, 14.
This was achieved with ω > 0 by assuming that the dark matter content had a form that was
dominated by magnetic energy with ζ < 0. However, it is also possible if matter has the usual
electrostatic energy content, ζ > 0, but the scalar coupling satisfies ω < 0, so ψ has a negative
kinetic energy term, and is thus a ’ghost’ field. This theory can then still fit the observational
constraints on varying alpha reported by [2, 3].

Ghosts have been criticized on a variety of grounds. Classically, they are a source of
instabilities if coupled to other forms of matter, since they will try to off-load an infinite amount
of positive energy into them. This is not necessarily cataclysmic if the rate of these processes is
sufficiently slow. For instance, in steady-state cosmology to negative probabilities. The quantum
instabilities are also much more severe and are present even without direct coupling to matter,
for example in runaway particle production via the graviton vertex. Hence, at the quantum level
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ghosts are pathological. However, we know that quantisation of the field ψ is pathological even
for ω > 0. For instance, the theory is non-renormalisable. The attitude to ψ should therefore
be similar to that with regards to gravity: “don’t quantise”. General relativity is also, at face
value, non-renormalisable: for instance, the quantum corrections to the relativistic precession
of the perihelion of Mercury are infinite. This doesn’t stop the classical theory from being very
successful. It may be that the quantisation of ghosts is simply more subtle; ghosts have been
found as type II∗ string theories [99].

Non-relativistic matter and the cosmological constant may be neglected near a bounce, so let
us consider a Friedmann-Robertson-Walker (FRW) universe filled with radiation and a dielectric
field, ψ. In the radiation era, the cosmological equations for BSBM varying-α theory are, using
(8)

H2 =
1
3

(
ρre

−2ψ + ρψ

)
− k

a2
, (17)

ä

a
= −1

6

(
2ρre

−2ψ + 4ρψ

)
, (18)

where we have now set 8πG = 1, H ≡ ȧ/a is the Hubble expansion rate, k is the 3-curvature
constant, and ρψ = ωψ̇2/2. For the scalar field, in the absence of non-relativistic matter, we
have (9)

ψ̈ + 3Hψ̇ = 0. (19)

so ψ̇ ∝ a−3 and we recall that α ≡ e2ψ. We should not ignore the possibility that at high
curvatures quantum processes may allow the conversion of ψ energy into radiation. We take
this into account by introducing variable ρ̃r = ρre

−2ψ and rewriting the conservation equations
as:

ρ̇ψ + 6Hρψ = −s(ρ̃r, ψ̇, a), (20)
˙̃ρr + 4Hρ̃r = s(ρ̃r, ψ̇, a). (21)

In this case, the equation of motion for ψ will contain an additional s term which models
energy transfer between the ψ field and the radiation sea in accord with the second law of
thermodynamics. We shall consider the implications of such a process, in all its generality,
below, but let us look first at the equations neglecting this coupling function.

Consider first a model s = 0 bouncing universe which is exactly soluble [44]. Taking k = +1,
Eqn. (17) has the form

ȧ2

a2
= − S

a6
+

Γ
a4

− 1
a2

, (22)

where S and Γ are positive constants. In terms of conformal time dη = a−1dt, this can be
integrated to give

a2(η) =
1
2

[
Γ +

√
Γ2 − 4S sin{2(η + η0)}

]
(23)

when Γ2 > 4S. Identifying the expansion maximum and minimum, we see that a(η) is given by

a2 =
1
2

[
a2

max + a2
min + (a2

max − a2
min) sin{2(η + η0)}

]
, (24)

where amax is global expansion maximum and amin is the global minimum of a(η), defined by

a2
max

a2
min

≡ Γ ±
√

Γ2 − 4S

2
(25)
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Since ψ̇ = Ca−3 we have, for ω < 0, that S = −ωC2/2 and the scalar field driving time-variation
of the fine structure constant is given by

ψ = ± 2
|ω| tan−1

{
Γ tan(η + η0) +

√
Γ2 − 4S

2
√

S

}
.

Since α = e2ψ we see that as a function of proper time, t, there is a steady increase of α with
time despite the oscillatory behaviour of the expansion scale factor.

When s = 0 we have a variety of oscillating solutions whose characteristics depend on the
initial conditions. For bouncing solutions α remains nearly constant during each cycle but
changes sharply, but still monotonically, at the bounce. There is no significant change of
behaviour at the expansion maximum which also implies that there should be no gross difference
in evolution inside and outside spherical overdensities far from the bounce. With amax � amin,
and setting Γ = ρ̃ra

4/3 and S = −ρψa6/3, we have amin =
√

S/Γ and amax =
√

Γ. We can then
see that the bounce duration is ∆t ∼ a2

min/amax. Since ψ̇ ∼
√

6Γ3/2/(S |ω|1/2) near the bounce,
we find that ∆ψ ∼

√
6/ |ω|, independently of initial conditions, during each bounce.

The extreme case is a stable static universe. Setting ȧ = 0 and ä = 0, we can see that this
case is realized when ρψ = −ρ̃r/2, giving a =

√
6/ρ̃r. For such a universe ψ evolves linearly in

t, and we have α ∝ e2ψ and there is exponentially rapid increase from cycle to cycle [45]. Even
though such a universe is static, the rulers and clocks of observers change as alpha changes,
so that they actually observe a Milne universe. We can see that the solution is stable because
homogeneous and isotropic perturbations lead to a universe with regular sinusoidal oscillations.
Such solutions are described by (24) in the case where amax ≈ amin. This situation differs from
that found in general relativity in the absence of ghost fields [100].

If s is a non-vanishing then, regardless of its exact functional form, there are two type of
solutions. If s �= 0 at all times, then sooner or later the universe enters a steady-state evolution
with exponential expansion and constant overall energy density ensured by the appropriate
transfer of energy between the ψ field and radiation. However, we expect that these energy-
transport processes will switch off at low curvatures, when the universe expands to a sufficiently
large size (a >> amin) and transport processes become collisionless and far slower than the
expansion rate. Then, the typical evolution is that ψ is approximately constant during each
cycle and changes dramatically at the bounce. In addition, each cycle is now bigger than
the previous one, because Γ increases at each bounce. This is an interesting realisation of
the standard Tolman scenario. Cycles get bigger (and entropy is generated near the bounce)
specifically because radiation is produced from the scalar field close to each bounce.

The lesson from this study and the extension to bouncing Brans-Dicke universes with varying
G, studied in ref. [44] is that time variations in constants driven by scalar fields tend to
accumulate monotonically through successive minima in the expansion scale factor. They do not
oscillate along with the scale factor. This creates a bad problem asymptotically for the nature
of the universe. Eventually, the appearance of a vacuum energy will stop any oscillations [85]
the value of a ’constant’ like α will freeze in at its value when the acceleration of the universe
begins.
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