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Gegenstand dieser Arbeit ist die theoretische Beschreibung relativistischer Schwer-
ionenkollisionen im Hinblick auf die Transportkoeffizienten der Kernmaterie. Eine der
zentralen Fragen moderner Kernphysik ist die Untersuchung der Struktur und der Ei-
genschaften der Kernmaterie unter extremen Bedingungen von Temperatur und Dichte.
Genau hier setzen relativistische Schwerionenkollisionen an: Sie bieten eine einzigartige
Möglichkeit, die fundamentalen Bausteine unserer Materie zu untersuchen und Zustände
nachzustellen, wie sie wenige Mikrosekunden nach dem Urknall geherrscht haben könn-
ten. Indem man zwei schwere Ionen – in der Regel Atomkerne – auf Geschwindigkeiten
nahe der Lichtgeschwindigkeit beschleunigt und miteinander kollidieren lässt, wird
eine enorme Energiemenge freigesetzt. Diese Energie führt dazu, dass eine Vielzahl
neuer Teilchen entsteht, die in einem kurzlebigen, extrem heißen und dichten „Feuerball“
interagieren. Während dieser Feuerball expandiert und abkühlt, kann in bestimmten
Energiebereichen ein Zustand auftreten, in dem Quarks und Gluonen nicht mehr in
Hadronen gebunden sind, sondern frei existieren können. Dieses Medium wird als
Quark-Gluon-Plasma (QGP) bezeichnet.

Die Möglichkeit, die dabei entstehenden Teilchen am Ende im Detektor nachzuweisen,
erlaubt Rückschlüsse auf das zuvor gebildete Medium. Unter anderem wird so ver-
sucht, das QCD-Phasendiagramm – also die Zustände stark wechselwirkender Materie
in Abhängigkeit von Temperatur und Baryonendichte – experimentell und theoretisch zu
erschließen. Bei niedrigen Temperaturen und Dichten liegt die Materie in Form gebun-
dener Hadronen vor. Bei extremen Bedingungen hingegen brechen diese gebundenen
Zustände auf, sodass die Quarks und Gluonen als Quark-Gluon-Plasma existieren kön-
nen. Unterschiedliche Bereiche des QCD-Phasendiagramms werden durch eine Reihe
großer internationaler Forschungsanlagen zugänglich gemacht. Beispiele sind das Con-
seil Européen pour la Recherche Nucléaire (CERN) in Genf, das Brookhaven National

xiii



Laboratory (BNL) in den USA oder die Gesellschaft für Schwerionenforschung (GSI) in
Darmstadt.

Je nach Aufbau der Beschleunigeranlagen können Schwerionenkollisionen bei un-
terschiedlichen Energien durchgeführt werden. Dies ermöglicht gezielte Einblicke in
verschiedene Temperatur- und Dichtebereiche. So werden etwa mit dem Large Hadron
Collider (LHC) am CERN und dem Relativistic Heavy-Ion Collider (RHIC) am BNL
sehr hohe Kollisionsenergien erzielt, die besonders hohe Temperaturen bei relativ ge-
ringen Baryonendichten erzeugen. Dieser Bereich ist essenziell, um zum Beispiel den
Phasenübergang zwischen hadronischem Gas und Quark-Gluon-Plasma zu untersuchen,
der bei niedriger Dichte als sogenannter Crossover erwartet wird. Bei höheren Dichten
und mittleren Energien hingegen, wie sie unter anderem am BNL im Rahmen des Beam
Energy Scan (BES), am CERN mit dem NA61/SHINE-Experiment oder zukünftig an
der GSI (FAIR) erforscht werden, könnte ein Phasenübergang erster Ordnung auftreten.
Die Entdeckung und genaue Lokalisierung eines möglichen kritischen Endpunktes im
QCD-Phasendiagramm zählt derzeit zu den spannendsten Zielen vieler Experimente.

Um ein vollständiges Bild der zugrundeliegenden Prozesse und Eigenschaften zu
erhalten, ist es notwendig, die gemessenen Daten aus diesen Experimenten mit theoreti-
schen Modellrechnungen zu vergleichen. Auf diese Weise lassen sich bereits bestehende
Annahmen über das QCD-Phasendiagramm verifizieren und potenzielle Lücken im
theoretischen Verständnis erkennen. Da Schwerionenkollisionen sehr unterschiedliche
Energiebereiche abdecken, kommen verschiedene Modelle zur Anwendung. Bei niedri-
gen Energien stellen Transportmodelle mit hadronischen Freiheitsgraden – etwa SMASH,
UrQMD, PHSD, GiBUU oder JAM – eine bewährte Methode dar. In solchen Transportmo-
dellen wird das Kollisionsintegral in der Boltzmann-Gleichung mithilfe von hadronischen
Resonanzen abgebildet, die wiederum Formationen und Zerfälle durchlaufen können. Ein
klarer Vorteil dabei ist die Möglichkeit, die vollständige Raum-Zeit-Impuls-Entwicklung
jedes einzelnen Teilchens zu verfolgen und Interaktionsketten rückwirkend genau zu
rekonstruieren. Allerdings stoßen rein hadronische Modelle an ihre Grenzen, sobald die
relevanten Freiheitsgrade partonischer Natur sind und die Energien hoch genug sind, um
ein Quark-Gluon-Plasma ausbilden zu können. Aus diesem Grund wenden einige dieser
Transportmodelle auch ein String-Modell an, um partonische Prozesse besser beschreiben
zu können.

In den hochenergetischen Bereichen, wie sie etwa am LHC und am RHIC realisiert wer-
den, verwendet man häufig sogenannte Hybridmodelle. Diese kombinieren hydrodynami-
sche Beschreibungen, die vor allem den heißen und dichten Teil der Feuerball-Evolution
abdecken, mit Transportmodellen, welche die spätere, weniger dichte Expansionsphase si-
mulieren. In der hydrodynamischen Phase wird das Medium üblicherweise mithilfe einer
relativistischen, viskosen (3+1)-dimensionalen Hydrodynamik beschrieben, bis die Dichte
so weit gefallen ist, dass eine Annahme lokaler thermischer Gleichgewichte nicht mehr
gerechtfertigt ist. Dann erfolgt ein Übergang, bei dem die Fluid-Elemente zu Hadronen
„gefroren werden“ und in ein Transportmodell überführt werden. Schließlich kann man
damit den Ausfrierprozess der Teilchen weiterverfolgen. Derartige Hybridansätze sind in
einem breiten Energiespektrum außerordentlich erfolgreich und erlauben eine detaillierte
Beschreibung verschiedener beobachtbarer Größen wie zum Beispiel Teilchenspektren
und den kollektiven Fluss.
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Die hydrodynamische Beschreibung muss mit einer Verteilung der thermodynamischen
Größen initialisiert werden, welche das Resultat der initialen Kollisonen ist. Die Beschrei-
bung dieses Anfangszustands der Schwerionenkollision ist theoretisch anspruchsvoll,
da sie experimentell kaum zugänglich ist. Aus diesem Grund gibt es eine Vielzahl an
Modellen, unter anderem parametrischer Natur, aus effektiven Feldtheorien oder dem
hadronischen Transport.

Ein wesentlicher Bestandteil dieser theoretischen Untersuchungen ist das Verständnis
der Transportkoeffizienten im Quark-Gluon-Plasma. Dazu zählen insbesondere die Scher-
viskosität η/s und die Volumenviskosität ζ/s, die das Strömungsverhalten der Materie
bestimmen und damit direkt in messbare Observablen wie kollektive Flusseigenschaften
und Teilchenspektren eingehen. Die Bestimmung dieser Größen erfordert eine präzise
Verbindung zwischen den theoretischen Beschreibungen – ob nun Transportmodelle
oder (viskose) hydrodynamische Ansätze – und den experimentell ermittelten Daten.
Erst durch diesen Abgleich lassen sich robuste Aussagen über den Zustand und die
Eigenschaften des erzeugten Mediums gewinnen. Eine Übereinstimmung von Messungen
und Simulationsergebnissen ist ein Indiz dafür, dass die Theorie das System korrekt
beschreibt, während Abweichungen Hinweise auf unvollständige Modelle oder fehlende
Prozesse liefern. Eine genaue Bestimmung dieser Transportkoeffizienten könnte es erlau-
ben, wichtige Einblicke in die Prozesse zu erlangen, welche die komplexe Struktur des
Phasendiagrams der QCD erzeugen.

Das zur Analyse verwendete SMASH-vHLLE-Hybridmodell kombiniert zwei verschie-
dene Ansätze, um die gesamte Dynamik der Kollision zu erfassen. In der anfänglichen
Phase der Kollision, in der Prozesse außerhalb des Gleichgewichts auftreten, wird das
hadronische Transportmodell SMASH verwendet, das eine mikroskopische Beschreibung
der Hadron-Hadron-Wechselwirkungen ermöglicht. In diesem Stadium sind elastische
und inelastische Streuprozesse sowie Resonanzbildungen von Bedeutung. Sobald das
Medium thermodynamische Gleichgewichtsbedingungen erreicht, erfolgt ein Übergang
zur relativistischen viskosen Hydrodynamik (vHLLE), welche die Expansion des Quark-
Gluon-Plasmas unter Berücksichtigung der Transportkoeffizienten beschreibt. Diese
Phase ist besonders wichtig, da die Viskositäten maßgeblich die hydrodynamische Ent-
wicklung und die finalen Teilchenverteilungen beeinflussen. Schließlich kehrt das System
zum hadronischen Transportmodell zurück, um den Übergang von einem hydrodynami-
schen Kontinuum zu einer kinetischen Beschreibung zu ermöglichen, bevor die Teilchen
das Medium verlassen und gemessen werden können.

Zur Intrepretation der Signaturen der Transportkoeffizienten im Endzustand, insbe-
sondere der Impulsanisotropie, ist ein genaues Verständnis des Einflusses des Anfangszu-
stands wichtig. Impulsanisotropien im Endzustand sind das Ergebnis einer Anisotropie
der räumlichen Verteilung der Energie am Beginn der Kollision, d.h. der Exzentrizität
der Kollisionszone. Diese kann experimentell aufgrund der kurzen Lebenszeit des An-
fangszustands nicht beobachtet werden. Verschiedene Modelle sagen unterschiedliche
Exzentrizitäten vorher, und manche von ihnen simulieren auch den Impuls des Anfangs-
zustands, welcher die Evolution zusätzlich beeinflusst. Der Effekt dieser Unterschiede
ist wichtig, um die anhand der Impulsanisotropie vorhergesagten Transportkoeffizien-
ten korrekt zu interpretieren. In dieser Arbeit wurden drei verschiedene Modelle für
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die Initialisierung untersucht: IP-Glasma, ein Modell, das die Gluonendynamik und
Fluktuationen in der Energiedichte auf Grundlage von Farbfeldern beschreibt; TRENTo,
ein phänomenologisches Modell, das die Teilchendichteverteilungen aus einfachen Ska-
lierungsrelationen ableitet; und SMASH, das eine hadronische Initialisierung erlaubt.
Es konnte beobachtet werden, dass sich bei gleicher hydrodynamischer Entwicklung
und bei gleichen Transportkoeffizienten signifikante Unterschiede ergeben. Die weit
verbreitete Annahme, dass Exzentrizität und anisotroper Fluss linear zusammenhängen
und der Koeffizient lediglich von Viskositäten abhängt, kann als Vereinfachung gesehen
werden; allerdings spielte der Impuls im Anfangszustand gerade bei zentralen Kollisio-
nen eine wichtige Rolle und sollte bei der Modellierung nicht vernachlässigt werden.
Unterschiede zwischen Vorhersagen über die Transportkoeffizienten, welche unterschied-
liche Anfangszustandsmodelle verwenden, können deshalb auch von Unterschieden im
Anfangszustand herrühren.

In einem weiteren Schritt wurden wichtige Beiträge zur Bestimmung von Transport-
koeffizienten geliefert. Dabei wurde anstatt eines Mittelwerts der Versuch unternommen,
die Transportkoeffizienten abhängig von Dichte und Temperatur auszudrücken. Eine
Untersuchung der Scherviskosität als Funktion der Energiedichte konnte zeigen, dass die
hierdurch implizite Baryonendichteabhängigkeit der Scherviskosität die Abhängigkeit
der Vorhersage des elliptischen Flusses vom Übergang zum hadronischen Transports
reduziert. Dies legte eine Übereinstimmung mit der funktionalen Abhängigkeit im
hadronischen Transport nahe und motivierte weitere Untersuchungen in diese Richtung.

Die Bestimmung der Viskositäten erfolgte daraufhin durch Bayessche Inferenz. Durch
diese statistische Methode wurden experimentelle Daten mit theoretischen Modellen
kombiniert, um die wahrscheinlichsten Werte der Transportkoeffizienten zu extrahieren.
Die Analyse zeigte, dass die Scherviskosität in der Nähe der kritischen Temperatur
des Phasenübergangs von hadronischer Materie zum Quark-Gluon-Plasma auf null
fällt, während sie bei niedrigeren Temperaturen stark ansteigt. Die Abhängigkeit der
Scherviskosität von der Baryonendichte kann bisher nur bedingt eingegrenzt werden
und zeigt die Notwendigkeit weiterer experimenteller Daten. Für die Volumenviskosität
konnten substantielle Werte gefunden werden. Die Untersuchung der Abhängigkeit der
Vorhersagen von den verwendeten Datensätzen unterstrich die Notwendigkeit, sowohl ein
breites Energieintervall als auch Daten aus einem möglichst breiten Rapiditätsintervall
einzubeziehen. Beide konnten den Verlauf der Transportkoeffizienten einschränken.
Dies unterstreicht, dass sowohl Theorie als auch Experiment bestrebt sein müssen, die
vollständige Form von Events in einem breiten Energiebereich zu beschreiben.

Die Ergebnisse dieser Arbeit liefern neue Einblicke in die Transportkoeffizienten von
Kernmaterie und deren Einfluss auf Schwerionenkollisionen. Durch die Kombination
eines hybriden Simulationsansatzes mit modernen statistischen Methoden gelingt es,
präzisere Aussagen über die Viskositäten zu treffen. Besonders hervorzuheben ist, dass
sowohl die Temperatur- als auch die Dichteabhängigkeit von η/s und ζ/s wesentliche Ein-
flussgrößen für die hydrodynamische Evolution der Materie darstellen. Diese Arbeit stellt
die erste Bayessche Inferenz für relativistische Schwerionenkollisionen mit hadronischen
Anfangszustand und temperatur- und baryonendichteabhängigen Transportkoeffizienten
dar. Die Vorhersagen für die Scherviskosität unterscheiden sich substantiell von bisheri-
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gen Ergebnissen in der Literatur und motivierten dadurch weitere Untersuchungen mit
diesem Modell. Gleichzeitig konnte aber auch gezeigt werden, dass der Anfangszustand
in Hybridmodellen eine zentrale Rolle spielt und die Vorhersagen stark beeinflussen
kann, weshalb es notwendig ist, diesen in Zukunft besser zu verstehen.

Darüber hinaus könnten experimentelle Messungen in bisher weniger erforschten Berei-
chen des Phasendiagramms, insbesondere durch den geplanten Betrieb der FAIR-Anlage
in Darmstadt, zusätzliche Informationen liefern. Die Kombination aus verbesserten Si-
mulationen, präziseren experimentellen Daten und weiterentwickelten theoretischen
Modellen wird dazu beitragen, das Verhalten von Kernmaterie unter extremen Be-
dingungen besser zu verstehen und das QCD-Phasendiagramm weiter zu kartieren.
Diese Fortschritte sind nicht nur für das Verständnis fundamentaler Physikprozesse
von Bedeutung, sondern haben auch Implikationen für astrophysikalische Objekte wie
Neutronensterne, deren innere Struktur stark von den Eigenschaften der QCD-Materie
abhängt.
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1
I N T R O D U C T I O N

If a given science accidentally reached its goal, this would by no
means stop the workers in the field, who would be driven past
their goal by the sheer momentum of the illusion of unlimited
progress.

— Hannah Arendt, The Life of the Mind (1971), p. 55

The 20th century profoundly transformed our understanding of the natural world,
both around and within us, in ways unparalleled by any historical period before. At the
dawn the 20th century, humanity’s grasp of the universe was scarcely more advanced
than when Goethe lent the famous words to his archetype of a scholar, Faust:

Dass ich erkenne, was die Welt
Im Innersten zusammenhält

("That I may perceive what holds the world together in its innermost essence") [5]. It was
not the absence of a pact with the devil that had hindered scientific progress in previous
centuries. Rather, while the scientific method had advanced significantly, technological
developments lagged behind, limiting deeper insights into the true nature of matter.

At the turn of the 20th century, a synergy between the matured scientific method and
rapidly advancing technological capabilities enabled revolutionary discoveries. Building
upon earlier achievements like Maxwell’s equations [6], the first breakthroughs came
with the formulation of quantum mechanics and the theory of relativity. Max Planck’s
discovery of energy quantization [7] and Albert Einstein’s explanation of the photoelectric
effect [8] provided the foundation for understanding matter and light at atomic and
subatomic scales. Simultaneously, Einstein’s theories of special [9] and general relativ-
ity [10] redefined the understanding of space, time, and gravity, offering insights that
remain cornerstones of modern physics. These advances were only possible through a
deep interplay of theoretical ideas and technological progress.

One of the most transformative developments was the mastery of electricity. Innova-
tions in electrical engineering not only electrified industries and cities but also powered
the equipment indispensable for scientific inquiry. Early 20th-century technologies, such
as vacuum tubes and later transistors, enabled the creation of increasingly sensitive and
precise instruments. Spectrometers, powered by electrical systems, allowed for detailed
atomic spectra analyses, while particle detectors like Geiger counters utilized electrical
circuits to measure radiation. The invention of photography allowed Wilhelm Röntgen to
not just discover X-rays, but also his successors to both understand the nature of radiation
better, as well as to leverage it for application.

The coupling of advanced engineering and physics was particularly evident in the
development of accelerators. Cyclotrons and synchrotrons, powered by high-voltage
technologies, provided the energy required to delve deeper into matter’s structure.
High-energy collision studies with these machines revealed various subatomic particles,
including the pion, confirming theoretical frameworks of nuclear forces.

Equally transformative was the advent of computation. Theoretical physics frequently
requires solving complex equations describing particle and force interactions, equations
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seldom solvable by hand. Early in the century, mechanical calculators facilitated this
work, but the advent of digital computers during and after World War II revolutionized
the field. The Manhattan Project, although focused on nuclear weapons, demonstrated
computational modelling’s potential for understanding atomic processes. These tools were
later adapted for peacetime research, enabling simulations of phenomena like quantum
field interactions and predicting particle properties before experimental discovery.

As the century advanced, the synergy between technology and theory became even
more pronounced. Sensitive detectors, such as cloud chambers and later bubble cham-
bers, enabled physicists to visualize particle paths. Electrical circuits processed these
observations, while photographic techniques captured fleeting particle interactions. Each
detector improvement brought new discoveries, from the positron to strange quarks.

The rapid advancement of technology not only transformed the way of life for human-
ity — disrupting traditions that had remained largely unchanged since the Neolithic
Revolution until the Industrial Revolution — but also fundamentally altered the practice
of science. The Renaissance ideal of the polymath and the image of the lone genius
faded as scientific progress grew more collaborative and specialized. To this day, there is
debate over who might be considered the last individual to excel across multiple scientific
domains. Was it Alexander von Humboldt, the person for whom the greatest number
of natural features, plants, and institutions are named [11]? Or Galileo Galilei, who
constructed his own telescopes and used them to revolutionize our understanding of the
universe [12]? Perhaps it was Bertrand Russell, who not only redefined the foundations
of science but also extended his intellect to designing a vision for a more equitable society
— fearlessly engaging in the political debates his peers often avoided [13]. Regardless of
the candidate, few, if any, would propose a contemporary figure as their equal.

Even today, the idea of individual researchers making breakthroughs through brilliance
and thought experiments captivates the imagination. Yet the reality is that the expansion
of human knowledge since Einstein’s time has grown far beyond what a single mind can
encompass. While individuals such as Steven Weinberg [14] and Juan Maldacena [15]
have made profound contributions, it is increasingly unlikely that any one person alone
could both propose a radical new theory and independently test it. As in other areas of
society, the division of labor has become indispensable. The rise of highly specialized
disciplines and professionalization has propelled science forward but has also fragmented
our understanding of the world. The dream of the German Idealists — figures like Kant
and Hegel — that the universe might be contained, described, and comprehended in a
single system [16], has long faded. Nevertheless, the pursuit of unified understanding
within specific domains persists. It is a reflection of humanity’s enduring ambition to
seek coherence within the vastness of knowledge.

The division of labor within the scientific community has also led to a profound split
between experimentalists and theorists in physics. However, it has also enabled the devel-
opment of remarkable technological and mathematical expertise. While a foundational
understanding of experimental methods for theorists — and of theoretical frameworks
for experimentalists — is encouraged, deep specialization has become unavoidable. This
evolution, as well as the ethical introspection following the destructive power demon-
strated during the Manhattan Project, underscored the necessity for collaborative and
peaceful scientific endeavors, ultimately leading to the founding of CERN, a symbol of
international cooperation in physics.
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1.1 the standard model of particle physics

At CERN, the Large Hadrons Collider (LHC) stands as one of the greatest achievements
of engineering, incorporating superconducting magnets, cryogenic cooling systems, and
a petabyte-scale data collection and analysis infrastructure [17, 18]. These feats were
made possible by advances in materials science, computational technology, and electrical
engineering, as well as the expertise of thousands of experimentalists who applied these
innovations to scientific discovery. This technological marvel enabled the experimental
confirmation of the Higgs boson in 2012 — a cornerstone of the Standard Model of
particle physics [19, 20]. Though the Standard Model falls short of providing a complete
understanding of nature, it offers at least a partial answer to the question, “What holds the
world together at its innermost essence?”

In the 21st century, we reflect with awe upon past achievements, standing on the
shoulders of giants in such heights that the air is getting too thin to breath. With a steadily
growing community and knowledge base, but also more and more complex challenges,
bridging the gap between theory and experiment is becoming increasingly difficult. The
rise of phenomenology, a branch of physics aiming to make quantitative predictions from
known theories, underscores the scientific method’s central step: falsification through
comparison with experiment, as verification is inherently unattainable [21]. Advances in
computational and numerical models, driven by decades of Moore’s law [22], gave us
an ever increasing amount of computational power. With improving computational and
numerical models, phenomenology stands up to the challenge to leverage experimental
results in order to aid the development of new theories. Such an effort is fundamentally
interdisciplinary and forces the practitioner to partially abandon ideas of specialization
and division of labor in favor of a certain degree of a generalist approach, using results
of many branches of physics, computer science and mathematics. Ultimately, the quest
remains however to describe the fundamental constituents of matter. With this goal in
mind, a brief overview of the current understanding of this issue is given. After a general
overview of the field and its current state, an outline of the core problem at the heart of
this work and its structure is provided.

1.1 The Standard Model of Particle Physics
The Standard Model of particle physics stands as one of the most successful theoretical
frameworks in modern physics, describing the smallest known constituents of nature
and their interactions via fundamental forces. Although we know that it is inherently
incomplete, as it cannot describe phenomena like dark matter or gravity, no contradiction
with experimental measurements has occurred in more than a decade after finding its
last missing constituent. This presents both a great success as well as a major obstacle
in the development of the field. The fundamental forces, in descending order of their
strength, are the strong interaction, the weak interaction, the electromagnetic interaction
and gravity. The Standard Model includes all but the gravity, as the latter is too weak to
act on microscopic scales. Fundamental forces act on particles depending on associated
charge, which are the color, weak and electric charge respectively, whereas gravity acts
on the mass. This framework is rooted in quantum field theory, where particles are
treated as excitations of underlying quantum fields, and their interactions are mediated
by gauge bosons. Bosons carry integer spin, which is an intrinsic quantum mechanical
property, akin to angular momentum, which determines their behavior under rotations.
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Particles called fermions carry half-integer spins. Based on the charges of the particles
mentioned above, fig. 1.1 summarizes the classification of the known elementary particles
depending on their properties. The fermions split up in quarks and leptons. Quarks carry
color charge, leptons do not. Leptons without electric charge are the neutrinos. The three
generations of fermions have increasing mass. As their existence requires therefore a
higher energy, and due to the fundamental observation that physical systems minimize
the required energy, higher generations exist only rarely outside the most extreme of
conditions. The gauge boson of electromagnetic interaction is the photon (γ), the W and
Z boson transmit the weak interaction, whereas the gluons are responsible for the strong
interaction. All of them are spin-1 particles. The Higgs boson, a spin-0 particle, is the
mediator of the Higgs mechanism, which is responsible for the mass of particles via the
Yukawa interactions with the Higgs field.

Figure 1.1: The elementary particles of the Standard Model. Adapted from [23].

1.1.1 The Lagrangian of the Standard Model

The dynamics of the Standard Model are encapsulated in its Lagrangian, which is
expressed as:

LSM = Lgauge +Lfermion +LHiggs. (1.1)

Here, Lgauge describes the self-interactions and dynamics of the gauge bosons, Lfermion

accounts for the interactions of fermions with these gauge bosons, and LHiggs introduces
the mechanism responsible for generating particle masses through spontaneous symmetry
breaking. In the following, we show the different terms contributing to the standard
model Lagrangian sorted by the fundamental forces.
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1.1 the standard model of particle physics

electromagnetic interaction. The electromagnetic force acts on particles carry-
ing electric charge and is mediated by photons, which are massless and do not self-interact.
Quantum Electrodynamics (QED), an Abelian U(1) gauge theory, provides the theoretical
framework for this interaction. Its Lagrangian is given by:

LQED = ψ̄ (iγµ(∂µ − ieAµ) −m)ψ−
1

4
FµνF

µν, (1.2)

where ψ is the fermion wave function, Aµ is the photon field, and Fµν is the electromag-
netic field tensor.

weak interaction. The weak force governs processes such as beta decay and
neutrino oscillations. Mediated by the massive W± and Z bosons, it is described by
the electroweak theory, unifying the weak and electromagnetic interactions under the
SU(2)L× U(1)Y gauge group. Its Lagrangian can be written as

LEW = −
1

4
Wi

µνW
iµν −

1

4
BµνB

µν + ψ̄γµ(iDµ)ψ, (1.3)

where:

• Wi
µν and Bµν are the field strength tensors of the Wi

µ and gauge Bµ gauge fields,
respectively,

• Dµ = ∂µ − igT iWi
µ − ig ′YBµ is the covariant derivative,

• g and g ′ are the coupling constants for the SU(2)L and U(1)Y symmetries, respec-
tively,

• T i are the SU(2) generators, and Y is the hypercharge.

The electroweak interaction couples differently to left-handed and right-handed fermions,
reflecting the chiral nature of the weak force. The W and Z bosons acquire mass through
the Higgs mechanism, breaking the underlying symmetry while preserving gauge invari-
ance.

the higgs mechanism The Higgs mechanism provides the Standard Model with
a unified explanation for the masses of elementary particles through spontaneous sym-
metry breaking of the electroweak SU(2)L× U(1)Y symmetry. The Higgs field’s quantum
excitation, the Higgs boson, was experimentally confirmed by the ATLAS and CMS
collaborations in 2012 [19, 20]. The Higgs Lagrangian is:

LHiggs = |DµΦ|2 − V(Φ), (1.4)

where Dµ is the covariant derivative and V(Φ) is the potential responsible for symmetry
breaking.

Although all of this interactions give rise to many interesting and challenging physics
phenomena, the focus of this work is on the physics associated with the strong interaction.
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1.1.2 The Strong Interaction and Quantum Chromodynamics (QCD)

Among the forces in the Standard Model, the strong interaction is unique due to its
remarkable strength of around 1038 times the strength of gravity, while having short
range of around 1 fm, or the radius of a proton. It binds quarks into protons, neutrons,
and other hadrons, and holds atomic nuclei together. As almost all the mass of the
measurable universe is realized by these hadrons, the strong interaction is pivotal for
its description. The theoretical framework describing the strong interaction is Quantum
Chromodynamics (QCD), a non-Abelian SU(3) gauge theory where gluons, the force
carriers, interact among themselves due to their color charge.

The QCD Lagrangian is expressed as:

LQCD = ψ̄i

(
iγµ(Dµ)ij −mδij

)
ψj −

1

4
Ga

µνG
µν
a , (1.5)

where ψi are the quark fields, γµ are the Dirac matrices, (Dµ)ij = ∂µδij − igs(T
a)ijA

a
µ

is the SU(3) covariant derivative, Aa
µ represents the gluon fields, and Ga

µν is the gluon
field strength tensor:

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν, (1.6)

with fabc being the structure constants of SU(3). The self-interaction of gluons, a conse-
quence of the non-Abelian nature of the SU(3) gauge group, leads to the emergence of key
phenomena such as confinement and asymptotic freedom. This also means that gluons
carry color charge themselves, allowing self-interaction. As a result of this self-interaction,
the strength of the strong coupling reduces with the energy scale.

asymptotic freedom . Asymptotic freedom, discovered by Gross, Wilczek, and
Politzer [24, 25], is the property that the QCD coupling constant αs decreases at high
momentum transfers (short distances), as can be seen from fig. 1.2. This implies that
quarks and gluons interact weakly at high energies, enabling perturbative calculations in
this regime. It is this phenomenom that, on the one hand, allows precision calculations
for hadron collisions at the LHC. QCD interactions can be perturbatively expanded here,
allowing to test the Standard Model to very high degrees of certainty. On the other hand,
in less energetic situations, like in a nucleus at rest, the coupling constant becomes very
large, leading to bound states.

confinement. Confinement is the property that quarks and gluons cannot exist
freely in the low energy regime; they are always confined within color-neutral hadrons.
Color neutral combinations are in nature primarily achieved in two ways—mesons, a
combination of a quark with a quark having the anti-color of the other quark, and baryons,
which are a combination of one quark of each color ("red", "blue" or "green", or the
respective anti-colors), such that they achieve together color neutrality. If one were to
attempt to split a meson and separate the quarks, the QCD potential would grow linearly
with the separation distance between quarks. This would continue until there is enough
energy to create two new quarks, such that one ends up with two color neutral mesons.
This severely restricts our ability to study the structure of hadrons from first principles.
On the other hand, given a high temperature or a dense medium, the confinement to
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hadrons would cease. Such a process of deconfinement gives rise to a new phase of
matter, referred to as quark-gluon plasma (QGP). This "parton soup" 1 is a fundamentally
different state than a gas of color-neutral hadrons, predominant at low-energy regimes.

Figure 1.2: The QCD coupling constant. One sees the running coupling due to the energy
dependence. Figure adapted from [26].

chiral symmetry and its breaking . Another essential property of QCD is chiral
symmetry. This symmetry is explicitly and spontaneously broken. Chirality is a property
determining the behavior of the fermion spinor under chiral transformations, often
interpreted as the “left- or right-handedness” of a fermion. The fermion wave function Ψ,
which describes quarks in the QCD Lagrangian eq. (1.5), is represented as a spinor that
can be decomposed into left-handed and right-handed components:

ψ = ψL +ψR, (1.7)

where

ψL = PL ψ =
1

2
(1− γ5) ψ and ψR = PR ψ =

1

2
(1+ γ5) ψ, (1.8)

with PL and PR being projection operators and γ5 defined in the Dirac basis as γ5 =

i γ0γ1γ2γ3.
QCD, as an SU(3) gauge theory, has a chiral symmetry representation of SU(3)R×

SU(3)L. Left- and right-handed components of the spinor transform differently under
this symmetry, governed by:

ψ→ e−i θaTa γ5

ψ for a ∈ {1, ..., 8}, (1.9)

where Ta are the SU(3) generators expressed as Ta = λa

2 using the Gell-Mann matrices
λa [27].

In the chiral limit of massless quarks, the QCD Lagrangian is chirally symmetric. In
reality, however, the quarks have non-zero masses. This leads to this symmetry being
explicitly broken. Nevertheless, as quark masses are much smaller than those of hadrons,

1 Partons refer to the constituents of a nucleon, in general quarks and gluons.
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chiral symmetry remains an approximate symmetry of QCD [28]. Furthermore, although
QCD exhibits an invariance under chiral transformations, the vacuum expectation value
⟨ψ̄ψ⟩ is not invariant, leading to spontaneous chiral symmetry breaking [29]. This
breaking arises because chiral transformations mix left- and right-handed components of
the ground state:

ψ̄ψ = (ψ̄L + ψ̄R) (ψL +ψR) = ψRψ̄L +ψLψ̄R. (1.10)

At extreme temperatures and densities, chiral symmetry is expected to be restored,
marking a transition in the properties of strongly interacting matter.

As a result of the running coupling and chiral symmetry breaking, matter governed by
the strong interaction is expected to show highly different behavior depending on the
energy and density scales. Just as regular molecular matter shows different properties
as a function of temperature and density, a similiar property can be defined for nuclear
matter as well, leading to the definition of a phase diagram.

1.2 The Phase Diagram of QCD
The investigation of nuclear matter at different temperatures and densities is at the core
of this work. We want to give an overview of the current understanding of this topic
before we proceed in describing the aims of this work in greater detail.

The phase diagram of QCD provides a theoretical framework to understand the be-
havior of strongly interacting matter across varying temperatures (T ) and baryochemical
potential (µB). The latter is defined as the excess of baryons over anti-baryons. It includes
key phenomena such as confinement, chiral symmetry breaking, and the transition to a
deconfined quark-gluon plasma (QGP) phase. Despite the complexity of QCD, significant
progress has been made in mapping the phase diagram through both first-principles
calculations and effective models, taking into account our knowledge about QCD from
the Standard Model.

1.2.1 First Principles and Field Theory Approaches to the Phase Diagram

Theoretical exploration of the QCD phase diagram employs a combination of approaches
which start from the Lagrangian of QCD:

lattice qcd. Lattice QCD (lQCD, [30]) remains the most reliable first-principles
approach for µB = 0 and regions of small µB. lQCD calculations non-perturbatively
solve QCD. This is achieved by discretizing the space-time on a lattice and afterwards
extrapolating it to the continuum. It provides accurate predictions of the crossover
transition at µB ≈ 0 from a hadron gas to a QGP [31] at a critical temperature of
TC ≈ 155 MeV [32], as well as thermodynamic equilibrium properties. Figure 1.3 shows
an example for this. Additionally, lQCD allows to calculate an equation of state (including
the mentioned phase transition) [33–35] for small µB. The reason for this restriction is
that the sign problem limits its applicability to larger µB values, necessitating alternative
methods. Results for physical quark masses are limited to a chemical potential of µB = 0,
and small finite µB values are only accessible by Taylor expansions around µB = 0 [36].
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1.2 the phase diagram of qcd

Figure 1.3: Trace anomaly, entropy density, and pressure as a function of temperature, calcu-
lated by lQCD at µB = 0. Figure from [37].

effective models . Effective theories such as the Nambu–Jona-Lasinio (NJL) model [38,
39], Chiral Effective Field Theory [40] or Color Glass Condensate (CGC) [41] each cap-
ture some key features of QCD. This is achieved by integrating out specific degrees of
freedom and restricting the description to certain regimes, like regimes of high density
or temperature. NJL, for example, is an approximation for the low-energy regime. As it
predicts for certain regimes a first-order phase transition between a hadron gas and the
QGP, whereas lQCD predicts a crossover, this is one of the hints for the existence of a
critical end point (CEP), a point in the phase diagram where the line of first-order phase
transition ends [42].

functional methods . Non-perturbative approaches such as the Functional Renor-
malization Group (FRG) [43] and the Dyson-Schwinger Equations (DSE) [44] offer a
complementary perspective to lattice QCD, particularly at finite baryochemical potential.
Both frameworks start from the fundamental QCD action and derive infinite hierarchies
of coupled integral equations for Green’s functions. The FRG follows the evolution of
these Green’s functions under changes of an infrared (IR) cutoff scale, integrating out
momentum modes step by step to capture fluctuations across all scales. Similarly, the DSE
approach leverages integral equations that directly relate quark and gluon propagators
and vertices, enabling the computation of correlation functions beyond the perturbative
regime.

One key advantage of functional methods is their ability to treat finite µB without
encountering the severe sign problem that plagues lattice calculations. Thus, they can
explore phases of QCD matter at large baryon densities, where the existence of exotic
states (such as color-superconducting phases) and a possible critical end point are
anticipated. However, these methods come with specific challenges: since both FRG and
DSE generate infinitely many coupled equations, practical studies rely on controlled
truncation schemes to render the problem tractable. The choice of truncation and the
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inclusion of relevant interaction channels critically influence the reliability and stability of
results. As a consequence, a continuous effort to improve truncation strategies, benchmark
calculations against lattice data at low densities, and incorporate state-of-the-art vertex
functions is necessary to enhance predictive power.

perturbative qcd and high-density regions . At asymptotically high densities
and energies, perturbative QCD (pQCD) becomes a suitable tool to analyze the behavior of
strongly interacting matter. This applicability arises from asymptotic freedom, where the
QCD coupling constant decreases at short distances, making quark and gluon interactions
effectively weak. Under these conditions, perturbative expansions in the strong coupling
constant αs become reliable, enabling first-principle calculations of observables in regimes
characterized by large momentum transfers. Such calculations have provided insight
into the color-superconducting phases predicted to appear at extreme baryon densities,
where quark matter may pair analogously to electrons in superconductors [45]. Although
these exotic phases are of substantial theoretical interest, they remain far beyond current
experimental reach.

Moreover, pQCD has proven essential for understanding processes involving high
momenta, such as jet production in heavy-ion collisions, where high-energy jets serve as
probes of the quark-gluon plasma [46]. However, while pQCD is well-suited for these high-
energy regimes, it cannot be applied directly to the low-energy sector, where confinement
and the rich structure of hadrons dominate. This is the domain in which lattice QCD and
effective models take precedence. To bridge the gap between the perturbative and strongly
coupled regimes, new theoretical ideas have emerged, most notably the application of
the AdS/CFT correspondence [15], where a strongly coupled quantum field theory can
be mapped to a weakly coupled gravitational theory in higher dimensions. Although
the correspondence was initially established for conformal theories, it provides valuable
qualitative insights into the behavior of strongly coupled QCD matter, especially in
understanding properties such as viscosity and other transport coefficients [47].

1.2.2 Structure of the QCD Phase Diagram

From the aforementioned theoretical approaches, the following understanding of the
nature of nuclear matter has emerged: At low temperatures and baryochemical potentials,
the strongly interacting matter exists as a hadron gas, where quarks and gluons are
confined within hadrons. At vanishing temperature and a net baryon density close
to 1, one has nuclei in the ground state, as they exist in everyday nature. In the low
temperature regime, we also observe a phase transition between nuclear gas and nuclear
liquid. As the temperature increases, a transition into the QGP occurs. Lattice QCD
(lQCD) calculations have established that at µB ≈ 0, this transition is a smooth crossover,
occurring at a critical temperature TC ≈ 155MeV [31, 32].

At finite baryochemical potential (µB > 0), the phase structure is less well understood.
Effective models predict the existence of a first-order phase transition at higher µB, which
terminates at a critical end point (CEP) in the phase diagram [48–51]. Identifying this
CEP is a major goal of both theoretical and experimental studies. A schematic drawing
of the structure of the phase diagram can be seen in fig. 1.4.
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Figure 1.4: Schematic drawing of the QCD phase diagram.

At extremely high baryon densities, beyond the reach of current experiments, exotic
phases such as color-superconducting states are theorized to exist. These phases are
characterized by pairings between quarks analogous to Cooper pairs in conventional
superconductors.

1.2.3 Viscosity in the Phase Diagram

The QCD phase diagram encapsulates how strongly interacting matter transitions be-
tween a hadron-dominated phase at low temperatures/densities and the quark-gluon
plasma (QGP) phase at sufficiently high temperatures or densities. The thermodynamic
and transport properties of QCD matter can vary markedly across this diagram, especially
near the critical or crossover region.

Transport coefficients, such as shear (η) and bulk (ζ) viscosities, characterize the
system’s response to velocity gradients or volume changes, respectively. To facilitate
comparisons across widely varying conditions in the phase diagram, these viscosities are
often normalized by the entropy density s, defining the dimensionless ratios η/s and ζ/s.
This normalization reduces the dependence on the absolute scale of energy density or
temperature, making it easier to gauge how dissipative the medium is under different
conditions. Below, we discuss how these transport coefficients impact the dynamics of
heavy-ion collisions and, correspondingly, the manifestation of the QCD phase structure
in experimental observables.

1.2.3.1 Shear Viscosity

Shear viscosity, in broad terms, acts to reduce local velocity differences in the expanding
fluid, thereby smoothing out steep velocity gradients. Physically, if one region of the
fireball flows faster than a neighboring region, shear viscosity works to equalize these
velocities by transporting momentum between them. Consequently, this damping of
velocity gradients modifies the anisotropies in the expansion and thus influences final
observables such as elliptic flow. In a high-energy nuclear collision, a small shear viscosity
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Figure 1.5: Overview of temperature dependence of η/s and ζ/s for nuclear matter at µB=0

for different groups and approaches. From [52].

means the expanding quark–gluon matter responds almost like a perfectly flowing fluid;
a larger viscosity implies more dissipation, resulting in lower flow harmonics and
more moderate velocity profiles across the fireball. However, in general viscosities are
dependent on temperature and net-baryochemical potential, and strong hints for such
a relationship, especially for the temperature, have already been found [53–68]. This
can also be seen in fig. 1.5, where many predictions propose a temperature-dependent
behavior. Such temperature dependence has mostly been parameterized as a piecewise-
linear η/s(T), with a minimum near the temperature of the phase transition. The density
dependence has, however, been studied considerably less so far. This motivates the study
of such a dependence in the upcoming chapters.

1.2.3.2 Bulk Viscosity

Bulk viscosity influences how the fireball responds to uniform expansion or compres-
sion by relating changes in the fireball’s volume to its internal pressure. Whenever
the medium’s density or temperature evolves non-uniformly, bulk viscosity can either
enhance or retard local compression or rarefaction. In practical terms, a positive bulk
viscosity dampens isotropic expansion by transforming some of the collective flow energy
into heat, thus reducing the system’s tendency to expand freely. As a result, a sizeable
bulk viscosity can visibly modify the evolving radial flow and particle spectra, particularly
at intermediate beam energies, where the system’s equation of state is more susceptible to
thermal and density variations. Current constraints on experimental data show that it is
not vanishing and must be included to provide a full picture of the evolution [53, 54, 68].
However, there is considerable disagreement about the magnitude of the bulk viscosity,
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1.3 heavy-ion collisions

as can be seen in fig. 1.5. Bulk viscosity is assumed to be very large around the transition
temperature, but small at considerably higher or lower temperatures, motivating an
asymmetric Gaussian shape [69, 70].

In the chapters that follow, we will explore in more detail how the transport coefficients
η/s and ζ/s vary across the QCD phase diagram and how these variations influence the
bulk evolution of heavy-ion collisions.

1.2.4 QCD Phase Diagram in Nature

The QCD phase diagram is central to our understanding of strongly interacting matter in
the cosmos. The deconfined QGP phase is believed to have permeated the early universe
shortly after the Big Bang, when the temperatures were on the order of several hundred
MeV. Under these extreme conditions, the previously confined quarks and gluons transi-
tioned into a nearly perfect fluid state. Understanding this transition provides valuable
insights into the dynamics of the early universe, matter-antimatter asymmetry, and the
formation of the first hadrons [71].

The QCD phase diagram is also highly relevant for understanding matter in neutron
stars. These compact stellar objects, formed from the gravitational collapse of massive
stars after supernova explosions, contain matter at densities that can greatly surpass
normal nuclear density. In this regime, the nature of dense matter and the role of QCD
degrees of freedom become paramount for determining the stability and structure of
neutron stars. For instance, whether the equation of state transitions from a hadronic
description to one involving deconfined quarks has profound implications for the star’s
maximum mass and radius, as well as the existence of hypothetical hybrid stars containing
both hadronic and quark matter phases [72].

Neutron star mergers, which are now accessible through multimessenger astronomy
by the simultaneous detection of gravitational waves and electromagnetic signals, probe
regions of the QCD phase diagram at even higher densities and temperatures. The
gravitational wave signals emitted during the inspiral, merger, and post-merger phases
encode information about the star’s internal composition and equation of state. By
comparing these signals to theoretical predictions derived from various QCD-inspired
models, constraints on the phase structure of dense matter can be extracted. In this way,
neutron star mergers serve as natural laboratories that offer an indirect window into
regions of the QCD phase diagram far beyond the reach of terrestrial experiments or
current first-principle calculations [73].

1.3 Heavy-Ion Collisions
Technological progress has not just enabled us to study the nature of nuclear matter by
observing its high-density behavior in celestial objects; instead, we can produce high
densities and temperatures in the lab too, albeit at much smaller scales. This study is
crucial for tracing the effects of shear and bulk viscosities at different temperatures and
densities. Due to this, we want to outline both the experimental programs for heavy-ion
collisions, as well as the advances of theoretical modelling.
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1.3.1 Overview of Experiments

Exploring the QCD phase diagram in the laboratory is realized through relativistic heavy-
ion collisions, in which large nuclei are accelerated to high energies and then collided.
By varying the collision energy and system size, different temperatures and net-baryon
densities can be achieved, mapping out distinct regions of the phase diagram. Several
facilities around the world have been dedicated to heavy-ion research, each covering
different energy ranges and offering unique insights into strongly interacting matter.

At low-to-intermediate beam energies, where the baryon density is relatively high,
facilities like the Super Proton Synchroton (SPS) at CERN, SchwerIonenSynchrotron 18 (SIS18)
and the future Facility for Antiproton and Ion Research (FAIR) at GSI probe regions of the
phase diagram potentially close to a first-order phase transition and a possible critical
end point [74, 75]. The NA61/SHINE experiment at the SPS [76, 77] also contributes
crucial data to this energy regime, where the onset of deconfinement and the search for
the CEP remain key objectives. Fixed-target setups provide high luminosities at very low
beam energies, allowing for precise measurements of rare probes such as dileptons, as
conducted by the HADES experiment at SIS18 [78]. Other important experiments are
the NA49 program [77] and the future Compressed Baryonic Matter (CBM) experiment at
GSI [79]. The latter is expected to provide results at extremely high baryon density and
give more insights into sections of the phase diagram relevant for astrophysics.

At higher energies, such as those accessible at Relativistic Heavy Ion Collider (RHIC) at
BNL and the LHC at CERN, the produced matter exhibits very high temperatures but
small net-baryon densities, facilitating the formation of a nearly net-baryon-free quark-
gluon plasma [80]. Detectors like Solenoid Tracker at RHIC (STAR), Pioneering High Energy
Nuclear Interaction eXperiment (PHENIX), Particle Hunting Observatory for Baryons and Other
Studies (PHOBOS), and Brookhaven Relativistic Almost Hadronic Momentum Spectrometer
(BRAHMS) at RHIC observe collisions up to

√
sNN = 200 GeV, whereas A Large Ion

Collider Experiment (ALICE), A Toroidal LHC ApparatuS (ATLAS), Compact Muon Solenoid
(CMS), and LHCb at the LHC, are designed to measure a broad range of observables,
from bulk particle production to high-pT jets and heavy-flavor hadrons [81–83] up to√
sNN = 5.4 TeV. These experiments have confirmed the existence of a strongly coupled

QGP phase and continue to refine our knowledge of its properties, including its equation
of state, viscosity, and parton energy loss mechanisms [84–87].

A special role is assigned RHIC Beam Energy Scan (BES) program [88] and its con-
tinuation BES II due to the wide range of collision energies from

√
sNN = 3 GeV to√

sNN = 200 GeV. This allows to use the same experimental setup for wide sections of
the phase diagram, which delivers highly comparable data for different scenarios.

Overall, the international network of heavy-ion collision facilities provides a comple-
mentary set of conditions and observables, covering a broad range of the QCD phase
diagram. This allows for a systematic exploration of strongly interacting matter and
ongoing improvements in our understanding of its fundamental properties. The regions
of the phase diagram studied by the most important experimental facilities have been
marked in fig. 1.4, whereas a table of all important heavy-ion experiments can be found
in table 1.1.
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Accelerator Place Lab. Time
√
sNN [GeV] Projectile Experiment Refs.

Bevalac Berkeley LBL 1971-1993 2–2.7
O, C, Ne,
Fe, Xe, U

Plastic Ball,
Streamer
chamber,
EOS, DLS

[89, 90]

Synchro-
Phasotron

Dubna
Russia

JINR 1970-2003 1.9–3.5 d–Si [91]

Nuclotron Dubna JINR 1993-now 1.9–3.5 d–Xe, Au BM@N [92, 93]

SIS18 Darmstadt GSI 1990-now 1.9–2.7 d–Au, π

FOPI,
HADES,
KaoS

[94]

SIS100(300) Darmstadt GSI/FAIR 2025-(planned) < 5.5 (9.2) d–U, π
CBM,
PANDA,
NUSTAR

[94]

AGS Brookhaven BNL 1980-1999 2.7–5.5 O, Si, Au

E802, E859,
E866, E917,
E814, E877,
E810, E891,
E895, E910

[94, 95]

RHIC Brookhaven BNL 2000-now 7.7–200 Au, Cu, U, d

STAR,
PHENIX,
PHOBOS,
BRAHMS

[96]

SPS Geneva CERN 1983-now 6.3–19.4 O, S, In, Pb

NA35,
CERES(NA45),
NA49,
NA57, NA60,
WA98, NA61

(SHINE)

[94, 97]

LHC Geneva CERN 2008-now

2760, 5020,
5400 (PbPb)
5400, 8160,
8800 (pPb)
5440 (Xe)
7000 (O)
9900 (pO)

p, Pb, Xe, O
ALICE,
ATLAS,
CMS, LHCb

[80, 98–100]

Table 1.1: List of heavy-ion accelerators and their experiments at energies Elab > 1GeV. The
operation time is given only for the heavy-ion period. Only accelerated projectile
ions are listed; target ions are not.

1.3.2 Phenomenological Picture of Heavy-Ion Collisions

Heavy-ion collisions provide a dynamic view of the QCD phase diagram, where the
system evolves through various stages, each characterized by distinct properties and
degrees of freedom. Depending on the collision energy, these trajectories probe different
regions of the phase diagram, offering insight into the behavior of strongly interacting
matter under extreme conditions. In this section, we want to summarize the current
picture of the processes occurring during a heavy-ion collision.

At high collision energies, the initial state consists of Lorentz-contracted nuclei dom-
inated by partonic degrees of freedom [41], primarily gluons. After the collision, the
system transitions into a pre-equilibrium state [101], characterized by a high energy
density but with significant deviations from thermal equilibrium. This stage is dominated
by hard partonic interactions, which eventually drive the rapid thermalization of the
medium. The thermalized phase forms a QGP, where quark and gluon degrees of freedom
become deconfined. The QGP exhibits nearly ideal hydrodynamic behavior [102], ex-
panding and cooling over time. As the temperature drops, the system transitions through
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the confinement region of the phase diagram, where quarks and gluons recombine
into hadrons during hadronization. The chemical freeze-out fixes particle abundances,
and subsequent elastic scatterings drive the system toward kinetic freeze-out, where
momentum distributions are finalized [103, 104]. A visualization of a heavy-ion collision
at high energies is given in fig. 1.6. It is important to stress that each single event does not
refer to a point in the QCD phase diagram, but rather a blurry line, as the temperature
and baryon density continuously evolve.

At intermediate collision energies, the baryochemical potential µB increases, and
the trajectory through the phase diagram shifts to regions where baryonic density
plays a more prominent role. The initial state involves a significant degree of baryon
stopping [105], resulting in a higher net baryon density in the central region. The pre-
equilibrium phase in this regime is less dominated by gluonic interactions, and the
transition to thermalization may occur more slowly. The thermalized medium exhibits
a mix of partonic and hadronic properties, depending on the local energy density. As
the system cools, it may pass through the coexistence region of the QCD phase diagram,
where the degrees of freedom are partonic in some domains and hadronic in others,
reflecting a potential first-order phase transition or critical phenomena.

At low collision energies, the system predominantly explores the high-density, low-
temperature region of the phase diagram. The initial state is strongly influenced by
hadronic interactions, with baryonic matter playing a dominant role. The medium
does not reach the conditions necessary for a fully deconfined partonic phase; instead, it
remains confined throughout its evolution [106]. The trajectory through the phase diagram
involves regions where dense baryonic clusters interact in a hadronic environment. The
chemical and kinetic freeze-out occur relatively close together, as the hadronic medium
does not sustain prolonged elastic scatterings due to lower energy densities and shorter
lifetimes.

Across all collision energies, the evolution follows a general sequence: an initial state
dominated by the properties of the colliding nuclei, a dynamic and rapidly changing
pre-equilibrium phase, thermalization to some degree (depending on energy), and an
expanding medium that transitions through hadronic and partonic degrees of freedom
before freezing out. The properties of the system -— whether dominated by partons or
hadrons, whether in equilibrium or far from it, and whether confined or deconfined —
vary markedly with collision energy, reflecting the rich complexity of QCD matter. The
detector itself can only measure the debris of the collision, that is, confined color neutral
states reaching the detector at timescales orders of magnitude greater than the collision
process. Due to this, insights in the initial state are very difficult to obtain.

1.4 Modelling Heavy-Ion Collisions
In order to interpret the complex dynamics observed in heavy-ion collision experiments, a
detailed modelling of the medium’s space-time evolution is essential. Such modelling con-
nects measured observables to the underlying microscopic and macroscopic properties of
matter at extreme conditions. As demonstrated above, a heavy-ion collision is dominated
by vastly different degrees of freedom and dynamics depending on the stage, collision
energy and system. It is therefore extremely challenging to describe such a process in a
single theory or from field theory alone. No single theoretical framework can accurately
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Figure 1.6: Visualisation of a heavy-ion collision at high energies [107].

capture the entire evolution from the initial out-of-equilibrium stage to the late dilute
hadronic phase across all collision energies. Instead, various theoretical tools have been
developed, each tailored to a particular kinematic regime and degree of freedom. These
approaches differ in their assumptions about equilibration, their underlying particle
content, and the physics incorporated into their dynamical equations.

Broadly, three classes of approaches have proven most influential: transport models,
hydrodynamic models, and hybrid frameworks that combine features from both. Transport
models are indispensable at lower and intermediate collision energies, where the medium
remains relatively dilute and the mean free path is not negligible. At very high energies,
hydrodynamic descriptions, which assume near-local-equilibrium conditions and treat
the medium as a fluid, have been remarkably successful. Hybrid strategies, in which
transport and hydrodynamics are sequentially or concurrently applied, aim to describe
the entire evolution from early non-equilibrium stages to final hadronic rescattering. In
what follows, we outline these three modelling paradigms and connect them to commonly
employed numerical implementations and associated physical assumptions.

1.4.1 Transport Models

Transport models rely on a microscopic description of the medium, tracking the phase-
space distributions of hadrons, and sometimes partons, through Boltzmann-type equa-
tions. The classical Boltzmann equation reads as

∂f

∂t
+
p⃗

m
∇f+ F⃗ ∂f

∂p⃗
=

(
∂f

∂t

)
coll

, (1.11)

where f = f(⃗r, p⃗, t) is the phase-space probability density function, meaning that the
number of particles inside a differential phase space volume d3r⃗d3p⃗/(2π)3 is given as
dN = f(⃗r, p⃗, t)d3r⃗d3p⃗/(2π)3. F⃗ is a force field. The right hand side is called the collision
integral. In the classical case, it is written as:

Icoll =

∫
d3p2
E2

d3p ′
1

E1

d3p ′
2

E ′
2

×W(p,p2 → p ′
1,p ′

2)× (f ′1f
′
2 − ff2) . (1.12)
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which encodes particle creation and annihilation. It is assumed that only decays and
collisions change the number of particles. The Boltzmann equation can easily be extended
to the relativistic case:

pµ ∂
µ f+m ∂pµ (Fµ f) = C(f). (1.13)

The first term describes a linear propagation of particles according to their momenta,
and the second term describes changes of the propagation due to external force fields.
Lastly, the collision integral contains gains and losses of distribution functions due to
interactions:

C(f) = Icoll =

∫
d3p2
E2

d3p ′
1

E1

d3p ′
2

E ′
2

×W(p,p2 → p ′
1,p ′

2)

×
(
f ′1f

′
2(1+ af)(1+ af2) − ff2(1+ af

′
1)(1+ af

′
2)
)

. (1.14)

Here a = 1 for bosons and a = −1 for fermions. In the quantum case, the Boltzmann
equation was first formulated by Uehling and Uhlenbeck and therefore the equation
is called BUU (Boltzmann-Uehling-Uhlenbeck). It differs from the classical Boltzmann
only by factors that account for quantum statistics in the collision term. The intuitive
interpretation is that during the time interval dt, the number of particles in a phase-
space cell has changed by the difference of particles entering it from other cells via
interactions minus the ones escaped by other interactions. Commonly, theories based
on the Boltzmann equation are referred to as kinetic theories. They do not assume that
the medium is in equilibrium, however, the nonlinear integro-differential equations are
usually not analytically solvable. This is related to the fact that although we have only
written one equation, in reality, there are hundreds of different hadrons with many
different forms of interactions (elastically, inelastically, decays, resonance formation)
which creates a formidable challenge, as this couples all equations. The collision integral
encodes elastic and inelastic collisions, resonance formations, and decays. The medium
is thus modeled as a collection of particles whose dynamics are governed by known or
parameterized cross sections and interactions.

Another limitation is the fact that this equation is only applicable for dilute systems,
meaning that the mean-free path should substantially exceed the Compton wavelength:

λCompton ≪ lmfp. (1.15)

This limitation is a result of the derivation of the Boltzmann equation from the more
fundamental BBGKY hierarchy [108]. As a result of this, transport approaches are usually
applied for

√
sNN ⩽ 10 GeV, or for the late dilute stages of a more energetic heavy-ion

collision, after the fluid picture has broken down.
Numerical Monte-Carlo transport approaches effectively solve these equations by

propagating the particles according to an equation of motion, which is equivalent to the
left hand side of eq. (1.11), whereas the collisions in the model realize the right hand side.

At very low energies, where the system often consists predominantly of hadrons,
transport approaches capture nuclear mean fields, baryon currents, and resonance
excitation, which are relevant for

√
sNN ⩽ 4 GeV. Codes following the Boltzmann-

Uehling-Uhlenbeck (BUU) approach—such as SMASH [109], GiBUU [110], HSD [111], or
pBUU [112, 113]—treat the medium with test particles in local density fields, retaining
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a one-body distribution function. By contrast, quantum molecular dynamics (QMD)
methods, such as UrQMD [114], IQMD [115], JAM [116], AMD [117], or RQMD [118],
represent particles as wave packets, incorporating particle correlations more explicitly.
As SMASH was used in this work, a dedicated section on it will follow in the form of
section 2.1.

The differences between BUU and QMD stem mainly from how potentials and correla-
tions are modelled. While BUU-type models are built on local densities, QMD approaches
emphasize particle-particle correlations and can yield richer many-body dynamics. As
such differences are mainly relevant for potentials in the low energy regime, they are
not crucial for this work due to its focus on intermediate and high energy regimes. Both
frameworks can be extended to higher energies by including string degrees of freedom
or even partonic phases, leading to so-called multiphase transport models. Examples
include PHSD [119] and AMPT [120], as well as purely partonic transport codes like
BAMPS [121] and ZPC [122], which are capable of describing partonic scatterings at
RHIC and LHC energies.

Transport approaches are not completely parameter free, but rely on input from
experiments and theoretical calculations. Most importantly, the cross sections are a
pivotal input to these models. They can either be drawn from a field theory calculation,
which provides the scattering matrix S, or from experimental measurements.

The strength of transport models lies in their ability to trace every particle’s trajectory
and its interactions in detail, offering a direct link between microscopic interactions
and final-state observables. This makes them valuable for investigating non-equilibrium
phenomena, baryon-rich matter, and transition regions where local equilibrium may not
be well established.

Hadronic transport approaches have a long history [123–127] of being employed to
model nucleus-nucleus collisions. This is due to the fact that the beam energies of older
experiments where low in comparison to modern accelerators, leading to experiments
which primarly observed confined phenomena. However, even in modern times, hadronic
transport approaches are crucial as a baseline, as they cannot model deconfined matter.
Therefore, they played a crucial role in the identification of QGP signatures: It was
concluded that no QGP signatures are seen in the experimental data from AGS [128],
as transport models could reproduce the observations. while the inability of transport
approaches to reproduce the strangeness measurement at SPS was seen as a clear
indication of a QGP formation [129].

1.4.2 Hydrodynamics

At sufficiently high collision energies, heavy-ion collisions create a hot and dense
medium—the quark-gluon plasma (QGP)—that behaves as an almost perfect fluid with
extremely low shear viscosity over entropy density η/s [71, 130]. This finding, one of
the major achievements in the field, was realized through the application of relativistic
hydrodynamic models that incorporate viscous corrections and successfully describe
a multitude of bulk observables such as multiplicities, momentum distributions, and
flow coefficients [131]. Remarkably, signs of hydrodynamic behavior have also been
observed in small systems such as proton-proton or proton-nucleus collisions at high
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multiplicities [132–134], raising important questions about the early onset of collective
phenomena and the rapid thermalization of the system [135, 136].

foundations of relativistic hydrodynamics Relativistic hydrodynamics pro-
vides a macroscopic, effective description of the medium by evolving energy-momentum
tensors and conserved currents under the assumptions of local thermal equilibrium and
a mean free path much smaller than a macroscopic length scale:

lmfp ≪ L . (1.16)

Formally, the fundamental equations are the conservation laws of energy-momentum
and charges:

∂µT
µν = 0, (1.17)

∂µJ
µ
i = 0 . (1.18)

Here, Tµν is the energy-momentum tensor, and Jµi are the conserved currents corre-
sponding to, for example, baryon number, strangeness, or electric charge. In practice,
these equations represent the conservation of the first and second moments of the Boltz-
mann equation [137] and encode the conservation of energy, momentum, and quantum
numbers. In the ideal case, the energy momentum tensor can be written as

T
µν
ideal =


ϵ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (1.19)

with ϵ, the local energy density and p the pressure. Here, the local fluid velocity is
called β⃗. Then the four-velocity takes the following form

uµ = (γ,γβ⃗) , (1.20)

where γ =
(
1−β2

)−1/2. The energy-momentum tensor is boosted to the laboratory
frame with the Lorentz-matrices:

Tµν = Λµ
aΛ

ν
bT

ab (1.21)

Λµ
ν =

 γ −γβ⃗

−γβ⃗ δij + (γ− 1)
β⃗iβ⃗j

β2

 =

(
u0 −ui

−ui δij + (1+ u0)−1uiuj

)
(1.22)

Therefore, in the laboratory frame

T
µν
ideal = ϵu

µuν − p(gµν − uµuν) , (1.23)

where gµν = diag(1,−1,−1,−1). In ideal hydrodynamics the four-current is a vector
(n, 0, 0, 0), where n is the density. Again, this is boosted to the laboratory frame:
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jµ = nuµ (1.24)

In the context of heavy-ion collisions, it is crucial to apply this relativistic form of
hydrodynamics, as the expansion velocity is comparable to the speed of light. It was
initiated in 1953 by Landau [138, 139] in order to describe multiparticle production
in proton and nucleus collisions. These partial differential equations cannot be solved
analytically and require advanced numerical treatment.

To close the system of equations, it is necessary to supply an equation of state (EoS)
relating the thermodynamic quantities such as energy density, pressure, and charge
densities:

p = p(ϵ,ni) . (1.25)

The EoS plays a crucial role in hydrodynamics as it directly incorporates the properties
of the medium and the underlying physics of nuclear matter. This also one of the great
advantages of hydrodynamics, as it allows very advanced modeling, like including
a phase transition into the equation of state [140], which is challenging for dynamic
approaches like transport. Different regions of the QCD phase diagram, due to the
different dominating physical processes, require different approaches under different
assumptions to determine the EoS. In the case of vanishing chemical potentials, the
EoS can be extracted directly from first-principle lattice QCD (lQCD) calculations [141].
Here, (2+1)-flavor results are provided by the HotQCD [33] and Wuppertal-Budapest [35]
collaborations. Their result is a smooth crossover transition between hadronic and quarks
degree of freedom in this region of the phase diagram.

At finite baryon densities, lQCD calculations are hampered by the fermion sign prob-
lem, limiting their applicability. Various extrapolation techniques, such as Taylor expan-
sions [142–144], reweighting methods [145, 146], or simulations at imaginary chemical
potentials [147, 148], extend lattice predictions to small but finite µB, albeit with increas-
ing systematic uncertainties [149]. At larger baryon densities, effective models must be
employed. Examples include chiral models relying on chiral symmetry restoration [150],
PNJL models [151], quasiparticle approaches [152], the 3D Ising model universality
class [153], or the VDF model [154]. These models can incorporate a first-order phase
transition and a critical end point.

In the hadronic regime, one may construct an EoS directly from hadron resonance gas
models, which can be obtained from solutions of the coupled thermodynamic equations
if the hadrons are considered as point particles. More sophisticated approaches include
excluded-volume corrections [155–158], the inclusion of a Hagedorn mass spectrum [159–
161], or a combination of both [162]. Such hadronic EoSs characterize QCD matter at
low temperatures and low baryon densities, complementing the lattice-based EoSs at
low µB. At the opposite corner of the phase diagram—high baryon densities and low
temperatures, relevant for neutron stars—approaches based on holographic QCD [163]
or chiral perturbation theory combined with perturbative QCD [164] are employed. A
unified framework that satisfies constraints from lQCD, nuclear matter, and neutron stars
can be found in [165].

viscous , anisotropic and fluctuating hydrodynamics Equation (1.19)
assumes strict local thermodynamic equilibrium. However, realistic systems show devia-
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tions from equilibrium. These deviations are treated by introducing viscous corrections
(shear and bulk viscosities) and relaxations times, forming the basis of viscous hydro-
dynamics [130, 135, 166–171]. The equations of dissipative relativistic fluid dynamics
were first found by Eckart [172] and subsequently by Landau and Lifshitz [173]. Both
represent relativistic generalizations of Navier-Stokes theory and are often referred to
as first-order theories. However, it was quickly realized that these generalizations are
acausal. This means that the speed of sound can exceed the speed of light. As a con-
sequence, this motivated the development of second-order hydrodynamics in the form
of Israel-Stewart theory [166]. An improvement of this was recently developed in the
form of a systematic expansion in Knudsen number Kn [174]. This extension allows
describing anisotropic flow harmonics and constraining transport coefficients such as
η/s and ζ/s from experimental data [175–177]. Besides the EoS, transport coefficients
such as shear and bulk viscosities, as well as relaxation times, govern the dissipative
properties and evolution of the fluid. They determine how strongly the medium resists
to anisotropies in pressure, and by this affects the evolution of the system. As a result,
their values influence the development of flow and other observables [130]. More details
on viscosities are presented in section 2.3.2.2. As it is on the one hand very challenging
to infer transport coefficients from first principle, but on the other hand, they encode
properties of nuclear matter, it is one of the central aims of the field to infer the values of
the transport coefficients from experimental data. Section 5.2 is dedicated to this cause.

Further improvements have led to anisotropic hydrodynamics [178, 179], where the
expansion is performed around an already anisotropic momentum distribution rather
than around equilibrium. This approach is particularly useful in the early, highly non-
equilibrium stages of heavy-ion collisions when large momentum anisotropies are
present.

It is also noteworthy that hydrodynamics, derived under the assumption of local
equilibrium, may describe systems slightly out of equilibrium and that solutions can
converge towards so-called attractor solutions [180]. This partially explains the success
of hydrodynamics in describing even small systems where full thermal equilibrium
is questionable. Nevertheless, it is expected that heavy-ion collisions thermalize very
rapidly, even if the exact reasons for this remain unknown [135, 136]

Fluctuations and critical phenomena remain challenging for hydrodynamic simula-
tions. Near a critical point, correlations and the correlation length grow, making the
system deviate from the Kn ≪ 1 regime and breaking some assumptions underlying
hydrodynamics. The emerging framework of fluctuating hydrodynamics [181] aims to
incorporate thermal fluctuations, but it remains an open and ongoing field of research.

initial conditions and applicability criteria Hydrodynamics becomes
applicable only if the system is sufficiently large and close to local equilibrium, ensuring
that the mean free path λmfp is much smaller than the system size L, i.e., Kn = λmfp/L≪
1 [182]. As a result, hydrodynamics is fundamentally a macroscopic description of the
system. Initially, after the nuclei collide, the system might not be equilibrated, and
different models must be employed to generate suitable initial conditions. Historically,
it was assumed that for high collision energies, the nuclei are flat discs due to Lorentz
contraction, which stop rapidly during the collision [138, 139]. The thus predicted
Gaussian rapidity spectrum of final state particles was observed by AGS and SPS. For
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even higher collision energies, this model started failing as the stopping weakens, leading
to a flat rapidity distribution at midrapidity. This lead to the development of the Bjorken
model [183], which assumes boost invariance near midrapidity. Modern approaches
incorporate increasingly sophisticated initial condition models, which can be categorized
into three broad classes [184, 185]:

• Glauber-based models: They use a geometric picture of the nucleus-nucleus over-
lap, often combined with a Woods-Saxon density profile, to determine the initial
energy density distribution [186–188].

• Color Glass Condensate (CGC)-based models: Here, the initial state is governed
by the strong color fields (gluon saturation) at small Bjorken-x. Popular implemen-
tations are IP-Glasma [189, 190], MC-KLN [191, 192], and Lappi’s approach [193].

• Transport-based models: Partonic or hadronic transport codes such as SMASH [194],
UrQMD [114, 195], EPOS [196], or AMPT [197] evolve the early system microscopi-
cally. Their output can be converted into energy and charge densities to initialize
hydrodynamics.

More details into initial conditions will be provided in a dedicated section of this work
section 2.3.1.

Lumpy, event-by-event initial conditions are crucial to reproduce higher flow harmonics
vn [198–200]. Because hydrodynamic equations are nonlinear, averaging initial condi-
tions before evolution is not equivalent to event-by-event simulations. State-of-the-art
hydrodynamic simulations commonly combine realistic initial conditions with viscous
hydrodynamics and carefully tuned transport coefficients to describe experimental data
at RHIC and LHC energies.

three fluid dynamics Another approach for modelling heavy-ion collisions at
intermediate energies is three-fluid hydrodynamics (3FD) [201, 202]. In contrast to conven-
tional single-fluid or two-phase descriptions, 3FD considers the dynamical evolution
of three distinct fluids representing the projectile nucleons, target nucleons, and newly
produced, excited matter (often called the "fireball") separately. Each fluid evolves with
its own hydrodynamic equations, while interacting through mutual friction terms that
facilitate the exchange of energy, momentum, and conserved charges.

This explicit separation allows the model to naturally incorporate non-equilibrium
effects and delayed thermalization. As a result, it offers a more flexible framework to
explore the dynamics of baryon stopping, the formation and equilibration of hot and
dense matter, as well as the development of collective flow patterns in regimes where
local equilibrium may be questionable. The 3FD approach has been employed extensively
to describe collisions from SIS up to SPS energies and to make predictions for future
FAIR experiments [202–205].

Recent studies have used 3FD simulations to investigate various equations of state,
including purely hadronic ones and as well as such featuring a phase transition to a
deconfined phase. These investigations help to pinpoint where and how signatures of
QCD phase transitions, such as a first-order transition or a critical endpoint, could emerge
in the evolution of the nuclear fireball. They also provide insights into the sensitivity of

23



introduction

observables like particle yields, rapidity distributions, and flow harmonics to the choice
of the EoS and the interaction between the three fluids. The results indicate that 3FD
calculations can reproduce key experimental observables at intermediate energies. This
helps to constrain the EoS and transport properties in a region of the phase diagram
where standard hydrodynamics may not yet be fully applicable [205–207].

The three-fluid hydrodynamics approach serves as a valuable tool to study heavy-
ion collisions in an energy range that bridges the purely hadronic regime and the full
QGP domain. By providing a more nuanced treatment of early-stage, non-equilibrium
dynamics and offering a testbed for different EoSs and phase transition scenarios, it
complements and enriches the standard hydrodynamic modelling toolbox.

numerical implementation of hydrodynamics Solving the hydrodynamic
equations involves advanced numerical techniques. Commonly used algorithms include
the HLLE scheme [208–210] as employed in [211, 212], the SHASTA algorithm [213–216]
as used in [175, 217], or the Kurganov-Tadmor (KT) algorithm [218] applied in [219].
These methods solve the Riemann problem associated with the hydrodynamic equations
(1.17) and (1.18), ensuring stable and accurate solutions. Modern hydrodynamics codes
in the heavy-ion community include vHLLE [211], MUSIC [219, 220], and CLVisc [217],
among others. A more detailed description of the HLLE scheme in vHLLE is given in
section 2.2.

As the system expands and cools, it eventually becomes too dilute for hydrodynamics
to remain valid and the equilibrium assumption to hold. A common criterion is when the
energy density or temperature falls below a critical value, such as ecrit = 0.5GeV/fm3

or Tcrit = 0.15GeV [221, 222]. At this so-called freeze-out or particlization stage, the
fluid description is converted into hadrons using the Cooper-Frye formula [223], which
samples particles from the freeze-out hypersurface. This is necessary in order to compare
predictions from hydrodynamics with the spectra measured in experiment, as hydrody-
namics represents the system in the form of an energy-momentum tensor. In practice,
various sampling methods exist, relying on grand-canonical ensembles and oversam-
pling techniques [177, 224–227], or even micro-canonical ensembles [228] to ensure strict
conservation of quantum numbers event-by-event.

Furthermore, while the standard Cooper-Frye approach uses a grand-canonical ensem-
ble, this does not guarantee exact global conservation of baryon number, strangeness,
or charge on an event-by-event basis. Some observables, especially those related to
fluctuations, may require stricter charge conservation prescriptions. Due to this, canon-
ical hadron samplers have been developed, which preserve quantum numbers on an
event-by-event basis [229].

2d vs 3d hydrodynamics The numerical implementation of hydrodynamics can be
performed in either two (2+1D) or three (3+1D) spatial dimensions, depending on the
assumed symmetries of the system.

In the simplest case, the system is considered boost-invariant along the longitudinal
direction, effectively reducing the problem to two dimensions in the transverse plane.
This approximation, first introduced by Bjorken [183], works well at very high collision
energies near mid-rapidity, where longitudinal dynamics are approximately uniform.
Boost-invariant hydrodynamics is computationally efficient, requiring fewer grid points
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and simplifying the numerical treatment. However, it neglects longitudinal fluctuations
and rapidity-dependent structures, which become increasingly relevant at lower collision
energies and for non-central collisions.

In contrast, full 3D hydrodynamic simulations allow for a detailed treatment of the
longitudinal dynamics, including rapidity-dependent flow and decorrelations. This comes
at the cost of increased computational complexity and resource requirements. Modern
event-by-event hydrodynamic codes such as MUSIC [219, 220], vHLLE [211, 212], and
CLVisc [217] provide 3D implementations capable of describing the full space-time
evolution of the system, including longitudinal and transverse fluctuations.

The choice between 2D and 3D implementations depends on the collision energy,
system size, and the desired level of precision. While 2D simulations remain useful for
high-energy collisions with approximate boost invariance, 3D hydrodynamics is essential
for accurately modeling systems with strong longitudinal structure, such as those encoun-
tered in lower-energy collisions or in small systems with significant rapidity dependence.
Recent studies incorporating realistic initial conditions and full 3D hydrodynamics have
shown that longitudinal effects play a critical role in the development of flow harmonics
and in reproducing experimental observables [189, 225].

In summary, relativistic hydrodynamics is a cornerstone of theoretical modeling in
heavy-ion collisions, capturing the nearly ideal fluid behavior of the QGP and providing
invaluable insight into the properties of hot and dense nuclear matter. By incorporating
increasingly sophisticated equations of state, initial conditions, viscous corrections, and
advanced numerical techniques, hydrodynamic simulations have achieved quantitative
agreement with a broad range of experimental data at RHIC and LHC energies. However,
lower energies as well as the late stage of the evolution remain a challenge, as non-
equilibrium features are more pronounced here and assumptions of local equilibrium
may break down.

1.4.3 Hybrid Approaches

Hybrid frameworks have been developed to bridge the gap between the microscopic and
macroscopic regimes, capitalizing on the strengths of both transport and hydrodynam-
ics [230–233]. The general procedure is to start with a transport model or parametric
approach to generate fluctuating initial conditions, evolve the dense deconfined stage
hydrodynamically, and then switch back to a hadronic transport description once the
system becomes dilute. This can be seen in the visualisation fig. 1.6, where individual
particles are modeled in the early and late stages, and in between, a hydrodynamic
description is applied. The motivation for this approach comes from the fact that due to
applicability conditions for transport approaches (Eq. 1.15) and hydrodynamics (Eq. 1.16),
transport is better applicable at lower densities, whereas hydrodynamics is applicable
at higher densities. Additionally, as the hydrodynamical equations can be derived from
the Boltzmann equation, the regions of applicability of hydrodynamics and transport
overlap, and switching is to be done in regions where both are valid.

Such hybrid models have succeeded in describing a wide array of observables at
top RHIC and LHC energies [177, 230, 232–243], including flow coefficients, particle
yields, and spectra of various hadron species. They allow for the incorporation of realistic

25



introduction

EoSs, fluctuating initial states, and dissipative effects, while maintaining a connection to
microscopic degrees of freedom during the non-equilibrium or dilute phases.

A part of their success is the fact that both hydrodynamics and transport are used in
their applicability ranges. Additionally, late stage rescattering (commonly referred to as
"afterburner") in hadronic transport consistently improves observables with respect to
particlization from hydrodynamics without rescattering. Other than pure transport, a
complex equation of state can be incorporated and studied. The challenging dynamics of
hadronization, that means the formation of bound states from a deconfined state, does
not have to be modelled explicitly but can be condensed in the equation of state.

At lower beam energies, where the fireball created in the collision may not be as
extended or as dense, and the timescale for reaching equilibrium may be longer, the
applicability of such hybrid frameworks becomes more subtle [233]. It is not immediately
clear when hydrodynamics is justified or whether hydrodynamical assumptions fail near
the boundary of the system, where mean-free paths are large. Moreover, the question
of properly modeling partial local equilibration is pressing, as is the possibility that
hadrons could scatter back into dense regions and temporarily re-thermalize. It is also
not clear if a single fireball, or rather many smaller drops of fluids are formed. Such
behavior motivates an ongoing effort to refine the interface between hydrodynamics and
transport [244–248]. Indeed, some formulations propose a continuous emission scheme,
while others focus on dynamical domain-decomposition methods [249], which solve
hydrodynamic and kinetic equations simultaneously [120, 250].

For intermediate collision energies, a variety of strategies have thus been explored.
One option is to modify a hadronic transport model by enforcing local thermalization in
high-density regions and thereby mimicking a hydrodynamic-like evolution [251], though
realizing a phase transition in such a scheme remains challenging. Another possibility is
the core–corona picture [252], where the densest region is described by hydrodynamics
and the surrounding more dilute corona is treated with transport, albeit with limited
interaction between the two domains. Anisotropic hydrodynamics [178, 179] has also been
advocated, aiming to mitigate the strong momentum anisotropies present at intermediate
timescales. Another approach tries to couple transport and hydrodynamics throughout
the whole evolution, by running them in parallel and allow particles to enter and exit the
fluid [253]. However, this refinement shares the challenge of dynamically coupling the
macroscopic and microscopic descriptions in a unified way.

Nevertheless, the most commonly employed and currently state-of-the-art strategy is
to initialize collisions on an event-by-event basis using a specified model, deposit the
resulting energy density into a two- or three-dimensional viscous relativistic hydrody-
namics framework, then perform the Cooper-Frye procedure to convert the fluid cells into
hadrons, and finally evolve those hadrons within a dedicated transport code. This general
scheme has been successfully realized in several hybrid approaches, such as UrQMD-
vHLLE-hybrid [211], JETSCAPE [54], Trajectum [58], and SMASH-vHLLE-Hybrid [221].
The latter is employed in the present work and will be introduced in detail in chapter 2.

1.5 Aim and Structure of This Thesis
Although these hybrid approaches have been very successful in describing a variety
of observables and dynamical features of heavy-ion collisions, there remain significant
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Figure 1.7: 90% confidence interval of shear and bulk viscosity prediction from [54]. The
different colors refer to different viscous correction schemes during particlization.
Although this is only a detail at an interface of the hybrid model, the posterior
shows substantial differences.

limitations. As discussed above, many key properties of nuclear matter can only be
calculated from first-principles under restrictive conditions. This is especially true for
the transport coefficients which are to be studied here. A viable alternative is therefore
to determine these properties, including transport coefficients, in a data-driven fashion.
One of the strengths of hybrid approaches is that they encode the complex features of
nuclear matter in a relatively concise way, allowing model predictions to be compared
directly to experimental data. By optimizing agreement with these data, one hopes to
extract meaningful constraints on fundamental input parameters.

In practice, this strategy encounters critical barriers. A striking illustration was pro-
vided by the JETSCAPE collaboration, which applied Bayesian inference (see section 5.2)
in order to extract transport coefficients from experimental data within their hybrid
framework [54]. They found that modifying the viscous corrections entering the Cooper-
Frye particlization altered the inferred transport coefficients significantly, as can be
seen in fig. 1.7. This demonstrates a strong dependence on the details of the model
implementation.

Such findings exemplify the crucial issue often referred to as model dependence.
They underscore the theoretical uncertainties built into hybrid frameworks. These can
arise for various reasons, including open questions about the most appropriate viscous
corrections in the particlization scheme, ambiguity in selecting the equation of state,
incomplete knowledge of how transport coefficients evolve with temperature and density,
and the inherent uncertainties in the initial state. The latter is especially critical: one
must disentangle effects of the initial state from those of the transport coefficients when
comparing model output to experimental observables. Due to the short lifetime of the
fireball, there are comparatively few measurements that constrain the initial state, making
it a major source of theoretical uncertainty (see chapter 4).

The goal of this thesis is to help elucidate these uncertainties, thereby improving our
understanding of the inherent limitations within state-of-the-art hybrid simulations and
advance the understanding of shear and bulk viscosities. The focus lies on two of the
most critical sources of model sensitivity in such approaches: the choice of initial state
models and the specific parameterization of viscosities. We aim to compare different
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initial state models and understand better how their differences affect predictions of final
state momentum anisotropies, which are often used to determine transport coefficients.
Additionally, we study different parameterizations of transport coefficients, and include
baryochemical potential dependence, in order to study the effect of such an inclusion
as well as the constraints we can gain on this dependence. Furthermore, we investigate
how the SMASH-vHLLE-Hybrid framework predicts certain properties of nuclear matter
and compare these predictions to those obtained from other commonly used hybrid
approaches.

The structure of this thesis is as follows. In chapter 2, the SMASH-vHLLE-Hybrid
model is presented in detail. This includes a thorough description of the hadronic
transport approach SMASH (section 2.1), the hydrodynamic code vHLLE (section 2.2),
and a discussion of how the different stages of the hybrid approach are interfaced
(section 2.3). In chapter 3, we summarize the primary observables used to compare model
output with experimental data, emphasizing their importance in tuning simulations to a
data-driven framework.

The investigation of initial-state models begins in chapter 4. The study two-dimensional
initial conditions is based on [2]. The variations in the initial state itself are analyzed as
well as the impact these differences can have on the subsequent dynamical evolution,
providing a deeper insight into the role of momentum in the initial state.

Then, in chapter 5, the role of transport coefficients in the hydrodynamic evolution is
investigated. Section 5.1, studies the changes in the functional dependence of the shear
viscosity on temperature and baryon density, building on the study presented in [1]. Next,
the framework of Bayesian inference is introduced, which is a powerful statistical learning
approach to constrain physical parameters from experimental data. It is applied to the
SMASH-vHLLE-Hybrid model, resulting inestimates of various transport coefficients in
section 5.2.

In chapter 6, the findings are summarized and avenues for future research are outlined,
highlighting the aspects that remain crucial in advancing the precision and reliability of
hybrid approaches for heavy-ion collision studies.
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2
T H E S M A S H - V H L L E - H Y B R I D
A P P R O A C H

If you think you see both
Destruction and becoming,
Then you see destruction and becoming
Through impaired vision.

— Nāgārjuna, Mūlamadhyamakakārikā, § 20.11

The central model employed in this work is the SMASH-vHLLE-Hybrid approach [221],
a versatile framework that provides a unified description of heavy-ion collisions over
a broad range of energies. At its core, this is a modular hybrid scheme: the model
components for different stages of the collision can be interchanged or refined without
disrupting other stages. Such modularity constitutes a key benefit and underpins many
of the results presented in the following.

In its default mode, the SMASH-vHLLE-Hybrid leverages the hadronic transport code
SMASH to generate the initial state. SMASH’s capability to accurately model baryonic
degrees of freedom and baryon stopping at moderate and lower energies effectively
broadens the energy domain in which the hybrid framework remains valid. Once the hot
and dense phase is reached, the system transitions to the vHLLE hydrodynamics code
for a fluid-dynamic treatment of strongly interacting matter. Subsequently, the Cooper-
Frye sampling of the hydrodynamic freeze-out surface is carried out by the SMASH-
hadron-sampler, which hands hadrons back to the SMASH transport description for
final-stage rescattering and decays. This cycle of (i) initial transport, (ii) hydrodynamics,
(iii) sampling, and (iv) final transport extends the approach’s applicability to intermediate
collision energies, where purely hydrodynamic or purely transport-based methods may
face limitations.

This chapter gives a concise overview of each component in the SMASH-vHLLE-
Hybrid, focusing on its default configuration. Relevant references are provided in each
section for readers seeking a deeper understanding of the underlying theoretical and
technical details.

2.1 The SMASH Hadronic Transport Approach
The present work employs the SMASH (Simulating Many Accelerated Strongly-interacting
Hadrons) transport model [109] to describe the non-equilibrium hadronic dynamics in
heavy-ion collisions. SMASH provides an effective solution to the relativistic Boltzmann
equation eq. (1.14), treating each hadron as a point-like particle undergoing formations,
scatterings, and decays. It is implemented as a thoroughly tested C++ code [254], openly
accessible for external reviews. Detailed documentation, including extensive validation
studies, is publicly available [255, 256]. The specific SMASH version used is stated in
each result section to ensure reproducibility.

Over the years, transport approaches of this type have successfully captured the
hadronic phase of ultra-relativistic collisions, as well as the full evolution at lower collision
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energies. SMASH, in particular, has been developed by building on experience with prior
transport approaches [110, 114, 116, 119–121, 123–127, 257] and has been applied to study
a wide range of observables. Examples include hadronic flow [258], strange-particle
production [259, 260], baryon stopping [261], deuteron production [262, 263], photon and
dilepton emission [264, 265], and critical phenomena using a density-functional EoS [154].
It has also served to determine transport coefficients (e.g., shear [266, 267], bulk [70],
electrical conductivity [268], cross-conductivity [269]) and to study fluctuations [270].
Benchmark comparisons with other transport models [271–273] have revealed strong
consistency, and SMASH has been integrated into the JETSCAPE framework for hybrid
studies [53].

In what follows, the main components of SMASH are reviewed: its hadronic degrees
of freedom, its treatment of cross sections, the formation and decay of resonances, and
several numerical details. Unless otherwise noted, we focus on the default cascade
configuration (i.e. no potentials), which is particularly suited to the collision energies
addressed in this study.

2.1.1 Degrees of Freedom

SMASH simulates a comprehensive set of hadrons up to masses of about 2.35GeV,
focusing on species with 3- or 4-star ratings from the Particle Data Group (PDG) [274].
This set covers pions, kaons, η-type mesons, heavier scalar, vector, and pseudoscalar
resonances (e.g., ρ, ω, f0, a0), as well as baryons such as N, ∆, Λ, Σ, Ξ, Ω, and their
excited states. An up-to-date particle list is included with each SMASH release [275].
The full list is not quoted here because many resonance properties will be modified
in the near future, as they are tuned to experimental cross sections using a genetic
algorithm [276]. Masses and decay widths are typically taken from the PDG, within their
allowed uncertainties, and small mass differences among isospin partners are neglected
by assuming isospin symmetry. Any hadron whose width is below 10 keV is designated
stable. Hadrons with higher decay width are considered to be unstable resonances.

Since SMASH-3.2, also charmed particles are included with elastic interactions from
the additive quark model as well as resonance production and decays for inelastic
collisions. Beyond ordinary hadrons, SMASH also includes a point-like description of
deuterons [262, 263]. Each deuteron is treated as an on-shell stable particle that can
form or break up in catalysis reactions involving nucleons and pions. This microscopic
description, motivated by cluster formation at intermediate energies, reproduces data for
light-nucleus production in heavy-ion collisions reasonably well [277].

2.1.1.1 Spectral Functions

A large fraction of particles created in heavy-ion collisions are resonances. All resonances
in SMASH carry vacuum spectral functions, with any in-medium modifications arising
solely from dynamical scattering. This effectively shortens lifetimes by increasing the
probability of inelastic collisions before a resonance can decay. The spectral function of a
resonance is given by the relativistic Breit-Wigner form

A(m) =
2N

π

m2 Γ(m)(
m2 −M2

0

)2
+m2 Γ(m)2

, (2.1)
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Figure 2.1: The spectral function of the vector mesons with dielectron decay mode. From [278].

where m is the actual mass of the resonance, M0 its pole mass, Γ(m) the mass-dependent
decay width, and N a normalization constant ensuring∫∞

0

dmA(m) = 1. (2.2)

Since Γ(m) varies with m, N can differ from unity. SMASH enforces energy-momentum
conservation during formation and decay by sampling m from A(m) and treating the
resonance as on-shell throughout its lifespan. The spectral function vanishes below the
sum of the lightest final-state masses.

2.1.1.2 Decay Widths

In fig. 2.1, we see that the spectral function shows a non-trivial shape. This originates
from the mass dependent decay width Γ(m). The rising A(m) at low masses originates
from a dilepton channel, because it is below twice of the pion mass from the default
hadronic channel. The lifetime of the resonances is given as τ = 1/Γ(m). The total decay
width of a resonance is the sum of its partial widths:

Γ(m) =
∑
i

Γi(m). (2.3)

Figure 2.2 shows total and partial widths for the N∗(1440)+ resonance [109], illustrating
how different channels combine to yield an m-dependent width. SMASH employs the
Manley-Saleski procedure [279], whereby each two-body decay R→ ab scales with the
ratio

ΓR→ab(m) = Γ0R→ab

ρab(m)

ρab(M0)
, (2.4)

where Γ0R→ab = ΓR→ab(M0) and

ρab(m) =

∫
dma

∫
dmb Aa(ma)Ab(mb)

|⃗pf|

m
B2
L

(
|⃗pf|R

)
F2
ab(m). (2.5)

Aa(b) are the spectral functions of a(b); |⃗pf| is the momentum in the center-of-mass frame,
BL is a Blatt-Weisskopf factor [280], and Fab is a form factor [281]. SMASH disallows
decays that require m <Ma +Mb at the pole, as they yield imaginary |⃗pf|.
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Figure 2.2: Decay width of the N⋆(1440)+ resonance, as a function of the mass. The partial
channels are depicted as colored lines, which sums up to the total decay width (in
black). The figure is taken from [109].

2.1.2 Effective Solution of the Boltzmann Equation

Transport approaches like SMASH aim to realize an effective numerical solution of the
Boltzmann or Boltzmann-Uehling-Uhlenbeck equation,

∂f

∂t
+
p⃗

E
· ∇f+ F⃗ ∂f

∂p⃗
=

(
∂f

∂t

)
coll

, (2.6)

where f denotes the phase-space distribution of hadrons. Indeed, as mentioned before,
the great number of degrees of freedom realized by the hadron resonance gas would
turn such a Boltzmann equation analytically untrackable. Therefore, only an effective
numerical treatment is possible. The time evolution of the particle distribution function
in the absence of collisions is contained in the first term on left side of the equation1.
The second term on the left side is known as the free streaming term, which accounts
for particles propagating along straight lines according to their momenta. The third
term, on the other hand, describes the effect of an external force field on the particle
trajectories. Finally, the right-hand side, the collision term, represents the interaction of
the particles. The SMASH implementation has been verified against analytically solvable
test cases, notably an expanding Friedmann–Robertson–Walker metric setup where a
known solution of the Boltzmann equation exists [282].

Figure 2.3 shows the comparison of the exact solution of the Boltzmann equation with
the one obtained by SMASH in the case of an expanding metric. This result shows that
SMASH effectively provides a correct solution of the Boltzmann equation in this setup.

2.1.2.1 Propagation and Potentials

In SMASH’s default cascade mode, hadrons move along straight-line trajectories from
one collision or decay to the next, which avoids limiting each particle to at most one

1 Without the collision term, the equation is referred to as the Vlasov equation.
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Figure 2.3: Ratio of the current distribution function and the equilibrium Boltzmann distribu-
tion, for both SMASH and the exact solution. Figure from [282].

interaction per time step [109, 114]. Indeed, this was a major limitation in a fixed-time
step approach. The algorithm identifies the nearest upcoming event, updates the system
to that time, performs the interaction, then repeats for the subsequent events. If, however,
the stochastic collision criterion (section 2.1.2.3) is used, one must revert to time steps
∆t to define collision probabilities, briefly restoring the single-collision-per-time step
assumption.

A more sophisticated mean-field mode is also available, in which particles feel attractive
and repulsive nuclear forces. These potentials enter the Boltzmann equation as an
additional term on the left-hand side. In SMASH, the Skyrme potential [109, 283] is a
commonly used option, taking the form

U(ρ, ρI3) = a
(

ρ
ρ0

)
+ b

(
ρ
ρ0

)τ ± 2 Spot
(
ρI3

ρ0

)
, (2.7)

where ρ denotes the local baryon density, ρI3 is the isospin-I3 density, and ρ0 =

0.168 fm−3 is the nuclear saturation density. The potentials modify particle trajecto-
ries via relativistic equations of motion that depend on ∂H∗/∂xµ and ∂H∗/∂pµ, where
H∗ is the Hamiltonian in the local rest frame. Only baryons experience these nuclear
forces, which can be crucial at lower collision energies to describe effects such as the
nuclear equation of state and collective flow in heavy-ion collisions [154].

In this work, the collision energies are sufficiently high that potentials have a marginal
effect. Consequently, all reported results use the cascade mode without mean fields,
causing baryons and mesons to move on straight-line trajectories between collisions. At
lower energies, however, the inclusion of these potentials can be essential to reproduce
nuclear binding and the stiffening of the hadronic equation of state in dense matter.

2.1.2.2 Interactions and Cross Sections

The interactions among the hadronic degrees of freedom in SMASH span a wide range of
processes that are implemented through distinct partial cross sections, which can belong
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to (in)elastic collisions, string fragmentation, as well as resonance formation and decay.
All partial contributions together determine the total hadron-hadron cross section,

σtot =
∑

σpartial, (2.8)

which serves as the foundation for deciding whether two hadrons collide. There are two
approaches: a bottom-up strategy, where each individual resonance channel contributes
to the total cross section in a way that reproduces measured hadron-hadron cross
sections [109, 114, 284]. More recently, an alternative top-down approach has been made
available as well, in which an overall cross section fit is performed first, and subsequent
partial contributions are assigned afterward [285]. For measured processes, SMASH uses
the top-down approach, and bottom-up for the rest.

Figure 2.4: Total and partial cross sections of the reaction pπ− as a function of the collision
energy

√
s. The figure is taken from [286].

Figure 2.4 shows as an example the cross section of a proton pion reaction. The total
and elastic were also measured, and they are well reproduced by SMASH. Additionally,
once can see the dominance of resonance contributions at low energies, whereas soft string
interactions quickly take over. At even higher collision energies, one would also observe
hard strings. Since there are many more possible reactions between the constituents,
the interested reader is referred to [255], where a wide collection of results calculated
with SMASH is publicly available for each version. In these examples, one observes
the interplay of multiple channels (resonance excitations, elastic scattering, etc.) that
collectively reproduce the total measured cross section.

resonance formation. At low and intermediate energies, resonances dominate
the dynamics through their formation and decay. Elastic and inelastic channels both play
a role. Elastic processes for many combinations of nucleons, pions, kaons, or deuterons
are guided by experimentally known cross sections, whereas the Additive Quark Model
(AQM) [287] is employed when data are sparse. Inelastic processes include, among others,
∆ andN∗ excitation inNN collisions, hyperon production in KN interactions, and baryon-
antibaryon annihilation channels such as NN̄→ multi-pion. A subset of multi-particle
reactions (e.g., NN̄↔ 5π) can be modeled via sequential two-body collisions or—if all
particles lie within the same local volume—through an explicit multi-particle collision
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approach using the stochastic collision criterion. The cross section of resonance formation
(ab → R) can be calculated from the forward decay process (R → ab). Therefore, the
cross section is given in terms of the decay width as [110]

σab→R(s) =
2JR + 1

(2Ja + 1)(2Jb + 1)
Sab

2π2

p⃗2
i

Γab→R(s)AR(
√
s). (2.9)

It is important to stress that Γab→R(s) only equals ΓR→ab(s) for stable particles. How-
ever, for unstable incoming particles, a modified width is employed in the so-called
Manley resonance treatment. The form of this modification is

Γab→R(m) = Γ0R→ab

|⃗pab|B
2
L(|⃗pab|R)Fab(m)

mρab(M0)
, (2.10)

with the same notation as in eq. (2.5).

decay treatment and collisional broadening . Besides scatterings, reso-
nances also decay. In SMASH, the probability that a resonance decays in its rest frame
over a small time interval ∆t is

Pdecay =
∆t

τ
, (2.11)

where τ is the inverse of the total decay width. The probability is the input for the
Monte-Carlo simulation of the decay at each time step, giving in average the correct
lifetime. Each partial decay channel has a branching ratio proportional to its partial
width.

Vacuum decay widths are consistently applied, but since hadrons in a dense medium
may scatter inelastically before decaying, their effective lifetimes can be shortened, a
phenomenon termed collisional broadening. This dynamical effect is naturally captured
in transport simulations without modifying vacuum widths [288]. Therefore, the different
processes influencing the lifetimes of resonances can be disentangled out-of-the-box.

elastic collisions Well-established experimental measurements exist for many cru-
cial elastic processes, notably NN, NN̄, NK, (anti)deuteron-nucleon, and (anti)deuteron-
pion scattering. These are encoded in parametrized cross sections [114, 259, 262, 284].
Other channels, such as baryon-baryon or meson-meson scattering that lack precise
data, rely on the AQM prescription. In the resonance-rich region of moderate energies,
so-called “quasi-elastic” scattering proceeds via intermediate resonances, for example
ππ→ {σ, ρ} → ππ. Elastic channels can incorporate nontrivial angular dependencies (e.g.,
for NN scattering) [289].

inelastic collisions . Inelastic collisions 2 → 2 in SMASH comprise single and
double resonance excitations (NN → NR or NN → RR), resonance absorption (NR →
NN), strangeness exchange (KN→ πY), charge exchange (e.g., K−p↔ K̄0n), and other
production or annihilation channels.

The cross section for inelastic scattering can often be expressed in terms of matrix
elements |M|2 that depend on the Mandelstam variable s. For instance, double resonance
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excitations are calculated by integrating over resonance spectral functions in the final
state, as illustrated by

σab→R1R2
(s) =

(2JR1
+ 1)(2JR2

+ 1)

s |⃗pi|

∑
I

(
CI
abC

I
R1R2

)2 |M|2ab↔R1R2
(s, I)

16π
(2.12)

×
∫√s−mmin

2

mmin
1

dm1A1(m1)

∫√s−mmin
1

mmin
2

dm2A2(m2) |⃗pf|
(√
s,m1,m2

)
,

with CI
ab denoting isospin Clebsch-Gordan factors, |⃗pi(f)| the center-of-mass momentum

in the initial (final) state, and A1(2) being the spectral functions of the formed resonances.
Various parameterizations exist for the matrix elements (e.g., one-boson-exchange fits for
NN→ N∆), and the resonance widths (both forward and backward processes) obey the
principle of detailed balance.

string fragmentation. At higher collision energies, where resonances above
masses of around 2GeV are not well known, SMASH models inelastic interactions
using string fragmentation. If two strongly interacting particles are separated, a string is
formed, which is also known as a color flux tube. As seen before, the nature of the strong
coupling constant results in its strength increasing with the distance. Therefore, the
energy of the string rises with the separation scale. This continues until enough energy
for a new quark-anti-quark pair is available. At this point, the string fragments, which
means that the newly formed quarks and gluons are confined into new hadrons. In this
way, string fragmentation models the complex multi-particle production at high-energy
hadron collisions. This approach relies on the Lund string model [290] as implemented in
PYTHIA [291], and includes the distinction between single-diffractive, double-diffractive,
and non-diffractive processes. In practice, a transition region is set up to ensure a smooth
handover between the resonance-dominated regime and the string-dominated one. Soft
or hard string fragmentation may be activated depending on the collision energy [114,
261, 292]. Hard strings are modeled using cross sections calculated from pQCD [291]. As
a result, they are only applicable for highly energetic collisions. An interpolation between
resonances and hard string cross sections for the intermediate energy range is given in the
soft string routine. It is tuned to match the total cross section. This approach is inspired
by the logic employed in UrQMD [114, 292]. In the common case that the inelastic cross
section for a particle pair is not known, the Additive Quark Model (AQM) [287] is used.
Along similiar lines, since PYTHIA only fragments (anti-) nucleons, pions and other
particle species are mapped onto the known fragmentations.

In a dynamical picture pair production does not happen simultaneously but at different
points in time. In the yoyo model, the created particles are assigned a formation time.
This is mirrored in SMASH by assigning the particles a formation time. Until this time
has passed, the cross section is scaled down, proportional to the amount of non-leading
string fragments. The cross section continuously increases till formation time for high
collision energies. At lower collision energies, a step function is used [261] .

detailed balance . SMASH enforces exact conservation of baryon number, strange-
ness, and electric charge for every interaction. Additionally, time-reversal symmetry is
respected for any channel with an explicit back-reaction, thus satisfying detailed balance
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in resonance production and absorption. Therefore, the probability of a reaction from an
initial phase space distribution Γi to the final phase space distribution Γf has to follow

p(Γi, Γf) = p(Γf, Γi) . (2.13)

This principle of ergodicity ensures the ability to reach thermal equilibrium from any
accessible state [293]. String-based processes lacking reverse fusion channels partially
violate detailed balance but remain necessary at high energies.

pauli blocking Fermionic quantum statistics is partially realized via Pauli blocking
for baryons. In the BUU framework, the collision integral carries factors (1− f) for the
final states of fermions to reflect the Pauli exclusion principle. Numerically, SMASH
implements this by rejecting collisions into fully occupied states according to the local
phase space densities. In the present work, Pauli blocking is turned off, as it has a
diminished impact at high collision energies [109].

All these mechanisms, from resonance formation and decay to string fragmentation
and multi-particle channels, constitute the collision term for the transport dynamics of
SMASH. In this manner, the model provides an effective solution of the Boltzmann (or
BUU) equation across a broad range of energies and collision systems.

2.1.2.3 Collision Criteria and Test Particle Method

Interactions among point-like particles in SMASH can only occur when the particles
come sufficiently close. This seemingly simple notion of “closeness” must be defined
consistently to decide both whether a scattering event happens and at what time it is
realized in the simulation. In SMASH, two conceptually different classes of collision
criteria exist: geometric criteria and a stochastic criteria. Both are compatible with the
Boltzmann or BUU framework, but they differ in how the effective cross section is
mapped onto possible collisions, and in how easily they generalize to multiple incoming
particles.

geometric criteria . A traditional geometric approach [114, 123] interprets the
total cross section σ as an effective area. Two hadrons collide if their transverse distance
at closest approach dT is less than

dint =

√
σ

π
, (2.14)

where σ is the total cross section for the relevant process. When a collision is accepted,
one must then decide which channel actually occurs, weighting different partial cross
sections by σpartial/σtot. Originally, SMASH employed a non-covariant version of this
criterion, similar to UrQMD [114], in which positions and momenta were evaluated in a
preferred frame, and the collision time was computed as

tcoll = −
(⃗ra − r⃗b) ·

(
p⃗a

Ea
− p⃗b

Eb

)(
p⃗a

Ea
− p⃗b

Eb

)2 , (2.15)
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supplemented by

d2T = (⃗ra − r⃗b)
2 −

[
(⃗ra − r⃗b) · (p⃗a − p⃗b)

]2
(p⃗a − p⃗b)2

. (2.16)

Such a prescription can introduce frame dependence in deciding the sequence of collisions,
since time-ordering of interactions is not covariant. To mitigate this, a fully covariant
geometric criterion was implemented in SMASH-2.0 [294], which employs the Lorentz-
invariant generalization of dT and a covariant procedure for collision times. Nonetheless,
geometric criteria—whether covariant or not—describe instantaneous interactions over a
finite range. This inevitably introduces some residual non-locality and potential causality
issues that are alleviated by using test particles to reduce the reaction range.

Although geometric criteria work efficiently for two-particle collisions, they are difficult
to extend to processes with more than two incoming particles. One can simulate multi-
particle reactions via a chain of successive 2→ 2 or 2→ n scatterings, but only if suitable
intermediate states exist. Alternatively, SMASH offers a stochastic collision criterion,
which provides a more direct handle on 3 → 2, 3 → 1, 5 → 2, and other multi-particle
processes.

stochastic collision criterion The stochastic criterion departs from the geo-
metric interpretation of cross sections as physical areas. Instead, space is divided into
small cells of volume ∆3x, and for each pair (or group) of particles inside a cell, the
collision probability is computed over a small time interval ∆t. For a 2→ m channel, for
instance, the probability can be expressed as

P2→m =
∆t

∆3x
vrel σ2→m, (2.17)

where vrel is the relative velocity between the two particles and σ2→m is the corresponding
cross section. If the number thus obtained lies below a random number generated in (0, 1),
the collision is accepted. This approach is then generalized to multiple incoming (and
outgoing) particles, making it ideal for baryon-antibaryon annihilation with NN̄↔ 5π or
catalysis reactions for deuteron production [295].

An obvious advantage is that multi-particle processes require only knowledge of the
total cross section and no ad hoc geometric notion of “closeness” for more than two
particles. A disadvantage is that large numbers of particles in each cell greatly increase
the combinatorial cost of calculating probabilities for every possible collision. Moreover,
for stable results, ∆3x and ∆t must be chosen such that particles do not significantly
change their distribution within a cell during the interval. Practically, a large test particle
number Ntest is often used to ensure smoother phase-space densities. This makes this
approach very costly at high collision energies and densities. Therefore, for the rest
of this work, the geometric covariant criterion is used and as a result no multiparticle
interactions.

test particle method and scaling of cross sections . SMASH can operate
in a Boltzmann-Uehling-Uhlenbeck (BUU) spirit, meaning that each physical particle
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is represented by Ntest test particles. The total number N of physical particles thus is
replaced by N 7→ NNtest, while the cross section must be scaled down according to

σ 7→ σN−1
test, (2.18)

so that the physical scattering rate is unchanged. In cascade mode (i.e. no mean fields),
increasingNtest reduces spurious fluctuations and narrows the effective interaction region,
thereby mitigating non-locality issues inherent to instantaneous collisions. At the same
time, one must keep in mind that raising Ntest increases the number of collision checks,
which can be computationally expensive—particularly when employing the stochastic
approach that examines all possible particle combinations within each cell.

In summary, SMASH offers both geometric and stochastic formulations of the collision
criterion. The geometric approach is fast and simple for 2→ 2 scatterings but struggles
with multi-particle processes, while the stochastic approach provides a covariant, cell-
based collision probability that cleanly accommodates higher-order processes at the price
of greater computational overhead. Through these complementary strategies—and the
flexibility of the test particle method—SMASH can effectively tackle a wide variety of
hadronic collision dynamics.

2.1.3 Initialization Scenarios

SMASH provides several distinct initialization modes, each suited to a particular physical
situation and energy regime [109]. In particular, it may simulate either the full evolution
of a low- or intermediate-energy heavy-ion collision, or only a particular stage of a
higher-energy scenario (e.g., an afterburner for the hadronic freeze-out). The following
subsections highlight the main ways to set up the hadronic system.

collider (two nuclei). For collisions of nuclei at low and intermediate energies,
SMASH initializes the nucleons (protons and neutrons) according to a Woods-Saxon
density profile,

dN

d3r
=

ρ0

exp
[
(r− r0)/d

]
+ 1

, (2.19)

where ρ0 = 0.168 fm−3 is the ground-state nuclear density, r0 is the effective radius,
and d is the diffuseness of the nucleus [109]. Certain special nuclei demand specific
(r0,d) values, and deformations can be introduced by allowing r to depend on the angles
(θ,ϕ) [296]. Once the nucleons are placed, they can optionally be assigned Fermi motion
up to a local Fermi momentum

pF(⃗r) =  hc
[
3 π2 ρ(⃗r)

]1/3, (2.20)

accounting for the Pauli principle. Because such initial momenta might cause spurious
expansion of the nucleus, one may either use a mean-field potential to bind the nu-
cleons or freeze the Fermi motion for propagation purposes, applying it only during
collisions [109, 297]. After the setup, the two nuclei (or more exotic systems) are boosted
to the desired beam energy and arranged at an impact parameter b, which is defined as
the perpendicular distance between the trajectories of the two nuclei, measured in the
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plane transverse to the beam direction 2. This mode covers the entire evolution of the
collision within SMASH, from initial nuclear overlap through final-state scatterings.

infinite matter (box). A second mode simulates infinite nuclear or hadronic
matter by imposing periodic boundary conditions in a cubic box. Particles that leave one
face of the box reappear on the opposite face with unchanged momentum. Hadrons and
their momenta can be prescribed from grand-canonical thermal distributions, quantum
statistical distributions or set manually. This periodic “box” scenario is valuable for
investigating equilibrium properties such as transport coefficients, chemical relaxation,
and thermalization. One can also initialize resonances at their pole masses, or sample
them with the corresponding spectral functions as needed.

sphere . An alternative, spherically symmetric initial condition places hadrons uni-
formly in a sphere of radius R. Their momenta may again be drawn from thermal or
manual distributions. This setup mimics an expanding fireball without boundary con-
ditions and can be employed to study radial flow, expansion dynamics, or to embed
high-energy test particles (e.g., jets) in a controlled environment [298].

afterburner (list mode). At higher collision energies, the QCD medium under-
goes early partonic or hydrodynamic evolution, after which the system transitions into
a hadron gas phase. SMASH can serve as an afterburner to handle the final hadronic
rescattering stage. In this mode, SMASH reads a particle list obtained, for instance, from
a Cooper-Frye sampling on a hydrodynamic freeze-out hypersurface. Each hadron is then
propagated through any further collisions and decays until the medium becomes dilute.
Some of these hadrons may appear at different formation times, so SMASH rewinds or
“scrolls back” their positions to the earliest relevant time and starts the simulation from
that point, prohibiting interactions before a hadron is actually produced.

These complementary initialization modes make SMASH flexible across a wide
range of energies and applications: from collisions of stable or exotic nuclei in the
low-energy regime, to thermalized boxes for equilibrium studies, up to high-energy
collisions where SMASH provides either the post-hydrodynamic rescattering stage or the
pre-hydrodynamic initial conditions.

2 This is based on the assumption of antiparallel movement of the nuclei, which is in general approximately
true.
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2.1.4 Viscosities in SMASH
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Figure 2.5: Upper row left: shear viscosity η. Upper row right: entropy density (circles) and
enthalpy (triangles). Bottom: η/s (circles) or ηT/w (triangles) as a function of the
temperature. Results are shown for different values of the baryochemical potential:
µB = 0 (blue), µB = 300 MeV (red) and µB = 600 MeV (green). The results for
η/s from [266] are included as squares and the KSS bound 1/4π as a dotted line.
From [267].

The aim of this work is to study transport coefficients in the QCD phase diagram in
regions sufficiently hot and dense to use hydrodynamics as an effective description. For
more dilute systems, hadronic transport can be used to deliver predictions for viscosities.
This is in general performed using the Green-Kubo formalism [267]. Figure 2.5 shows
the prediction for both temperature and baryochemical potential dependence, which
suggests in this region of the phase diagram a decrease both with temperature and
density. This fits the expectations, as we are in a region with a smaller energy density
than the transition line.

2.1.5 Equation of State from SMASH

Although SMASH primarily operates at the microscopic level by propagating hadrons and
their interactions, it also supplies a hadronic equation of state (EoS) that can be utilized in
hybrid modeling [109, 268]. One starts by describing the ensemble of mesons and baryons
in a grand-canonical framework at given temperature T and chemical potentials µB, µS,
and µQ. Various equilibrium thermodynamic observables (e.g., the energy density ϵ, the
net particle densities nB,nS,nQ, and the pressure p) then follow from momentum-space
integrals over relativistic distributions. When tabulated at discrete points in (ϵ,nB,nQ) or
(T ,µB,µQ), this EoS can be matched to a hydrodynamic description, ensuring a consistent
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Figure 2.6: The equation of state of the SMASH hadron resonance gas for vanishing baryon,
charge and strange density as a function of temperature: energy density ϵ, pressure
p, and entropy density s (lines) compared to 2+1-flavor lattice QCD results [33]
(bands). From [221].

switch (particlization) between fluid cells in hydrodynamics and the microscopic hadron-
resonance gas in SMASH [221].

motivation for the smash eos . At high energy densities, a transition to a quark-
gluon phase is eventually required because purely hadronic degrees of freedom become
insufficient. Nevertheless, for moderate and low energies, the SMASH EoS serves as a
valuable baseline in numerous hybrid approaches. Near thresholds where partial densities
of light hadrons (pions, nucleons) vanish, specialized interpolations are necessary to
ensure numerical smoothness in solving for T and µB.

In general, the EoS maps the thermodynamic variables (ϵ,nB,nQ,nS) to the tempera-
ture T , the pressure p, and chemical potentials (µB,µQ,µS). Because heavy-ion collisions
typically conserve net strangeness to zero, one often omits an explicit dependence on
nS by setting nS = 0. Moreover, for the hydrodynamic stage in a hybrid setup, local net
strangeness is usually chosen to be zero initially and remains so throughout its evolution.
Hence, the SMASH EoS employed here effectively provides:

(ϵ,nB,nQ) → (T ,p,µB,µQ,µS), (2.21)

with nS = 0 enforced.

derivation via a grand-canonical boltzmann gas . The hadronic EoS is
found by solving a system of coupled equations that express ϵ,nB,nQ,nS in terms of
T ,µB,µQ,µS under the assumption of an ideal Boltzmann gas in the grand-canonical
ensemble [251]:

ϵ = ϵ(T ,µB,µQ,µS),

nB = nB(T ,µB,µQ,µS),

nQ = nQ(T ,µB,µQ,µS), (2.22)

nS = nS(T ,µB,µQ,µS).
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A root-finding algorithm obtains T , p, µB, µQ and µS for a given (ϵ,nB,nQ,nS). Unfor-
tunately, the solver can be highly sensitive to initial guesses, especially at low energy
densities or near kinematic thresholds.

Consequently, the tabulated SMASH EoS is most reliable at sufficiently large ϵ and
moderate baryon/charge densities. The final table covers ϵ from 0.01 up to 1.0GeV/fm3

and includes all SMASH hadronic degrees of freedom. It is publicly available in tabular
form [299].

comparison with lattice qcd A standard validation is to compare the SMASH
EoS to lattice QCD at µB = µQ = µS = 0. Figure 2.6 shows the pressure p, energy density
ϵ, and entropy density s (all divided by appropriate powers of T ) versus temperature, in
comparison to 2+1-flavor lattice data [33]. The SMASH curves (lines) and the lattice results
(bands) agree rather well at low T , confirming the hadron-resonance-gas description in
that regime.

relevance for hybrid approaches In a hydrodynamics-plus-transport (hybrid)
framework, this SMASH EoS is key. During the particlization step, one maps each
fluid cell at temperature T and baryon chemical potential µB onto a hadron-resonance
gas. If the macroscopic EoS underlying the hydrodynamic phase does not match the
microscopic EoS used by SMASH, quantum number conservation and consistency at
freeze-out become problematic. Therefore, the SMASH equation of state is extensively
employed in hybrid modeling [221], particularly at moderate or lower collision energies.

With these considerations in mind, we now shift to describing the second major
component of the hybrid approach, namely the hydrodynamic code vHLLE.

2.2 Viscous Hydrodynamics in the vHLLE Approach
The hydrodynamic code vHLLE belongs to the class of viscous relativistic hydrodynamics.
As explained earlier, using viscous hydrodynamics relaxes the requirement of equilibrium
for the nuclear matter, which is a more appropriate description for the quickly expand-
ing fireball. vHLLE is built to solve second-order (Israel-Stewart) relativistic viscous
hydrodynamics in full three spatial dimensions plus time. This framework addresses
shortcomings of the simpler first-order Navier-Stokes approach, incorporates relaxation-
type equations for dissipative stresses, and uses Godunov/HLLE-type algorithms to
handle large velocity gradients and potential shock waves. In the following, we describe
the underlying algorithm in a quick overview. More details are provided in the relevant
paper [211] and in the original papers about the Israel-Stewart approach [166, 300].

2.2.1 From Basic Conservation Laws to Relativistic Navier-Stokes

Starting from the fundamental conservation laws eq. (1.17) and eq. (1.18) the total
energy-momentum tensor Tµν is written as a sum of an ideal part and a small dissipative
correction:

Tµν = T
µν
ideal + ∆Tµν. (2.23)
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In the Navier-Stokes tradition (both non-relativistic and relativistic), one usually posits
that in a near-equilibrium regime, the leading dissipative corrections are first order in
gradients of the fluid velocity or thermodynamic fields. Physically, this is motivated by a
Taylor expansion about local equilibrium. If deviations from equilibrium are small, then
to first order, shear and bulk stresses respond proportionally to local gradients:

∆Tµν ∝ (∂u).

Hence, in a relativistic setting, one splits:

∆Tµν = πµν + Πgµν, (2.24)

where πµν captures the shear contributions and Π the bulk pressure correction.

shear stress πµν
and bulk pressure Π In an isotropic but near-equilibrium

fluid, the viscous stress can be separated into:

• Shear-stress tensor πµν, which is transverse, symmetric, and traceless. This ac-
counts for anisotropic momentum transport when velocity gradients deform the
fluid shape.

• Bulk pressure Π, a scalar correction that captures expansion or compression modes
uniform in all directions.

Note that with these definitions, the energy-momentum tensor is symmetric, just like
in the ideal case. The shear-stress tensor and the bulk pressure can be expressed in
linear-gradient form (Navier-Stokes limit) as:

π
µν
NS = 2 ησµν = η

(
∆µα∂αu

ν + ∆να∂αu
µ − 2

3 ∆
µν ∂αu

α

)
, (2.25)

ΠNS = − ζ ∂αu
α. (2.26)

Here, σµν is the symmetric and traceless velocity-gradient tensor, η is the shear viscosity
coefficient, ζ is the bulk viscosity coefficient and ∆µν = gµν − uµuν. These forms
represent:

• π
µν
NS is linear in the symmetrized velocity gradient σµν. The subtraction of 2

3∆
µν(∂αu

α)

ensures tracelessness.

• ΠNS depends on the local expansion rate ∂αuα, contributing an isotropic stress
shift for expansions or compressions.

This first-order prescription is valid near equilibrium when gradients are small. Higher-
order terms are neglected, implying that the system’s departure from equilibrium is mild
enough for a linear-approximation.

2.2.2 Problems of First-Order Navier-Stokes and the Israel-Stewart Solution

Althoug the dissipative corrections above yield a straightforward way to incorporate
viscous effects, doing so, one encounters two major problems:
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2.2 viscous hydrodynamics in the vhlle approach

• Causality violation: Propagation speeds for disturbances exceed the speed of light.

• Instability: In strongly relativistic flows, the equations can become ill-posed numeri-
cally and physically.

These issues arise because one tries to force the shear-stress tensor πµν
NS and bulk

pressure ΠNS to be instantaneously proportional to local velocity gradients. In many
realistic situations, there is a finite relaxation time for establishing dissipative corrections.

Israel-Stewart theory [166, 300] overcomes these deficiencies by treating πµν and Π as
independent degrees of freedom with their own relaxation-type evolution equations. For
example, instead of forcing πµν = ησµν at each moment in time, one writes

uγ∂γ π
µν = −

πµν − π
µν
NS

τπ
− 4

3 π
µν ∂γu

γ + . . . (2.27)

where πµν
NS is the Navier-Stokes term, τπ is a relaxation time, and . . . includes possible

vorticity or geometrical source corrections. Similarly, one finds

uγ∂γΠ = −
Π−ΠNS

τΠ
− 4

3 Π∂γu
γ + . . . . (2.28)

This formalism ensures that the dissipative currents do not exceed physical bounds
and approach the Navier-Stokes form only exponentially over a relaxation timescale τπ.
A similar logic applies to the bulk pressure Π. Consequently, causality is preserved, and
instabilities are reduced [167]. πµν

NS and ΠNS are the Navier-Stokes forms (the combination
of velocity gradients with η or ζ), while τπ and τΠ are relaxation times controlling how
fast πµν and Π approach their Navier-Stokes limits. Thus, these equations are of the
relaxation-type because each non-equilibrium component evolves toward its asymptotic
(Navier-Stokes) form on timescales set by τπ or τΠ. Physically, that timescale arises
from kinetic considerations: dissipative currents cannot instantly track changing velocity
gradients but must relax from their previous values. For the Navier-Stokes limits,

π
µν
NS = 2 ησµν, ΠNS = −ζ∇λu

λ, (2.29)

with shear viscosity η and bulk viscosity ζ. These equations reduce to first-order Navier-
Stokes if τπ, τΠ → 0. A typical assumption is that viscosity corrections remain small
relative to ideal parts, though the formalism can (in principle) handle moderate depar-
tures.

2.2.3 Numerical Implementation

The evolution of the viscous fluid in vHLLE is numerically realized through mirroring
the splitting of ideal and viscous parts, following ideas from [301]. The code separates
the contributions from the ideal (inviscid) part of the energy-momentum tensor and the
viscous part, updating them sequentially within each time step ∆t. In broad strokes, the
code does the following at each time step:

1. Solve the ideal (non-dissipative) hydrodynamic equations, ignoring any shear or
bulk viscous terms.
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2. Update the dissipative quantities themselves, such as πµν and Π, by integrating
their Israel-Stewart relaxation equations.

3. Re-insert the viscous flux corrections into the full hydrodynamic conservation laws
for a final update.

Below, we outline why this decomposition is advantageous, how each step is performed,
and how stability is preserved if the relaxation times are small.

2.2.3.1 Splitting of Ideal and Viscous Parts

We write the fundamental conservation laws eq. (1.17) and eq. (1.18) in Minkowski
coordinates for clarity:

∂Qµ

∂t
+
∂Fµi

∂xi
= 0, (2.30)

∂N0

∂t
+
∂Ni

∂xi
= 0, (2.31)

where Qµ ≡ T0µ, Fµi ≡ Tµi, and Ni is the flux of net baryon number (or other conserved
charges). In a fully viscous treatment, Tµν = Tµν

id + δTµν, and the flux Fµi likewise splits
into Fµi

id + δFµi. Following [301], one can rewrite the resulting equations so that the total
update can be achieved by two simpler subsystems:

1. Ideal step: evolve the system only with Tµi
id (and ignore δTµν). Denote the result

after a full ∆t as Q∗(n+1)
id .

2. Viscous step: incorporate the effects of the dissipative fluxes and the Israel-Stewart
relaxation equations for the shear/bulk variables. That corrects Q∗(n+1)

id to Qn+1
full =

Qn+1
id + δQn+1, and also updates πµν, Π.

2.2.3.2 Substep 1: Ideal Update

In the first substep, eq. (2.30) and eq. (2.31) are solved while ignoring any πµν,Π. In other
words, Tµν

id acts like a perfect fluid. This leads to (see [301] for details)

1

∆t

(
Q

∗(n+1)
id,i −Qn

id,i

)
+

1

∆xi

(
∆Fid

)
+ Sid,i = 0, (2.32)

where Sid are any geometric source terms (as in Milne coordinates). The code employs
a Godunov-type finite-volume procedure with an approximate Riemann solver, specif-
ically the HLLE approach [209, 210, 302]. The Godunov’s scheme [303] works by first
assuming a piecewise constant approximation of the solution. In the following time step,
a local solution for the Riemann problem at the cell interfaces is obtained by resolving
discontinuities there with the help of a superposition of waves satisfying the conservation
equations. Then, after a time interval ∆t, the state is averaged and a new piecewise
constant approximation is defined. The time step is limited by the CFL condition [304]
of cs∆t < ∆x/2, as otherwise the Riemann problems interact. The approximate solution
to the Riemann problem above is constructed with a relativistic extension of the HLLE
solver.
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2.2 viscous hydrodynamics in the vhlle approach

approximate riemann solver . At each cell boundary, a local Riemann problem is
formed by two states, Ql = Qi and Qr = Qi+1. The HLLE solver estimates the left/right
wave speeds bl,br, solves for the single uniform intermediate state (bounded by shock or
rarefaction waves). The properties of the intermediate state follow the algebraic relations:

Qκ
lr(Ql,Qr) =

brQ
κ
r − blQ

κ
l − Fκ(Qr) + Fκ(Ql)

br − bl
, (2.33)

Fκlr(Ql,Qr) =
br F

κ(Ql) − bl F
κ(Qr) + bl br

(
Qκ

r −Qκ
l

)
br − bl

, (2.34)

where κ runs over the component indices (e.g., Lorentz and charge), and bl,r represent
the left and right signal (wave) velocities bounding the intermediate state. They can be
estimated in various ways; following [305], one uses:

br = max
{
0,

v̄+ c̄s
1+ v̄ c̄s

,
vr + cs,r

1+ vr cs,r

}
, (2.35)

bl = min
{
0,

v̄− c̄s
1− v̄ c̄s

,
vl − cs,l

1− vl cs,l

}
, (2.36)

where cs,l, cs,r are the local sound speeds (function of ϵl, ϵr), vl,r are the flow velocities,
and v̄, c̄s are suitable averages of these quantities. The time update is done dimensionally-
split in x,y,η directions, repeatedly applying the HLLE solver. For second-order spatial
accuracy, the slopes (∆Q) in each cell are reconstructed by a slope limiter (e.g.,the minmod
or MUSCL algortihms). For second-order time accuracy, a predictor-corrector step is
done:

• First, evolve for half ∆t using Fni to get Q
∗(n+

1
2 )

i (predictor).

• Then, recalculate fluxes F
(n+

1
2 )

i from these half-step states, and update for the full
∆t (corrector) to obtain Q∗(n+1)

i .

After finishing all coordinate directions, we obtain Q∗(n+1)
id for that substep.

Cells at domain edges are ghost cells that enforce outflow boundary conditions:

Qn
ghost = Q

n
near,

ensuring no inflow from outside, with Qnear being the contributions from cells near the
boundaries. If the code encounters vacuum (ϵ = 0) in a neighbor cell, wave speeds are
set to bl = −1 or br = 1 to reflect that the fluid can expand into vacuum with nearly no
resistance.

2.2.3.3 Substep 2: Relaxation of Viscous Variables

Once the ideal portion Q∗(n+1)
id is known, vHLLE updates the shear tensor πµν and bulk

pressure Π via the Israel-Stewart equations eq. (2.27) and eq. (2.28). This amounts to the
integration of equations of motion. The code does this in two phases:
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(a) source integration (predictor-corrector). The partial derivatives of uµ

and thus πµν
NS ,ΠNS are estimated at half time steps or half-locations. Then πµν (or Π) is

relaxed towards its Navier-Stokes limit over ∆t. If the relaxation time is big enough, this
is performed as

π†n+1/2 = πn + Ifull(π
n) (2.37)

π†n+1 = πn + Ifull(π
n+1/2) (2.38)

where Ifull(π) = −(π− πNS)/τπ + Iπ(π), the viscous source terms (see [211] for more
details). For the case τπ ≪ ∆t [301], a formal solution with only the relaxation part is
chosen, thus ensuring stability:

π
†
n+1 = (πn − πNS) exp

(
−
∆t

γτπ

)
+ πNS.

Integration of the source term Iπ(π) is done separately.

(b) advection of πµν . The dissipative fields themselves must be advected with the
local velocity. vHLLE uses a first-order upwind approach here, which takes the following
form:

πn+1
ijk =

∑
∆i

∑
∆j

∑
∆k

w∆iw∆jw∆kπ
†n+1
i+∆i,j+∆j,k+∆k

where ∆i,∆j,∆k = −1, 0,+1, and

w∆i = {−a−x , 1− |ax|,a+x }

a−x = min(vx∆t/∆x, 0), a+x = max(vx∆t/∆x, 0)

with similar expressions for a±y and a±η . This yields πn+1,Πn+1 after a single step. An
important issue arises here if the viscous corrections are not small, usually due to high
gradients of uµ. Indeed, this can cause instabilities in the hydrodynamical solution.
Therefore, clamping or rescaling πµν is performed [301]:

max
µ,ν

∣∣πµν
∣∣ < C max

µ,ν

∣∣ Tµν
id

∣∣, |Π| < Cp, (2.39)

where C is of order one but less than unity. It is assumed that such corrections only
appear in dilute regions of the medium. Although this implies that in these regions, the
assumptions of hydrodynamics are violated, this is only of small concern as due to the
diluteness, only a small fraction of energy is bound in these regions and therefore the
effect on observables is small.

2.2.3.4 Substep 3: Viscous Flux Correction

Finally, one must incorporate the explicit viscous fluxes (δF) into the momentum/energy
conservation. The code solves:

1

∆t

(
(Qn+1

id,i + δQn+1
i ) − (Q

∗(n+1)
id,i + δQn

i )
)
+

1

∆xi
∆δF + δS = 0. (2.40)
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This is the evolution equation for the viscous part, whereas the ideal evolution equation
eq. (2.32) was already solved in substep 1. Here, Qini = Q

∗(n+1)
id + δQn are the states

before flux correction, and Qn+1
full = Qn+1

id + δQn+1 is the final result. Because the newly
updated πn+1,Πn+1 from substep 2 are known, one can compute δF, δS consistently. The
half step results of the viscous fluxes are saved, allowing for a stepwise solving of this
equation as well. If the relaxation times are extremely small, this step remains stable
because the largest wave speeds were already handled in the ideal flux step, and the local
changes in δQ do not propagate extremely fast. After each major or minor update, the
code must revert from conservative variables {Tτµ,Nτ} to ϵ,p, v⃗, . . .. A standard 1D root
search ensures uµuµ = 1, solves for ϵ and nB, and checks that |⃗v| < 1.

After propagating the medium through a sufficient number of time steps, the expansion
causes the density to sink rapidly. Eventually, the medium becomes too dilute to fulfill
the requirements of a hydrodynamic description. A common condition for switching out
hydrodynamics and starting particlization is a limit on the local energy density. Therefore,
one has to find at each time step the fluid elements which reached this limit, and save
their hydrodynamic quantities. They will form a hypersurface in 4D, as at each time
step, new elements will be included. The content of the fluid elements is not removed
from the hydrodynamic evolution, but their effect on the medium is assumed to be small.
The hypersurface finding is performed using the CORNELIUS procedure [224], which is
integrated into vHLLE.

2.2.4 Hypersurface Detection with CORNELIUS

The challenge of constructing a freezeout hypersurface results from the requirements of
Cooper-Frye sampling for particlization [223]. It is not sufficient to find only the location
of the surface σ, but also its normal. Additionally, although the surface will have in
general a complex structure, holes or double counting have to be avoided in order to
respect conservation laws.

initial grid traversal . One regards the computational domain as a 4D grid of
cells (sometimes called “hypercubes”), each cell bounded by 16 corner points . The fluid
variables, including ϵ(x), are stored at these corner nodes. Once a cell is located where
some corners have ϵ > ϵswitch and other corners ϵ < ϵswitch, we know the isosurface
crosses that cell.

finding edge intersections . Within a cell that encloses part of the isosurface,
CORNELIUS checks all the edges for the location where a linear interpolation of ϵ equals
ϵswitch. This procedure is illustrated schematically in 3D in fig. 2.7 but generalized to 4D.
Each identified intersection point is recorded as a piece of the boundary.

sorting intersection points into polygons or polyhedra . In a 3D slice,
the intersection of a cube with an isosurface is typically a polygon (fig. 2.7). In 4D it
becomes more intricate, forming a polyhedron with faces that themselves can be polygons.
The key challenge is to consistently assemble these intersection points into connected
surface patches without leaving holes or accidentally duplicating patches. CORNELIUS
accomplishes this by systematically:
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Figure 2.7: Reduction of a three dimensional problem into a series of two dimensional problems
for surface finding. The surface element is found by looking for its edges on the
faces of the cube. From [224].

1. Reducing the problem dimension-by-dimension (e.g., going from edges to faces,
then to volumes).

2. Resolving ambiguities in diagonal connections by sampling whether the interior is
above/below ϵswitch at carefully chosen center points.

3. Checking for disconnected patches or multiple surface components in a single cell
and grouping them appropriately.

This ensures that if the isosurface loops back or separates into multiple fragments,
CORNELIUS will detect all such fragments, building a coherent manifold.

computing normal vectors and hyperareas . Once a polyhedron is found,
CORNELIUS needs the 4D oriented surface element dσµ which is applied in the Cooper-
Frye formula. Analogous to polygons in 3D, each face is subdivided (triangulated) so
that the polyhedron can be decomposed into tetrahedra. Summing the oriented volumes
of these tetrahedra yields the net hyperarea vector:

∆σµ =
∑
i

εµαβγ
1
6 fi a

α
i b

β
i c

γ
i , (2.41)

where ai,bi, ci are vectors from the approximate centroid to the vertices of each tetrahe-
dron face, and fi = ±1 chooses the outward direction (i.e. decreasing ϵ). Similarly, the
fluid variables (uµ, ϵ,nB, ...) are linearly interpolated at the centroid of the polyhedron,
ensuring the correct local velocity and densities are associated with that surface patch.
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2.3 Stages of the SMASH-vHLLE-Hybrid Approach
With both the hadronic transport simulation and the hydrodynamic modeling in place,
and the construction of the particlization hypersurface clarified, we now turn to describing
how the SMASH-vHLLE-Hybrid is arranged in its default configuration. We follow the
successive evolution of each stage in chronological order.

2.3.1 Initial Condition

The initial step of a hybrid approach represents the early, highly energetic collisions
between the incoming nuclei. Whereas the initial shape of the nuclei can be inferred from
our knowledge about cold nuclei, leading to the Woods-Saxon-distribution, the processes
involved in the collision of heavy nuclei are less accessible due to the short lifetime of the
initial matter.

2.3.1.1 Hadronic Initial Condition

As explained in section 2.1.3, SMASH initializes the colliding nuclei via a Woods-Saxon
density distribution. These nuclei are then propagated in the cascade mode at the
specified beam energy, allowing collisions to occur in a purely hadronic manner. We
explicitly disregard potentials and Pauli blocking due to the elevated collision energies.
However, rather than letting SMASH evolve the collision to its final low-density state, the
transport simulation is ended at an isochronous hypersurface in proper time τ0. This τ0
is estimated by

τ0 =
Rp + Rt√(√
sNN

2mN

)2
− 1

, (2.42)

where Rp and Rt are the respective nuclear radii, and
√
sNN/(2mN) describes the Lorentz

boost of each nucleus [177, 237]. Geometrically, the passing time is the earliest moment
when all nucleons of both nuclei have had a chance to interact, thus setting a plausible
limit for forming an approximately thermalized fluid. In practice, we also impose a
minimum τ0 = 0.5 fm/c to prevent unreasonably early switching at high energies.

Once a particle crosses τ = τ0, it is recorded into an output file for vHLLE and is
removed from the SMASH simulation. After all particles have left SMASH in this way, the
transport run terminates. Because most collisions in these high-energy systems produce
short-lived string interactions, subsequent rescatterings are rare. Hence, removing the
crossing particles does not strongly affect the initial-state cascade.

The reason for this is the formation time outlined in section 2.1.2.2. The initial collisions
are hard and are, especially at high collisions, dominated by hard string fragmentations,
as can be seen in fig. 2.8. This results into a creation of a large amount of unformed
particles, as can be seen in fig. 2.9. These have initially very small cross sections and do
not interact.

Spectators, that means initial nucleons which not collide, are extracted separately and
later introduced again to the system for the late stage rescattering.
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Figure 2.8: Process type of the last interaction of particles in the SMASH initial state as a
function of collision energy. Clockwise from top-left: ratio of elastic processes nel,
ratio of resonance formations nres, ratio of soft string processes nsoft and ratio of
hard string processes nhard. From [306].
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Figure 2.9: Ratio of unformed particles in the initial state from SMASH as a function of collision
energy with an impact parameter of b = 2fm. Adapted from [306].
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constructing the fluid initial state . At the τ0 switching surface, each
hadron’s distribution is very localized in coordinate space, and feeding these point-
like momenta directly into vHLLE could produce large velocity gradients and shocks in
the fluid. Two principal strategies exist:

1. Event-averaging: Summing many hadron-based initial states, then computing mean
densities for each fluid cell. This smooths out fluctuations and discards event-by-
event structure.

2. Event-by-event smearing: Keeping each single event’s actual hadrons, but spatially
smearing them with a kernel to obtain continuous energy, momentum, and baryon
densities.

In our default approach, we adopt a Gaussian kernel:

∆Qα
ijk = QαC exp

(
−

∆x2
i+∆y2

j

R2
⊥

−
∆η2

k

R2
η
γ2η τ

2
0

)
, (2.43)

where Qα denotes either a component of the four-momentum or a conserved quan-
tum number (like baryon charge). Here, (∆xi,∆yj,∆ηk) is the offset from the hadron’s
coordinates in Milne space to the cell center, R⊥ and Rη control the smearing widths
in transverse and longitudinal (rapidity) directions, γη = cosh(yp − η) is the relevant
Lorentz factor, and C is a normalization ensuring total energy and charge are exactly
preserved. The parameters R⊥ and Rη crucially tune how strongly the fluctuations are
smoothed; large values yield more equilibration and gentler flow fields, whereas small
values preserve local irregularities but can cause shocklike structures. In practice, R⊥
and Rη must be chosen consistently with data and with the system size [177, 221]. The
ambiguity of this choice reflects the core problem that by construction, hybrid approaches
have discontinuities when switching descriptions between the initial state and hydrody-
namics. Although controlling the isotropization and avoiding shocks can avoid violating
the boundaries of applicability of hydrodynamics, there is no easy remedy for the fact
that the physics at these boundaries does not exactly match. As an example, the equation
of state of the hadronic gas will not fit precisely the one employed in hydrodynamics. In
practice, however, the hadronic initial state has been employed very successfully, which
shows that the discontinuities are either small or of very small impact for the evolution.

An alternative criterion is the covariant smearing. Here, the prescription reads

K(∆⃗r) =
γ

(2πσ2)
2/3

exp

(
−
∆⃗r2 + γ2(∆⃗r · β⃗)2

2σ2

)
(2.44)

After the SMASH outputs have been Gaussian-smeared onto the vHLLE grid, we obtain
a continuous fluid initial condition (energy density, flow velocity, baryon density, etc.),
ready for hydrodynamic evolution.

Before delving into this topic, we want to outline two alternative ways to initialize the
fluid, representative of two classes of initial condition models. The effect of switching the
SMASH initial condition model with these will be studied in chapter 4.
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2.3.1.2 Parametric Initial Conditions with TRENTo

The first class are parametric initial condition models, of which TRENTo is a prominent
example. Unlike the fluidization of a hadronic cascade (as previously discussed), these
parametric models provide an ansatz for mapping participant geometry into an energy-
density (or entropy-density) distribution, thus circumventing the explicit pre-equilibrium
dynamics or microscopic propagation. Here, we sketch the core idea of TRENTo to
illustrate how a universal, simplified initial-state prescription can be deployed and then
fed into hydrodynamical evolution.

tR ento basics . Originally introduced in [307] (see also [54, 308–310]), TRENTo
postulates a “reduced thickness” approach. In a high-energy collision of two nuclei A
and B, one first defines thickness profiles TA and TB that specify the transverse densities
of the participant matter. A simple, yet flexible, functional form is used to combine these
densities:

TR(p; TA, TB) =
(
T
p
A + TpB
2

)1/p

, (2.45)

where p is a dimensionless parameter that interpolates between different limiting be-
haviors (e. g. p = 1 approximates a wounded-nucleon scaling, p → 0 emulates certain
saturation-based or EKRT-like models [311]). The function TR is then taken as proportional
to the local entropy or energy density. One commonly writes:

s(x⊥) ∝ TR
(
p; TA(x⊥), TB(x⊥)

)
. (2.46)

The parameter p allows for a continuous interpolation between geometrical extremes,
making TRENTo a powerful and generic tool for investigating how variations in the initial
geometric profile translate into observable flow patterns in the subsequent hydrodynam-
ics.

Specifically, p = 1 yields
TR = 1

2

(
TA + TB

)
, (2.47)

which is reminiscent of a wounded nucleon Glauber model [187], while p → 0 corre-
sponds to the geometric mean,

TR =
√
TA TB , (2.48)

which is known to mimic the energy density distributions of the saturation based models
discussed in the following. Equation (2.48) can be derived from performing the limes
while rewriting eq. (2.45) with the natural logarithm.

Other values such as p = −1 (harmonic mean) and large positive or negative p
produce even more scalings. Because TRENTo does not assume separate binary-collision
contributions, its resultant multiplicities do not scale with the number of binary collisions
once nucleons have participated.

implementation details . One typically samples fluctuating nucleon positions
(or quark substructure, if desired), computes the local participant densities TA(x⊥) and
TB(x⊥) in transverse plane cells, and then obtains TR from eq. (2.45). Next, one converts
TR to an entropy density s at the formation (or thermalization) time τ0:

s(x⊥) ∝
[
T
p
A(x⊥) + T

p
B(x⊥)

]1/p. (2.49)
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A global normalization is fixed by matching final-state charged-hadron yields to experi-
mental data, or by external constraints such as an overall dS/dy if known. Additionally,
local fluctuation models—most commonly gamma-distributed prefactors—are applied to
each participating nucleon to mimic the wide multiplicity fluctuations observed in small
systems. This yields negative binomial–like total multiplicity distributions that can be
tuned to match p+p baseline data.

parameters and bayesian inference . In practice, TRENTo is frequently embed-
ded in Bayesian analyses [54, 308] as it smoothly spans various physically motivated
assumptions about the nuclear collision geometry via p, the nucleon width and nu-
cleon fluctuations. By exploring the posterior distribution of these parameters against
an array of final hadronic observables, one can systematically constrain both initial-state
and medium properties. The downside is that the wide range and strength of input
parameters—the parameter p, the minimum nucleon distance, the nucleon width, the
fluctuation parameter as well as the normalization—make TRENTo so powerful that it
allows to overfit the initial condition in a Bayesian context. This is a shared problem with
many parametric initial conditions, which have to find a balance between expressibility
and allowing for only physically motivated initial states.

no initial momenta or charges from tR ento . One should note that, in
its standard usage, TRENTo only furnishes the density (or entropy) distribution. It
does not provide initial flow velocities or local net-baryon profiles unless those are
augmented externally. One can, for example, set the fluid velocity to zero or treat the
system as initially at rest, ignoring pre-equilibrium flow. This approach is often deemed
acceptable at LHC energies or high collision energies, but it is recognized that a true
dynamic pre-hydrodynamic stage might impart nontrivial initial flows. For the present
purpose, TRENTo may serve as a convenient baseline to compare with SMASH-based
or other dynamic initializations, given its robust track record in describing large classes
of experimental data when combined with viscous hydrodynamics [54]. Additionally,
TRENTo only describes a transversal plane and can therefore only offer a description
at very high energies, although most recently, a 3D extension was developed [312].
Saturation based models on the other hand derive their motivation from effective field
theories, which greatly reduces their parameter space.

2.3.1.3 Saturation-based Modelling with IP-Glasma

The Color-Glass-Condensate (CGC) framework [41] offers a first-principle–inspired
approach for generating fluctuating initial conditions by unifying the color-charge distri-
butions of large nuclei with classical Yang-Mills (CYM) solutions for the soft gluon fields.
One widely used realization of these ideas is the so-called IP-Glasma model [184, 189,
190], which combines the Impact-Parameter dependent Saturation (IP-Sat) approach [313,
314] for nucleon- or proton-level color distributions with the Glasma picture of classical
gluon fields.

motivation from the cgc . At very high energies, the parton densities in the
nuclear wavefunction become large, so that the light-cone wavefunction can be described
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by classical background fields. Physically, the large occupation numbers of soft gluons
make them amenable to an effective classical treatment, while harder partons appear as
classical color charges that generate those fields. The starting point is the CGC effective
action [315]

SCGC =

∫
d4x

(
−1

4 F
a
µνF

aµν + JaµAa
µ

)
, (2.50)

where Faµν denotes the non-Abelian field strength tensor, and Ja,µ is the color-current of
the large-x (hard) degrees of freedom (valence partons). In the presence of two highly
boosted nuclei, each moving along a light-cone direction, one obtains large color sources
ρaA, ρaB, whose typical transverse distribution is characterized by the saturation scale
Qs(x⊥), which grows with energy and local nuclear thickness.

color-charge fluctuation and ip-sat. To incorporate realistic fluctuations of
color charges at nucleon scale, IP-Glasma uses the IP-Sat (impact-parameter saturation)
model [313, 314]. This model fits small-x HERA data (inclusive and diffractive deep
inelastic scattering) by representing the proton (or nucleon) as an eikonalized gluon
distribution with a known b⊥ (impact-parameter) dependence. Each nucleon carries
a local color-charge density g2µ2(x⊥) related to Q2

s(x⊥) in IP-Sat. For a nucleus, one
obtains the net color source by superimposing the nucleon-level g2µ2 contributions at
each transverse point, plus random fluctuations in nucleon positions. This yields an
event-by-event realization of color charges ρaA(x⊥) and ρaB(x⊥) for the two colliding
nuclei.

classical yang-mills evolution. Once these color densities are specified, one
solves the classical Yang-Mills field equations

[Dν, Fµν]a = Jaµ, where Dµ = ∂µ − i gAa
µ t

a, (2.51)

subject to the appropriate boundary conditions imposed by the two colliding sheets
of color charge along x±. At very early proper time τ → 0, the resulting soft gluon
fields in the future light cone form the Glasma, a dense plasma of gluons. Concretely,
one implements the matching of (boost-invariant) pure gauge fields from nucleus A
and nucleus B to get initial gauge fields in the overlap region [316]. Numerically, these
classical fields are discretized on a transverse lattice, and one samples random color
charges in each nucleon according to IP-Sat. Finally, the initial energy density

ε(τ = 0, x⊥) = εE + εB

combines contributions from longitudinal electric (Eη) and magnetic (Bη) fields at τ = 0.
Notably, the small-distance fluctuations induced by Qs(x⊥) lead to finer structures in the
energy-density profile than in many simpler Glauber- or k⊥-factorized–based models. As
discussed earlier the total (integrated) energy in each event fluctuates in a manner well
fit by a negative binomial distribution [190, 317], consistent with the Glasma flux-tube
picture [318].

input to hydrodynamics . After computing the classical fields at τ ≈ 0, one
can (optionally) evolve these fields for a short time in classical Yang-Mills up to τ0 ∼
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0.2−0.5 fm/c, or directly use the τ = 0 result as an initial condition. We will see later that
it provides large eccentricities and, due to the short-wavelength structure imparted by
Qs can also lead to harder pT spectra due to radial flow generated by “hot spots.”

With the initial condition in place, we can now proceed to the hydrodynamic stage.

2.3.2 Hydrodynamic Stage

Following the initialization, the fluid dynamics in vHLLE proceed in Milne coordinates
following the procedure outlined in section 2.2. Here, further details on additional aspects
of the input are given.

2.3.2.1 Equation of State

The EoS is a crucial input for the hydrodynamic stage of a hybrid approach, as it has to
represent relevant physics over a large area of the QCD phase diagram. It must handle
hadronization (which is not to be confused with the particlization in the Cooper-Frye
procedure, which only changes the way of describing the medium), but also physics of
regions of high net-baryon density as well as the physics at LHC-like energies, where
the net-baryon density is low but temperature is high. This need arises as the EoS is
necessary to close the equations of hydrodynamics for every fluid cell at every time
step. Differences in the EoS can therefore have substantial effects on the evolution of the
medium [319]. Therefore, one needs to interpolate between predictions of many different
sources and combine them in a consistent way. This is achieved by a chiral mean-field
equation of state [165, 320, 321], matched to a hadron resonance gas at lower energy
densities.

In this approach, the thermodynamics of hadrons (including strange species) is gov-
erned by a Lagrangian that respects SU(3) chiral symmetry and incorporates parity-
doubled baryon fields, ensuring that chiral symmetry is restored continuously at high
densities and/or temperatures. A small, chirally invariant mass term allows for realis-
tic nucleon masses and nuclear binding at saturation density, while scalar and vector
couplings to the baryons yield self-consistent mean fields driving the transition. At
lower temperatures and densities, the model seamlessly matches a hadron-resonance-gas
description, ensuring that nuclear ground-state properties such as binding energy per
nucleon and the nuclear liquid-gas transition are reproduced. In the high-density, hot
regime, quark degrees of freedom are also included in the CMF approach, yielding a
smooth crossover transition for vanishing or moderate net-baryon densities at around
150 to 160 MeV, in qualitative agreement with lattice-QCD thermodynamics. At finite
baryon chemical potentials, the EoS can exhibit a rapid crossover. These properties have
been extensively compared to nuclear data at low densities (e.g., binding energies and
compressibility) and lattice-QCD data at small baryon chemical potentials, with the result
that the CMF EoS shows good quantitative agreement in both regimes. Thus, the chiral
mean-field EoS spans a wide range of densities and temperatures, providing a consis-
tent description of hadronic and partonic matter and enabling a physically motivated
evolution of the medium in the hydrodynamic stage.
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A crucial point arises upon the earlier described construction of the freezeout hypersur-
face, which in the default setting is constructed at ϵswitch = 0.5GeV

fm3 . Although the equation
of state is matched to a hadronic resonance gas, it is not identical to the equation of state
of the SMASH resonance gas described in section 2.1.5. However, this is the equation
of state of the hadronic gas formed for the late state rescattering. Therefore, although
the chiral-mean field equation of state is used for the evolution of the medium, upon
construction of the particlization surface, the quantities of the medium are calculated
according to the SMASH EoS, which produces a discontinuity in the evolution.

2.3.2.2 Viscosities

vHLLE uses the 14-moment approximation [322, 323]. In Boltzmann-based kinetic theory,
one begins with the relativistic Boltzmann equation,

kµ ∂µfk = C[fk] ,

where fk ≡ f(x,k) is the single-particle distribution function at spacetime point x and
momentum kµ. By multiplying both sides of this equation by powers of kµ and integrating
over momenta, one obtains an infinite series of moment equations: each new moment
involves one higher power of kµ. Physically, these integrals represent increasingly detailed
information about how the nonequilibrium system departs from local equilibrium. As
long as there is no intrinsic cutoff, the hierarchy of moment equations never truncates by
itself.

Israel and Stewart’s 14-moment approximation [166] is a practical solution to this
“infinite hierarchy” problem. It posits that the deviation from local equilibrium δfk ≡
fk − f0k can be approximated by expanding in a finite set of orthonormal basis functions.
Specifically, they chose a linear combination of fourteen basis functions to capture all
dissipative contributions to the energy-momentum tensor (and any conserved currents, if
needed) at first and second order in gradients [174, 322, 324]. This truncation implies that
nonequilibrium effects on fluid dynamics can be encoded in only two tensor structures:
the shear-stress tensor πµν and the bulk viscous pressure Π. Higher-rank moments of δfk

(beyond bulk and shear) are algebraically eliminated via constraints that express them in
terms of Π and πµν. This leads to relaxation-type equations for Π and πµν, such as

τΠ Π̇+Π = − ζ θ − δΠΠΠθ + λΠπ π
µν σµν, (2.52)

τπ π̇
⟨µν⟩ + πµν = 2 ησµν − δππ π

µν θ + . . . , (2.53)

where the ellipsis can include other allowed second-order terms (e.g., φ7 π
⟨µ
α πν⟩α,

λπΠΠσ
µν, etc.). Crucially, once bulk and shear viscosities (ζ and η) have been spec-

ified, the 14-moment closure provides algebraic formulas for the second-order transport
coefficients τΠ, τπ, δΠΠ, δππ, . . . in terms of thermodynamic integrals and the chosen vis-
cosities. Hence, in fluid-dynamical codes employing Israel-Stewart-like formalisms, one
only needs to supply (i) the equation of state, (ii) ζ(T ,µ), and (iii) η(T ,µ). The 14-moment
approach then defines how the second- and higher-order coefficients enter the evolution,
thereby closing the system of equations while retaining causal and stable dynamics at
moderate departures from equilibrium.
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These transport coefficients are not just necessary for a correct fluid-dynamic simula-
tion, but give potentially also insight into the nature of the medium. The shear viscosity,
as an example, was argued to be sensitive to the phase transition of the QGP medium.
The motivation behind this statement is the fact that on the one hand, all liquids in nature
exhibit a minimum in the shear viscosity to entropy ratio η/s near a phase transition [61,
325–327]. On the other hand, a similar behavior has also been observed so far from
experimental constraints for the shear viscosity of nuclear matter [53–60]. Therefore,
there is a strong interest in determining transport coefficients. However, they are very
challenging to predict from first principles. Lattice QCD calculations face numerical
challenges [328–330]. Nevertheless, many theoretical predictions support a non-vanishing
shear viscosity over entropy ratio η/s [47, 331, 332], although many lQCD approaches
have to limit themselves to pure gluon systems [332–335]. On the other hand, many
phenomenological studies have succeeded in showing that the hadronic observables
measured from heavy-ion collisions are sensitive to the viscosities in the QGP [177,
239, 242, 323, 336–338]. In the default approach, collision energy dependent constant
values for η/s are chosen, the value of which can be found in [221]. This is in general a
legitimate choice, as the main sensitivity of observables is to the effective, event averaged
shear viscosity [339]. As has been outlined before however, in general, a dependence on
temperature and baryochemical potential is expected. Bulk viscosity, on the other hand,
has not been study before in the SMASH-vHLLE-Hybrid approach. It shall be stressed,
however, that one of the central contributions of this work is the modification of this
viscosities and the study of its effect, which is presented in chapter 5.

With these considerations in place, we can continue to look at particlization in the
hybrid approach.

2.3.3 Particlization

Upon reaching sufficient diluteness, hybrid approaches assume that the medium has
already hadronized. As an equation of state is employed which is matched to the
hadron resonance gas, hydrodynamics can also successfully describe systems which are
dominated by hadrons, as long as they are close enough to an equilibrium. As a result,
there is a range in which both hadronic transport and hydrodynamics can successfully
describe the system. This range of agreement is crucial for the applicability of hybrid
approaches, and the particlization is to be performed inside this range.

2.3.3.1 Multiplicity Sampling

In the SMASH-vHLLE-Hybrid approach, the particlization is performed per default
with the SMASH-hadron-sampler [340]. It assumes a grand-canonical ensemble, which
allows each fluid element to be sampled individually. In the procedure, the total thermal
multiplicities, which include all degrees of freedom of the hadron resonance gas, are
calculated for the fluid element i on the hypersurface as

Ntot
i = Vi

Ndof∑
k=1

(2Jk + 1)m2
kTi

2π2

11∑
i=1

si+1
k

i
K2

(
imk

Ti

)
exp

(
iµk
Ti

)
, (2.54)
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with Jk and mk spin and mass of the k-th degree of freedom, sk quantifying Bose/Fermi
statistics and µk is the total chemical potential

µk = BkµB,i +QkµQ,i + SkµS,i (2.55)

with Bk, Qk and Sk the baryon number, electric charge and strangeness of the degree of
freedom and µB,i, µQ,i and µS,i the respective potentials of the hypersurface element.
Similarly Ti and Vi are temperature and effective volume of the hypersurface element.

The actual number of particles sampled results from a Poisson distribution around this
value. One quickly sees that this breaks conservation of quantum numbers, energy and
momentum. Indeed, in order to preserve them, one in practice samples many particle
lists from the same hypersurface. This restores on average conservation and additionally
improves statistics. A balance has to be found in the number of hypersurfaces generated,
which provides access to fluctuations, and oversampling, which improves statistics and
conservation of quantum numbers.

2.3.3.2 Momenta Sampling

Lastly, one needs to generate the momenta of the particles. This follows the Cooper-Frye
formula [223]

dN
dp⃗

=
g

(2π)3

∫
σ

[f0(x, p⃗) + δfshear(x, p⃗) + δfbulk(x, p⃗)]
pµdσµ
Ep⃗

(2.56)

with dN
dp⃗ the momentum distribution of a particle species, g its degeneracy factor, pµ and

Ep⃗ is momentum and energy and dσµ the normal vector of the hypersurface. Crucially,
f0 is the equilibrium distribution function of the particle species, which is corrected by
the shear stress and bulk pressure on the hypersurface.

Despite the inclusion of shear and bulk viscous effects via δf corrections in the Cooper-
Frye prescription, there is no universal consensus on their precise functional form. Each
prescription, whether linear (Grad or Chapman-Enskog) or exponential (PTM, PTB),
operates under different theoretical assumptions and regimes of applicability, and each
encounters inconsistencies when the viscous corrections become large.

linear viscous corrections : grad & chapman-enskog . The two linearized
approaches introduce viscous corrections δf in a manner strictly proportional to the
dissipative currents πµν and Π. Both methods rely on an assumption of small deviations
from local equilibrium, so their functional forms become questionable once δf ≳ feq. A
more in-depth discussion can be found in Ref. [341].

In the Grad (or 14-moment) method [166, 168, 174, 300, 342–344], one writes the off-
equilibrium distribution as a polynomial expansion in the particle momenta. Focusing
on a system without net charges, the leading term may be expressed as

δfi = feq,if̄eq,icµνP
µPν (2.57)
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where f̄eq,i ≡ 1−Θfeq,i, and Θ is 1 for fermions and −1 for bosons. Often, one assumes
that the coefficients cµν are species-independent, which yields the following for the
viscous correction in terms of the dissipative currents:

δfGrad
i = feq,if̄eq,i

[
Π
(
ATm

2
i+AE(u·P)2

)
+Aππ

µνP⟨µPν⟩
]

. (2.58)

Here AT , AE, and Aπ are combinations of thermodynamic moments of the equilibrium
distribution described in Ref. [341]

The Chapman-Enskog technique solves the Boltzmann equation in the Relaxation-Time
Approximation (RTA) [325, 345–347]:

Pµ ∂µf = −
u · P
τrel

[
f− feq

]
, (2.59)

by expanding f in powers of the Knudsen number. Truncating at first order yields

δfCE
i = − τrel

Pµ ∂µfeq

(u · P) . (2.60)

Using Π = −ζ θ and πµν = 2 ησµν in Navier-Stokes form, one again obtains a linearized
ansatz,

δfCE
i = feq,i f̄eq,i

[
αΠΠΩ(P,uµ) + απ π

µν P⟨µPν⟩

]
, (2.61)

where αΠ and απ are species-independent coefficients determined by thermodynamic
integrals of feq, and Ω is a scalar function encoding bulk corrections. We refer the reader
to Ref. [341] for explicit forms.

Both Grad and Chapman-Enskog expansions assume δf≪ feq. Numerically, one often
encounters δf comparable to or exceeding feq in certain phase-space regions near freeze-
out. This can yield negative total distributions, feq + δf < 0, or otherwise unphysical
results. In practice, many codes therefore impose a local condition

δf → sign(δf) min
(
|δf|, feq

)
, (2.62)

simply “clamping” the correction whenever δf ∼ feq. Although not fully consistent
theoretically, such a regulator mitigates the largest pathologies in the linear approach.

exponentiated viscous corrections : ptm & ptb . To address the breakdown
of linear expansions, exponentiated methods attempt to incorporate large viscous cor-
rections in a more self-consistent, “resummed” fashion. We briefly describe here two
representative models, the Pratt-Torrieri-McNelis (PTM) [341, 348] and Pratt-Torrieri-
Bernhard (PTB) [348, 349] prescriptions.

The PTM approach defines

fPTM = Z
[
exp
(√

p′2+m2

T+β−1
Π ΠF

)
+ a

]−1
, (2.63)

where p′ is the transformed momentum: pi = Aij p
′
j, with

Aij =
(
1+ Π

3βΠ

)
δij +

πij

2βπ
. (2.64)
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Expanding for small πµν and Π recovers the linear Chapman-Enskog corrections. How-
ever, at moderate or large viscous stresses, the exponentiated form can avoid unphysical
negative distribution functions. Still, if πµν or Π become very large, pathologies such as
Z < 0 or negative determinants can appear [341].

The PTB correction is formulated as

fPTB =
ZΠ

det(Λ)

[
exp
(√

p′2+m2

T

)
+ a

]−1
, (2.65)

with pi = Λij p
′
j and

Λij =
(
1+ λΠ

)
δij +

πij

2βπ
. (2.66)

Here, one has λΠ ̸= Π/(3βΠ). Instead, it is tuned to satisfy local matching of energy-
momentum, so that ZΠ and det(Λ) regulate bulk and shear simultaneously. Although the
PTB scheme handles bigger gradients than the linear expansions, in practice extremely
large stresses again can yield unphysical transformation Jacobians [341].

species dependence and matching difficulties . Beyond the question of how
to incorporate shear and bulk corrections is the issue of which species (pions, protons,
kaons, etc.) or resonances receive which corrections. Some codes use the same δf for all
hadrons, while others attempt partial re-summations or mass-dependent adjustments.
Matching the off-equilibrium components of the stress-energy tensor Tµν across the
fluid-to-particle transition is also complicated. Indeed, the definition of (ϵ+P)uµ − Tµν

near freeze-out may involve various assumptions about partial chemical equilibrium,
hadronic widths, and residual scattering. Dropping the ansatz of "democratic" corrections
is however of great importance, as this approach ignores the dynamics of the processes
which keep the medium in equilibrium completely, thus introducing a discontinuity
between the stages of a hybrid approach. It is expected that such an improvement would
have substantial effects on observables [350].

smash-hadron-sampler implementation. The approach chosen by the SMASH-
hadron-sampler belongs to the Chapman-Enskog class of corrections, without any species
dependence [351]:

δfshear(P,X) = feq(P)(1+Θfeq(P))
πµνPµPν

2T2(ϵ+P)
(2.67)

and

δfbulk(P,X) = −feq(P)(1+Θfeq(P))

[
1

3

m2

T2
1

P · u/T −
P · u
T

(
1

3
− c2s

)]
Π
τΠ
ζ

, (2.68)

where τΠ/ζ is set according to [322]. A regulator is applied to ensure the stability of the
approach.

With this in place, the hadron sampler generates a list of particles from the par-
ticlization hypersurface which is provided as an initializiation for the final hadronic
transport.
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2.3.4 Afterburner

In the final state rescattering, the hadronic transport evolves the medium until complete
freezeout, both chemically and kinetically, is achieved. This is performed by propagating
the particles until all interactions cease. Consistency is reached by applying all settings of
the transport approach identically to the ones used to generate the initial condition.

2.4 Technical Setup of a Modular Hybrid Approach
Due to the high statistics needed to provide good comparisons with experimental data
on the one hand, and the high CPU and memory cost of 3+1D hybrid approaches on
the other hand, a very efficient computational setup is required to maximize scientific
output while minimizing the input of resources. This does not solely mean improving
the performance of the different software involved, but also enhancing the infrastructure
and handling of the approach. After all, failed runs and corrupted output files often
lead to a significant loss of runtime. Additionally, it is crucial that such software is
intuitive to handle. Scientific open-source software is used by many researchers all over
the world, with varying degrees of knowledge about software development and the
specific components at hand. It is desirable to minimize the learning curve to enable
users to become productive as quickly as possible and to produce results.

For SMASH-vHLLE-Hybrid, this is an especially important challenge. It consists
of different software components that were originally developed independently and
follow different coding paradigms. Additionally, the aim of modularity requires a high
flexibility of the approach. The original setup of the hybrid approach relied on hard-
coded computation targets using CMake. Although this was sufficient for the original
publication, in practice, it became clear that such a setup severely restricts the flexibility
necessary to support the multitude of projects that would make use of this approach.

Therefore, one of the contributions of this thesis was to improve the infrastructure of
the hybrid approach in collaboration with other users. The CMake setup was completely
removed in favor of a Bash-based handler structure.

The new hybrid handler is a collection of Bash scripts designed to streamline the
execution of the various stages of the SMASH-vHLLE-Hybrid model. Its primary function
is to manage the workflow of simulations, ensuring that each component operates in
harmony with the others. The handler is structured to be user-friendly. It requires
minimal setup and does not necessitate installation. Once the repository is cloned, the
‘Hybrid-handler‘ script can be executed directly, provided that the necessary software
dependencies are installed [352].

The handler operates through a configuration file written in YAML syntax, allowing
users to customize the execution of different stages of the model. This configuration file
is divided into sections corresponding to each stage. Each section specifies the executable
path, configuration files, and any software-specific parameters. This modular configu-
ration enhances flexibility and allows for easy adjustments to individual components
without affecting the overall workflow. An important feature is the automatic validation
of configurations. On the one hand, this ensures that each stage receives a configuration
which is valid. This avoids, for example, the execution of the hydrodynamic simulation if
the configuration given for the particle sampling would be invalid, and therefore ensures
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that there is no waste of computation time. On the other hand, consistency between the
different stages is enforced. This prevents, for example, that the particlization energy
density ϵswitch

3 differs between the hydrodynamic stage and the particle sampler.
A further feature is the structured storage of output files. The handler automatically

ensures that no existing files are overwritten and stores the output of each stage in a
transparent way. Moreover, reproducibility is ensured by retaining the configurations for
each file and also saving git-hashes of the used software, so that the version used can be
exactly tracked.

Furthermore, the execution of all stages at once is not required. Already existing
output files can be read in by the hybrid handler, allowing external input as well as the
processing of existing input with different parameters in further stages.

The handler was developed following state-of-the-art principles of software developing,
with a special focus on modularity. This is achieved following the integration-operation
segregation principle (IOSP) [353]. In a nutshell, this principle dictates that a method
either contains logic, which means transformations, control structures and I/O—it is
then called an operation. Otherwise, it combines the call to multiple operations, and is
then referred to as integration. A typical integration function looks like this:

Listing 2.1: Main execution logic of a stage in the hybrid handler.� �
1 function Do_Needed_Operations_For_Given_Software()

2 {

3 local software_section

4 for software_section in "${HYBRID_given_software_sections[@]}"; do

5 Prepare_Software_Input_File "${software_section}"

6 Ensure_All_Needed_Input_Exists "${software_section}"

7 Ensure_Run_Reproducibility "${software_section}"

8 Run_Software "${software_section}"

9 done

10 }� �
From the transparent naming of the operations, it becomes immediately clear what the
code does here. The high encapsulation of the functions ensures a good readability as
well. Both contribute to the effect that new developers can easily understand the code and
debug or extend it, which guarantees a high maintainability, making the code valuable
for future generations of users. The IOSP also enables a trivial extension of the code to
support new modules for the different stages. Often, only one of the operations needs to
be modified. This helps restricting changes to only a few places in the code.

One of the benefits of this is that supporting a different software for one of the stages
requires only very limited changes. As an example, supporting a different hadron sampler
software, like the FIST-sampler [354], required only minimal changes to the framework,
underling its easy and stable extendability. This is valuable for testing the effect of using
different implementations and models for the different stages, which is a major source of
theoretical uncertainty.

Additionally, the encapsulation of operations into several small functions enables
efficient testing. The SMASH-vHLLE-Hybrid approach is extensively tested. This not only
ensures that all features behave as expected. It also guarantees that future modifications

3 We use the term "particlization energy density" and "switching energy density" interchangeably in this work.
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can be done without the risk of unintended side effects hampering existing functionalities,
as this would immediately cause existing tests to fail.

To facilitate the onboarding of new users, predefined configuration files are provided
for various collision systems and energies. These configurations are based on setups from
previous studies and can be executed with minimal modification, primarily requiring the
user to specify the paths to the necessary executables. This feature significantly reduces
the learning curve for new users and ensures that simulations can be performed without
deep insight into the codebase.

The hybrid handler also supports parameter scans, enabling users to perform simu-
lations over a range of parameter values systematically. This is particularly useful for
studies requiring extensive exploration of the parameter space. The handler’s design
ensures that such scans are straightforward to set up and execute, further enhancing the
tool’s utility for research purposes. Several scan strategies, like combinations of parameter
lists or latin hypercube sampling, are supported. This was leveraged for the Bayesian
inference of the hybrid approach (see section 5.2).

In summary, the development of the hybrid handler has substantially improved the
usability, flexibility, and efficiency of the SMASH-vHLLE-Hybrid model. By replacing the
rigid CMake setup with a dynamic Bash-based framework, the handler accommodates a
wider range of research projects and user expertise levels, thereby maximizing scientific
output while minimizing resource input. SMASH-vHLLE-Hybrid was transformed from a
proof-of-concept to a fully functional, integrated approach, which can easily be extended
and maintained by future generations of researchers.
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3
O B S E RVA B L E S O F H E AV Y- I O N
C O L L I S I O N S

I shut my eyes and all the world drops dead; I lift my lids and
all is born again.

— Sylvia Plath, Mad Girl’s Love Song

The study of transport coefficients in heavy-ion collisions requires the comparison of
the results of simulations with experimental measurements. This is done by comparing
observables, quantities which can be computed from the measurements. In the following,
the most important observables in heavy-ion collisions are collected and introduced. The
selection is not exhaustive, but restricted to observables that are discussed within the
scope of this thesis. This will form the basis for reflections upon results in the upcoming
chapters.

3.1 Bulk Observables
In high-energy heavy-ion collisions, the term bulk observables usually refers to inclusive
quantities that characterize the global properties of the collision system. They serve as
a foundation for understanding how the medium evolves from its initial state, through
a possible quark-gluon plasma phase, and eventually hadronizes into the multitude of
final-state particles. Of particular interest are observables such as particle multiplicities,
mean transverse momentum, mean transverse mass, and transverse momentum spectra.
These observables contain information both of the thermodynamic conditions and the
collective flow patterns that emerge during the system’s expansion.

3.1.1 Multiplicity

Particle multiplicity is often the first observable analyzed in heavy-ion collisions, as
it provides a straightforward measure of the overall particle production in each event.
In particular, due to the simpler experimental access, the charged-particle multiplicity
density at midrapidity, denoted dNch/dη, is commonly used, where midrapidity is
defined via the pseudorapidity. The preference for midrapidity has multiple reasons: 2D
hydrodynamics was for a long time preferred due to the smaller computational cost, and
from an experimental perspective, measurements are easier to take here. Additionally,
due to Bjorken-scaling, there is a plateau around midrapidity, and a measurement here
reveals a substantial amount of information about the event. In a thermalized system of
temperature T and volume V , the integrated particle yield for species i can be expressed
within the grand-canonical ensemble as [355]

Ni = gi V

∫
d3p

(2π)3
1

exp
[
(Ei − µi)/T

]
± 1

, (3.1)

where gi is the degeneracy factor, Ei =
√
p2 +m2

i is the on-shell energy, and µi is the
chemical potential (for instance, baryon or strangeness chemical potential). The sign in
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the denominator corresponds to the Fermi-Dirac or Bose-Einstein statistics. In practice,
non-equilibrium corrections or partial chemical equilibrium can modify the multiplicity
distribution, but this thermal expression remains a useful reference.

More advanced measurements can also identify specific particle species. Although this
reduces statistics, it can give valuable information about the nature of the matter. For
example, the multiplicity of protons and antiprotons approach each other with increasing
collision energy, as a result of decreasing net-baryon density.

3.1.2 Mean Transverse Momentum and Mean Transverse Mass

The mean transverse momentum, ⟨pT ⟩, characterizes the average momentum of particles

in the transverse plane relative to the beam axis, with pT =
√
p2x + p2y. It is computed by

averaging the transverse momentum distribution:

⟨pT ⟩ =

∫∞
0

pT
dN

dpT
dpT∫∞

0

dN

dpT
dpT

. (3.2)

This quantity is sensitive to both thermal motion (governed by the temperature at
kinetic freeze-out) and collective radial flow induced by the pressure gradients in the
medium. A larger value of ⟨pT ⟩ typically signals stronger radial flow or higher freeze-out
temperatures.

A related observable is the mean transverse mass,

mT =
√
p2T +m2, ⟨mT ⟩ =

∫
mT

dN
dmT

dmT∫
dN
dmT

dmT

, (3.3)

where m is the rest mass of the particle. Heavier hadrons usually exhibit a larger
⟨mT ⟩, because their spectra are significantly modified by radial flow. Consequently,
comparing ⟨pT ⟩ or ⟨mT ⟩ across different species sheds light on the mass hierarchy of
flow: heavier particles gain more momentum from the collective expansion. Average
transverse momentum and multiplicity are not independent—indeed, both are connected
by the conservation of energy.

3.1.3 Transverse Momentum Spectra

A more differential view is offered by the transverse momentum spectra

d2N

d2pT dy
=

d2N

2πpT dpT dy
, (3.4)

which directly reflect the freeze-out distribution in both thermal and collective degrees of
freedom. For a boost-invariant and purely thermal source at temperature T , one could
approximate these spectra by a Boltzmann-like distribution. However, to account for
collective flow, an effective flow-boost factor modifies the exponential slope. From low to
high collision energies, the spectra harden, reflecting both increased final temperatures
and stronger radial flow. These features directly connect to the initial conditions and
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subsequent hydrodynamic expansion, thus making transverse momentum spectra an im-
portant benchmark for theory [356]. Not all regions of the transverse momentum spectra
are equally relevant. At very low momentum, particles are hard to detect experimentally.
At high transverse momentum, jets and hard QCD dominate, which is not covered in the
hybrid approach at hand.

3.2 Rapidity Spectra and Longitudinal Shape
Although more challenging for experimental measurements, data from forward and
backward rapidity allow important insights into the evolution of the nuclear matter and
the machanisms of baryon number deposition.

3.2.1 Rapidity and Pseudorapidity Distributions

In relativistic collisions, measuring how particle yields are distributed along the beam
axis is vital for uncovering the longitudinal dynamics and baryon transport mechanisms.
Two commonly employed rapidity variables are:

y =
1

2
ln
(
E+ pz
E− pz

)
, (3.5)

η = − ln tan
(
θ/2
)
. (3.6)

The first is the energy-based rapidity y, used in theoretical analyses, while the second is
the pseudorapidity η, which depends only on the polar angle θ and simplifies massless
kinematics. Experimentally, dN/dη is more readily measured, since tracking detectors
typically measure angles rather than energies.

The shape of dN/dy or dN/dη reveals whether the system forms a midrapidity
plateau, characteristic of partial boost invariance at LHC energies, or a peaked structure.
At lower SPS or RHIC energies, stronger baryon stopping leads to more compact dN/dy
distributions centered around midrapidity.

3.2.2 Longitudinal Evolution and Baryon Stopping

The concept of baryon stopping refers to the extent to which incoming nucleons are
slowed down (or “stopped”) in the collision. Net baryon density distributions (dNB/dy)
measure how many baryons, minus antibaryons, remain at lower rapidities compared
to their initial ultrarelativistic velocities. A higher baryon stopping typically produces
a rapidity distribution with peaks closer to y = 0, as is seen at moderate energies.
Conversely, at top RHIC and LHC energies, baryons barely decelerate, resulting in fewer
net baryons at midrapidity [356].

In phenomenological terms, one often distinguishes a single-peaked shape for lower
energies and a broader, double-peaked structure at higher energies, where the projectile
and target remnants remain at large positive or negative rapidities. The interplay between
baryon transport and partonic degrees of freedom thus shapes the final 3D structure of
collisions. The Bjorken picture, which posits boost-invariant longitudinal expansion, is
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Figure 3.1: Thermodynamic properties of the medium produced in Au+Au collisions at√
sNN = 27 GeV, extracted from measured yields as a function of number of

participants. From [357].

realized approximately only near midrapidity at very high energies. Away from midra-
pidity or at modest

√
sNN, the full rapidity dependence reveals significant deviations

from that simple scenario.
Due to this, the full longitudinal structure of an event can only be captured when

a 3D initial state approach is used. Alternative approaches, such as distributing the
energy from the transverse plane by using a Bjorken picture, reach limits at intermediate
energies. Measurements away from midrapidity are also of increased interest due to
giving access to a wider range of the QCD phase diagram. Due to the baryon stopping,
which decreases with increasing collision energies, baryon charge is deposited preferrably
away from midrapidity regions at high collision energies. Therefore, studying observables
both at midrapidity and at forward and backward rapidities gives access to a broader
range of the QCD diagram and allows to study the effect of baryochemical potential on
the evolution [357]. This can be seen in fig. 3.1. At the same energy and centrality, the
further one measures at forward rapidity, the higher µB and µS become, whereas the
temperature remains mostly constant.

3.3 Harmonic Flow Coefficients
Anisotropic flow, or the azimuthal momentum-space anisotropy observed in relativistic
heavy-ion collisions, is typically characterized via harmonic flow coefficients vn. These
coefficients appear in the Fourier decomposition of the azimuthal distribution of the
particles:

dN
dϕ

=
1

2π

[
1+

∞∑
n=1

2 vn cos [n (ϕ−ΨRP)]

]
(3.7)

This basically means that the complex momentum distribution of final state particles
can be decomposed in different modes, each of which can be assigned an intuitive
interpretation. Such modes are often called "(anisotropic) flow modes". Figure 3.2 shows
the intuitive interpretation for coefficient 2 and 3, which are called elliptic and triangular
flow, respectively. They are of great interest, as they provide insights into the collective
expansion of the quark-gluon plasma or hadronic matter. Notably, each vn is defined
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3.3 harmonic flow coefficients

Figure 3.2: Visualisation of the second flow coefficient (elliptic flow) and the third flow coeffi-
cient (triangular flow). From [358].

with respect to an estimated event plane, itself determined from measured particles in the
final state. This section presents three widely used methods to infer vn from experimental
or simulated data: (i) the Event Plane (EP) method, (ii) the Scalar Product (SP) method,
and (iii) the Cumulant method (Q-cumulants). We highlight differences among these
methods, discussing their respective strengths and weaknesses.

3.3.1 Event Plane Method

The starting point for the Event Plane (EP) method [359, 360] is that the initial geometry
of a non-central nucleus-nucleus collision singles out a preferred plane: the reaction plane,
spanned by the impact parameter vector and beam axes. However, this true plane is
unknown experimentally, so an event plane is reconstructed from particle momenta using
flow correlations themselves.

Let ϕi be the azimuthal angle of the ith particle, measured in the laboratory frame
around the beam axis. For a chosen harmonic n, one defines a flow vector,

Qn,x =

M∑
i=1

wi cos
(
nϕi

)
, Qn,y =

M∑
i=1

wi sin
(
nϕi

)
,

where M is the number of particles used for the event plane reconstruction, and wi is a
weight (often wi = pt,i or simply 1). From these, the event plane angle Ψn follows by

Ψn =
1

n
arctan(Qn,y, Qn,x).

The weight factor wi can be chosen to maximize the statistics, or to favor contributions
from different components of the event.

Once Ψn is known, any subset of particles can be binned in ϕ−Ψn. One then expands
the azimuthal distribution in a Fourier series about Ψn:

dN

d(ϕ−Ψn)
=
Ntot

2π

(
1 +

∞∑
m=1

2 vobs
m cos

[
m(ϕ−Ψn)

])
,

with vobs
m = ⟨cos[m(Φ−Ψn)]⟩ the observed elliptic flow due to the orthogonality of the

cosine. ⟨. . . ⟩ refers to the average over events. Because Ψn itself has finite resolution, the
observed coefficient vobs

m is related to the true vm by

vm =
vobs
m

⟨cos
[
m(Ψn −Ψr)

]
⟩ =

vobs
m

R
,
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where Ψr denotes the exact reaction plane. The crucial factor ⟨cos[m(Ψn −Ψr)]⟩ is the
resolution of the event plane. This resolution can be estimated by subdividing the event
into two (or more) independent subevents A and B, and examining

⟨cos
[
m(ΨA

n −ΨB
n)
]
⟩ = ⟨cos

[
m(ΨA

n −Ψr)
]
⟩ ⟨cos

[
m(ΨB

n −Ψr)
]
⟩.

Because ΨA
n and ΨB

n are uncorrelated aside from their mutual correlation to Ψr, one
extracts the plane resolution in each subevent as R =

√
⟨cos[m(ΨA

n −ΨB
n)]⟩. Corrections

from the subevent resolution to the full event resolution can be applied using known
analytical formulae [359, 361].

The EP method is straightforward conceptually: one literally constructs an approximate
reaction plane and measures azimuthal anisotropies relative to it. It delivers direct access
to differential flow vn(pT ) or vn(η) by correlating each particle in a bin with Ψn. It can
suffer however from “non-flow” correlations that affect the event plane resolution. An
example of this are the effects of jets, which also contribute to momentum anisotropy.
Additionally, the resolution factor must be well estimated; if the multiplicity is small, or
if vn is small, the resolution can degrade significantly.

3.3.2 Scalar Product Method

The Scalar Product (SP) method [362] is another pairwise correlation technique that does
not require explicit angle-subtraction as in ϕ−Ψn. Instead, one partitions an event into
two disjoint groups (subevents A and B), constructs flow vectors

QA
n =

∑
i∈A

wi e
inϕi =

∑
i∈A

wiun,i , QB
n =

∑
j∈B

wj e
inϕj =

∑
i∈A

wjun,j,

where un,i is a unit vector associated with the i-th particle and Qn is the flow vector. The
flow can be then calculated using the scalar product:

vn(η,pt) =
⟨⟨Qnu

∗
n,i(η,pt)⟩⟩

2
√

⟨Qa
nQ

b
n
∗⟩

. (3.8)

Here, the numerator is both averaged over particles and events. For a large number of
particles in each subevent this yields an estimate of vn. Again, one can use a differential
formulation of this method to get an insight into the flow as a function of rapidity or
transverse momentum.

The scalar product method is simpler in some implementations: no explicit event
plane is constructed, yet ⟨QA

n ·QB
n⟩ directly links to ⟨v2n⟩. A further advantage is that it

can yield smaller statistical errors compared to the standard EP method, especially in
high-multiplicity environments. However, it suffers as well from non-flow correlations,
potentially biasing ⟨QA

n ·QB
n⟩.

3.3.3 Cumulant (Q-Cumulant) Method

While the EP and SP methods employ pairwise correlations, genuine multiparticle
correlations can help disentangle flow-related physics from “non-flow” backgrounds.
In particular, the cumulant method [363–365] was introduced to systematically isolate
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the collective flow contribution by combining multi-particle correlation moments into
cumulants. For example, the second-order cumulant cn{2} recovers essentially the pair-
correlation measure

cn{2} =
〈
ein(ϕ1−ϕ2)

〉
,

but the fourth-order cumulant

cn{4} =
〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
− 2

〈
ein(ϕ1−ϕ2)

〉2
removes spurious two-particle correlations from the net four-particle correlation. In other
words, higher orders remove more and more non-flow effects, originating for example
from particle decays, and give better access to collective effects. Typically, if flow is truly
collective, the four-particle cumulant is insensitive to low-level non-flow effects that scale
like 1/N. One obtains

vn{2} =
√
cn{2}, vn{4} = 4

√
− cn{4}.

One further generalizes to differential cumulants to get vn{2}(pT ) or vn{4}(pT ). In an
event-by-event approach, the unintegrated correlation can be systematically extracted. Es-
pecially high-order cumulants (like fourth order) effectively reject non-flow two-particle
correlations, providing a “pure flow” measurement. The approach is systematically im-
provable by adding terms of higher order ({6}, {8}, etc.), which provide further insights
into the nature of collective effects. However, the statistical uncertainties rise with the
order of the cumulant. In data sets with limited statistics, vn{4} or higher might become
unfeasible or too noisy. This is especially problematic for extractions from theoretical mod-
els. In general, the implementation is more mathematically involved and the computation
is considerably more costly.

3.3.4 Eccentricities and the Creation of Anisotropic Flow

The final state momentum anisotropy, expressed in the flow coefficients, is intimately
connected to the spatial anisotropy, or eccentricities, of the initial state. These eccentricities,
commonly denoted by εn, are defined in terms of moments of the transverse energy
(or entropy) density profile of the collision zone in the transverse plane. They quantify
the shape of the overlap region produced when two nuclei collide at a non-zero impact
parameter or when local density fluctuations occur [366, 367].

definition of eccentricities . The complex eccentricity εn is often defined in
polar coordinates (r,ϕ) as

εn ≡ −

∫
rn einϕ ϵ(r,ϕ) rdrdϕ∫
rn ϵ(r,ϕ) rdrdϕ

, (3.9)

where ϵ(r,ϕ) is the transverse energy density in the initial state, and the coordinate sys-
tem is shifted so that

∫
r eiϕ ϵ(r,ϕ)drdϕ = 0. The event-plane angle of εn is determined

by the phase of this integral, and its magnitude quantifies the strength of the spatial
anisotropy in harmonic n. In a non-central heavy-ion collision, for instance, ε2 captures
the elliptic shape (“almond-like” overlap), while ε3 and higher orders represent more
subtle geometric or fluctuational features [368, 369].
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Figure 3.3: Simplified picture of a heavy-ion collision. The overlap region of two nuclei forms
an almond shape for non-vanishing impact parameter. The spatial anisotropy in
the fireball creates a pressure anisotropy, which can be detected as elliptic flow in
the final state.

linear response and higher-order contributions . Within relativistic hydro-
dynamics, one typically assumes that the anisotropic flow coefficients vn are proportional
to the corresponding initial eccentricities εn, i.e.,

vn = κn εn. (3.10)

This linear response works well in central and midcentral collisions and is supported
by numerous event-by-event hydrodynamic simulations [198, 370, 371]. However, at
higher eccentricities (peripheral collisions), clear deviations from the purely linear picture
have been observed [311, 372, 373]. These deviations can be quantified by introducing a
cubic-response term in εn, giving

vn = κn εn + κ ′n
∣∣εn∣∣2 εn + δn, (3.11)

where κ ′n is the cubic-response coefficient and δn denotes the residual (uncorrelated)
part of vn [374, 375]. The key result is that κ ′n systematically grows in more peripheral
collisions, compensating for the smaller linear coefficient κn in that regime [371]. Hence,
the total vn arises from both the well-known linear scaling and a non-negligible cubic
contribution once |εn| becomes large.

physical origin of eccentricities and flow. The spatial anisotropies εn
encode the initial-state geometry of the quark-gluon plasma. In non-central collisions,
the “almond shape” drives a larger pressure gradient in one direction than in the one
orthogonal to it, leading to an anisotropic expansion, as is sketched in fig. 3.3. In the
case of elliptic flow (n = 2), the elliptic eccentricity ε2 is the dominant driver of v2,
while local fluctuations (even in central events) provide non-zero triangularity ε3 and
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other higher harmonics. Each harmonic in εn translates into a corresponding vn via the
hydrodynamic evolution. Note, however, that this picture gets more complex for orders
starting at 4, which lie outside the scope of this thesis [376]. The final anisotropic flow is
thus predominantly determined by:

(i) The medium’s equation of state and the temperature and density dependence of its
transport coefficients [168, 342].

(ii) The interplay between linear and possible higher-order response terms in eq. (3.11).

(iii) Additional noise (short-range structure in the initial state) that leads to a residual
δn uncorrelated with εn [198].

It is important to note that, while the final state flow can be measured, initial state
eccentricities are not accessible experimentally. They can be only quantified in theoretical
initial state models, but otherwise remain out of reach. This is a challenge, as it restricts
experimental constraints on theoretical modelling of the emergence of harmonic flows.

3.4 Efficient Computation of Observables with SPARKX
One of the contributions of this work is the development of SPARKX (Software Package
for Analyzing Relativistic Kinematics in Collision eXperiments) [3, 377], an open-source
Python library designed to simplify analysis workflows for data from heavy-ion collision
simulations. SPARKX addresses the longstanding issue that existing analysis tools often
exhibit steep learning curves and limited extensibility, forcing many researchers to write
ad-hoc, untested scripts that are difficult to maintain and validate. By contrast, SPARKX
seeks to bridge this gap and provide a robust, maintainable codebase that can be easily
extended to meet the evolving needs of the heavy-ion theory community.

The overall design is centered around simplicity and cleanliness in both usage and
implementation. SPARKX adopts a modular, object-oriented architecture, guided by the
SOLID design principles of object-oriented programming [378]. The Single-Responsibility
Principle is evident in the way that each module focuses on a dedicated task; for instance,
data loading is handled by specialized loader classes, while flow calculations or jet-finding
routines remain in modules dedicated to analysis. This approach avoids tightly coupling
logic for reading data with logic for physics observables. The Open-Closed Principle
allows abstract interfaces, such as BaseLoader for file reading, to remain stable while
new classes extending these abstractions can be created without altering the original
interfaces. Users can incorporate new file formats or specialized analysis routines without
breaking existing parts of the codebase. Adhering to the Liskov Substitution Principle,
all derived classes can stand in for their respective base classes without causing runtime
errors or unexpected behaviors. This allows, for example, specialized OSCAR loaders and
JETSCAPE loaders to be used interchangeably, since both satisfy the same interfaces and
can be called from the same analysis methods. Furthermore, the Interface Segregation
Principle guides SPARKX to define specialized interfaces—for loaders, storers, or analysis
modules—instead of forcing large, monolithic ones, reducing needless code dependencies
for end users. Finally, the Dependency Inversion Principle prevents high-level modules,
such as flow analyses, from depending on the intricate details of lower-level modules.
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Figure 3.4: Execution time for a simple charged hadron transverse momentum analysis imple-
mented in SPARKX 2.0.2 and Rivet 3.1.5.

Instead, the flow classes depend only on abstract contracts (for instance, BaseStorer), so
that switching from one file format to another entails minimal alterations to the analysis
code.

Beyond design principles, SPARKX simplifies the overall workflow by neatly partition-
ing data-loading logic (including reading input files and applying user-defined filters)
from the physics analysis logic. Data are extracted into Python objects with well-defined
attributes (like momenta, particle IDs, or event metadata), then passed to specialized mod-
ules that compute bulk observables, anisotropic flow quantities, or jet-related properties.
Supported flow methods include the Q-cumulant approach [365, 379], the reaction-plane
method [380], and the Lee-Yang Zero formalism [381, 382]. These methods allow SPARKX
to cover a broad range of standard flow analyses within the heavy-ion community.

A fundamental aspect of SPARKX is its focus on reliability, embodied by a comprehen-
sive automated test suite and strict static typing. Tests, written with pytest, span from
unit checks (for instance, verifying that Q-cumulant routines or histogramming classes
work as expected) to integration tests (ensuring that the entire pipeline—loader, filtering,
and flow computations—produces consistent results for known inputs). Whenever new
features are introduced or existing functionalities are updated, continuous integration
pipelines verify that these tests pass, reducing the likelihood of regressions. Alongside
testing, the use of static typing (via mypy) brings clarity and consistency to the Python
codebase. Type annotations ensure that developers understand the expected structure
and data types at each interface, catching potential type mismatches before they cause
issues at runtime. This practice significantly enhances maintainability and debugging.

This careful attention to design principles and testing regimes ensures that SPARKX
is both accessible to novice users and robust enough for large-scale HPC analyses.
By minimizing code complexity, reducing the need for elaborate custom scripts, and
maintaining high standards of software engineering, SPARKX aims to streamline the
computation of key observables in heavy-ion collisions and promote confidence in the
resulting scientific inferences.

SPARKX is under active development, aiming both at extending the coverage of physics
analysis scenarios as well as performance. Currently covered observables include bulk
observables like yields and transverse momenta, anisotropic flows from different algo-
rithms, eccentricities, density calculations, jet analyses and pT -correlations. A complete
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overview can be found in [383]. Future extensions include improved centrality class and
HBT-radii calculations. However, incoming releases will focus on improved performance.
Current benchmarks show substantial weaknesses in this metric with respect to more
performance-focused codebases like Rivet [384], as can be seen in fig. 3.4. By implement-
ing parallelized analysis routines and online observable calculations as well as moving
core calculations to C++ using Python bindings, this gap can be reduced, resulting in a
fast, reliable, and easy-to-use analysis package.
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4
S E N S I T I V I T Y O F H Y B R I D
A P P R O A C H E S O N I N I T I A L S TAT E
M O D E L S

Movement is the origin of all existence. Therefore, no stillness
can reside within it, for if being were motionless, it would
return to its source—and that source is nothingness.

— Ibn Arabi, Kitâb Al-Isfâr

As explained before, one of the main observables relevant to the study of transport
coefficients in heavy-ion collisions are anisotropic flows. This observable is also strongly
affected by the initial state due to the impact of initial state eccentricities and other
initial state properties. One can gain further insights into this by studying both the
properties of selected initial state models and how they contribute to the observed final
state flows. This contributes to disentangling different sources of anisotropic flows and
therefore establishing a clearer connection between flow and transport coefficients. Future
predictions of transport coefficients can then take the impact on the chosen initial state
model into account.

4.1 Setup
Based on [2], this study is performed by exchanging the initial state model in the SMASH-
vHLLE-Hybrid approach. For this comparison SMASH IC, IP-Glasma, and TRENTo are
studied in the transverse plane, which requires a restriction to events at high collision
energies. The reason for this is that we have only at high energies an extensive Bjorken
plateau, which allow extrapolating results from the transverse plane to a midrapidity
region.

The properties of the initial condition extracted from SMASH, IP-Glasma, and TRENTo
were outlined in section 2.3.1. As a dataset to compare these three approaches, we generate
750 events per centrality class from each model. We run the Yang-Mills evolution for
IP-Glasma till τ = 0.5 fm, the same end time as SMASH IC at high energies. We generate
the initial conditions from SMASH with SMASH-2.2, and use the default parameters for
IP-Glasma initial states [385]. For TRENTo, we use parameters extracted from a recent
Bayesian inference [54] without the use of nuclear substructure. We rescale the transverse
planes produced by IP-Glasma and TRENTo to the correct energy by the number of
participants provided. We want to stress that the presented results depend of course
on the choice of parameters. However, parameter sets were chosen which reproduce
experimental data well and give comparable results.

There are several properties of the initial state compared in the following. For all
initial state models, the eccentricity is studied, as introduced in section 3.3.4. SMASH
and IP-Glasma provide access to momenta, and therefore one can define a radial flow
in the initial state, ⟨pIC

T ⟩, which is the mean transverse flow of the initial state. This can
be calculated on the basis of particles for SMASH, and from the energy momentum
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tensor for IP-Glasma as ϵp =
√
Txx2 + Tyy2. Lastly, one can also look at the anisotropies

of momenta in the initial state for SMASH and IP-Glasma. For SMASH, due to the
descriptions as particles, we can directly calculate vIC

2 and vIC
3 . For IP-Glasma, we have to

again choose a related quantity from the energy momentum tensor. As proposed in [386],
we choose ϵpei2Ψ

p
2 =

⟨Txx−Tyy⟩+i⟨2Txy⟩
⟨Txx+Tyy⟩ . Eccentricities and flows were calculated using

SPARKX-1.1, employing the scalar product method.
Furthermore, we investigate the effect on the whole hydrodynamic evolution when

exchanging the initial state model. In order to achieve this, we perform a completely
identical simulation except for the initial state used. As the SMASH IC is 3D, we have to
extend the 2D transverse plane initial condition models into the longitudinal direction and
distribute the missing charges. This is performed according to the prescription proposed
in [387–389]. It is based on the assumption of an approximately triangular shape of the
space-time rapidity distribution of the energy deposition from the forward-going (+) and
backward-going (-) participant nucleons. In order to realise this, a smearing kernel of the
following form is used:

f±(ηs) =
ηM ± ηs
2ηM

H(ηs) for |ηs| < ηM (4.1)

with the beam pseudorapidity ηM. f±(ηs) is then limited to the range [0, 1] so that the
deposition does not become locally negative, and the finiteness of the shape in rapidity is
ensured by the profile function H:

H(ηs) = exp
(
−
(|ηs|− η0)

2Θ(|ηs|− η0)

2σ2η

)
. (4.2)

η0 represents the energy-dependent width of the midrapidity plateau. Such a rapidity
profile of the energy deposition from the participant nucleons has been successfully
used in a variety of studies. These include, for example, transverse momentum corre-
lations in Au-Au collisions at the top RHIC energy [387] or even Pb-Pb collision at the
LHC energies [390]. Apart from this, it was also applied for collective flow in small
systems [391], or longitudinal decorrelation of flow harmonics in Pb-Pb collisions at the
LHC energies [392].

For the rest of the evolution of the system, the aforementioned SMASH-vHLLE-Hybrid
approach was used in the versions SMASH-vHLLE-Hybrid :298ebfa, vHLLE:0a10d56,
vhlle-params:4bfe48a1 and SMASH-hadron-sampler-1.1. This includes all aforementioned
default setups, except for the shear viscosity. Here, a parameterization was used which
will be presented in section 5.1.

1 As pre-release versions were employed, the references to the commits were given here.
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Figure 4.1: Top: Energy density in single event transverse planes. Bottom: Average of 1000

events. From left to right: SMASH, TRENTo and IP-Glasma.

4.2 Averaged Quantities
We start with the investigation of event-averaged quantities. It is very instructive to look
at the energy density distribution in the transverse plane, as can be seen in fig. 4.1. Here,
for SMASH we use the smearing kernel according to eq. (2.44). The covariant nature of
this smearing kernel results in a tube-like structure in the single event transverse plane for
SMASH. TRENTo, on the other hand, shows very smooth structures, while for IP-Glasma,
a high granularity remains. For each single event, fluctuations are introduced due to
different Woods-Saxon-sampled positions of the nuclei. However, once quantities are
averaged out, the differences largely disappear. The average transverse plane of SMASH
and TRENTo are practically identical, and the IP-Glasma transverse plane is approaching
the same elliptical gaussian form. If one where to average over even more events, all
three models would provide almost identical initial states.
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sensitivity of hybrid approaches on initial state models

Figure 4.2: Eccentricities of the initial state for Au-Au collisions at
√
sNN = 200 GeV (top left),

Pb-Pb collisions at
√
sNN = 5020 GeV (top right) and O-O collisions at

√
sNN = 7

TeV (bottom), each as a function of the impact parameter for the three models.

Figure 4.2 shows the eccentricities ϵ2 and ϵ3 as functions of the impact parameter
for three experimentally relevant systems: Au–Au collisions at

√
sNN = 200 GeV, Pb–Pb

collisions at
√
sNN = 5020 GeV, and O–O collisions at

√
sNN = 7 TeV. Since TRENTo does

not provide oxygen configurations, those employed here are taken from Ref. [393]. In all
cases, the passing time (see section 2.3.1.1) is set to 0.5fm/c.

For the large systems (Au–Au and Pb–Pb), the three models exhibit similar trends: the
eccentricities increase comparably with the impact parameter. In both systems, IP-Glasma
generally gives the highest values for ϵ2 and ϵ3, except in very peripheral collisions at
high energies where SMASH produces slightly higher ϵ3. Similar behavior was reported
in Ref. [394], and a good overall agreement among different models has also been noted
in Ref. [395].

By contrast, for collisions involving smaller ions (O–O), the models differ more signifi-
cantly. While SMASH and IP-Glasma remain in reasonable agreement, TRENTo predicts
much more spherical profiles with virtually no dependence on the impact parameter.
Furthermore, even in nearly central collisions, the eccentricity does not vanish, a feature
particularly pronounced in IP-Glasma.
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4.2 averaged quantities

Figure 4.3: Initial state eccentricities (top left), final state flows (top right), and response
functions vn/ϵn (bottom) for all three models for Au-Au collisions at

√
sNN = 200

GeV.

It is instructive to see how the rather small differences at
√
sNN = 200 GeV translate into

the final state observables. We restrict ourselves to this energy as it reduces computational
cost, and the validity of the hybrid approach has been most thoroughly established here.
Figure 4.3 shows the averaged values of ϵ2, ϵ3, v2, and v3 for the three models for
Au-Au collisions at

√
sNN = 200 GeV at 0-5% and 20-30% centrality, respectively. The

centrality class was selected here by defining a mapping between impact parameters
and multiplicities based on the Glauber model, and only taking into account collisions
within this specified interval of impact parameters. In agreement with earlier results,
the eccentricities of the models have similar values in both centrality classes. Especially
TRENTo and the transport initial state are close in the values of their eccentricities. We
see a considerably better agreement for the eccentricities here than between UrQMD and
TRENTo for earlier comparisons at lower energies [389]. It is noteworthy that we observe
a systematically slightly increased flow with SMASH in comparison to TRENTo, although
the eccentricities are smaller. Nevertheless, we observe both the highest eccentricities and
flows with IP-Glasma. Although the differences between the models seem only moderate,
they become more pronounced when looking at the response function. The response
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sensitivity of hybrid approaches on initial state models

Figure 4.4: Initial state eccentricity distributions. The normalized probability density distribu-
tion is shown on the top left and bottom right. The top right shows a 2D scatter
plot of the ϵ2-ϵ3 distribution, whereas the lower left plot visualizes the relationship
of the two quantities, with the center of the ellipse at the mean of ϵ2 and ϵ3, width
and height are the variance of ϵ2 and ϵ3, respectively, and the angle shows the
covariance. Data at 0-5% centrality (left) and 20-30% centrality (right) for Au-Au
collisions at

√
sNN = 200 GeV.

function encodes the proposed proportionality factor between flow and eccentricity in
eq. (3.10). The only change in the three setups is the choice of the initial condition model,
but the response to initial state eccentricities differs, especially for central collisions. A
clear hierarchy between the models and their response functions seems to emerge. This
is however contrary to the naive believe that the response is mainly governed by the
properties of the hydrodynamic medium.

We want to gain insights into this by looking into the distribution of the variables in
an event-by-event basis. Existing research shows that while the average eccentricities
between different models might agree, this is not necessarily given for the distribution of
eccentricities [395].

4.3 Event-by-event Distributions
Figure 4.4 and fig. 4.5 illustrate the event-by-event distributions of eccentricities and flows,
respectively. In terms of eccentricities, SMASH exhibits a significantly more peaked distri-
bution, particularly in central collisions where the IP-Glasma and TRENTo distributions
are very similar. This behavior changes slightly for off-central collisions: SMASH remains
more peaked but IP-Glasma shows a substantially broader spread in both centrality
classes compared to TRENTo. For all three models and both centralities, there is no strong
ϵ2–ϵ3 correlation, and the variation in ϵ2 exceeds that of ϵ3.
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Figure 4.5: Final state flow distributions. The normalized probability density distribution is
shown on the top left and bottom right. The top right shows a 2D scatter plot of the
v2-v3 distribution, whereas the lower left plot visualizes the relationship of the two
quantities, with the center of the ellipse at the mean of v2 and v3, width and height
are the variance of v2 and v3, respectively, and the angle shows the covariance.
Data at 0-5% centrality (left) and 20-30% centrality (right) for Au-Au collisions at√
sNN = 200 GeV.

Figure 4.6: Pearson correlation matrix at 0-5% centrality (top) and 20-30% centrality (bottom)
for Au-Au collisions at

√
sNN = 200 GeV for SMASH, IP-Glasma and TRENTo (left

to right).
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An additional observation that challenges a simple linear or higher-order response
of flows to eccentricities is the pronounced difference in the shapes of final state flow
distributions compared to initial state eccentricity distributions. For both centrality
classes, the TRENTo distributions are more peaked than those of SMASH and IP-Glasma.
A simpler response model would have preserved the original hierarchy of peaks, but
here we observe significant correlations, visible in the orientations of the ellipses in the
lower-left corner. SMASH and IP-Glasma show a positive correlation between v2 and v3,
whereas TRENTo exhibits a negative correlation for central events. Although all three
distributions were initially very similar, IP-Glasma now stands apart, shifted toward
higher flow values.

These findings indicate that the properties of final state flow cannot be solely attributed
to initial state eccentricities, even when other components of the hybrid approach are held
fixed. In what follows, we explore possible factors that may account for these differences
among the models.

Figure 4.6 presents the Pearson correlation matrix for all relevant quantities across the
three models and the centrality classes under study, encoding the Pearson correlation
coefficient between each pair of variables. The Pearson correlation coefficient is a measure
of the linear relationship between two continuous variables, labeled X and Y. Its values
range from −1 to 1, where values near ±1 indicate a strong linear dependence, and
values close to 0 indicate no relationship. Formally, it is given by

r =

∑n
i=1(xi − x̄) (yi − ȳ)√∑n

i=1(xi − x̄)
2
√∑n

i=1(yi − ȳ)
2

, (4.3)

where x̄ and ȳ are the sample means of X and Y, respectively.
Concerning the ϵn–vn correlations, these are generally strongest for TRENTo and

SMASH. In contrast, they become particularly weak for IP-Glasma in central collisions,
likely due to its higher initial state granularity, which increases the effect of fluctuations.
Even if the entire event can be approximated by an elliptical shape, the pressure gradient
from granular structures exerts a more substantial influence on the final flows. Whereas
these correlations grow for both TRENTo and IP-Glasma in more off-central collisions,
they decrease in SMASH. This implies that in off-central SMASH events, the eccentricity
serves as a less reliable predictor of the flow.

These findings stand in opposition to earlier results in Ref. [198], where it was noted
(using NeXus events) that the ϵn–vn correlation grows with increasing off-centrality.
Hence, we see that this behavior does not hold universally across all initial condition
models.

In SMASH, the initial state flows do not reveal any significant correlation with either
the final state observables or other initial state quantities. The situation is somewhat
less clear for central IP-Glasma events, where the correlation between ϵp and v2 reaches
a magnitude comparable to the ϵ2–v2 correlation, though both remain small. Refer-
ence [396] demonstrated that classifying the initial state by eccentricities, the average
square radius, and the total energy per unit rapidity can accurately predict final state
flows, consistent with our observation of no correlation between initial and final state
momentum anisotropies. It appears that initial state momentum anisotropy does not per-
sist through hydrodynamic evolution to influence the final state momentum anisotropy.
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For SMASH in particular, this contradicts earlier assumptions that the substantial initial
flow directly contributes to the final flow [199].

Examining the final state transverse momentum, we find marked differences among
the three models. In TRENTo, there is a slight anti-correlation with all initial and final
state properties in central collisions, which grows stronger at off-central collisions. In
SMASH, a strong anti-correlation emerges only in relation to the final flows, whereas
IP-Glasma shows no significant correlation at all. On the other hand, for SMASH we
find a significant correlation between radial flow and the final transverse momentum. It
is notably stronger than that observed in IP-Glasma. Additionally, SMASH also shows
a slight anti-correlation between the initial eccentricities and the radial flow, whereas
the initial ellipticity is negatively correlated with the inverse root-mean-square radius.
This can be seen as a result of the fact that smaller, more compact sources lead to larger
transverse momenta but lower deformation. This effect is less pronounced in TRENTo,
which produces a smoother source, and in IP-Glasma, where granular fluctuations play a
larger role.

4.4 Multiple Linear Regression
The assumption of a linear relationship between the initial eccentricities and the final
state flow can be viewed as applying a linear regression model. As we have access to
additional initial state properties, we can also test whether other aspects of the initial
state contribute to the development of final state flow, beyond the relevant eccentricity
mode. In other words, we can check whether additional independent variables help
explain the observed final state flow. It is important to stress that merely examining
pairwise correlations is insufficient for this purpose, because such correlations only
capture relationships between two variables, while our aim is to explore a multivariate
relationship. Indeed, owing to the strong connection between flow and eccentricity, the
influence of other independent variables may not be evident through correlation analyses
alone.

A simple example helps illustrate this point. Suppose two initial state properties both
contribute to vq via the relation

vq = 2 ϵp + ϵq, (4.4)

and further assume that ϵp and ϵq are perfectly anti-correlated. Even though ϵq is
an independent source of vq, the Pearson correlation between vq and ϵq can appear
negative, because the much larger contribution from ϵp masks the effect of ϵq.

In the appendix, we present a series of linear regressions involving different initial
state properties to predict v2 and v3, based on SMASH and IP-Glasma initial conditions
in both centrality classes. For each regression variable, we report the coefficient and the
corresponding p-value, the latter indicating the probability of observing the result under
the null hypothesis. As a rule of thumb, a p-value below 0.05 is necessary (though not
sufficient) to consider the inclusion of a dependent variable as statistically significant. In
addition, we report r2. It tells us what fraction of the total variation in y is explained by
our regression line. Both concepts are explained in more detail in the appendix.

Adding more independent variables generally improves r2 (or at least does not decrease
it), because additional linearly independent information helps account for statistical
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Figure 4.7: Left: The difference between observed and fitted values (also known as residuals)
for a fit on ϵ2 on the one hand and ϵ2 and ⟨pICT ⟩ on the other hand, for IP-Glasma at
0-5% centrality. Right: The same data for collisions in SMASH at 20-30% centrality,
for the fit with v3 on ϵ3 (right) for Au-Au collisions at

√
sNN = 200 GeV.

fluctuations. In the cases examined here, the inclusion of ⟨pICT ⟩ in particular is statistically
significant and yields a greater improvement in r2 than any other variable. From tables A.5
to A.8, we see this effect is especially strong for IP-Glasma, which contains a substantial
amount of transverse momentum. Nonetheless, tables A.1 to A.4 illustrate a qualitatively
similar, though less pronounced, effect in SMASH.

Because IP-Glasma is known to include more initial transverse momentum, it is rea-
sonable that its initial ⟨pICT ⟩ stands out as a stronger and more significant predictor. This
consistent and significant improvement clarifies that radial flow in the initial state consti-
tutes a next-to-leading-order contribution to the final state flows. A stronger transverse
push leads to a stronger hydrodynamic response to the initial azimuthal deformation.

These findings help to interpret the differences observed in the response functions
earlier: depending on the initial condition model, the presence of initial state transverse
flow modifies the response to initial state eccentricities. Consequently, eccentricity is not
the only feature of the initial state that influences the initial flow, but can rather be seen
as the leading contribution.

The effect of including radial flow in the predictor of final state flow becomes clear in
fig. 4.7. Here the residuals of the prediction of the linear regression model with respect
to the observed value is shown in two cases. In other words, one can see the difference
between prediction and true value based on the predictive model. The systems were
chosen as they demonstrate strong improvement when including a second independent
variable. We see that in both systems the inclusion of the additional independent variable
compensates too high predictions of flow for small eccentricities and too small predictions
for the flow at high eccentricities. It becomes clear that for events with small eccentricities,
initial radial flow is an important factor in the emergence of final state flow harmonics.
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4.5 SMASH at Intermediate Energies

Figure 4.8: Pearson correlation matrix for SMASH at
√
sNN= 17.3 GeV, at 0-5% centrality (left)

and 20-30% centrality (right).

As the SMASH IC is a three-dimensional initial condition model, one can also apply it
to lower collision energies. Therefore, we can extend the study of this initial condition
model also to the case of Pb–Pb collisions at an energy of

√
sNN=17.3 GeV, where the

passing time is 1.44 fm/c.
The correlation matrix in Fig. 4.8 shows a weaker dependence between ϵ3 and v3 in

comparison to the high-energy case. Additionally, the correlation between the flow modes
is also reduced, hinting at a stronger role of non-flow for v3, but not v2. We observe a
greatly increased relationship between radial flow and final transverse flow, whereas the
relationship between eccentricities and radial flow remains roughly unchanged. It seems
that, due to the shorter lifetime of the medium, the average radial flow itself is hardly
changed, whereas the flow harmonic again do not survive the fireball evolution. Tables
of different linear regression models can be found in the appendix in tables A.9 to A.12.
Due to the weak ϵ3-v3-correlation, linear regression with v3 as dependent variable fails
to appropriately describe the data. The inclusion of radial flow in the linear fit again
improves the regression. This effect is however more relevant at high energies, although
its consequence for the residuals remains unchanged, as can be seen in fig. 4.9.
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Figure 4.9: Hybrid evolution with SMASH IC at 0-5% centrality and
√
sNN = 17.3 GeV: Resid-

uals between observed and fitted values for a fit on ϵ2 on the one hand and ϵ2 and
⟨pICT ⟩ on the other hand.

4.6 Discussion
We observe substantial differences in eccentricity and final state flow distributions across
various models, with TRENTo exhibiting the most pronounced peaks. Consequently,
relying on average values alone does not fully capture the discrepancies among initial
state models. Indeed, the correlation between initial eccentricities and final flows is
conspicuously model-dependent, featuring the strongest correlation in TRENTo and
the weakest in IP-Glasma, particularly in central collisions. Moreover, even though the
same hydrodynamic evolution was applied in each case, the system’s response to initial
eccentricities differed among the initial condition models.

The underlying cause stems from the transverse momentum in the initial state, as
provided by SMASH IC and IP-Glasma, which exerts a non-negligible influence on
the final flows. Including this component alongside eccentricity in a linear regression
model improves predictions of the final flows. This contribution from initial radial flow
constitutes a relevant second-order effect in shaping final anisotropic flows, thereby
challenging the assumption of a universal linear hydrodynamic response. Extending the
study to lower energies with SMASH IC showed weaker correlations overall, yet initial
radial flow continued to benefit final flow predictions.

In contrast, anisotropies in the initial state momentum do not significantly affect the
final state, since they rapidly isotropize during the hydrodynamic phase and do not
influence the momentum distribution of the final state. This could potentially be related
to forced regularization in hydrodynamics, which suppresses terms which are too far
from equilibrium.

In summary, our detailed event-by-event analysis demonstrates marked differences
among commonly used initial state models, which bear critical implications for predicting
final state observables. Even though averaged results appear similar, the event-by-event
distributions, correlations, and hydrodynamic response differ substantially. These findings
underscore the importance of initial transverse momentum as a key contributor to final
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flows, indicating that comprehensive characterization of the initial conditions requires
more than just eccentricity when correlating with final state observables.

Future studies could extend this analysis to further initial condition models. Most im-
portantly, IP-Glasma can be combined with alternative approaches for the pre-equilibrium
dynamics. The pre-equilibirum can have a substantial effect on the initial state transverse
momentum [397–400]. Alternatively, the study could also be performed in an anisotropic
hydrodynamics setup [401], which could potentially improve model uncertainties at
the point of fluidization. Additionally, it would be worthwhile to extend the statistical
toolset employed in this study. Instead of just comparing the results of different setups of
multiple linear regression, one could employ more strict schemes like LASSO regression.
This has the advantage of better and more systematically estimating the true importance
of independent variables, especially in the presence of multicolinearity, which is expected
to affect results here, too [402].
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5
I N V E S T I G AT I O N O F
V I S C O S I T I E S I N H Y B R I D
A P P R O A C H E S

The more we learn about the world, and the deeper our learning,
the more conscious, specific, and articulate will be our
knowledge of what we do not know, our knowledge of our
ignorance. For this, indeed, is the main source of our ignorance
— the fact that our knowledge can be only finite, while our
ignorance must necessarily be infinite.
— Karl Popper, Conjectures and Refutations: The Growth

of Scientific Knowledge

After studying the substantial difference in the existing initial state models and their
effect on observables, we want to proceed with studying the existing uncertainties in the
hydrodynamic stage. Here, we want to focus on the form and values of viscosities. In a
first step, based on [1], we study the effect of the inclusion of a baryochemical potential
dependence in the parameterization of the shear viscosity. With the results of this in
mind, we proceed to perform a full Bayesian analysis of the SMASH-vHLLE-Hybrid
approach, based on [4].

5.1 Exploring the Baryochemical Potential Dependence of Shear
Viscosity

As mentioned previously, there is theoretical support for a dependence on the net
baryochemical potential [62–65]. Although studies including a non-constant η/s(T ,µB) in
hydrodynamic simulations exist [403], the effect on the observables is largely unexplored.
Previous studies focus on a temperature dependence or even a constant effective shear
viscosity [53, 54, 58, 233, 237, 311, 331, 404, 405]. Thus, in the following, we want to
investigate in the following the effect of including a dependence on the net baryochemical
potential.

5.1.1 Selection of the Parameterization and Choice of Comparison Models

A common approach for exploring a combined temperature and net baryochemical
potential dependence of the shear viscosity in the fireball is to start with a direct pa-
rameterization of η/s in terms of the temperature T , then add terms proportional to
µB. However, parameterizing the shear viscosity in terms of the local rest-frame energy
density ϵ and the net baryon number density ρ benefits from the fact that these are
the hydrodynamic fields actually evolved in time. Consequently, the parameterization
becomes less sensitive to the EoS, though η/s itself still depends on the EoS via the
entropy density in the denominator. An additional advantage is the observation that the
shear viscosity is expected to have a minimum near the cross-over transition between the
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Figure 5.1: Energy density and net baryon density dependent shear viscosity η/s(ϵ, ρ) for
Sρ = 0.05 fm3 (left). The same quantity mapped to (T ,µB) using a chiral equation
of state (right).

quark–gluon plasma and the hadronic phase. This transition line approximately follows a
constant-energy-density contour [406]. Therefore, it is more straightforward to reproduce
this feature with a parameterization in ϵ.

Since our objective is primarily qualitative, we adopt several simplifications. First,
although the more accurate measure of fluidity at finite µB is η T/w, with w = ϵ+ p

denoting the enthalpy [407], we use η/s for convenience, noting that both expressions
coincide in the limit of small µB.

Next, to reflect the expected minimum of η/s near the transition, we enforce that η/s(ϵ)
approximately reproduces the typical η/s(T) behavior in the limit µB → 0, exploiting the
fact that ϵ ∼ T4. Observables are known to be more sensitive to the overall magnitude of
the shear viscosity than to its detailed functional form [339], so we opt for a piecewise
linear dependence in both the high-ϵ and low-ϵ regimes. This choice inherently introduces
a µB-dependence: the minimum of η/s(ϵ) is shifted to lower temperatures for increasing
µB (see fig. 5.1). Although it may seem counterintuitive that a higher baryochemical
potential could reduce the shear viscosity in the low-temperature regime, this follows
directly from fixing the minimum of η/s along a constant-ϵ line. Increased baryochemical
potential raises the energy density, thus driving the system closer to the transition region.

Nonetheless, we wish to study the explicit µB-dependence in more detail, and therefore
include a term linear in the net baryon number density ρ. We choose the net baryon
density because it is the relevant quantity evolved in hydrodynamics. Although negative
net baryon densities are not formally excluded, in practice, smoothing the initial condition
together with the baryon rich collision energies under consideration ensures ρ ⩾ 0

throughout the fluid. Imposing positivity on the shear viscosity then leads us to the
following functional form:

η/s(ϵ, ρ) = max

0, (η/s)kink +

Sϵ,H(ϵ− ϵkink) + Sρρ, ϵ < ϵkink

Sϵ,Q(ϵ− ϵkink) + Sρρ ϵ > ϵkink

 (5.1)

This choice of parameterization introduces five fit parameters, out of which all but
Sρ are fixed by constraints. We set ϵkink, the position of the minimum at vanishing
net baryochemical potential, to 1GeV/fm3, guided by lattice QCD results [35] and
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experimental data [408]. The value of the shear viscosity at this minimum is set according
to the Kovtun-Son-Starinets (KSS) bound [47]. The slope in the high-energy-density
region is adjusted to reproduce perturbative QCD calculations [55] at a temperature
of 400MeV and vanishing µB. For the low-energy-density region, we match the shear
viscosity extracted from box calculations in SMASH at vanishing µB at the particlization
temperature1, thereby reducing discontinuities at the switch from hydrodynamics to the
hadronic transport description. It is, however, essential to note that this correspondence
is only approximate. The hadronic transport in box calculations used to extract transport
coefficients differs significantly from an expanding medium, where scatterings occur
in an environment that can be less isotropic. Moreover, we emphasize that, in general,
this parameterization permits η/s to take any positive value, potentially violating the
KSS bound because values smaller than 1

4π are allowed. This is not a strict bound for
non-conformal theories [409].

With these constraints set, only one free parameter remains, Sρ. We will vary this
parameter to assess its impact on observables, as it determines how strongly η/s scales
with ρ. Figure 5.1 displays the parameterization for Sρ = 0.05 fm3 in both (ϵ, ρ) and
(T ,µB) coordinates. The mapping is performed using the same equation of state employed
in vHLLE. A characteristic kink structure appears in both representations. Even for Sρ = 0,
the minimum of η/s shifts to lower temperatures with growing µB because it is placed
along a contour of constant energy density, as discussed above. The value of η/s at the
minimum, however, changes only if Sρ is non-zero.

In what follows, we compare our parameterization to other existing options for η/s,
namely constant or temperature-dependent functional forms. The first comparison uses
constant η/s values, which differ by collision energy (see Table 1 in Ref. [221]). These
values constitute the default settings in the SMASH-vHLLE-Hybrid, originally taken
from UrQMD+vHLLE to match experimental data optimally. Such constant-η/s choices
often prove sufficient because many observables depend predominantly on the effective
shear viscosity [339], rather than its detailed variations at different stages of the fireball
evolution.

The second form of the shear viscosity for comparison exemplifies the growing interest
in extracting η/s(T) from experimental data via Bayesian analyses. We use the η/s(T)
parameterization from JETSCAPE [54], with a set of parameters near the center of their
60% confidence interval. While tuned to reproduce high-energy data and featuring a min-
imum close to the transition temperature, it lacks both implicit and explicit dependence
on µB.

5.1.2 Insights on Shear Viscosity in Hybrid Approaches

Our investigation targets the intermediate-energy regime, specifically Au–Au collisions
at

√
sNN = 7.7GeV and 39GeV, as well as Pb–Pb collisions at

√
sNN = 17.3GeV. In

this range, the baryochemical potential µB is sufficiently large to be impactful, and
the fireball’s lifetime remains considerable, making the system notably sensitive to
modifications of the shear viscosity during the hydrodynamic phase. We examine both
central (0–5% centrality) and mid-central (20–30% centrality) collisions.

1 This particlization temperature is defined as the temperature equivalent to the particlization or switching
energy density ϵswitch at vanishing µB in the SMASH hadron gas EoS.
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Figure 5.2: Mean shear viscosity over entropy ratio (weighted with the energy density) through-
out the whole hydrodynamic evolution. Top: Comparison between different param-
eterization choices for both central and off-central collisions. Bottom: effect of net
baryon number density dependence for central and off-central collisions.

For each simulation configuration, we run 100 event-by-event viscous-hydrodynamics
events, each initialized from a single SMASH initial condition. The smearing parameters
for transitioning from transport to hydrodynamics follow Table 1 of Ref. [221], which
demonstrated compatibility with experimental data. From the resulting freeze-out hy-
persurface, we sample 1000 events for the hadronic afterburner to ensure, on average,
quantum-number conservation. We neglect bulk viscosity in all cases, whereas the choice
of shear viscosity will be described in the following sections.

For this project, SMASH-vHLLE-Hybrid:03232b2, SMASH-2.1.4, vhlle-params:99ef7b4,
vHLLE:efa9e28 and SMASH-hadron-sampler-1.0 were employed2.

In what follows, we examine the qualitative impact of our proposed η/s parameteriza-
tion and various values of Sρ on the dynamical evolution and selected observables of
heavy-ion collisions. We focus on the midrapidity yields and mean transverse momentum
in central collisions. These observables display only weak sensitivity to the shear viscosity.
Their advantage, however, is that they can be accurately computed even with relatively
low statistics. Additionally, we study the integrated elliptic flow v2 in the 20–30% central-
ity region, an observable known to be highly sensitive to the shear viscosity. Under the
conditions of our simulations, the temperature throughout the hydrodynamic evolution
spans values between 108 and 407 MeV, while the net baryochemical potential reaches
values between 0 and 583 MeV.

2 As pre-release versions were employed, the references to the commits were given here.

96



5.1 exploring the baryochemical potential dependence of shear viscosity

Figure 5.3: Sρ-dependent data from fig. 5.2 normalized to the parameterization with Sρ = 0.
Deviation in percent.

We compare observables across two sets of shear-viscosity configurations. First, we
contrast our η/s(ϵ) parameterization (with Sρ = 0) against both constant-η/s and
temperature-dependent forms, thereby relating our results to common prior choices
in the literature. Second, we assess the explicit net baryon number dependence of η/s
by comparing Sρ = 0, Sρ = 0.05 fm3, and Sρ = −0.05 fm3. These values were chosen to
be significant enough to have a substantial impact on the evolution without leading to
excessive values for the viscosity.

5.1.2.1 Effective η/s and Time Evolution

An instructive way of comparing different non-constant shear-viscosity parameterizations
is via the effective shear viscosity, which is calculated as a weighted average throughout
the hydrodynamic evolution. Various schemes exist for assigning weights to the shear
viscosity in a single fluid cell at any given time, but in this work, we focus on the energy
density as our weighting factor. The results of this comparison are shown in fig. 5.2,
where the deviation of the shear viscosity when including a ρ-dependent term is shown
in percent, and standard statistical error is indicated by the shaded bands.

We find that the parameterization based on energy density attains higher shear-
viscosity values than the alternative scenarios considered, particularly in peripheral
collisions and at larger collision energies. This difference arises mainly because SMASH
has a higher shear viscosity than the purely temperature-dependent parameterization,
thereby elevating the weighted average via cells situated near the particlization energy
density. In contrast, the temperature-dependent parameterization shows only a modest
sensitivity to collision energy, reflecting a relatively small slope in the Bayesian posterior
for its parameters combined with a similar minimal value. Finally, the constant-η/s setup
agrees well with the effective values at lower collision energies but diminishes more
sharply at higher energies. It’s strong decline displays a qualitative difference to the other
parameterizations.

Turning to the ρ-dependence of η/s, fig. 5.3 shows that the overall effect remains mod-
erate and diminishes with increasing collision energy. A smaller effect is also observed
when transitioning from central to peripheral collisions. In both instances, the effective
baryon density is reduced: either due to a lower net baryochemical potential at higher
energies or because the reaction zone is more peripheral. Note, however, that a small
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Figure 5.4: Time evolution of the energy density weighted shear viscosity over entropy ratio
for central collisions at

√
sNN = 39 GeV.
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Figure 5.5: Excitation function of ⟨pT ⟩ of charged hadrons at midrapidity (|y| < 0.5) for different
parameterization strategies (left) and different values of the net baryon number
density dependence (right).

difference in the effective shear viscosity does not necessarily imply a negligible impact
on observables; variations in the viscosity across distinct regions of the fireball could still
modify measured quantities, even if the overall effective viscosity remains the same, as
the fireball evolution is influenced by the anisotropy of the shear viscosity.

Further insight is provided by fig. 5.4, which depicts the effective shear-viscosity-over-
entropy ratio over time for central collisions at

√
sNN = 39GeV. The most pronounced

effect of Sρ appears in the early stages of hydrodynamic evolution, when the fireball
volume is still small and densities are correspondingly high. Generally, the η/s(ϵ)
parameterization exhibits a strong time dependence. At these energies, numerous fluid
cells begin their evolution near or slightly above ϵkink and thus have initially low shear
viscosities, which then rise rapidly as the system cools and dilutes.

5.1.2.2 Bulk Observables

An initial perspective on the influence of the net baryochemical potential dependence
emerges from examining bulk observables in central collisions. In fig. 5.5, we compare
the mean transverse momentum at midrapidity for charged hadrons under various shear-
viscosity parameterizations. At lower collision energies, the η/s(ϵ) parameterization
leads to a reduced mean pT , yet it converges slowly toward the values obtained from
other parameterizations as the collision energy grows, in line with the trend of the shear
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Figure 5.6: Excitation function of dN/dy (|y| < 0.5) of charged hadrons for different parame-
terization strategies (left) and different values of the net baryon number density
dependence (right).
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Figure 5.7: Comparison of proton mean transverse momentum and midrapidity yield to data
from NA49 [410] and STAR [411].

viscosity itself. Introducing an explicit ρ-dependence—whether positive or negative—
increases the transverse momentum. Notably, this indicates that the fireball evolution
exhibits a non-linear response to changes in the viscosity, as a purely linear effect would
require changes in the observables to be either correlated or anticorrelated with Sρ.

In fig. 5.6, we plot the charged-hadron yield at midrapidity as a function of beam
energy. Marked differences among the various parameterization strategies appear only
at higher collision energies, where the energy-density-based parameterization leads to
an increased yield. Regarding the explicit net baryon number dependence, the inclusion
of Sρ also has a stronger impact at higher energies. However, once again the effect is
non-linear: increasing the shear viscosity with growing net baryon density has almost no
influence on the yield, whereas decreasing it significantly reduces the yield.

Although our aim is to provide only a qualitative analysis of how a net baryochemical-
potential dependence in the transport coefficients impacts heavy-ion collisions, it is still
instructive to compare selected results to experimental data. In fig. 5.7, we contrast
our model predictions for the mean transverse momentum and midrapidity yield of
protons—obtained from the energy-density-based parameterization with Sρ = 0, the
original constant-η/s scenario, and the temperature-dependent parameterization—with
experimental measurements. Protons serve as a convenient reference because data for
them are readily available.

99



investigation of viscosities in hybrid approaches

10 15 20 25 30 35 40√
sNN [GeV]

0.000

0.025

0.050

0.075

0.100

0.125
v
in
t

2
AuAu/PbPb 20-30%

η/s(T)

η/s(ε)

η/s const.

10 15 20 25 30 35 40√
sNN [GeV]

0.000

0.025

0.050

0.075

0.100

0.125

v
in
t

2

AuAu/PbPb 20-30%

Sρ = 0.05

Sρ = 0

Sρ = −0.05

Figure 5.8: Integrated elliptic flow of charged hadrons at midrapidity (|y| < 0.5) for different
parameterization strategies (left) and different values of the net baryon number
density dependence (right).

In both observables, the agreement among the various parameterizations and the
experimental results is comparably good. This outcome is not surprising given that fig. 5.5
and fig. 5.6 already showed the observable differences among all parameterizations to be
on the order of 10% at most.

5.1.2.3 Elliptic Flow

The anisotropic flow coefficients are highly sensitive to the shear viscosity [404], par-
ticularly at higher orders. However, these measurements typically require substantial
statistics, which is why we focus on the integrated v2 in 20–30% central collisions for our
exploratory study. The scalar product method (see section 3.3.2) is employed for the v2
analysis, as it both gives reliable errors without too high requirements in statistics.

Figure 5.8 displays the excitation function of the average ⟨v2⟩. Most notably, the energy-
density-based parameterization yields a considerably lower elliptic flow compared to the
other scenarios, attributable to its higher effective shear viscosity. By contrast, varying Sρ
has only a minor impact on elliptic flow, and this impact is predominantly seen at lower
collision energies.

This outcome points to two complementary observations. On the one hand, our bulk
observables proved more sensitive to Sρ at higher collision energies, but on the other
hand, elliptic flow appears to be influenced by it primarily at lower energies. Since the
average net density ρ is larger in the lower-energy collisions, the flow is more easily
modified in those systems. Conversely, while higher collision energies do produce larger
net densities at early stages, our results suggest that bulk observables are influenced most
strongly by early-time physics, whereas flow—largely unaffected by Sρ at higher collision
energies—reflects late-time dynamics. A likely explanation is the out-of-equilibrium
correction δfshear in the sampling procedure, which can substantially alter observables
and depends on the shear stress at particlization [339].

When comparing the integrated charged-hadron flow to experimental data, we find
that the flow reduction caused by η/s(ϵ) results in a larger discrepancy with the measure-
ments. An exception appears at low energies, where the default SMASH-vHLLE-Hybrid
configuration also fails to reproduce the data point due to a shorter hydrodynamic evolu-
tion. Otherwise, the original configuration generally shows better agreement than η/s(ϵ).
Nevertheless, this does not imply that the net baryon chemical-potential dependence can
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Figure 5.9: Comparison of charged hadron integrated event plane elliptic flow at midrapidity
to STAR data [412].

be neglected entirely; rather, it reflects our qualitative approach, which did not include
simultaneously tuning other parameters. Indeed, as we demonstrate later in this chapter,
many different parameterizations can achieve compatibility with data, provided the
initial-state parameters are also optimized. Despite the reduced agreement at higher
energies, we remain within a 2σ range of the experimental results.

5.1.2.4 Impact of Switching Energy Density

As noted above, the duration of the hydrodynamic phase crucially influences how η/s

parameterizations impact observables, given that viscous corrections operate on the
system for a longer or shorter interval. We define the hydrodynamic lifetime as the time
until the last fluid cell falls below ϵswitch. Depending on the value of ϵswitch, the system
spends more or less time in the hydrodynamic stage and correspondingly less or more
time in the transport phase, thereby dictating the portion of flow developed under each
description.

Figure 5.10 extends a study from Ref. [199], comparing three different elliptic flow
contributions: the elliptic flow in the initial conditions, the elliptic flow at the end of
the hydrodynamic phase (approximated only allowing decays and not scattering in the
final hadronic transport stage), and the total flow after the hadronic transport stage.
These calculations were done with the default constant shear viscosity and varying
ϵswitch ∈ {0.5, 0.3, 0.1}GeV/fm3. We assume that the flow directions at the end of hy-
drodynamics and the end of rescattering are approximately aligned, such that the flow
generation effectively shifts between the hydrodynamic and transport stages. This as-
sumption is justified because the initial momentum distribution becomes isotropic during
hydrodynamics, while the pressure gradient from spatial anisotropies generates new
momentum, as shown in the last chapter. Note that the flow originating from the initial
state is not necessarily aligned with the final flow, since it arises from initial particle
momenta and fluctuating anisotropies.

When comparing the contributions of the different stages of this hybrid model, we see
that with increasing ϵswitch and decreasing collision energy, a larger fraction of the total
elliptic flow originates from the hadronic transport evolution. For ϵswitch = 0.5GeV/fm3,
hydrodynamic evolution meaningfully contributes to the final flow starting around√
sNN = 20GeV. By contrast, for ϵswitch = 0.1GeV/fm3, the afterburner stage no longer

imparts a noticeable effect on the observed elliptic flow.
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Figure 5.10: Elliptic flow at the end of different stages of the hybrid simulation, for different
values of the ϵswitch. Top left: 0.1 GeV/fm3, top right: 0.3 GeV/fm3, bottom 0.5
GeV/fm3.
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Figure 5.11: Integrated event plane elliptic flow of charged hadrons at midrapidity (|y| < 0.5)
depending on the parameterization strategy (top) and values of the net baryon
number density dependence (bottom), for ϵswitch set to 0.1 GeV/fm3 (left) and set
to 0.5 GeV/fm3 (right).
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Figure 5.12: Integrated event plane elliptic flow of charged hadrons at midrapidity (|y| < 0.5)
for different parameterization strategies and values of ϵswitch.

Based on these observations, fig. 5.11 compares the integrated charged-hadron el-
liptic flow at two different particlization energy densities, ϵswitch = 0.5GeV/fm3 and
0.1GeV/fm3. These results should be viewed alongside fig. 5.8. Notably, the influence of
Sρ remains essentially the same irrespective of ϵswitch. By contrast, both the temperature-
dependent η/s(T) and constant η/s scenarios exhibit substantial changes when ϵswitch is
varied, whereas η/s(ϵ) does not show a similar level of sensitivity.

This observation is even clearer in fig. 5.12, where we plot the integrated charged-
hadron elliptic flow for all three investigated values of ϵswitch, comparing the default
constant-η/s scenario to both η/s(T) and η/s(ϵ). We see that the curves for constant
η/s and η/s(T) vary substantially with different ϵswitch. As ϵswitch decreases, the flow
grows significantly. In contrast, for η/s(ϵ), all curves nearly coincide, indicating that in
this range of ϵswitch, the integrated elliptic flow remains unaffected by changes in the
particlization energy density.

Because elliptic flow is highly sensitive to the shear viscosity, raising ϵswitch transfers
part of the late-time evolution from the hydrodynamic phase (where η/s is prescribed) to
the hadronic-transport phase (where η/s is not directly controlled). Consequently, the fact
that η/s(ϵ) yields an invariant flow across a range of ϵswitch values strongly suggests that
η/s(ϵ) closely approximates the effective shear viscosity in the non-equilibrium hadronic
transport. Put differently, the insensitivity of the final flow to ϵswitch indicates that the
viscous hydrodynamic and transport descriptions are largely equivalent in this segment
of the phase diagram.

5.1.3 Discussion

Our qualitative analysis shows that although the net baryon number density dependence
of η/s has little impact on the elliptic flow (largely because its influence occurs during the
early stages of the hydrodynamic evolution), it does substantially affect the particle yield
and mean transverse momentum. Relative to the other parameterizations considered, the
chosen constraints for η/s(ϵ) allow for a good description of the proton midrapidity yield
and ⟨pT ⟩, but it underestimates the elliptic flow. The effect of baryochemical potential on
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the shear viscosity and its observables is therefore for anisotropic flow mainly relevant
due to its contribution to the energy density, whereas other observables are more sensitive
to nB.

We further observe that, depending on the particlization energy density ϵswitch, a
significant fraction of the final state elliptic flow can be generated in the hadronic
rescattering phase. While constant or temperature-dependent η/s shows a clear sensitivity
to the particlization energy density, η/s(ϵ) remains almost unaffected by this choice.
This indicates that the energy-density-based parameterization effectively reproduces the
shear viscosity in a non-equilibrium hadronic transport regime over the range ϵ = 0.1–
0.5GeV/fm3 of the particlization energy density. This approach offers a novel way to
study viscosity in out-of-equilibrium conditions, complementing the usual box-based
Green–Kubo method for hadronic transport [267]. Next to a direct calculation from
transport, the viscosity could be along these lines studied by minimizing the effects of
switching from hydrodynamics to transport at different points.

Moreover, our findings suggest that an (implicit) dependence on the baryochemical
potential can reduce the influence of purely technical parameters (such as ϵswitch) in
hybrid approaches, potentially increasing their consistency and reliability.

However, this study remains limited in scope. Besides its qualitative focus and restricted
set of observables, we have neglected bulk viscosity, which can significantly impact
observables. Since bulk viscosity is expected to peak near the phase transition, an
energy-density-based parameterization thereof also warrants exploration. In addition,
the modifications introduced by non-constant viscosities alter the fireball evolution,
affecting the effective shear viscosity. As an example, larger bulk viscosity slows down
the medium’s expansion, raising the average energy density and thus lowering the
effective shear viscosity.

Lastly, the collision energies investigated here extend only up to
√
sNN = 39GeV to

ensure a sufficiently high µB. Although the difference in the effective shear viscosity from
a non-zero Sρ diminishes with rising collision energy, notable changes in the midrapidity
yield and ⟨pT ⟩ persist due to longer fireball lifetimes. Including higher beam energies may
therefore be a promising avenue for future studies. Increased statistics would also allow
access to higher-order flow observables such as v3, known for its heightened sensitivity
to η/s.

In light of these insights, we now move toward a more systematic and quantitative
Bayesian Inference approach. The next section introduces this method, outlines widely
used inference algorithms, and presents the state-of-the-art algorithms employed in the
present work.

5.2 Bayesian Inference
One of the core problems of phenomenological modeling is the correct choice of parame-
ters. As we have only limited access to first principle predictions, there is an inherent
uncertainty in our models, which is represented by parameters. Just as we do not have
exact knowledge about the correct values for the shear viscosity in the last section and
incorporated lack of constraints in different possible values for Sρ, it is our intention to fit
all model parameters which we can not determine from physical grounds alone. This is
performed by comparison with experimental data. However, observables in experiments

104



5.2 bayesian inference

are not known exactly, but with a limited precision. The same is true for predictions
from theoretical models. Hence, we must derive insights by comparing model predictions
(with their inherent uncertainties) against experimental data (with its own uncertainties),
all while incorporating theoretical constraints that also carry uncertainties. This can be
achieved by applying Statistical Inference.

5.2.1 Statistical Inference

Statistical Inference is a cornerstone of modern data analysis, enabling researchers and
practitioners to draw conclusions about a population based on a representative sample.
"Population" refers to the complete set of possible outcomes, whereas "sample" is a
finite set of observations obtained from experiments or simulations. This field provides
the theoretical and practical foundation for making decisions and predictions under
uncertainty [413].

Statistical Inference as a field can be divided along different paradigms, although often,
different methods from different paradigms are combined. In this thesis, we encounter
two schools of Statistical Inference. The first is the frequentist approach. It interprets
probability as the long-run frequency of events. From this perspective, parameters are
fixed and the data is drawn randomly. Typical tools of frequentist inference are confidence
intervals, and the concept of p-value, as we have seen before. Usually, one decides on
a certain measure for coming to a conclusion before the experiment is conducted. An
example encountered earlier is the rule of having a p-value of less than 0.05 in order to
assume statistical significance.

The Bayesian approach differs notably. Here, beliefs are encoded in probabilities. As a
result, they are positive, integrate into one and obey the probability axioms. This concept
of belief as probability allows to define beliefs before taking into account data, and after
seeing the data—these are represented by prior and posterior probability distributions.
The option to include prior knowledge comes at the cost of the necessity to investigate a
wide parameter space to construct meaningful distributions.

5.2.2 Bayesian Model Calibration

Bayesian model calibration is performed by choosing a model which has an associated
set of hypotheses, which is a vector of parameters θ = (θ1, . . . , θm). They will govern
the simulation. Depending on the field, they can be for example the mutation rate in
the genome of bacteria, the correlation between income and political views or, in our
case, the parameters of our hybrid approach. These parameters are not drawn randomly,
but within theoretical constraints, the prior, which we will discuss later on. A central
objective of Bayesian calibration is to systematically incorporate uncertainty when fitting
theoretical models to data. The model maps θ to an output vector ysim ∈ Rd. Comparing
this simulation result to experimental data yexp ∈ Rd can be formalized by a statistical
model:

yexp = ysim(θ) + ϵ, (5.2)

where the residual ϵ typically follows a multivariate normal (MVN) distribution with
zero mean and covariance matrix Σ.
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The Bayesian formulation interprets probability as a degree of belief informed by
observed data as well as prior knowledge [414]. According to Bayes’ theorem, the
posterior distribution of parameters, P(θ | yexp), is given by

P(θ | yexp) =
P(yexp | θ) P(θ)

P(yexp)
, (5.3)

where P(yexp | θ) is the likelihood function of observing yexp with a given parameter
set, P(θ) is the prior, and P(yexp) is the evidence (a normalization constant). Note
the Bayesian paradigm incorporated here: our prior knowledge of the system is a
probability distribution over the parameter space. In reality, our parameters describe
not the whole system. Simulations usually incorporate fluctuations, and detectors are
imperfect, hampering the comparison between model and experiment. These factors can
be incorporated into nuisance parameters ψ. This nuisance has to be integrated out in
order to construct our posterior, leading to

P(θ | yexp) ∝
∫
P(yexp | (θ,ψ))P(θ,ψ)dψ. (5.4)

Commonly, one assumes a multivariate normal distribution in order to describe the
likelihood function. Then, the likelihood that the observed data can be produced by a
model with a given parameter set takes the form

P(yexp | θ) =
1√
|2πΣ|

exp

[
−1

2

(
ysim(θ) − yexp

)T
Σ−1

(
ysim(θ) − yexp

)]
. (5.5)

In most practical scenarios, the posterior distribution in eq. (5.3) lacks a closed-form
solution. Markov Chain Monte Carlo (MCMC) algorithms, which will be discussed later,
then become the primary tool for traversing the parameter space and approximating the
posterior. However, they require repeatedly evaluating ysim(θ) for numerous proposed
θ. This can be computationally untenable when the simulations require extensive run
times. As an example, evaluating a 3D hybrid approach at a single parameter point
over sufficient events in order to produce predictions with a comparable precision as
experiments can take thousands of CPU hours.

To mitigate this issue, surrogate models (or emulators) approximate ysim(θ) with
significantly lower computational cost. A Gaussian Process (GP) emulator [415–417], for
instance, is trained on a finite set of parameter configurations and their corresponding
simulation outputs. Once trained, the GP predictor yields a mean µ(θ) and a covariance
C(θ) that characterize the emulator’s estimate of ysim(θ). If we then denote the total
uncertainty by V(θ) = C(θ) +Σ, we can write an approximate likelihood:

Papprox
(
yexp | θ

)
=

1√
|2πV(θ)|

exp
[
−1

2

(
µ(θ) − yexp

)TV(θ)−1
(
µ(θ) − yexp

)]
. (5.6)

Replacing the exact likelihood with Papprox reduces the computational load during
MCMC and makes Bayesian calibration feasible for high-dimensional, multi-stage event
simulations.
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5.2.3 Gaussian Process Emulation

At this point, a few details will be given on the construction of surrogate models using
GPs. Although using such emulators greatly improves performance when performing
the MCMC, training them to represent true model predictions results in a trade-off
between precision and speed. The more training data one uses, the better the surrogate
but also the higher the computation time. It is therefore crucial to employ emulation
algorithms which represent the model as faithfully as possible, in order to reduce the cost
of exploring the parameter space while maintaining acceptable accuracy in predictions.

A significant challenge is posed by the high-dimensionality of the model output. Often,
the information can be condensed to a lower-dimensional space, greatly decreasing noise
in the data. A common strategy for handling this involves applying Principal Component
Analysis (PCA) to project the full set of observables onto a lower-dimensional space [418].
More concretely, suppose each training parameter configuration θtr

i produces an averaged
simulation output vector ȳsim(θtr

i ) of dimension d. In a first step, the data is standardized,
that means, centered around zero and rescaled to give a variance of 1. Then, the vectors
are arranged into a d×n data matrix, with n the number of sampled parameter points.
PCA yields a reduced set of p principal components (with p≪ d) that capture the bulk of
the output variance [419–422]. Each principal component is then independently emulated
by a GP, preserving flexible, nonparametric modeling for each reduced-dimensional
coordinate.

Specifically, let S ∈ Rd×p be the PCA transformation matrix. For each principal
component tl(θ) = sTl ỹsim(θ), where ỹsim is the standardized output, a GP model
provides a predictive mean ml(θ) and variance s2l (θ). In other words, each principle
component is drawn from a Gaussian distribution with mean ml(θ) and standard de-
viation s2l (θ), where ml(θ) = kT

l K−1
l tl and s2l (θ) = kl(θ,θ) − kT

l (θ)K
−1
l kl(θ). Here,

kl(θ) =
[
kl(θ,θtr

i )
]n
i=1

denotes the covariance vector between n training parameters
{θtr

1 , . . . ,θtr
n} and any chosen parameter θ, and Kl =

[
kl(θ

tr
i ,θtr

j ) + δi,jrl,i
]n
i,j=1

repre-
sents the covariance matrix between the n training parameters. The covariance function
kl(θ,θ ′) depends on the choice of the kernel function in the GP. The choice of covariance
kernel (e.g., Matérn or Radial Basis Function) plays a key role in capturing correlations
between distinct regions of the parameter space.

The emulators used in this work follow the PCGP (Principal Component Gaussian
Process) and PCSK (Principal Component Stochastic Kriging) prescription [423], provided
by the BAND collaboration’s surmise package [424]. They both use the above described
PCA-decomposition and the Matérn kernel. However, the core difference is the Kronecker
delta in the definition of Kl. rl,i is the square of the statistical uncertainty of the l-th
principal component at the training point i. Including this term does not only account
the mean of the model predictions in the emulation, but also its uncertainty. Within
each reduced dimension, the covariance matrix K of training outputs captures smooth
variations in parameter space, while additional diagonal terms model the statistical
uncertainties from event-by-event fluctuations.

The Gaussian emulator fitting has to find hyperparameters such that kl(θ,θ ′) optimizes
the emulation. One common way to achieve this is to minimize the difference between
the probability distribution realized by each tl and by a multivariate normal distribution
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centered at zero with variance Kl. This can performed by maximising the log-likelihood
of

−
1

2
(tT
lK−1

l tl) −
1

2
log(|Kl|) −

n

2
log(2π). (5.7)

Once the GP models are trained, their predictions are mapped back to the original
d-dimensional observable space via the inverse PCA transformation.

5.2.4 Classical and Neural-Network-Powered Posterior Generation

Equation (5.3) is in practically all relevant cases analytically untrackable. However, thanks
to steadily increasing computational power, this is no major obstacle. Markov Chain
Monte Carlo (MCMC) techniques aim at constructing a sequence of points in parameter
space whose density emulates the density of the posterior probability distribution func-
tion. This chain is a Markov chain, which is a sequence of random variables such that the
probability of the (t+1)-th element in the chain only depends on the directly preceding
element, and that it converges to a stationary state, in the sense that from a certain t
on, the samples are from the target distribution. This target distribution is in our case
P(yexp | θ) [425–427].

5.2.4.1 Traditional MCMC Algorithms

There are several implementations of MCMC algorithms. We want to outline some of the
most used algorithms for MCMC in the field of heavy-ion physics.

the metropolis-hastings algorithm The Metropolis-Hastings algorithm [428,
429] is one of the earliest MCMC algorithms and operates as follows:

1. Initialize the Markov chain with a starting value θ0.

2. For each iteration t, given the current state θt:

a) Propose a new state θ′ from a proposal distribution q(θ′|θt).

b) Compute the acceptance probability

α = min
(
1,

P(yexp | θ′)q(θt|θ
′)

P(yexp | θt)q(θ′|θt)

)
. (5.8)

c) Accept the proposed state with probability α, setting θt+1 = θ′. Otherwise,
retain the current state, θt+1 = θt.

3. Repetition of step 2 for a large number of iterations to generate samples.

The proposal distribution q(θ′|θt) is a key component of the algorithm. It determines
how candidate states are generated and can significantly impact the efficiency of the
sampling process. Common choices include symmetric distributions, such as a Gaussian
centered at θt, where the ratio q(θt|θ′)/q(θ′|θt) simplifies to 1.
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affine-invariant ensemble samplers In an N-dimensional parameter space,
standard Metropolis–Hastings MCMC can be inefficient if the posterior exhibits strong co-
variances or anisotropies [430–432]. To mitigate this, [433] introduced the affine-invariant
ensemble sampler, which has proved very effective in practice. Its defining property is
that it performs equally well under any linear (affine) transformation of the parameter
space. At each step, the position of a particular walker θk is updated by choosing another
walker θj (with j ̸= k) from the ensemble and drawing a scalar z from a proposal distri-
bution g(z) satisfying g(z) ∝ z−1 on an interval [1/a,a]. The new position Y of walker k
is

Y = θk + z
[
θk − θj

]
. (5.9)

In this way, the direction and scale of the update are informed by the separation between
θk and θj, making the sampler invariant to affine transformations. One accepts this
proposed move with the same method as for Metropolis-Hastings. An efficient imple-
mentation of this algorithm was provided with the emcee package, which is widely used
for Bayesian Inference [434].

parallel tempering mcmc When a posterior density is strongly multimodal or
exhibits numerous local maxima, MCMC chains may stick in sub-dominant modes. This
cannot be mitigated by affine transformations alone. A powerful strategy to overcome
such modes is parallel tempering (also known as replica exchange MCMC) [431, 435, 436].
One introduces a ladder of Nβ parallel chains {θ(i)}, each targeting a tempered density:

pi(θ) ∝
[
p(θ)

]βi , (5.10)

where 0 < β1 < β2 < · · · < βNβ
= 1. For small βi, the chain explores a flatter version of

the posterior, enabling large jumps that more easily escape local maxima. This can be
intuitively seen as multiple gases with different temperatures. In hot gases, the particles
rapidly fluctuate through space, whereas in cool ones, the particles are slower and become
more and more localized. Periodically, one attempts to swap the states θ(i) and θ(i+1) of
adjacent temperatures i and i+ 1 with probability

r = min
[
1,
pi
(
θ(i+1)

)
p i+1

(
θ(i)

)
pi
(
θ(i)

)
p i+1

(
θ(i+1)

)]. (5.11)

After sufficient mixing, the coldest chain (βNβ
= 1) samples from the true posterior,

but has benefited from global exploration by the hotter chains. Parallel tempering thus
greatly reduces the risk of getting stuck in local modes.

5.2.4.2 Neurally Preconditioned MCMC

If the posterior is even more multimodal or faces complex structures in its multidimen-
sional space, even parallel tempering can fail. State-of-the-art approaches to mitigate
this involves preconditioning. In general, preconditioning involves defining a variable
transformation which maps arbitrarily complex probability distributions isomorphically
to simpler ones. An especially successful approach for this is realized by normalizing
flows. Normalizing flows are a neural-network-powered approach capable of learning
complex distributions [437–442]. They achieve this by generating complex probability
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distribution functions from simpler ones using parametric changes of variables that can
be learned to approximate a target distribution. Their crucial advantage is that normaliz-
ing flows are diffeomorphisms: invertible, (nearly-everywhere) differentiable mappings
with a differentiable inverse.

Indeed, if u ∼ p(u), then T(u) = x ∼ q(x) where

q (x = T(u)) = p(u) |JT (u)|
−1, (5.12)

where JT is the Jacobian determinant of T :

JT (u) = det
∂Ti
∂uj

(u). (5.13)

In machine learning, the transformation T is referred to as a normalizing flow, com-
monly chosen from a parametric family of diffeomorphisms {T(·, θ)} for which gradients
∇θJT are tractable to compute.

Coupling cell mappings offer a suitable implementation of this idea [443–445]: they are
bijections parameterized by neural networks, and their Jacobian factors can be derived in
closed-form without requiring backpropagation or computationally intensive determinant
evaluations.

Coupling cells use a neural network (NN) not to learn probability distributions
directly—this is challenging due to tails—but to learn parameters of the normalizing
flows. This element was developed for the NICE (Non-linear independent component
analysis) algorithm [443, 444]. A coupling cell takes the incoming vector x and splits it in
two parts, xA and xB. This process is referred to as masking. A and B mark a collection
of indices a and b. The coupling cell defines a mapping; for the first set of indices, this is
the identity: xA = yA. The vector yB will be defined as the output of a set of separable,
invertible functions Cb(νb, xb), one per element of xB. These νb are crucial: They are
determined by the NN m, which takes xA as input data. The NN tries to learn the
probability density of xb depending on the values of xA, but without any knowledge
of the other values in xB. Multiple coupling cells which transform different dimensions
form together a coupling layer. This process is also drawn schematically in fig. 5.13. As
mentioned, we desire to have an invertible transformation. Therefore, we demand that
the coupling transform C is an invertible map. This gives:

yA = xA

yb1 = Cb1(m(xA), xb1)

...

y|B| = C|B|(m(xA), x|B|)

(5.14)

and its inverse

xA = yA

xB = CB −1(m(yA), yB).
(5.15)

Naively, this can result in a slowdown—as a part of the data is not mapped, it will
be necessary to use multiple coupling layers and train multiple instances of the neural
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Figure 5.13: Schematic structure of a coupling layer. From [446].

network. However, this comes with a great advantage: The Jacobian of the coupling layer
has an especially simple structure:



1 0

0...

0 1

∂CB(νB,xB)
∂xA

∂Cb1(νb1 ,xb1)

∂xb1
0

...

0
∂CbB(νbB ,xbB)

∂xbB

(5.16)

This saves us from determining the complex derivatives of the NN, as they do not
contribute to the determinant of the Jacobian:

det J =
∏
b∈B

∂Cb(νb(yA), xb)
∂xb

. (5.17)

Therefore, the determinant of the Jacobian of each of the coupling cells is efficient to
evaluate and can be passed on to the next coupling cell, in order to generate a Jacobian of
the complete transformation. This reduction of the computation cost for the determinant
is the key feature of the coupling cells. Without this, the algorithm would be very
expensive for high dimensions. Now, it is also possible to include complex coupling
transformations and NN without suffering from difficulties during the computation
of the Jacobian. Looking at the definition in the last section, we see that each of the
Cb together with idA form a normalizing flow, as they are diffeomorphisms. They can
be composed and define the change in the transformation from a uniform one to the
desired approximation of f. As we act on a hypercube, the derivatives of C can be seen
as probability distributions, whereas C itself is a cumulative probability distribution.
The reason for this is that C, in order to be invertible, has to be monotone, which is the
property of a cumulative distribution. The distribution itself, as seen earlier, transforms
proportional to the Jacobian.
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Normalizing flows have been successfully applied for many problems involving prob-
ability distributions inside and outside of physics, including importance sampling for
cross section calculations [447, 448], jet measurements [449] and image processing [445].
For this work, its application in the MCMC framework pocoMC [450, 451] is relevant.

5.2.4.3 pocoMC: A Python Implementation of Preconditioned MCMC

A practical and efficient realization of the neurally preconditioned MCMC approach is
provided by the pocoMC package [450, 451]. This open-source Python code implements
the Preconditioned Monte Carlo (PMC) algorithm by integrating normalizing-flow-
based transformations and Sequential Monte Carlo (SMC) sampling [442, 444, 452].
Preconditioning means here performing a suitable change of variables in order to provide
a more sufficient posterior generation. Generally, this reduces correlations and multimodal
features. The PMC method underlying pocoMC proceeds by first training a normalizing
flow to learn a diffeomorphic mapping T : θ→ u that reparameterizes the target posterior
to a simpler (approximately) uncorrelated distribution in the latent space u. In this latent
space, one can then apply simple MCMC kernels (e.g., Metropolis–Hastings with isotropic
Gaussian proposals) to execute the MCMC. The acceptance probability in the original
parameter space θ follows

α = min
[
1,

P
(
T−1(u ′)

)
q(u)

∣∣∣det ∂T−1(u ′)
∂u ′

∣∣∣
P
(
T−1(u)

)
q(u ′)

∣∣∣det ∂T−1(u)
∂u

∣∣∣
]

, (5.18)

where q(·) is an isotropic proposal density and P(θ) = P(yexp |θ) denotes the unnormal-
ized posterior.

Sequential Monte Carlo (SMC) draws samples from a difficult target distribution
by defining a sequence of intermediate densities pt(θ) that gradually transition from a
simpler distribution (often the prior) to the posterior [425, 427, 452]. A typical construction
is temperature annealing:

pt(θ) = π(θ)P(yexp | θ)βt , 0 = β1 < · · · < βT = 1 , (5.19)

where π(θ) is the prior probability distribution. Note that this is different to parallel
tempering—whereas for parallel tempering, all chains with different temperatures coexist,
here, the temperature iteratively decreases. Starting with p1(θ) = π(θ), one proceeds step
by step in time (i.e. t = 1→ 2→ · · · → tmax) to increment βt. Each step involves:

1. Updating the importance weights of N particles to reflect the change from pt−1 →
pt.

2. Resampling the particles if needed to eliminate low-weight particles.

3. Performing a short MCMC "mutation" under pt(θ) to diversify the particle set.

Eventually at (t = tmax), the population approximates the full posterior. Because SMC
reweights, resamples, and mutates particles as βt increases, it can track the target
distribution reliably through successive stages. This procedure also delivers an unbiased
estimate of the Bayesian evidence, which is a measure (also called the marginal likelihood)
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of how well a model explains the observed data, by accumulating the normalizing
constant ratios at each stage.

By training T , or in other words, coupling layers, at each stage t of the annealing
schedule, pocoMC preconditions the target distribution to reduce non-Gaussian features
such as strong covariances or complicated multimodality. With these powerful tools,
pocoMC can deal with highly complex multidimensional posteriors.

Additionally, a major practical advantage of pocoMC is the nearly linear speed-up
across parallel resources. Since the algorithm allows evaluating the posterior and flow
transformations for each of the N ensemble particles independently, typical MPI-based
parallelization can scale effectively up to thousands of cores. Thus, for computationally
demanding likelihoods in high-dimensional parameter spaces, pocoMC yields significant
gains in wall-clock time. Furthermore, in addition to generating posterior samples,
pocoMC computes the Bayesian model evidence Z via the SMC weights, allowing users
to perform both parameter estimation and model comparison.

The aptitude of pocoMC to deal with complex distributions while being highly par-
allelisable motivated its use in this work. With all necessary technical components in
place, it is time to proceed with presenting the application of Bayesian Inference on
SMASH-vHLLE-Hybrid.

5.3 Investigation of Temperature and Baryochemical Potential
Dependent Viscosities

The aim is to leverage the power of Bayesian Inference to gain insights from the SMASH-
vHLLE-Hybrid approach. On the one hand, we want to refine the existing tuning, which
was done in a qualitative way. On the other hand, we want to get quantitative insight into
the predictions of the temperature and baryochemical potential dependence predicted
by SMASH-vHLLE-Hybrid. In a first step, we want to give a short overview of prior
existing research in performing Bayesian Inference for the purpose of gaining insight
into viscosities.

5.3.1 Prior Research

This section gives an overview of the past advances in Bayesian Inference for heavy-ion
physics. More details can be found in Ref. [453].

5.3.1.1 Historical Development of Bayesian Inference in Heavy-Ion Physics

Over the past decade, Bayesian Inference has been increasingly adopted in the heavy-ion
community to confront quantitative models of relativistic nucleus–nucleus collisions with
an ever-growing body of experimental data. Early precursors of comprehensive Bayesian
analyses in this field can be found in Refs. [454–456], which introduced emulators
(surrogate models) and Gaussian-process-based uncertainty quantification for relativistic
hydrodynamic simulations. These efforts demonstrated the viability of systematically
exploring a large parameter space of hydrodynamic and hadronic observables, effectively
shifting the computational bottleneck from high-statistics event-by-event simulations to
low-cost statistical emulators.
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foundational works . Inspired by the above pioneering efforts, Ref. [457] explored
the sensitivity of various heavy-ion observables to the equation of state. Following
that, a series of influential studies by the Duke group [309, 310, 349, 458–460] refined
these Bayesian methods. They incorporated multi-stage collision models (including
initial conditions, relativistic viscous hydrodynamics, hadronic afterburners), performed
dimensionality reduction of large experimental data sets, and deployed Gaussian process
emulators trained on systematic model calculations with Latin hypercube sampling
of the parameter space. This framework eventually became a standard blueprint for
contemporary Bayesian studies of quark-gluon plasma (QGP) properties.

toward multi-observable constraints . Subsequent investigations expanded
the breadth of data sets and models under Bayesian scrutiny. For instance, the JETSCAPE
Collaboration studies [53, 54] presented a multi-system and multi-observable framework,
simultaneously analyzing soft hadronic observables at RHIC and LHC energies in a
Bayesian Inference. Similarly, Refs. [57, 66, 67, 421, 461–464] extended the scope by
including sub-nucleonic initial structure, anisotropic hydrodynamics, improved statistical
tools, refined treatments of viscous corrections in the Cooper-Frye transition and many
other features. Such works emphasize that new stages in the collision model or additional
observables can significantly shift the posterior constraints on e.g., the shear and bulk
viscosities.

extension to 3d and advanced viscosity inference . Increased computa-
tional budgets greatly improved the quality and complexity of Bayesian Inference. One
big step was the extension to 3-dimensional modeling, which requires substantially more
computational power but gives access to the full collision dynamics. While earlier 3D
studies were very restricted in size of experimental data set and parameter space [331,
465], full studies can now be performed [312, 466–468]. Along similar lines, whereas
early studies only included constant specific viscosities or only shear viscosity, param-
eterizations became increasingly complex. The latest advancement is the inclusion of
baryochemical potential dependence in the viscosities [467, 468].

5.3.1.2 Status of Constraints on Viscosities

Figure 1.5 shows a selection of existing results from Bayesian Inference and other methods
for the temperature dependence of shear and bulk viscosity, and vanishing baryochemical
potential, including results from Duke [309], JETSCAPE [53] and Trajectum [469], the
viscous blastwave (BW) [470], Chapman-Enskog (Chap-Ensk) method [471], hadron reso-
nance gas (HRG) model with Hagedorn states (HS) [472], FRG [473], lQCD (Lattice1 [333,
474], Lattice2 [475], Lattice3 [334] and Lattice4 [476]), T-matrix [477], and next-to-leading
order pQCD [55] for shear viscosity and Duke [309], JETSCAPE [53] and Trajectum [469],
lQCD (Lattice1 [478], Lattice3 [479] and Lattice5 [69]), hybrid model (McGill) [323],
holographic model (Holo) [480], HRG model with HS [472] and SMASH [70] for bulk
viscosity.

For the shear viscosity, there is for many approaches a trend to have a small value near
the crossover temperature. There is roughly consistent agreement for increasing shear
viscosity for lower temperature. Although many approaches support increasing values
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Figure 5.14: Posterior for the µB-dependence of the shear viscosity and T -dependence of the
bulk viscosity from [468].

for high temperatures, some do slightly decrease or have no clear preference due to
high uncertainties. For many studies, a constant value of η/s is not ruled out. There are
considerably higher disagreements for the bulk viscosity. Lattice data and some hybrid
model calculations support substantial peaks in the bulk viscosity, whereas other studies
observe rather small values and give no clear preference for a peak.

Recent 3D studies for a wide range of collision energies include also µB-dependence
of the shear viscosity. In [468], a µB-dependence was studied, while the T -dependence
was omitted as a constant η/s is in agreement with most studies. As can be seen in
fig. 5.14, it was observed that a non-vanishing baryochemical potential dependence is
significantly preferred. However, due to the omitted temperature dependence, this could
also be attributed to the fact that collisions at low energies realize both on average lower
temperatures and higher baryochemical potentials, and lower temperatures are associated
with higher shear viscosity in many predictions. The same study also investigated bulk
viscosity, albeit without baryochemical potential, and observed a significant peak around
the transition temperature.

With this overview of existing works, the setup of the present study is introduced now.

5.3.2 Choice of Viscosity Parameterizations

The choice of parameterizations is one of the core design choices of a Bayesian Analysis,
and is due to this the starting point for our study. Although with the right parameter
ranges, many different parameterizations can cover the same values of the viscosities
(referring to the same region covered by the confidence intervals in the earlier figures),
the inherent functional form results in different evolution trajectories. Therefore, we
want to choose a plausible structure of the dependency. On the other hand, we have
to minimize the number of parameters as an increasing parameter space weakens the
predictive strength.
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Figure 5.15: Illustration of the shear viscosity parameterization.

5.3.2.1 Shear Viscosity

In this project, we want to not only restrict ourselves to a pure temperature or pure
baryochemical potential dependence. Instead, we want to investigate both. This is due
to the fact that as all but systems at very high collision energies are subject to effects of
both. We choose the following parameterization:

ηT

ϵ+ P
=max

0, (η/s)kink +

al,η(T − Tc) T < Tc,

ah,η(T − Tc) T > Tc


×
(
1+ aµB

µB
µB,0

)
, (5.20)

Tc = Tη,0 + bµB

µB
µB,0

. (5.21)

The parameters are illustrated in fig. 5.15. The parameter (η/s)min sets the shear
viscosity at Tc for µB = 0, with al,η and ah,η controlling the slopes in the low- and high-
temperature regions, respectively. This mirrors the common piecewise-linear structure
for the temperature in many studies. The critical temperature Tc varies however with µB,
governed by Tη,0 and bµB

. The overall viscosity is scaled by aµB
to reflect µB-dependent

effects not just for the position of the kink, but also for the value itself.
This flexible structure accommodates a temperature dependence consistent with earlier

studies [53, 54], while explicitly incorporating µB effects. Here, a temperature and
baryochemical potential dependence was chosen instead of the energy density to allow for
better comparisons with earlier studies. We allow for an explicit temperature dependence,
greatly increasing the flexibility with respect to [467, 468] which featured no explicit
temperature dependence. This allows us to test whether earlier agreements with constant,
temperature independent shear viscosity holds in our model as well [54], and if we indeed
find substantial baryochemical potential dependence in the presence of temperature
dependence.
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Figure 5.16: Illustration of the bulk viscosity parameterization.

5.3.2.2 Bulk Viscosity

In contrast to recent studies [68] we choose one bulk viscosity parameterization for all
collision energies. The bulk viscosity parameterization incorporates µB implicitly by
depending on the energy density ϵ. This approach assumes that the bulk viscosity peak
follows a line of constant ϵ, potentially aligning with the QCD phase crossover at finite
µB. This is a similar line of reasoning as for the shear viscosity earlier in this chapter. Such
a simplification of the bulk viscosity reduces the number of parameters to determine,
while naturally incorporating a critical peak of the bulk viscosity. The parameterization
is:

ζT

ϵ+ P
= ζ0


exp

(
−β

(ϵ1/4−ϵ
1/4
ζ )2

2σ2
ζ,−

)
, ϵ < ϵζ,

exp
(
−β

(ϵ1/4−ϵ
1/4
ζ )2

2σ2
ζ,+

)
, ϵ > ϵζ,

(5.22)

where ζ0 controls the peak amplitude, ϵζ sets the location of the peak, and σζ,− and
σζ,+ define the widths below and above ϵζ, respectively. As we want to have a similiar
shape than a comparable parameterization in the temperature, we take the fourth root
of the energy density and scale it by a conversion factor. Figure 5.16 illustrates this
parameterization.

5.3.3 Selection of Priors

The correct choice of priors is of crucial relevance when performing a Bayesian Analysis.
Indeed, the probability distribution of the posterior is highly dependent on the initial
prior beliefs. As demonstrated in [426], the same data and model can lead to strongly
diverging results depending on the initial assumptions. Therefore, there is a substantial
trade-off—allowing a wide, low informing prior reduces the likelihood of finding a
local optimum, whereas a narrow prior gives stronger preference to prior knowledge
and increases constraints. As this is a first explorative study of the SMASH-vHLLE-
Hybrid approach, we choose wide priors which constrain only within the boundaries of
applicability of the approaches.

117



investigation of viscosities in hybrid approaches

For the shear viscosity, the prior ranges in table 5.1 are broad enough to include both
µB-independent and constant shear viscosities, as well as a wide range of values at
all relevant regions of the phase diagram. The KSS-bound [47] of 0.08 is not enforced,
allowing the analysis to explore the parameter space freely.

Parameter Prior Range

al,η [-15, 1]

ah,η [-15, 1.75]

T0 [0.09, 0.25] GeV

(η/s)min [0.001, 0.35]

aµB
[-0.8, 7]

bµB
[-0.3, 0.8]

Table 5.1: Priors for shear viscosity parameters.

In a similiar fashion, table 5.2 lists the prior ranges for the bulk viscosity, which allows
for vanishing bulk viscosity as well as a pronounced, potentially asymmetric peak in
wide ranges of the phase diagram.

Parameter Prior Range

ζ0 [0, 0.2]

ϵζ [0.5, 40] GeV
fm3

σζ,− [0.005, 0.1]

σζ,+ [0.01, 0.15]

Table 5.2: Priors for bulk viscosity parameters.

Lastly, we also need priors for several technical parameters. They govern the interaction
between the initial hadronic transport stage and the subsequent hydrodynamic evolution
and were mostly introduced in chapter 2. These include two smearing parameters: R⊥,
for transverse smearing, and Rη, for longitudinal smearing. For the original definition of
SMASH-vHLLE-Hybrid, these parameters were energy-dependent to match experimental
data. However, in this study, we absorb the collision energy dependence into the tem-
perature and baryochemical potential dependencies of the viscosities. As such, R⊥ and
Rη are treated as constants within the range [0.2, 2.2] fm and [0.2, 3.0] fm, respectively.
The lower limit reflects finite grid resolution constraints, while the upper limit avoids
excessive smoothing, which could erase essential fluctuations.

The initialization time, τ0, is chosen proportional to the passing time of the nuclei. We
assume that hydrodynamic evolution should begin only after the nuclei have passed to
prevent far-from-equilibrium conditions. However, τ0 must remain significantly shorter
than the system’s evolution time to capture relevant dynamics. Accordingly, a proportion-
ality factor τIC,scale is selected within the range [0.8, 2.5]. The initial hadronic transport is
then performed until a hypersurface of constant eigentime of τIC,scale times the passing
time of this collision energy is reached.
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The switching or particlization energy density, ϵswitch, marks the transition from
hydrodynamics to transport. It must represent a regime where both descriptions are
approximately valid—neither too dilute for hydrodynamics nor too dense for transport.
This parameter is constrained to [0.25, 0.75] GeV

fm3 . Furthermore, the impact of late stage
rescattering is investigated by scaling the cross-sections in the final state hadronic trans-
port. Table 5.3 summarizes the prior ranges for all technical parameters. Note that we
use the convention c = 1 here.

Parameter Prior Range

R⊥ [0.2, 2.2] fm

Rη [0.2, 3.0] fm

τIC,scale [0.8, 2.5]

ϵswitch [0.25, 0.75] GeV
fm3

σAB,scale [0.8, 1.2]

Table 5.3: Priors for technical parameters.

Flat priors are chosen, which means a uniform distribution in parameter space, as none
of these values is a priori to be preferred over another. With this broad set of priors, the
procedure can find the optimal set of parameters to describe experimental data, at the
cost of limiting the constraining power of the Bayesian Inference. The constraining power
is however also affected by the set of observables that used for the comparison, which is
presented in the following.

5.3.4 Choice of Observables

Table 5.4 summarizes the experimental observables which we use to tune our model.
They consist of STAR RHIC BES integrated bulk observables and flows, enriched with
dN/dη data from PHOBOS at

√
sNN = 200 GeV. For 19.6 GeV, there is a choice between

dN/dη data from PHOBOS and STAR, which show substantial differences [481]. We
chose the more recent STAR data for our tuning. η-differential data is included until a
cutoff of 3 in forward and backwards-rapidity, as uncertainty here is more substantial
and we expect our model to perform worse at high rapidities. The total data set size is
168 data points.

For the identified particle observables, we have excluded antiprotons due to the high
statistical uncertainties. Additionally, the initialization with hadronic transport leads
to excess baryon charge at 200 GeV, due to which we have excluded protons at 200

GeV [482].
The choice of these observables is motivated by the fact that we want to cover a

wide range of centralities, which we approximate by restricting ourselves to two distinct
centrality classes in order to reduce the amount of data. An exception of this is 200 GeV,
where we include a third centrality class in order to add rapidity-dependent data. The
choice of three different collision energies is motivated by our aim to cover wide ranges
of the phase diagram, both in the cold and dense region and the hot and dilute phase.
This way, we aim at constraining the transport coefficients over a wide range of T and µB.
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√
sNN 0-5% 15-25% 20-30%

dN/dy|y=0(π
+,−,K+,−) [483] dN/dy|y=0(π

+,−,K+,−) [483]

200 GeV ⟨pT ⟩|y=0(π
+,−,K+,−) [483] ⟨pT ⟩|y=0(π

+,−,K+,−) [483]

vch
2 {2}|y=0 [412], vch

3 {2}|y=0 [484] vch
2 (η) [485] vch

2 {2}|y=0 [412]

dNch/dη [486] dNch/dη [486] vch
3 {2}|y=0 [484]

dN/dy|y=0(π
+,−,K+,−,p) [411] dN/dy|y=0(π

+,−,K+,−,p) [411]

19.6 GeV ⟨pT ⟩|y=0(π
+,−,K+,−,p) [411] - ⟨pT ⟩|y=0(π

+,−,K+,−,p) [411]

dNch/dη [481] dNch/dη [481]

vch
2 {2}|y=0 [412], vch

3 {2}|y=0 [484] vch
2 {2}|y=0 [412], vch

3 {2}|y=0 [484]

dN/dy|y=0(π
+,−,K+,−,p) [411] dN/dy|y=0(π

+,−,K+,−,p) [411]

7.7 GeV ⟨pT ⟩|y=0(π
+,−,K+,−,p) [411] - ⟨pT ⟩|y=0(π

+,−,K+,−,p) [411]

vch
2 {2}|y=0 [412], vch

3 {2}|y=0 [484] vch
2 {2}|y=0 [412], vch

3 {2}|y=0 [484]

Table 5.4: The experimental measurements in Au–Au collisions used in this Bayesian Inference
study.

Indeed, fig. 5.17 shows that both values vary strongly between both collision energies
shortly after fluidization. Taking into account constraints from multiple energies therefore
greatly improves our insights. These systems provide a wide µB coverage of mean values
of around 0 to 400 MeV at freeze-out [106, 411, 487]. Furthermore, we want to study the
core properties of collisions and extend our investigation in the longitudinal direction,
which also improves the coverage of the phase diagram, as explained in section 3.2.

The observables are calculated from the event data using SPARKX-2.0.2, as outlined in
section 3.4.

5.3.5 Setup

To explore the 14-dimensional parameter space, we employ Latin Hypercube Sampling
(LHS), implemented via pyDOE [488, 489] and included in SMASH-vHLLE-Hybrid. This
method ensures an efficient and uniform coverage of the prior space. This can be achieved
by defining a Latin square in the hyperparameter space, which is a n× n-array. Latin
Hypercube sampling ensures that every row and column has at least one sample, which
guarantees high coverage of the parameter space. For random sampling, on the other
hand, configurations are possible which exclude subregions of the parameter space. A
total of 750 parameter points are sampled, and for each, we generate 250 events per
centrality class. We use SMASH-vHLLE-Hybrid in the version 2.0, and SMASH in the
version 3.1.

The centrality classes are selected by generating 5000 initial state events, sorting them
by energy content, and selecting events accordingly. As we aim for equal statistics for
all centrality classes, only half of the events are chosen for the wider classes. The initial
events are propagated through all stages of the hybrid approach. We improve statistical
accuracy and maintain charge conservation by oversampling, which is performed at
different magnitudes depending on the collision energy: 4000, 2000, and 500 events for√
sNN = 7.7, 19.6, and 200 GeV, respectively.
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Figure 5.17: Temperature (top) and net baryochemical potential (bottom) shortly after fluidiza-
tion in central Au–Au collisions at

√
sNN = 7.7 GeV (left, fluidization at 3.29 fm)

and 200 GeV (right, fluidization at 0.5 fm) [107].
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Figure 5.18: The averaged root-mean-square error E (top) and the uncertainty estimation metric
H (bottom) for both emulation strategies for all observables.
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Figure 5.19: Probability distribution of the posterior observables for the full prior range, com-
pared to the experimental data points used in this study. For mean transverse
momenta, the width of the distribution is comparable to the size of the data
markers.

5.3.6 Validation

Validation is a crucial process when performing a Bayesian analysis, as it ensures trust-
worthy results and spots potential issues in the parameter estimation. Additionally, it
helps to determine the confidence in the results we obtain, and gives access to various
strategies to improve upon our prediction.

5.3.6.1 Emulator Validation

In a first step, we want to validate our emulation process. This allows us to optimize the
emulation strategy on the model at hand. On the other hand, we can also ensure that we
have chosen enough parameter sets to efficiently cover the prior. If we were to sample
less points from the prior, we would expect to observe substantially lower performing
emulators.

We use the test metric for benchmarking proposed in [490] to choose the most accurate
Gaussian Process (GP) configuration in our setup. This test metric allows an easy inter-
pretable way to quantify the quality of the emulation. To quantify the prediction error of
the GP emulators, one defines

E ≡

√√√√〈(prediction − truth
truth

)2
〉

(5.23)

for each observable in the analysis, whereas the emulator’s uncertainty is quantified as

H ≡ ln


√√√√〈( prediction − truth

prediction uncertainty

)2
〉 . (5.24)
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For an accurate prediction, we expect the values of E → 0 and H → 0.
In the case where H > 0, the emulator gives uncertainties that are too small compared

to the actual error away from the true values; when H < 0, the returned uncertainty
estimates are too conservative. To determine prediction and truth, 15 parameter sets
were excluded from the training of the GP. Then, the prediction for the value and its
uncertainty at the excluded parameter sets are compared to the simulation results at
these values. The values of the benchmarking metric for each observable can be found in
fig. 5.18. Two prescriptions of GP emulation are presented, which were found in Ref. [490]
to perform well: PCGP and PCSK, which were introduced earlier in section 5.2.3. The
top three panels show E, and the bottom three panels show H. From top to bottom,
the energy increases, whereas the centrality decreases from left to right, with centrality
classes separated by a dashed vertical line. Each x-tick represents a different observable.

We observe that for both prescriptions, errors remain within acceptable bounds. The
biggest deviations occur for the integrated flow, probably due to the higher impact of
fluctuations. In comparison to [490], we observe basically no rapidity dependence of the
errors. Additionally, for the majority of data points, PCGP outperforms PCSK substan-
tially. A similiar picture emerges for the uncertainty metric. It is for most data points
considerably closer to zero than for PCSK, and therefore underestimates the uncertainty
less. This is remarkable as PCSK takes the standard deviation of the training data into ac-
count, whereas PCGP does not. However, such behavior can also be observed for several
observables in [490]. Therefore, there is still space for improvement of the uncertainty
estimation of the emulators. There are several further preprocessing methods which
could affect the quality of emulation: for example, one could logscale the observables
to reduce issues of different orders of magnitude, or perform a PCA on the viscosity
parameters in order to reduce the parameter space. However, neither could improve the
performance in these metrics. Therefore, they were not employed. As PCGP outperforms
PCSK in most metrics, we continue using this approach for the rest of this work.

5.3.6.2 Prior Validation

A further validation is the consideration if the prior range chosen is sufficient to fit
experimental data. Figure 5.19 shows the probability distribution for values of the
observables to be fitted to experimental data. In simple words, it shows the likelihood for
each observable to be predicted if a random point were to be chosen from prior space.
We see that the experimental data points lie all within this range. However, we see that
certain experimental data points lie closer to the edges of the range, especially flows at
higher collision energies and dN

dη at 19.6 GeV. It is important to note however that this
alone does not guarantee that experimental data can be precisely fitted, as not necessarily
all data points can be fitted correctly simultaneously. Nevertheless, we can confirm that
we have in principle a sufficient range of prior values.
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Figure 5.20: Posterior of the technical parameters in the closure test. The red vertical line is
the value of the parameter generating the pseudo-experimental data, whereas the
golden vertical line represents the maximum-a-posteriori value.

5.3.6.3 Closure Test

As a next step, we perform a closure test. Closure tests are crucial in validating that
model parameters can be successfully constrained. They can, for example, detect if the
number of points in prior space is too low, if data is insensitive to a parameter or if there
are degeneracies in a model, allowing disjunct regions of the parameter space to result in
the same predictions. Conducting a closure test follows a similiar idea than the emulator
validation before. Again, one of the training points is separated out. However, this time
the predictions of this training point are considered as pseudo-experimental data. Now,
the whole tool chain, starting from the Gaussian process emulation and continuing to the
construction of the posterior using MCMC, is performed under the assumption of this
pseudo-experimental data. In an ideal case, the original input parameters are reproduced,
and the peaks of the posterior are close to these values. If the data is sufficient to constrain
a parameter well, one expects strongly pronounced peaks.
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Figure 5.21: Posterior of the viscosities in the closure test. From top to bottom: the shear
viscosity as a function of temperature for vanishing baryo-chemical potential, the
shear viscosity as a function of baryo-chemical potential at fixed temperature, and
the bulk viscosity as a function of the energy density. The red line is the input
parameterization, and the golden line represents the maximum-a-posteriori. The
bands represent the 60% and 90% confidence interval of the posterior.

Figure 5.20 shows the posterior distributions of the technical parameters. Especially the
scaling factor for the fluidization time and the smearing parameters are well constrained.
The distribution is wider for the particlization energy density and especially for the
late stage rescattering cross section scaling σAB,scale. Indeed, although for the latter, the
MAP (maximum-a-posteriori) estimate agrees quite well with the original parameter, the
distribution is very wide, showing only weak constraints.

Continuing to the viscosities in fig. 5.21, we see good constraints for the shear viscosity.
Both as a function of temperature and as a function of baryochemical potential, the
original parameterization lies comfortably in the 60% confidence interval. This means
that the Bayesian Inference could extract the correct functional dependence. For the
bulk viscosity, this holds in general, too. However, the quality of the posterior is here
decreased and the original parameterization lies at the boundaries between the more
strict 60% confidence interval and the 90% confidence interval. This is however still in
the statistically acceptable range.

With this successful validation of our approach, we can now move on to the results on
applying this setup to experimental data.

5.3.7 Results

In the following, we aim to answer the questions which parameters affect observables
the strongest, what the preferred parameters are and how strongly they depend on the
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choice of data used for tuning. This will provide deeper insights into the dynamics of
heavy-ion collisions.

5.3.7.1 Sensitivity Analysis

In this initial step, we seek a preliminary understanding of how different model pa-
rameters influence key observables. One straightforward approach is the construction
of a response matrix, which consists of the partial derivatives of observables with re-
spect to the model parameters, computed using the centered finite difference method.
Notably, this technique is independent of the posterior, as it can be carried out directly
on the emulated prior. However, it should be emphasized that the response matrix is a
local, linearized measure of sensitivity and may vary throughout the parameter space,
especially if nonlinear parameter interactions are present. Such interactions are more
comprehensively captured by advanced methods, for instance the Sobol indices [491].

Figure 5.22 shows the averaged, normalized response matrix over many prior points.
For each prior point, it can be defined as

Rij(θ) =
1

2h

(
Oi(θ+ h ej) −Oi(θ− h ej)

)
, (5.25)

where i labels the observables, j labels the parameters, θ is the parameter vector, h is a
small step size, and ej is the unit vector along the direction of parameter j.
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Figure 5.22: Normalized partial derivatives of observables with respect to parameters of the
simulation (response matrix) averaged over multiple prior points. Positive values
(red) mark an increase in the observable with the value of the parameter, negative
values (blue) mark a decrease.

Positive (red) regions signify a positive correlation between parameter and observ-
able, while negative (blue) regions imply that decreasing the parameter increases the
observable. From this, we highlight some noteworthy features.

The fluidization time scale, τIC,scale, exhibits a pronounced sensitivity to numerous ob-
servables, in particular flow coefficients and particle multiplicities. Whereas midrapidity
regions consistently reveal a negative correlation, higher rapidities at intermediate ener-
gies display a positive correlation between τIC,scale and particle yields. This underscores
the intricate role played by extended initial scatterings. A plausible explanation emerges
from the distinct treatments of particle formation in SMASH across different energies: at
high energies, particles typically remain unformed following the first collision and thus
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cannot undergo secondary interactions, while at lower energies secondary collisions are
more likely.

Furthermore, we observe a positive correlation between the fluidization time scale
and the flow coefficients, contrasting with the behavior reported in [177]. This suggests,
also in the light of the earlier studies, that while early-stage transport does not generate
momentum anisotropies which are present in the final state, it may produce pressure
gradients in the early stages of the collision more effectively than the subsequent hy-
drodynamic phase. In addition, longitudinal smearing enhances multiplicities at high
energies, but reduces them in the high-rapidity regions at intermediate energies, thereby
refining previous observations [177].

Another key parameter is the kink temperature of the shear viscosity, Tη,0. It generally
exhibits a similar trend to the fluidization time scale but reduces the overall multiplicities
at intermediate energies over the entire rapidity range. The steepnesses of the linear
temperature dependence of the shear viscosity show strong impacts on a wide range of
observables, with a substantial presence of rapidity dependence. Note that the correlations
are of opposite sign due to the additional minus sign for low temperatures in eq. (5.20).
Decreasing the coefficient at temperatures lower than Tc increases the steepness, but
as we have a negative coefficient and a negative multiplicand, this increased steepness
reduces the shear viscosity. For temperatures higher than Tc, the missing minus sign
inverts this behavior. In general, the expected behavior is realized that increasing the
shear viscosity decreases anisotropic flows. By contrast, parameters associated with the
baryochemical potential exhibit only a marginal effect. Regarding bulk viscosity, only
its overall magnitude is relevant, while other viscous parameters, including the density
dependence of shear viscosity and rescattering cross section scaling, induce comparatively
minor signals. Consequently, these latter parameters are subject to weaker constraints.
It is also evident that bulk viscosity has sizeable effects only at high collision energies,
although it is often disregarded in this range.

5.3.7.2 Posterior Predictions

In a next step, we want to investigate which regions of the parameter space optimize
agreement with experimental data. First, we take a look at the posterior distribution of
technical parameters again, which can be found in fig. 5.23. We observe a preference
for slightly increased fluidization time, which contrasts with the results of Ref. [331]
preferring a minimal fluidization time.

Both the present study and the earlier one identify an optimal particlization energy
density of roughly 0.5 GeV/fm3, although there is considerable uncertainty in this
determination. In contrast to the previous work, the current model indicates that minimal
smearing is preferred in the transverse plane, while a substantial amount of longitudinal
smearing is favored. For the late-stage rescattering cross section scaling, the result is
statistically consistent with a value of unity, reflecting the high degree of uncertainty in
this parameter.

Turning to the viscosities, and referring to fig. 5.24, the patterns noted earlier in
the sensitivity analysis reemerge. The bulk viscosity and the possible dependence on
baryochemical potential of the shear viscosity are only weakly constrained, allowing for
a broad range of values to be consistent with the data.
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Figure 5.23: Posterior of the technical parameters. The golden vertical line represents the
maximum-a-posteriori value.

The situation changes when considering the temperature dependence of the shear vis-
cosity. A rapid decrease at higher temperatures is preferred, with the viscosity effectively
reaching zero from about 150 to 250 MeV. The full posterior shown in fig. 5.25 clarifies
this behavior. Although there is a finite kink value (η/s)min at intermediate temperatures,
the slopes on both sides of this kink are nearly the same, so any negative slope beyond
a certain temperature pushes the shear viscosity toward zero for high temperatures.
Interestingly, this effect can be viewed as a degenerate scenario in which a kink with
(η/s)min = 0 and a negative slope would yield an equivalent configuration. The reasoning
behind why such a solution is favored remains unclear, but the outcome suggests that
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the model strongly prefers a vanishing shear viscosity in the high-temperature phase of
the quark–gluon plasma, combined with a substantial viscosity near particlization.

Figure 5.24: Posterior of the viscosities. From top to bottom and left to right: the shear viscosity
as a function of temperature for vanishing baryo-chemical potential, the shear
viscosity as a function of baryo-chemical potential at fixed temperature, and the
bulk viscosity as a function of the energy density. The golden line represents the
maximum-a-posteriori. The bands represent the 60% and 90% confidence interval
of the posterior.

Further insights arise from fig. 5.25, which reveals that bµB
is tightly peaked at zero,

causing much of the uncertainty in baryochemical potential dependence to stem from
the coefficient aµB

, which remains poorly constrained. There are also only limited
correlations among the parameters, easily spotted by diagonal trends in the triangle
plot. One notable trace of such a relationship appears for the fluidization time scale
τIC,scale and the transverse radius parameter R⊥. The maximum-a-posteriori value for all
parameters marked here in a golden line can also be found in table A.13.

131



investigation of viscosities in hybrid approaches

Figure 5.25: Full posterior for all parameters. The diagonal shows the distribution for each
parameter, whereas the off-diagonal shows the probability distribution for a
combination of two parameters.

Figure 5.26 shows our results for the shear viscosity in comparison with known and
estimated values for other media. One can see that our agreement with the meson gas
is good, confirming again the preference for continuity between hydrodynamics and
hadronic transport. Around the critical temperature, we observe very small values, as
suggested by data from RHIC [492]. However, we do not find the kink structure observed
in other media, or as suggested from flow at LHC energies. Our fit might be dominated
by data from lower energies. In future studies, it might be worthwhile to observe if a
kink structure can be found when including LHC energies as well.

The tune achieved here matches experimental data to a consistently high degree, as
shown in fig. 5.27, where all points remain within roughly two standard deviations
of the measurements. Notably, for collisions at high energies, the model reproduces
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Figure 5.26: Shear viscosity over entropy ratio as a function of the critical temperature of
T0=155 MeV for different substances, with an overlay of the presented results as
blue confidence bands. Adapted from [493].

midrapidity multiplicities more accurately than those at forward or backward rapidity,
whereas at intermediate energies, the situation is reversed. This observation highlights a
more general limitation in fully describing the longitudinal dynamics across different
collision energies. A comparison of the different observables with the experimental values
is also shown in linear scale in the appendix in fig. A.1, fig. A.2, and fig. A.3.

5.3.7.3 Hydrodynamic evolution time

The parameters τIC,scale and ϵswitch jointly determine the overall duration of the hydrody-
namic evolution by defining its beginning and ending points. This observation naturally
motivates the introduction of τHydro, which represents the time interval during which
the system is in a hydrodynamic regime. Here, it is defined as the difference between
the time when the last fluid element is particlized and the eigentime of the hypersurface
which is fluidized. This interval is crucial for tuning the viscosity, since it covers the
phase of the evolution during which viscous effects are most directly controlled. The
maximum-a-posteriori (MAP) estimates for τHydro in different systems are presented in
fig. 5.28. As expected, the hydrodynamic duration increases with collision energy and
centrality. These values align reasonably well with those reported in Ref. [221] for a
default setup.

The reason for examining τHydro more closely is its pronounced influence on the
primary observables of interest. Figure 5.29 shows the Pearson correlation coefficients
between various observables and the hydrodynamic evolution time. The strongest corre-
lations occur for yields and for flow observables at low energies. One explanation for
this finding is that lower-energy systems typically have lower temperatures and higher
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Figure 5.27: Comparison of predictions of observables from the posterior with experimental
values (top). Residuals between predictions and experimental data in multiples of
standard deviations (bottom).
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baryochemical potentials, leading to higher viscosities and therefore a more pronounced
role for the hydrodynamic phase in shaping the flow.

Figure 5.28: MAP of the duration of the hydrodynamic evolution in the posterior.

It is important to note, however, that τHydro cannot replace τIC,scale and ϵswitch as a
fundamental parameter in this framework. Although one could hypothetically increase
both τIC,scale and ϵswitch to obtain a similar average value of τHydro, this would not produce
identical observables. The early and late stages of the system’s evolution are qualitatively
different, so merely shifting the entire hydrodynamic window in time is not sufficient to
recover the same dynamical behavior. This distinction is also supported by the absence
of diagonal structures between τIC,scale and ϵswitch in fig. 5.25, indicating that there are no
pairs of values for these two parameters that yield comparable results.
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Figure 5.29: Pearson correlation coefficients between the hydrodynamic evolution duration and
observables used to train the fit. White squares signify observables which were
not used at the respective energies/centralities. For spectra, the average over the
data points is displayed.
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5.3.7.4 Impact of data selection

Figure 5.30: Posterior of the technical parameters when including and excluding data at
√
sNN=

200 GeV.

We now explore the impact of longitudinal data and different collision energies in more
detail. As a first step, we remove the data at

√
sNN = 200 GeV and investigate the changes

in the posterior distributions of the model parameters.
In fig. 5.30, we observe only minor deviations for the cross section scaling and the

transverse smearing, whereas other technical parameters shift significantly. In particular,
the initial stage scaling becomes centered around unity, and there is a pronounced
preference for both a longer hydrodynamic lifetime and reduced longitudinal smearing.
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The default of the passing time for the initial transport is therefore appropriate for
intermediate energies but too small at high energies, where the current setup of the
hybrid approach lacks a dedicated pre-equilibrium treatment. Changes in parameters is
likely driven also driven by the multiplicity residuals that were substantial at intermediate
energies but balanced by high-rapidity residuals at higher energies in the full fit. Further
examination of the viscosities, shown in fig. 5.31, confirms that data at higher energies
plays an essential role.

Figure 5.31: Posterior of the viscosities when including and excluding data at
√
sNN= 200

GeV. From top to bottom and left to right: the shear viscosity as a function
of temperature for vanishing baryo-chemical potential, the shear viscosity as a
function of baryo-chemical potential at fixed temperature, and the bulk viscosity as
a function of the energy density. The bands represent the 60% confidence interval
of the posterior.

Although the shear viscosity as a function of baryochemical potential is stronger
constrained, this is a combination of two contributions: on the one hand, the additional
rapidity-dependent data at 200 GeV contributes to the constraints. On the other hand,
the additional data also constraints the temperature dependence, leading to a more
constrained viscosity at T = 150 MeV at vanishing baryochemical potential. As this
is scaled in proportion to the baryochemical potential, a more peaked temperature
dependence also gives a less wide distribution as a function of µB.

The significance of longitudinal data becomes clearer in fig. 5.32 and fig. 5.33, where
we compare the complete data set against variants with a tighter or looser rapidity cut.
Most of the technical parameters remain largely unchanged when the rapidity range
is decreased, although a slight increase in transverse smearing becomes evident. If the
rapidity cut is relaxed and data from higher rapidity regions is included, some technical
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parameters tend to hit the boundaries of the prior ranges, indicating that the model
struggles to accurately describe such high-rapidity data within the current framework.

From a viscosity standpoint, high-rapidity data adds further constraints on the bary-
ochemical potential dependence, but it also amplifies the uncertainties of the bulk
viscosity. This is illustrated in fig. 5.33, which shows that while the high-rapidity infor-
mation refines one aspect of the viscosity parameterization, it simultaneously broadens
the allowed range of another.

We can therefore conclude that high-rapidity regions are still a challenge for this
model and that the inclusion of high-energy data improves constraints on baryochemical
potential dependence.

Figure 5.32: Posterior of the technical parameters depending on the rapidity cut.
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Figure 5.33: Posterior of the viscosities depending on the rapidity cut. From top to bottom and
left to right: the shear viscosity as a function of temperature for vanishing bary-
ochemical potential, the shear viscosity as a function of baryochemical potential at
fixed temperature, and the bulk viscosity as a function of the energy density. The
bands represent the 60% confidence interval of the posterior.

5.4 Summary
This chapter examined the role of viscosities in a multi-stage model of heavy-ion collisions,
where an initial hadronic transport phase evolves into relativistic viscous hydrodynamics
and eventually returns to a microscopic description below a certain energy density.
Throughout, particular attention was paid to the importance of baryochemical potential
and temperature dependencies of the shear viscosity, as described in section 5.1.

In section 5.1, the motivation for including a non-constant (and possibly µB-dependent)
shear viscosity was laid out, underpinned by theoretical arguments and prior lattice as
well as effective-model results suggesting that shear viscosity may be smallest around
the crossover region. A practical parameterization in energy density and baryon density
was discussed, along with a more conventional constant or temperature-dependent η/s.
These different approaches were then compared in numerical simulations to assess their
effect on yields, mean transverse momenta, and anisotropic flow.

While yield observables at intermediate collision energies were shown to be sensitive to
the baryochemical-potential dependence of the shear viscosity, it emerged that integrated
elliptic flow often displayed only moderate or, in certain cases, negligible dependence.
This pattern was further evidenced by analyzing the effective, density-averaged viscosity
throughout the space-time evolution. Within a hybrid model, it was also found that
increasing the transport-to-hydrodynamics particlization/switching energy density some-
times had a large impact on observables—but only for certain functional forms of the
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viscosity. When the shear viscosity was chosen to match the hadronic transport value
near the transition, including a baryochemical potential dependence, the flow became less
sensitive to the choice of the point of switching the description between hydrodynamics
and hadronic transport, which makes the modeling more robust against small variations
in switching criteria.

In order to achieve a more quantitative statement on the baryochemical potential
dependence of the shear viscosity, a Bayesian analysis was performed. As part of that
approach, Gaussian Process emulators were introduced to overcome the computational
cost of running extensive event-by-event simulations for large parameter scans. These
emulators, trained on systematically chosen parameter points, can efficiently predict
observables and their uncertainties, thereby enabling global fits to large data sets. We
validated the ideal setup for training such Gaussian Emulators to achieve maximal
performance. The combined fit revealed that while the temperature dependence of shear
viscosity is moderately constrained by data, the net baryon density dependence is less
so, implying that additional experimental observables or improved precision would
be needed to further restrict this sector of the parameter space. Similarly, the location
and height of the proposed bulk-viscous peak were only loosely fixed in the posterior,
reflecting limited current sensitivity of inclusive flow and yield measurements to the
details of bulk viscosity.

Putting these findings together clarifies how each transport coefficient and model
parameter can influence the evolution of the fireball. Results suggest that future work
on, for instance, higher-order flow harmonics or more differential rapidity-dependent
measurements could enhance sensitivity, especially at intermediate energies where µB is
substantial.

The findings for the transport coefficients, especially regarding the nearly vanishing
specific shear viscosity at higher temperatures, have tension with several existing Bayesian
analyses [53, 309, 464], which generally support a non-zero minimal shear viscosity in
the QGP phase. This discrepancy can be partly attributed to the reduced freedom in
the initial state provided by the hadronic transport model, which lowers the degrees
of freedom for tuning geometric fluctuations and thus pushes certain parameters, such
as the hydrodynamic onset time, into especially sensitive roles. While this analysis
accommodates key beam energies and rapidity-dependent observables, even higher-
statistics data would be needed for more definitive conclusions.
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Science condemns itself to failure when, yielding to the
infatuation of the serious, it aspires to attain being, to contain it,
and to possess it; but it finds its truth if it considers itself as a
free engagement of thought in the given, aiming, at each
discovery, not at fusion with the thing, but at the possibility of
new discoveries; what the mind then projects is the concrete
accomplishment of its freedom.

— Simone de Beauvoir, Pour une morale de l’ambiguïté

The study of the QCD phase diagram from the phenomenological perspective using
hybrid approaches has remained one of the most dynamic fields in heavy-ion physics. Its
success has been greatly enhanced by steadily increasing computational power, advances
in methods, and improving access to precise experimental data.

The main goal of this thesis was to contribute to the understanding of transport
coefficients across the phase diagram of QCD. To achieve this objective, the necessary
groundwork was laid by describing the SMASH-vHLLE-Hybrid approach in detail in
chapter 2, thereby demonstrating the capabilities of the hadronic transport approach
SMASH and of the viscous (3+1)D hydrodynamics code vHLLE. In this context, the
origin and role of transport coefficients in hydrodynamics were outlined, along with the
different models available for initializing the hydrodynamic simulation. Since hybrid
simulations require substantial computational effort, specific measures were presented to
build an efficient and practical framework for multi-stage hybrid calculations.

The study of transport coefficients demands an understanding of the signatures of
their presence. In chapter 3, the most important observables of heavy-ion collisions were
summarized, with special emphasis on harmonic flows. These momentum anisotropies
in the final state are strongly affected by the isotropizing effect of transport coefficients
and are intimately connected to the spatial anisotropies of the initial state, known as
eccentricities.

The influence of both eccentricities and transport coefficients on flow motivated the
study in chapter 4. An investigation was conducted to determine how strongly results
depend on the choice of initial state models. For this purpose, IP-Glasma, TRENTo, and
initial states generated by SMASH were compared. It was found that the choice of initial
states has a substantial effect beyond a mere modification of the eccentricities. Instead,
the additional momentum in both IP-Glasma and SMASH partly explains the differences
in the medium’s response to the initial state eccentricities. This analysis allowed one
substantial source of model uncertainty in hybrid approach predictions to be identified
and quantified.

Chapter 5 presents the core contribution of this work to the understanding of transport
coefficients across the full phase diagram. First, the basic assumption of constant shear
viscosity was compared with a temperature dependence and with a parameterization
based on energy density and net baryon density. It was observed that the net baryon
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density dependence affects bulk observables mainly during the early stages of the
evolution, while harmonic flows are more strongly influenced by the late stages of the
hydrodynamic phase. Additionally, non-linear effects emerged upon including a net
baryon density dependence, highlighting the complexity of such studies. An especially
noteworthy result was that a purely energy-density-based shear viscosity, with the chosen
constraints, removed the dependence of the elliptic flow on the hadronization energy
density. This finding suggests that the proposed shear viscosity parameterization closely
tracks the shear viscosity from the afterburner stage.

In the second part of chapter 5, the power of statistical learning was harnessed by
employing Bayesian inference on the SMASH-vHLLE-Hybrid approach. This is the first
application of Bayesian inference to a (3+1)D simulation featuring both a hadronic ini-
tial state and a temperature- and baryochemical-potential-dependent shear viscosity.
The choices of priors, experimental data, and parameterizations were outlined, and the
approach was carefully validated. The analysis yielded weak constraints on the bulk
viscosity, indicating non-vanishing values for energy densities from 5–50 GeV/fm3. While
a dependency of the shear viscosity on the baryochemical potential could neither be
ruled out nor definitively confirmed, strong constraints were found for the shear viscosity
at high temperatures, where it was observed to vanish. At low temperatures, by contrast,
substantial shear viscosities were identified. Furthermore, a considerable correlation
between the hydrodynamic simulation time and most observables was highlighted, and
the impact of data selection was discussed. Data at

√
sNN = 200 GeV was shown to

significantly increase the constraints, underscoring the importance of including wide
ranges of collision energies, even if the core region of interest pertains to lower collision
energies where the net density does not vanish. In addition, the amount of longitudinal
data employed was found to play a critical role. Including more longitudinal data both
weakened and strengthened some constraints, and an overall collapse of predictions oc-
curred upon including data at very forward and backward rapidities, exposing limitations
in the model.

Outlook
The investigations presented here serve as a starting point for many possible further
studies. Among numerous other research directions, correct initial state modeling remains
a key challenge. On the one hand, an expanded survey of the response function and
possible independent variables in the initial state could help clarify which properties
of the initial state affect which final-state observables. On the other hand, comparing
different initial-state models in isobaric collisions could help disentangle the influence
of tuning models to specific experimental data from a true description of the physical
system.

Regarding our results from the Bayesian Inference, a natural next step is to simplify the
modeling assumptions by removing the presently unconstrained baryochemical potential
dependence in order to reduce the dimensionality of the parameter space and isolate the
most dominant effects. Similarly, it is a worthwhile study to investigate how much of
the strong constraints on the high temperature shear viscosity can be attributed to the
presence of bulk viscosity. One can also envision direct comparisons to other initial-state
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scenarios, such as TRENTo, UrQMD, or McDIPPER, to examine the interplay between
initial conditions and viscosity extractions.

More precise constraints on the baryochemical potential dependence of transport
coefficients will require the extension of the hybrid approach to lower energies. However,
the picture of a strictly sequential description begins to break down at such energies,
since not all regions of the collision zone reach sufficient densities. Dynamic initialization
offers a promising way forward: hadronic transport and hydrodynamics run in parallel,
allowing particles to leave the medium and others to enter it.

Besides lower energies, small systems such as O–O collisions can also contribute to this
effort, as they permit a more comprehensive model-to-data comparison across a broad
range of system sizes within a single model. To fully realize the benefits of Bayesian
inference and achieve comparability between different studies, additional work is needed.
As discussed in the introduction, corrections during the particlization procedure can
influence constraints on transport coefficients, especially at low energies where the
hydrodynamic evolution time is short. A formalism motivated by the non-equilibrium
model itself is needed, ideally including a parameterization of these corrections based
on the distribution functions in SMASH. Such a procedure would enable a smoother
transition from hydrodynamics to transport.

Lastly, an important next step is to discard strictly parametric forms of viscosities
in favor of non-parametric priors. This approach would eliminate many assumptions
underlying the present work. Although the computational cost of such endeavors would
be substantial, ongoing advances in hardware and software performance make them
more and more feasible. The insights gained here can guide future efforts to uncover the
true nature of transport coefficients across the QCD phase diagram.
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Regression tables
The following section contains the regression results for the different models and de-
pendent variables, as well as different choices for the set of independent variables. Each
row is an independent regression. For each independent variable, the coefficient with
error as well as the p-value is given. As a p-value smaller than 0.05 is seen as statistically
significant, it is printed in bold. If a value is present in the column of a row, the respective
independent variable was used in the regression. The final column contains the r2-value
for the regression.

The concept of the p-value can be illustrated with a simple regression problem involv-
ing one dependent variable, y, and one independent variable, x. Assume a model of the
form:

yi = β0 +β1xi + εi,

with

• β0 the intercept (the value of y when x = 0),

• β1 the slope,

• εi the error term, capturing everything not explained by the model.

The p-value signifies the likelihood that the slope differs from zero, and therefore
contains an estimate of the probability that the independent variable affects the system.
This leads to the hypothesis:

H0 : β1 = 0 versus Ha : β1 ̸= 0.

If β1 = 0, it means x has no effect on y. To see if this is true, we compute a test statistic
t:

t =
β̂1

σ(β̂1)
,

where

• β̂1 is our estimate of the slope,

• σ(β̂1) is the standard error of the slope estimate.

The statistic t follows a t-distribution (also known as Student’s distribution) with n− 2

degrees of freedom (n = number of data points). The two-sided p-value is:

p-value = 2
[
1− Ft(n−2)

(
|t|
)]

,
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where Ft(n−2)
is the cumulative distribution function (CDF) of a t-distribution with

n− 2 degrees of freedom. A small p-value suggests β1 is likely not zero, indicating x has
a real effect on y [494].

In addition, we report r2. It tells us what fraction of the total variation in y is explained
by our regression line. Mathematically:

r2 = 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1

(
yi − ȳ

)2 ,

where:

• ŷi is the predicted value from the regression line for the ith observation.

• ȳ is the average of the observed y values.

•
∑

(yi − ŷi)
2 is called the sum of squared errors (SSE).

•
∑

(yi − ȳ)
2 is called the total sum of squares (SST).

If r2 is close to 1, it means the regression line explains practically all changes in y. If r2

is close to 0, it means the line does not explain much of the variability in y at all.
We observe throughout all models, independent variables, and centralities for

√
sNN =

200 GeV that the most significant increase in predictive power, measured by r2, is gained
by adding ⟨pICT ⟩ as a second independent variable. Adding further variables is either
not statistically significant, leading to greater p-values, or only negligibly improves r2,
which is always expected to stay constant or improve upon adding further independent
variables. Using other independent variables apart from ϵn and ⟨pICT ⟩ fails to consistently
reach improvements greater or equal to the combination of ϵn and ⟨pICT ⟩.
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coeff
ϵ2

p-
value
ϵ2

coeff
ϵ3

p-
value
ϵ3

coeff
⟨pICT ⟩

p-
value
⟨pICT ⟩

coeff
vIC2

p-
value
vIC2

coeff
vIC3

p-
value
vIC3

r2

2.86

×
10

−1

± 5.8
×
10

−3

0.00 - - - - - - - - 0.763

2.26

×
10

−1

± 9.1
×
10

−3

0.00 8.09

×
10

−2

± 9.7
×

10
−3

0.00 - - - - - - 0.783

1.72

×
10

−1

± 1.1
×
10

−2

0.00 - - 3.65

×
10

−6

± 2.9
×

10
−7

0.00 - - - - 0.804

2.29

×
10

−1

± 9.1
×
10

−3

0.00 - - - - 4.94

×
10

−1

± 6.2
×

10
−2

0.00 - - 0.781

1.93

×
10

−1

± 1.0
×
10

−2

0.00 4.50

×
10

−2

± 1.1
×

10
−2

0.00 - - 2.45

×
10

−1

± 7.1
×

10
−2

0.00 3.14

×
10

−1

± 7.8
×

10
−2

0.00 0.794

1.70

×
10

−1

± 1.1
×
10

−2

0.00 1.12

×
10

−2

± 1.2
×

10
−2

3.57

×
10

−1

3.21

×
10

−6

± 5.3
×

10
−7

0.00 2.10

×
10

−2

± 7.8
×

10
−2

7.89

×
10

−1

4.77

×
10

−2

± 8.8
×

10
−2

5.87

×
10

−1

0.804

Table A.1: Regression results for v2 with SMASH IC at 0-5% centrality,
√
sNN = 200 GeV.
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coeff
ϵ2

p-
value
ϵ2

coeff
ϵ3

p-
value
ϵ3

coeff
⟨pICT ⟩

p-
value
⟨pICT ⟩

coeff
vIC2

p-
value
vIC2

coeff
vIC3

p-
value
vIC3

r2

- - 1.93

×
10

−1

± 4.7
×

10
−3

0.00 - - - - - - 0.688

5.28

×
10

−2

± 7.0
×
10

−3

0.00 1.48

×
10

−1

± 7.5
×

10
−3

0.00 - - - - - - 0.711

- - 1.06

×
10

−1

± 9.4
×

10
−3

0.00 2.54

×
10

−6

± 2.4
×

10
−7

0.00 - - - - 0.728

- - 1.54

×
10

−1

± 7.5
×

10
−3

0.00 - - 3.11

×
10

−1

± 4.8
×

10
−2

0.00 - - 0.705

2.98

×
10

−2

± 7.9
×
10

−3

0.00 1.23

×
10

−1

± 8.5
×

10
−3

0.00 - - 1.09

×
10

−1

± 5.4
×

10
−2

4.50

×
10

−2

2.92

×
10

−1

± 6.0
×

10
−2

0.00 0.724

1.66

×
10

−2

± 8.4
×
10

−3

4.75

×
10

−2

1.04

×
10

−1

± 9.4
×

10
−3

0.00 1.81

×
10

−6

± 4.1
×

10
−7

0.00 -1.79

×
10

−2

± 6.1
×

10
−2

7.68

×
10

−1

1.41

×
10

−1

± 6.8
×

10
−2

3.80

×
10

−2

0.731

Table A.2: Regression results for v3 with SMASH IC at 0-5% centrality,
√
sNN = 200 GeV.
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coeff
ϵ2

p-
value
ϵ2

coeff
ϵ3

p-
value
ϵ3

coeff
⟨pICT ⟩

p-
value
⟨pICT ⟩

coeff
vIC2

p-
value
vIC2

coeff
vIC3

p-
value
vIC3

r2

2.53

×
10

−1

± 3.6
×
10

−3

0.00 - - - - - - - - 0.869

2.28

×
10

−1

± 6.5
×
10

−3

0.00 5.51

×
10

−2

± 1.2
×

10
−2

0.00 - - - - - - 0.872

1.60

×
10

−1

± 9.6
×
10

−3

0.00 - - 1.91

×
10

−5

± 1.9
×

10
−6

0.00 - - - - 0.885

2.28

×
10

−1

± 6.5
×
10

−3

0.00 - - - - 4.01

×
10

−1

± 8.8
×

10
−2

0.00 - - 0.872

2.03

×
10

−1

± 8.4
×
10

−3

0.00 3.37

×
10

−2

± 1.3
×

10
−2

0.01 - - 2.61

×
10

−1

± 9.3
×

10
−2

0.00 3.30

×
10

−1

± 1.1
×

10
−1

0.00 0.876

1.57

×
10

−1

± 1.0
×
10

−2

0.00 1.31

×
10

−3

± 1.3
×

10
−2

9.20

×
10

−1

1.81

×
10

−5

± 2.3
×

10
−6

0.00 -7.09

×
10

−3

± 9.5
×

10
−2

9.41

×
10

−1

1.26

×
10

−1

± 1.1
×

10
−1

2.38

×
10

−1

0.885

Table A.3: Regression results for v3 with SMASH IC at 20-30% centrality,
√
sNN = 200 GeV.
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coeff
ϵ2

p-
value
ϵ2

coeff
ϵ3

p-
value
ϵ3

coeff
⟨pICT ⟩

p-
value
⟨pICT ⟩

coeff
vIC2

p-
value
vIC2

coeff
vIC3

p-
value
vIC3

r2

- - 1.33

×
10

−1

± 3.8
×

10
−3

0.00 - - - - - - 0.617

3.76

×
10

−2

± 3.5
×
10

−3

0.00 7.41

×
10

−2

± 6.6
×

10
−3

0.00 - - - - - - 0.668

- - 4.64

×
10

−2

± 6.9
×

10
−3

0.00 1.03

×
10

−5

± 7.1
×

10
−7

0.00 - - - - 0.700

- - 9.11

×
10

−2

± 5.9
×

10
−3

0.00 - - 3.85

×
10

−1

± 4.3
×

10
−2

0.00 - - 0.654

2.31

×
10

−2

± 4.6
×
10

−3

0.00 6.16

×
10

−2

± 6.9
×

10
−3

0.00 - - 1.79

×
10

−1

± 5.0
×

10
−2

0.00 1.61

×
10

−1

± 5.8
×

10
−2

0.01 0.678

-7.00

×
10

−4

± 5.4
×
10

−3

8.97

×
10

−1

4.48

×
10

−2

± 7.1
×

10
−3

0.00 9.44

×
10

−6

± 1.3
×

10
−6

0.00 3.91

×
10

−2

± 5.2
×

10
−2

4.49

×
10

−1

5.52

×
10

−2

± 5.8
×

10
−2

3.40

×
10

−1

0.701

Table A.4: Regression results for v3 with SMASH IC at 20-30% centrality,
√
sNN = 200 GeV.
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coeff ϵ2 p-value
ϵ2

coeff ϵ3 p-value
ϵ3

coeff
⟨pICT ⟩

p-value
⟨pICT ⟩

coeff ϵp p-value
ϵp

r2

4.39 ×
10

−1 ±
9.4 ×
10

−3

0.00 - - - - - - 0.745

2.47 ×
10

−1 ±
1.2 ×
10

−2

0.00 2.68 ×
10

−1 ±
1.3 ×
10

−2

0.00 - - - - 0.838

3.55 ×
10

−2 ±
1.0 ×
10

−2

0.00 - - 5.99 ×
10

−6 ±
1.3 ×
10

−7

0.00 - - 0.930

2.41 ×
10

−1 ±
1.2 ×
10

−2

0.00 - - - - 4.02 ±
2.0 ×
10

−1

0.00 0.833

1.67 ×
10

−1 ±
1.2 ×
10

−2

0.00 1.90 ×
10

−1 ±
1.3 ×
10

−2

0.00 - - 2.74 ±
2.0 ×
10

−1

0.00 0.872

3.36 ×
10

−2 ±
1.0 ×
10

−2

0.00 3.32 ×
10

−2 ±
1.1 ×
10

−2

0.00 5.37 ×
10

−6 ±
2.1 ×
10

−7

0.00 4.07 ×
10

−1 ±
1.7 ×
10

−1

1.73 ×
10

−2
0.931

Table A.5: Regression results for v2 with IP-Glasma at 0-5% centrality,
√
sNN = 200 GeV.
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coeff ϵ2 p-value
ϵ2

coeff ϵ3 p-value
ϵ3

coeff
⟨pICT ⟩

p-value
⟨pICT ⟩

coeff ϵp p-value
ϵp

r2

- - 1.39 ×
10

−1 ±
3.5 ×
10

−3

0.00 - - - - 0.680

5.60 ×
10

−2 ±
4.7 ×
10

−3

0.00 9.19 ×
10

−2 ±
5.1 ×
10

−3

0.00 - - - - 0.732

- - 3.53 ×
10

−2 ±
6.0 ×
10

−3

0.00 1.42 ×
10

−6 ±
7.2 ×
10

−8

0.00 - - 0.789

- - 8.84 ×
10

−2 ±
5.1 ×
10

−3

0.00 - - 9.64 ×
10

−1 ±
7.6 ×
10

−2

0.00 0.737

3.62 ×
10

−2 ±
5.1 ×
10

−3

0.00 7.26 ×
10

−2 ±
5.4 ×
10

−3

0.00 - - 6.84 ×
10

−1 ±
8.3 ×
10

−2

0.00 0.754

4.33 ×
10

−3 ±
5.5 ×
10

−3

4.30 ×
10

−1
3.52 ×
10

−2 ±
6.0 ×
10

−3

0.00 1.28 ×
10

−6 ±
1.1 ×
10

−7

0.00 1.29 ×
10

−1 ±
9.1 ×
10

−2

1.58 ×
10

−1
0.790

Table A.6: Regression results for v3 with IP-Glasma at 0-5% centrality,
√
sNN = 200 GeV.
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coeff ϵ2 p-value
ϵ2

coeff ϵ3 p-value
ϵ3

coeff
⟨pICT ⟩

p-value
⟨pICT ⟩

coeff ϵp p-value
ϵp

r2

2.77 ×
10

−1 ±
3.8 ×
10

−3

0.00 - - - - - - 0.879

2.21 ×
10

−1 ±
6.6 ×
10

−3

0.00 1.08 ×
10

−1 ±
1.1 ×
10

−2

0.00 - - - - 0.894

1.26 ×
10

−1 ±
7.8 ×
10

−3

0.00 - - 1.17 ×
10

−5 ±
5.6 ×
10

−7

0.00 - - 0.924

2.26 ×
10

−1 ±
6.5 ×
10

−3

0.00 - - - - 1.84 ±
2.0 ×
10

−1

0.00 0.892

1.92 ×
10

−1 ±
7.5 ×
10

−3

0.00 8.79 ×
10

−2 ±
1.1 ×
10

−2

0.00 - - 1.43 ±
1.9 ×
10

−1

0.00 0.901

1.19 ×
10

−1 ±
8.1 ×
10

−3

0.00 2.47 ×
10

−2 ±
1.0 ×
10

−2

1.57 ×
10

−2
1.04 ×
10

−5 ±
6.8 ×
10

−7

0.00 3.97 ×
10

−1 ±
1.8 ×
10

−1

2.98 ×
10

−2
0.925

Table A.7: Regression results for v2 with IP-Glasma at 20-30% centrality,
√
sNN = 200 GeV.
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coeff ϵ2 p-value
ϵ2

coeff ϵ3 p-value
ϵ3

coeff
⟨pICT ⟩

p-value
⟨pICT ⟩

coeff ϵp p-value
ϵp

r2

- - 1.45 ×
10

−1 ±
3.3 ×
10

−3

0.00 - - - - 0.725

5.47 ×
10

−2 ±
3.2 ×
10

−3

0.00 7.04 ×
10

−2 ±
5.2 ×
10

−3

0.00 - - - - 0.801

- - 5.06 ×
10

−2 ±
5.5 ×
10

−3

0.00 4.78 ×
10

−6 ±
2.4 ×
10

−7

0.00 - - 0.818

- - 9.84 ×
10

−2 ±
4.8 ×
10

−3

0.00 - - 1.12 ±
8.9 ×
10

−2

0.00 0.773

4.41 ×
10

−2 ±
3.7 ×
10

−3

0.00 6.31 ×
10

−2 ±
5.3 ×
10

−3

0.00 - - 5.19 ×
10

−1 ±
9.7 ×
10

−2

0.00 0.808

2.19 ×
10

−2 ±
4.4 ×
10

−3

0.00 4.38 ×
10

−2 ±
5.5 ×
10

−3

0.00 3.18 ×
10

−6 ±
3.7 ×
10

−7

0.00 2.03 ×
10

−1 ±
9.9 ×
10

−2

4.02 ×
10

−2
0.826

Table A.8: Regression results for v3 with IP-Glasma at 20-30% centrality,
√
sNN = 200 GeV.
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coeff
ϵ2

p-
value
ϵ2

coeff
ϵ3

p-
value
ϵ3

coeff
⟨pICT ⟩

p-
value
⟨pICT ⟩

coeff
vIC2

p-
value
vIC2

coeff
vIC3

p-
value
vIC3

r2

2.52

×
10

−1

± 7.3
×
10

−3

0.00 - - - - - - - - 0.616

1.96

×
10

−1

± 1.1
×
10

−2

0.00 7.88

×
10

−2

± 1.2
×

10
−2

0.00 - - - - - - 0.636

1.67

×
10

−1

± 1.4
×
10

−2

0.00 - - 9.01

×
10

−6

± 1.3
×

10
−6

0.00 - - - - 0.638

2.04

×
10

−1

± 1.1
×
10

−2

0.00 - - - - 1.85

×
10

−1

± 3.4
×

10
−2

0.00 - - 0.630

1.75

×
10

−1

± 1.3
×
10

−2

0.00 5.44

×
10

−2

± 1.5
×

10
−2

0.00 - - 9.14

×
10

−2

± 4.0
×

10
−2

2.18

×
10

−2

6.02

×
10

−2

± 4.7
×

10
−2

1.98

×
10

−1

0.640

1.65

×
10

−1

± 1.5
×
10

−2

0.00 4.13

×
10

−2

± 1.6
×

10
−2

1.22

×
10

−2

4.32

×
10

−6

± 2.4
×

10
−6

7.07

×
10

−2

4.98

×
10

−2

± 4.6
×

10
−2

2.79

×
10

−1

1.70

×
10

−2

± 5.2
×

10
−2

7.46

×
10

−1

0.642

Table A.9: Regression results for v2 with SMASH IC at 0-5% centrality,
√
sNN = 17.3 GeV.
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coeff
ϵ2

p-
value
ϵ2

coeff
ϵ3

p-
value
ϵ3

coeff
⟨pICT ⟩

p-
value
⟨pICT ⟩

coeff
vIC2

p-
value
vIC2

coeff
vIC3

p-
value
vIC3

r2

- - 1.01

×
10

−1

± 1.1
×

10
−2

0.00 - - - - - - 0.097

2.78

×
10

−2

± 1.6
×
10

−2

8.83

×
10

−2

7.71

×
10

−2

± 1.8
×

10
−2

0.00 - - - - - - 0.101

- - 5.42

×
10

−2

± 2.4
×

10
−2

2.29

×
10

−2

4.44

×
10

−6

± 2.0
×

10
−6

2.73

×
10

−2

- - - - 0.103

- - 7.33

×
10

−2

± 1.8
×

10
−2

0.00 - - 9.44

×
10

−2

± 5.1
×

10
−2

6.25

×
10

−2

- - 0.102

8.21

×
10

−3

± 1.9
×
10

−2

6.73

×
10

−1

5.53

×
10

−2

± 2.1
×

10
−2

0.01 - - 5.11

×
10

−2

± 5.8
×

10
−2

3.76

×
10

−1

9.06

×
10

−2

± 6.8
×

10
−2

1.81

×
10

−1

0.105

5.26

×
10

−3

± 2.1
×
10

−2

8.04

×
10

−1

5.16

×
10

−2

± 2.4
×

10
−2

3.09

×
10

−2

1.22

×
10

−6

± 3.5
×

10
−6

7.25

×
10

−1

3.93

×
10

−2

± 6.7
×

10
−2

5.56

×
10

−1

7.85

×
10

−2

± 7.6
×

10
−2

3.03

×
10

−1

0.105

Table A.10: Regression results for v3 with SMASH IC at 0-5% centrality,
√
sNN = 17.3 GeV.
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coeff
ϵ2

p-
value
ϵ2

coeff
ϵ3

p-
value
ϵ3

coeff
⟨pICT ⟩

p-
value
⟨pICT ⟩

coeff
vIC2

p-
value
vIC2

coeff
vIC3

p-
value
vIC3

r2

2.11

×
10

−1

± 2.2
×
10

−3

0.00 - - - - - - - - 0.922

1.94

×
10

−1

± 3.9
×
10

−3

0.00 3.92

×
10

−2

± 7.6
×

10
−3

0.00 - - - - - - 0.925

1.63

×
10

−1

± 5.6
×
10

−3

0.00 - - 3.09

×
10

−5

± 3.3
×

10
−6

0.00 - - - - 0.930

1.94

×
10

−1

± 4.0
×
10

−3

0.00 - - - - 1.23

×
10

−1

± 2.5
×

10
−2

0.00 - - 0.925

1.82

×
10

−1

± 5.0
×
10

−3

0.00 2.73

×
10

−2

± 8.1
×

10
−3

0.00 - - 8.37

×
10

−2

± 2.6
×

10
−2

0.00 4.83

×
10

−2

± 2.8
×

10
−2

8.62

×
10

−2

0.927

1.62

×
10

−1

± 5.7
×
10

−3

0.00 7.30

×
10

−3

± 8.5
×

10
−3

3.88

×
10

−1

2.96

×
10

−5

± 4.5
×

10
−6

0.00 1.37

×
10

−2

± 2.8
×

10
−2

6.20

×
10

−1

-2.11

×
10

−2

± 2.9
×

10
−2

4.73

×
10

−1

0.931

Table A.11: Regression results for v2 with SMASH IC at 20-30% centrality,
√
sNN = 17.3 GeV.
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coeff
ϵ2

p-
value
ϵ2

coeff
ϵ3

p-
value
ϵ3

coeff
⟨pICT ⟩

p-
value
⟨pICT ⟩

coeff
vIC2

p-
value
vIC2

coeff
vIC3

p-
value
vIC3

r2

- - 6.38

×
10

−2

± 4.9
×

10
−3

0.00 - - - - - - 0.184

1.09

×
10

−2

± 4.4
×
10

−3

1.34

×
10

−2

4.62

×
10

−2

± 8.6
×

10
−3

0.00 - - - - - - 0.190

- - 3.57

×
10

−2

± 9.8
×

10
−3

0.00 9.79

×
10

−6

± 3.0
×

10
−6

0.00 - - - - 0.195

- - 5.36

×
10

−2

± 8.0
×

10
−3

0.00 - - 4.03

×
10

−2

± 2.5
×

10
−2

1.06

×
10

−1

- - 0.187

7.93

×
10

−3

± 5.8
×
10

−3

1.70

×
10

−1

4.34

×
10

−2

± 9.3
×

10
−3

0.00 - - 4.53

×
10

−3

± 3.0
×

10
−2

8.81

×
10

−1

2.80

×
10

−2

± 3.2
×

10
−2

3.86

×
10

−1

0.191

8.43

×
10

−4

± 6.7
×
10

−3

9.01

×
10

−1

3.62

×
10

−2

± 1.0
×

10
−2

0.00 1.08

×
10

−5

± 5.3
×

10
−6

4.19

×
10

−2

-2.09

×
10

−2

± 3.3
×

10
−2

5.22

×
10

−1

2.79

×
10

−3

± 3.5
×

10
−2

9.36

×
10

−1

0.196

Table A.12: Regression results for v3 with SMASH IC at 20-30% centrality,
√
sNN = 17.3 GeV.
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MAP of Parameters
The following table shows the maximum-a-posteriori of the parameters, equivalent to the
golden lines in fig. 5.25, with 1-σ-confidence interval.

Parameter MAP

R⊥ 0.6321+0.7465
−0.3018 fm

Rη 1.6955+0.3611
−0.6767 fm

τIC,scale 1.3405+0.2889
−0.3019

ϵswitch 0.5029+0.1612
−0.1668

GeV
fm3

al,η −12.5323+7.8258
−1.6009

ah,η −11.7024+4.6039
−2.2125

Tη,0 0.1313+0.0395
−0.0267 GeV

(η/s)min 0.2185+0.0832
−0.0994

aµB
3.2318+3.3766

−2.7164

bµB
0.0373+0.3290

−0.2110

ζ0 0.0916+0.0675
−0.0582

ϵζ 25.7295+10.2582
−15.2152

GeV
fm3

σζ,− 0.0589+0.0289
−0.0344

σζ,+ 0.0824+0.0457
−0.0480

σAB,scale 0.9769+0.1451
−0.1240

Table A.13: MAP of all parameters of the model.

MAP Observable Predictions
In the following, we show the maximum a posterior observable predictions in comparison
to experimental data. These are in fact the data points from fig. 5.27 in linear scale.
References for the experimental values can be found in table 5.4.
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Figure A.1: Comparison of predictions of observables from the posterior with experimental
values for bulk observables.

Figure A.2: Comparison of predictions of observables from the posterior with experimental
values for flow data.
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Figure A.3: Comparison of predictions of observables from the posterior with experimental
values for pseudorapidity yields.
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