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Abstract: The method of Borel transformation for the summation of asymptotic expansions with the

power-law asymptotic behavior at infinity is combined with elements of scale-invariant fractional

analysis with the goal of calculating the critical amplitudes. The fractional order of specially designed

scale-invariant fractional derivatives u is used as a control parameter to be defined uniquely from u-

optimization. For resummation of the transformed expansions, we employed the self-similar iterated

roots. We also consider a complementary optimization, called b-optimization with the number of

iterations b as an alternative fractional control parameter. The method of scale-invariant Fractional

Borel Summation consists of three constructive steps. The first step corresponds to u-optimization

of the amplitudes with fixed parameter b. When the first step fails, the second step corresponds to

b-optimization of the amplitudes with fixed parameter u. However, when the two steps fail, the third

step corresponds to the simplified, Borel-light technique. The marginal amplitude should be found

by means of the self-similar iterated roots constructed for the transformed series, optimized with

either of the two above approaches and corrected with a diagonal Padé approximants. The examples

are given when the complementary optimizations,“horses-for-courses” approach outperforms other

analytical methods in calculation of critical amplitudes.

Keywords: fractional Borel summation; optimization; order of derivatives; complementarity; number

of iterations; control parameters

1. Basics

Consider the case where one has to explicitly find a real, sign-definite, positive-valued
function f (x) of a real variable x, when the function possesses the power-law asymptotic
behavior characterized by the large-variable (critical) exponent β and (critical) amplitude B

f (x) ≃ Bxβ (x → ∞) . (1)

We consider the case where the critical exponent is known and β > 0. The case of β < 0
has to be reduced to the former by considering the inverse of f (x). The case of β = 0 can
be treated along the same lines, but requires some special care as explained in Section 8.
Thus, we are interested in finding the amplitude B. The power-law property means that
the sought function is asymptotically scale-invariant, or simply retains its shape under a
simple scale transformation, with a change only in the magnitude, as discussed recently
in [1].

Granted, to find f (x) directly and explicitly from the governing equations is very
difficult. It can be considered as a true achievement when truncated asymptotic expansion

f (x) ≃ fk(x) (x → 0) , (2)

at small variables could be extracted in the form of a finite truncated series
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fk(x) =
k

∑
n=0

anxn . (3)

Here, a0 > 0. From such expansion, we can try to restore the amplitude B. The scale-
invariance symmetry of the sought functions puts certain constraints on the various trans-
formations to be imposed on the known truncations. In particular, fractional derivatives
when considered jointly with the Borel transformation should be modified to respect
the symmetry.

The problem of reconstruction of the amplitude B in the (1), from the asymptotic
series (3) stands for a long time [2]. It arises often in physics and applied mathematics.
Borel summation, Borel–Leroy and Mittag–Leffler summations are applied for an accurate
summation of the truncations (3) at small x [1,3–9].

The hypergeometric approximants [10–13] can be combined with the Borel summation.
Such technique leads to the hypergeometric-Meijer approximants [12,13]. The techniques
are quite involved technically with a fitting required to determine the parameters [14,15].
The results are non-unique and “only” numerical.

The simpler method of Padé approximants should be considered when possible,
at least as a good reference method [16]. Modified Padé approximants and, based on them,
Padé–Borel methods [17] also allow for analytical calculation of the amplitudes. Some
synthesis of various approaches was suggested recently in [18].

The approximants to be employed in the current paper are called self-similar iter-
ated root approximants, see Section 1.1. They respect the asymptotic scaling by design.
The iterated roots were derived from the requirement of functional self-similarity. It is yet
another symmetry widely used in various renormalization groups applied in the quantum
field theory and critical phenomena [19–21]. V.I. Yukalov pioneered application of the
self-similarity in the framework of approximation theory.

We focus here on analytical techniques and will look only for the amplitudes at infinity.
Of course, such an approach could be extended to calculation of the critical indices at
infinity. The calculations can be performed either directly or by resorting to a diff-Log-
transformation.

The Borel transformation of the series with an containing a factorial dependence on n
is rather well-known [22]:

Ak(x) =
k

∑
n=0

an

n!
xn .

The resulting series can be summed by means of self-similar iterated roots R∗
k (x) [23,24].

Such approximants are chosen because they respect the asymptotic scale-invariance and
the power-law (1) for any k in the expansion (3). They are exceptionally easy to handle
analytically. Then, the sought function is approximated by the expression

f ∗k (x) =
∫ ∞

0
e−tR∗

k (xt) dt . (4)

However, if we assume that coefficients an depend on n not just as a factorial, but as n!nu,
motivated by the extensive field-theoretical argumentation [4], the more general Borel-type
transformation can be written down following the paper [25]:

Ak(x, u) = a0 +
k

∑
n=1

an

Γ(1 + n)nu
xn . (5)

Additionally, let us introduce the operator d(t) = t ∂
∂t . The result of application of operator

d(t) to the power-law f (t) = tβ is a simple multiplication of the f (t) by the factor β.
The operator d(t) is designed specifically to respect the asymptotic power-law (1) or the
so-called asymptotic scale-invariance of the sought functions.
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Let us define then, for u = 1, 2, 3, . . ., a sequential operation of applying u-times the
operator d(t)

d(t)u ≡

(

t
∂

∂t

)u

. (6)

The result of application of operator d(t)u to the power-law f (t) = tβ is a simple multipli-
cation of the f (t) by the factor βu. As u = 0, the operator d(t)u ≡ 1, and we return to the
Borel-transform. Below, we suggest generalizing such operators to the case of arbitrary
(fractional) u > 0. The parameter u corresponds to the order of fractional derivatives,
but when the derivative is applied in combination with the power, it leaves the index at
infinity unchanged.

The operator d(t)u can be used to define an inverse transformation to (5) [25]. Then,
the sought function is approximated by the expression

f ∗k (x, u) =
∫ ∞

0
e−td(t)u[R∗

k (xt, u)] dt . (7)

The Borel transform R∗
k (x, u) at large x behaves as

R∗
k (x, u) ≃ Ck(u)xβ (x → ∞) , (8)

where the concrete expressions Ck(u) for the amplitude of the iterated roots are known in a
closed form. They will be presented below for convenience.

Thus, application of the operator (6) does not change the critical index in the power-
law. However, it has an impact on the expressions for the critical amplitudes. The sought
function in the limit of large x reduces to

f ∗k (x, u) ≃ Ck(u)βuxβ
∫ ∞

0
e−ttβ dt (x → ∞) . (9)

As a result, the large-variable behavior of the function acquires the form of a power-law

f ∗k (x, u) ≃ Bk(u)xβ, (x → ∞) , (10)

with the amplitude
Bk(u) = Ck(u)βuΓ(β + 1). (11)

The applied transformations, thus, do respect the asymptotic scale-invariance of the original
functions. The sought amplitudes are given in explicit form depending on the fractional u.
The marginal amplitude Ck(u) is multiplied by the correcting factor in the same form as
the assumed dependence of an on n, but with the critical index β put in place of n. Thus, β
takes the role of an effective number n picked from the expansion at small x to gauge the
large x behavior of amplitudes.

The complete amplitude Bk(u) consists of three factors. The first factor, marginal
amplitude C(u), originates from the application of the resummation procedure to the
Borel-type transformed series and taking the limit of very large variables. The second
factor, βu, is due to the differential operator applied u-times. The third factor is “Borelian”,
and is due to the pure factorial behavior of an. Of course, the very possibility of such
factorization of amplitudes emerges due to a power-law behavior of the sought function
as x → ∞. The second factor may be viewed as the correction to the pure case of Borel
summation. Note also that various summations discussed in [1,9] would try to modify the
third, Γ-factor, while leaving aside the possibility of a more complicated form.

Let us consider u, the order of the operator in (6), as a continuous control parameter.
As the integrals required for calculating (11) are relatively easy to define for integers u,
introducing continuous u means to interpolate smoothly between the values of integral for
discrete u. Such an approach is similar to the way the Γ-function generalizes the factorial
defined for discrete numbers.
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Formally, with arbitrary u, we are confronted with the rather complicated task of how
to define fractional differentiation. However, in the case considered above, we are able
to approach the problem constructively using explicit u analytical results for the integer
number of differentiation u to interpolate to continuous (fractional) u. Such an approach
works only asymptotically in the limit-case of large x.

By introducing the continuous u, we acquire a technical advantage, since it becomes
possible to find u from some optimization conditions of the type employed in [1]. The main
tenets of such optimizations will be recapitulated below in application to variable u.

Previously, we suggested considering the number of iterations b as the continuous
control parameter [1]. The continuous (fractional) b gives us again a technical advantage,
since it becomes possible to find b from the optimization conditions, analogous to those to
be applied to the parameter u.

For optimization, we employ the minimal-difference and minimal-derivative opti-
mization conditions. Such conditions are equivalent. Ideally, they should be satisfied
simultaneously. The conditions could be found, e.g., in [1]. They are going to be recapitu-
lated in the following sections. However, as we are going to see below, in some examples
only one of them can be satisfied, while the other cannot. The application of various
optimal conditions in the space of approximations was proposed and accomplished by
such eminent scientists as V. Yukalov, L. Kadanoff, P. Stevenson, and H. Kleinert.

The optimization procedure when only parameter u is considered and b is fixed, will
be called u-optimization. The optimization procedure when only parameter b is considered
and u is fixed will be called b-optimization.

The optimizations have different meanings. In the course of u-optimization, one
would try to look for the correction to factorial growth in the form of a fractional power,
i.e., outside of the Γ-function. In the course of b-optimization, one would try to modify the
Γ-function per se by considering its fractional powers.

Our approach to optimization is reminiscent of a complementarity principle in physics,
i.e., the complete resummation procedure would require optimization with respect to both
u and b. It is much more difficult if possible to formulate and solve the problem with
many parameters in such a transparent and intuitive way as in the one-parametric case.
However, depending on the situation, sometimes the problem could be treated only with
u-optimization, or just with a b-optimization.

Considering only the one-parametric problems of optimization is also technically pro-
foundly beneficial, since it is feasible both to formulate transparent and equivalent optimiza-
tion conditions and easily count and find all relevant solutions when required. Sometimes,
the two methods can be superimposed and work on the solutions from different sides.
However, in practice, the two approaches complement each other by allowing them to sys-
tematically treat more problems than is feasible by each of the methods applied separately.

We are going to require, following Hadamard, that the solution to the optimization
problem of any type exists and is unique. Note that requiring independence of the solutions
on parameters u and b by imposing minimal difference or minimal derivative conditions,
is also in the spirit of Hadamard. The latter conditions do remind us of his third condition
of continuous dependence on data, for the problem to be considered as well-posed.

The method of Borel transformation for the summation of asymptotic expansions
is combined with elements of fractional analysis with the goal of calculating the critical
amplitudes from the optimization conditions. The fractional order u of specially designed
derivatives is used as a control parameter, as well as the number of iterations b. How-
ever, we do not force the solution to the optimization problem to always exist and in a
unique way. Our approach is dependent on the context, and is decided for each prob-
lem anew.

Our motivation for suggesting a new method is as follows. We would like to have
a good, accurate and simple analytical technique, allowing us to consider with relatively
minor modifications as many real cases as possible, while retaining a decent accuracy. The
hope is that by introducing several complementary ways of optimizing the solution, such
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a goal can be achieved. For optimization, we employ below the minimal-difference and
minimal-derivative optimization conditions.

The resulting resummation program can be formulated as the following, “horses-for-
courses”, method of Fractional Borel Summation.

• At the first level, one has to define the positive parameter u (fractional order of
the operator d(t)u given by (6)), from the optimization procedure, while b is fixed.
When the solution to such a u-optimization problem exists and is unique, the task of
resummation could be considered as completed.

• At the second level, in the cases when even one of the two Hadamard conditions are not
met in the course of u-optimization, one has to define another complementary procedure
with respect to the other parameter, number of iterations b extended [1] to arbitrary
real numbers from the original integers. When the solution to such a b-optimization
problem exists and is unique, then the task could be considered as completed.

• Yet, at the third level, in the cases when even one of the two conditions is not met
in the course of b-optimization, one has to define another procedure, called Borel-
light. The marginal amplitude can be optimized, either with respect to u or b with a
subsequent correction with the diagonal Padé approximants as suggested in [9].

Thus, when the conventionally defined u-and-b-optimizations both fail to produce a
unique solution, we resort to alternative techniques. The technique of Borel-light might
also dwell on optimization of the marginal amplitudes. Note that marginal amplitudes
do satisfy the power-law (1) at infinity. The marginal quantities are made to comply with
the original series (2) and (3) by means of the corrector. In place of the corrector, one can
most naturally employ the diagonal Padé approximants. Or, alternatively, one can correct
the non-optimized Borel-transformed marginal amplitudes when the optimizations for
marginal quantities fail or are unsatisfactory. In the latter case, such a decision is made or
some additional information.

Application of the u-optimization is illustrated by the examples of Section 5. Applica-
tion of the b-optimization is illustrated by the examples of Section 6. Stand-alone examples
of Borel-light technique application are given in Section 7.

The operator (6) will be briefly discussed in Section 10. More advanced operators (67)
and (69) will be briefly discussed in Section 9. They are designed specifically to respect
the asymptotic power-law (1), or the so-called asymptotic scale-invariance of the sought
functions. The case of β = 0 in case of transformation 5 could be treated by means of a
b-optimization, or resorting to some form of a simplified, Borel-light technique. The more
advanced operators (67) and (69), however, are able to include the case of β = 0 into the
u-optimization procedure.

We should mention that fractional analysis appeared as a very useful methodology in
various applications [26–28]. One can also think about application of asymptotic methods
and resummation techniques for various fractional differential evolutions [29,30]. The order
of fractional derivatives or the number of iterations could be tried for minimization of the
residual [31]. Normally, one would try to increase the accuracy by increasing the order
of approximations. Applying fractional Borel methods with “free” parameters would
constitute a different approach.

The method of series solutions to the nonlinear partial differential equations was
discussed extensively in the illuminating paper [32]. It could be a challenging problem
to extend the resummation methods to nonlinear PDEs as well. Intriguing topics and
phenomena, contributing to the understanding of complex dynamics and phenomena in
nonlinear systems and providing valuable insights into mathematical modeling in biology,
were expounded in [33,34]. Potentially interesting applications for the fractional methods
range from the lower-dimensional chaotic systems to the logistic effects and the global
classical solutions for reaction-diffusion systems.
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1.1. Iterated Roots

In order to address the case of arbitrary positive β, we apply the so-called iterated
roots [23,24]. The approximants are conditioned on the correct critical exponent β at infinity.
The iterated root approximants are given as follows:

Rk(x) = a0

(

(

(

(1 + P1x)2 + P2x2
)3/2

+ P3x3
)4/3

+ . . . + Pkxk

)β/k

, (12)

with known powers and unknown amplitudes, in all orders k = 1, 2, 3 . . . [23,24].
For instance, for k = 1, the approximant (12) is simply

R1(x) = a0(1 + P1x)β , (13)

for k = 2

R2(x) = a0

(

(1 + P1x)2 + P2x2
)

β
2

, (14)

and for k = 3

R3(x) = a0

(

(

(1 + P1x)2 + P2x2
)3/2

+ P3x3
)

β
3

. (15)

Now, all relevant parameters Pj could be uniquely defined from the asymptotic equiva-
lence with the truncated series fk(x) in the small x limit. In the large-variable limit, the
approximant (12) behaves as

Rk(x) ≃ Ckxβ (x → ∞) , (16)

with the critical amplitude

Ck = a0

(

(

(

P2
1 + P2

)3/2
+ P3

)4/3

+ . . . + Pk

)β/k

. (17)

2. u-Optimization

Consider the series with an behaving as (nuΓ(1 + n))b. The dependence can be con-
sidered as an iterated version of the Borel-type transformation (5), which, in turn, dwells
on the idea of an iterated version of the Borel transformation of the book [3]. The inverse
of the transformed and resummed series is expressed as a multidimensional integral [1,3].
The difference for calculating an inverse transformation consists only in the addition into
the integral of the operator d(t)u, applied b-times. Because of the power-law nature of
the large x, asymptotic form of the sought function, the integral can be factorized in the
limit of large x [1]. The critical amplitude can be found explicitly as the function of two
parameters. One can see that iteration will lead to raising to the power b the factors outside
the marginal amplitude C in formula (11).

The fractional Borel summation starts with the transformation of the series defined as

Ak,b(x, u) = a0 +
k

∑
n=1

an

(nuΓ(1 + n))b
xn . (18)

Following the same steps as in the paper [1], required for calculation of the multidi-
mensional integrals, the large-variable behavior of the function can be found in the form

f ∗k,b(x, u) ≃ Bk,b(u)xβ (x → ∞) , (19)
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with the amplitude as the needed outcome of the generalized fractional Borel summation
expressed in the closed form

Bk,b(u) = Ck,b(u) (βuΓ(1 + β))b. (20)

Just as in [1], in order to calculate the critical amplitudes, one can analyze the following
differences for the critical amplitudes with b = 1, 2 in k-th order, δk,2−1(uk) = Bk,2(uk)−
Bk,1(uk), with positive integers k = 1, 2, 3, . . .. The controls are designed to minimize the
differences. In practice, one has to solve for the unknown uk the equation

Bk,2(uk)− Bk,1(uk) = 0. (21)

The different, more conventional differences δk,k+1 = Bk+1,1(uk)− Bk,1(uk), can be studied
as well, with k = 1, 2, 3, . . .. In practice, one has to solve for the unknown uk the equation

Bk+1,1(uk)− Bk,1(uk) = 0. (22)

Equivalently, the parameter u = uk can be found from the minimal derivative condi-
tion, as the unique solution to the equation

∂Bk,1(uk)

∂uk
= 0. (23)

There are two special cases in u-optimization, such as of β = 0 and β = −1,−2, . . .,
which would require special attention. In the first case, we have to apply modified root
approximants as explained in Section 8. In the second case, in addition to studying
the inverse, 1/ f (x), we advance the method of simplified Borel-light technique in the
Section 4. The latter technique would not call for the inversion. However, in general cases,
optimizations based on the formula (20), possess an advantage of greater simplicity over
the more advanced formulas (68) and (70) and corresponding optimizations. Therefore,
in the present paper, we limit ourselves to the most simple case of (20) and postpone the
discussions of more advanced formulas till later.

3. b-Optimization

As u = 0, we are falling back to the iterative Borel summation [1], with continuous
(fractional) parameter b, which generalizes the discrete number of iterations. In the limit of
very large x one could find an analytical expression for the multidimensional integral and
corresponding critical amplitudes for arbitrary fractional number of iterations [1].

Previously, we suggested considering the number of iterations b as the continuous con-
trol parameter [1]. In the course of b-optimization with corresponding minimal-difference
and minimal-derivative conditions, one would try to look for the correction to factorial
growth in the form of a fractional power of a Γ-function, i.e., we would try to modify
the Γ-function per se by considering its fractional powers and find such powers from
optimization.

It means the transformation of the original series to the new series

Ak(x, b) =
k

∑
n=0

an

(Γ(1 + n))b
xn , (24)

while the sought critical amplitude after inverse integral transformation is expressed simply
as the function of b

Bk(b) = Ck(b) (Γ(1 + β))b , (25)
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with marginal amplitude

Ck(b) = a0

(

(

(P1(b)
2 + P2(b))

3/2 + P3(b)
)4/3

+ . . . + Pk(b)

)β/k

, (26)

expressed by means of iterated roots applied to the transformed series (24). The Γ-correction
arises from inverse, integral transformation to the original series.

The multidimensional integrals are relatively easy to define for integers b [1,3]. From
now on, introducing continuous b means to interpolate smoothly between the values of the
integral for discrete b and only in the limit-case of large x.

The parameter b = bk is to be found from the minimal derivative condition, as the
unique solution to the equation

∂Bk(bk)

∂bk
= 0, (27)

or from the minimal difference condition (28). Most often (always in the current paper), we
have to solve the equation

Bk+1(bk)− Bk(bk) = 0, (28)

for bk, with positive integer k = 1, 2, 3, . . .. For more details, see [1].
There is only one special case in b-optimization, of β = −1,−2, . . ., which would

require special attention. In this case, in addition to studying the inverse, 1/ f (x), we also
advance the method of Borel-light in Section 4.

4. Borel-Light Technique

The large-variable exponent β of the sought function coincides with that for the
Borel-type transforms. The transform R∗

i (x) itself is different from the function f ∗i (x)
with i = 1, 2, . . . , k, but can be matched with the latter through the integral transformation,
in general. However, instead of taking the integral, the sought function can be reconstructed
from R∗

i (x) directly, by means of a simplified, Borel-light technique. In fact, we are going
to deal with a whole table

f ∗n,i(x) ≃ Pn/n(x) R∗
i (x), (29)

with i = 1, 2, . . . k. While n = 1, 2, . . . , k/2 for even k, and n = 1, 2, . . . , (k − 1)/2 for odd
k. Here, Pn/n(x) (or Pn,n(x)) stands for the diagonal Padé approximants of the nth order,
with arbitrary positive integer n [3].

For instance, if we choose k = 2, we have two approximants

f ∗1,1(x), f ∗1,2(x).

For the choice of k = 3, we have to add one more approximant

f ∗1,3(x).

For k = 4, we have to add five more approximants

f ∗2,1(x), f ∗2,2(x), f ∗2,3(x), f ∗1,4(x), f ∗2,4(x).

For k = 5, we have two additional approximants

f ∗1,5(x), f ∗2,5(x).

For k = 6, we have to add eight more approximants

f ∗3,1(x), f ∗3,2(x), f ∗3,3(x), f ∗3,4(x), f ∗3,5(x), f ∗1,6(x), f ∗2,6(x), f ∗3,6(x).

While the root approximants are constructed routinely for the transformed series,
the parameters of the diagonal Padé approximant are to be found by equating the like-



Symmetry 2023, 15, 1266 9 of 31

order terms of the small-variable expansion of the complete approximation (29) with the
known truncation in the form of (2) and (3). Employing the diagonal Padé approximants
Pn/n(x) allows us to capitalize on the knowledge of the properties of such approximants,
as explained in the preceding paper [17].

Assume in the case of u-optimization that the number of iterations b is fixed and does
not appear in the forthcoming formulas. At large values of the variable, the Borel-type
transform behaves as

R∗
i (x, u) ≃ Ci(u)xβ (x → ∞) , (30)

and the total critical amplitude

B∗
n,i(uk) ≃ Pn/n(∞) Ci(ui), (31)

becomes the table. The parameter u = ui is to be found from the minimal derivative
condition [9], as the unique solution to the equation

∂Ci(ui)

∂ui
= 0, (32)

or from the minimal difference condition, with the differences

δi,i+1 = Ci+1(ui)− Ci(ui) ,

and positive integers i = 1, 2, 3, . . . k. A set ui of control parameters is defined as the solution
to the equations

Ci+1(ui)− Ci(ui) = 0. (33)

Equations (32) and (33) hold for the case of b-optimization with u simply replaced by
b. The control parameter can also be fixed to the value u = 0 of the Borel-case, and the
same procedures can be applied with respect to the number of iterations b [1].

Of course, the simplest way to proceed is to fix both parameters, say to u = 0, b = 1,
and correct the approximants applied to a Borel-transformed series with the diagonal Padé
approximants.

The Borel-light techniques obviously do not have a pole arising from the Γ-function in
the often encountered case of β = −1, and could be calculated without a transformation
to the inverse of f (x), or by calling for an optimal power-transform. The application of
simplified, Borel-light techniques for inverse transformation can be useful for some more
complex Borel-type transforms [35], when integral forms are very difficult or impossible to
access analytically.

Let us consider as an example the energy gap between the lowest and second ex-
cited states of the scalar boson for the massive Schwinger model in Hamiltonian lattice
theory [36,37]. The massive Schwinger model in Hamiltonian lattice theory [36,37] de-
scribes quantum electrodynamics in two space-time dimensions. It also mimics quantum
chromodynamics. Therefore, it can be considered as a touchstone for the new techniques.

The spectrum of bound states is often studied for the Schwinger model. The spectral
gap ∆(z) could be expressed as a function of the variable z = (1/ga)4, where g is a coupling
parameter and a lattice spacing. The energy gap for the so-called scalar state at small z can
be represented as a series [37],

2∆(z) ≃ 1 + 6z − 26z2 + 190.6666666667z3 − 1756.666666667z4 + 18048.33650794z5, (34)

with rapidly increasing by absolute value coefficients known up to the 13th order.
The continuous limit, where the lattice spacing tends to zero, or the variable z tends

to infinity, is of a special interest. In such a case, the gap acquires the limit-form of a
power-law [37],

∆(z) ≃ Bzβ (z → ∞), (35)
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where B = 1.1284, β = 1/4.
Let us apply the optimization (32). For instance, in higher orders, we obtain rather

close parameters
u8 = 0.633658, u9 = 0.636991, u10 = 0.639558.

Let us calculate the table (31), so that in higher orders:

B1,5 = 0.9383, B1,6 = 0.8988, B1,7 = 0.8585, B1,8 = 0.8199, B1,9 = 0.7828, B1,10 = 0.7853

B2,5 = 1.1336, B2,6 = 1.1411, B2,7 = 1.1471, B2,8 = 1.1518, B2,9 = 1.1557, B2,10 = 1.1589

B3,5 = 1.1336, B3,6 = 1.1433, B3,7 = 0.1493, B3,8 = 1.1541, B3,9 = 1.1581, B3,10 = 1.1613

B4,5 = 0.8972, B4,6 = 1.1411, B4,7 = 1.1493, B4,8 = 1.1397, B4,9 = 1.1427, B4,10 = 1.1452

B5,5 = 1.2309, B5,6 = 0.8208, B5,7 = 1.1471, B5,8 = 1.1541, B5,9 = 1.1427, B5,10 = 1.1519

B6,5 = 1.1142, B6,6 = 1.2389, B6,7 = 0.7255, B6,8 = 1.1518, B6,9 = 1.1581, B6,10 = 1.1452

Mind that the best estimate for the amplitude, B = 1.1224, was found by applying the
method of iterated Padé–Borel approximations in the 13th order of perturbation theory [1],
composed by averaging over calculated upper and lower bounds. The novel method gives
more consistent, unique result,

B = B6,10 = 1.1452.

It can be deduced both from “vertical” sequence Bi,9 and “horizontal” sequence B6,j.
Note that better results are achieved for the control function/iterated root in the

10th order applied to the transformed expansion. The latter observation is different from
the expectations of the standard method of corrected Padé approximants [38], where the
control functions are expected to be selected among the low-order approximations to the
original expansion. Note that finite lattice calculations give B = 1.14(3), while various
series methods give B = 1.25(15), quoted in the paper [37].

Various resummation methods give results in accord with the latter numbers. They
are presented in Table 1.

Table 1. Schwinger model. Gap for scalar state.

Schwinger Gap (Scalar)

Fractional Borel, 4th order, b-optimal (u = 0) 1.2567

Fractional Borel, 10th order, b-optimal (u = 0) 1.2817

Borel (b = 1, u = 0) 1.1593

Odd Padé, 11th order [17] 1.2266

Odd Padé, 13th order [17] 1.321

Borel-light, b = 1, minimal derivative 1.1452

Iterated Roots 1.239

Exact 1.1284

Series Methods [37] 1.25(15)

Finite lattice [37] 1.14(3)

The examples to be presented below belong to four different types and correspond
to the

1. Physical problems solvable with u-optimization;
2. Problems solvable with b-optimization;
3. Example related to the Bose Condensation, solvable with Borel-light techniques;
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4. Two cases with β = 0, which require modification to the iterated root approximations.

We are going to demand, in the spirit of Hadamard, that the solution to the optimiza-
tion problem of any type exists and is unique.

5. Examples of u-Optimization

Below, we consider a number of examples of u-optimization where the positive pa-
rameter u > 0 is determined from the optimization procedure, while b is fixed. When the
solution to such u-optimization problem (1) exists and (2) is unique, our task could be
considered as completed. All cases studied in Section 5 satisfy the two conditions.

As usual, the results obtained by the new methods are going to be compared with
other methods. The solutions by the methods to be chosen for comparison also satisfy the
two Hadamard conditions, just as stated above. To assess the quality of approximation by
any method, the pool of examples has to be broad and include various behaviors of the
coefficients an.

5.1. Quantum Quartic Oscillator: Amplitude

The anharmonic oscillator is described by the well-known Hamiltonian in which
non-linearity is quantified through g, a positive coupling (anharmonicity) parameter g [39].
Perturbation theory for the ground-state energy yields [39], a rather long truncation with
rapidly growing by magnitude an, Ek(g) = ∑

k
n=0 angn. Only the starting coefficients

a0 =
1
2

, a1 =
3
4

, a2 = −
21
8

a3 =
333
16

, a4 = −
30885

128
,

are shown here. In addition, the strong-coupling limit

E(g) ≃ Bgβ (g → ∞) , (36)

is known, with B = 0.667986, β = 1/3.
Optimization amounts to satisfying the minimal-difference Equation (21), with the

control parameter u and b = 1, 2 (u-optimization). It brings a unique and accurate solution
in all orders considered analytically up to the 10th order included. In higher orders, we
find a small values of the power-law corrections to the factorial growth of the coefficients:

u8 = 0.0269767, u9 = 0.0269493, u10 = 0.0272863.

Various other methods considered as well, give reasonable results as shown in the
Table 2. The case of a quartic oscillator appears to be difficult for the iterated roots, bringing
a complex result in higher orders of perturbation theory.

Table 2. Critical amplitude for the one-dimensional quartic oscillator. Dependencies on the approxi-
mation order. The exact value of amplitude B equals 0.667986.

Bk 7th 8th 9th 10th

Fractional Borel (b = 1, 2), u-opt. 0.67178 0.671575 0.670902 0.669356

Borel (u = 0, b = 1) 0.683794 0.683632 0.682494 0.679937

Iterated Roots complex complex complex complex

Even Padé-Borel [17] 0.678868 0.679037

Odd Padé-Borel [17] 0.678404 0.67926

Even Padé [17] 0.708938 0.709572

Odd Padé [17] 0.720699 0.712286

Corrected Padé [38] 0.63279 0.655086
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The best results in the 10th order are achieved through the u-optimization with mini-
mal difference condition (21), for b = 1, 2. The method of corrected approximants works
well as well, but needs more terms to reach the same accuracy [38]. The method of ad-
ditive approximants by Gluzman and Yukalov, and Kleinert’s variational perturbation
theory give excellent estimates for the amplitudes, but have to rely on the knowledge of all
subcritical indices.

5.2. Schwinger Model: Energy Gap

For the Schwinger model, let us consider the energy gap between the lowest and first
excited states, or the so-called vector masses, considered as a function ∆(z) of the variable
z = (1/ga)4, where g is a coupling parameter and a, lattice spacing. This energy gap at
z → 0 can be represented as a series 2∆(z) ≃ ∑n anzn, with rapidly increasing by absolute
value coefficients

a0 = 1 , a1 = 2 , a2 = −10 , a3 = 78.6667 , a4 = −736.222 ,

a5 = 7.57293 × 103 , a6 = −8.27367 × 104 , a7 = 9.42803 × 105 ,

and so on, up to the 14-th order included [37].
In the continuous limit, where the lattice spacing tends to zero, the variable z tends to

infinity, and the gap acquires the limiting form of a power-law

∆(z) ≃ Bzβ (z → ∞) , (37)

with the large-variable critical amplitude B = 0.5642, and index β = 1/4.
The problem appears to be difficult for the uncontrolled Borel method, and the high-

order iterated roots both give complex results. However, by introducing controls, we can
find good, real solutions to the minimal-derivative conditions (23), but not to the minimal-
difference conditions. The behavior of amplitudes in higher orders are shown dependent
on the parameter u in Figure 1, and various results by different methods are presented in
the Table 3.

Table 3. Energy Gap for the Schwinger Model. Dependencies on the approximation order. The exact
value of the amplitude for the energy gap of the vector state equals 0.5642.

Bk 7th 8th 9th 10th

Fractional Borel, (u-opt., b = 1) 0.6602 0.6231 0.5978 0.5797

Borel (u = 0, b = 1) complex complex complex complex

Iterated Roots complex complex complex complex

Even Padé-Borel [17] 0.7027 0.7028

Odd Padé-Borel [17] 0.7023 0.70235

Even Padé [17] 0.7055 0.7138

Odd Padé [17] 0.7146 0.6999

Corrected Padé [38] 0.6915 0.6954
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Figure 1. The dependencies of amplitudes on the parameter u in different orders of perturbation
theory for the amplitude, B7 (dashed), B8 (dotted), B9 (dot-dashed) and B10 (solid) are presented.

The best result previously, B = 0.5912 with the error of 4.8%, was achieved by the
method of corrected Padé approximants in the 14th order of perturbation theory [38].
The novel method gives better results, B ≈ 0.5797, with the error of 2.75% already in 10th
order of perturbation theory. Note that finite lattice calculations give B = 0.57(1) [37],
while various series methods give B = 0.56(2) [37].

5.3. Schwinger Model: Critical Amplitude

Consider the ground-state energy E of the Schwinger model. The expansions in the
dimensionless coupling parameter x are known for the ground-state energy at small-x

E(x) ≃ 0.5642 − 0.219x + 0.1907x2 (x → 0) , (38)

and large-x
E(x) ≃ Bx−1/3 (x → ∞),

with B = 0.6418. Typically, we would add one more trial term with a3 = 0 in the weak-
coupling limit. The truncations and relevant discussion can be found in the papers [37,40–45].

Note that for negative β, we should consider the inverse of energies. Optimization
with parameter u by imposing the minimal-difference condition B3,1(u3)− B2,1(u2) = 0,
gives the control parameter u2 = 0.13435; and we could find B = B3,1(u2)

−1 = 0.6672.
In such a case, only minimalistic truncations in the dimensionless coupling parameter

x are available and there is not much room for an improvement. The results of calculations
by various methods are shown in the Table 4.

We want to stress here the usefulness of an approach based on attacking the problem
by multiple methods. We also note that for such minimalistic truncation with only two
nontrivial terms, the modified-even Padé–Borel technique with a special corrector given by
the formula 4.8 from the paper [17] is still able to produce a good estimate B = 0.651. The
u-optimal solution obtained above is not the best, but it is still quite reasonable. The best
results are found from the Optimal Generalized Borel [1].

If in the case of a rather long truncation from the previous two examples, one can
study the numerical convergence dependent on the approximation number. In the case of a
short truncation, one has to rely on agreement among various methods of resummation.
Additionally, in the particular case just presented, such an approach appears to be feasible.
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Table 4. Schwinger Model: Amplitude.

Schwinger Critical Amplitude

Fractional Borel (b = 1, u-optimal) 0.6672

Odd Padé–Borel [17] 0.6122

Optimal Mittag–Leffler [9] 0.6202

Optimal Borel-Leroy [9] 0.6076

Optimal Generalized Borel [1] 0.6442

Borel (u = 0, b = 1) 0.6562

Modified Even Padé–Borel [17] 0.651

Exact 0.6418

Odd Padé [17] 0.5344

Iterated Roots, second order 0.5523

5.4. Anomalous Dimension

In the n = 4 supersymmetric Yang–Mills theory, the cusp anomalous dimension Ω(g)
of a light-like Wilson loop, depends only on the coupling g (see [46] and references therein).

In terms of the variable x = g2, the problem can be written down in terms of the

function f (x) = Ω(x)
x , with the following weak-coupling expansion,

f (x) ≃ 4 − 13.1595x + 95.2444x2 − 937.431x3, x → 0,

while in the strong-coupling limit f (x) takes the form of a power-law

f (x) ≃ Bxβ, x → ∞,

with B = 2 and β = −1/2.
Fractional Borel technique with minimal-difference condition (21) (b = 1, 2), has a

unique solution
B3(u3) = 1.90291,

for the u-optimization problem with very small optimal u3 = 0.0164826. The result for the
amplitude is quite reasonable, while the best result, B = 2.0118, is delivered by the optimal
Borel–Leroy summation discussed in the paper [9]. More results obtained by different
methods are shown in the Table 5.

The problem was recently studied by means of various Padé and Padé–Borel tech-
niques [17]. Only the best results are shown in the Table 5.

Table 5. Cusp.

Cusp Critical Amplitude

Fractional Borel (b = 1, 2, u-optimal) 1.90291

Odd Padé [17] 1.79734

Odd Padé–Borel [17] 2.06701

Optimal Borel–Leroy [9] 2.01177

Optimal Generalized Borel [1] 2.29603

Borel (u = 0, b = 1) 2.4416

Iterated Roots 1.69766

Exact 2
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5.5. One-Dimensional Bose Gas: Amplitude

The ground-state energy E(g) of the one-dimensional Bose gas with contact inter-
actions depends only on the non-dimensional coupling parameter g. The expansion for
the energy was found in high orders of perturbation theory [47,48]. In the variables
e(x) ≡ E

(

x2
)

, g ≡ x2, the weak-coupling expansion is written as follows, for x → 0,

e(x) ≃ x2 (1 − 0.4244131815783876 x + 0.06534548302432888 x2−
0.001587699865505945 x3 − 0.00016846018782773904 x4−
0.00002086497335840174 x5 − 3.1632142185373668 10−6 x6−
6.106860595675022 10−7 x7 − 1.4840346726187777 10−7 x8) .

(39)

In the limit of strong couplings, as x → ∞, the celebrated exact result

E(∞) =
π2

3
≈ 3.289868 . (40)

is known due to Tonks and Girardeau (1960).
The better results can be achieved with addition to the (39) of the two more, very small

trial terms
a9 = a10 = 0.

Yet, various Padé and Padé–Borel approximations [17], fail beyond any way of repairing
them by simple means.

Fractional Borel Summation provides a u-optimal solution to the Equation (21) (b = 1, 2).
The values of the control parameter appear to be quite large, and are shown below,

u7 = 1.10855, u8 = 1.20477, u9 = 1.2528, u10 = 1.27757.

This is in contrast with rather small values of the control parameters found in previous
examples. The result B = (B10,2(u10))

−1 = 3.81457 is not the best, but quite reasonable. It
brings a significant improvement over the Borel summation as shown in Table 6.

Let us also mention that the second-order iterated root corrected also with the iter-
ated roots in the 8th order of perturbation theory [23], also gives a reasonable estimate of
B = 3.77136. The best, very close results in this case are achieved by some other methods.
Various results are brought up in the Table 6. The method of optimal Mittag–Leffler summa-
tion gives in fact the same results as iterated roots [9] applied without any transformations.

Table 6. Ground state energy for the one-dimensional Bose gas. Dependencies on the approximation
order. The exact value of the amplitude for the energy equals π2

3 ≈ 3.28987.

Bk 7th 8th 9th 10th

Fractional Borel, (u-opt., b = 1, 2) 4.57557 4.31065 3.93828 3.81457

Borel (u = 0, b = 1) 4.70625 4.50604 4.35113 4.22934

Generalized (iterated) Borel [17] 3.31805 3.38914 3.40286 3.39967

Iterated Roots [9] 3.64329 3.52695 3.45274 3.40983

5.6. Membrane: Pressure

In the case of a two-dimensional membrane, its pressure can be calculated by per-
turbation theory with respect to the wall stiffness characterized by the non-dimensional
parameter g [49], so that

pk(g) =
π2

8g2

(

1 +
k

∑
n=1

angn

)

, (41)
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with the coefficients

a1 =
1
4

, a2 =
1

32
, a3 = 2.176347 × 10−3 ,

a4 = 0.552721 × 10−4 , a5 = −0.721482 × 10−5 , a6 = −1.777848 × 10−6 .

The so-called rigid-wall limit corresponds to an infinite g. Most accurately, it is calculated
by means of the Monte Carlo simulations [50]. The following value is considered as
a benchmark:

p(∞) = 0.0798 ± 0.0003 . (42)

All Padé and overwhelming majority of Padé–Borel approximations fail miserably,
at least in the given orders of perturbation theory. The results below are obtained with the
addition of the two trial, very small terms with a7 = a8 = 0.

The dependencies of amplitudes on the control parameter u in higher orders of per-
turbation theory and b = 1, are shown in Figure 2. Very good result, B = 0.08041, is
achieved in the 8th order with minimal-derivative condition. Additionally, a good result,
B = 0.07761, is achieved with a minimal-derivative condition imposed in the 7th order of
perturbation theory.

1.5 2.0 2.5 3.0 3.5 4.0 4.5
u

0.06

0.07

0.08

0.09

B

Figure 2. The dependencies on the parameter u, for b = 1, in different orders of perturbation theory
for the amplitudes B6 (dotted), B7 (dot-dashed), and B8 (solid) are compared.

The results obtained by various methods are shown in the Table 7.
We register a significant improvement over the Borel result B = 0.06517. The former

result is to be compared with the also reasonable value of 0.0821 from the variational
(optimal) perturbation theory [49].

The iterated root in 4th order corrected with iterated roots in the 8th order of perturba-
tion theory, as described in the paper [23], also gives a reasonable estimate p = 0.0784338.
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Table 7. Fluctuating membrane.

Membrane Pressure

Fractional Borel, 7th order, (u-optimal, b = 1) 0.0776132

Fractional Borel, 8th order, (u-optimal, b = 1) 0.0804093

Odd Padé–Borel, 5th order 0.0832274

Borel, (u = 0, b = 1), 8th order 0.0651721

Corrected Padé Approximants [38] 0.0806101

Corrected Iterated Root Approximants [23] 0.0784338

Doubly renormalized iterated roots [24] 0.0792

Optimal perturbation theory [49] 0.0821

Continued roots, 5th order [51] 0.07957

Continued roots, 6th order [51] 0.083702

Iterated Roots, 8th order 0.073258

“Exact” Monte Carlo 0.0798

6. Examples of b-Optimization

When even one of the two Hadamard conditions is not met in the course of u-
optimization, we apply another complementary procedure of optimization with respect
to another parameter, number of iterations b, extended to an arbitrary real number from
the original integers [1]. When the solution to such a b-optimization problem exists and
is unique, our task could be considered as completed. A few examples of a successful
application of the b-optimization are presented below.

6.1. Two-Dimensional Polymer: Amplitude

For the swelling factor Υ of the two-dimensional polymer coil, perturbation theory
yields the expansion in powers of the dimensionless coupling parameter g [52],

Υ(g) ≃ 1 +
1
2

g − 0.12154525 g2 + 0.02663136 g3 − 0.13223603 g4, (43)

as g → 0. As g → ∞, the swelling factor behaves as a power-law, i.e.,

Υ(g) ≃ Bgβ.

The index at infinity β = 1/2 is considered to be known exactly [53,54]. The amplitude B is
of the order of unity.

Since there is no solution to the u-optimization problem, we resort to the fractional
Borel method with b-optimization and u = 0. By applying the minimal-difference condition,
B4(b3)− B3(b3) = 0, the method brings the following estimate

B = B4(b3) = 0.9707,

with b3 = 0.8361327. The results obtained by various methods are presented in the Table 8.
Except for the results of Borel–Leroy summation, they are all close to unity.
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Table 8. Expansion factor of the two-dimensional polymer.

2d Polymer Critical Amplitude

Fractional Borel (u = 0, b-optimal) 0.970678

Even Padé [17] 1.00002

Even Padé–Borel [17] 0.977767

Optimal Borel–Leroy (b = 1) [9] 1.14311

Optimal Borel–Leroy (b = 1, 2) [9] 1.14344

Optimal Generalized Borel (b = 1) [1] 0.968895

Optimal Generalized Borel (b = 1, 2) [1] 0.954187

Borel (b = 1, u = 0) 0.969559

Iterated Roots, third order 0.970718

Iterated Roots, 4th order complex

“Exact” conjectured 1

6.2. Three-Dimensional Polymer: Amplitude

Similarly, a perturbation theory for the expansion factor of a three-dimensional poly-
mer coil leads to a series in a single dimensionless parameter g, which measures the
repulsive interaction between segments of the polymer [52,55]. As g → 0, the expansion
factor Υ(g) can be presented as the truncated series similar, at first glance, to the case of an
anharmonic oscillator, with the coefficients

a0 = 1 , a1 =
4
3

, a2 = −2.075385396 a3 = 6.296879676 ,

a4 = −25.05725072, , a5 = 116.134785 , a6 = −594.71663 .

The strong-coupling behavior of the expansion factor as g → ∞, is power-law

Υ(g) ≃ Bgβ.

The parameters B and β above were found numerically in the paper [55]. It is known [55]
that B ≈ 1.531, while β ≈ 0.3544.

With fixed critical index β, we calculate critical amplitude B by various methods based
on the expansion for small g. The results of calculations with different methods are shown
in the Table 9.

A fractional, b-optimal, Borel technique of 6th order with u = 0, with the minimal-
difference condition, B6(b5)− B5(b5) = 0, gives

B6(b5) = 1.53523,

with b5 = 0.290422; and the result is good. The best, most consistent results, however,
are delivered by the Padé–Borel techniques of the paper [17]. They seem to bracket the
numerical result.
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Table 9. Expansion factor of the three-dimensional polymer.

3d Polymer Critical Amplitude

Fractional Borel, 6th order, (u = 0, b-optimal) 1.53523

Even Padé, 6th order [17] 1.54022

Even Padé–Borel [17] 1.53296

Odd Padé, 5th order [17] 1.54089

Odd Padé–Borel [17] 1.52996

Iterated Roots, 6th order 1.53611

Borel, 6th order, (b = 1, u = 0) 1.52718

“Exact” numerical 1.5309

6.3. One-Dimensional Nonlinear Model

Quantum properties of the Bose-condensed atoms in a harmonic trap are modelled
by the the one-dimensional stationary nonlinear Schrödinger equation. The energy levels

are represented in the form E(g) =
(

n + 1
2

)

f (g) , where n = 0, 1, 2, . . . is a quantum

index and g is a dimensionless coupling parameter quantifying the effect of trapping. The
perturbation theory for the function f (g), gives the expansion f (g) = 1 + ∑

k
n=1 anzn in

powers of g. The coefficients an can be found in the paper [24]:

a1 = 1, a2 = −
1
8

, a3 =
1
32

, a4 = −
1

128
, a5 =

3
2048

.

And one more coefficient, very small a6 = 0, can be tried in order to improve accuracy.
For the strong-coupling limit, we have a power-law

f (g) ≃ Bgβ ,

with B = 3
2 , β = 2

3 .
As demonstrated below, the solutions for B suggested by the two optimization condi-

tions in the 4th order are very close to each other. This is exactly what one would expect
from the two different optimization conditions imposed on the amplitudes.

With a fractional, b-optimal, Borel technique with minimal-difference condition, by
applying the minimal-difference condition, B5(b4)− B4(b4) = 0, we obtain

B = B5(b4) = 1.46952,

with b4 = −1.01704.
A fractional, b-optimal, Borel technique with minimal-derivative condition, ∂B4(b4)

∂b4
= 0,

gives
B = B4(b4) = 1.47592,

with b4 = −1.28859.
The results of both optimizations are quite reasonable, while the best results are

delivered by the Padé techniques of the paper [17]. The results obtained by various
methods are presented in the Table 10. Almost all of them, excepting the method of Borel
summation, are good.
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Table 10. Nonlinear quantum model.

1d Nonlinear Model Critical Amplitude

Fractional Borel, 4th order, minimal derivative, b-opt. 1.47592

Fractional Borel, 5th order, minimal difference, b-opt. 1.46952

Odd Padé, 5th order [17] 1.49226

Odd Padé–Borel, 5th order [17] 1.57327

Even Padé, 4th order [17] 1.49181

Even Padé–Borel, 4th order [17] 1.56761

Borel, 5th order (b = 1, u = 0) 1.38512

Iterated roots, 5th order 1.44795

Continued roots, 5th order [51] 1.523478

Exact 3/2

6.4. Three-Dimensional Trap

The wave function ψ(r) of the Bose-condensed atoms in a spherically symmetric
harmonic trap can be found from the three-dimensional stationary nonlinear Schrödinger
Equation [56]. The problem can be reduced to studying only the radial part of the conden-
sate wave function

χ(r) =
1

2π1/2

ψ(r)

r
,

with χ(0) = 0. The latter function is defined by the effective nonlinear Hamiltonian [56]

Ĥr =
1
2

(

−
d2

dr2 + r2
)

+
g

4πr2 χ2, (44)

where g is a dimensionless coupling parameter. The function χ(r) can be obtained from
the effective three-dimensional stationary nonlinear Schrödinger Equation [56], or else
to the ODE

Ĥrχ = Eχ ,

where E stands for the sought ground-state energy. More examples and references to ODEs
from quantum mechanics and polymers can be found in the reviews [24,56]. Sometimes,
more complicated PDEs can be reduced to the cascades of ODEs [57]. The solutions to
PDEs when homogenized lead to various expansions of effective transport coefficients,
which can be resummed by various methods including Borel summation [58]. See multiple
examples of similar problems in the paper by Gluzman, Symmetry (2022), on asymptotics
and summation of the effective properties of suspensions, liquids and composites. It
could be also interesting to apply the novel “Borelian” methods to the various problems of
aero-and-hydrodynamics [59,60].

Finally, the ground state energy E of the trapped Bose-condensate can be approximated
by the following truncation expressed in terms of the parameter c ≡ 2g

(2π)3/2 ,

E(c) ≃
3
2
+

1
2

c −
3

16
c2 +

9
64

c3 −
35

256
c4, (c → 0), (45)

where c quantifies the effect of trapping.
On the other side, the energy behaves as the power-law

E(c) ≃ Bcβ, (c → ∞), (46)

with the amplitude at infinity B = 5
4 , and index β = 2/5 [56].
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Fractional, b-optimal, Borel technique with minimal-difference condition, in the 4th
order gives

B = B4(b3) = 1.2852,

with b3 = 0.9504.
The results from various methods are presented in Table 11. All of them give close

and good enough results. The results for iterated roots are also Mittag–Leffler optimal.
The method of Even Padé–Borel approximants [17], gives a good estimate from below and
from above, as shown in Table 11.

Table 11. Three-dimensional trap.

Trap Critical Amplitude

Fractional Borel, minimal difference, b-optimal 1.28517

Odd Padé [17] 1.3097

Odd Padé–Borel [17] 1.29394

Even Padé [17] 1.28211

Even Padé–Borel, 2nd order [17] 1.23729

Even Padé–Borel, 4th order [17] 1.28548

Borel (u = 0, b = 1) 1.28492

Optimal Borel–Leroy (b = 1) [9] 1.28664

Optimal Generalized Borel (b = 1) [1] 1.28459

Iterated roots 1.27392

Exact 5/4

7. Bose Temperature Shift

In the cases when even one of the two Hadamard conditions are not met in the
course of u- and b-optimizations of the complete amplitude B, we suggest applying yet
another procedure. Optimization is going to be applied to the marginal amplitude C, either
with respect to the parameter u or parameter b with a subsequent correction by means
of the diagonal Padé approximants [9]. The resulting approximation is going to satisfy
asymptomatically the original truncated series (1) and (2).

The shift ∆Tc ≡ Tc − T0, of the Bose–Einstein condensation temperature Tc of a non-
ideal Bose system compared to the Bose–Einstein condensation temperature T0 of ideal
uniform Bose gas, is believed to have a simple form. At asymptotically small gas parameter
γ ≡ ρ1/3as, where as is atomic scattering length and ρ stands for the gas density, it behaves
as ∆Tc

T0
≃ c1γ, for γ → 0. Thus, the parameter c1 quantifies the shift.

Monte Carlo simulations [61–63] give

c1 = 1.3 ± 0.05. (47)

At the same time, c1 can be defined [64–66] as the strong-coupling limit

c1 = lim
g→∞

c1(g) ≡ B (48)

of an auxiliary function c1(g). The latter function could be expressed as an expansion over
an effective coupling parameter,

c1(g) ≃ a1g + a2g2 + a3g3 + a4g4 + a5g5 , (49)

where
a1 = 0.223286 , a2 = −0.0661032 , a3 = 0.026446 ,



Symmetry 2023, 15, 1266 22 of 31

a4 = −0.0129177 , a5 = 0.00729073 .

Note that in the present case, in the actual problem solved for the auxiliary function c1(g),
the index at infinity β = −1.

In the same way as in the case of the Bose system, one can find the values of c1 for the
O(1) field theory [65]. The following, formally obtained expansion is available the auxiliary
function for small g,

c1(g) ≃ 0.334931g − 0.178478g2 + 0.129786g3 − 0.115999g4 + 0.120433g5 .

The Monte Carlo numerical estimate c1 = 1.09 ± 0.09 , is available here as well (see [38]
and references therein).

For the O(4) field theory, analogous computations can be accomplished. The expan-
sion for the auxiliary function c1(g) as g → 0 can be found in [65], i.e.,

c1(g) ≃ 0.167465g − 0.0297465g2 + 0.00700448g3 − 0.00198926g4 + 0.000647007g5.

The Monte Carlo numerical estimate c1 = 1.6 ± 0.1 , is available (see [38] and references
therein).

The problem appears to be very difficult and even challenging for the Fractional Borel
methodology, since the optimization in the parameter u > 0 does not bring a solution,
and optimization in the parameter b brings multiple (two) solutions. In such a case,
the results could be found from the simplified, Borel-light summation introduced in the
Section 4. Note that it is marginal amplitudes that have to be optimized. Note also that
even in the case of β = −1, the Borel-light summation can be applied to the original series,
without a need for inverting the truncations.

For example, in the case of Bose-condensate, the method of u-optimization with
optimal u2 = −0.31805, found from the minimal difference condition C3(u2)− C2(u2) = 0,
gives

B∗
2,2(u2) ≃ P2/2(∞) C2(u2) = 1.3085.

Here, and only here, we have to resort to a negative control parameter. The option of resort-
ing to negative u when a positive solution does not present itself is quite straightforward,
but seems to work well only in some special cases.

Similarly, the method of b-optimization with optimal b3 = 0.29893, found from the
minimal difference condition C4(b3)− C3(b3) = 0, gives

B∗
2,4(b3) ≃ P2/2(∞) C4(b3) = 1.2661.

Even without optimization, just setting b = 1, u = 0, we obtain the rather reasonable result

B∗
2,4(1) ≃ P2/2(∞) C4(1) ≈ 1.25.

The results of simplified, Borel-light summation introduced in Section 4, are further elab-
orated in Table 12. The results obtained by the Fractional Borel-light (b = 1, u-optimal),
seem to be more in line with the other two preferred estimates.

Table 12. Shift of the Bose-Einstein condensation temperature and analogous models. Borel-light
methodology.

Parameter c1 Bose O(1) O(4)

Fractional Borel-light (u = 0, b-optimal) 1.2498 1.0792 1.4862

Fractional Borel-light (b = 1, u-optimal) 1.3085 1.1394 1.5268

Fractional Borel-light (u = 0, b = 1) 1.2661 1.1005 1.4796
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Various results for all three cases obtained by different methods are shown in the
Table 13.

Table 13. Shift of the Bose–Einstein condensation temperature and analogous models.

Parameter c1 Bose Condensate O(1) O(4)

Fractional Borel-light 1.24977 1.07921 1.48618

Modified-Even Padé [17] 1.28853 1.11459 1.51825

Corrected Iterated Roots [23] 1.30915 1.13817 1.5238

Optimal Mittag–Leffler [9] 1.33967 1.14124 1.60226

Optimal Generalized Borel [1] 1.33898 1.15286 1.57478

“Exact” Monte Carlo 1.3 ± 0.05 1.09 ± 0.09 1.6 ± 0.1

Odd Padé [17] 0.985 0.82441 1.218855

Borel (u = 0, b = 1) 1.54664 1.35492 1.75813

Iterated Roots complex complex complex

We comment that the simplest approaches of Modified-Even Padé approximants of
the [17], and Corrected Iterated Root Approximants of the paper [23], give close and good
results, and without any explicit optimization or transformation of the series being imposed.
In such a sense, they are preferable to others.

For instance, the second-order iterated roots corrected with iterated roots in the 4th
order of perturbation theory, as described in the paper [23], gives reasonable estimates
in all three cases. The corresponding results are shown in the third line of the Table 13.
In particular, for the Bose-condensation, the method of corrected iterated roots gives
c1 = 1.30915.

Kastening [64–66], using the Kleinert variational perturbation theory, found the Bose-
condensation problem the value of c1 in the interval 1.16–1.38; and estimated the shift as
1.27 ± 0.11.

8. Case of β = 0

In order to address the case of β = 0, the definition of iterated roots should be modified
slightly. Conditioning the approximants on correct critical exponent β = 0 at infinity, we
suggest the modified iterated root approximants in the form

rk(x) = a0 + P1x

(

(

(

(1 + P2x)2 + P3x2
)3/2

+ P4x3
)4/3

+ . . . + Pkxk

)α/k

, (50)

with known powers and unknown amplitudes. The number of unknowns is exactly the
same as for the iterated roots described in the Section 1.1.

We request that
1 + α = β, (51)

so that in the case of β = 0, one finds that α = −1 in all orders k = 2, 3, . . .. For instance,
for k = 2 the approximant (8) is simply

r2(x) = a0 + P1x(1 + P2x)−1 , (52)

for k = 3

r3(x) = a0 + P1x
(

(1 + P2x)2 + P3x2
)− 1

2
, (53)
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and for k = 4

r4(x) = a0 + P1x

(

(

(1 + P2x)2 + P3x2
)3/2

+ P4x3
)− 1

3

, (54)

Now, all relevant parameters Pj could be uniquely defined from the asymptotic equivalence
with the truncated series fk(x) in the small x limit. Of course, the approximants can be
(and will be) applied also to the Borel-type transformed series as well.

In the large-variable limit, the approximant (50) behaves as

rk(x) ≃ Ck (x → ∞) , (55)

with the critical amplitude

Ck = a0 + P1

(

(

(

P2
2 + P3

)3/2
+ P4

)4/3

+ . . . + Pk

)−1/k

. (56)

The large-variable exponent β = 0 of the sought function f ∗k (x) coincides with that for
the self-similar Borel transform r∗k (x). However, the transform r∗i (x) with i = 2, 3, . . . k is
different from the sought function f ∗i (x).

In what follows, we adhere to the logic of the Section 4, outlined for the Borel-light
summation. In the case of u-optimization, in order to establish an inverse transform to
original series, instead of taking the integral, the sought function can be reconstructed
directly and explicitly, as suggested in Section 4, i.e.,

f ∗n,i(x) ≃ Pn/n(x) r∗i (x), (57)

with i = 2, 3, . . . , k. While n = 1, 2 . . . k/2 for even k, and n = 1, 2, . . . , (k − 1)/2 for odd
k. The parameters of the diagonal Padé approximant are to be found from the accuracy-
through-order procedure [67], from asymptotic equivalence with the original expansions (2)
and (3).

Assume that the number of iterations b is fixed and does not appear in the forthcoming
formulas. At large values of the variable, the self-similar Borel-type transform behaves as

r∗i (x, u) ≃ Ci(u) (x → ∞) , (58)

and the total critical amplitude

B∗
n,i(ui) ≃ Pn/n(∞) Ci(ui), (59)

ought to be calculated. The parameter u = ui is to be found from the minimal derivative
condition, as the unique solution to the equation

∂Ci(ui)

∂ui
= 0, (60)

or from the minimal difference condition, with the differences

Ci+1(ui)− Ci(ui) = 0 , (61)

and for positive integers i = 2, 3, . . . , k. The optimization similar to the equation (21) can be
written down as well by simply changing notations.

The control parameter can be also fixed to the value u = 0, and the same procedures
can be applied with respect to the number of iterations b [1]. Equations (59)–(61) will hold
with u simply replaced by b.

Of course, the approximants (50), with the condition (51), can also be applied when
β 6= 0.
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8.1. One-Dimensional Antiferromagnet: Ground State Energy

The ground-state energy of an equilibrium one-dimensional quantum Heisenberg an-
tiferromagnet can be found [68] from the energy E(t) of a non-equilibrium antiferromagnet.
At small time t → 0, one has an expansion

E(t) ≃ −
1
4

(

1 +
4

∑
n=1

antn

)

, (62)

with the coefficients

a1 = 4 , a2 = −8 , a3 = −
16
3

, a4 = 64 .

However, it is the infinite time limit E(∞) that ought to be deduced from the expansion (62).
The ground-state energy is known exactly due to Hulthen [69],

E = E(∞) = −0.4431 . (63)

The u-optimization-light procedure fails to bring a reasonable solution. The b-optimization
procedure with u = 0, returns us to the case of iterative Borel summation [1]. Solving the
equation C4(b3)− C3(b3) = 0, brings a unique solution b3 = −0.42432. Accomplishing
inverse integral transformation is quite straightforward since the contribution from Γ-term
equals unity in the case of β = 0. It gives the amplitude, which is equal to the marginal
amplitude. From the marginal amplitude, we simply estimate that

E(∞) ≈ B4 = C4(b3) = −0.441343.

In the method of Borel-light described above, the b-optimal marginal amplitude found
with b3 = −0.42432, u = 0, ought to be corrected with the diagonal Padé approximants.
Simply rewriting the formula (59) for b in place of u leads to the total critical amplitude

B∗
2,4(b3) = P2/2(∞) C4(b3) = −0.464547.

A slightly different result is achieved by calculating

B∗
1,4(b3) = P1/1(∞) C4(b3) = −0.441343,

which is exactly the result achieved by the inverse integral transformation.
Various approximations are shown in Table 14. Note that by applying the minimal-

derivative condition to optimal Mittag–Leffler summation [9] with odd-factor approximants
of [70], one can see that our very good estimator, the simple odd-factor approximant, is
also Mittag–Leffler-optimal.

The diagonal Padé approximation and the Borel approximation (u = 0, b = 1) are
inferior performers individually, but could be viewed as upper and lower bounds on
the solution.
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Table 14. Antiferromagnet.

1d Antiferromagnet Energy

Fractional Borel, u = 0, b-optimal −0.4413

Fractional Borel-light −0.4645

Odd-Factor Approximants [70] −0.4452

Iterated Root Approximants (50) −0.4819

Exact (Hulthen) −0.4431

Diagonal Padé, 2th order −0.75

Diagonal Padé, 4th order −0.3289

Borel (u = 0, b = 1) −0.6821

8.2. Fermi Gas: Unitary Limit

The ground-state energy E of a dilute Fermi gas can be obtained perturbatively [71],
so that

E(g) ≃ a0 + a1g + a2g2 + a3g3 + a4g4 , (64)

with the coefficients

a0 =
3

10
, a1 = −

1
3π

, a2 = 0.055661 ,

a3 = −0.00914 , a4 = −0.018604 .

The expansion (effective coupling) parameter g ≡ |kFas|, is expressed through the Fermi
wave number kF and the atomic scattering length as. The limit of very large g corre-
sponds to the unitary Fermi gas. Monte-Carlo numerical calculations in the case of
g → ∞ [72,73] yield

E(∞) = 0.1116 . (65)

More recent Monte Carlo simulations give a slightly higher value of E(∞) = 0.1164 [74].
The best known experimental value is equal to

E(∞) = 0.1128,

according to [72,75].
Let us consider the inverse of the truncated series (64), and apply to it various resum-

mation procedures. The transformation allows us to remove the spurious zeroes at the real
axis, which severely worsens the results for the original truncation.

In this case, u-optimization could be performed with b = 1. The u-optimal marginal
amplitude is found from the equation C4(u3)− C3(u3) = 0, which gives u3 = 0.1532. After
correction with the diagonal Padé approximant, we find B∗

2,4(u3) = P2/2(∞) C4(u3), and
estimate after inversion that E(∞) ≈ 0.1256.

Slightly lower result, E(∞) ≈ 0.1244, is achieved by calculating an inverse of the
amplitude B∗

1,4(u3) = P1/1(∞) C4(u3).
For completeness, let us also consider the b-optimal optimization procedure with

u = 0. Solving the equation C4(b3)− C3(b3) = 0, brings a unique solution b3 = 0.90885.
The amplitude is equal to the marginal amplitude, B4 = C4(b3). After inversion, we find
that E(∞) ≈ 0.1367.

Another way to introduce control consists in replacing the exponential function in
the integrand of the formula (4), by a stretched (compacted) exponential function, pa-
rameterized with the parameter U [1]. Applying the same technique of Borel-light sum-
mation as above, we find from the minimal difference condition C4(U3) − C3(U3) = 0,
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a uniquely defined control parameter U3 = 1.12197. After calculating the amplitude
B∗

2,4(U3) = P2/2(∞) C4(U3), and taking its inverse we find

E(∞) ≈ 0.119305.

Thus, the best result, E = 0.1193, achieved previously by the Borel-Factor Approximants-
light technique applied to the Mittag–Leffler transformed series [9], is reproduced.

Various approximations are shown in the Table 15. Thus, Borel-light techniques of
various shades work well for the unitary limit of Fermi gas.

Table 15. Fermi gas.

Unitary Limit Energy

Fractional Borel—light, fourth order, u-optimal 0.1256

Fractional Borel—light, second order, u-optimal 0.1244

Fractional Borel, u = 0, b-optimal 0.1367

Corrected—Factor Approximants [70] 0.1434

Corrected—Iterated Roots Approximants [24] 0.1029

Borel—Factor Approximants-light [9] 0.1193

Generalized Borel—light, fourth order, U-optimal [1] 0.1193

Diagonal Padé, 2th order 0.09774

Diagonal Padé, 4th order 0.1705

Iterated Root Approximants (50) 0.1627

Borel (u = 0, b = 1) 0.1329

“Exact” Monte Carlo [72,73] 0.1116

9. Discussion of Some Future Directions

For future work, with the goal to improve the behavior of the coefficients of transformed
series in mind, one can consider the following generalization of Borel-transformed series:

Ak(x, ω) =
k

∑
n=0

an(1 + n)ω

Γ(1 + n)
xn , (66)

where the parameter ω could be arbitrary in principle. The formula (66) appears to be well-
defined as n = 0. For negative ω and large n, the behavior of transformed quantities (66) is
similar to that of (5).

Additionally, let us introduce the following operator:

I(t) = t−1
∫ t

0
dτ[ ]. (67)

The result of application of operator I(t) to the power-law f (t) = tβ is a simple division
of the f (t) by the factor β + 1. The operator can be used to define an inverse trans-
formation. Then, the sought function is approximated by the expression f ∗k (x, ω) =
∫ ∞

0 e−t I(t)ω[R∗
k (xt, ω)

]

dt, while the amplitude

Bk(ω) = Ck(ω)(1 + β)−ω
Γ(β + 1). (68)

The latter formula appears to be well-defined as β = 0. For negative ω and large β the
behavior of amplitudes (68) is similar to that of (11). The summation of such a type will be
studied elsewhere.
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Well-known Riemann–Liouville fractional derivative Du can be employed as well.
However, it has to be multiplied by the powers tu to compensate for the changing powers
in the course of differentiation, so that

tuDutβ =
Γ(1 + β)

Γ(1 + β − u)
tβ. (69)

A correspondent modification of the Borel-type transformation should be made, with a
Γ-functional replacement of the power-law

nu ⇒
Γ(1 + n)

Γ(1 + n − u)
,

in the transformation (5), along the lines of the papers [76,77]. Asymptotically, as n → ∞ the
two expressions above become equivalent. The corresponding amplitude is given as follows

Bk(u) = Ck(u)
Γ(β + 1)2

Γ(1 + β − u)
. (70)

The operators (6), (67) and (69) are designed specifically to respect the asymptotic power-
law (1), or the so-called asymptotic scale-invariance of the sought functions.

Factor approximants [24] can be used in place of iterated roots. Despite clear technical
complications arising in the course of analytical calculations with factors, they have the
advantage of generality by including the case of β = 0 automatically. Such a comparative
study of the two different approximants is pending.

The standard Padé approximants are not sufficient for the set of problems exhibited
in the paper, either not bringing a good enough accuracy or failing altogether. But their
strength can be enhanced by adding not-so-complicated modifications [17], as can be
seen from the numerical evidence. Still, there are some hard problems where even such
enhanced Padé approximations are not sufficient and one has to be creative with some
post-Padé methods.

Thus, the program for the near future consists of investigating resummation with
various extensions of fractional derivatives. It is also necessary to study the methods of
summation with factor approximants in place of iterated roots.

10. Conclusions

Our approach to optimization is inspired by the complementarity principle in physics.
In a broad sense, an asymptotic complementarity principle [78], implies a deep connection
between the limit of small and large variables.

The complete resummation procedure by the Fractional Borel Summation would
require rather difficult from the technical standpoint optimization with respect to both u
(fractional order of the operator d(t)u given by (6)) and b (fractional number of iterations
first introduced in [1]). The optimization procedure when only parameter u is considered
and b is fixed is called above u-optimization. The optimization procedure when only
parameter b is considered and u is fixed is called above b-optimization. The problem
could be treated in some cases only with u-optimization, or just with a b-optimization in
some other cases. Neither of optimizations is able to solve overly many cases, but applied
together they can and do complement each other.

Thus, we offer a shift in paradigm: instead of looking for a single method which can
solve all the problems of resummation with reasonably good accuracy we suggest searching
for complementary methods. In the course of u-optimization we search for the correction
to factorial growth in the form of a fractional power, outside of the Γ-function. In the
course of b-optimization we consider fractional powers of the Γ-function and optimize
such powers. Considering only the one-parametric problems of optimization is technically
and conceptually advantageous, compared to the two-parametric problems. The most
interesting, as we see it, cases with the coefficients an growing (decaying) very fast are
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covered neatly by the u-optimization. The cases of slower growing (decaying) coefficients
are covered by b-optimization. The stand-alone resummation case is best tackled with
Borel-light techniques.

The method of scale-invariant Fractional Borel Summation consists of three construc-
tive steps. The first step corresponds to u-optimization of the amplitudes with fixed
parameter b. When the first step fails, the second step corresponds to b-optimization of
the amplitudes with fixed parameter u. However, when the two steps fail consecutively,
the third step corresponds to Borel-light technique with marginal amplitude optimized
with either of the two above approaches and corrected with a diagonal Padé approximants.

To assess the quality of approximation by the new methods, the pool of examples
was selected to include various behaviors of the coefficients an. The method of Fractional
Borel Summation appears to be a good, middle-off-the-road technique, allowing us to
consider with relatively minor modifications all examples presented in the paper. Of course,
in some important cases, the Fractional Borel method can be the best. We should stress that
Fractional Borel Summation is the best among all analytical methods for such hard problems
as quartic oscillator, various energy gaps for the Schwinger model and membrane pressure.
For the two-dimensional polymer the value of amplitude is not known and the predictions
are made. In the important cases of membrane pressure and of one-dimensional Bose gas
energy various Padé and Padé–Borel techniques fail, while Fractional Borel Summation
still works.

However, in general, to achieve the best results for a concrete problem of interest, one
should turn to a variety of old or new methods. Among them, we can find the best method
for the particular problem. However, if applied individually, each of the methods could be
successful in just a few cases. Especially, when the Hadamard condition of uniqueness is
imposed. Of course, there is a separate and non-trivial problem of deciding in real studies,
which method is the best. That is why, possessing a well-defined methodology, such as the
Fractional Borel Summation is important.
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