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Abstract. We propose a practical way of circumventing the sign problem in lattice QCD
simulations with the theta-vacuum term. This method is the reweighting method for QCD
Lagrangian after the UA(1) transformation. In the Lagrangian, the P -odd mass term as a
cause of the sign problem is minimized. In order to find out a good reference system in the
reweighting method, we estimate the average reweighting factor by using the two-flavor NJL
model and eventually find a good reference system.

1. Introduction
The existence of instanton solution requires QCD Lagrangian with the theta vacuum:

L =
∑
f

q̄f (γνDν +mf )qf +
1

4g2
F a
µνF

a
µν − iθ

1

64π2
εµνσρF

a
µνF

a
σρ, (1)

in Euclidean spacetime. Hereafter, we will consider two-flavor QCD and assume isospin
symmetry, mu = md = m0. Though the angle θ can take any arbitrary value theoretically,
experimental measurements of neutron dipole moment give the upper limit, |θ| < 10−9[1, 2].
Why should θ be so small? This long-standing puzzle is called the strong CP problem.

Since the upper limit is determined only at zero temperature, the behavior is nontrivial
for finite temperature. Hence the first-principle lattice simulation is needed, but it has the sign
problem for finite θ. After making UA(1) transformation

q = eiγ5
θ
4 q′, (2)

θ dependence appears only through the mass term

m0(θ) = m0 cos(θ/2) +m0iγ5 sin(θ/2), (3)

in the transformed Lagrangian

L =
∑
f

q̄f (γνDν +m0(θ))qf +
1

4g2
F a
µνF

a
µν . (4)
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The P -odd mass term including iγ5 makes the fermion determinant complex.
Because of the sign problem, we should perform a reweighting method in lattice simulations.

The vacuum expectation value of operator O is obtained by

⟨O⟩ =

∫
DAOdetM(θ)e−Sg (5)

=

∫
DAO′detMref(θ)e

−Sg (6)

with the gluon part Sg of the QCD action and

O′ ≡ R(θ)O, (7)

R(θ) ≡ detM(θ)

detMref(θ)
, (8)

where R(θ) is the reweighting factor and detMref(θ) is the Fermion determinant of the reference
theory that has no sign problem. The simplest candidate of the reference theory is the theory
in which the θ-odd term is neglected in the mass term (3). We refer to this reference theory as
reference A in this paper. As discussed in Ref. [3], reference A may be a good reference theory
for small and intermediate θ, but not for large θ near π. In reference A, the limit of θ = π
corresponds to the chiral limit for detMref that is hard for LQCD simulations to reach.

The expectation value of R(θ) in the reference theory is obtained by

⟨R(θ)⟩ = Z

Zref
(9)

where Z (Zref) is the partition function of the original (reference) theory. The average
reweighting factor ⟨R(θ)⟩ is a good index for the reference theory to be good; the reference
theory is good when ⟨R(θ)⟩ = 1.

In this paper, we estimate ⟨R(θ)⟩ with the two-flavor NJL model in order to find out a good
reference theory. We find that reference A is good only for small θ, so propose a good reference
theory that satisfies ⟨R(θ)⟩ ≈ 1. This work is based on the Ref. [4].

2. Model setting
The two-flavor NJL Lagrangian with the θ-dependent term is obtained by

L = q̄(γν∂ν +m0)q −G1

3∑
a=0

[
(q̄τaq)

2 + (q̄iγ5τaq)
2
]
− 8G2

[
eiθdetq̄RqL + e−iθdetq̄LqR

]
, (10)

in Euclidean spacetime where m0 is the current quark mass and τ0 and τa(a = 1, 2, 3) are the
2 × 2 unit and Pauli matrices in the flavor space, respectively. The parameter G1 denotes the
coupling constant of the scalar and pseudoscalar-type four-quark interactions, while G2 stands
for that of the Kobayashi-Maskawa-’t Hooft determinant interaction [5, 6] where the matrix
indices run in the flavor space. Under the UA(1) transformation (2), the Lagrangian density is
then rewritten with q′ as

L = q̄′(γν∂ν +m0(θ))q
′ −G+

[
(q̄′q′)2 + (q̄′iγ5τ⃗ q

′)2
]
−G−

[
(q̄′τ⃗ q′)2 + (q̄′iγ5q

′)2
]
, (11)

where G± = G1 ±G2.
Applying the saddle-point approximation to the path integral in the partition function, one

can get the average reweighting factor ⟨R(θ)⟩,

⟨R(θ)⟩ ≈ RARB (12)

RA =

√
detHref

detH
, RB = e−βV (Ω−Ωref ), (13)
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where β = 1/T and Ω (Ωref) is the thermodynamic potential at the mean-field level in the
original (reference) theory [4]. H (Href) is the Hessian matrix in the original (reference) theory
defined by [7, 8]

Hij =
∂2Ω

∂ϕ′
i∂ϕ

′
j

, {ϕ′
i} = {σ′, η′, a⃗′, π⃗′}, (14)

with the quark-condensates

σ′ = ⟨q̄q⟩ , η′ = ⟨q̄iγ5q⟩ , a⃗′ = ⟨q̄τ⃗ q⟩ , π⃗′ = ⟨q̄iγ5τ⃗ q⟩ . (15)

The four-dimensional volume βV is obtained by βV = (Nx/Nτ )
3T−4 for the N3

x × Nτ lattice.
Here we consider Nx/Nτ = 4 as a typical example, following Refs. [7, 8].

We consider the following reference theory that has no sign problem:

L = q̄′(γν∂ν +mref(θ))q
′ −G+

[
(q̄′q′)2 + (q̄′iγ5τ⃗ q

′)2
]
−G−

[
(q̄′τ⃗ q′)2 + (q̄′iγ5q

′)2
]
. (16)

Here mref(θ) is θ-even mass defined below. We consider three examples as mref(θ).

3. Numerical results
If some reference system satisfies the condition ⟨R(θ)⟩ ≈ 1, one can say that the reference system
is good. As a typical example of the condition, we consider the case of 0.5 ≲ ⟨R(θ)⟩ ≲ 2. This
condition seems to be the minimum requirement. The discussion made below is not changed
qualitatively, even if one takes a stronger condition.

The first example is reference A defined by

mref(θ) ≡ mA(θ)

= m0cos(θ/2). (17)

In this case, the P -odd mass is simply neglected from the original Lagrangian (11).
Figure 1(a) shows θ dependence of ⟨R(θ)⟩ at T = 100 MeV. The solid line stands for ⟨R(θ)⟩,

while the dashed (dotted) line corresponds to RA (RB). This temperature is lower than the
chiral transition temperature in the original theory that is 206 MeV at θ = 0 and 194 MeV at
θ = π. As θ increases from zero, ⟨R(θ)⟩ also increases and exceeds 2 at θ ≈ 1.2. Reference A is
thus good for θ ≲ 1.2.

Figure 1(b) shows θ dependence of pion mass M̃π at T = 100 MeV. Since P symmetry is
broken at finite θ, P -even modes and P -odd modes are mixed with each other for each meson.
Hence, M̃π is defined by the lowest pole mass of the inverse propagator in the isovector channel[4].
The solid (dashed) line denotes M̃π in the original (reference A) system. At θ = π, M̃π is finite
in the original system, but zero in reference A. As a consequence of this property, RA and ⟨R(θ)⟩
vanish at θ = π; see Fig. 1(a). This indicates that reference A breaks down at θ = π.

The second example is reference B defined by

mref(θ) ≡ mB(θ)

= m0cos(θ/2) +
1

α
{m0sin(θ/2)}2 . (18)

In this case, we have added the m2
0-order correction due to the P -odd quark mass. Here α is a

parameter with mass dimension, so we simply choose α = Mπ. The coefficient of the correction
term is m2

0/Mπ = 0.129 MeV.

The same analysis is made for reference B in Fig. 2. As shown in panel (b), M̃π in reference
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Figure 1. θ dependence of (a) the average reweighting factor and (b) M̃π at T = 100 MeV for
the case of reference A.

B well reproduces that in the original theory for any θ. As shown in panel (a), however, the
reliable θ region in which 0.5 ≲ ⟨R(θ)⟩ ≲ 2 is located only at θ ≲ 1.3. Therefore reference B is
still not good.

Finally we consider reference C. The pion mass M̃π(θ) at finite θ is estimated from the chiral
Lagrangian and 1/Nc analysis [9]:

M̃2
π(θ) =

|σ0|
f2
π

[
m0|cos(θ/2)|+

m0M
2
π

M2
η′

sin2(θ/2)

]
. (19)

where σ0 is the chiral condensate at T = θ = 0. Interpreting a θ dependent mass from this
result, reference C is defined by

mref(θ) ≡ mC(θ)

= m0cos(θ/2) +
m0M

2
π

M2
η′

sin2(θ/2). (20)

This case also has the m2
0-order correction, but α is different from reference B. The coefficient

of the correction term is m0M
2
π/M

2
η′ = 0.114 MeV.

As shown in Fig. 3(b), M̃π in reference C slightly underestimates that of the original theory
at small and intermediate θ. As shown in Fig. 3(a), however, ⟨R(θ)⟩ satisfies the condition
0.5 ≲ ⟨R(θ)⟩ ≲ 2 for all θ. Therefore we can think that reference C is a good reference system
for any θ.

4. Summary
We have proposed a practical way of circumventing the sign problem in LQCD simulations with
finite θ. This method is the reweighting method for the transformed Lagrangian (4). In the
Lagrangian, the sign problem is minimized, since the P -odd mass is much smaller than the
dynamical quark mass of order ΛQCD. Another key is to find out which kind of reference system
satisfies the condition ⟨R(θ)⟩ ≈ 1. For this purpose, we have estimated ⟨R(θ)⟩ by using the
two-flavor NJL model and eventually found that reference C is a good reference system in the
reweighting method.
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Figure 2. θ dependence of (a) the average reweighting factor and (b) M̃π at T = 100 MeV for
the case of reference B.
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Figure 3. θ dependence of (a) the average reweighting factor and (b) M̃π at T = 100 MeV for
the case of reference C.

Acknowledgments
This work was supported by JSPS KAKENHI Grant Number 23-2790.

References
[1] Baker C A, et al. 2006 Phys. Rev. Lett. 97 131801.
[2] Kawarabayashi K and Ohta N 1980 Nucl. Phys. B 175 477; 1981 Prog. Theor. Phys. 66 1789; Ohta N 1981

Prog. Theor. Phys. 66 1408; 1982 Prog. Theor. Phys. 67 993.
[3] Sasaki T, Takahashi J, Sakai Y, Kouno H and Yahiro M 2012 Phys. Rev. D 85 056009.
[4] Sasaki T, Kouno H and Yahiro M 2012 Preprint arXiv:1208.0375 [hep-ph].
[5] Kobayashi M and Maskawa T 1970 Prog. Theor. Phys. 44 1422; Kobayashi M, Kondo H and Maskawa T

1971 Prog. Theor. Phys. 45 1955.
[6] ’t Hooft G 1976 Phys. Rev. Lett. 37 8; 1976 Phys. Rev. D 14 3432; 1978 18 2199(E).
[7] Andersen J O, Kyllingstad L T and Splittroff K 2010 J. High Energy Phys. 01 055.
[8] Sakai Y, Sasaki T, Kouno H and Yahiro M 2010 Phys. Rev. D 82 096007.
[9] Metlitski M A and Zhitnitsky A R 2005 Nucl. Phys. B731 309; 2006 Phys. Lett. B 633 721.

Extreme QCD 2012 (xQCD) IOP Publishing
Journal of Physics: Conference Series 432 (2013) 012031 doi:10.1088/1742-6596/432/1/012031

5




