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Based on the first law of black hole thermodynamics, we yield the metric of geometrothermodynamics. 
Choosing a hypersurface of constant extensive variable, the extrinsic curvature scalar is calculated and 
general correspondence of singularities between the extrinsic curvature scalar and the specific heat is 
discovered. This correspondence is further shown to exist in the constant intensive variable ensemble. 
We also show that extrinsic curvature scalar can reflect thermodynamic stability information, in spite of 
considering fluctuations of different thermodynamic variables or choosing different hypersurfaces.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It has been proved that black holes possess temperature and 
entropy [1]. Investigations on black hole thermodynamics surged 
thereafter. Laws of black hole mechanics was set up [2] and then 
the followings are thermodynamics [3,4]. Further studies exhibit 
that there are substantial phase structures and critical phenomena 
for black holes [5,6]. Traditionally, we obtain information of phase 
transitions for black hole through analyzing its temperature, free 
energy and specific heat [7,8].

Black holes, originating from collapsed objects, are special 
spacetime regions with strong gravity [9]. Our consensus nowa-
day is “Gravitational Interaction=Spacetime Curvature”. Can we 
ask “Thermodynamic Interaction=Thermodynamic Curvature”? Ge-
ometrization of black hole thermodynamics seems intriguing and 
enlightening.

Gibbs [10], Carathéodory [11], Fisher [12] and Rao[13] are fore-
runners on planting geometry perceptions into thermodynamics. 
Thanks to Weinhold [14] and Ruppeiner [15,16], Riemannian met-
ric structure is introduced to the study of black hole phase tran-
sitions. Afterwards, a Riemannian structure obeying Legendre in-
variance was introduced in equilibrium space by Quevedo [17]. It 
is proved that universal correspondence exists between intrinsic 
Ricci scalar and phase transition points [18,19]. Recently, thermo-
dynamic extrinsic curvature of a certain hypersurface is raised and 
calculated for (phantom) Reissner–Nordström–(A)dS black hole us-
ing Ruppeiner metric [20], it is found that the extrinsic curvature 
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shares the same divergent points and signs with specific heat on a 
constant electricity Q hypersurface.

Within this paper, Quevedo thermodynamic geometry which is 
Legendre transformation invariant is briefly introduced in Sec. 2. 
In Sec. 3, we explore a formulation for the thermodynamic extrin-
sic curvature of black holes, and generally prove that there exists 
correspondence between thermodynamic extrinsic curvature and 
phase transition points for black holes, based on the first law of 
thermodynamics. In Sec. 4, we will present our thought on relation 
between extrinsic curvature and thermodynamic stability. Sec. 5 is 
devoted to our conclusion.

2. Quevedo thermodynamic geometry

One needs a thermodynamic potential �, a set of n extensive 
variables Ea (a = 1, 2, · · · , n), and their dual intensive variables 
Ia to describe a thermodynamic system which holds n degrees 
of freedom in the equilibrium thermodynamics. The thermody-
namic phase space T then has coordinates Z A = (�, Ea, Ia) where 
a = 1, 2, · · · , n. The Legendre transformations defined in T is given 
by

(�, Ea, Ia) → (�̃, Ẽa, Ĩa), (1)

� = �̃ − δkl Ẽ
a Ĩa, Ei = − Ĩ i, E j = Ẽ j, I i = Ẽ i, I j = Ĩ j, (2)

where i ∪ j is any disjoint decomposition of the set of indices 
{1, 2, · · · , n} and k, l = 1, 2, · · · , i. Particularly, we can obtain the 
total Legendre transformation for i = {1, 2, · · · , n}. In the thermo-
dynamic phase space T , a canonical contact structure determined 
by the fundamental Gibbs 1-form � = d� −δab IbdEa exists. A equi-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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librium space E defined by the embedding map ϕ : E → T with 
constraints

ϕ∗(�) = 0, i.e. d� = IadEa and Ia = ∂�

∂ Ea
(3)

can be defined. Here ϕ∗ is the pullback of ϕ . At the same time, 
these two expressions can be viewed as the first law of thermody-
namics and the equilibrium conditions, respectively.

One can define a Legendre transformations invariant metric G 
in the space T . There is one typical metric [21,22]

G = �2 +
(
δab Ea Ib

)(
ηcddEcdId

)
, (4)

δab = diag(1,1, · · · ,1),ηab = diag(−1,1, · · · ,1),

which can describe black hole systems with second order phase 
transitions. One can obtain a thermodynamic metric which is in-
variant under Legendre transformations for the equilibrium space 
E as

g ≡ ϕ∗(G) =
(

δb
a Ea ∂�

∂ Eb

)(
ηcddEcδdf dEe ∂2�

∂ Ee∂ E f

)

=
(

Ec ∂�

∂ Ec

)(
ηabδ

bc ∂2�

∂ Ec∂ Ed
dEadEd

)
.

(5)

By using this metric to describe the equilibrium manifold E , we 
aim to extract information of the thermodynamic properties of 
black hole systems.

3. Extrinsic curvature and phase transition

3.1. Extrinsic curvature in constant extensive variable ensemble

Firstly, we want to discuss our problem in constant generalized 
displacement ensemble, say, constant X ensemble as follows. As is 
known, once the thermodynamic potential is chosen as the mass, 
universal first law of thermodynamics for any black hole can be 
expressed as

dM = T dS + Y dX +
∑

i

yidxi, (6)

where X, xi are generalized displacements, such as electric charge 
(Q ), angular momentum ( J ), etc., Y , y j are generalized forces, 
such as electrical potential (�), angular velocity (	), etc.

One can then yield the thermodynamic metric [22]

gμν = (S M S + X M X +
∑

i

xi Mxi )

×
⎛
⎝−M S SdS2 + M X X dX2 +

∑
i, j

Mxi x j dxidx j

⎞
⎠

≡ gS SdS2 + g X XdX2 + gξμξν dξμdξν,

(7)

where M S = (
∂M
∂ S

)
X,xi

, M X = (
∂M
∂ X

)
S,xi

, Mxi =
(

∂M
∂xi

)
S,X

, M S S =(
∂2 M
∂ S2

)
X,xi

, M X X =
(

∂2 M
∂ X2

)
S,xi

and Mxi x j =
(

∂2 S
∂ Xi X j

)
S,X

.

After choosing an X = Const. hypersurface, we can define a re-
stricted function � as

� = X − Const. (8)

Then the normalized normal covector is

nα = �,α√∣∣gab�,a�,b
∣∣ =

(
0,

1√|g X X | ,0, · · · ,0

)
. (9)
Letting nα�,α > 0, so nα points to the direction of increasing �. 
The normal vector is

nβ = gαβnα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gS S 0 · · · 0

0 g X X · · · g Xxi

...
...

. . .
...

0 gxi X · · · gxi xi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1√|g X X |
0
...
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
g X X√|g X X |
gx1 X√∣∣g X X

∣∣
...

gxi X√∣∣g X X
∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g S S 0 · · · 0

0 g X X · · · g Xxi

...
...

. . .
...

0 gxi X · · · gxi xi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1√|g X X |
0
...
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
g X X√|g X X |
gx1 X√∣∣g X X

∣∣
...

gxi X√∣∣g X X
∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

The corresponding extrinsic curvature is

K = hab Kab = nα
;α = 1√|g|∂k(

√|g|nk)

= 1√|g|∂X

(√|g| × g X X√|g X X |

)

+ 1√|g|
∑

i

∂xi

(√|g| × gxi X√|g X X |

)

� ∂X
√|g|√|g| × g X X√|g X X | +

∑
i

∂xi

√|g|√|g| × gxi X√|g X X |

= Sgn(g) · Sgn(g X X ) ·
√|g X X |∂X g

2|g| + Sgn(g) · ∂X g

2|g| × gxi X√|g X X |

= Sgn(g X X ) ·
√|g X X |∂X g

2g
+ ∂X g

2g
× gxi X√|g X X | , (11)

where Sgn is the sign function, non-related terms in the fourth line 
are neglected and

g = Det(gμν) = gS S × Det

⎡
⎢⎢⎢⎢⎢⎣

g X X · · · g Xxi

...
. . .

...

gxi X · · · gxi xi

⎤
⎥⎥⎥⎥⎥⎦∝ M S S . (12)

The heat capacity diverges at the points where the phase tran-
sitions of black holes take place [23]. It is reminiscent of the defi-
nition of the specific heat

C Xxi = T

(
∂ S

∂T

)
X,x

= T(
∂T ) = T M−1

S S , (13)

i ∂ S X,xi
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which means that the critical point in the phase transition is lo-
cated at the point where M S S vanishes and the specific heat di-
verges. Thinking of the extrinsic curvature, we can find that it also 
diverges at critical points.

3.2. Extrinsic curvature in constant intensive variable ensemble

One common sense is that thermodynamic properties, including 
the phase structure, depend on the choice of statistical ensemble. 
A question arises that whether extrinsic curvature is able to reflect 
the phase transition information correctly while thermodynamic 
ensemble is transferred. We will study the extrinsic curvature at 
the constant generalized force ensemble. In this case, we define a 
new thermodynamic potential M̄ using the Legendre transforma-
tion

M̄ = M − XY −
∑

i

xi yi, (14)

then we can obtain

dM̄ = T dS − XdY −
∑

i

xidyi . (15)

The thermodynamic metric can be obtained as

gμν = (S M̄ S + Y M̄Y +
∑

i

yi M̄ yi )

×
⎛
⎝−M̄ S SdS2 + M̄Y Y dY 2 +

∑
i, j

M̄ yi y j dyidy j

⎞
⎠

≡ gS SdS2 + gY Y dY 2 + gξμξν dξμdξν,

(16)

where M̄ S =
(

∂ M̄
∂ S

)
X,xi

, M̄Y =
(

∂ M̄
∂Y

)
S,xi

, M̄xi =
(

∂ M̄
∂xi

)
S,X

, M̄ S S =(
∂2 M̄
∂ S2

)
X,xi

, M̄Y Y =
(

∂2 M̄
∂Y 2

)
S,xi

and M̄xi x j =
(

∂2 S
∂ Xi X j

)
S,Y

.

In this thermodynamic space, the normal covector of the con-
stant Y hypersurface is

nα = �,α√∣∣gab�,a�,b
∣∣ =

(
0,

1√|gY Y | ,0, · · · ,0

)
, (17)

where � = Y − Const. The normal vector is

nβ = gαβnα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g S S 0 · · · 0

0 gY Y · · · gY yi

...
...

. . .
...

0 g yi Y · · · g yi yi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1√|gY Y |
0
...
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
gY Y√|gY Y |
g y1 Y√∣∣gY Y

∣∣
...

g yi Y√∣∣gY Y
∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

Being similar to the former case, one can obtain the extrinsic cur-
vature
K = 1√|g|∂Y

(√|g| × gY Y√|gY Y |

)

+ 1√|g|
∑

i

∂yi

(√|g| × g yi Y√|gY Y |

)

� Sgn(g) · Sgn(gY Y ) ·
√|gY Y |∂Y g

2|g| + Sgn(g) · ∂Y g

2|g| × gxi Y√|gY Y |

= Sgn(gY Y ) ·
√|gY Y |∂Y g

2g
+ ∂Y g

2g
× gxi Y√|gY Y | , (19)

where

g = Det(gμν) = gS S × Det

⎡
⎢⎢⎢⎢⎢⎣

gY Y · · · gY yi

...
. . .

...

g yi Y · · · g yi yi

⎤
⎥⎥⎥⎥⎥⎦∝ M̄ S S . (20)

The specific heat takes the form

CY ,yi = − 1

T 2 SM̄M̄
= T M̄−1

S S . (21)

As is shown, the extrinsic curvature K and the specific heat again 
share the same term M̄ S S in the denominator, which verifies that 
the extrinsic curvature reflects information of phase structure, even 
though statistical ensemble changes.

3.3. How about choosing a different hypersurface?

We know from Eq. (13) that in order to obtain the specific 
heat, one must keep X and xi invariant. We have verified that the 
extrinsic curvature at const X hypersurface diverges where the spe-
cific heat does. Here we want to show that this correspondence 
also holds when the α1 X + ∑

j α j x j = Const. hypersurface is cho-
sen, where α1, αi are arbitrary real numbers and j is any disjoint 
decomposition of the set of indices {1, 2, · · · , n}. The related re-
stricted function is

� = α1 X +
∑

j

α j x j − Const. (22)

where 
∑

i α
2
i �= 0. The normal covector on this hypersurface is

nα = N
(
0,α1, · · · ,α jp , · · · ,α jk , · · ·

)
, (23)

where N =
∣∣∣gx j x j′ �,x j �,x j′

∣∣∣− 1
2

. Then the normal vector can be ob-

tained as

nα = N

⎡
⎢⎢⎢⎢⎢⎣

0
α1 g X X + ∑

j α j g Xx j

α1 gx1 X + ∑
j α j gx1x j

...

α1 gxi X + ∑
j α j gxi x j

⎤
⎥⎥⎥⎥⎥⎦ . (24)

Following the similar procedure, one can obtain the extrinsic cur-
vature

K = N√|g|∂X

⎡
⎣√|g| ×

⎛
⎝α1 g X X +

∑
j

α j g Xx j

⎞
⎠

⎤
⎦
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+ N√|g|
∑

i

∂xi

⎡
⎣√|g| ×

⎛
⎝α1 gxi X +

∑
j

α j gxi x j

⎞
⎠

⎤
⎦

� N∂X g

2g

⎛
⎝α1 g X X +

∑
j

α j g Xx j

⎞
⎠

+ N∂X g

2g

∑
i

⎛
⎝α1 gxi X +

∑
j

α j gxi x j

⎞
⎠

∝ M−1
S S . (25)

It is interesting that the information of phase structure contained 
in the specific heat at constant X, xi ensemble can be reflected by 
α1 X + ∑

j α j x j = Const. hypersurfaces.

4. Extrinsic curvature and thermodynamic stability

We have generally proved that extrinsic curvature can reflect 
the critical point of phase transition for black holes. Here we will 
show that extrinsic curvature can reflect the thermodynamic sta-
bility information. General prove of it has been tried and we con-
clude that it seems impossible as concrete quantities are needed 
in some deductions or some assumptions must be taken. Here RN–
AdS and KN–AdS black holes are used as toy models to exhibit our 
ideas.

4.1. The consideration of thermodynamic fluctuation

The mass of RN–AdS black holes is

M = l2π2 Q 2 + l2π S + S2

2l2π3/2
√

S
, (26)

where l, S, Q are AdS radius, Bekenstein–Hawking entropy and 
electric charge, respectively. The first law of the black hole is

dM = T dS + �dQ , (27)

where � is the electric potential. The extrinsic curvature at 
Q =const. hypersurface can be calculated as

K RN−AdS = 36π5/2l2 Q
(
π2l2 Q 2 + S2

)
(
3π2l2 Q 2 − π l2 S + 3S2

) (
3π2l2 Q 2 + π l2 S + 3S2

)
×

√
l2 S

π l2
(
3π Q 2 + S

) + 3S2
. (28)

For KN–AdS black holes, the mass can be expressed as

M2 = J 2

l2
+ π

(
4 J 2 + Q 4

)
4S

+
S
(

S2

2π2l2
+ Q 2 + S

π

)
2π l2

+ Q 2

2
+ S

4π
,

(29)

where J is the angular momentum. The first law of the black hole 
is

dM = T dS + �dQ + 	d J . (30)

We first calculate the extrinsic curvature of the black hole at 
Q =Const. hypersurface and then let the angular momentum de-
crease to zero. At first sight, one expects that K RN−AdS will be 
identical to K J→0

K N−AdS , as KN–AdS geometry will degenerate to RN–
AdS geometry under the condition J → 0. However, we obtain

K J→0
K N−AdS = C0

S
(
π l2

(
3π Q 2 − S

) + 3S2
) (

π l2
(
π Q 2 + S

) + S2
) ,

w

C

It

is
a
c
t
b
e
o
K

t
e
b

h
b
r
e
t
e
O
fl
t

4

c

Fig. 1. Variations of C Q , K RN−AdS , K J→0
K N−AdS with S for Q = 1, l = 10.

(31)

here

0 = 8π5/2 Q

(
l2 S

π l2
(
3π Q 2 + S

) + 3S2

)3/2

×
[
π2l4

(
9π2 Q 4 + 6π Q 2 S − S2

)
+6π l2 S2

(
3π Q 2 + S

)
+ 9S4

]
. (32)

 is clearly that K RN−AdS �= K J→0
K N−AdS . How to explain this?

As is well known, the Riemannian thermodynamic curvature 
 used as a method of considering the fluctuation phenomena 
nd it is suggested that there may be a relationship between the 
urvature and the interactions of the underlying statistical sys-
em [24,25]. When we calculate extrinsic curvature of the RN–AdS 
lack hole, there are two fluctuating parameters S and Q . How-
ver, considering extrinsic curvature of the KN–AdS black hole, an-
ther fluctuating parameter J is included. So it is not strange that 

J→0
K N−AdS being different from K RN−AdS . Existence of difference be-

ween K RN−AdS and K J→0
K N−AdS exhibits the non-trivial fluctuated 

ffects of the angular momentum on the extrinsic curvature of the 
lack holes.

It is shown that extrinsic curvature has the same sign as the 
eat capacity around the phase transition point for an RN–(A)dS 
lack hole so that information of thermodynamic stability can be 
eflected [20]. One would like to ask that weather this fine prop-
rty of extrinsic curvature can endure the test of consideration of 
hermodynamic fluctuations. The answer is affirmative. To show it 
xplicitly, we plot the diagrams of K RN−AdS and K J→0

K N−AdS in Fig. 1. 
ne can see from the diagram that even if the thermodynamic 
uctuation of one more parameter is considered, extrinsic curva-
ure can still tell us stability information.

.2. The selection of hypersurfaces

The specific heat with fixed Q , J for KN–AdS black hole can be 
alculated as
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C Q J = C1C2

C3
, (33)

where

C1 = −8Sπ4 J 2l4 + 2Sl4
(
π2 S2 − π4 Q 4

)
+4Sπ l2 S2

(
π Q 2 + 2S

)
+ 6S S4,

C2 = 4π3 J 2l2
(
π l2 + S

)
+

(
π l2

(
π Q 2 + S

)
+ S2

)2
,

and

C3 =16π7 J 4l6
(

3π l2 + 4S
)

+
[
π l2

(
3π Q 2 − S

)
+ 3S2

][
π l2

(
π Q 2 + S

)
+ S2

]3

+ 8π3 J 2l2
[
π3l6

(
3π2 Q 4 + 4π Q 2 S + 3S2

)
+ 15π l2 S4

+ 6S5
]

+ 16π5 J 2l6 S
(
π2 Q 4 + 3π Q 2 S + 6S2

)
.

(34)

Now we consider the choice of different hypersurfaces. First, let 
us choose the hypersurface Q = Const. and calculate the extrinsic 
curvature

K Q = C4

C3
, (35)

then the hypersurface J = Const. is chosen and its corresponding 
extrinsic curvature is

K J = C5

C3
. (36)

Besides, we choose a hypersurface αQ +β J = Const., where α > 0, 
β > 0, and calculate the extrinsic curvature as

K Q J = C6

C3
. (37)

C4, C5 and C6 are too lengthy to show here, instead, diagrams of 
C Q J , K Q , K J and K J Q vs. S are shown in Fig. 2.

On the one hand, as has been proved in the above section, one 
can see from the figure that all of K Q , K J , K Q J diverge where the 
specific heat C Q J does at constant Q and J ensemble.

On the other hand, what one can see is all of them have the 
same signs as the specific heat. This is fascinating and we suspect 
that this is a general property which can be applied to other black 
hole models.

5. Conclusion

Based on the first law of black hole thermodynamics, we inves-
tigate extrinsic curvature scalars in Legendre invariant thermody-
namic metric space, both in the constant extensive variable ensem-
ble and the constant intensive variable ensemble. It is verified that 
the thermodynamic extrinsic curvature scalar can provide informa-
tion of phase transition structures for black holes, i.e., there exists 
correspondence of singularity between thermodynamic extrinsic 
curvature scalar and specific heat. Besides, we have shown that 
extrinsic curvature scalar can reflect the thermodynamic stability 
of the black holes, although thermodynamic fluctuations of more 
parameters are considered, or different hypersurfaces are chosen. 
Considering this, we argue that extrinsic curvature scalar of the 
Legendre transformation invariant space is a better quantity than 
Fig. 2. Variations of C Q J , K Q , K J , K Q J with S for Q = 1, l = 10, J = 1
2 , α = 4, β = 3.

intrinsic curvature scalar to reflect the phase transition and ther-
modynamic stability information for black holes. Our work hence 
extends previous studies on geometrothermodynamics.
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