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1. Introduction

It has been proved that black holes possess temperature and
entropy [1]. Investigations on black hole thermodynamics surged
thereafter. Laws of black hole mechanics was set up [2] and then
the followings are thermodynamics [3,4]. Further studies exhibit
that there are substantial phase structures and critical phenomena
for black holes [5,6]. Traditionally, we obtain information of phase
transitions for black hole through analyzing its temperature, free
energy and specific heat [7,8].

Black holes, originating from collapsed objects, are special
spacetime regions with strong gravity [9]. Our consensus nowa-
day is “Gravitational Interaction=Spacetime Curvature”. Can we
ask “Thermodynamic Interaction=Thermodynamic Curvature”? Ge-
ometrization of black hole thermodynamics seems intriguing and
enlightening.

Gibbs [10], Carathéodory [11], Fisher [12] and Rao[13] are fore-
runners on planting geometry perceptions into thermodynamics.
Thanks to Weinhold [14] and Ruppeiner [15,16], Riemannian met-
ric structure is introduced to the study of black hole phase tran-
sitions. Afterwards, a Riemannian structure obeying Legendre in-
variance was introduced in equilibrium space by Quevedo [17]. It
is proved that universal correspondence exists between intrinsic
Ricci scalar and phase transition points [18,19]. Recently, thermo-
dynamic extrinsic curvature of a certain hypersurface is raised and
calculated for (phantom) Reissner-Nordstrom-(A)dS black hole us-
ing Ruppeiner metric [20], it is found that the extrinsic curvature
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shares the same divergent points and signs with specific heat on a
constant electricity Q hypersurface.

Within this paper, Quevedo thermodynamic geometry which is
Legendre transformation invariant is briefly introduced in Sec. 2.
In Sec. 3, we explore a formulation for the thermodynamic extrin-
sic curvature of black holes, and generally prove that there exists
correspondence between thermodynamic extrinsic curvature and
phase transition points for black holes, based on the first law of
thermodynamics. In Sec. 4, we will present our thought on relation
between extrinsic curvature and thermodynamic stability. Sec. 5 is
devoted to our conclusion.

2. Quevedo thermodynamic geometry

One needs a thermodynamic potential E, a set of n extensive
variables E% (@ =1,2,---,n), and their dual intensive variables
I* to describe a thermodynamic system which holds n degrees
of freedom in the equilibrium thermodynamics. The thermody-
namic phase space 7 then has coordinates Z# = (g, E%, I*) where

a=1,2,.--,n. The Legendre transformations defined in 7 is given
by

(B.E% 1) — (B, E. 19, Q)
E=82—8yE 1% E'=—1,FI=FE/, I'=E, I =1/, (2)
where i U j is any disjoint decomposition of the set of indices
{1,2,---,n} and k,I =1,2,---,i. Particularly, we can obtain the
total Legendre transformation for i = {1,2,---,n}. In the thermo-

dynamic phase space 7, a canonical contact structure determined
by the fundamental Gibbs 1-form © = dE — 8,4, I°dE® exists. A equi-
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librium space £ defined by the embedding map ¢ : £ — T with
constraints

a 0E
IdE® and Iq = 3Ea (3)
can be defined. Here ¢* is the pullback of ¢. At the same time,
these two expressions can be viewed as the first law of thermody-
namics and the equilibrium conditions, respectively.
One can define a Legendre transformations invariant metric G
in the space 7. There is one typical metric [21,22]

G=0%+ (5abE”1b) (ncddEfdld) , (4)
Sap = diag(1,1, -+, 1), ngp = diag(—1,1,---, 1),

which can describe black hole systems with second order phase
transitions. One can obtain a thermodynamic metric which is in-
variant under Legendre transformations for the equilibrium space
£ as

aa 928
*(G) = (SbE“ dECSddeei)

Caa 928 JEdE
=|E JEC rlab EC3Ed E°dE

By using this metric to describe the equilibrium manifold &, we
aim to extract information of the thermodynamic properties of
black hole systems.

©*(©)=0, ie. dE=

(5)

3. Extrinsic curvature and phase transition
3.1. Extrinsic curvature in constant extensive variable ensemble

Firstly, we want to discuss our problem in constant generalized
displacement ensemble, say, constant X ensemble as follows. As is
known, once the thermodynamic potential is chosen as the mass,
universal first law of thermodynamics for any black hole can be
expressed as

dM =TdS +YdX + ) _ yidx;, (6)
i

where X, x; are generalized displacements, such as electric charge

(Q), angular momentum (J), etc,, Y, y; are generalized forces,

such as electrical potential (®), angular velocity ($2), etc.
One can then yield the thermodynamic metric [22]

guv = (SMs + XMx + Y xiMx,)

i
x | ~Mssds? + MyxdX2 + 3 Myx, dxid; (7)
ij
= gssdS% + gxxdX? + 8e,5,dEMdEY,

_ (M — (M = (3 =
where Ms = (35 )X,xi' Mx = (ax)s.x,»' My = (3"1')5 x' Mss =

82M> M <32M> 92s
= , Mxx =55 and My = ( =95 .
(052 X% X* /s x; KX \oXiX; ) s x

After choosing an X = Const. hypersurface, we can define a re-
stricted function ¥ as

W = X — Const. (8)
Then the normalized normal covector is

V.o

1
=|o, .0
8w W | ( V1gXX|

Ng =

Letting n*W¥ , > 0, so n“ points to the direction of increasing W.
The normal vector is

— - -1 r- —_

gss 0 0 0
_1
/1o XX
0 gxx - 8&xx l% |
nf =g%n, =
L 0 gX,'X gXiXi_ L 0 _
0 ] r 5SS T1r 7
gXX & 0 0 ?
XX o XX|
\/g|§1 o 0 gXX g Vv I% [
=| VIl | = (10)
e :
%X | 0 ghiX o g | | 0 |
- 0
gXX
VigXX|
g)qX
— {gXX|
o
L Ve
The corresponding extrinsic curvature is
1
K =h®Kg =n% = —— (/g%
VT
1 gXX
= Lo (Vizi x
Vel ( VigXX|
1 gX,'X
+——=) (VI8 x
Vgl Z § NIT: XX|
_ aX /|g gXX Z ax, gXiX
Vgl VIgXX ~/|g \/IgXXI
VIg¥X|oxg xg g
=Sgn(g) - Sgn(g"*) - F=——=+Sgn(g) -
2|g| 2lgl | V0gXX|
/1aXX|g 9 %X
=Sgn(gxx).M+LgX g , (‘1])
2g 2g /1g%X|

where Sgn is the sign function, non-related terms in the fourth line
are neglected and

8xx 1 8Xx

g =Det(guv) = gss x Det o Mss. (12)

gX,'X e gX,'Xi

The heat capacity diverges at the points where the phase tran-
sitions of black holes take place [23]. It is reminiscent of the defi-
nition of the specific heat

C T (35) T rma (13)
Xxj = e =Ty SS»
aT X, xi (E)X,Xi
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which means that the critical point in the phase transition is lo-
cated at the point where Mss vanishes and the specific heat di-
verges. Thinking of the extrinsic curvature, we can find that it also
diverges at critical points.

3.2. Extrinsic curvature in constant intensive variable ensemble

One common sense is that thermodynamic properties, including
the phase structure, depend on the choice of statistical ensemble.
A question arises that whether extrinsic curvature is able to reflect
the phase transition information correctly while thermodynamic
ensemble is transferred. We will study the extrinsic curvature at
the constant generalized force ensemble. In this case, we define a
new thermodynamic potential M using the Legendre transforma-
tion

M=M—XY =Y xyi, (14)
i
then we can obtain
dM =TdS — XdY — > xidy;. (15)
i
The thermodynamic metric can be obtained as

Euv = (SMs + YMy + ZYiMyi)

1

X —1\7155d52+1\_/Iyde2+ZI\_/Iyiyjdyidyj (16)
ij

= g55d52 + gYYdY2 + gé#%‘udgudgv’
o (ol v, — (M V. — M V =
where Ms = <as )x,xi' My (i‘y)s,xi' My (3xf>s.x' Mss

32M> M <z)21\71) Y 325
Yo , Myy =\ 757 and My.x, = | 5> .
<852 X.xi Y2 s x XX IXiXj ) sy

In this thermodynamic space, the normal covector of the con-
stant Y hypersurface is

n bt (o LI o) (17)
Q= = sy T /——= U, ", s
[|g®w W | VigYY|
where W =Y — Const. The normal vector is
’gSS 0 o 1T o T
_1
Yy Yyi VigY|
nﬂ:gdﬁna:
0 g¥y ... gy 0
- 0 (18)
gYY
VigY|
g
— lg¥Y|
g
L VI

Being similar to the former case, one can obtain the extrinsic cur-
vature

K=—Lj Vel g
—ﬁ Y( lg| x Tgy“)

1 204
- (Vi )

YY 9 9 xiY
~sgn(g) - Sgn(g"") - VIEIUE L qong). E &
2| 2gl " /g™
_ vy, VIg¥Wloyg  oyg g4y
=Sgn(g" ") ————+ - X , (19)
2 2 g7
where
8yy - 8yy;
g =Det(g,v) = gss x Det o Msss. (20)
gyiy o 8yiyi
The specific heat takes the form
1 |
Cy.y; =155 =TMg. (21)

As is shown, the extrinsic curvature K and the specific heat again
share the same term Mss in the denominator, which verifies that
the extrinsic curvature reflects information of phase structure, even
though statistical ensemble changes.

3.3. How about choosing a different hypersurface?

We know from Eq. (13) that in order to obtain the specific
heat, one must keep X and x; invariant. We have verified that the
extrinsic curvature at const X hypersurface diverges where the spe-
cific heat does. Here we want to show that this correspondence
also holds when the o1 X + 3_; ojx; = Const. hypersurface is cho-
sen, where «/1, «; are arbitrary real numbers and j is any disjoint
decomposition of the set of indices {1,2,---,n}. The related re-
stricted function is

\IJ:qu—i-Zoejxj — Const. (22)
i

where ), ot,.2 # 0. The normal covector on this hypersurface is

na:N(O’(xL...,O[jp’...’ajk,...)’ (23)
_1
where N = g%/ W 4, W x;, *. Then the normal vector can be ob-
tained as
0
a1 gXX 4+ Y, o gXxi
=N | 81+ 20 g | (24)

a1 g% + 3 jor g

Following the similar procedure, one can obtain the extrinsic cur-
vature

N
K=—ax | Vigl x | 125+ a;jg*
N ; !
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Vighx e g+ ;g

]

N
= 0y
J—|g|2i: "

Noxg

18X + Zangxj
J

No ) .
+ Z;g Z o gh% 4 ZOljgx’X’
i j

o Mg . (25)

It is interesting that the information of phase structure contained
in the specific heat at constant X, x; ensemble can be reflected by
o X + Z]- ajxj = Const. hypersurfaces.

4. Extrinsic curvature and thermodynamic stability

We have generally proved that extrinsic curvature can reflect
the critical point of phase transition for black holes. Here we will
show that extrinsic curvature can reflect the thermodynamic sta-
bility information. General prove of it has been tried and we con-
clude that it seems impossible as concrete quantities are needed
in some deductions or some assumptions must be taken. Here RN-
AdS and KN-AdS black holes are used as toy models to exhibit our
ideas.

4.1. The consideration of thermodynamic fluctuation

The mass of RN-AdS black holes is
_Pr?Q? 4+ PrS+ s
- 212773/2/S ’
where [, S, Q are AdS radius, Bekenstein-Hawking entropy and
electric charge, respectively. The first law of the black hole is

(26)

dM = TdS + ®dQ, (27)

where & is the electric potential. The extrinsic curvature at
Q =const. hypersurface can be calculated as

3675/22Q (w22 Q% + 5?)
3m22Q2 — w2S +352) (3722 Q2 4+ w2S + 35?)

KRrN—ads =(

2s
. 28
X\/nlz(BnQ2+S)+352 (28)

For KN-AdS black holes, the mass can be expressed as

52 2, S
M2:J_2+7T(4]2+Q4)+S(—2n212+Q +E> +Q_2+i
I2 4S8 22 2 4m’
(29)

where ] is the angular momentum. The first law of the black hole
is

dM = TdS + ®dQ + Qd]. (30)

We first calculate the extrinsic curvature of the black hole at
Q =Const. hypersurface and then let the angular momentum de-
crease to zero. At first sight, one expects that Kgn_aqs will be
identical to K ,]JE ads» 25 KN-AdS geometry will degenerate to RN-
AdS geometry under the condition | — 0. However, we obtain

J—0 _ CO
KN=AdS ™ 5 (712 (3w Q2 — S) +352) (m2 (T Q2 +S) + 52)’

K
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Fig. 1. Variations of Cq , Krn—adss Kinags With S for Q =1,1=10.

(31)
where
3/2
25
Co =87/
0 ¢ (mz (3mQ2+5) +352>
x [7‘[2!4 (9712Q4 +6mQ2S5 — 52)
t6r2S2 (3n Q2 +s) +9s4]. (32)

It is clearly that Kgry_ads # K,ﬂ;?/‘ds. How to explain this?

As is well known, the Riemannian thermodynamic curvature
is used as a method of considering the fluctuation phenomena
and it is suggested that there may be a relationship between the
curvature and the interactions of the underlying statistical sys-
tem [24,25]. When we calculate extrinsic curvature of the RN-AdS
black hole, there are two fluctuating parameters S and Q. How-
ever, considering extrinsic curvature of the KN-AdS black hole, an-
other fluctuating parameter J is included. So it is not strange that
K ,{ﬁf aqs being different from Kgy_aqs. Existence of difference be-

tween Kgy_aqgs and K I](;’S ags €xhibits the non-trivial fluctuated
effects of the angular momentum on the extrinsic curvature of the
black holes.

It is shown that extrinsic curvature has the same sign as the
heat capacity around the phase transition point for an RN-(A)dS
black hole so that information of thermodynamic stability can be
reflected [20]. One would like to ask that weather this fine prop-
erty of extrinsic curvature can endure the test of consideration of
thermodynamic fluctuations. The answer is affirmative. To show it
explicitly, we plot the diagrams of Kgy_aqs and K,{;EMS in Fig. 1.
One can see from the diagram that even if the thermodynamic
fluctuation of one more parameter is considered, extrinsic curva-
ture can still tell us stability information.

4.2. The selection of hypersurfaces

The specific heat with fixed Q, J for KN-AdS black hole can be
calculated as
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Coj=—-, (33)

Ci = -85 214 + 2514 (n252 - 714Q4)
+4STI2S? (71 Q2+ 25) +655%,
Cy = 43 212 <7r12 + s) n <n12 (n Q%+ s) + 52)2 ,
and
C3 =1677 J45 (37r12 +4s)
+ |72 (37Q% - 5) +38%] [ (1 Q2 +5) + 52]3
873 2P [n316 (3n2 Q% +4702s + 352) + 157125
+ 655]
+ 1675 2165 <n2Q4 +37Q2%s +652).
(34)

Now we consider the choice of different hypersurfaces. First, let
us choose the hypersurface Q = Const. and calculate the extrinsic
curvature

— C4
=
then the hypersurface | = Const. is chosen and its corresponding
extrinsic curvature is
=o

Besides, we choose a hypersurface « Q + 8] = Const., where o > 0,
B >0, and calculate the extrinsic curvature as

Kq (35)

K; (36)

Koj==2. (37)

C4,C5 and Cg are too lengthy to show here, instead, diagrams of
Coj,Kq,Kj and Kjq vs. S are shown in Fig. 2.

On the one hand, as has been proved in the above section, one
can see from the figure that all of K¢, K, K¢ j diverge where the
specific heat Cq ; does at constant Q and J ensemble.

On the other hand, what one can see is all of them have the
same signs as the specific heat. This is fascinating and we suspect
that this is a general property which can be applied to other black
hole models.

5. Conclusion

Based on the first law of black hole thermodynamics, we inves-
tigate extrinsic curvature scalars in Legendre invariant thermody-
namic metric space, both in the constant extensive variable ensem-
ble and the constant intensive variable ensemble. It is verified that
the thermodynamic extrinsic curvature scalar can provide informa-
tion of phase transition structures for black holes, i.e., there exists
correspondence of singularity between thermodynamic extrinsic
curvature scalar and specific heat. Besides, we have shown that
extrinsic curvature scalar can reflect the thermodynamic stability
of the black holes, although thermodynamic fluctuations of more
parameters are considered, or different hypersurfaces are chosen.
Considering this, we argue that extrinsic curvature scalar of the
Legendre transformation invariant space is a better quantity than

8000
6000 ]
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2000¢ ]
ol—/ |
-2000¢ ]
-4000¢ ]

-6000¢ ‘ ‘ ‘ ‘ ‘ ‘ =
0 20 40 60 80 100 120 140

Cay 1

0 20 40 60 80
S
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Fig. 2. Variations of Cq j, Ko, K}, Kq witthorQ=1,l=10,]=%,a=4,ﬂ=3.

intrinsic curvature scalar to reflect the phase transition and ther-
modynamic stability information for black holes. Our work hence
extends previous studies on geometrothermodynamics.
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