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Abstract: In a recent contribution, we identified possible points of contact between the asymptotically

safe and canonical approaches to quantum gravity. The idea is to start from the reduced phase

space (often called relational) formulation of canonical quantum gravity, which provides a reduced

(or physical) Hamiltonian for the true (observable) degrees of freedom. The resulting reduced

phase space is then canonically quantized, and one can construct the generating functional of time-

ordered Wightman (i.e., Feynman) or Schwinger distributions, respectively, from the corresponding

time-translation unitary group or contraction semigroup, respectively, as a path integral. For the

unitary choice, that path integral can be rewritten in terms of the Lorentzian Einstein–Hilbert action

plus observable matter action and a ghost action. The ghost action depends on the Hilbert space

representation chosen for the canonical quantization and a reduction term that encodes the reduction

of the full phase space to the phase space of observables. This path integral can then be treated with

the methods of asymptotically safe quantum gravity in its Lorentzian version. We also exemplified

the procedure using a concrete, minimalistic example, namely Einstein–Klein–Gordon theory, with

as many neutral and massless scalar fields as there are spacetime dimensions. However, no explicit

calculations were performed. In this paper, we fill in the missing steps. Particular care is needed due

to the necessary switch to Lorentzian signature, which has a strong impact on the convergence of

“heat” kernel time integrals in the heat kernel expansion of the trace involved in the Wetterich equation

and which requires different cut-off functions than in the Euclidian version. As usual we truncate at

relatively low order and derive and solve the resulting flow equations in that approximation.

Keywords: canonical quantum gravity; asymptotic safety; renormalisation

1. Introduction

The asymptotically safe quantum gravity (ASQG) [1–3] and canonical quantum
gravity [4–7] programs are both non-perturbative approaches with the common goal to
synthesize Quantum Field Theory (QFT) and General Relativity (GR). However, there
appear to be profound differences between the two at a very deep level:

1. While ASQG uses mostly Euclidian signature, CQG uses exclusively Lorentzian signature.
2. While ASQG employs background-dependent methods, CQG is manifestly background-

independent.
3. While ASQG relies on truncations of the exact renormalization flow (Wetterich) equa-

tions, no truncations are performed in CQG.

These differences are so drastic that very little contact between the two programs has
been established so far.

In a recent contribution [8] we have advertised the point of view that these differences
are possibly not as unsurmountable as they appear to be. First of all, there are also
Lorentzian versions of the Wetterich equation, which were applied to matter quantum
fields and gravity [9–18]. Next, the apparent background dependence of ASQG is mostly a
misunderstanding if one uses the background techniques of ASQG properly. Specifically,
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the so-called background field method [19] was invented for QFT without gravity as a
tool to compute the effective action (i.e., the generating functional of connected, 1-PI,
time-ordered distributions), which by itself is, of course, background-independent and
which results from the background-dependent object by equating the background field
with the current on which the background-independent effective action depends. In order
for this to work, one must use unspecified background fields that are not subject to any
particular restrictions, such as symmetries. Finally, the truncations performed in ASQG
are not required in principle but in practice in the sense of an approximation scheme,
which, to the best of our knowledge, is the case for all known renormalization procedures.
In view of the fact that also in CQG, renormalization is necessary [20], not only to tame
quantum divergences but to fix quantum ambiguities, approximation methods will be
necessary for CQG as well. The challenge is to show mathematically that truncations are
really approximations, i.e., that there is some form of error control or convergence which,
to the best of our knowledge, has not been established yet.

Accordingly, it is well motivated to have a fresh look at both programs and try to bring
them into closer contact (see [21,22] for previous attempts). In [8], we have tried to give a
compact description of both programs useful for researchers from both communities in order
to overcome differences in language. For ASQG practitioners, we have laid out the basics of
reduced phase space quantization, relational observables, Hilbert space representations of the
associated Weyl algebras supporting given Hamiltonian operators, and the passage from the
operator to the path integral formulation, in particular in the presence of gauge symmetries.
For CQG practitioners, we have reviewed the background field method in the presence of
gauge symmetries, the effective (average) action, the Wetterich equation [23,24], heat kernel
techniques [25–28] for both signatures and truncation methods.

In application to GR, one finds the following general features independent of the
matter content of the system:

A. First, if the goal is to write the path integral in terms of the Einstein–Hilbert action plus
matter and further terms, then the Lorentzian signature is selected. If one is content to
write the theory just as some sort of path integral, then the Euclidian version is also
possible for the generating functional of Schwinger functions, which are generated by
the given Hamiltonian via Osterwalder-Schrader reconstruction [29].

B. Next, the path integral “measure” deviates from the “Lebesgue measure” of the
spacetime metric by several functions that depend on the chosen Hilbert space repre-
sentation of the Weyl algebra, the determinant of the deWitt metric and as a result of
the splitting of the metric into ADM variables. Some of these factors, but not all, can
be absorbed into a ghost action, which is related to the usual ghost action that results
from the Fadeev–Popov determinant as a result of gauge fixing the metric to some,
say de Donder, gauge.

C. The Einstein–Hilbert plus observable matter action is corrected by a “reduction” action,
which plays a role similar to a gauge fixing action but here is rather a fingerprint of how
the gauge degrees of freedom have been absorbed into the observables of the theory
in a way similar to the Higgs mechanism. Accordingly, the true degrees of freedom
contain d(d + 1)/2 − d rather than d(d + 1)/2 − 2d observable gravity polarizations
in d spacetime dimensions as they have “eaten” n scalar fields and have become
“Goldstone” bosons.

D. Furthermore, the generating functional of Feynman distributions contains a current
only for the observable d(d + 1)/2 − d gravity polarizations, not for all of them. For
reasons of better comparability with the existing ASQG literature, one can by hand
augment the current by additional terms to include also the unphysical d gravity
polarizations (which are integrated out in the correct non-augmented version by
performing the lapse and shift integral) but one has to be careful in the interpretation
of the resulting effective action: Its restriction to the observable part of the current is
not the observable effective action that one is interested in. Rather, the two are related
by a twisted combination of Legendre transforms and restriction maps.
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E. Finally, one has to add the cut-off action to define the effective average action. This, like
the Einstein–Hilbert action, comes with a factor of i in the exponent in its Lorentzian
version and requires a different type of cut-off functions than in the Euclidian signa-
ture case.

We note that these differences originate from deriving a path integral formulation,
which is traditionally based on Lagrangian methods, and from the canonical or operator
formulation, which is based on Hamiltonian methods. In the simplest cases the recipe “the
path integral measure is given by the exponential of the action” can be justified from the
operator formalism. However, in general, that recipe is wrong, in particular when there are
gauge symmetries present, which require various adjustments of the measure listed above.
In general relativity, this is especially severe because the Lagrangian gauge symmetries do
not coincide “off shell” with the Hamiltonian ones. This has two aspects: First of all, to
define the phase space underlying the Hamiltonian formulation, one considers foliations
of the spacetime manifold, which are spacelike with respect to the dynamical spacetime
metric. The phase space is defined by Euclidian signature spatial metrics on the leaves
of that foliation and their conjugate momenta and is a universal object independent of
the foliation. The allowed foliations of the canonical formalism are such that they can
be transformed into each other infinitesimally and, in particular, remain spacelike with
respect to infinitesimally related spacetime metrics. The geometric origin of this is the
universal hypersurface deformation algebroid [30–32], which is generated by the first-
class constraints of a given theory via Poisson brackets. Those Poisson brackets no longer
generate a Lie algebra as the structure “constants” depend on the metric. On the other
hand, Lagrangian gauge symmetry is simply a spacetime diffeomorphism that is completely
independent of the spacetime metric, and thus, these do generate a Lie algebra. This feature
of the canonical formulation is sometimes criticized (see, e.g., [33] and references therein),
and doubts are raised against the corresponding definition of observables (i.e., functions
on the phase space that have vanishing Poisson brackets with the constraints on the
constraint surface). Nevertheless, “on-shell”, i.e., when the metric is a solution of the field
equations, the canonically generated deformations are spacetime diffeomorphisms [34].
Upon quantization, one may, therefore, argue that, at least semiclassically, the two notions
of Lagrangian versus Hamiltonian observables coincide. This is perhaps only a minimal
requirement, but as there is no universal road to quantization, it is a mathematically and
logically consistent viewpoint that is widely adopted [35]. Note also that this canonical
formulation and its underlying notion of observables is widely used in the classical initial
value formulation, which is used to solve the classical Einstein equations numerically, e.g.,
to derive black hole merger gravitational wave templates [36]. Further details on this issue
can be found in [5] and references therein. Among other things, it is one of the intentions of
the present work to draw attention to these conceptually quite interesting questions, which,
to the best of our knowledge, are barely discussed in the ASQG literature.

In [8], we have exemplified these general techniques for GR coupled to a very simple
matter content as a showcase model, namely the Einstein–Hilbert action in d spacetime
dimensions minimally coupled to d neutral, massless Klein Gordon fields studied in [37]
from a CQG perspective, in order to have a concrete example in mind. However, we only
prepared this showcase model to make it ready for an ASQG treatment. The analysis itself
was not carried out. This is the subject of the present paper. Thus, we will write the concrete
Wetterich equation for this model and derive the resulting flow equations in the lowest
order truncation for the three coupling parameters on which this model depends. We show
that there exist cut-off functions for which the required “heat” kernel time integrals are
finite. The Lorentzian heat kernel traces can otherwise be performed almost signature
independently. In particular, the so-called “non-minimal” term techniques [38] can be
copied literally. In this exploratory paper, we ignore the effect of the ghost integral as a first
step. This shows that the ASQG and CQG formalisms can be brought into contact, not only
in principle but also very concretely.

The architecture of this contribution is as follows:
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In Section 2, we review the bare bones from [8] necessary to be able to carry out the
calculations of the present paper.

Section 3 contains the main results of this paper. We formulate the non-perturbative
Wetterich equation for this model and then truncate it to the first few terms. We compute
the required heat kernel traces in that approximation, paying attention to non-minimal
terms. Next, we perform the heat kernel time integrals with respect to a new kind of cut-off
that must have different analytic properties than in the Euclidian signature case, as what is
relevant here are not Laplace but Fourier transforms. As shown in Appendix C of [8], these
cut-off functions can also be used in the Euclidian regime. Finally, we compute the flow
equations for the three-parameter space of dimensionless couplings of the present model
and study their solutions and fixed points. We are particularly interested in the k → 0
limit of the dimensionful couplings, which defines the effective action of actual interest.
A new feature of the Lorentzian flow is that at k ̸= 0, the couplings become generically
complex-valued. However, only the k = 0 values of the couplings have physical meaning,
and thus, the physically relevant or admissible trajectories are restricted to those for which
all dimensionful couplings are real-valued at k = 0.

In Section 4, we summarize and conclude.

2. The Model and Lorentzian Tools

The purpose of this section is to extract from [8] the ingredients necessary in order to
jump right away into the ASQG treatment of the next section.

2.1. CQG Derivation

The starting point is the classical action of the model

S = G−1
N

∫

M
ddx

√

−det(g) [R[g]− 2Λ − GN

2
SI J gµν ϕI

,µ ϕJ
,ν] (1)

where M is a d-dimensional manifold, necessarily diffeomorphic to R× σ where σ is a
(d − 1)-dimensional manifold when g is metric of Lorentzian signature and (M, g) is a
globally hyperbolic spacetime which is a necessary assumption in CQG [39]. To avoid
discussions about boundary terms, we assume that σ is compact without boundary, say a
d−torus. Furthermore, R is the Ricci scalar, GN is Newton’s constant, and Λ is the cosmo-
logical constant. The matter content consists of d neutral scalar fields ϕI , I = 0, . . . , d − 1,
which minimally couple to the metric via a constant, real-valued, and positive definite
matrix S.

The Legendre transform of the Lagrangian displayed in (1) is singular and leads to
2d first-class constraints. There is a set of d primary constraints C1

µ which state that in the
ADM formulation of (1), the momenta conjugate to lapse and shift functions are identically
zero, and these induce d secondary constraints C2

µ known as d − 1 spatial diffeomorphism
constraints and one Hamiltonian constraint [34]. For the above model, the unreduced phase
space consists of the canonical pairs (Pµ, Nµ), (pab, qab), (πI , ϕI) with µ = 0, . . . , d − 1,
a = 1, . . . , d − 1 where N0, Na are lapse and shift functions, respectively, and qab is the
metric on σ. The other variables denote the conjugate momenta. In the reduced phase
space approach, one imposes 2d gauge fixing conditions on the configuration variables and
solves the constraints for the 2d conjugate momenta. A convenient set of gauge conditions
is that

GI
2 := ϕI − kI = 0, G

µ
1 := Nµ − cµ = 0 (2)

where kI , cµ are functions on M independent of the phase space variables subject to the
condition that det(∂k/∂x) ̸= 0. Accordingly we solve the constraints C2

µ = 0, C1
µ = Pµ = 0

for πI , Pµ which is trivial for Pµ. The secondary constraints can be solved algebraically for
πI := π∗

I [8]. In this way, the gauge degrees of freedom are identified as (Nµ, ϕI), (Pµ, πI)

while the true degrees of freedom are (qab, pab).
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To obtain the reduced Hamiltonian, we note that the so-called primary Hamiltonian
for generally covariant systems is a combination of constraints. In this case,

Hprimary =
∫

d3x [vµ C1
µ + Nµ C2

µ] (3)

where C0, Ca are the Hamiltonian and spatial diffeomorphism constraints. Here, vµ are the
velocities with respect to which the Legendre transform is singular. The gauge stability
condition imposes that the gauge fixing condition be preserved in time

ĠI
2 = ∂tG

I
2 + {Hprimary, GI

2} = {Hprimary, GI
2} − k̇I = 0, Ġ

µ
1 = ∂tG

I
1 + {Hprimary, GI

2} = vµ − ċµ = 0 (4)

which can be solved for Nµ := N
µ
∗ and vµ := v

µ
∗ = ċµ = Ṅ

µ
∗ . The reduced Hamiltonian is

defined to be that function of the true degrees of freedom only which generates the same
equations of motion as the primary Hamiltonian when we restrict to the reduced phase
space i.e.,

{H, F} = {Hprimary, F}∗ (5)

where the subscript ∗ instructs to evaluate the Poisson bracket taken on the unreduced
phase space and then freeze it to P∗

µ , π∗
I , N

µ
∗ , ϕI

∗, v
µ
∗ . Here F is a function of (q, p) only. The

explicit expression for H is given in [8]. It is conservative, i.e., not explicitly time-dependent
iff κ I

µ := ∂kI/∂xµ is time x0 independent. This is the simplest choice of gauge also adopted
in [8] while not necessarily simplifying the formulae.

Equipped with the reduced phase space coordinatized by (q, p), the reduced Hamil-
tonian, and a preferred time direction x0, we can now quantize the system by imposing
canonical commutation and ∗ relations in the usual way, which gives rise to a Weyl al-
gebra A for which we can pick Hilbert space representations. The cyclic representations
correspond to states ω [40] with respect to which we can compute time-ordered correlation
functions (Feynman distributions), which can be analytically continued in time due to the
conservative nature of the Hamiltonian (Schwinger distributions). These distributions are
obtained from a generating functional Zs[ f ] which depends on currents f ab for qab where
s = 0, 1 corresponds to Euclidian and Lorentzian time, respectively.

These generating functionals can be cast into a formal path integral over the phase
space spacetime fields (q, p) by the usual methods and assumptions familiar from ordi-
nary QFT and depend on the Euclidian or Lorentzian phase space action induced by H,
respectively. Specifically,

Zs[ f ] =
∫

[dq dp] Jω [q] e−
∫

dx0 (i <p,q̇>+(−i)s H[p,q]) eis
∫

dx0 < f ,q> (6)

where < ., . > is the inner product on ⊗d(d−1)/2 L2(σ, dd−1x) between symmetric twice
contravariant tensor densities of weight one and twice symmetric covariant tensors and
Jω [q] is a functional that depends on the chosen state ω on A [8].

One now would like to perform the momentum integrals. This is difficult because H
involves a square root that originates from solving the constraints Cµ for the momenta πI

on which they depend quadratically. Thus, (6) is not at all a simple Gaussian integral in
p. In [8], two possibilities for removing the square root were presented. The first method
introduces a single auxiliary field λ and is inspired by the observation that the critical
point value of the function λ 7→ [λ h + λ−1]/2 is given by

√
h so that in a saddle point

approximation of the λ integral one obtains the square root. In [8], the exact version of
this saddle point argument is presented. It has the advantage that it works in principle for
both signatures, but it has the disadvantage of being spatially non-local and involving the
solution of PDEs that arise when integrating out p. We hope to come back to this method
for the present model in a future publication. Alternatively, there also exists scalar matter,
which avoids the square root from the outset [41], which would also be interesting to study.
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The second method follows the well-known procedure [35] for unfolding a reduced
phase space path integral to the unreduced phase space by introducing δ distributions
for G

µ
2 , C2

µ and the determinant of the Dirac matrix ∆ := {C2, G2} which is very similar
to the Lagrangian Fadeev–Popov method. Thus, the path integral is extended to an
integration also over ϕI , πI , Nµ where the integral over Nµ yields δ[C2] and we keep
δ[G2] det(∆) untouched. This enables the replacement of H[q, p] by − < π, ϕ̇ > in (6)
because H = − < π∗, k̇ > at the price to augment the exponent by −i < N, C2 > which
installs the δ[C2] distribution. We now see that for s = 0 we run into trouble: The terms
< p, q̇ >,< π, ·ϕ > come with a relative factor of i. Then, carrying out the now Gaussian
integrals over π, p turns the exponent into the Einstein–Hilbert action for complex GR
plus corrections.

This forces us to work with s = 1 from now on. The Gaussian integrals over p, π
can be performed, which introduces a measure factor depending on q, N. We also carry
out the integral over ϕ via δ[G2] which replaces ϕI

,µ by kI
,µ = κ I

µ. Then, the integral
only involves qab, Nµ. By switching integration variables to gµν using the ADM relations

g00 = −N2 + qabNaNb, g0a = qabNb, gab = qab, we can write [dq dN] = [dg] I[q, N]
with the corresponding Jacobean I[q, N] so that we end up with a functional integral over
Lorentzian signature spacetime metrics g, specifically

Z1[ f ] =
∫

[dg] Jω [g] e−iS1[g] ei
∫

M ddx f abqab ,

S1[g] =
1

GN

∫

M
ddx

√

−det(g)[R[g]− 2Λ − GN

2
gµν SI J kI

,µ kJ
,ν]

(7)

where we have collected all measure factors that deviate from the exponential of the
displayed action into the function Jω [g] [8] written in terms of g rather than q, N which,
again, depends on the state ω. It can be written in terms of a functional determinant
Jω = det(Kω). Hence, the second factor may be replaced by a ghost integral if wanted [8]

Jω [g] = |
∫

[dρ dη] e−i
∫

ddx ηµ [Kω ]Iµ(g) ρI | (8)

where Kω is the ghost matrix [8] (we consider only the case κ I
µ = const. and κ I

0 = κ0δI
0)

[Kω ]
I
µ(g) = fω(g){

δ0
µ

N
[κ I

0 − Naκ I
a] + δa

µκ I
a},

fω(g) = | − det(g)|2/d−(d+1)/8 |det(q)|2/d+(d+1)/4 exp(hω/d)

hω(x0, x⃗) = [δ(x0, ∞) + δ(x0,−∞)] Iω(x0, x⃗), Ωω [q(x0)]

= : exp(
∫

dd−1x Iω(x0, x⃗)) (9)

and q, N are to be expressed in terms of g using the above ADM relations. Here, Ωω [q(x0)]
is the cyclic vector of the GNS data at fixed x0 underlying the state ω, written in the
configuration presentation. It contributes only for x0 = ±∞. More details about Iω can be
found in [8]. The kI dependent “reduction term” replaces the usual gauge fixing term but
is logically independent of it.

We will now drop the index “1” in Z1, which reminds us of the fact that we are dealing
with the Lorentzian signature. The fact that Z[ f ] depends on f ab only and not on the full
f µν reminds us of the fact that we are dealing with a reduced phase space formulation and
thus only correlation functions of the observable spacetime field qab(x) are accessible. In
principle, one can integrate out lapse and shift in (7) to obtain a path integral just for q.
It is remarkable that the only effect on the exponential of the action due to the reduced
phase space formulation is that the Einstein–Hilbert action is corrected by the non-covariant
“reduction” term involving kI . We choose kI

,µ =: κ I
µ to be constant and thus can abbreviate

the constant matrix κµν := SI Jκ
I
µκ J

ν which introduces d(d + 1)/2 coupling constants. The
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other non-covariant term is the measure factor Jω [g]. Both non-covariances again remind
us of the fact that we have fixed a certain gauge, and all statements about correlators have
to be translated into each other by the corresponding spacetime diffeomorphisms when
switching gauges. Please note that the gauge chosen ties the spacetime coordinates to a
dynamical reference field ϕI . Therefore, the coordinates become observable, and in that
sense, the description is gauge-independent but dependent on the interpretation of the
coordinates. See [8] for more details.

2.2. ASQG Treatment

To set up the system (7) for an ASQG treatment, we formally extend the current to
include also uµ := f 0µ components which we remind us of by switching notation from f to
F where F0µ = uµ, Fab = f ab and Z → Z′. Then we define the effective action in the usual
way by

C′[F] = i−1 ln(Z′[F]), Γ′[ĝ] := [L · C′][ĝ] := extrF(< F, ĝ > −C′[F]) (10)

where L denotes the Legendre transform. Note however that while Z[ f ] = [R ◦ Z′][ f ] :=
Z′[F]u=0, C[ f ] = C[F]u=0 are just related by restriction R it is not true that Γ[q̂] = Γ′[ĝ]N̂µ=0.
Rather [8]

Γ = L ◦ R ◦ L−1 · Γ′ (11)

which we need to keep in mind because what we are interested in is Γ and not Γ′. In QFT,
one considers a well-defined Γ a complete solution of the theory.

In ASQG, one works with the background field method. Thus, in (7) we replace g
everywhere by ḡ + h and [dg] by [dh] except in < F, g > which is replaced by < F, h >. The
resulting generating functional is denoted by Z̄′[F, ḡ] and corresponding C̄′[F, ḡ], Γ̄′[ĝ, ḡ].
As is well known, we recover the background-independent effective action by

Γ′[ĝ] := Γ̄′[ĝ′; ḡ]ĝ′=0, ḡ:=ĝ (12)

Finally, we introduce the effective average action [23,42,43] through the chain of
relations

Z̄′
k[F, ḡ] =

∫

[dh] Jω [ḡ + h] e−iS[ḡ+h] ei<F,h>e−i 1
2<h,Rk(ḡ)·h>,

C̄′
k[F, ḡ] = i−1 ln(Z̄′[F, ḡ]),

Γ̄′
k[ĝ, ḡ] = extrF (< F, ĝ > −C′

k(F, ḡ))− 1

2
< ĝ, Rk(ḡ) · ĝ > (13)

where k → Rk(ḡ) is a 1-parameter family of background-dependent integral kernels,
which only depends on the background d’Alembertian. In the Euclidian signature case,
it intuitively corresponds to a suppressing kernel for Euclidian momenta below k. In the
Lorentzian case, suppressing is replaced by oscillations although it is clear that null modes
cannot be tamed like this. Therefore, we will only take over one of the properties of Rk from
the Euclidian case, namely Rk = 0 for k = 0 while we adapt the other properties of Rk to
Lorentzian signature further below. This ensures that Γ̄′(ĝ, ḡ) = Γ̄′

0(ĝ, ḡ) so that the object
of actual interest (11) is available from Γ̄′

k(ĝ, ḡ) through the chain of relations displayed.
The importance of Γ̄′

k(ĝ, ḡ) lies in the fact that it obeys the Lorentzian version of the
Wetterich equation

k ∂k Γ̄′
k[ĝ, ḡ] =

1

2i
Tr([Rk(ḡ) + Γ̄

′(2)
k (ĝ, ḡ)]−1 [k ∂kRk(ḡ)]), Γ̄′(2)[ĝ, ḡ] :=

δ2Γ̄′(2)[ĝ, ḡ]

δĝ ⊗ δĝ
(14)

This integro-functional differential equation is an exact and non-perturbative identity
and can be used to construct a well-defined Γ rather than using its ill-defined expression (7).
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To solve (14), exactly one Taylor expands both the l.h.s. and r.h.s. in powers of ĝ and
compares coefficients. This gives an infinite iterative hierarchy of relations because (14)
connects the Taylor coefficients of order n to those of order n + 2. In practice, one has to
truncate at some finite order T of Taylor coefficients on the l.h.s. that we want to take into
account. Often, one just considers T = 0.

To actually compute the traces on the r.h.s. of the Wetterich equation for the k∂k

derivative of the ĝ independent N-th order Taylor coefficients TN
k (ḡ) = Γ̄

′(N)
k (ĝ, ḡ)ĝ=0 one

notices that these can be written, (we do not display the dependence on ḡ)

Tr([Pk + Rk + Uk]
−1 [k∂kRk] [Pk + Rk + Uk]

−1 V1
k [Pk + Rk + Uk]

−1 . . . [P + Rk + Uk]
−1 VM

k ) (15)

M = 0, . . . , T where T2
k = P + Uk has been split into a term Pk which depends on ḡ

only through the background d’Alembertian □ = ḡµν ∇̄µ ∇̄ν. The operators Uk, V I
k are

not necessarily such “minimal” operators and can have general dependence on ḡ. Then
we expand (1 + P−1

k [Rk + Uk])
−1 into a geometric series. In practice one must truncate

that series at some order S. This basically replaces (15) to the effect that Rk + Uk in
the denominator is dropped, and the V I

k are replaced by other, in general, non-minimal
operators. Then every minimal operator factor in (15) is replaced via the spectral theorem by

Ok(□) =
∫ ∞

−∞
dt Ôk(t) Ht, Ht := eit□ (16)

where Ôk(t) is the Fourier transform of Ok(z) and Ht the “heat” (better: Schrödinger)
kernel [25–28]. It follows that we are interested in the traces

∫

dM+1t
M

∏
I=0

ÔI
k(tI) Tr(V1

k (t0)V
2
k (t0 + t1) . . . VM

k (t0 + · · ·+ tM−1) Ht0+···+tM
),

V I
k (s) = Hs V I

k H−s

(17)

The V I
k (s) can be Taylor expanded with respect to s, which we truncate at some order

R. This replaces the V I
k (s) in (17) by other non-minimal but s−independent operators V I

k
and introduces a polynomial in the t0, . . . , tM so that we are interested in

∫

dMt
M

∏
I=0

ÔI
k(tI) Pol(t1, . . . , tM) Tr(V1

k . . . VM
k Ht0+···+tM

) (18)

The remaining trace can be computed using heat kernel techniques, as detailed below.1

Finally, one parametrizes Γ̄′
k(ĝ, ḡ) in terms of a suitable basis of Γ̄′

α(ĝ, ḡ) of “actions”
that come with dimensionful “couplings” Ck,α where α runs through a countable index set.
In practice, we truncate the number A of α that we retain, subordinate to the truncation
parameters R, S, T above in such a way that we obtain a closed autonomous system of first-
order ODEs for the Ck,α. One factors off the dimension of those couplings and obtains an
autonomous closed system of first-order ODEs for dimension-free couplings ck,α = k−dα Ck,α,
specifically k∂kck =: β(ck). Consider a UV (k → ∞) fixed point c∗ of this flow i.e., β(c∗) = 0.
It is called a predictive fixed point when all but a finite (and T, S, R, A independent) number
of the cα must be fine-tuned to the fixed-point values c∗α in order for the fixed point to be
reached. The remaining parameters are the relevant parameters that need to be measured,
while the fine-tuned ones are predictions of that fixed point.

From the point of view of CQG, this is the only purpose of going all the way through
these steps because it offers a way to define the theory (11) that we are interested in,
provided that the limit k → 0 of Γ′

k(ĝ, ḡ) can be taken. Thus, the k → ∞ limit of ck and the
k → 0 limit of Ck must co-exist for this particular fixed point.
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2.3. Lorentzian Heat Kernel Expansion, Time Integrals, and Cut-Off Functions

The Lorentzian heat kernel on the Lorentzian spacetime (M, ḡ) is the solution to the
initial value problem

[∂t − i□] Ht(x, y) = 0, H0(x, y) = δ(x, y) (19)

The heat kernel time t has nothing to do with the time coordinate x0. For Minkowski
space (M, ḡ) = (Rd, η) one finds the unique solution

Ht(x, y) = [4π|t|]−d/2 ei π
4 sgn(t)[2−d] e

i
2t σ(x,y) σ(x, y) =

1

2
ηµν(x − y)µ (x − y)ν (20)

On general (M, ḡ) one generalizes (20) to

Ht(x, y) = [4π|t|]−d/2 ei π
4 sgn(t)[2−d] e

i
2t σ(x,y) Ωt(x, y) (21)

where σ(x, y) is called the Synge world function i.e., the signed square of the geodesic dis-
tance between x, y (positive, negative, zero when the geodesic between x, y is spacelike,
timelike, or null) which are assumed to lie in a convex normal neighborhood. It satisfies
the master equation

ḡµν(x) [∇̄x
µσ](x, y) [∇̄x

νσ](x, y) = 2 σ(x, y), σ(x, x) (22)

This equation, which is remarkably signature insensitive, allows the computation of
the coincidence limit y → x of all covariant derivatives of σ in terms of the curvature tensor
of ḡ.

One now plugs the Ansatz (21) into (19) and obtains a PDE for Ωt subject to the initial
condition Ω0(x, x) = 1 as the prefactor in (21) already produces δ(x, y) at t = 0. To turn
that PDE into a system of algebraic equations, one first expands Ωt with respect to the heat
kernel time t

Ωt(x, y) =
∞

∑
k=0

(it)k Ωk(x, y) (23)

The factors of i are chosen such that the Ωk are real-valued also in the Lorentzian
signature. One finds (metric coefficients and derivatives at x)

[
□− d

2t
+ k]Ωk + ḡµν[∇̄µΩk] [∇̄νσ]− [□Ωk−1] = 0 (24)

with Ω−1(x, y) ≡ 0, Ωk=0(x, x) = 1. Then we perform a coincidence limit expansion

Ωk(x, y) =
∞

∑
l=0

1

l!
[Ωk,l ]

µ1 ...µl (x) [∇̄x
µ1

σ](x, y) . . . [∇̄x
µl

σ](x, y) (25)

Plugging (25) into (24) allows the computation of all completely symmetric tensors
Ωk,l(x) algebraically just using the master equation. By the same methods also the evalua-
tion of non-minimal derivative operators on the heat kernel can be evaluated algebraically.
All that is needed is the master equation. Since these relations do not depend on the
signature, we can transfer without change literally all the listed expressions for Ωk,l from
the Euclidian to the Lorentzian regime. See [8,38] and references therein for more details.

Once all of this has been done, one takes the trace, which consists of evaluating

∫

ddx [V1
k (x) . . . VM

k (x)Hs(x, y)]y→x (26)

which is why the coincidence limit is important and why the assumption of y to lie in
a convex normal neighborhood of x is justified. The notation in (26) means that the V I

k
are considered to be differential operators that act on the x dependence of the heat kernel
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before taking the coincidence limit. These integrals return expressions depending on the
background metric, the curvature tensor, and derivatives thereof and thus allow for an
unambiguous comparison of coefficients when computing the β functions of the flow
provided ḡ is kept arbitrary.

The final step consists of computing the integrals over the heat kernel times and it
is at this point where the choice of the cut-off function Rk becomes crucial. The follow-
ing is a possible choice introduced in [8], which serves as a proof of principle that the
Lorentzian heat kernel time integrals converge for suitable Rk, but it is only motivated by
the mathematical convergence property and not a physical principle.

From the discussion above, it is clear that the operators P−1
k , Rk play a fundamental

role. They need to be expressed in terms of the heat kernel. As a typical example we
consider Pk(□) = Λk + B □ there B is independent of k. Then with Ck = Λk/B

P−1
k = B−1 [□+ Ck]

−1 = − i

B
[
∫ ∞

0
dt eit□−tϵ]ϵ→−iCk

(27)

is like a Schwinger proper time integral involving the heat kernel where it is understood
that one performs the integral at ϵ > 0 and then analytically continues ϵ → −iCk at the end.
Please note that the heat kernel time integral in (27) is confined to the positive real axis.

Furthermore, we pick

Rk(z) = fk k2 r(z/k2), r(y) =
∫ ∞

0
dt e−t2−t−2

eity (28)

where fk is a function of the couplings, which equips Rk with the correct physical dimension
and which, in practice, increases the non-linearity of the flow. Thus, the Fourier transform
r̂ has rapid decrease at t = 0,+∞ and smoothly joins the constant function r̂(t) ≡ 0, t ≤ 0.
Thus, no boundary terms arise when integrating by parts.

The reason for this choice is the following: the heat kernel time integrals (18) involve
the heat kernel Hs, s = t0 + · · ·+ tM and the heat kernel itself contains |s|−d/2 as a prefactor.
If the heat kernel time integrals also had support on the negative real axis, then there would
be multiple configurations of t0, . . . , tM, which yield poles s = 0, and none of the heat kernel
time integrals would converge. This cannot happen when all heat kernel times are positive.
Furthermore, all integrals that appear contain at least the factor of k∂kRk corresponding to

the t0 integral in (18) producing a e−t2
0−t−2

0 factor. The basic estimate s−d/2 ≤ t−d/2
0 shows

that, therefore, the required integrals converge absolutely.
The price to pay is that these integrals become complex-valued, making the flow of

the couplings complex-valued. This, in principle, doubles the number of real couplings.
However, we are not interested in all complex trajectories but only the admissible ones. These
are those with the property that the dimensionful couplings have a real-valued k → 0 limit
when they exist. This is a form of fine-tuning and halves the number of initial conditions
(trajectories) of the flow so that one is effectively dealing with the same dimensionality
of the flow as in the Euclidian case. Please note that in the Euclidian signature case, the
heat kernel times are automatically confined to the real axis because one is dealing with the
one-sided Laplace transform rather than the Fourier transform.

In the literature on Euclidian signature ASQG, multiple heat kernel time integrals, at
least when only minimal operators are involved, are avoided by assuming that a given
function F(y), y ≥ 0 is in the image of the Laplace transform, i.e., that there exists F̂(t)
such that F(y) =

∫ ∞

0 dt F̂(t) e−yt Then it follows that for n ∈ Z

∫ ∞

0
dt tn F̂(t) = θ(n) (−1)n F(n)(0) + θ(−n)

1

(|n| − 1)!

∫ ∞

0
dy y|n|−1 F(y) (29)

so that one never needs to know F̂. In [8], we show that the existence of F̂ for commonly
used cut-off functions is by no means secured. This is the reason we start here with given F̂
whose existence is secured. Therefore, relations of the type (29) are of little practical use as
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we only know F̂ explicitly rather than F. In [8], it is shown that (28) is also a valid choice in
the Euclidian regime (with iy → −y < 0).

To solve the Wetterich equation, one typically starts with the 1-loop background
effective action as an Ansatz, which is given by

Γ̄′(ĝ, ḡ) = S(ĝ + ḡ) +
1

2i
[Tr(ln[S(2)))− 2 Tr(ln[Kω ]))](ĝ + ḡ) (30)

where Kω is the ghost matrix and then makes the couplings of the various terms in this
expression dependent on k. Here, S already contains the reduction term, which in some
sense replaces the gauge fixing term in the usual treatment, and the logarithmic term
replaces the ghost action flow in the usual treatment.

3. ASQG Analysis of the Model

In this exploratory paper, we will be content with lowest order truncations R, S, T, A
in order to gain experience.2 In particular, we will ignore the effect of the ghost matrix
Kω, consider only the zeroth order T = 0 Taylor expansion of the Wetterich equation with
respect to ĝ, expand the geometric series involved in the trace of the Wetterich equation
only up to S = 2 in the non-minimal terms, keep only the zeroth order R = 0 with respect
to s in the “heat kernel evolved” non-minimal operators HsV

I
k H−s and finally truncate the

flow of actions with respect to an A = 3-dimensional space of dimensionful couplings
corresponding to Newton’s constant GN , the cosmological constant Λ and κ where we spe-

cialize the gauge ϕI = kI such that κ I
µ = kI

,µ = const. and such that κµν := SI Jκ
I
µκ J

ν = κδµν

with κ > 0. This means that we study the concrete problem

k∂kγk =
1

2i
Tr{[k∂kRk] P−1

k (1 − [(Rk + Uk) P−1
k ] + [((Rk + Uk) P−1

k ]2)} (31)

where
γk := Γ̄

′(0)
k (0, ḡ), Γ̄

′(2)
k (0, ḡ) =: Pk + Uk, (32)

and Pk = G−1
N,k[Λk + B□] collects all terms which depend only on □ (minimal terms) while

Rk = G−1
N,k k2r(z/k2) with r as in the previous section.

The Ansatz is then given by

Γ̄′
k(ĝ, ḡ) := { 1

GN,k

∫

ddx [−det(g)]1/2[R[g]− 2Λk −
κkGN,k

2
gµν δµν]}g=ḡ+ĝ (33)

A similar Ansatz was also used in [22], where a preliminary study of relational
observables in ASQG was carried out.

In what follows, we will now go step by step through the ASQG treatment of the
concrete truncation given above, discarding all terms on the r.h.s. of the Wetterich equation
that is not of the form (36).
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3.1. Evaluation of the Heat Kernel Traces

To evaluate (32) via the heat kernel traces, the first step is to compute the Hessian

[Γ̄′(2)]µν
ρσ =

[−det(ḡ)]1/2

GN,k

(

(□̄+ 2Λk)K
µν

ρσ + U
µν
k ρσ

)

, (34)

Kµν
ρσ =

1

4
δ̄

µ
ρ δ̄ν

σ +
1

4
δ̄ν

ρ δ̄
µ
σ − 1

2
ḡµν ḡρσ , (35)

U
µν
k ρσ =

1

2

(

D̄(µD̄ν) ḡρσ + D̄(ρD̄σ) ḡ
µν − D̄(µD̄α δ̄

α)
σ δ̄ν

ρ − D̄(µD̄α δ̄
α)
ρ δ̄ν

σ

)

+
1

2
(R̄µ

ρ
ν

σ + R̄µ
σ

ν
ρ) +

1

4

(

δ̄
µ
ρ R̄ν

σ + δ̄
µ
σ R̄ν

ρ + δ̄ν
ρ R̄µ

σ + δ̄ν
σR̄µ

ρ

)

(36)

−1

2

(

ḡµνR̄ρσ + ḡρσR̄µν
)

− 1

4
R̄
(

δ̄
µ
ρ δ̄ν

σ + δ̄ν
ρ δ̄

µ
σ − ḡµν ḡρσ

)

+
1

2
Λk ḡµν ḡρσ −

GN,kκk

4

(

δ
µ
ρ ḡν

σ + δν
ρ ḡ

µ
σ − (δµν ḡρσ + δρσ ḡµν )

−1

2
δα

α

(

δ̄
µ
ρ δ̄ν

σ + δ̄ν
ρ δ̄

µ
σ − ḡµν ḡρσ

)

)

,

where we distinguished between δ̄
ρ
ν = ḡµν ḡµρ to be the background gravitational metric

and δµν to be the matrix involved in the matter contribution having set κµν,k = κkδµν. The
indexes are raised or lowered through the background metric ḡ. Furthermore, we can now
identify the structure of Pk given in (27) with B = 1 and Ck = 2Λk.

Making the Ansatz that the regulator Rk has the tensorial structure

R
µν
k ρσ = [−det(ḡ)]1/2G−1

N,kKµν
ρσk2r(z/k2) (37)

simplifies considerably the computations.3 Effectively, one is left with computing the
suitable trace of products of K−1Uk up to the order established in the expansion (31), where
the matrix K−1 is the inverse of K defined in (35):

(K−1)µν
ρσ = δ̄

µ
ρ δ̄ν

σ + δ̄ν
ρ δ̄

µ
σ − 1

d − 1
ḡµν ḡρσ . (38)

From this point onwards, all the evaluations have been specialized to d = 4 spacetime
dimensions. A first observation we make is that the tensorial trace of the product between
K−1 and the terms in the last line in (36), containing the contributions coming from the mat-
ter, gives in general dimension a contribution proportional to κkGN,kδα

α(8 − 2d − 4d3 + d4)
which is exactly vanishing in d = 4. Also at order [K−1Uk]

2 this results in a coefficient
proportional to κkGN,kδµνgµν(48 − 84d + 18d2), vanishing in d = 4. The implication of this
is that the coupling constant κk is not flowing, and the flow of the gravitational couplings
Λk and GN,k completely decouples from the matter content. The additional matter term
comes from the phase space reduction and indicates how scalar field degrees of freedom
are transformed into metrical ones. However, at this level of truncation, it neither explicitly
contributes to the flow of the couplings related to the physical degrees of freedom nor is it
affected by their running.

Now, we are able to explicitly write down term by term the heat kernel traces in (31).
As customary in RG analysis, we switch to dimensionless variables, i.e., concretely,

y = z/k2, Λk = λkk2, GN,k =
gk

k2
, Uk = ukk2, ηN =

k∂kgk

gk
, (39)

where ηN stands for the anomalous dimension of the dimensionless Newton’s coupling.
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At zeroth order, one is left with

Tr
(2 − ηN)r(y)− 2iyr′(y)

y + 2λk
=

= −iTr
∫ ∞

0
dt1dt2eiy(t1+t2)e−ϵt1

(

(2 − ηN)e
−t2

2−t−2
2 + 2

d

dt2
(e−t2

2−t−2
2 )

)

∣

∣

∣

∣

∣

ϵ→−2iλk

(40)

At first order

Tr

(

2 − ηN)r(y)− 2iyr′(y)
)

(r(y) + uk)

(y + 2λk)2
= −

∫ ∞

0
dt1dt2dt3eiy(t1+t2+t3)e−ϵ(t1+t3) · (41)

(

(2 − ηN)e
−t2

2−t−2
2 + 2

d

dt2
(e−t2

2−t−2
2 )

)

(
∫ ∞

0
dt4eiyt4 e−t2

4−t−2
4 + uk)

∣

∣

∣

∣

∣

ϵ→−2iλk

At second order, the term has an analogous structure with up to 6 integrations in
proper time variables ti, which we do not report for the sake of readability.

In order to perform the traces, we specialize to d = 4, note that the integrals only in-
volve positive values of t, and we exploit the heat kernel formula in general manifolds (21).
In particular, the Ωk up to the order we are interested in can be found in the
literature [25–28,38,50,51]

H =
(−i)

(4πt)d/2
(Ω0 + it Ω1) , (42)

H(µν)(x, y) =
(−i)

(4πt)d/2

(

− 1

2t
gµνΩ0 −

i

2
gµνΩ1 + iD̄(µD̄ν)Ω0

)

. (43)

where H is to be applied for minimal operators, while H(µν) for non-minimal operators
involving two derivatives. The Ω’s are given by

Ω0 = 1 , Ω1 = 1
6 R̄ , D̄(µD̄ν)Ω0 = 1

6 R̄µν . (44)

At zeroth order, one is left only with the minimal term, and the trace reduces to a
proper time integral of the form

−iTr
∫ ∞

0
dt1dt2e−ϵt1

(

(2 − ηN)e
−t2

2−t−2
2 + 2

d

dt2
(e−t2

2−t−2
2 )

)

×

× (−i)

(4π)2(t2 + t2)2

(

1 +
iR̄

6
(t1 + t2)

)

∣

∣

∣

∣

∣

ϵ→−2iλk

.
(45)

As far as the first-order term (and for the second-order as well) is concerned, both the
minimal and the non-minimal heat kernel expansions have to be applied. As an illustration,
the minimal term up to first-order reads

−
∫ ∞

0 dt1dt2dt3e−ϵ(t1+t3)
(

(2 − ηN)e
−t2

2−t−2
2 + 2 d

dt2
(e−t2

2−t−2
2 )

)

·
· (

∫ ∞

0 dt4eiyt4 e−t2
4−t−2

4
(−i)

(4π)2(t1+t2+t3+t4)2

(

1 + iR̄
6 (t1 + t2 + t3 + t4)

)

+

+uk
(−i)

(4π)2(t1+t2+t3)2

(

1 + iR̄
6 (t1 + t2 + t3)

)

)

∣

∣

∣

∣

∣

ϵ→−2iλk

.

(46)
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and analogously for the non-minimal term with (43). Reabsorbing the heat kernel coeffi-
cients Ωi in the definition of the potential uk, we report here the terms we will be using up
to first order in curvature expansion:

Tr(K−1ukei□̄t)minimal ≈ (−i)

(4πt)2

(

−4

3
Λk − 3R̄ − i

2

9
ΛkR̄t

)

, (47)

Tr(K−1ukei□̄t)non-minimal ≈ (−i)

(4πt)2

(

5

t
+ i

5

12
R̄

)

, (48)

Tr((K−1uk)
2ei□̄t)minimal ≈ (−i)

(4πt)2

(

16

9
Λ2

k + i
8

27
R̄t

)

, (49)

Tr((K−1uk)
2ei□̄t)non-minimal ≈ (−i)

(4πt)2

(

− 2

3t
Λk −

3

2t
R̄ − i

1

18
ΛkR̄

)

. (50)

where ≈ denotes that the right-hand side is correct up to higher orders in curvature invariants.

3.2. Evaluation of the Heat Kernel Time Integrals

In the previous section, we have arrived at a closed convergent proper time expression
for the functional trace of the r.h.s. of flow equation (31). At this stage, we must solve the
proper time integrals. We are instructed to compute them for ϵ > 0 and then to analytically
continue to −2iλk. This would be easy if the integral would be analytically computable
but it is not. We could numerically integrate it and then fit a function analytic in ϵ to
approximate it. In this exploratory paper, we will be content with the following very crude
approximation, which is the better, the larger ϵ and which has the advantage of producing
a closed expression: We approximate ∀n ≥ 0 the following integrals as follows:

∫ ∞

0
dt1

∫ ∞

0
dt2e−ϵt1 e−t2−t−2

2
1

(t1 + t2)n
≈

∫ ∞

0
dt1e−ϵt1

∫ ∞

0
dt2e−t2−t−2

2
1

(t2)n
(51)

=
1

ϵ

∫ ∞

0
dt2e−t2−t−2

2
1

(t2)n
.

Using this approximation, we are able to evaluate all the heat kernel integrals nu-
merically and to perform the analytic continuation explicitly. The singularity of this
approximation as ϵ → 0 is incorrect for n ≥ 2; thus, the exact flow will be somewhat better
behaved at λk → 0 than we can compute at the moment.

We will denote by Im,n (Jm,n) the integrals involving m powers of the cut-off regulator
functions (for Jm,n the first function is derived regarding the heat kernel time) and the n-th
power of the proper time in the denominator:

Im,n =
∫ ∞

0
dt1 · · · dtm

e−t2
1−t−2

1 · · · e−t2
m−t−2

m

(t1 + · · ·+ tm)n
, (52)

Jm,n =
∫ ∞

0
dt1 · · · dtm

d
dt1

(e−t2
1−t−2

1 ) · · · e−t2
m−t−2

m

(t1 + · · ·+ tm)n
. (53)

As an illustration, the integrals for m = 1 can be solved analytically

I1,n =
∫ ∞

0
dt

e−t2−t−2

tn
= K n−1

2
(2) , (54)

J1,n =
∫ ∞

0
dt

d

dt

e−t2−t−2

tn
= nK n

2
(2) . (55)
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where K is the modified Bessel function. We will also list some useful numerical result

I2,2 =
∫ ∞

0
dt1dt2

e−t2
1−t−2

1 e−t2
2−t−2

2

(t1 + t2)2
≈ 0.00308 , (56)

J2,2 =
∫ ∞

0
dt1dt2

d
dt1

(e−t2
1−t−2

1 )e−t2
2−t−2

2

(t1 + t2)2
≈ 0.00310 . (57)

It is important to emphasize at this stage that due to the approximation (51) in the
evaluation of the integrals, the flow will contain additional terms of λk in the denominator
as in the standard FRG-ASQG computation. This will prevent us from taking the vanishing
λk → 0 limit.

3.3. Beta Functions and Flow Equations

Having evaluated the traces, we can now come back to (31) and compare with the
l.h.s. of Equation (14). In particular, having disentangled the flow of κk, we will be left
with the flow of the two (dimensionless) gravitational coupling constants. Those can be
identified by comparing the l.h.s. and the r.h.s. the terms proportional to the identity
operator (furnishing k∂kλk) and those proportional to the Ricci scalar (furnishing k∂kgk).
The flow of the two dimensionless coupling constants read:

k∂kλk = −4λk + ηNλk −
gk

4π

1

2λk

(

(2 − ηN)

(

I1,2 +
1

2λk

(

I2,2 − 5I1,3 +
4

3
λk I1,2

)

(58)

+
1

(2λk)2

(

I3,2 + 2

(

I2,2 − 5I1,3 +
4

3
λk I1,2

)

− i
16

9
λ2

k I1,2 +
2

3
I1,3

))

+2

(

J1,2 +
1

2λk

(

J2,2 − 5J1,3 +
4

3
λk J1,2

)

+
1

(2λk)2

(

J3,2 + 2

(

I2,2 − 5J1,3 +
4

3
λk J1,2

)

− i
16

9
λ2

k J1,2 +
2

3
J1,3

)))

,

k∂kgk = 2gk −
g2

k

2π

1

2λk

(

(2 − ηN)

(

i

6
I1,1 +

1

2λk

(

i

6
I2,1 + 3I1,2 +

2i

9
λk I1,1 −

5i

12
I1,2

)

(59)

+
1

(2λk)2

(

i

6
I3,1 + 2

(

i

6
I2,1 + 3I2,2 + i

2

9
λk I2,1 − i

5

12
I2,2

)

−i
8

27
I1,1 +

3

2
I1,3 + i

1

18
λk I1,2

))

+2

(

i

6
J1,1 +

1

2λk

(

i

6
J2,1 + 3J1,2 + i

2

9
λk J1,1 − i

5

12
J1,2

)

+
1

(2λk)2

(

i

6
J3,1 + 2

(

i

6
J2,1 + 3J2,2 + i

2

9
λk I2,1 − i

5

12
J2,2

)

−i
8

27
J1,1 +

3

2
J1,3 + i

1

18
λk J1,2

)))

.

Recalling that ηN = k∂kgk/gk we find the explicit expression for the beta functions.
These are polynomials in gk and λk and have structurally the following form

βλ =
a1λ7

k + gk(a2λ3
k + a3λ4

k + a4λ5
k) + g2

k(a5 + a6λk + a7λ2
k + a8λ3

k + a9λ4
k)

λ6
k + gk(a10λ3

k + a11λ4
k + a12λ5

k)
, (60)

βg =
c1gkλ3

k + g2
k(c2 + c3λk + c4λ2

k)

gk(c5 + c6λk + c7λ2
k) + λ3

k

. (61)
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where the a’s and the c’s are complex numerical coefficients. We note that the small−gk

expansion presents the behavior

βλ = −2λk −
gk

λ3
k

Pol[1, λk, λ2
k ] + O(g3

k) , (62)

βg = 2gk −
g2

k

λ3
k

Pol[1, λk, λ2
k , λ3

k ] + O(g3
k) , (63)

which corresponds to the expected near-perturbative regime, except for the singularity at
λk → 0.

3.4. UV Fixed Points of the Dimension-Free Flow

Looking for the fixed points, the two beta functions (58) and (59) vanish when we set
g∗ = 0 and, afterward, take the limit λ∗ → 0. However, if one sets before λ∗ = 0, then
they diverge with an inverse power of λk. This is the cost to pay for our approximation in
solving the proper time integral.

Furthermore, one can find that they vanish also when k → ∞ for

λ∗ = 0.460 + 0.050 i , g∗ = 1.013 + 0.420 i , (64)

reaching the analog of the Reuter fixed point [24] in Lorentzian spacetimes. Furthermore,
we observe also that the anomalous dimension of the dimensionful Newton’s constant is
1.975 + 4.756i at the UV fixed point, whose real part is very close to the value of 2 found in
Euclidian ASQG.

The set of the two complex-valued beta functions can be rewritten as a set of four real-
valued beta functions by decomposing λk and gk into their real and imaginary parts and
also decomposing the original beta functions into their real and imaginary contributions.
This yields four real-valued flow equations for four real-valued parameters. To understand
the nature of the fixed point, we can pick two out of four parameters at their fixed-point
values shown in (64) and plot the flow of the remaining ones for initial data in the vicinity
of their fixed-point values at k = k0 = k̄ = 1 (see Figures 1–3). Please note that this does
not yet numerically prove the attractive nature of the fixed point for initial data in a full
four-dimensional neighborhood. We investigate this more complicated problem in the
next subsection.

Figure 1. Projected flow diagram of the real (left) and imaginary (right) part in the λ − g plane. The

purple dot represents the fixed point in (64). The arrows point towards an increasing k, hence at

k → ∞ the fixed point is attractive in both projections.
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Figure 2. Flow diagram of the λreal − gimaginary (left) and λimaginary − greal (right) part. The arrows

along the trajectories point towards an increasing value of k, and that means that the trajectories flow

into the fixed point (64) (purple dot) in the UV.

Figure 3. Flow diagram in the λreal − λimaginary (left, projected to g = g∗) and in the greal − gimaginary

(right, projected to λ = λ∗) space. The purple dot depicted is the fixed point in (64). The arrows

point towards k → ∞.

In all 6 flow projections studied, the trajectories flow into the fixed point for k → ∞.
Another interesting quantity carrying information about the nature of the fixed point

is the critical exponents. The critical exponents can be computed by linearizing the flow
around the fixed point, computing the stability matrix, and determining its eigenvalues.
The critical exponents for the Lorentzian UV fixed point (64) are

θ1 = 12.24 − 0.07 i , θ2 = 0.95 + 0.017 i , (65)

therefore, being their real part positive, both coupling constants are associated with two
relevant directions. Here, the convention is that in the diagonalized form, the couplings

behave near the fixed point as gj(k)− g∗j ∝ (k0/k)θj where k0 is the point at which one

sets initial conditions, i.e., for ℜ(θj) > 0 the fixed point is reached insensitive to the initial
condition, the coupling must not be fine-tuned and thus must be measured (therefore it
is relevant). Please note that we do not expect here the critical exponents to be complex
conjugated as in the standard FRG-ASQG treatment because of the intrinsically complex
nature of the flow.
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3.5. IR Limit of the Dimensionful Couplings and Admissible Trajectories

Since we are interested in the full effective action, which corresponds to the k → 0
limit, it is important to prove the existence of admissible trajectories, i.e., those trajectories
for which Gk=0 = real and Λk=0 = real. Fixing an arbitrary initial condition at a chosen
scale k̄ = 1 for λreal and greal (preferably close to the UV fixed point) we can integrate down
the flow and fine-tune the initial data value of λimaginary and gimaginary s.t. Im[Gk=0] = 0
and Im[Λk=0] = 0. This fine-tuning is equivalent to computing the maps

λimaginary

∣

∣

k=k̄
= f1(λreal, greal)

∣

∣

k=k̄
, (66)

gimaginary

∣

∣

k=k̄
= f2(λreal, greal)

∣

∣

k=k̄
, (67)

therefore reducing the flow by a dimension of 2. We have just started to investigate this
very interesting question which has to be performed numerically. A priori, it could be that
there are domains in the real (g, λ) plane such that there exist precisely one, several, or no
solutions to the fine-tuning problem in the imaginary (g, λ) plane.

In what follows, we summarize our present numerical findings:
First, we prove numerically the existence of admissible trajectories for selected initial

conditions.
As an example, we select a trajectory with initial conditions λreal(k = 1) ≈ λ∗ and

greal(k = 1) ≈ g∗ at k̄ = 1. By means of a graphic method illustrated in Figure 4, we
find the corresponding λimaginary(k = 1) = 0.015 and gimaginary(k = 1) = 0.078, realizing
an admissible trajectory. In Figures 5 and 6, the flow of the dimensionful couplings of
this selected admissible trajectory is depicted. Furthermore, we tested that both real and
imaginary parts of this trajectory flow into the UV fixed point. This can be appreciated in
the plots of the dimensionless coupling in Figures 7 and 8.

Figure 4. Graphic method for the proof of the existence of an admissible trajectory for a given set of

real initial conditions. At fixed k̄ = 1 we choose the fixed point set of initial conditions gr = 1.013

and λr = 0.460, we integrate down the flow to k = 0, and we plot the surface of the dimensionful

imaginary part of G and Λ when k → 0. The two surfaces intersect exactly in one point on the plane

Im[Λk=0] = Im[Gk=0] = 0: the intersection point furnishes the corresponding pair of imaginary

initial conditions at k̄ = 1 for gi and λi giving rise to an admissible trajectory.
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Figure 5. Admissible trajectory with λ(k = 1) = 0.460 + 0.015i and g(k = 1) = 1.013 + 0.079i. The

flow of the imaginary parts of the dimensionful coupling constants are vanishing for k → 0.

Figure 6. Admissible trajectory with λ(k = 1) = 0.460 + 0.015i and g(k = 1) = 1.013 + 0.079i. The

real part of the dimensionful coupling constants is well behaved and reaches a finite value (vanishes

for Λreal) when k → 0.

Figure 7. Admissible trajectory with λ(k = 1) = 0.460 + 0.015i and g(k = 1) = 1.013 + 0.079i. The

flow of the real and imaginary parts of the dimensionless coupling λk reaches the UV fixed point

when k → ∞. Note the divergence for vanishing k due to the approximation (51) performed in the

evaluation of the integrals.

Figure 8. Admissible trajectory with λ(k = 1) = 0.460 + 0.015i and g(k = 1) = 1.013 + 0.079i. The

real and imaginary parts of the dimensionless coupling gk flow into the UV fixed point when k → ∞.

In the IR, both parts vanish.
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Next, we study the unicity and the existence of the solution to the system composed
by (66) and (67) in the proximity of the fixed point (Figure 9). We test the unicity of
admissible trajectories for the region of initial parameters where they exist. Furthermore, we
observe the non-existence of trajectories for small values of λr: the existence of admissible
trajectories seems to be related by a linear relation between gr and λr. However, this relation
is non-trivial to find because it represents a relation between values of dimensionless
and dimensionful couplings at different values of k. Following the physical principle of
the existence of admissible trajectories, one should discard those regions of parameter
space where they do not exist. This allows the restriction of the parameter space of
initial conditions.

Finally, as a side result, we simultaneously verified that the fixed point is attractive
in a full real four-dimensional neighborhood of initial data: Specifically, it was necessary
to 1. compute the flow for k ∈ [1, ∞] for the four-dimensional free parameters gr, gi, λr, λi

in a four-dimensional neighborhood of their fixed-point values, 2. to check that in each
case this flow ends in the fixed point, 3. to compute the corresponding flow in [0, 1] for the
dimensionful parameters Gr, Gi, Λr, Λi (they have the same initial values as gr, gi, λr, λi at
k = 1) and 4. to determine for each initial data pair (gr, λr) those initial data (gi, λi) for
which Gi = Λi = 0 at k = 0 is reached, therefore constructing numerically the functions
(66) and (67).

Figure 9. Plot of the functions f1 and f2 defined in (66) and (67) (here we fixed k̄ = 1). Points on the

two surfaces realize admissible trajectories. Those exist for increasing values of λr and cease to exist

in the regime where no surface is depicted. Furthermore, we see that the surfaces are regular, hinting

at the unicity of the admissible trajectories at fixed initial conditions.

4. Conclusions

In this contribution, we considered a certain Einstein–Klein–Gordon theory as a
showcase model to demonstrate that the ASQG and CQG approaches can be fruitfully
combined. In particular, CQG gives important input for how to actually define the class of
EEA to start with, displaying new contributions coming from (1) the state underlying the
Hamiltonian quantum theory, (2) measure factors coming from the momentum integrals,
(3) restrictions on correlation functions of the true degrees of freedom only, and (4) that
Lorentzian signature is the most natural choice.

ASQG, on the other hand, offers a systematic procedure for how to obtain a well-
defined effective action from which all the time-ordered correlators of the Hamiltonian
theory can be computed. The effective action can be argued to be a complete definition of
the theory.
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By exploiting the techniques for the Lorentzian heat kernel and introducing a new
cut-off function, we computed the Lorentzian flow of an Einstein–Klein–Gordon model.
Our analysis can be summarized in the following results:

1. We found that the coupling constant related to the matter contribution does not flow and
also does not affect the flow of the gravitational coupling in the truncation considered here.

2. We computed the flow of Newton’s constant and the cosmological constant, and we
found an attractive UV fixed point at the value λ∗ = 0.460+ 0.050 i, g∗ = 1.013 + 0.420 i.
Furthermore, we computed the critical exponents and related the coupling constant to
two relevant directions.

3. We proved the existence of admissible trajectories, integrating down the flow to k → 0
and finding trajectories that flow from real-valued dimensional couplings in the IR
and reach the UV fixed point of the dimensionless couplings when k → ∞.

Among the many directions for future work is the investigation of the space of admis-
sible trajectories for the present model, classification of the Lorentzian cut-off functions
with respect to their necessary physical and mathematical properties, incorporation of
the flow of the ghost matrix term (equivalently, one can avoid the ghost matrix by using
field redefinitions), and its dependence on the state ω, higher-order truncations, more
realistic matter coupling, and the Euclidian version, which is in principle possible but more
complicated except for very special matter, such as [41].

Author Contributions: Conceptualization; Methodology; formal analysis; investigation; writing—

original draft preparation; writing—review and editing, R.F. and T.T. All authors have read and

agreed to the published version of the manuscript.

Funding: This research received no extrernal funding.

Data Availability Statement: No data not avaiable from the manuscript were created.

Conflicts of Interest: The authors declare no conflict of interest.

Notes

1 In [44–47] different variants of the proper time flow equation were presented and analyzed.
2 See, for instance, Refs. [48,49] for an Euclidian ASQG treatment of higher-order truncations in gravity and gravity-coupled

matter systems.
3 Remember that R

µνρσ
k introduced in (13) is the integral kernel of ĝµν and ĝρσ. Here, for convenience, we lowered two indexes

with the background metric ḡ.
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