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Abstract—The Closest String Problem is an NP-complete prob-
lem which appears more commonly in bioinformatics and coding
theory. Less surprisingly, classical approaches have been pursued
with two prominent algorithms being the genetic algorithm and
simulated annealing. Latest improvements to quantum computing
devices with a specialization in optimization tasks such as D-
Wave systems, suggest that an attempt to embed the problem in
a model accepted by such systems is worthwhile. In this work, two
QUBO formulations have been proposed, with one being a slight
modification over the other. Subsequently, an evaluation based on
a few simple test cases had been carried out on both formulations.
In this regard, the D-Wave annealers have been used, while
providing guidelines for optimality on certain platform-specific
concerns. For evaluation purposes, a metric termed Occurrence
Ratio (OR) has been defined. With minimal hyperparameter
tuning, the expected solutions were obtained for every test
case and the optimality was guaranteed. To address practical
and implementation issues, an inherent decomposition strategy
based on the possibility of having substrings has been elucidated
to accommodate the restricted qubit count. Conclusively, the
need for further investigation on tuning the hyperparameters
is emphasized.

Index Terms—Combinatorial optimization, closest string prob-
lem, quadratic unconstrained binary optimization models, quan-
tum algorithms, quantum annealing, D-Wave systems

I. INTRODUCTION

ORMAL languages are an important concept in automata

theory. Informally, such a formal language is defined as
a set of strings constructed using the characters of a finite
alphabet[1]. In this context, different scenarios emerge in
which the objective is to determine a representative string
that exhibits the highest degree of similarity to a given set of
strings. The concept of similarity and the need to quantitatively
measure it, gives rise to different objective functions and
thus different distance measures for determining the difference
between two strings. Note that different distance measures will
yield different representative strings.

For any two strings of equal length, the Hamming distance
is one of the most fundamental distance measures, which has
its roots in coding theory[2]. Hamming distance is the number
of positions at which the corresponding symbols are different
for any two strings of equal length[3]. More formally, it can
be defined with the Kronecker delta d,; as follows. Given two
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strings s1, so of length m over the alphabet ¥, the Hamming
distance d(s1,s2) is given by,

d(s1,52) = > _ f(s1i,82) (1)

i=1

where s,; denotes the it character of the string s, (x =1 or
x = 2 in this definition), and the function f is defined as,

O, if C1 = Cg
fler,ea) =1 = 0¢yc, = {17 if ¢ # 2)
Note that ¢j,co are two variables. In Equation (1), we set
c1 = s1; and cg = so; for each 1.

The problem of determining the representative string with
the aid of Hamming distance as the distance measure is known
as the Closest String Problem (CSP). Formally, elaborating
on the definitions in [4], [5]: given a set of strings S =
{s1, 82, 83, ..., Sn,} Where each string s, is defined over the
alphabet X and is of length m, the goal is to determine a string
sps which minimizes k such that for each string s, € S,

d(sg,s0m) <k 3)

CSP is proven to be NP-hard[4]. A special case of the
decision problem of CSP called the hitting string problem has
been proven to be NP-complete[6]. Therefore, the decision
problem of CSP is NP-complete. Thus, exploring algorithms
with a lower time complexity for CSP does not purely rely
in the interests of applications of the problem. From a theo-
rist’s point of view, such investigations could lead to better
insights about computationally hard problems and possibly
allow further intuitions about unsolved problems such as P
vs. NP question.

Coding theory is one of the major fields in which CSP has
its applications, mostly in error correction[7], [8]. A reader
familiar with the bioinformatics might notice that closest string
has to be determined in designing genetic probes and drug
target identification [4]. Algorithm presented in [9] for the
identification of protein binding sites presents a direct appli-
cation of finding the closest string representation. Additionally,
interesting applications might be found for different problems
in the context of Finite and Push-Down Automata in automata
theory. [10] discusses a generalization of CSP, called the
Closest Substring Problem in the context of regular languages.

Classically, this is one of the problems that had been studied
extensively. One of the earliest approximation algorithms,
called the Largest Distance Decreasing algorithm has been
presented in [11], and determines solutions in polynomial time.
The greedy heuristic algorithm in [12] chooses the character
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based on the global evaluation of the Hamming distance and
the choice at a given index affects the choice of the symbol for
the next. Wave function collapse techniques have been studied
in [13] as another heuristic based approach, using the idea of
entropy in the original WaveFunctionCollapse constraint [14].
Additionally, a hybrid metaheuristic is discussed in [15]. For
guaranteeing the optimality, a recursive exact method has been
presented and has been compared against an integer program-
ming formulation of the CSP[12]. Whenever the alphabet is of
size 2, [16] presents an exact algorithm called Distance First
Algorithm. For the other cases, a polynomial heuristic has
been introduced and it is claimed that there is a possibility
of obtaining a nearly optimal solution in a reasonable time.
Furthermore, [17] presents a set of implementations of the
existing algorithms and introduces a parameterized algorithm
for the binary case of CSP.

Evidently, none of these approaches were successful in
providing an efficient algorithm for the CSP in general. This
could very well be due to the intrinsic difficulty in the problem
itself, or due to the inherent limitations in the model of
computation we rely upon. For example, despite the integer
factorization problem not being proven to be NP-complete and
exponential speedup hasn’t been obtained, Shor’s algorithm
built on top of a unitary circuit model of quantum computation
demonstrated superpolynomial advantage over every existing
classical algorithm[18]. Accordingly, it is worthwhile to in-
vestigate alternative models of computation for problems that
are either NP-complete or appear to be hard.

Adiabatic quantum computation is a quantum computational
model that has seen interest in the recent years, particularly
due to the development of devices that could leverage the
process of quantum annealing for solving different problems,
and especially optimization problems. Quantum annealing is
involved in the minimization of an energy function through
adiabatic evolution, and it requires the re-formulation of the
existing problem definition as a Hamiltonian that defines the
energy of a quantum system. The reformulation of the problem
can be modeled either as an Ising problem or as a Quadratic
Unconstrained Binary Optimization (QUBO) problem, with
the latter simply being a transformation of the former. Ret-
rospectively, a variety of NP-complete problems have been
formulated in this way[19] and had been attempted using
different annealing devices. In conclusion, it is worthwhile to
investigate such a formulation for the CSP.

The prime outcome of this work is two QUBO formu-
lations for the CSP. The formulated QUBO models have
been evaluated on a limited number of simple test cases,
where the D-Wave systems were used. D-Wave Systems is
a vendor of quantum annealing devices and recently, they
have allowed public access to their Quantum Processing Units
(QPUs) on the cloud supplemented by an SDK. Subsequently
the need for utilizing the number of available qubits and the
techniques of achieving it will be discussed. Finally, the need
for hyperparameter tuning has also been emphasized.

II. PRELIMINARIES
A. Ising Model

An Ising model is an abstract mathematical model which
usually has a large, but finite number of states. It has been
used to describe different physical systems and the properties
of them such as ferromagnetism in statistical mechanics. In
fact, it is convenient to apprehend an Ising model as a lattice
structure! in which there are lattice sites where the unit cells
of the lattice can be located in either spin up or spin down
state. In this context, it is important to view a lattice as a
graph rearranged in 3-dimensions. Formally, the Ising model
is defined as follows.

Consider a lattice structure (as described above) where the
set of lattice sites are given by A. Every lattice site k € A
has a set of adjacent lattice sites. For each lattice site k € A,
there exists a discrete variable o) such that o, € {—1,1},
representing the spin. The spin configuration o = {0} }ren is
an assignment of spin value to each site. For any 2 adjacent
sites, there is an interaction J;; where 4,5 € A. There is an
external parameter denoted by h, which is typically an external
magnetic field that interacts with the lattice site. Accordingly,
for a given configuration, the energy is given by,

H(O‘):— ZJijaiaj_hzaj (4)
<ij> J
The (—) sign of the second term of Equation (4) is conven-
tional. Furthermore, note that there are simplifications of this
formulation, depending on the specific problems that are being
modelled. For a detailed derivation and and explanation refer
to [20].

1) Transverse Field Ising Model: The quantum mechanical
description of the above Ising model is called the Transverse
Field Ising model. In here, the interactions .J;; between
lattice sites ¢ and j are determined by the spin projections
of the involved lattice sites spins along the z-axis. These
interactions are also affected by the external magnetic field
(which accounted for the external parameter £ ; in the classical
model), which acts perpendicular to the z-axis in this case,
say along z-axis. This necessity of the perpendicularity in
this setup, renders the spin projection along z-axis and the
z-axis to be non-commuting observables. Consequently, the
classical model cannot explain this setup, thus requiring the
replacement of the spins with Pauli matrices associated with
spin-1/2 observables. Accordingly, the energy of any spin
configuration is given by the quantum Hamiltonian,

H=-J3| > 2z | +9>_X; ®)

<i,j> J

where, Z; and X; are Pauli matrices (as described already),
and J is simply a prefactor, whereas g represents a coefficient
which determines the relative strength of the external magnetic
field applied when compared to the interactions between
neighbouring sites.

IReferring to how the ions are arranged in the crystal structure of a metal
that exhibits magnetism (Iron in this case)



IEEE TRANSACTIONS ON COMPUTERS

In one of the foundational papers, quantum annealing has
been proposed by introducing quantum fluctuations to the
simulated annealing paradigm. It was tested by using the
transverse field Ising model[21].

B. Quadratic Unconstrained Binary Optimization (QUBO)

Quadratic Unconstrained Binary Optimization problem is an
NP-hard combinatorial optimization problem which attempts
to determine a minimum value for a function defined on
a binary vector space, along with the corresponding binary
vector which results in the minimum value. Formally, given
an upper triangular matrix QQ™*", the objective is to determine
a binary vector z* € {0,1}" such that argmin f(z) = z*
where,

flx)=2"Qx = Z Z Qijxix; (6)
i=1 j=1
for any z € {0,1}".

The QUBO problem displays a close resemblance with
the Ising model formulation. In fact, any such Ising model
formulated in terms of spins s, can be transformed to a QUBO
problem, replacing each spin by a binary variable, by applying
the following transformation.

Sa +1
2

Generally, for most of the problems it is more convenient
to develop the model as a QUBO problem rather than an
Ising formulation[19]. Furthermore, by introducing coeffi-
cients/penalties for each an every component in the formu-
lation, the penalty Hamiltonian is obtained and it is used to
embed the problem in the annealing devices. This is because
such quantum annealing devices are capable of solving only
unconstrained problems, and if there are constraints embedded
into the Hamiltonian, the only possibility is to drastically
increase the energy on each constraint violation[19].

)

T —

C. D-Wave Quantum Annealers

D-Wave is a vendor which allows public access to a set of
quantum annealers through a cloud called Leap. They provide
a Software Development Kit (SDK) called Ocean SDK, along
with a variety of other toolkits which suits different purposes
from scientific research to commercial grade applications. In
this work, D-Wave Leap cloud was utilized through the use of
their Ocean SDK to test and evaluate the QUBO formulations.

In order to solve an optimization problem using the anneal-
ers in D-Wave systems, it is required to embed the problem
in to the QPUs according to their topology as the first step.
Once the problem is formulated as an Ising model or a
QUBO problem, it is required to map it into the QPU. In the
very early D-Wave QPUs, this mapping was achieved through
the Chimera graph[22]. The process of embedding problem
variables into the QPU, which is called minor-embedding, was
to be manually accomplished. With the recent upgrades up to
the Advantage QPUs, the primary topology was also upgraded
to Pegasus graphs which has a slightly different internal
arrangement of couplers[23]. Furthermore, the D-Wave Ocean

SDK was supplemented with routines to implicitly perform
minor embedding, thus eliminating the need for the user to be
aware of the internal architecture of the QPU being accessed.
An interested reader may refer to [24] for further explanation.

Both of the above topologies are incapable of mapping
any given problem formulation as a one-to-one mapping from
problem variables to physical qubits on the QPU. In such
scenarios, several physical qubits are chained together to rep-
resent a single problem variable during the minor-embedding
stage. Whenever the problem is solved in the QPU, these
chained qubits are constrained to have the same value in
every solution. In case this constraint is violated, the chain
is said to be broken and the embedding does not represent the
problem of interest anymore. During the annealing stage, the
chains can be broken when attempting to minimize the energy
function. “chain_strength" parameter is used to counter-act the
tendency to break the chains[25]. A more detailed discussion
and guidelines to set the value of this parameter can be found
in [25].

The next step is to use a sampler to extract low energy
states from the minor-embedded problem in the QPU. D-Wave
provides different mechanisms for this based on the type of
the device in which the problem is actually solved in, which
they call the “solver”. Since the interest of this work is to
attempt the problem on real QPUs, “QPU Solvers" have been
utilized. For other types of solvers, refer to [26]. A sampler
implements the process of sampling based on the solver that
we have opted to use.

QPUs are probabilistic by design. D-Wave annealers are
of no exception for this. Hence, the most sensible approach
of obtaining a valid solution is to run the given problem as
arbitrarily many times as possible and utilize the statistical
trends observed, to determine the solution. A single run is
called a “read" or an “annealing cycle". Multiple such reads
increases the diversity of the solution space and in turn
allows to determine the probability of obtaining the respective
solution, which would not have been possible otherwise. In
this context, when submitting any problem to the “solver", D-
Wave allows to specify a parameter called “num_reads" whose
value denotes the number of annealing cycles [25].

ITII. FORMULATION OF THE CSP AS A QUBO PROBLEM

The problem is initially reformulated to a form which
requires minimization of the sum of the Hamming distances
between a candidate solution s, (a string over the alphabet X2)
and each string (over the alphabet X)) in the given set S. This is
transformed again into another form in which it is required to
determine each symbol s.; of the candidate solution (the string
S¢), such that the contribution to the sum of the Hamming
distances by selecting the symbol s.; is the minimum among
the sum of Hamming distances by selecting other symbols
from a finite alphabet. Based on the use of Hamming distance
as the distance measure, it is inferred that for each symbol
in the candidate solution, the symbol which results in the
minimum sum of Hamming distance lies within the subset
Y; C X comprised only with the symbols of the strings in
S, at the same position as s.;. The QUBO formulation is
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then presented incorporating two conflicting constraints, which
are used to counter-act on the effect of the other. Ultimately,
in order to eliminate the need for computing a piecewise
function which involves an additional step while preparing
the embedding of the problem when using the Kronecker-
delta, another QUBO formulation is given, building on the
fact that digital computers represent symbols in a numerical
form. However, it is worthwhile to emphasize that this is not
to gain a speedup in the optimization process, but to eliminate
an additional step during the embedding.

A. Reformulation: Horizontal Minimzation of the Sum of
Hamming Distances

Referring to the definition given for the CSP by the Equa-
tions (1), (2) and (3), it is established that k& in Equation (3)
should be minimized. Consider that, as given above, we have
chosen a string s. over alphabet X, as a candidate solution to
the CSP. Let D(s.) be the sum of Hamming distances of the
string s. with the strings s, € S. Therefore, we can define
D(s.) as follows.

n

D(s.) = Zd(sc,sm) = d(Se¢,81) +d(Se, 82) + ... +d(S¢, 8n)

r=1
®)
According to Equation (3), following extended constraint can
be deduced. For s,/,

d(snr, 1) + d(sar, 82) + .o + d(sar, 8n) < nk 9)

That is,

D(sar) < nk (10)

Hence, the CSP can be restated as: Determine a string s, that
minimizes k in Equation (10). Here, in order to minimize k,
it is required to minimize D(s.) and,

argming_ {D(s.)} (11)

where ¥ is the language containing all the strings of length
m over the alphabet 3.

If the strings s, € S are arranged in an n X m matrix,
where each row correspond to a string, then the objective
in the Equation (10) above can be portrayed as minimizing
the Hamming distance between the candidate solution and the
strings in the rows of the matrix - horizontally.

S.EDNM =Sm

B. Reformulation: Vertical Minimization of the Sum of Ham-
ming Distances

Let the string s. and s, be expressed as s, = S¢15c2---Sem
and s, = Sy1Sz2...Szm, Where s.; and s,; are the symbols at
the i*" position of the strings s., s, respectively. By using the
definition in the Equation (1), we can expand the RHS of the
Equation (8) as follows.

D(Sc) = {f(s(Jl; 511) + f(SCQ, 812) + ...
+ {f(sc1,821) + f(Sc2, 822) + ...
+ ...
+ {f(sch Snl) + f(5c27 5n2) + ...+ f(scm7 Snm)}

+ f(SC’ma Slm)}
+ f(scm7 52m>}’

Rearranging,

D(Sc) = {f(301a511) + f(Scl, 821) + ...
+ {f(3527 512) + f(SCQ7 822) + ...
+ ...
+ {f(scm7 Slm) + f(scm) 52m) + ...+ f(scm; Snm)}

+ f(8017 Snl)}
+ f(sc27 Sn2)}

n

m
§ E scu Srm
=1 x=1

Since it is established that D(s.) is required to be mini-
mized in Equation (10), we can conclude, by considering the

(12)

Equation (12), that A;(s.) for each ¢ = 1,2,...,m must be
minimized, where A;(s.) is defined as,
n
Aise) = Y f(Scir Szi) (13)

z=1

This is achievable because there are no terms that correlates
the distance between each symbol position i, as suggested by
the Equation (12). An important implication of this result is
that it is possible to decompose CSP to m sub-problems that
can be solved independently.

From the Equations (12) and (13), it is evident that the
CSP can be restated as follows: For each symbol position ¢ =
1,2, ...,m, determine the symbol s.; which minimizes A;(s.).
i.e., for every i, A;(sps) is minimum.

Following the same matrix arrangement as in the previous
section, this formulation can be portrayed as the iterative min-
imization of the Hamming distance between string generated
by repeating the i*" symbol of the candidate solution n times
and the string in the it" column of the matrix, for each i -
vertically.

C. Reduced Search Space for each Symbol Position

The candidate solution s. is defined as a string over
the same alphabet X, which is the alphabet for the
strings in set S. However, according to the definition
given in the Equation (2), if s,; ¢ ¥, then, for all
1,2,...,71, f(Sciani) = 1, where ZIL' {Saci
Sgi is the symbol at the i'” position of the string s, € S}
for each i. Therefore, the following can be stated. If w € ¥,
w' ¢ %, and s is a string defined over X where s, ¢ ¥
then,

xr =

n n

D fwsei) < D> FWsm) = Ailse) < Ai(sy) (14)

=1 r=1

It is guaranteed by the Equation (14) that the symbol at it"
position of the string sj; is one of the symbols at the it"
position of any of the strings s, € S. Accordingly, the most
important result here is that we can reduce the search space
of the s.; to be the set ¥;, instead of >. Note that ¢ in s, is
used to emphasize that the entire string may not be different
from s, but just a symbol (the use of * in the subscript).
Therefore, for a given s.; if A;(s.) for a given symbol
position ¢ is minimum then SMi = Sei 1S probable. Assuming
the minimality of A;(s.), if Aw € ¥; such that s.; # w and
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Ai(sc) = A;j(w), then spp; = s¢; is guaranteed. Conclusively,
we can state the following. For each i = 1,2, ...,m,

n

n
argming, Z f(Swi,Sji)

J=1

= cMi (15)

z=1

D. QUBO Formulation of the CSP

According to the result given by the Equation (14), it is
guaranteed that the symbol corresponding to the minimum
distance for each symbol position ¢ exists in ;. Therefore,
per each symbol position, allocating n binary variables (to
account for each string), the following Hamiltonian results.

HB = Bzzawi Zf(san; Syi)
y=1

i=1 x=1

(16)

Here, the binary variable «,; denotes whether the symbol s.;
is chosen as the symbol s.; in the candidate solution s.. B
is the Lagrange multiplier’. The Equation (16) represents the
objective term.

The ground state of the Hamiltonian H g alone corresponds
to the state where for all x = 1,2,....,n and 7 = 1,2, ..., m,
az; = 0. Not all variables should take the value 0. Op-
timally and ideally, for every x, only one variable in the
set {Qz1, 09, ..,z } is allowed to take the value 1, as
only one symbol is to be chosen for sj;;. Evidently, these
two constraints conflict with each other. Nevertheless, by
introducing penalty terms to the Hamiltonian in the Equation
(16), the lowest energy can still be attributed to the the state
which satisfies both of the constraints. Accordingly, following
Hamiltonian represents both of the penalty terms.

HAAZZ{lam}+AZZ{am- Z ayi}

i=1 z=1 i=1 z=1 y=ax+1
(17)

Here, the first penalty term accounts for the constraint that
disallows all variables from taking the value 0. In fact, it adds
up a penalty for every variable that is set to 0. Including
quadratic terms progressively for each pair of variables, per
each symbol position, the second penalty term increases the
penalty assigned for configurations in which there are more
than one variable with value 1, for each symbol position. A is
the Lagrange multiplier associated with the Hamiltonian H 4.
Notably, the same Lagrange multiplier was used for both of
the penalty terms, signifying that both of the constraints are
of equal importance in determining sp;.

By combining the Hamiltonians given in the Equations (17)
and (16), it can be concluded that the following Hamiltonian
H describes the QUBO formulation for CSP.

H=H,+ Hp (18)

E. An Alternative QUBO Formulation

Even though the optimization strategy in quantum annealing
is not constructed upon a gradient-based optimization algo-
rithm, it is generally preferred to avoid conditional statements

2This is identified as a Lagrange parameter in D-Wave Systems[24]

in the problem formulation of an optimization problem as they
result in discontinuous functions[27]. Additionally, despite the
fact that problem embedding procedure is not performance
critical and being done by using a modern programming
language with a compiler that is optimized to handle logical
operations as efficiently as the arithmetic operations (or vice-
versa depending on the exact architecture being used), one
might prefer to formulate the problem in the form of a contin-
uous function. Based on the internal numerical representation
of symbols in digital computers®, this is achievable. The for-
mulated function will not be continuous by its definition, but
will be entirely based on arithmetic operations. Let C' : ¥ — R
be a bijection and C(s,;) denote the value of the mapping
for the symbol at i*" position of the string s,. Using this
mapping C, the following Hamiltonian HIB can be used as an
alternative objective function instead of the Hamiltonian given
by the Equation (16).

L pNCN . S (Cri) = Clsy)”
Hp=B) > ow g (Clsri) — Clsyi))” +1

1=1 =1

19)

Notice that in this case, each value is scaled to the range [0, 1).
However, this is to facilitate tuning of the Lagrange multipliers
whereas in most of the classical optimization algorithms it is
to trigger faster convergence and to avoid biases[27].

Similar to the Equation (18), combining Hamiltonians given
in the Equations (17) and (19), we arrive at the following alter-
native formulation for CSP, where H ' gives the Hamiltonian.

H =Hy+Hp (20)

F. Choosing Values for the Lagrange Parameters

In both of the Hamiltonians given by the Equations (18)
and (20), it is required to determine values for the Lagrange
multipliers A and B. Evidently, they could be plugged in with
arbitrary values based on the requirements of the problem of
interest. It depends on whether or not it is feasible to violate
constraints at the cost of further minimizing the objective. The
following guidelines are followed in this regard.

It is advisable to set B = 1. The constraints specified above
must never be violated. Therefore, it must be assured that
max{Hgp} < min{Ha}. Since max{Hg} = Bmn(n — 1),
we need to ensure that min{H4} > mn(n — 1). In order
to determine min{H,}, its two terms can be considered
independently by assigning either a;; = 0 or oy = 1 Va4,
to see that

Am, ifn=2
min{Hp} = { Ane=D0=2) - iey — 3orn =4 (21)
Amn, ifn>4

The proof of the Equation (21) is given in the Appendix.
Considering the distribution of the symbols in each position
from 1 to m, 3A € R such that

Bea< {an&n_ 1)}

3By using encoding standards such as ASCII
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where,

. m, if n=2
mm{HA} _ ) m(n=1)(n-2)
A 2 ’

mn,

= ifn=3o0orn=4

ifn>4

which guarantees the optimal solution. Hence, for the purpose
of analysis, a range of values from (B, {Bm")(\”l)l} can be
attempted for A. If, by inspection, it appears that all the strings
are mostly similar, then it is recommended to start with a value
closer to the lower bound of possible values for A. i.e., closer
to B. Otherwise, start with a value closer to the upper bound
of A.

When using the Hamiltonian H "itis pertinent to observe
that the values for these Lagrange parameters could be slightly
different, typically with a minimal impact on the results.
However, this minor difference assumes significance when
the obtained solutions of H are slightly different from the
solutions of H .

G. Important Concerns in the D-Wave Systems

Each quadratic term in either of the QUBO formulations
given in Equation (18) and Equation (20) translates to a
connection between a pair of qubits in the working graph.
In the minor embedding, these two qubits corresponds to the
two binary variables in the quadratic term concerned. For every
i = 1,2,...,m, the interactions between all pairs of terms in
the second constraint(term) of H4 can be represented by an
undirected complete graph K,. According to [23], allowing
longer chains, it is possible to derive minor-embeddings for
up to n = 12M — 10, where M is the working graph size in
the Pegasus topology. Advantage4.1, which was the default,
publicly available and the preferred QPU choice at the time
of experimentation, has a graph size of 16 [28]. i.e., M = 16.
Therefore, the the upper bound is n = 182. If each one of the
m sub-problems is to be solved independently, Advantage4.1
QPU with P16 (Pegasus working graph with 16x16 unit cells)
graph will be able to solve CSP instances with a maximum
number of strings of 182. For any other instance, if 17,4, iS
the maximum number of sub-problems that is minor-embedded
at once, then the maximum number of strings is | 182/m,qz |-
Subsequently it can be concluded that if the number of strings
in a given CSP exceeds 182, it cannot be solved with a QPU
leveraging the P16 graph.

As briefly explained in the preliminaries, given a problem
graph () that is obtained by representing the variables in the
QUBO formulation as vertices and interactions between the
variables given by the quadratic terms as edges, typically it
is required to embed () in the working graph F' as a minor.
However, there are instances where there exists a one-to-one
mapping of vertices f from graph @ to graph F' where each
edge of ) is an edge of F. If such a mapping f exists,
then @) is a subgraph of F' and a subgraph embedding is
possible[29]. In such cases, the optimum embedding does not
contain chains. K4 is a subgraph of the working graph of
the P16[23]. Accordingly, all problem graphs () = K, such
that 1 < ¢ < 4 has a subgraph embedding in P, where P
denotes the working graph of P16. Consequently, all instances

TABLE I
THE EXPECTED CLOSEST STRING FOR EACH SET OF STRINGS

Set | Set of Strings Expected Clos-
est String
#1 {“aaa", “aaa","“ddd"} “aaa"
#2 {“aaa",“aaa",“ddd",“ddd",“ddd"} “ddd"
#3 {“aaa",“aaa",“ded",“ded",“ded",“ddd"} “ded"
#4 {“abcdet™,“ghijkl",“abcghi”,“xyzjkl", “abcjkl"
“abcmno” }

of CSP such that n < 4 has a subgraph embedding. Therefore,
whenever the number of strings (n) is less than or equal to
4 for the given problem instance, “chain_strength" parameter
can be set to 0. However, for other cases a non-zero value is
required, which can be assigned by considering the maximum
possible value for the QUBO.

IV. EXPERIMENTAL EVALUATION USING D-WAVE
SYSTEMS

D-Wave systems’ Leap cloud has been utilized as the plat-
form and the Python SDK was used to build a script that would
embed and solve the problem*. Refer to the preliminaries for
further explanation on the D-Wave annealers. It is worthwhile
to emphasize that the purpose of this evaluation is simply
to establish empirical evidence for the validity of QUBO
formulations. This would not serve as a rigorous or exhaustive
testing attempt across many possible test cases.

Both QUBOs were tested for 4 sets of strings. The first
3 sets were handcrafted and the last one was created by
ChatGPT[30]. Refer to the Table I for the sets of strings.
Each set of strings was evaluated separately. For each set,
“num_reads" was set to 100. Furthermore, when implementing
Hamiltonian H ' in the Equation (7), ASCII representation was
used as the bijection C.

A. Determining the Chain Strength

Since Set #1 has only 3 strings, it allowed for the
“chain_strength" parameter value to be set to 0. However
for the other sets, it has to be assigned to a non-zero value
as the number of strings in the set exceeded 4. The exact
value assigned was dependent on the number of strings in
the respective set and the distribution of the symbols in each
set. By considering the influence of these two factors, we can
discern four distinct cases which would determine the value
for the “chain_strength", which is enumerated in ascending
order as follows.

1) Less number of strings with a low variance in the

distribution of symbols in the strings

2) Less number of strings with a high variance in the

distribution of symbols in the strings

3) Higher number of strings with a low variance in the

distribution of symbols in the strings

4) Higher number of strings with a high variance in the

distribution of symbols in the strings
It can be observed that out of the two factors, the number of
strings takes precedence over the variance in the distribution

4Codebase: https://github.com/chandeepadissanayake/qubo_csp
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of symbols within the strings. Increasing the number of
strings directly leads to an increased number of chains in the
minor-embedding. While it may not be immediately evident
that a high variance in symbol distribution directly causes
chain breaks, it indirectly leads to a greater contribution to
the overall energy within the Hamiltonian, thus diminishing
the significance of the terms representing the chains. The
comparison w.r.t. the number of strings and the distribution of
symbols implied within the cases outlined above are relative
to a given baseline. One such evident baseline, which is used
in this work, is “chain_strength” = 0 for n < 4 as elaborated
above. Each and every case above refers to n > 4. For the
case 1, the general heuristic is to start off with a slightly higher
value than the baseline. Accordingly, a preferred starting point
for case 1 is “chain_strength" = 1. For the subsequent cases
2, 3, 4; values with increasing magnitude should be used.
Accordingly, for the string set #1, baseline value is used and
in the sets #2, #3 and #4, which can be considered as problem
instances pertaining to the cases 2, 3 and 4 respectively, a range
of values for “chain_strength" is attempted and the value that
produced the optimum results is reported. It is worth noting
that, despite the D-Wave documentation specifying that the
“chain_strength" value is considered a hyperparameter[31], it
is beneficial to establish a set of guidelines to arbitrarily limit
the range of possible values.

B. Occurrence Ratio of a Solution

Due to the intrinsic probabilistic nature of the QPUs in D-
Wave systems, the optimal solution may not be returned in
every annealing cycle. Based on the QUBO formulations in
the Equations (18) and (20), it is evident that multiple config-
urations of output can present the same solution in many cases.
Therefore, in order to determine the significance of a solution
among the other solutions in the solution space, a metric is
desired. Note that the different configurations of output which
present the same output string as the solution must be treated
as the respective output string occurring multiple times. For a
given solution/output string P, the Occurrence Ratio ORp is
defined as follows.

Np
EQ Ng
where, Np represents the number of occurrences of P in
the solution space. It should be evident that } , Ng =
num_reads.

A higher occurrence ratio implies a higher likelihood of the
solution being obtained from a D-Wave annealer. Maximum
Occurrence Ratio (MOR) is the maximum of all possible
ORp values, i.e., the maximum ORp that happens for any
solution. MOR will aid in comparing the likelihood of the
most occurring solution in the solution space against the
likelihood of a given solution P.

ORp = (22)

C. Results

Refer to the Table II and Table III for the results when
the QUBO formulations given by the Equations (18) and
(20) are used. Column “P" refers to the minimum energy

TABLE 11
RESULTS USING HAMILTONIAN H ON D-WAVE LEAP CLOUD QPUS

Set # P A| B |~ | ORp | MOR
#1 “aaa” 2 1 0 1.00 1.00
#2 “ddd” 3 1 1 0.99 0.99
#3 “ded” 5 1 6 0.53 0.53
#4 “abcjkl” 4 1 5 0.22 0.22

TABLE III

’
RESULTS USING HAMILTONIAN H ON D-WAVE LEAP CLOUD QPUs

Set # P A B~ ] ORp | MOR
#1 “aqa® | 2 | 1 | 0| 100 | 100
# “dd@ | 3 | 1| 1] 097 | 097
# “ded” | 5| 1| 6] 051 | 051
#4 | “abcjkl” | 4 | 1 | 5] 022 | 022

solution obtained for each set of strings. The columns “A",
and “B" refer to the corresponding values for the respective
Lagrange parameters whereas column “v" refers to the value
for “chain_strength" used. “ORp" and “MOR" columns hold
the same definitions as defined in the preceding section.
The minimum energy solution P has always been reported
disallowing any chain breaks by setting the appropriate value
for “chain_strength" ~ while repeating “num_reads" (= 100),
over several attempts to determine the maximum ORp value
possible for P.

Since sets #1 and #2 contained similar strings within them,
values closer to the lower bound of A were used. Even though
the set #3 contained similar strings, a larger number of strings
suggested the possibility of a constraint violation if a lesser
value is used for A, which was confirmed by running it with
A = 2. The outcome of this case is not reported as it was not
optimal. Instead, with slightly a higher value, i.e., by setting
A =5 the expected solution was obtained. Set #4, contained
similar, yet slightly different strings with a comparatively
concentrated distribution of symbols, prompting the test case
to be done with slightly a lesser value for A. Conclusively,
in all cases, the expected closest string has been obtained and
the MOR is minimal for every solution. It is worthwhile to
note that given the random nature of the QPUs, these values
for OR/MOR may not be exactly reproducible, but proximal
outcomes should be expected.

It can be observed that the ORp values for sets #3 and #4
are comparatively lower than what was obtained for sets #1
and #2. This can mostly be attributed to the largely narrow
energy landscape created by the narrow distribution of the
symbols in the sets #1 and #2. The requirement of a higher
“chain_strength" in the cases #3 and #4 has augmented this
effect by dispersing out a narrow distribution, possibly into
a one with many local minima. It is possible that tuning of
the Lagrange multipliers and the “chain_strength" could have
alleviated this effect to some extent, but it was not a concern
in this work. It should also be emphasized that for a noisy
optimization process, it is cumbersome to point out the exact
cause.



IEEE TRANSACTIONS ON COMPUTERS

V. DISCUSSION

One of the most interesting aspects of both of the QUBO
formulations is that they have resulted in formulations where
there is no interaction between qubits representing symbols at
different positions across the strings. Therefore, the problem
can be decomposed to sub-problems at the level of individ-
ual symbols. Thus, such sub-problems can be independently
solved on the QPU. For a larger number of strings, this
approach could be followed, decomposing the strings to sub-
strings of equal size, which can be directly embedded in the
QPU at once.

Consequently, the number of symbols in the strings does
not affect the possibility of being solvable on a given QPU
architecture. However, the number of strings remains to be a
limiting factor. In fact, as calculated previously, an instance
of CSP with a maximum of 182 strings can be solved with
P16 QPU architecture in D-Wave systems. Theoretically, the
number of qubits required under both QUBO formulations is
mn. However, in the P16 architecture minor-embedding can
lead up to chains with the length 16/17 for a single node in the
problem graph and hence the exact number of qubits required
is strictly dependent on the architecture of the QPU.

VI. CONCLUSIONS AND RECOMMENDATIONS

Both of the derived QUBO formulations can be used
for solving the CSP on a quantum annealer. For CSP, the
given constraints should not be violated and hence during
hyperparameter tuning, the constraints should be strictly en-
forced. Guidelines for tuning the Lagrange parameters and
the “chain_strength" have been provided and one may sig-
nificantly improve the results by following these guidelines.
The constraints specified above could be relaxed for different
variants of the problem. Based on algorithms such as the
greedy heuristic algorithm in [12], it might be possible to
investigate different QUBO formulations for the CSP, possibly
relying on the global evaluation of the Hamming distance. An
interesting experimental direction for future work based on
these formulations is to evaluate the behavior of the minimum
energy and the corresponding solutions across the domain of
the values permitted for the Lagrange parameters, which may
provide insights on hyperparameter tuning for sets of strings
in different scales.
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