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Abstract. We obtain a scalar field theory by applying a specific Higgs mechanism on N = 4
SYM and imposing a constraint. We see that the resulting relativistic equation describes a
charged particle non-minimally coupled to the Coulomb potential. The resulting non-minimal
coupling allows us to build a relativistic Runge-Lenz vector that generates, together with the
angular momentum, the SO(4) algebra. We also construct a Kustaanheimo-Stiefel duality
between this modified relativistic Coulomb problem and the modified relativistic harmonic
oscillator and see how the integrals of motion of both problems are mapped.

1. Introduction

The study of N'=4 SYM is an active area of research. In particular, its integrability accounts
for important results in the context of scattering amplitudes. For instance, by using a duality
symmetry in momentum space the complete calculation of all tree level amplitudes as well as
up to four loops in perturbation theory was accomplished [1]. The authors of [2| considered the
possibility of constructing a consistent quantum field theory that preserves the analog of the
Runge-Lenz (RL) vector of the Kepler potential in classical mechanics. It turns out that this
theory can be obtained through a particular spontaneous symmetry breaking of N' = 4 SYM.
The existence of the RL vector is in contrast to the fact that a relativistic particle minimally
coupled to a Coulomb potential breaks the symmetry associated to the non relativistic problem.
However, we will see that it is possible to restore the SO(4) symmetry in the relativistic context
if we introduce a non-minimal coupling of the particle with the scalar Coulomb field and choose a
particular reference frame that breaks the explicit Lorentz covariance. This non-minimal coupling
is widely used in the theory of nuclear spectra to give rise to the so-called Klein-Gordon and
Dirac equations with Scalar and Vector Potentials of Equal Magnitude (SVPEM) which possess
an enhanced symmetry algebra [3, 4, 5, 6].

In Section 2, we present the simplest implementation of a Higgs mechanism to extract the
modified Klein-Gordon equation. Then, in Section 3, we see the deduction of this equation from
a modified action principle for a relativistic particle. In Section 4, we obtain the RL vector
and show that it generates, together with the angular momentum, the SO(4) algebra, yielding
the relativistic spectrum of the modified Klein-Gordon equation. The results confirm previous
analyses using different approaches [6, 7]. Next, in Section 5, we make use of the Kustaanheimo-
Stiefel (KS) transformation and show the relation of the spectra of the relativistic spectrum of
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the hydrogen-like atom in two dimensions and the relativistic harmonic oscillator in 2d. The
results again confirm the analysis where the spectrum of the relativistic harmonic oscillator was
constructed by directly solving the modified Klein-Gordon equation [5]. In addition to this, we
present the mapping of the integrals of motion under the KS duality. Finally, in Section 6, we
give some conclusions and discuss possible directions for future work. The results presented here

have been published in JHEP [8].

2. Modified Klein-Gordon equation from N =4 SYM

The Klein-Gordon equation describing a charged spinless particle in a Coulomb field is obtained
by the minimal coupling prescription 9,, — D,, = 9, + hi'CA“, where a particular reference frame
is chosen in order to have A* = (—a/r,0), a > 0:

— lg_ig 2¢+V2¢_(m0)2¢_0 (1)
cot her h -
Expanding, we get
1 0% 9 2iae 0o o? me\ 2
¥ - —(—= =0. 2
028t2+v¢+h627"8t+h262r2¢ (h) ¢=0 2)

Separation of time leads to the stationary Klein-Gordon equation with Coulomb potential
that has the well known spectrum [7, 9|

—-1/2

2
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n=0,1,2,.., (3)

where v = a/hc. We can see the breaking of the n? degeneracy of the hydrogen atom due to the
appearance of the orbital quantum number ¢ in the spectrum.

The corresponding classical stationary problem with conserved angular momentum L and
energy FE = ¢p? is given by

2
—(E—i_c(;/r) + (P2 + L? /) + m*? = 0. (4)
The solutions of this equation for bounded orbits are rosettes [10], in contrast with the non-
relativistic problem where the orbits are ellipses [11]. As a consequence, the RL vector is not
conserved.
On the other hand, the modified Klein-Gordon equation includes a non-minimal coupling
through the mass,

10 i a\? me a 2
_<cat_hcr> ¢+V2¢—<?_%> ¢ =0. (5)

Expanding this equation, it can be seen that the modification of the mass results in the
cancellation of the quadratic potential term,

1 0% 9 2ia 0 = 2am me\ 2
etV gt~ (7)) 0= (6)

This equation can be readily cast in relativistic form,

00" — 2 A, 0" — A, Al — (m - %)2 ¢ =0, (7)
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where h = ¢ = 1 and the metric is 7, = diag(—1,1,1,1).

To undertake the spontaneous breaking of symmetry that will allow us to extract the above
equation, we consider only the bosonic sector of N'= 4 SYM which has the following Lagrangian
density [12]

1

=T
L T 1

6 6
v 1 9
F"WE,, — §§ Dy D"®; + = > [®i, 517 p (8)
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Here, the six scalar fields are NV x N traceless Hermitian matrices in the adjoint representation
of SU(N). The action of the covariant derivative on a generic field W is given by

D,W = 0,W —ig[A,, W], 9)
where under a gauge transformation U, the gauge field A, and the scalar fields ®; transform as
o, - UDUT, A, 5 UAUT — é(@uU)UT, (10)

and as usual, the field strength F},, is defined by the commutator of the covariant derivatives

Fu = [D;u D, = 8MAV - 8VAM - ig[Al“ Ay]. (11)

1
g

The resulting equations of motion are [13]

6
D" =gy [®;, D], (12)
=1
6
D.D!'®; = g* > [0, [0, D). (13)
j=1

We choose to work with the group SU(2) for simplicity. Therefore, the fields will be expressible
in terms of the Pauli matrices 7% as

¢ 1(80 & T 1 A3 Al —iA2
=Pl = 2 i S | J— 1z 1z iz
b=ty =y (qﬁ —<1>0> S T (A}L +iAZ A3 ) (14)

where <I>;t = &l +id?.
We now introduce the Higgs mechanism by giving a vacuum expectation value v to ®;

7, 14, 15]
1 (30 +v 0
=3 (M0 a0 ). (15)

and taking the other fields as
10 @ o ' e LA 0
¢2_2<(I); O >’ ¢’L_07 1—3’4,5767 A'U‘_A'u’?_i 0 —Ai . (16)

Now, the Lagrangian (8) reads
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Here, we have defined A, = Az and F,, = 0,4, — 0, A,. A crucial step is to implement the
constraint o
P9 + —=0 (18)

in the previous Lagrangian. After the strong implementation of this second class constraint, we
obtain

1 1 _ l _ -
L=— gFMVF,u,V — 10“<I>2 8“@; + ZgA'u(q)g a/J(I); - <I>;8/L(I)2 )

2 2 2
9 - g _

up to a boundary term. Thus, the field content of our theory has been reduced to one vector
field A, and one complex scalar @ .
The equation of motion for the scalar field ®, is

DO ®y —ig(9,A") D, — 2igA,0 Py — g A, AFD, — g* (v + 89)?D, = 0. (20)

Of course, the equation for <I>;r will be the complex conjugate of this one. Denoting ®, = ¢
and taking the Coulomb potential A* = (—«/r,0) with g =1 (which is equivalent to absorbing
the coupling constant into «/), this equations becomes

0,0") — 2iA, 0" — A, Al — (m - %)2 ¢ =0, (21)

which is clearly (7). We see that the vacuum expectation value of ®; is the mass m of the
scalar field ¢, and that the imposed constraint provides the non-minimal coupling m — m —a//r
necessary to enhance the symmetry of the field theory from SO(3) to SO(4).
The Lagrangian (19) can be rewritten as
1] 1 1 1 a2
L=>|-~FWE, —~(D,$)"(D" —7( —7) o, 22
|~ 1" Fw = 5 (D00 (D) — 5 (m = ) % (22)
where the covariant derivative is given by D,, = 0,, —¢A,,. We can recognize this as one half the
Lagrangian for scalar electrodynamics with modified mass.
Now, we obtain the equation of motion for the gauge field (12),

—0,0" A + (D A) = 5(60"9" — ¢70"9) - 4”9 (23)
The application of the divergence to (23) reveals that the conserved current is
12 Z UV |k * QU 14
J"=5(00"¢" — ¢70"¢) — A 6%, (24)
which means that the density p is
T, . N o
p= 5000 — 00" + —|of. (25)
On the other hand, if we set A* = (—a/r,0) in the equation of motion (23), we find
2 () _ 1 * _ * a9
V2 (8) = 500 — 6 010") + Tl (26)

which implies

p=V>° <g> : (27)

r
just as expected, or, upon integration,

/d37'p = —4dma. (28)
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3. Modified relativistic particle

A different approach to the modified Klein-Gordon equation is to analyze the action principle
that gives rise to it. From (5), it is clear that the mass should be affected by the addition of the
potential, so that the action reads

2 1
S = /dTL = /dT [—mC\/— (1 - %) N’ + A,z
mcAr c

This corresponds to a relativistic particle interacting with a Coulomb potential in a curved
spacetime described by the conformally flat metric

(29)

LR 30
= (1= 5z e e
From here we get
1 1 a \2
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Taking A* = (—a//r,0), this constraint is reduced to

2c
cr

2am

(P°)? + —p° + - p? —m?c? =0, (32)

which reproduces the modified Klein-Gordon equation (6) after the application of the
quantization prescription p, = —ihd,. Separating the time as ¢(r,t) = exp(—iEt/h)p(r) in
the resultant equation (6) we find

E 9 20F 2am mce 2
— (== =0. 33
h20290+V90+ c i ner ¥ (h) v (33)

This can be cast in the form of a Schrodinger-like equation

h? 2a
—mv% - e =(E-mdc)p (34)
with the spectrum [7]
2+2

It is noteworthy that we have recovered the degeneracy since the orbital quantum number ¢
does not appear in this formula. This points to the existence of an additional integral of motion,
i.e., the relativistic generalization of the RL vector which will enable us to recover the SO(4)
symmetry. The constraint (32) leads to the classical problem (cf. eq. 4)

p2+L?/r?  2a 9

2B mé 36
E/2+m r me (36)

The quantum and classical equations suggest that we should make the identifications
E/c? +m < 2mg, E—mc? < B, 2a & ag (37)

to recover a Schrédinger equation with mass mg, energy Ey, and coupling constant «. Notice
that under the previous substitutions, the spectrum (35) can be easily obtained from that of the
hydrogen atom.
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4. The relativistic SO(4) algebra
In this section, we shall take units such that 7 = ¢ = 1. Using as a model the non-relativistic
construction [11], we easily find that

d
T pxL—(E+m)

ar
—1 =0, 38
) (39)
where L is the angular momentum that generates the SO(3) algebra. This indicates that the
relativistic generalization of the RL vector is
ar
A=pxL—(E+m)—. (39)
r
Therefore, the non-minimal coupling m — m — a//r, or equivalently, the transformation to
a conformally flat space with metric (30), allows us to introduce a RL vector and restore the
SO(4) symmetry in the relativistic case.
The complete spectrum can be constructed from the relativistic SO(4) algebra, generalizing
the non relativistic result as presented in [16]. We first introduce a redefinition of the RL vector
(39):

A:
E+m E+m

(pr—pr)—QaC.
r
This vector A’ satisfies
[A'H]=0, L-A=A"-L,

and
—m

A? =14 [oﬂ + g (1+ LQ)] : (40)

+m
We can see that the corresponding relativistic algebra closes as
[Li, Lj| = ieiji Ly,
(A5, Jj] = igij AL,

E —

Defining
E+m
D=,/-——r— A
' 4(E-m)
and ! 1
M = §(L—D), N = §(L—i—D)7

it is easy to show the the original algebra splits into the product of two SO(3) algebras
[M;, Mj] = igij Mg, [N, Nj| = ieiju Ny,
with the constraint
M? = N2 (41)

The operator M? 4+ N? will have the eigenvalues 2¢(¢ + 1) with £ = 0, 1,2, ... because of the
constraint (41). On the other hand, we can find that

M2+N2:1 12 _ E+m A/2]:_1<E+m 2
2 ) 2

_orm 1
A(E—m E-m® " )
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where we used (40). With this at hand, we obtain the energy eigenvalues

E,=m <1 M) . (42)

n? + a?

This is the same spectrum that we got through the identifications (37) and that is reported in
[7], reproduced here with n = 2¢+ 1. Due to the hidden symmetry lying under this non-minimal
coupling which reveals the existence of the relativistic RL vector, N'= 4 SYM is dubbed as the
“hydrogen atom quantum field theory” [17].

5. Relativistic Kustaanheimo-Stiefel duality
Now, we relate the wave functions and the spectra of the modified Coulomb problem and the
modified relativistic harmonic oscillator. We will consider the illustrative case of two dimensions
(for the treatment of arbitrary dimensions see [8]). At the end, we see how the integrals of motion
of both problems are related by the KS duality.

The KS transformation relates the variables of the Coulomb problem (z,y,t) with the
harmonic oscillator (u,v,s) as [18|

dt
r=u®—v% y=2uw, —=ul+0®=r (43)

We denote by ¢(u, v, s) the field that results from evaluating the original field in terms of the
new variables,

d(u, v, 5) = ¢(x(u,v),y(u, v), {(s)). (44)
Then, the transformation of the differential operators is
0 0o d 1 09
9¢ _0¢ds _ 77¢’ (45)
ot 9sdt  u?+0v?0s
d? 1 9%
O ey, (16)
o2 (u? 4 v?)? 0s?
1 _
2 2
_ 47
where 25 9
2p= 4 ——. 48
Vud ou? + ov? (48)
Thus, the modified Klein-Gordon equation (6) becomes
1 9%¢ 1 5 - 2 ¢ 2am o (me\? o
TR o2 T a0 T hete 402 9s T R+ o0’ () é=0 @9
The separation of time in terms of new variables is
d(u,v,8) = exp —;E/dsl (u® 4+ v?) | @(u,v). (50)
Substituting it in (49) we get
h2
V25 — (B —me®)(u® +v?)p = 2ap. (51)

C4(E/c®+m)
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This is the stationary Schrédinger equation for a two-dimensional harmonic oscillator with
mass 2(E/c? + m), energy 2a, and frequency

| E—mc?

Now, the time-dependent Schrédinger equation for the harmonic oscillator is

_ o€
(u? + )€ = iha—i, (53)

Muw?
2

h2
CAM

V3E +

where

E(u,v, ) = exp (—;53) (1, v) = exp (-22as> A, v). (54)

Using (50) to substitute @ in terms of ¢ we get

E(u,v,8) =exp —% 208 — E/ds’ (u? + %) || é(u,v,s)

—exp [—;F(s)} (v, 5). (55)

Here, F'(s) is the generating function of the canonical (and non-holonomic) KS transformation
on the extended phase space [19]. Hence, we have related the wave functions ¢ of the Coulomb
problem (written in terms of new variables) with the wave functions £ of the harmonic oscillator.
It is also seen that the wave function ¢ solves both stationary equations.

Now, we establish the relation between the spectra of the modified relativistic harmonic
oscillator and the modified Coulomb problem. In the Schrodinger case, the relation between the
harmonic oscillator mass, coupling constant, energy, and angular momentum (M, ks, Es, L) and
the same variables of the Coulomb problem (mg, s, s, Ls) is

M, =4dm,, k,=-2F, E =oa, Ls=2L. (56)

We know that the identification (37) allows us to map the relativistic problem onto the non
relativistic one, so this suggests that we should then apply the KS duality (56) and finally make
again the identification (37) in the opposite sense to recover the spectrum of the relativistic
hydrogen-like problem. Explicitly, we begin with the spectrum of the modified relativistic
harmonic oscillator in two dimensions [5]

(£ + M)(E — Mc?)?
h2k

= (4g+ 2L +2)%, ¢=0,1,2,.... (57)

Applying (37) we get the Schrodinger spectrum of the two-dimensional harmonic oscillator

ks
s=nh 2 1).
£o= [ o-(2a+ 1]+ 1) (58)

The KS duality gives

meo?

E,=— 5 , 59
2R (g + L] + 1/2) (59)
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which is the spectrum of the non relativistic two-dimensional hydrogen atom [20]. Then, again
from (37) we find

2+
(¢ + L] +1/2)% ++2
where 7 = a/he. By making n = ¢ + |L|, we readily recognize this as the spectrum of the
modified relativistic Coulomb problem in two dimensions (35). With these results at hand, we
are able to build the relativistic KS transformation duality (cf. eq. 56):

E=mc|1—

(60)

E/? +m 23(5/02 + M),
E—mc® =—k,
o :%(5 ~ M), (61)

which performs the mapping

P? P’ 2a
m+k(u2+v2):5—/\/{c2:> m—TZE—mC2. (62)

We finally analyze how the integrals of motion of both problems are related. We start with
the non-relativistic case and then, through the replacements (37), we move to the modified
relativistic problem. Since the energy of a system becomes the coupling constant of the other,
we only analyze the remaining integrals of motion. For the two-dimensional Coulomb problem,
they are the Runge-Lenz vector A, and the angular momentum L. The Runge-Lenz vector is

MO

Asa: :$p2 — YPxDy —
Y Yy \/ﬁ’
e +y
Asy :ypgzc — PPy — )
Va2 +y?

and the angular momentum reads Ls = zp, — yp,. Remember that the subindex s refers to the
Schrodinger (non-relativistic) case.

On the other hand, for the bidimensional harmonic oscillator we can find a conserved tensor
Csi; whose components are [11]

(63)

Pe koo
Cs11 oM. + U
PP, k
Cs12 = M. + U,
Pz k
Cs22 =M + 502, (64)

and the angular momentum L5 = up, — vp,.
A straightforward calculation employing the non-relativistic KS duality (56) shows that the
mapping is

2 k A «
C _ u M2 _ sz Qs
1 =90, T oms | 2
PuPy  k Asy
C = _ — _
2700, T2 T Taomy
_ Pg k 2 _ Asz g
Com =g+ =5+ 3

L, =2L,. (65)
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6.

Finally, we apply (37) to find the relativistic mapping

P2 k o Ay
5/02+M+§u :_E/02+m+a’
PuPy, k Ay
Elct+ M o= E/c24+m’
7)3 k 2 A;r
5/02+M+§U :E/c2+m+a’
L =2L. (66)

Conclusions

We have studied the features of a hydrogen-like relativistic theory emerging from N = 4 SYM
through of a particular Higgs mechanism, and we have found that it is possible to restore the
hidden SO(4) symmetry through the introduction of a relativistic RL vector. We were able
to reconstruct the spectrum of the system by means of a natural identification of relativistic
and non-relativistic quantities. Furthermore, the KS transformation allowed us to relate the
spectra of the modified relativistic harmonic oscillator and the modified relativistic Coulomb
problem, thus enlarging this KS duality to the relativistic realm. It is left for future work the
implementation of a Higgs mechanism that takes into account the charged components of the
vector field A, as well as an analysis of the fermionic sector of N' =4 SYM.
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