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A SURVEY OF THE APPLICATIONS OF

GEOMETRIC QUANTI ATION.

D. J. Simms, School of Mathematics, Trinity College Dublin.

One of the principal themes of this conference is geometric quantisation. This
is a convenient term for a concept which, to a greater or lesser extent, has been
found to be relevant to such topics as
(i) the passage from a classical dynamical system with Poisson bracket (symplectic
manifold) to a quantum system (Hilbert space), see Segal (12), Kostant (5),
Souriau (15), and Sniatycki (this conference),
(ii) the construction of irreducible representations ofLie groups, see Kirillov (4),
Borel-Weil (13), Kostant-Auslander (6), Blattner (1),
(iii) the construction of primitive ideals in the enveloping algebra of a Lie algebra
see Dixmier (2) and Joseph (this conference),
(iv) the construction of physical systems which are elementary with respect to a
prescribed symmetry group, see Souriau (15), Renouard (il), Rawnsley (10),
(v) the study of dynamical groups, see Onofri (8), Sternberg-Wolf (in progress),
(vi) coherent states for a Lie group, Onofri, Bacry (this conference),
(vii) twistor theory of general rélativity, see Penrose (9), and Woodhouse (this
conference) ,

(viii) partiél differential equations, see Maslov (7), Hormander-Duistermaat (3).

The basic ingredient in geometric quantisation is thenotion of a polarised

symplectic manifold (M, w, F). Here M denotes a real differentiable manifold,

w a non-degenerate closed differential 2-form (symglectic form) on M, and F
an involutive sub-bundle of the complexified tangent bundle of M which is

maximally isotropic with respect to w (polarisation of w). The guantisation

process may then be described as the construction of a complex hermitian line
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bundle L over M with connection form o having w as curvature form, and
the construction of a Hilbert space from sections of the linebundle whose
covariant derivatives in the directions of F wvanish. Such a line bundle can
be constructed if and only if w has integral periods (quantisation condition)
and is unique if, for example, M 1is simply connected. In this process
certain functions on M have a natural representation as operators on the
Hilbert space, in such a way that the Poisson bracket of functbns corresponds to
the commutator of operators. In this scheme a function ¢ 1is represented

formally by the operator

where VE denotes covariant differentiation along the Hamiltonian vector field
¢
€¢ generated by 9.

We now describe how these ideas arise naturally in the topics listed above.

(i) Let M be the classical phase space of a dynamical system based on a
configuration space X. Let w Dbe the 2-form which equals Planck's constant

. j o, . . 1 n
times dejAdq in local canonical coordinates pl,...., pn, Q yeeaeqd .
Let F be the polarisation spanned by the vector fields a_' . The line bundle

P,
L in this case is a product M x € and the connection ] form o equals
ijdqj + 1 dz where =z 1is the coordinate on ¢&. The Hilbert space is L2(X)
i z
considered as the completion of a space of functions on M. For X = m? this
yields the usual Schrddinger representation p. - i + é_' and g, = multiplication
>3

by qj. For X an arbitrary Riemannian manifold, the Hamiltonian of a free

particle is quantised as the Laplace-Beltrami operator.

(ii) Let G be a connected Lie group and let G* be the algebraic dual of

its Lie algebra G. Let M be any orbit of the coadjoint action of G on G*.
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Each element X of G 1is a linear function on G* which restricts to a function
¢X on M. There is a unique symplectic structure w on M such that the
Poisson bracket of ¢X and ¢y equals ¢Cx,yi for all X,y in G. Let F

be a polarisation of w which is invariant under G. Then G acts on the
Hilbert space of the quantisation process by unitary operators. For compact
groups, and for solvable groups of type I, all irreducible unitary representations

can be obtained in this way. For semi-simple Lie groups the irreducible

representations occurring in the Plancherelmeasure can be obtained in this way.

(iii) Let G be a Lie algebra and G* be its algebraic dual. Each f € G*
defines a bilinear form Bf on G by Bf(x,y) = f([X,y]). A subalgebra F
of G 1is called a polarisation at £ if F is maximal among vector subspaces
of G on which Bf vanishes. The restriction of f to F is a l-dimensional
representation of F and we can induce to a representation of G. In this way
we can obtain, when G is solvable and defined over an algebraically closed
field, all ideals in the enveloping algebra which are kernels of irreducible
representations (primitive ideals). If we denote by M the orbit of £ under
the coadjoint representation of G, then Bf indyces a non-degenerate skew-
symmetric form on the tangent space to M at £, and this gives the symplectic
structure w on M., The subalgebra F projects to a polarisation F of w.
Thus we have a polarised symplectic manifold (M, w, F). When w satisfies

the guantisation condition, the resulting unitary representation of G corresponds

to the induced representation of G.

(iv) Let G be the connected component of the Poincaré group and G its Lie

algebra. The usual generators P@, MOLB can be considered as linear functions
on the dual G*. For fixed real s, the submanifold MS of G* given by
P - sp , p >0

& €0LBY5 o o
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is a 6-dimensional orbit of G in G* and carries a natural G-invariant
symplectic form W, The space-time translations in G generate a polarisation

FS of L and (MS, Wt FS) is then a polarised symplectic manifold. This

has been proposed by Souriau as the phase space of a classical free elementary
relativistic particle of rest mass zero and spin s. Quantisation yields the

usual unitary representation of G associated with such a particle in quantum

mechanics.

(v) The classical phase space M of the Kepler problem is a 6-dimensional
symplectic manifold on which SO0(4,2) acts leaving thesymplectic form w
invariant. Geometric quantisation has been applied in this context using a

number of different polarisations.

(vi) Let G be a compact semi-simple Lie group acting irreducibly on a
finite dimensional complex vector space H. If Y is a ray in H with
isotropy group a Cartan subgroup, then the G-orbit M of 1V carries a G-
invariant symplectic form w and a complex structure F. Geometric
quantisation of the polarised symplectic manifold (M, w, F) gives the

coherent states associated with G.

(vii) The twistor space M associated with a curved space-time by Penrose
is an 8-dimensional symplectic manifold and is also a 4-dimensional complex
manifold. If w is the symplectic form and if F is generated by the anti-

holomorphic directions, then (M, w, F) 1is a polarised symplectic manifold.

4

For flat space-time, M is complex vector space € with coordinates

(Zo, Zl, 22, Z3) and symplectic form

w = i(dzo,\dz2 + le/\dZB + dzzadzo + dz3/\le) .

The 4-fold cover 8SU(2,2) of the conformal group acts on M leaving w and
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F invariant. For fixed real s the set of U(l) orbits in the hypersurface

7% vzt 232224238 - .

has the induced structure of a 6-dimensional polarised symplectic manifold
(MS, ws, FS). Geometric quantisation gives the holomorphic twistor functions

used by Penrose to represent a mass-zero spin s particle.

(viii) In the applications to partial differential equations on a manifold
X, the basic symplectic manifold is the cotangent bundle M = T*(X). For
example, Rockland (this conference) considers a pseudo differential operator P
such that the subset ¥ of M where the principal symbol vanishes (the
characteristic variety) has an induced symplectic structure. He also uses

polarisations of each fibre of the conormal bundle of
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