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A SURVEY OF THE APPLICATIONS OF 

GEOMETRIC QUANTI ATION. 

D. J. Simms, School of Mathematics, Trinity College Dublin. 

One of the principal themes of this conference is geometric quantisation. This 

is a convenient term for a concept which, to a greater or lesser extent, has been 

found to be relevant to such topics as 

(i) the passage from a classical dynamical system with Peisson bracket (symplectic 

manifold) to a quantum system (Hilbert space), see Segal (12), Kostant (5), 

Souriau (15) , and Sniatycki (this conference) , 

(ii) t1%e construction of irreducible representations of Lie groups, see Kirillov (4), 

Borel-Weil (13), Kostant-Auslander (6), Blattner (i), 

(iii) the construction of primitive ideals in the enveloping algebra of a Lie algebra 

see Dixmier (2) and Joseph (this conference), 

(iv) the construction of physical systems which are elementary with respect to a 

prescribed symmetry group, see Souriau (15), Renouard (ii), Rawnsley (iO), 

(v) the study of dynamical groups, see Onofri (8), Sternberg-Wolf (in progress), 

(vi) coherent states for a Lie group, ©nofri, Bacry (this conference), 

(vii) twister theory of general relativity, see Penrose (9) , and Woodhouse (this 

conference) , 

(viii) partial differential equations, see Maslov (7), Hormander-Duistermaat (3). 

The basic ingredient in geometric quantisation is thenotion of a polarised 

symplectic manifold (M, w, F). Here M denotes a real differentiable manifold, 

w a non-degenerate closed differential 2-form (symplectic form) on M, and F 

an involutive sub-bundle of the complexified tangent bundle of M which is 

maximally isotropic with respect to w (polarisation of w). The quantisation 

process may then be described as the construction of a complex hermitian line 



112 

bundle L over M with connection form ~ having w as curvature form, and 

the construction of a Hilbert space from sections of the line bundle whose 

covariant derivatives in the directions of F vanish. Such a line bundle can 

be constructed if and only if w has integral periods (quantisation condition) 

and is unique if, for example, M is simply connected. In this process 

certain functions on M have a natural representation as operators on the 

Hilbert space, in such a way that the Poisson bracket of functbns corresponds to 

the commutator of operators. In this scheme a function ~ is represented 

formally by the operator 

i~ + ~ 

where V~ denotes covariant differentiation along the Hamiltonian vector field 

~ generated by ~. 

We now describe how these ideas arise naturally in the topics listed above. 

(i) Let M be the classical phase space of a dynamical system based on a 

configuration space X. Let w be the 2-form which equals Planck's constant 

~dpjAdqJ 1 n times in local canonical coordinates Pl' .... ' Pn' q '''''q " 

Let F be the polarisation spanned by the vector fields ~_ The line bundle 

~Pj 
L in this case is a product M x C and the connection form ~ equals 

7~pjdq j + 1 dz where z is the coordinate on ~. The Hilbert space is L2(X) 
i z 

considered as the completion of a space of functions on M. For X = ~R n this 

yields the usual Schrodinger representation pj ÷ i ~ ~ and qj -~ multiplication 

~qJ 
by qj. For X an arbitrary Riemannian manifold, the Hamiltonian of a free 

particle is quantised as the Laplace-Beltrami operator. 

(ii) Let G be a connected Lie group and let G* be the algebraic dual of 

its Lie algebra G. Let M be any orbit of the coadjoint action of G on G*. 
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Each element 
m 

~X on M. There is a unique symplectic structure w on M 

Poisson bracket of ~X and ~Y equals ~CX,y] for all X,y 

be a polarisation of w which is invariant under G. Then G 

Hilbert space of the quantisation process by unitary operators. 

groups, and for solvable groups of type I, all irreducible unitary representations 

can be obtained in this way. For semi-simple Lie groups the irreducible 

representations occurring in the Plancherelmeasure can be obtained in this way. 

X of G is a linear function on G* which restricts to a function 

such that the 

in ~. Let F 

acts on the 

For compact 

(iii) Let ~ be a Lie algebra and G* be its algebraic dual. Each f £ G* 

defines a bilinear form Bf on ~ by Bf(X,y) = f([X,y]). A subalgebra F 

of ~ is called a polarisation at f if F is maximal amongvector subspaees 

of ~ on which Bf vanishes. The restriction of f to F is a 1-dimensional 

representation of F 

we can obtain, when 

and we can induce to a representation of G. In this way 

G is solvable and defined over an algebraically closed 

field, all ideals in the enveloping algebra which are kernels of irreducible 

representations (primitive ideals). If we denote by M the orbit of f under 

the coadjoint representation of G, then B f indDces a non-degenerate skew- 

symmetric form on the tangent space to M at f, and this gives the symplectic 

structure w on M. The subalgebra F projects to a polarisation F of w. 

Thus we have a polarised symplectic manifold (M, w, F). When w satisfies 

the quantisation condition, the resulting unitary representation of G corresponds 

to the induced representation of ~. 

(iv) Let G be the connected component of the Poincar6 group and ~ its Lie 

algebra. The usual generators P~, M ~B can be considered as linear functions 

on the dual G*. For fixed real s, the submanifold M of G* given by 
s 

P~ M Y~ s P , P > O ½ c~y~ ~ o 
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is a 6-dimensional orbit of G in ~* and carries a natural G-invariant 

symplectic form w . The space-time translations in G generate a polarisation 
s 

F s of w s and (Ms, w s , F s) is then a polarised symplectic manifold. This 

has been proposed by Souriau as the phase space of a classical free elementary 

relativistic particle of rest mass zero and spin s. Quantisation yields the 

usual unitary representation of G associated with such a particle in quantum 

me chani cs. 

(v) The classical phase space M of the Kepler problem is a 6-dimensional 

symplectic manifold on which SO(4,2) acts leaving thesymplectic form w 

invariant. Geometric quantisation has been applied in this context using a 

number of different polarisations. 

(vi) Let G be a compact semi-simple Lie group acting irreducibly on a 

finite dimensional complex vector space H. If ~ is a ray in H with 

isotropy group a Cartan subgroup, then the G-orbit M of ~ carries a G- 

invariant symplectic form w and a complex structure F. Geometric 

quantisation of the polarised symplectic manifold (M, w, F) gives the 

coherent states associated with G. 

(vii) The twistor space M associated with a curved space-time by Penrose 

is an 8-dimensional symplectic manifold and is also a 4-dimensional complex 

manifold. If w is the symplectic form and if F is generated by the anti- 

holomorphic directions, then (M, w, F) is a polarised symplectic manifold. 

For flat space-time, M is complex vector space ~4 with coordinates 

(Z O, Z I, Z 2, Z 3) and s y m p l e c t i c  form 

w = iCdZ°Ad~ 2 + dZ~d~ 3 + ~ o  + dZ~d~ll. 

The 4-fold cover SU(2,2) of the conformal group acts on M leaving w and 
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F invariant. For fixed real s the set of U(1) orbits in the hypersurface 

Z o Z2 + Z 1 ~3 + Z 2 ~o + Z 3 ~i s 

has the induced structure of a 6-dimensional polarised symplectic manifold 

(M s, w s , Fs). Geometric quantisation gives the holomorphic twistor functions 

used by Penrose to represent a mass-zero spin s particle. 

(viii) In the applications to partial differential equations on a manifold 

X, the basic symplectic manifold is the cotangent bundle M = T*(X). For 

example, Rockland (this conference) considers a pseudo differential operator 

such that the subset E of M where the principal symbol vanishes (the 

characteristic variety) has an induced symplectic structure. He also uses 

polarisations of each fibre of the conormal bundle of 
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