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1 Introduction

In the last decades, ground-based gamma-ray observatories such as WHIPPLE [1], HESS [2],
MAGIC [3] and VERITAS [4] opened a new window to the non-thermal universe at very high
energies. With these observatories, the search for the sources of cosmic rays — a mystery
unsolved for more than 100 years — as well as astronomy of cosmic phenomena at the highest
energies can be performed. To survey the gamma-ray sky at very-high energies, search for
cosmic particle accelerators, and study diffuse gamma-ray emission within our galaxy, a large
field-of-view observatory in the southern hemisphere is required to complement the future
Cherenkov Telescope Array (CTA) [5]. Since 2019, the Southern Wide-field Gamma-ray
Observatory [6] (SWGO) collaboration has been working on a next-generation gamma-ray
observatory based on water-Cherenkov detectors (WCDs), which has been pioneered by
Milagro [7, 8], and is also used in the currently operating HAWC [9] and LHAASO [10]
observatories located in the northern hemisphere.
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To maximize the sensitivity of any gamma-ray observatory, a powerful rejection of the
dominating cosmic-ray background and precise reconstruction of the air shower properties
induced by the impinging gamma ray is crucial. In the last decades, the reconstruction
algorithms [11] have been continuously improved, e.g., using template-based methods [12, 13]
and tree-based machine learning techniques applied to γ/hadron separation at Imaging Air
Cherenkov Telescopes (IACTs) [14–16].

The latest progress in machine learning algorithms — based on deep neural networks
(DNNs) — called deep learning [17], provides novel techniques for enhancing reconstruction
algorithms in the physical sciences [17, 18]. Even the first application of neural networks to
gamma-ray astronomy dates back to the 90s [19] and early 2000s [20]; to this time, they have
not been capable due to their limited capacity to exploit the patterns in the recorded data in
full detail. This has changed with deep networks that are able to analyze even tiny patterns in
data with unprecedented precision. In turn, using DNNs, the event reconstruction capabilities
for cosmic-ray research [21–23], neutrino [24, 25]-, and gamma astronomy [26–30] could be
significantly improved, leading to new insights into the universe at the highest energies [31–33].

In this work, we investigate the application of DNNs to background rejection and energy
reconstruction for a baseline design currently developed for SWGO. The graded layout con-
sidered in this work comprises around 4600 detector stations, and the number of triggered
stations per event varies from tens to thousands but is small on average. Thus, we decided to
use graph convolutional neural networks (GNNs) [34] to analyze the sparse signal patterns.
The use of GNNs enables both the efficient analysis of signal patterns of different sizes and
the exploitation of the advantages of convolutional neural networks, a central driving force in
the recent success of deep learning [17]. With our GNN approach, we find significant improve-
ments in hadronic background rejection compared to previous, hand-designed observables
and classification algorithms and a promising energy reconstruction slightly surpassing the
performance of currently state-of-the-art template-based reconstruction chains [13].

2 Simulation of a WCD observatory in the southern hemisphere

To prepare the data for our analysis, we use simulated events obtained from Monte-Carlo
(MC) simulations for a baseline design currently developed within the SWGO collaboration.
Similar to HAWC, SWGO uses a combination of standard simulation packages in use in the
gamma-ray astronomy community, namely CORSIKA [35] for air shower simulations and
GEANT4 [36] for the interaction of shower particles with the detector.

2.1 Simulated detector design

The stations in the considered design feature a large tank with a diameter of 5.20 m and a
height of 4.10 m with an upward-looking 10-inch PMT located at the center of the tank floor,
as shown in the right of figure 1. As such, it is very similar to the LHAASO and HAWC
station designs. The studied layout comprises around 4600 detector units covering an area
of roughly 280,000 m2 and features a graded layout with two zones of different fill factors.
Whereas in the central zone of a 188 m radius, the tanks are densely packed, reaching a fill
factor of 80% to increase the sensitivity at low energies, the outer zone features a fill factor
of 5% to increase the effective area at low cost.
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(a) Detector layout. (b) Tank design.

Figure 1. Detector configuration used in this work, currently investigated as a candidate design for
SWGO [39]. Left: station layout featuring two zones with fill factors of 80% (central zone) and 5%
(outer zone). Right: used water-Cherenkov tank design. The tank contains a single upward-looking
10-inch-PMT. Credit: SWGO collaboration [39], reproduced with permission.

We simulated this detector layout with the established HAWCsim package of HAWC [37],
which was modified for SWGO [38]. This enables a realistic simulation of the complete
detector response, which includes photomultiplier tube (PMT) noise, but still lacks cosmic
ray-induced noise hits. The simulation set amounts to roughly 440,000 proton events and
370,000 gamma-ray events with a threshold of > 25 detector hits. This is slightly lower than the
trigger threshold of 30 hits1 investigated in the following, to expand generalization capacities
of the trained network at the edges of the phase space. The data is split 70%/10%/20% into
training, validation, and test data sets. The events cover an energy range between 31.6 GeV
and 1 PeV following a spectral index of −2, and zenith angles up to 65◦. We use the same
spectral index for protons and gamma rays to make the classifier response independent of
the energy spectrum, which could lead to increased systematic uncertainties when, in reality,
the gamma source spectrum differs from the one used during training.

2.2 Data preparation and preprocessing

To exploit the air shower footprint for event reconstruction and γ/hadron separation, we
use the arrival time distribution of the particles detected at ground level. Since exploring
the detailed temporal structure of the PMT signal is computationally quite demanding, we
make use of integrated signal, i.e., charge, and do not use the signal trace directly. Thus, we
use the x, y positions of the tanks, the arrival times t of the first Cherenkov photon hitting
the PMT of each station, as well as the measured charge of each PMT as input into our
DNN. Each point in this point cloud resembles the measurements of the PMT of a single

1A first approximation of the threshold realizable for the examined design assuming an available band-
width of 2 Gb/s.
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Figure 2. Graph representation of a simulated gamma-ray event with a true energy of 18.8 TeV
and a zenith angle of 39.7◦ obtained after knn clustering. Left: detected arrival time, yellow = early,
red = late. Right: deposited charge, blue = low, yellow = high.

tank. The location of each point is given by the x and y coordinates of the tanks, and the
arrival time t and signal charge q of the PMT form additional features of each point. Thus,
each point holds 2 + 2 features for each single PMT.

2.2.1 Graph construction

The point cloud is used for the construction of the graph in the following way. We apply
a k-next neighbor clustering (knn) in the spatial dimension to define a graph using the N

triggered stations of a given event, including self-connections. Each node in the graph will be
connected to itself and its six nearest neighbors, which are determined based on the Euclidean
distance between the points. The number of six neighbors is motivated by the triangular grid
of the layout of SWGO, as each tank has six direct neighbors. This yields a directed graph
with N nodes and 7 × N edges. An example of such a feature graph of an example event is
shown in figure 2. The arrival times (left) and charges (right) are color-encoded.

2.2.2 Normalization

To stabilize the GNN training, we perform feature normalization of the positions, PMT charge,
and time. For the timing information z-score normalization [18] is used t′ = (t − µ)/σstd while
a logarithmic re-scaling is performed for the charges q′ =

(
log10 (1+ q)

)
/σstd. Here, µ denotes

the mean and σstd the standard deviation of the time and charge2 distribution estimated over
all events, respectively. For the station positions, we also perform z-score normalization.

2After applying the transform log10(q + 1).
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3 Graph neural networks for SWGO

The footprint of a typical gamma-ray shower at several TeV roughly covers an area of
hundreds of m2. For the currently discussed detector designs for SWGO [39], this translates
into tens to thousands of detector stations, forming a set of triggered PMTs at ground
level. Image-like data can be precisely and efficiently analyzed with deep learning techniques
using convolutional neural networks (CNNs) [17, 18]. In CNNs, small filters with adaptive
parameters exploit the image information by enforcing translational invariance and setting a
prior on local correlations. However, the use of a filter with a fixed size in CNNs requires
the analyzed data to be distributed on a homogeneous grid, which should have low sparsity
to ensure efficient usage. The strong variation in the number of triggered stations and the
graded layout makes using CNNs for analyzing the SWGO raw data unfeasible since either
the algorithm training is inefficient or information needs to be dropped [27]. In the scope of
this work, we model an SWGO event as a signal graph consisting of nodes and edges, where
the nodes are formed by the triggered stations holding the information of the station’s PMTs
as node features xi = (x, y, q, t)T , and the edges connect stations with local proximity.

3.1 Network design

We make use of EdgeConvolutions [40] in this work that were already successfully applied
to various physics challenges [41–44]. The EdgeConvolution can be divided into graph
construction, convolution, and aggregation. After the graph generation (see section 2.2),
we regard the immediate neighborhood xj of each “central” node xi, which depends on a
fixed number of kNN next neighbors. In this study, we use k = 6. The EdgeConvolution
of nodes and aggregation of information is defined as:

x′
i = σ

(
□

j∈N (i)
hΘ(xi ∥ xj − xi)

)
. (3.1)

Each pair of (xj − xi), in the neighborhood of each xi, is convolved leading to a number of f

different edge features. Note that the ∥ indicates that the subtraction is not applied to the
central node, i.e., the self-connection. This convolution is performed by the kernel function
hΘ with output dimension f , to be chosen by the user. The kernel function combines the
information of the feature vector of xi with the edge features of its neighboring nodes. Finally,
the k edge features of the k neighbors will be aggregated using an aggregation function □j∈N (i)
and later passed through an activation function σ. Such aggregation functions combine,
i.e., aggregate, information from neighbors of a node to produce a summary representation.
Possible choices include mean, maximum, or the sum (used in this work), which means that
the output remains independent of the order of the neighbors, conserving permutational
invariance. This leads to the feature vector x′

i after the edge convolution, which is located
at the position of the central node. This convolutional operation is performed in parallel
for each node xi of the graph.

Each EdgeConvolution layer disseminates information in its immediate vicinity, giving
local information to the network. To exploit beyond local and global correlations across the
whole graph, we stack multiple graph layers to ensure a large receptive field of view [18].
Furthermore, DynamicEdgeConvolutions [40] can be utilized, to extract global features, which
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Figure 3. Sketch of the general network structure used for the γ/hadron separation and energy
reconstruction. The network consists of a number of EdgeConvolution blocks, followed by a DynEdge-
Convolution layer. After the concatenation of the layers, the result is propagated through batch
normalization, dropout, ResNet blocks, and another dropout layer. Finally, a small, fully-connected
layer is applied, which leads to the final output of the network.

perform a graph construction step during training by finding the k-closest nodes in the
feature space. Since graph construction causes computational overhead, as it needs to be
recalculated for each layer and sample during training, we use DynamicEdgeConvolutions
in a limited fashion.

In this analysis, the general network structure for each task was inspired by the ParticleNet
network described in ref. [41]. A sketch of the general network structure can be found in figure 3.
The detailed network structure used for the γ/hadron separation and energy reconstruction
can be found in the appendix A (see table 1 for the γ/hadron separation and table 2 for
the energy reconstruction). In general, both networks consist of a number of consecutive
EdgeConvolutions to gather local information and a DynamicEdgeConvolution block to
extract global information from the air shower footprint. Depending on the reconstruction
task, the number of EdgeConvolution and DynamicEdgeConvolution layers vary, as we found
that different architectures exhibit slightly improved GNN performance optimized for the
used layout configuration. Similar to ref. [41], the kernel function hΘ of the EdgeConvolution
consists of three fully-connected layers where each is being followed by a batch normalization
and an activation function, see table 3(a) for all the details. Next, a global pooling layer,
performing pooling along the node dimension, is used to make the final part of the network

– 6 –
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independent of the number of triggered stations. Finally, a set of task-specific fully-connected
layers containing the output follows, completing the GNN structure.

3.2 Training

We performed extensive hyperparameter tuning for γ/hadron separation and energy recon-
struction to converge to the final GNN architecture for each task. The best models for each
configuration are chosen based on the lowest observed validation loss. All networks were
implemented using PyTorch Geometric [45], and trained on single NVIDIA A40 or A100
GPUs, with training times ranging from 8 up to 24 hours depending on the hyperparameter
configuration. We used binary cross-entropy for g/h separation and mean-squared-error
as the loss function for energy reconstruction. During training, we applied a strategy that
involved reducing the learning rate upon reaching a plateau and incorporated early stopping.
Thus, the learning rate was lowered if the validation loss did not improve for five epochs, and
training was stopped entirely if no improvement was observed after 11 epochs.

A hyperparameter search of 70 trainings is performed for each task-specific network,
varying different parameters using a random search. As optimizer, we used Adam [46]. We
vary parameters that affect the learning process, such as learning rate, weight decay, and
decay factor,3 dropout [47], and if batch normalization [48] is used, as well as parameters
like the number of graph convolutional layers, the size of k in the clustering step of Dynam-
icEdgeConvolution, the number of kernel features f , and the number of ResNet blocks4 (see
table 3(b) for the ResNet architecture). Note that dropout is applied once after the graph
pooling and once at the end of the output of the last ResNet layer. A detailed table of the
final parameters of the search is shown in table 4.

For the energy reconstruction, we apply a minor modification of each convolution block
by using a residual connection in contrast to the γ/hadron separation model. As required by
ResNet, the input of each convolution block is projected via a fully connected layer prior to the
addition of the output of the convolutional layer to ensure similar dimensions. Finally, a ReLU
activation is applied. The energy of each predicted event is given in log10 (E/GeV). More
information on the architecture and the validation losses can be found in the appendix A.

4 γ/hadron separation using GNNs

In the following section, we investigate the performance of the GNN in terms of γ/hadron
separation. Our trained GNN model output is a score that indicates the likelihood of the
event to be a gamma ray (output close to 1) or a proton (output close to zero).5

4.1 Performance metrics

For estimating the performance of the trained GNN classifier, we study the false positive
rate ϵp (fraction of protons relative to the simulated number of protons misclassified as

3The decay factor is used to reduce the learning rate after a certain number of epochs without improvements
in the validation loss.

4ResNet blocks refer to a stack of two fully-connected layers with a shortcut connection that is utilized to
perform an identity mapping by simply adding the inputs to the outputs of the stacked layers. This learning
of residual functions has been proven to ease the training of DNNs [49].

5Two example score distributions (protons = blue, gamma = red) are shown in figure 7.
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gamma rays), in the following referred to as background contamination, as a function of
reconstructed energy [51]. We study the energy dependence of the background contamination
for a fixed gamma-ray efficiency ϵγ , i.e., the surviving fractions of gamma rays, which is
usually set to be ≈ 80% [52].

We also make use of the quality factor, which combines proton contamination and
gamma-ray efficiency and is defined via:

Q = ϵγ√
ϵp

. (4.1)

Assuming that each bin contains a sufficiently large number of events, Q is proportional to
the discovery Poisson significance improvement of a source. By changing the score threshold
of the classifier, i.e., the score at which an event is tagged as a gamma ray, the quality factor
will be maximized6 to optimize sensitivity [7].

4.2 Separation performance using different features

As a first step, we study the impact of different inputs: charge, arrival time, and the positions
of triggered stations, i.e., the signal pattern induced by the shower footprint, for the network
architecture. To study the γ/hadron separation performance using only positional information,
the network is trained using two positional features x and y and a feature representing the
PMT signal, which was set to random uniform noise, with unit variance and zero mean.
Additionally, the performance of adding either the timing or charge information is investigated
by using this information as a feature in place of the noise. The performance is shown in
figure 4 using the events of the test data set. Error bars denote statistical uncertainties and
are estimated following ref. [50]. Utilizing only positional information (red markers), i.e.,
the position of triggered stations, the GNN has only weak γ/hadron separation capabilities.
Adding time as a feature improves γ/hadron separation performance, with a stronger gain at
higher energies. Using only charge instead of time information yields excellent separation
performance, which is not surprising, given that mostly signal-based classifiers [7, 37, 52–54]
primarily focusing on detecting signal fluctuations in the shower footprint, i.e., hadronic sub
showers, were used for γ/hadron separation in the past. The best result is obtained by using
both timing and charge information as input, which slightly improves the performance over
the whole energy range, resulting in an overall background contamination ranging from 5%
at low energies to below 0.1% at the highest energies.

4.3 Comparison to established classification observables

In the following subsection, we compare the GNN performance to two established observables
that have proven their effectiveness and are currently used within HAWC [52].

4.3.1 Definition of baselines observables

The γ/hadron separation utilized in HAWC relies on these two distinct parameters, called LIC
and PINCness, to distinguish between cosmic-ray and gamma-ray events. The LIC parameter

6An example is shown in figure 7, alongside the quality factor as a function of the threshold on the GNN
output for the low energy and high energy regime.
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Figure 4. Comparison of the background rejection performance, when training the GNN using
different inputs. The residual background contamination using all available features is shown in green.
Orange and blue show the network performance with positions and time or positions and charge used
as input features. In red, the performance of the network utilizing only positional information is
shown. Error bars denote statistical uncertainties following ref. [50].

is the logarithm of the inverse of the so-called compactness [7], originally developed for Milagro:

LIC = log10

(
CxPE40

nhit

)
. (4.2)

Here, CxPE40 denotes the largest charge measured in a PMT at least 40 m away from the
shower core, and nhit is the number of tanks hit in the event (our example design features
only a single PMT per tank).

The second parameter, PINCness [37], makes use of the lateral distribution function to
separate gamma rays from cosmic rays. It is defined as

PINCness = 1
N

N∑
i=0

(log10(qi) − ⟨log10(qi)⟩)2

σ2 , (4.3)

where qi is the charge of the i-th PMT that was triggered in the event and σ is the uncertainty
on the charge. It is calculated by fitting Gaussian distributions to the logarithm of average
charges for different rings centered on the shower core and then fitting the best-fit values
to a quadratic function.

Given that simple box cuts on these two parameters are widely used to combine both
parameters for γ/hadron separation, we optimize them in the same way as ref. [55] to define
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Figure 5. The quality factor shown as a function of a cut on PINCness (CP ) and LIC (CL) for
two different energy bins. The maximum of the quality factor is indicated by a pink star. The
thresholds CP and CL at this point provide the optimal γ/hadron separation in terms of maximizing
the sensitivity as estimated by the quality factor and are used in the following.

a baseline to compare to. We find the optimal cuts for the LIC and PINCness parameters by
optimizing the quality factor for every bin in our dataset, which consists of seven logarithmic
reconstructed energy bins from 102.0 GeV to 105.5 GeV with a step size of half a decade.
Figure 5 shows the best cuts obtained for one low-energy bin and one high-energy bin.

4.3.2 Performance comparisons

To compare the GNN to an established baseline, we investigated the background contamination
for the different γ/hadron separators as a function of energy in figure 6. To enable a direct
comparison, the gamma-ray efficiency was fixed to 80%. Note that we did not apply any
quality cuts on the data. Statistical uncertainties are estimated following ref. [50]. If no
background event is present in an energy bin, an upper limit is estimated by assuming a
single background event and depicted by a down-facing arrow. As can be seen, the GNN (red
triangles) features a more efficient background rejection than LIC (green pentagons) and
PINCness (purple stars) across the full studied range and even outperforms the combination
of both observables (black triangles). Whereas at low energies, the rejection is improved by
around a factor of two, at higher energies, we find an improvement by one order of magnitude.

Quality factor. Since the quality of the γ/hadron separation directly propagates into the
sensitivity that depends on ϵp and ϵγ , the quality factor can be used to optimize source
detections in the Gaussian limit. In each bin, we optimized the quality factor (requiring a
gamma-ray efficiency of at least 50% to retain sufficient signal) for the different methods
respectively. Example plots for a low-energy and high-energy bin are shown in figure 7 for
the GNN, where the score distribution of the protons (blue histogram) and gamma rays (red
histogram) are shown alongside the quality factor (black line). In case there are no surviving
background events, we instead estimate a lower limit of the quality factor with a single
background event and indicate the limits with down-facing arrows. To examine the effect
of using the GNN on source sensitivity, we show in figure 8 the background contamination
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Figure 6. γ/hadron separation performance comparing the GNN (red triangles) to PINCness (purple
stars), LIC (green pentagons), and their combination (black triangles). The gamma-ray efficiency was
fixed to 80% to enable a fair comparison. The data points in the last two bins shifted horizontally
to improve readability. Error bars denote statistical uncertainties. Upper limits are estimated by
assuming a single background event and are depicted by downward-facing arrows.
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Figure 7. The GNN output for protons (blue) and gamma rays (red) using events in two different
energy bins. The quality factor q is shown in black here as a function of the score threshold (x-axis)
of the GNN classifier.

(colored markers) for the investigated approaches and the gamma-ray efficiency (colored
lines) as a function of energy. In terms of standalone parameters, LIC, shown in green,
generally outperforms PINCness, shown in purple, in the low and medium energy range.
We find that our GNN, shown in red, outperforms the combination of LIC & PINCness,
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Figure 8. γ/hadron separation performance comparing the GNN to PINCness, LIC, and their
combination without any quality cuts applied. The cuts were chosen to maximize the quality factor for
a gamma-ray efficiency (shown as solid lines) of at least 50%. The data points in the last two bins shifted
horizontally to improve readability. Error bars denote statistical uncertainties. Downward-facing
arrows indicate upper limits for bins if no background remains. No quality cuts have been applied.

depicted in black, by a factor of three at low energies and reaches a factor of five up to
eight at medium and high energies.

The comparison of the optimized quality factor as a function of energy is shown in
figure 9. The error bars denote statistical uncertainties and were estimated following ref. [50].
For bins without background contamination, indicated by a down-facing array below the
marker, a lower limit is estimated, assuming a single background event. It can be seen
that the GNN (red triangles) outperforms the classical observables (black triangles, green
pentagons, and purple stars) over the whole energy range. This demonstrates that the GNN
efficiently extracts additional information from the sampled shower footprint, facilitating a
significant gain in the signal-to-noise ratio. Overall, the GNN offers a two to three times
higher quality factor over the whole range and continues to improve the background rejection
at very high energies. However, the exact extent of the γ/hadron separation performance
is somewhat unclear above 50 TeV given the limited statistics in these bins.

5 Energy reconstruction using GNNs

In general, we compare the performance of the energy reconstruction for events with zenith
angle θ ≤ 30° and 30° < θ ≤ 45°. Showers at larger zenith angles have a much broader
spatial spread across the array and have to travel a longer way through the atmosphere,
which reduces the number of particles reaching the detector.
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Figure 9. Comparison of the optimized quality factor for GNN (red), PINCness (purple), LIC (green),
and their combination (black) without any quality cuts applied. Cuts were chosen to ensure at least
50% gamma-ray efficiency. Upper limits are estimated assuming a single background event in the bin.
Due to limited statistics resulting in large errors, the data points were shifted to avoid overlap.

Data selection. For the energy reconstruction, we apply a dedicated selection, which
comprises cuts on the zenith angle θ ≤ 45°, the core position of the shower within the array
(rarray < 300 m), and nhit > 30. We also apply a cut on the score of the reconstructed
events, which essentially acts as a quality cut for well-reconstructed gamma rays. The cut
value was taken from the previous γ/hadron separation. In the energy reconstruction we
only reconstruct gamma rays.

5.1 Energy dispersion

In figure 10, we compare the energy dispersion for events at smaller zenith angles fig-
ure 10(a) with ones at larger zenith angles figure 10(b). We plot the reconstructed energy
log10 (Ereco/GeV) of the GNN versus its initial true energy log10 (Etrue/GeV). In an ideal case,
the events in the plot align along the diagonal where log10 (Ereco/GeV) = log10 (Etrue/GeV).
In both cases, we find that while there is a slight shift towards higher reconstructed energies,
the distribution of events aligns well along this diagonal. Within each zenith bin, we find
that the distribution at smaller energies deviates slightly more from the diagonal than at
higher energies. This presumably stems from higher energy showers triggering more tanks,
providing more information to the network. Additionally, lower energies are more affected
by upward fluctuations because they are close to the energy threshold of the detector. We
find that the overall distribution in the higher zenith angle bin is slightly broader than the
one at lower zenith angles. This is caused by the fact that the shower has to travel a longer
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Figure 10. Energy dispersion matrix for two different zenith angle bins. The diagonal shows where
log10 (Ereco) = log10 (Etrue).

distance through the atmosphere, leading to increased fluctuations in the shower development.
We find that there are more low-energy events at lower zenith angles than at higher angles.
Low-energy showers at high zenith angles are less likely to reach the array due to atmospheric
absorption effects, thus changing the energy threshold.

5.2 Energy bias and resolution

To judge the performance of the GNN, we investigate the energy bias and energy resolution,
which we define as the mean and standard deviation of the distribution log10(Ereco/Etrue)
and its uncertainties which we obtain by bootstrapping. We compare the GNN results to the
performance that can be attained using the current state-of-the-art in [13] and [51], which
relies on a template-based likelihood fitting procedure.

In figure 11, the energy bias and in figure 12, the energy resolution is shown as a
function of the energy. We show the results of the GNN-based energy reconstruction as
circles compared to the performance that can be attained for the standard template method
as squares for different zenith angle bins, filled markers for the θ ≤ 30° and open markers for
30° < θ ≤ 45°. The energy bias is stable over multiple orders of magnitude from 600 GeV
to around 200 TeV. Where the bias for both methods stays roughly within 10% on a linear
scale, this region is marked in yellow. At lower energies below 600 GeV, reconstruction is
biased. Since low-energetic events are less likely to be detected, only events with upwards
fluctuations, i.e. showers that feature a shower maximum close to the detector, are measured.
This shifts the bias to higher energies, which affects the standard method more than the
GNN. The bias for the smaller zenith angle bin generally performs better compared to higher
angles, which can again be explained by common shower physics.

In figure 12, we compare the energy resolution for the standard method as squares and
the GNN method in circles for different zenith angle bins. Again, we show filled markers for
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Figure 11. Comparison of the energy bias using the current state-of-the-art template approach [13]
and [51], which uses a likelihood fitting procedure (square markers) and the GNN (circles), as a
function of energy for two zenith bins with filled markers for the θ ≤ 30° bin and open markers for the
30° < θ ≤ 45° bin. The bias is estimated as the mean of the distribution of log10(Ereco/Etrue). The
yellow marked area shows the ±10% region around 0 for the energy bias in linear.

the θ ≤ 30° bin and open markers for the 30° < θ ≤ 45° bin. For energies below 200 GeV
for the GNN, and below around 600 GeV for the template method, we find that the energy
resolution is getting slightly better with decreasing energy. The reason for this is that the
cut on the number of tanks hit acts as a quality cut for events in that region. As it is harder
for low-energy showers to reach the threshold for reconstruction, more events are removed,
artificially boosting the resolution in this region with the cost of a larger bias (compare the
trend below 600 GeV in figure 11 and figure 12). Above 600 GeV, this threshold no longer
influences the results. Beyond 200 GeV across the entire energy range, we find the GNN
resolution is consistently surpassing what is currently achievable with the standard method.
At the highest energy above 100 TeV, the resolution seems to worsen slightly, presumably
due to the size of the shower footprint getting larger than the size of the array.

For the GNN resolution, we reach a resolution of around 16% (linear scale) at around
17 TeV for zenith angles θ ≤ 30° and a resolution of around 26% at the same energy for
higher zenith angles.

Overall, we find a stable energy bias over many orders of magnitude for both the template
method and the GNN and a very good energy resolution, especially medium energies, with the
GNN showing evident improvements over the standard state-of-the-art method and improving
over the performance requirement in the science proposal of SWGO [56].
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Figure 12. Comparison of the energy resolution using the current state-of-the-art template ap-
proach [13] and [51], which uses a likelihood fitting procedure (square markers) and the GNN (circles),
as a function of energy for two zenith bins with filled markers for the θ ≤ 30° bin and open markers
for the 30° < θ ≤ 45° bin. We calculate the resolution as the standard deviation of the distribution
of log10(Ereco/Etrue).

6 Conclusion

In this work, we developed a novel deep-learning-based strategy for event reconstruction and
γ/hadron separation in the context of SWGO, a next-generation gamma-ray observatory
in the southern hemisphere currently in the research and development phase. By modeling
air shower footprints detected by a simulated water-Cherenkov detector array as graphs, we
exploit the spatio-temporal patterns comprising the measured integrated signals and the
timing information using graph neural networks (GNNs). In the context of our simulation
study, we examined the graph-based algorithms on energy reconstruction and γ/hadron
separation for a detector design currently studied within the SWGO collaboration.

We presented the first comprehensive study of the application of graph neural networks
to a water-Cherenkov-based gamma-ray observatory. The obtained performance within this
study surpasses the performance expected in the SWGO white paper [56]. We found that
without the need for any quality cuts, the GNN provides a strong background rejection,
outperforming hand-design variables currently in use within HAWC over the whole energy
range. These improvements are achieved by combining the spatial structure of the footprint,
which is particularly efficient in discriminating showers at high energies, with the charge and
timing information. Interestingly, the timing information, which has not been investigated in
detail for γ/hadron separation, appears to have additional separation power.
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Furthermore, we found that GNNs offer an accurate energy reconstruction that provides
reliable energy estimates from 600 GeV over the full studied energy range. The GNN
reconstruction offers improvements to the template-based approach [51], which is currently
state-of-the-art, demonstrating an improved resolution, particularly at mid and high energies.
Due to the flexible nature of the proposed GNN architecture, changes in the layout and
tank design, e.g., adding second chambers to enable the tagging of single muons, can be
simply integrated into the presented algorithm.

Future work will focus on additional algorithm improvements, i.e., performing different
clustering within the central and outer zones, utilizing attention mechanisms, and investigating
its performance under realistic operation conditions, including cosmic ray noise. This aims
to exploit the full information contained in the detected air shower footprint, ultimately
providing improved capabilities to survey the gamma-ray sky at very high energies.
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A Network architectures

A.1 Task specific architectures

Architecture for γ/hadron separation
Layer features setting input shape output shape

EdgeConv nfeat □j : mean nnodes × 4 nnodes × nfeat

ReLU — — nnodes × nfeat nnodes × nfeat

3 ×
{

EdgeConv nfeat □j : mean nnodes × nfeat nnodes × nfeat

ReLU — — nnodes × nfeat nnodes × nfeat

DynEdgeConv nfeat □j : mean nnodes × nfeat nnodes × nfeat

Concat — layer outputs 4 · (nnodes × nfeat) 4 · (nnodes × nfeat)
MaxPooling — — 4 · (nnodes × nfeat) 4 · (nnodes × nfeat)

Dropout — p = 0.13 4 · (nnodes × nfeat) 4 · (nnodes × nfeat)
ResNet nfeat — 4 · (nnodes × nfeat) nfeat
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Architecture for γ/hadron separation
Layer features setting input shape output shape

4 × { ResNet nfeat — nfeat nfeat

Dropout — p = 0.13 nfeat nfeat

Linear 2 — nfeat 2
SoftMax — — nfeat 2

Table 1. Network architectures for the separation task. nnodes describes the number of nodes in the
input graph, which depend on the number of triggered tanks, and nfeat the number of features. We
further use a bottleneck layer in the first ResNet layer to adjust the dimensionality.

Architecture for energy reconstruction
Layer features setting input shape output shape

EdgeConv nfeat □j : mean nnodes × 4 nnodes × nfeat

Linear nfeat — nnodes × 4 nnodes × nfeat

Addition — — nnodes × 4 nnodes × nfeat

ReLU — — nnodes × nfeat nnodes × nfeat

3 ×



EdgeConv nfeat □j : mean nnodes × nfeat nnodes × nfeat

Linear nfeat — nnodes × nfeat nnodes × nfeat

Addition — — nnodes × nfeat nnodes × nfeat

ReLU — — nnodes × nfeat nnodes × nfeat

DynEdgeConv nfeat □j : mean nnodes × nfeat nnodes × nfeat · 2
Linear nfeat — nnodes × nfeat nnodes × nfeat · 2

Addition — — nnodes × nfeat nnodes × nfeat · 2
ReLU — — nnodes × nfeat · 2 nnodes × nfeat · 2
Concat — layer outputs 5 · (nnodes × nfeat) 5 · (nnodes × nfeat)

MaxPooling — — 5 · (nnodes × nfeat) 5 · (nnodes × nfeat)
Batchnorm — momentum = 0.1 5 · (nnodes × nfeat) 5 · (nnodes × nfeat)

Dropout — p = 0.24 5 · (nnodes × nfeat) 5 · (nnodes × nfeat)
ResNet nfeat — 5 · (nnodes × nfeat) nfeat

2 × { ResNet nfeat — nfeat nfeat

Dropout — p = 0.24 nfeat nfeat

Linear 1 — nfeat 1

Table 2. Network architectures for the energy reconstruction task. nnodes describes the number of
nodes in the input graph, which depend on the number of triggered tanks, and nfeat the number of
features. The “Addition” denotes a residual connection that connects consecutive convolutional and
linear layers. We further use a bottleneck layer in the first ResNet layer to adjust the dimensionality.
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A.2 Kernel function and residual model

Kernel network hΘ

layer features settings
Linear nfeat no bias

Batchnorm — momentum = 0.9
Activation — —

Linear nfeat no bias
Batchnorm — momentum = 0.9
Activation — —

Linear nfeat no bias
Batchnorm — momentum = 0.9
Activation — —

Residual Module “ResNet”
layer features settings

Linear nfeat no bias
SiLU — —

Batchnorm — momentum = 0.1
Linear nfeat no bias
SiLU — —

Batchnorm — momentum = 0.1
Add — —
SiLU — —

Table 3 (a). Architecture of the kernel func-
tion hΘ, where nfeat is to be chosen by the
user. For γ/hadron separation, we used SiLU
as an activation function and for the energy
reconstruction ReLU.

Table 3 (b). Details of our used ResNet
modules.

A.3 Parameters after hyperparameter search

Parameters γ/hadron separation Energy reconstruction range
Learning rate 0.005 0.010 [5e-5, 1.5e-2]
Decay factor 0.39 0.29 [0.2, 0.8]

Batchsize 135 105 [96, 150]
Weight decay 0 (fixed) 8.5e-4 [5e-5, 1e-3]

nEdgeConv 3 3 [1, 4]
nDynEdgeConv 1 1 [1, 2]

nfeat 57 124 [16, 128]
nResNet 5 3 [1, 5]

Batchnorm False True [True, False]
Dropout 0.13 0.24 [0, 0.5]

nkNN,DynEdgeConv 16 (fixed) 13 [8, 16]

Table 4. Found parameters after the hyperparameter search for γ/hadron separation and energy
reconstruction. nEdgeConv and nDynEdgeConv denote the number of EdgeConvolution and Dynam-
icEdgeConvolution layers, and nresnet the number of ResNet blocks. nfeat is the number of features
and nkNN,DynEdgeConv the number of kNN neighbors for the DynamicEdgeConvolution.
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A.4 Validation losses

Figure 13. History of the validation losses during the hyperparameter search for γ/hadron separation.
The best performing model is shown in red.

Figure 14. History of the validation losses during the hyperparameter search for energy reconstruction.
The best performing model is shown in red.
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