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Abstract

After introducing the basic structure of string theory, we review some of the geomet-
ric tools used to describe string backgrounds, specifically those endowed with a cer-
tain amount of supersymmetry, namely special holonomy, G-structures and Hitchin’s
Generalized Geometry. We also report on relevant recent developments using the
latter two approaches. We then proceed to present our proposed extension of these
approaches, building in particular on the language of Generalized Geometry, based
on a new formalism (for M-theory compactifications on seven-dimensional manifolds)
termed Exceptional Generalized Geometry owing to the central role of the exceptional
Lie group Er(7). In this context we define an Exceptional Generalized Tangent (EGT)
bundle endowed with a non-trivial twisted topology giving rise to a gerbe structure
and a generalized Courant Bracket, the Exceptional Courant bracket (ECB). Fur-
ther we introduce an Exceptional Generalized Almost Complex Structure defining an
SU(8)/Zs structure on the EGT allowing the definition of an Exceptional General-
ized Metric (EGM). These results are the applied to eleven-dimensional supergravity
where the SU(8)/Z;, structure arises from the bosonic sector. We then show how
a reduced SU(7) structure corresponds to backgrounds with effective N = 1 (off-
shell) supersymmetry. Specifically, reformulating eleven-dimensional supergravity in
an N = 1 D = 4 language, we identify the effective superpotential as an SU(7) singlet
in the gravitino variation. We then rewrite the resulting expression in a manifestly
Er(7y invariant form. Finally we report on preliminary work aimed at formulating the

supersymmetry variations in an Er7) covariant way.
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Chapter 1

Introduction

In this chapter we review the fundamentals of string theory. Starting from the ap-
pearance of a spin 2 particle in the string spectrum, implying the natural inclusion
of General Relativity in the theory, we explain the role of string theory as the UV
completion of point-particle field theories, particularly those including gravity. We
then present the specifics of the theory, emphasizing the role of supersymmetry and
dualities. We further describe the process of compactification and in particular we
review the early geometric compactification schemes of the heterotic string and eleven-
dimensional supergravity. This leads us to consider the moduli problem and its re-
solution through flux compactifications. Finally we consider the geometric constructs
used to characterize the supersymmetric sector of the resulting “landscape”, that is
G-structures and Hitchin’s Generalized Geometry, and outline how the original work

presented here proposes to extend them.
1.1 A perturbative Quantum Gravity

String theory (reviewed in [1][2][3]) was introduced in 1968 [4] as an attempt to
describe the strong interaction. The so-called Veneziano amplitude successfully re-
produced the crossing-symmetry between interaction channels (s — ¢ duality) while

maintaining the UV divergences under control by introducing an infinite tower of

9



states (linked to the amplitude’s poles) of increasing squared masses M? and spin J.
These could then be seen to match the nearly linear relationship between M? and J

for the many hadron resonances appearing in accelerators:

M? ~

Q\]g‘

where o’ =~ 1 GeV~? is the Regge slope. It was then pointed out by Nambu [5],
Nielsen [6] and Susskind [7] that this was consistent with the quantization of an
extended elementary relativistic string.

Despite these successes, it was soon realized that strong interactions could more
easily be described within the framework of non-Abelian (Yang-Mills) gauge theories,
specifically quantum chromodynamics (QCD)!.

One of the difficulties that had plagued string theories as models of the strong
force was the systematic presence in the spectrum of a massless spin 2 particle [8][9].
This apparent drawback turns into a virtue if one identifies this excitation with the
graviton. In fact the existence of this interacting spin 2 mode means that string theory
necessarily encompasses Einstein Relativity. In the framework of General Relativity
(GR) one tends to think of gravity as a geometric property of (pseudo-)Riemannian
manifolds. Perturbatively however one may picture small departures from a fixed

background metric as excitations of a spin two gauge field h:

Guv = M + K/h,uv

where k2

is proportional to Newton’s gravitational constant. Writing down a La-
grangian for this perturbative gravity in analogy with U(1) gauge (Maxwell) theory,
h is expected to couple to a rank two symmetric (stress-energy) tensor T}, playing

the role of the conserved current? (9#T}, = 0).

1Ultimately however QCD is expected to emerge from string models along with the other Standard
Model (SM) gauge interactions.

2which is positive definite for normal matter in accordance with the attractive nature of gravity
in absence of a negative-pressure cosmological constant
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The most general equation of motion at most quadratic in derivatives and com-

patible with Lorentz invariance for a spin 2 particle is [10]:
—62}1“,\ — 6u6,\h5 + 6V8,\hz + 6,181,h’,( - T]u,\(—(‘?QhZ + &xaghaﬁ) = 2H2Tu,\

Unitarity then requires gauge invariance (to remove unphysical non-transverse nega-

tive probability modes) under:
Py = Ry + Ouds + 0L A,

with A an arbitrary one-form. So that by gauge-fixing on may set A% = 0 and

0, = 0 and put the equation of motion in a more standard form:
—82hu,, = QHQTW,

However this picture is not fully consistent since the stress-energy tensor T}, does
not, as written, capture all the physics involved. The issue is that the stress-energy
tensor as it stands only contains contributions from matter fields. However one must
include the energy carried by the emitted graviton itself as a quadratic term so that
now: T, = T/p*"" + T, qu- This in turn modifies both the gauge transformation and
the equation of motion which are now incompatible with the new T}, which lacks

3

a yet higher-order contribution from “gravity gravitating”. Iteration of this process

leads to an infinite expansion in h with the final (consistent) field equation being:

1
R, — §Rguy = KQTW
which is none other than Einstein’s equation (for a small perturbation around a fixed
background) and the gauge transformation sums to a general coordinate transform.
This derivation [11] also shows that GR. follows uniquely from general covariance bar
the possibility of higher (than two) order derivative corrections.
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Of course such a field theoretic treatment of gravity is a priori non-renormalisable
given simple power-counting arguments, since Newton’s constant has a negative power
mass dimension. And while pure Einstein gravity was calculated in [12] to be finite at
one-loop, it was shown in the same paper that coupling gravity to a scalar field leads

3 were then shown to exist for

to a divergence at first order. One-loop divergences
gravity coupled to a Maxwell field [13], a Yang-Mills [14] field or a Dirac fermion [15].
What is more even pure gravity diverges at two-loop order [16]. Considering locally
supersymmetric field theories?, as introduced in [17] and [18], improved the situation
somewhat [19]-[23] but only delayed divergences: first it was thought they would
appear at three-loop order (for a review see [24]), but more recently, using a more
refined power-counting based on harmonic superspace, the divergences were shown
to arise at five-loop order [25]. Thus aside from the possibility of a non-trivial UV
fixed point for Einstein gravity® with a corresponding non-perturbative description
(see for example [26]) or supergravity® these difficulties seem to indicate the need to
go beyond field theory and the point-particle paradigm. String theory in particular
then acts as the UV completion of standard field theories: at an energy scale given by

o~ \/—1;_—, (most naturally identified with the Planck scale) it gives rise to an infinite
tower of new modes which soften the divergences” rather like the infinite number of
hadron resonances in the original application of the theory to the strong force with

of & t-— now replacing the Regge slope. String theory is thus a successful model

Planck

for a perturbative quantum gravity on a fixed background.

3All divergence calculations usually refer to D = 4 but in fact the situation worsens as the
dimension increases.

4g0-called supergravities as they naturally include Einstein gravity

5Such a fixed point does exist for gravity in 2 + ¢ dimensions for € small but one may suspect
that this relates critically to the remarkable properties of gravity in 2D.

6There are recent suggestions [27] that a series of cancellations might in fact make N = 8
supergravity UV finite. But this theory is unfortunately of questionable phenomenological use.

7In fact it is assumed that string theories are finite. The recent suggestions regarding the possible
finiteness of N = 8 supergravity if proven true would be an interesting hint as to the truth of this
assumption, since this theory may be obtained by compactifying string theory on a six-torus.
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1.2 String backgrounds: Compactification, super-
symmetry and dualities

Interestingly it turns out that the background on which strings propagate is sub-
jected to a series of restrictions introduced both for mathematical consistency and
phenomenological reasons. The original bosonic string theory for example can only
be consistently defined in 26 space-time dimensions (i.e. the critical® dimension), as
first suggested in [28]. The reason for this is best understood by considering string
theory formulated as a two-dimensional conformal field theory (CFT) on the string’s

worldsheet as given by the Polyakov action®:

T
Sp = —§/d2§ —detg gaﬂaaX“c?gX”nu,, with «,f=1,2 and p,v=1---26
where T = 1 is the string tension. Note that the action’s name originates in

Polyakov’s emphasis on its advantages for quantization, but it was in fact introduced
independently by Deser and Zumino [34] and Brink, Howe and Di Vecchia [35].
Given the conformal invariance of the action one can choose a gauge such that
the worldsheet metric gas = 743 and we obtain the action for 26 bosonic fields with
the space-time indices corresponding to internal symmetries (in fact Lorentz and
Poincaré invariance in space-time) from the point of view of the worldsheet. This 2D
CFT however suffers potentially from an anomaly of the conformal invariance. This
is proportional to the central charge which vanishes if there are 26 fields thus fixing
the dimension of space-time. Alternatively one may choose the so-called light-cone
gauge quantization (first introduced for the Nambu-Goto action in [36]) procedure by

exploiting the residual conformal invariance after the above choice of metric.

8There are also non-critical string theories but they exhibit undesirable phenomenological features
such as a linearly growing dilaton.

9This action is classically equivalent (and quantum mechanically in the critical dimension but
not in general) to the more intuitive Nambu-Goto action, proposed independently by Nambu [29],
Goto [30] and Hara [31], which is based on extremizing the worldsheet area but is less amenable to
the path-integral formalism as employed by Polyakov in [32][33].
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The corresponding gauge choice is however non-covariant leading potentially to
an anomaly of the Lorentz invariance which again only vanishes in 26 space-time
dimensions.

Bosonic string theory remained however phenomenologically unattractive because
its spectrum contained only bosonic space-time fields. More damagingly the ground
state of this spectrum was a tachyon!® which was impossible to remove. Both these
difficulties are resolved by introducing supersymmetry on the worldsheet in the guise
of massless (for conformal invariance) worldsheet-fermions. The remaining tachyon
may then be removed using the so-called GSO projection [37][38] with the resulting
spectrum now exhibiting space-time as well as worldsheet supersymmetry in the con-
text of what is termed superstring theory (which is now consistent in 10 space-time
dimensions).

It is important to emphasize that beyond resolving the technical issues of bosonic
string theory, supersymmetry (more precisely space-time supersymmetry) was from
its inception expected to play a significant role in any fundamental description of na-
ture [39]: The Coleman-Mandula no-go theorem [40] was thought to limit symmetries
of the S-matrix to a tensor product of the Poincaré group and internal symmetries. As
a consequence it also implied that there could be no symmetry transformation linking
the spin 2 graviton with the spin 1 vector boson carriers (photon, W=, Z°) of the
other fundamental forces. It was then shown by Haag, Lopuszanski and Sohnius [41]
that there was one possible extension scheme provided one allowed graded Lie alge-
bras which were shown to correspond to transformations linking bosons and fermions
(the first Super-Poincaré algebra had in fact been introduced for D = 4 in [42] and the
first supersymmetric field theories were constructed in [43]). These act as interme-
diate stages for the transformations between vector bosons and graviton. Therefore

supersymmetry (SUSY) would appear to be a natural ingredient in any unification

0The modern view is that this signifies an instability in the vacuum which would then roll
via tachyon condensation to a stable ground-state, Whether this may make bosonic string theory
phenomenologically useful is however unclear.
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of the SM interactions!!. Note however that there is a further subtlety to this argu-
ment in that the vector bosons only share a multiplet with the graviton in extended
supersymmetry. Phenomenologically however only theories with NV =1 SUSY admit
chiral fermions, which in the SM result for example in parity violating interactions.
The above argument might however be retained provided one embeds N = 1 SUSY in
extended SUSY and introduces a hierarchial breaking of supersymmetry at different
scales. This is however only possible in the context of local supersymmetry, that is
supergravity'?,

Further SUSY is one possible solution to the hierarchy problem [44]: The mass
of the W or the expected mass of the Higgs can in principle not be maintained
stable against loop-corrections that would renormalize it to higher energy scales (e.g.
GUT scale =~ 10°GeV or Planck scale =~ 10°GeV) without unacceptable fine-tuning.
By balancing contributions from fermion and bosons loops which have opposite sign
SUSY makes the loop contributions vanish [45]. In particular quadratic divergences

are removed, as for example in loop corrections to the Higgs mass :

1

where mpyg is the Higgs mass and Ayy the ultraviolet cut-off. For supersymmetric
theories the coupling constants for a fermion and the corresponding scalar are equal
(A = As = |A¢|*). Remarkably this mechanism still stabilizes the SM masses in the
case of soft supersymmetry breaking. This consists in adding either mass terms or
couplings with positive mass dimension to a supersymmetric Lagrangian explicitly

breaking SUSY. This approach is somewhat unusual but can be understood in terms

111t is thus less surprising that coupling constants for 3 of the forces only converge properly at
the GUT scale in the presence of SUSY if one assumes that Grand Unification embeds in a larger
unification scheme including gravity

12The name originates in the fact that theories with local supersymmetry necessarily contain
gravity: upon gauging the superalgebra the Poincaré group becomes the algebra of diffeomorphisms.
This inevitability of gravity mirrors that of string theory and interestingly superstring theories admit
supergravities as the limit where the typical geometric scales are much larger than the string length
i.e. in the point-particle approximation.
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of traditional spontaneous symmetry breaking in a hidden sector. The remaining
divergences are then logarithmic (or polynomial in logarithms for higher order cor-
rections) depending on the masses involved and correspond to the omitted terms in

the above equation. If mgy is the highest mass scale involved one finds:

Am¥ =m2 # In(Avv/Msote) + - - -
Obviously since My is of the order of the mass difference between SM particles and
their superpartners, the masses of the latter are bounded from above if these models
are to succeed. This is the reason behind the belief that superpartners should be
accessible at the LHC.

Finally the lightest supersymmetric particle (LSP) is a strong cold dark matter
candidate provided R-symmetry is conserved (making it the stable outcome of su-
persymmetric decay chains). Most models favor the neutralino (a mixed state of
the photino, the zino and the higgsino) but a significant minority focusses on the
gravitino.

Bearing in mind the relevance of supersymmetry, consider also that phenomeno-
logically space-time is not manifestly ten-dimensional. One standard solution'® to
this problem is to consider space-time to be a (possibly warped) product M3 x X of
Minkowski space M3 and an internal manifold X whose volume is sufficiently small
to give rise to an effective four-dimensional description. Remarkably this allows string
theory to naturally include the Kaluza-Klein mechanism!* whereby lower-dimensional
gauge fields are obtained by dimensional reduction of higher-dimensional geometry

(metric field) or internal fluxes (higher dimensional gauge fields).

13The Randall-Sundrum [46]{47] (and other braneworld) models offer an alternative where a four-
dimensional three-brane floats in a ten-dimensional bulk. Another attractive feature of these models
is that they may contain an effective Planck scale circumventing the hierarchy problem.

14As an aside note that 7 years before Kaluza [48] extracted a (ultimately flawed) unified theory
of electromagnetism and gravity by extending GR to five-dimensions (an idea refined by Klein’s [49]
proposal that the fifth dimension be compact), a similar split of 5D GR into 4D GR and Maxwell
theory had been proposed by Nordstrom [50] but unfortunately largely overlooked.
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Consequently the question arises as to how to extract and classify those compacti-
fications which lead to supersymmetric theories in four dimensions. Another question
is how to determine the duality relations between apparently distinct compactifica-
tions that give rise to the same physics and more specifically the same 4D effective
theories. In fact after the discovery of five consistent superstring theories (type I, type
ITA/B and heterotic with gauge group Fg x Eg or SO(32) [51][52]) in the early 80s in
the course of the so-called first superstring revolution, it was realized in the second
revolution (early 90s) that all five were linked, at least when suitably compactified?®,
by a set of duality relations[53] (see appendix A.1). It was then conjectured that they
were but different perturbative expansions around several vacua of a more fundamen-
tal non-perturbative!® theory dubbed M-theory[54]. Interestingly it was proposed
[55][56] that one of the duality relations (S-duality on type IIA) also pointed towards
11D N = 1 supergravity, the unique locally supersymmetric field theory in eleven di-
mensions, introduced in [57], which is assumed to be the low-energy limit of M-theory.
Compactifications of this theory are referred to (somewhat abusively) as “M-theory
compactifications” in the literature. It is these compactifications which are the object
of the original work presented in this thesis. The internal manifold X is in this case
seven- rather than six-dimensional.

Let us briefly comment on the specifics of these theories. Consider first closed
strings: the left- and right-moving modes are decoupled and can be subjected to
independent boundary conditions. For the worldsheet bosons these are necessarily
periodic but for the worldsheet fermions one has the choice between periodic Ramond
(R) boundary conditions or anti-periodic Neveu-Schwarz (NS) boundary conditions
leading to four possible choices. Space-time bosons arise from the NS-NS and RR

sectors, while space-time fermions arise from the NS-R and R-NS sectors.

15The two type II theories are linked by T-duality if compactified on toroidal backgrounds but
not in 10D. There are however also dualities for non-toroidal compactifications such as the duality
between type ITA compactified on a K3 surface and heterotic on a four-torus T4.

16This non-perturbativeness opens up the possibility of making the theory manifestly background-
independent i.e. treating space-time itself dynamically (maybe as a sea of strings).
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For type IIB the two corresponding gravitini have the same chirality leading two
N = (2,0) chiral supersymmetry in 10D and for type IIA they have opposite chirality
with N = (1, 1) non-chiral supersymmetry in 10D. The NS-NS sector is common to
both theories and contains the 10D space-time metric G (corresponding to the gravi-
ton), the Kalb-Ramond B-field!” and the scalar dilaton ¢. The RR sector is made up
of differential p + 1-form potentials with p +- 2 field strength F,,,, generalizations of
the Maxwell gauge potential, which couple to charged p + 1 dimensional hyperplanes
known as Dp branes electrically and similarly to D(6 — p) branes magnetically!8.
The significance of D-branes as carriers of RR charge was first pointed out in [58]
(with some earlier work in [59]) and soon further explored in [60][61] , while D-branes
themselves were introduced in [62][63]). Further bosonic fields besides the metric
are generically referred to as fluxes. Compactifications where they take non-zero va-
lues are consequently termed flux compactifications, otherwise one speaks of (purely)
geometric compactifications.

For type IIB the RR fluxes are a 0-form, a 2-form and a 4-form (with self-dual
5-form field strength) and for type ITA a 1-form and a 3-form. The corresponding
D-branes have p = —1,1,3,5,7 for type IIB and p = 0, 2,4, 6 for type IIA. The case
of p = —1 corresponds to a D-instanton, a localized point in space-time, while a
DO brane is a point-particle. Under special conditions this list may be completed by
space-filling D9 branes for type IIB and D8 branes'® for type IIA. There is also a mag-
netic source for the B-field, the NS five-brane which is not a D-brane. Importantly the
endpoints of open strings with p + 1 Neumann boundary conditions, or alternatively

9 —p Dirichlet boundary conditions, which give the D(irichlet)-branes their name, are

1"The B-field is a two-form potential with corresponding field strength H. It is the natural gauge
potential associated with a fundamental string in the same way as point-particles naturally act as
sources for the one-form gauge potential of Maxwell theory.

18The nomenclature follows from the fact that magnetic coupling to a given field strength may be
interpreted as electric coupling to its image under Hodge duality, which for the Maxwell potential
exchanges electric and magnetic fields.

19Tt does not appear in the analysis of the RR. sector as the associated 10-form field strength is
non-dynamical.
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restricted to live on Dp-branes and the open-string massless modes define a gauge
theory on the brane worldvolume (the generalization of the worldsheet).

Given this Type I may be obtained from type IIB by identifying it under its
Zo symmetry under worldsheet parity exchanging left- and right-movers through a
so-called orientifold projection. The resulting theory contains unoriented closed and
open strings and the bosonic modes surviving the projection are the metric and the
dilaton in the NS-NS sector and the 2-form in the RR sector. Correspondingly type
I admits D1 (the D-string) and D5 branes along with D9 branes accounting for open
strings with 10 Neumann boundary conditions. The fundamental string is in fact
unstable but its life-time is long enough at weak string coupling to appear in the
perturbative spectrum. Further the projection leads to N =1 10D supersymmetry
and anomaly cancellation implies an SO(32) gauge group. Heterotic string theories
finally combine 26D bosonic string theory for the left-movers with 10D superstring
theory for the right-movers. The supplementary modes for the left-movers lead to
one-form gauge potentials which are required to transform in Eg x Fg or SO(32) to
guarantee anomaly cancellations. There are a priori no open strings and no D-branes
in heterotic string theory as it seems impossible to set boundary conditions for the
mismatched left- and right-movers, although there have been recent suggestions to
the contrary in the context of cosmic strings [64].

As o — 0 all superstring theories admit a supergravity as a limit?®. In this
context the D-branes appear as non-perturbative solitons in the field theory. They
are in fact supersymmetric BPS states with masses (in appropriate units) equal to
their conserved charges which appear as central charges in the supersymmetry algebra.
Their masses go as ~ gls where g, is the string coupling which is why they do not

appear in the perturbative massless spectrum. They do however appear as the images

20The corresponding equations of motion are obtained by expanding the 3 function of the world-
sheet action (which must vanish to guarantee conformal invariance) to lowest order in of. Type
IIB does not in fact admit an action corresponding to these equations because of the self-duality
condition of the five-form field strength (if said field strength does not vanish).
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of some string modes under strong-weak coupling dualities such as S-duality (reviewed
in appendix A.3). Further the supergravity corresponding to type IIA can be obtained
from 11D supergravity by dimensional reduction on a circle. The 11D supergravity
spectrum contains the 11D gravitino, the 11D metric and a 3-form gauge potential
A (with field strength F') which reduces to the type IIA B-field and RR 3-form. It
also admits solitonic modes, namely the so-called M-theory M2 membrane and the
M5 five-brane. The former gives rise to the fundamental string when wrapping the
circle and a D2 brane otherwise, while the latter leads to a D4 brane and the NS
five-brane respectively. A DO brane corresponds to an M2 brane shrinking to zero
size with momentum along the circle, while a D6 brane corresponds to a Kaluza-
Klein monopole linked to the circle reduction. In most applications one is interested
in purely bosonic supersymmetric backgrounds such that the only non-trivial SUSY
variation is that of the gravitino. For later reference we will shall give the Type
IT gravitino variations explicitly. The former is compactly given in the democratic

formulation [65].

1
6Upr = Dy — %e_(ﬁﬂ (Tar 9% Hpgr ~ TPV Hypg) Pe

e(5-n)/4
[(n — 1)Ta™M M — (9 — n)op M T2 By n, Pre, (1.2.1)

~ 64 n!
with

n=20,2,46,8 P=I;; and F,= —(F11)n/201 for type IIA

n=1,3,579 P=-0® and P,=ic? for n=1,59 and P,=0' for n=3,7

for type IIB and where
F,=dC,_, —HANC,_3

are the modified RR field strengths and € and I'M are the SUSY variation spinor

and gamma matrices respectively. We use uppercase indices M, N,... =0,...,9 for
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curved ten-dimensional indices and I''! is the product of the 10D gamma matrices.
The 11D equivalent is given in section 6.1 .

Returning to dualities one must add that strictly speaking some of these are
merely conjectured, typically because they represent non-perturbative maps between
strong and weak coupling regimes making them a priori difficult to test in perturba-
tive string theory. These problems may however be circumvented in the presence of
supersymmetry: by making use of SUSY non-renormalization theorems one may ex-
trapolate certain quantities (generically associated with supersymmetric BPS states)
from weak to strong coupling and thus submit the dualities to more stringent tests
which were all successful (see for example [53] for the case of U-duality, itself reviewed
in appendix A.4). More recently interest in generating and classifying supersymmet-
ric backgrounds has been partially motivated by the need to rigorously test another
important duality: the AdS-CFT conjecture. The proposed duality (first formulated
in [66] with important refinements added in [67][68]) relates type IIB string theory
or M theory on spaces which are asymptotically the product of Anti-de Sitter (AdS)
space and a compact manifold to a conformal gauge theory.

More precisely in the simplest examples the above asymptotic geometry arises
as the near horizon limit of a stack of N coincident branes, typically D3 branes
for type IIB and M2 or M5 for M-theory leading to AdSs x S5 and AdS: x S7
or AdS; x S;. These simple examples have been significantly extended - see for
example [69] for a configuration with branes at a conical singularity in string and M-
theory. Let us however concentrate on the simple case of a D3 brane stack. At lowest
order in ¢/ (i.e. in the supergravity approximation) open strings stretching between
those branes define a U(N) superconformal field theory on their worldvolume. The
duality is holographic in nature and links the dynamics in a bulk space-time with
an AdSg;1 factor with a conformal gauge theory in d dimensions. For D3 branes
the CFT is D = 4 N = 4 super Yang-Mills (SYM) with effective (’t Hooft) coupling

A = gi N with g2, = 4ng, where g is the string coupling. The curvature radius
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of both the AdS factor and the sphere in the near-horizon limit is however given by
R* = 47g,Noa'? so that:

where I, = Vo is the string length. Assuming the conjecture holds true, it follows
that in the supergravity approximation (where strings are point-like {; < R and
calculations are quite tractable due to the absence of stringy o’ corrections) type
IIB string theory correctly describes a strongly coupled gauge theory. This has led
to the hope that QCD, which with its large coupling constant is difficult to treat
perturbatively, will be amenable to a similar treatment so that one might shed light on
phenomena such as confinement and asymptotic freedom. Conversely highly curved
string theories for which the supergravity limit no longer applies are expected to be
described by gauge perturbation theory. The gauge theory further simplifies in the
limit N — oo at fixed A (this is the 't Hooft limit [70] leading to purely planar
diagrams) which on the string side corresponds to genus 0 (tree level) order in g;.
This theory has an infinite number of conserved charges and is conjectured to be
integrable.

The AdS-CFT correspondence has already passed a series of non-trivial tests,
the simplest of which is the agreement of the symmetries in both pictures. On the
string side the compact space S® and the AdS factor AdS; have isometries SO(6) and
S0O(4,2) which have SU(4) and SU(2,2) as double covers. On the gauge side the
former is identified with the R-symmetry group of N = 4 SUSY while the latter is the
conformal symmetry of the field theory. Supersymmetry is critical in guaranteeing
that this last symmetry is not broken by quantum corrections. Ultraviolet divergences
then cancel to all orders and the theory is finite. Further adding fermionic generators
on both sides one may check that the full symmetry group is PSU(2,2|4). A similar
discussion applies to other instances of the conjecture but the previous example is the

most tractable. However in all cases supersymmetry plays a central role. Note finally
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that these are supersymmetric backgrounds with flux as for example the D3 branes
couple to Ramond-Ramond five forms with N units of flux through the five-sphere.
Returning now to specific compactifications, note that the first supersymmet-
ric backgrounds explored were however chosen to be purely geometric partially for
simplicity and partially because of a series of no-go theorems involving flux compacti-
fications. They were found to be special holonomy manifolds, with specifically SU(3)
for Calabi-Yau (complex) threefold string theory compactifications [71] and G» for
M-theory compactifications (introduced, after the construction of the first compact
Gy-holonomy manifolds by Joyce [72][73], in [74]). These holonomies lead to N =1
effective theories in 4D for compactifications of heterotic string theory and M-theory
(as needed because of the phenomenological requirement of chiral fermions).
Compactifications of heterotic Eg X Fg in particular proved very promising in
producing realistic models. Using the so-called standard embedding, whereby the
SU(3) holonomy group is embedded in Eg, one finds that one of the Fg factors leads
to an Eg gauge group in four dimensions which may easily contain the standard model
gauge group as well as provide an interesting GUT scenario. Further the number
of chiral multiplets and thus the number of SM generations is fixed by topological
constraints: in particular A"! such multiplets contain scalars corresponding to the
deformation of the (complexified) Kahler structure and h?! contain scalars linked to
complex structure deformations (we will come back to these moduli shortly), where
hP4 is the (p, ) Hodge number?!. The corresponding superpartners are chiral fermions
and transform respectively in the 27 and 27 while the gauge bosons transform in the

adjoint 78. The number of generations is then given by Ab! — p2!

= X where x
is the Euler number of the manifold. In this scenario all the SM fields would be
singlets under the other Eg and decoupled from massless fields transforming in its

adjoint which are in turn singlets of the Fg. Massive fields transforming under both

21Hodge numbers are the equivalents in Dolbeault cohomology of the Betti numbers in De Rham
cohomology and count cohomology classes of closed (p, g)-forms.
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Eg factors may only appear at energies comparable to the string scale. The light Eg
singlets might however couple gravitationally to the SM and might form the hidden
sector central in soft SUSY breaking.

(G, compactifications were originally less successful owing to the fact that one
may not obtain chiral 4D phenomenology from non-chiral 11D supergravity by com-
pactifying on a smooth manifold [75]. Additionally the resulting gauge groups are
necessarily Abelian [74]. A hint as to the probable resolution of this problem arises
from the strong coupling limit of the a priori more promising heterotic Fg x Eg which
may be obtained by compactifying 11D supergravity on an interval S*/Z,. This com-
pactification is singular and in fact recent work [76, 77, 78] shows that non-Abelian
gauge groups may arise from more general 22 singularities of co-dimension four while
chiral fermions may live on singularities of co-dimension seven (such fermions are
potentially charged under the gauge group). Such singularities may arise when a
supersymmetric cycle is shrunk to a point. This has resulted in many efforts aimed
at obtaining more realistic phenomenology from G, manifolds [79]-[91].

One such application for example relates Gy holonomy seven-folds to intersecting
D6 branes in type IIA (see for example [92]): from the M-theory point of view the cor-
responding background is a product of a flat Minkowski sevenfold and a multi-center
Taub-NUT space. This configuration may preserve up to half the maximal supersym-
metry (for parallel branes) depending on the angle between the branes. Further for
certain brane arrangements and given some amount of residual supersymmetry this
geometry may be seen as four-dimensional Minkowski space-time tensored with man-
ifold of special holonomy?}. Phenomenologically relevant models then correspond to
(G5 holonomy giving N = 1 in 4D. Further one may interpret the open strings stretch-
ing between the branes from the M-theory point of view as membranes wrapping

holomorphic embeddings of two-spheres in multi-center Taub-NUT. As the branes

22than that arising from the interval
23This manifold is not necessarily compact however: for the case of parallel branes this would be
multi-center Taub-NUT times R3.
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become coincident the now massless stretched strings define a non-Abelian gauge
theory on the brane world-volume (in analogy to the discussion for AdS-CFT) which
from an M-theory viewpoint results form the singularities linked to the collapsed cy-
cles. Finally choosing angles carefully one may arrange for the GSO projection to

selectively eliminate states of a given chirality leading to chiral fermions.

1.3 Moduli fixing, fluxes and Generalized Geome-
tries

Just like the original Kaluza-Klein ansatz however all these compactifications are
plagued by massless scalar fields in the four-dimensional spectrum corresponding to
the moduli (adjustable deformation parameters) of the internal manifold. These are
not consistent with phenomenology as for example they would lead to an unobserved
fifth long-range force. Additionally [93][94] these fields would be at odds with cos-
mological models: in gravity-mediated hidden sector breaking of supersymmetry the
moduli acquire masses of the order of the weak scale and would dominate the energy
content after inflation at reheating until energy density dropped to values too low for
nucleosynthesis.

However turning on the internal fluxes induces potentials for those moduli (e.g.
mass terms %) decoupling them from the effective physics at low energies: this mecha-
nism was first proposed in [95] and it now seems that for example in the supergravity
limit of Type ITA all moduli may be fixed by fluxes [96]-[99]. The first flux com-
pactifications (for a review see [100]) were proposed as extensions of the Calabi-Yau
compactifications for the heterotic string [101, 102, 103] which allowed for a non-zero

B-field (the first M-theory equivalent is [104]).

243t energy scales potentially significantly higher than the SUSY breaking scale
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Initially however compactifications?® to Minkowski or de Sitter space-times were
thought to be ruled out by several no-go theorems [105]-[109]. These apply to general
compactifications (more precisely without assuming supersymmetry) and rely solely

on rewriting the 4D Einstein equations:

e 2Ry + Thux = 2V%e?F

where R4 is the 4D Ricci scalar®, Thu parameterizes the flux contribution to the
stress energy tensor and e2f is a warp factor for the 4D metric. Integrating over
a compact internal manifold, the right-hand side of the equation vanishes and since
Taux > 0, it follows that Minkowski and de Sitter solutions?®” are ruled out. Evasion of
these no-go theorems then required the inclusion of localized negative tension sources,
such as 09 orientifold planes providing a negative contribution to counteract Tqyy or
the addition higher-derivative (stringy) corrections modifying Einstein’s equations®.
The existence of these mechanisms rekindled interest in the rich phenomenology of
flux compactifications.

Fluxes tend to reduce the lower-dimensional gauge group and break supersym-
metry which is important both to produce semi-realistic string models and open up
novel avenues such as the possibility of N = 1 vacua from type II theories compacti-
fied on (flux-deformed) Calabi-Yau manifolds. Additionally they generically generate
a warp factor for the non-compact space which may explain gauge hierarchies [107]
(in a similar fashion to Randall-Sundrum models). Also from the point of view of the
AdS-CFT correspondence the duals of flux compactifications turn out to be confining

gauge theories [110, 111, 112] providing a first step towards the string theory descrip-
tion of QCD. In cosmology finally the flux KKLT proposal [113] realized metastable

%Sincluding warped compactifications

%6¢orresponding to the unwarped metric

27Strictly speaking constructions with only one-form flux and D7 branes have a zero contribution
and may lead to Minkowski solutions.

2and thus going beyond the supergravity limit
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de Sitter vacua, thus circumventing the old problem of generating universes with pos-
itive cosmological constant from string theory. In a similar vein a model for inflation
based on flux backgrounds was described in [114]. Despite these many successes flux
compactifications are however an embarrassment of riches in that they produce a
perplexingly large number of possible solutions, the now infamous “string landscape”
[115]. Besides attempts at statistical study [116] one promising approach is to classify
supersymmetric theories in the presence of fluxes.

This thesis?® thus focusses on the description of general supersymmetric back-
grounds through a series of geometric structures which extend those found for stan-
dard Calabi-Yau (and M-theory) compactifications. At this point one must note the
difference between on-shell and off-shell supersymmetric backgrounds. An on-shell
background is one for which the supersymmetry variations vanish. Often (for ex-
ample for NS flux) this together with imposing the Bianchi identity for the fluxes
automatically solves the equations of motion (see for example [108] or [117]) so that
the background is also on-shell in the more traditional sense. Accordingly this con-
figuration will be a solution corresponding to a given supersymmetric Lagrangian.
However a generic solution may spontaneously break some or all of the supersym-
metries a priori present in the Lagrangian which are referred to as off-shell super-
symmetries. After the introduction of fluxes for example the condition for off-shell
supersymmetry in 4D is that of G-structure on the internal manifold (rather than
G-holonomy)?® meaning that the structure group of the frame bundle (of the tangent
bundle 7') is reduced to G. The existence of a given G-structure is equivalent to that
of globally defined G-invariant tensors or equivalently spinors, which translates into
off-shell supersymmetry in the dimensionally reduced Lagrangians. On-shell super-

symmetry on the other hand corresponds to differential conditions on the invariant

29For the remainder of this section we will mostly eschew bibliographic references as the topics
addressed will be dealt with in more detail in the following chapters where the references will appear
in a more appropriate context.

30For a given compactification dimension and number of supercharges in 4D the groups G agree
since G-structures reduce to G-holonomy in the limit where the fluxes vanish.
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tensors (spinors). In this context the fluxes can be understood as an obstruction
(torsion) to the integrability of the G-structure to G-holonomy.

One may however recover integrability by embedding G-structures in structures
defined on larger bundles than the tangent bundle 7', as introduced in the context
of Generalized Geometry. The original proposal - Generalized Complex Geometry
(GCG) - was defined on T @& T* where T* is the cotangent bundle. One of the
most remarkable features of GCG is that the B-field is introduced on equal footing
with the metric thus for example giving a natural description of the common NS
sector of Type II (and Type I) string theories®!. Further GCG interpolates between
symplectic and complex geometry thus providing a natural extension of Kahler and
Calabi-Yau backgrounds used for traditional compactifications. Finally GCG admits
a natural O(d, d) metric thus naturally incorporating O(d, d, Z}, the discrete subgroup
appearing in the treatment of T-duality (see appendix A.2.1).

However in analogy with the case of simple G-structures it turns out that the in-
troduction of Ramond-Ramond (RR) fluxes (or alternatively their D-brane sources)
acts as an obstruction to the integrability of the new structures as encoded by the dif-
ferential equations giving on-shell supersymmetric vacua. The original work presented
in this thesis is based on the claim that by further extending the bundle considered
one may define an integrable structure in the presence of all fluxes. More precisely
this is done for M-theory compactifications from which point of view all the string
theory fluxes arise from dimensional reduction. Importantly this description hints at
a manifestly U-duality covariant formulation of M-theory by incorporating the excep-
tional group FE7 7 (see appendix A.4 for the group structure of U-duality). Thus this
new approach is termed Exceptional Generalized Geometry (EGG).

The rest of this thesis is divided thué: In chapter 2 we review the geometric descrip-
tion of supersymmetry backgrounds in terms of special holonomy and G-structures,

singling out the SU(d/2) and G cases. We also report on some recent applications

31The dilaton also appears, usually bundled with the warp factor, in the integrability conditions.
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of G-structures. In chapter 3 we present Hitchin’s Generalized Geometry, both in
terms of Generalized Almost Complex Structures and the equivalent description in
terms of pure spinors. Further we outline applications of this formalism to both on-
shell and off-shell supersymmetric backgrounds, owing to their direct relevance to
the original work presented here. In chapter 4 we summarize the properties of the
exceptional Lie group Er(7) relevant to this work. In chapter 5 we define the struc-
ture of Exceptional Generalized Geometry (EGG) in seven dimensions. In particular
we identify the Exceptional Generalized Tangent bundle (EGT) and its non-trivial
twisted topology with the corresponding gerbe structure. Further we also define a
Exceptional Courant Bracket (ECB). We then proceed to construct an Exceptional
Generalized Metric (EGM) using an Exceptional Generalized Almost Complex Struc-
ture (EGACS) defining an SU(8)/Z, structure on the EGT. In chapter 6 these results
are specifically applied to eleven-dimensional supergravity, for which we arrange all
the degrees of freedom in Ey7y or SU(8)/Z, representations and explain how the
bosonic sector accounts for the aforementioned SU(8)/Zs structure in this case. We
then show how, upon specializing to backgrounds leading to effective theories with
N = 1 (off-shell) supersymmetry in four dimensions, one may reduce the structure
on the EGT to an SU(7) structure parameterized by a single object ¢ in the 912
representation of E(7). Further we relate this SU(7) structure to the underlying lo-
cal SU(3) structure on the ordinary tangent bundle. In chapter 7 we reformulate
part of the bosonic sector of eleven-dimensional supergravity according to a structure
reminiscent of N = 1 D = 4 supergravity. In particular we read off the effective
superpotential by projecting out the SU(7) singlet in the gravitino variation. We
then rewrite the expression obtained in a manifestly Ey(7) invariant form in terms of
¢. In chapter 8 we report on preliminary work to find an E 7y covariant formulation
of the on-shell supersymmetry conditions. Specifically we show the equivalence of
the supersymmetry variation equations to a set of constraints on differential forms

representing the structure and flux degrees of freedom and suggest how these might
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be rewritten in a covariant form in terms of an appropriate coset description. Chapter
9 contains our conclusions and proposals for further work. Appendix A reviews string
dualities with particular emphasis on the group structure, as relevant to the original
work presented here. Finally Appendix B contains a brief summary of early work
done on the topics of neutrino oscillations and modified Lorentz invariance and of the

corresponding publications.
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Chapter 2

Supersymmetric backgrounds

2.1 Killing spinors and special holonomy

A feature of the original Kaluza-Klein compactifications is that the existence of Killing
vectors on the internal compact manifold (which thus admits isometries) translates
into gauge symmetries in the non-compact space-time. Similarly [118] the existence
of Killing spinors leads to various amounts of supersymmetry in the effective lower-
dimensional theory!. A Killing spinor is one defined to be covariantly constant with
respect to the spin connection w:

1
Vo) = Omm — Zwmnp'ynpn =0 (2.1.1)

with m,n,p = 1---d where d is the dimension of the internal space. If 7 is chosen to

be the supersymmetric variation parameter this leads to a supersymmetric vacuum.

INote however that these conditions are sufficient but not necessary. Modern Calabi-Yau com-
pactifications for example lead to several gauged field theories in the absence of any internal isometry.
Similarly when introducing G-structures it will become clear that supersymmetry may be achieved
without Killing spinors. In particular Killing spinors are only relevant for purely geometric compact-
ifications. Let us emphasize however that the analogy between Killing vectors and Killing spinors
does not extend to these modern mechanisms: G-structures are unrelated to the standard methods
for generating gauge theories.
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Indeed recall that SUSY variations are in general of the form:
d(fermions) ~ bosons ; J(bosons) ~ fermions (2.1.2)

Axiomatically the vacuum is Poincaré invariant and thus only scalar fields can have
a non-zero expectation value. In particular all fermionic fields are set to 0 so that the
variation of the bosonic fields vanishes identically. For definiteness let us now choose
the example of 11-dimensional supergravity compactified to four dimensions. The only
fermion is the spin % gravitino (for its explicit variation and other conventions see
section 6.1). Setting the flux to 0 in the case at hand, results in an eleven-dimensional
Killing spinor equation as expected since 11D supergravity has N=1 supersymmetry.
As a consequence of compactification the eleven-dimensional Lorentz group is broken
from Spin(1,10) — Spin(1, 3)® Spin(7). It follows that the variation parameter must
itself decompose as given in eq. (6.2.7) and further there is a related decomposition
for the gamma matrices given in eq. (6.2.6).

Finally decomposing the eleven-dimensional [3] Killing spinor equation accord-

ingly, the equation for the internal spinor 7 leads to an integrability condition:
1 pq
[vm7 Vn]ﬂ = ZRmnpq')’ n = 0 (2.1.3)

where 4" are the internal gamma matrices. n solutions to this equation lead to N =n
supersymmetry in the four-dimensional theory. Contracting with 4™ on the left and
using the fact that y"y?? = y"P94-g"Py9 — g"94P (g being the internal metric) together

with the Bianchi identity for the Riemann tensor R, = 0 we obtain:

2Rynpag™ 7" = 2Rmpy™n = 0 (2.1.4)
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It follows that?:
9" 1Y Ry Rinp ' = 0= R™" Ry = 0 (2.1.5)

which for an Euclidean internal manifold, that is one with positive definite metric,
implies

Ry =0 (2.1.6)

hence the internal manifold must be Ricci flat and thus a solution to Einstein’s equa-
tion in vacuum, as expected in the absence of contributions from the fluxes (through
the stress-energy tensor).

Geometrically spaces with one or more Killing spinors may be more completely
characterized by their special (or reduced) holonomy (for a review see [119]). In
general the holonomy group of a manifold Hol(M) is generated by parallel transpor-
ting arbitrary spinors (or alternatively tensors) around closed loops C to generate the

holonomy group:

U(C) n= e_%PfC dy™ WmnpY"PY = ePfc Ay Vmy (217)

where P denotes path-ordering and the holonomy group is the set of the U(C) for all
closed loops C on the manifold. It can be further be shown that the holonomy does not
depend on the starting point of the loop. Clearly the most general holonomy group
in d dimensions will be Spin(d) 3. The existence of a Killing spinor then implies that
the holonomy group is not maximal but must be reduced and lie within its stabilizer

group in Spin(d), that is the subgroup leaving the Killing spinor invariant?. The pos-

2using the fact that fn is constant for a Killing spinor

3provided the manifold is spin and spinors may be defined, otherwise the holonomy group will be
that for vectors and other tensors i.e. O(d) or, if the manifold is orientable, SO(d) of which Spin(d)
is the double cover

4The particular spinor is irrelevant since different choices will be related by Spin(d) rotations.
The relevant point is the existence of a covariantly constant spinor irrespective of the basis chosen.
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sible holonomy groups for irreducible, non-symmetric, simply-connected Riemannian

manifolds fall into the 1955 Berger classification [120] (see table 2.1).

Hol(M) | dim(M) manifold other properties
SO(d) d orientable
U(n) d=2n Kéhler Kahler
SU(n) d=2n Calabi-Yau Kahler , Ricci flat
Sp(n) d=4n Hyperkahler Kahler , Ricci flat
Sp(n)Sp(1l) | d =4n | quaternionic Kahler Einstein
Go d=717 Go Ricci flat
Spin(7) d=38 Spin(7) Ricci flat

Table 2.1: Berger classification

Note that Berger’s proof relied on subjecting subgroups of SO(d) (as arising in
the classification of Lie groups) to a pair of algebraic tests: the groups in Berger’s
classification are thus only those which are not excluded as holonomy groups and for
example it was only shown in 1996 that there exist compact manifolds with holonomy
G [72][73] and Spin(7) [121]. In fact even in the non-compact case proof of existence
for such spaces only dates back to 1985 [122] with the first explicit examples of com-
plete metrics given in [123]. The restriction to irreducible manifolds i.e. those which
are not locally isomorphic to a cartesian product guarantees that the holonomy group
falls in an irreducible representation SO(d). This restriction turns out to be somewhat
too strong for some applications: for example while d = 7 is the canonical dimension
for G5 holonomy according to Berger’s classification, a general simply connected Rie-
mannian seven-fold in fact admits holonomies {1} C SU(2) C SU(3) C G2 C SO(7).
The subgroups of G5 arise when there is more than one solution to the internal Killing
spinor equation and lead to extended supersymmetry for M-theory compactifications
to four dimensions (see table 2.3). Geometrically the manifold must then be reducible:
the most trivial case is that of M-theory compactified on S! x Y5 where Y5 is a mani-
fold of (now canonical in six dimensions) SU(3) holonomy, which is equivalent to type

ITA on Y; and is known to give N = 2 supersymmetry in 4D. Symmetric (or even
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locally symmetric) spaces on the other hand were excluded by Berger since they were
fully classified in 1925 by Cartan as an extension of his classification of irreducible Lie
algebras and their holonomies were accordingly categorized. In the special case were
the symmetric space is a coset G/ H the holonomy group was known to be isomorphic
to H. This is the reason why the case with Spin(9) holonomy originally proposed
by Berger for d = 16 was later removed as it was proven that Spin(9) manifolds are
necessarily locally symmetric and in fact locally isomorphic to the Cayley projective
plane Fy/Spin(9) [124][125].

G» and Spin(7) are so-called exceptional holonomies [119] because they do not fall
in a generic class. The other classes can be seen as special cases of each other since
a manifold of special holonomy G inherits the properties of manifolds with holonomy
groups having G as a subset. Therefore since Sp(n) C SU(2n) C U(2n) C SO(4n)
every Hyperkahler manifold is a Calabi-Yau and every Calabi-Yau is Kahler (and
thus complex) and all are orientable manifolds®. One may further deduce the spe-
cial properties of some low-dimensional manifolds from accidental isomorphisms be-
tween the holonomy groups. Since O(2) = U(1) every two-dimensional manifold
is Kéhler and the two-torus 72 is the only (trivial) two-dimensional Calabi-Yau ©.
Also Sp(l) = SU(2) so that every four-dimensional Calabi-Yau is necessarily Hy-
perkédhler. In fact there is only one such manifold, namely the K3 surface. In
addition Sp(1)Sp(l) = SO(4) so that every orientable four-manifold is a quater-
nionic Kéhler manifold. Note finally that the holonomy groups appear as auto-
morphism groups of the division algebras where O(n),U(n), Sp(n)Sp(1), G (with
SO(n), SU(n), Sp(n), G2 the corresponding subgroups of "determinant 1”) corre-
spond to R™, C", H", O™ respectively (O™ also admit Spin(7) as automorphism).

The question now arises as to which holonomies may be associated with geometries

admitting a Killing spinor. Given the integrability condition of the internal Killing

5Note that quaternionic Kihler manifolds are not in general Kéhler but provided the scalar
curvature is positive they admit a twistor space which is.
8considering only compact spaces: otherwise one must include the complex plane C
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spinor equation we must restrict ourselves to the Ricci flat holonomies in table 2.1.
In fact it can be shown [126] that no further restriction is needed leading to a clas-
sification for orientable simply-connected spin manifolds of dimension D > 3 with at
least one Killing spinor (see table 2.2 where N(S,) and N(S_) respectively denote

the number of positive and negative chirality spinors given an orienatation”). Note

Jim(M) Hol(M) | N(S5) | N(S_)
d=4n n>1 SU(2n) 2 0
d=4n n>2 Sp(n) n+1 0

d=4n+2 n>1| SU(2n+1) 1 1

d=38 Spin(7) 1 0

Table 2.2: Killing spinors and holonomy

that the restriction to Ricci flat backgrounds also excludes irreducible Riemannian
symmetric spaces (except the real line) which are known to be Einstein with non-zero
scalar curvature. Further this classification is again for special holonomy groups in
their canonical dimension.

We will now in the next two sections look at Calabi-Yau and G5 holonomy mani-

folds in more detail due to their importance in string/M-theory.

2.1.1 SU(d/2) holonomy backgrounds in d even dimensions

Calabi-Yau manifolds can be defined to be even-dimensional manifolds with SU(d/2)
holonomy. For definiteness we shall use the Calabi-Yau threefold® as an example
[3]. For a six-dimensional manifold the maximal holonomy group is Spin(6) which is
isomorphic to SU(4). A real spinor would transforms in the 8 of Cliff (6) but this

can be reduced under SU (4) to a four-component complex spinor of definite chirality,

transforming in the irreducible 4 of SU(4) (the opposite chirality conjugate spinor

"reversing the orientation exchanges N(S,) and N(S_)

8A threefold has 3 complex dimensions, hence it is a six-dimensional real manifold.
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transforms in the 4):

8=4+1 (2.1.8)

However the largest subgroup of SU(4) admitting a singlet (for which it is the stabi-

lizer group) is SU(3) with the corresponding decomposition of the spinor:

4=1+3 (2.1.9)

so that the holonomy group must lie within this subgroup in the presence of a Killing
spinor in 6 dimensions. As already pointed out one immediate consequence is that
Calabi-Yau manifolds are Kéhler since their holonomy lies within U(d/2), U(3) in the
case at hand. Recall that a Kahler manifold [127] is a complex manifold naturally
endowed with an hermitian metric such the corresponding fundamental form is closed:
The usual definition of a metric as a bilinear symmetric map from 7, X, the tangent
plane at a point p, to R can be naturally extended to a map g : TI,X(C X TI,X(C — C

by assuming the bilinearity can be analytically continued to the complex numbers:

g(way, wezy) = g(r +is,u+iv) = g(r,u) — g(s,v) +i[g(r,v) + g(s,u)] . (2.1.10)

where u, v, 7, s belong to T,X. Given a complex structure with corresponding coor-
dinates 2! for the manifold, one may write the components of the complex metric

as:

) (2.1.11)
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with g;; = gji, 95 = G5, Gi; = g7 and G;; = ¢;;°. In those coordinates a hermitian

metric satisfies the additional condition that g;; = g;; = 0. 1% so that:
g=g;dz' ®dF + g;;dZ* @ d27 . (2.1.12)
One may then construct the so-called fundamental form
J =1ig;;dz' AdZ?  such that dJ = 0 < Kihler (2.1.13)

i.e. the fundamental form J is closed for a Kéahler manifold, in which case it is
called the Kahler form. Note that a given Kahler form can be represented by any
element of the corresponding cohomology class, as different choices are related by
global holomorphic coordinate changes preserving the complex structure. On the
other hand there are moduli linking different Calabi-Yau metrics corresponding to
deformations which appear to make the metric non-hermitian. The point is that it
can be put in hermitian form by a non-holomorphic coordinate change which thus
changes the complex structure (i.e the choice of local complex coordinate patches
covering the manifold) and the Kéhler form (but still leaving it closed). Finally

dJ = 0 implies

agij _ 89!_7
52 D (2.1.14)

with the corresponding complex conjugate equations. Thus locally i.e. on the patch

for which the 2* coordinates are valid we may define a complex function K (the Kahler

9which follows from the fact that the original metric is a symmetric real matrix

10This ensures that the metric is hermitian with respect to the (in this case integrable) almost
complex structure J on T,X i.e. g(Jva), Jve)) = 9(va),v(2)) where vy, ve) € TpX and with
J : TpX — T,X such that J% = —1I.

38



potential) such that!! :

K
95 = 560 (2.1.15)
Consider now the of the Levi-Civita connection:
i 1 4, 99k 39:;‘ 09k
= §g (6121' 5k~ Bal ). (2.1.16)

In complex coordinates one finds that only the purely holomorphic and anti-holomorphic

components survive:

5 ang 7 Ts 8g-s
F;k =g i and Fz_}—c = ¢ 8_;7 . (2.1.17)

with the corresponding complex Riemann and Ricci tensors:

ars _ ark
l 1
Rijlcl' = Ois azi“ and Ry = Rkﬂ-cj = — azjk ) (2.1.18)

The simplified holonomy of Kahler manifolds precisely follows from the fact that there
are no mixed components Christoffel symbols: on a Kéahler manifold the complex
representation of a generic vector decouples into holomorphic and anti-holomorphic
components in a way which is consistent with parallel transport leading to a holonomy
group reduced from SO(d) to its subgroup U(d/2) namely v = v/ 2 + 7 2 .

A Calabi-Yau manifold finally is then one for which this is further reduced to
SU(d/2) by the topological restriction that the Kahler manifold admit a Ricci flat
metric i.e. Ry = —zT% = 0, from which one may deduce that the first Chern
class c; vanishes. Chern classes are topological invariants usually defined in terms of
polynomials of the curvature or Ricci form R = iRijdzi Adz?. The first Chern class in

particular is the cohomology class of the Ricci form, more precisely ¢; = %[’R] For

Kahler manifolds one may locally write R = iddin+/detg. This being true globally,

the non-mixed components being 0 by virtue of the metric being hermitian
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meaning the Ricci form is exact and the Chern class vanishes, can be shown to be
equivalent to the space being Ricci flat. Yau’s theorem[128] then guarantees the
converse namely that given a compact Kéhler manifold with vanishing first Chern
class one may always find metric with SU(d/2) holonomy. This is technically very
important as many examples of Kéhler manifolds are known, which can then be
arranged to have the first Chern class vanish, while it is non-trivial to construct a
metric knowing solely its holonomy or Killing spinor content. In particular no explicit
Calabi-Yau metrics are known but their Ricci-flat Kahler geometry has been widely
used to derive a vast series of results concerning this class of manifolds such as the

geometry of the corresponding moduli spaces.

2.1.2 Holonomy in seven dimensions: 5 and beyond

The generic holonomy group in seven dimensions is SO(7) which when restricted to

its different subgroups H [129] leads to different amounts of supersymmetry N (see

table 2.3):
H 8 — N
Spin(7) 8 0
Go 1+7 1
SU(3) 1+1+3+3 2
SU(2) 1+14+1+1+2+2 4
1 1+1+1+1+1+1+1+1] 8

Table 2.3: Holonomy groups in seven dimensions

Thus M-theory compactifications on G2 manifolds lead to phenomenologically in-

teresting N = 1 effective actions in 4D ( first developed in [74] !?). The mathematical

121f one generalizes the concept of holonomy to that of other connections beside the Levi-Civita
connection the first examples where provided in [130] [131] for the case of the squashed seven-
sphere, an analogue of the "round” seven-sphere but with isometry group broken from SO(8) to
SO(5) x SO(3). Strictly speaking one is however dealing with weak G holonomy a special case (like
traditional holonomy) of the Ga-structure description presented in the next section. Note also that
the round seven-sphere has trivial holonomy with respect to the weak G5 connection and thus leads
to maximal SUSY in 4D like the seven-torus, but with added cosmological constant.
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literature on manifolds with G5 holonomy does not compare with that concerned with
Calabi-Yau manifolds partly because there is no equivalent of Yau’s theorem and more
generally because odd-dimensional manifolds do not admit some of the rich mathe-
matical structures found in even dimension (complex, symplectic or Kéhler geometry
for example). In fact as already mentioned the first examples of compact Go man-
ifolds [72][73] are rather recent (slightly earlier work on the non-compact case may
be found in [122][123]), while mathematicians have dealt with Calabi-Yau manifolds
since the late 50s.

These G5 manifolds were obtained by blowing-up singularities of orbifolds of the
seven-torus T7/T" where T' is a discrete symmetry group of the torus. These were in
fact the first non-trivial examples of compact Ricci-flat (as expected from the Killing
spinor integrability condition) odd-dimensional Riemannian manifolds. There is a
series of topological restrictions on these manifolds. For example the holonomy will
only be precisely Gy if the fundamental group of the manifold (M) is finite. If
the manifold admits a finite cover of the form Ng x S! or Ny x T? (where N,, is a
compact and simply-connected m-fold) the holonomy will be F'ix.SU(3) or respectively
F' x SU(2) where F, F' are finite groups. These results are obviously relevant to M-
theory compactifications to Calabi-Yau three-folds and the K3 surface (or T¢ i.e.
the unique four-dimensional compact manifolds with SU(2) holonomy). Further only
the Betti numbers by = b; = 1, by = bs and b3 = by are non-zero. The number
of vector multiplets in the N = 1 D = 4 theory (which is however non-chiral for
smooth manifolds and thus phenomenologically uninteresting) is given by be, while
the number of scalar multiplets is given by bs. Additionally there will be by + b3
Majorana fermions (excluding the gravitino). Finally the first Pontryagin p; class'®

is known to be non-zero.

13pontryagin classes py are related to Chern classes ¢ by pi(T) = pr(T, Z) = (= 1)*cox(T ® C) €
H4% (M, Z) where ca;(T ®C) is the 2k-th Chern class of the complexification of the tangent bundle T
of the manifold and H** (M, Z) is the 4k-cohomology group with integer coefficients of the manifold.
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2.2 (G-Structures

G-holonomy can be understood as the integrability condition of a given G-structure
(see for example [119] for a review). Technically a G-structure is defined as a principal
G-subbundle of the tangent space frame bundle F. F itself is defined as the principal
bundle! consisting of the set of all ordered bases of vectors one may place on the
tangent space at a given point of a manifold. As such it has structure group GL(d, R)
for a d-dimensional manifold. The existence of a G-structure means one may consis-
tently define a sub-bundle on which G acts transitively and freely (by construction
G must be a subgroup of GL(d,R)). Typically this is equivalent to the existence of
globally defined and nowhere vanishing G-invariant tensors or equivalently spinors.
The existence of the G-structure is to be understood as a topological restriction since
the structure group provides the transition functions in the tangent bundle.

The simplest example is that of an O(d) structure with corresponds to a Rieman-
nian metric g which allows to select an orthogonal frame bundle as a subset of F.
Another example is that of an SL(d,R) structure corresponding to orientable mani-
folds defined by the presence of a volume form 2. The existence of both leads to an
SO(d) structure (simply by considering the common subgroup)'. Note also that any
G-structure where G C G’ inherits the properties of a G’-structure: in particular any
G-structure where G C O(d) must admit a metric which can be constructed from the
G-invariant tensor(s) although often trough a non-linear map.

In this case, when G C O(d), a G-structure is said to be integrable to G-holonomy
if its G-invariant tensors are compatible with the Levi-Civita connection i.e. if their
covariant derivative vanishes. Note that the Levi-Civita is only one possible con-
nection singled out by the requirement of being metric compatible (Vg = 0) and

torsion-free. The holonomy is then specifically the holonomy of the Levi-Civita con-

1A principal bundle is a fiber bundle whose fiber is isomorphic to a group which acts freely and
transitively on the fiber itself.
15Further if the manifold is a spin manifold the structure group is strictly Spin(d).
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nection. Obviously an SO(d) structure is by the definition of the connection trivially
integrable leading to the already mentioned result that SO(d) is the generic holonomy
group in d dimensions!®.

A slightly less trivial example is afforded by an almost complex structure which
is essentially a GL(d/2,C) structure, where d is obviously even in this case. The
corresponding invariant tensor defines a map J : T,X — T,X such that J2 = —I on
the tangent space at point p. This leads to a split of the complexified tangent bundle
Te = T, & T_ where T, and T_ are respectively the +i and —i eigenbundle of 7.
Accordingly differential forms may be decomposed into (p, ¢) forms i.e. antisymmetric
maps on 17 ® T9. If the structure is integrable complex coordinates may be defined
on local patches with transition functions given by holomorphic functions and the
tangent bundle split translates into a consistent split into holomorphic and anti-
holomorphic coordinates and with (p,q) forms having p holomorphic and ¢ anti-

holomorphic indices. Locally one may then represent J in explicit coordinates:
Jzz/ = ’],(Szzl Jzzl = —’[:(522/ JZZI = JZZ/ = O (2.21)

The integrability condition corresponds to the vanishing of the Nijenhuis tensor!”:

N™, = J(0,J™p — 8pd™y) — J9p(8 ™ — Bnd™,) (2.2.2)

Alternatively this may be phrased in terms of closure of the +i eigenbundles of J

under the Lie bracket given algebraically as!®:

NX,Y)=[X,Y]- [JX,JY+JITX, Y]+ TX.TY] (2.2.3)

16More generally, including the case when G ¢ O(d), integrability is given by the vanishing of the
intrinsic torsion associated with the structure.

7Note that of course GL(d/2,C) ¢ O(d) so that the integrability of the almost complex in terms
of the Nijenhuis tensor is given by the more general requirement of a vanishing intrinsic torsion
mentioned earlier, which does not require referring to a metric.

18The previous tensorial expression for the Nijenhuis tensor is obtained by choosing the special
case of basis vectors in the Lie bracket.
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If an almost complex manifold is further endowed with an hermitian metric g,
corresponding as already explained to the requirement g(J vy, Jv)) = 9(vay, v2))
where v(1), v(9) € TpX, one has a U(d/2) structure. It then follows from eq. (2.2.1)
that the fundamental form, a (1, 1) form, is naturally obtained by lowering indices on
the almost complex structure with the hermitian metric. The integrability condition
for U(d/2) structure is equivalent to the Kéhler condition that the fundamental form
J (both indices down) be closed. Alternatively this may be phrased in terms of the

integrability of two separate structures:

1. A nowhere vanishing two-form is the invariant tensor corresponding to Sp(d, R)
symplectic structure. Closure of the fundamental ( K&hler ) form corresponds to
the integrability of the structure and thus every Kahler manifold is symplectic,

in line with U(d/2) C Sp(d, R).

2. Given the metric compatibility of the Levi-Civita connection the Kahler con-
dition also implies the vanishing of the Nijenhuis tensor. Hence every Kahler

manifold is also complex, as expected since U(d/2) ¢ GL(d/2,C).

It is worth noting that the integrability of the almost complex structure is not equiv-
alent to the vanishing of its covariant derivative (as GL(d/2,C) ¢ O(d)), which is a

stronger requirement equivalent to the Kahler condition.

2.2.1 SU(3)-structures

To describe Calabi-Yau manifolds (following the discussion in [109]) we need to in-
troduce one new object, a (d/2,0) form Q which defines an SL(d/2,C) structure.
Together with a (1,1) form which defines a Sp(d, R) structure we obtain a struc-
ture defined by their common subgroup i.e. SU(d/2) provided both structures are

compatible, meaning their embeddings in GL(d, R) must be chosen so the overlap is
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indeed SU(d/2), which leads to algebraic constraints:

i35+2)

e

lJ=Q/\Q;

JAQ= 0 (2.2.4)

vl

where J% denotes g wedge products of the (1,1) form with itself.

Note that both structure groups are subgroups of SL(d,R) and thus naturally
define a volume form. The first equation above guarantees that both definitions
agree.

The Calabi-Yau condition is then the integrability condition:

dJ=0 ; dQ =0 (2.2.5)

In principle one would expect the integrability condition to involve the covariant
rather than just the exterior derivatives vanishing. However an SU(d/2) structure
implies an SO(d) structure meaning that the pair (J,Q) defines a metric (though
not separately as the individual groups do not lie in SO(d)). As a result there is
a non-trivial relationship between the pair and the Levi-Civita connection meaning
that the above conditions are sufficient to ensure integrability. Note also that since
SL(d/2,C) Cc GL(d/2,C) Q defines an almost complex structure.

Note finally that the existence of a closed (d/2, 0) form is a Dolbeault cohomology
constraint, so that the restriction of Kaéhler manifolds to Calabi-Yau manifolds is
indeed topological.

To link this picture to a description in terms of a Killing spinor n we introduce
bilinears:

Jmn = =0 Yma?, anp = —’iTIT’rmin) (2-26)

On can check that these obey the constraints for the pair (J, ) using Fierz identities.
Further one may check that the integrability condition is equivalent to the Killing

spinor equation for 1. The existence of a nowhere vanishing 7 is further equivalent to
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that of a nowhere vanishing pair (J, 2).

At this point it is important to note that non-integrable G-structures may still
lead to on-shell supersymmetric backgrounds. We will again follow the description
in [109] which builds on earlier work in [108] and [132] (together with results in
the mathematics literature [133]). For a supersymmetric background with fluxes the
SUSY parameter will no longer be covariantly constant with respect to the Levi-Civita
connection but instead V& 'n = 0 1° where V3’ is a new connection with torsion.
This torsion is then expressed in terms of the fluxes. It is always possible for a given
spinor to find a connection with respect to which it vanishes. In the presence of
supersymmetry the SUSY variation then implies that the flux terms must be equal to
the torsion of that connection, which encodes its deviation with respect to the Levi-
Civita connection. For three-form fluxes one further explicitly sees the flux entering
as a correction to the spin connection (see for example eq.1.2.1). Accordingly in the
case of SU(3) structure for example (J, 2) will no longer be closed forms but the RHS

of equation 2.2.5 is replaced by an expression in terms of the fluxes or alternatively

the torsion. More explicitly we have:
(T) 1 np
Va'n=Vnun— annpl“ n=20, (2.2.7)

where Kpmnp € A! ® A? is the so-called contorsion related to the torsion by:

1
Tmnp = '2'(K/mnp - K/nmp) (228)

Now recall that

A? ~ 50(6) ~ su(3) @ su(3)* (2.2.9)

Note that this implies that the norm of 7 is constant which is consistent with the G-structure
requirement that it be nowhere vanishing.
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where s0(6) and su(3) are the Lie algebras of SO(6) and SU(3) respectively so that

the contorsion may be further decomposed as
kU3 4 k0 where k“® e A'®@su(3) and ke Al®su(3)t  (2.2.10)
Now since we know that n is a SU(3) singlet the above equation becomes:
Vo = ln?n [Py (2.2.11)
4 mnp

s 0 i : ; 0 _ 1(,0 0
Thus it is «° the intrinsic contorsion or alternatively 7, , = 5(Kpnp — Knmp) the

intrinsic torsion which measures the obstruction to the manifold being Calabi-Yau.
TP can then finally be decomposed into irreducible representations of SU(3) as follows:

T0€W1®W2€BW3®W4EBW5

where the representations W, can be given in terms of J and €2 as shown in table 2.4,

where the subscript 0 indicates primitivity conditions such as® J_ dJ((,Q‘l) = 0.
component interpretation SU (3)-representation
Wi JAAQ or QAdJ 191
W, (dQ);”° 8®8
Wi )y + (dJ)y” 6d6
Wi JANdJ 343
W5 dQ3’l 343

Table 2.4: The five classes of the intrinsic torsion of a space with SU(3) structure.

Explicitly the decomposition of A! ® su(3)* goes as:

B+3)x(1+3+3)=1+1)+(8+8) +(6+86)+(3+3)+(3+3) (22.12)

20where J denotes contraction of the form on the right over all the indices of the form on the left
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and

dJeW,oWs oW, ; dQeW, & W, d Ws. (2.2.13)

Specific classes of manifolds with SU(3) structure are then selected by choosing
TY to lie in a subset of these representations (see table 2.5 [100]) e.g. it can be shown
that the Nijenhuis tensor N2, € W) ® W, so that choosing these representations to
vanish leads to a complex manifold. So-called half-flat manifolds, which appear as

mirror duals of Calabi-Yau spaces deformed by electric fluxes [134], are defined by:
d =0 ; d(JAJ)=0 (2.2.14)

where Q% are the real and imaginary part of Q and dQ*?? is the equivalent on the
mirror manifold of the NS 4-form giving the electric fluxes.

Another such class corresponds to manifolds that are conformally Calabi-Yau
manifolds. Consistency requires that under a conformal rescaling of the metric ¢ —

e’fg we have J — e?/J and Q — e2/Q. This leaves Wy, W, and W; and the linear

combination

d
(d—2)Ws + (—1)%+12%‘2§W4 (2.2.15)

invariant. These must vanish for a conformal Calabi-Yau manifolds as they do for
the Calabi-Yau manifolds themselves. This condition is however not sufficient and

we must further require that Wy and W5 be exact.

2.2.2 (Go-structures

One may now repeat this analysis for Gy-structures [109][135] for M-theory N =1
compactifications. A Gj structure implies the existence of a nowhere vanishing three-

form:
o= 246 _ (235 _ 15 _ 136 | 197 | 347 | 56T (2.2.16)
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Manifold Vanishing torsion class
Complex Wi=Wy,=0
Symplectic Wi=W;=Wy=0
Half-flat ImW, =ImWy =Wy =W5 =20
Special Hermitian W1 = Wg = W4 = W5 =0
Nearly Kahler Wo=W3=Wy=W5=0
Almost Kahler W1 = W3 = W4 = W5 =0
Kahler W1 = Wg = W3 = W4 =0
Calabi-Yau Wi=Wo=Wy=Wy=W5=0
“Conformal” Calabi-Yau | Wy =Wy =W3 =3W,; —2W5 =0

Table 2.5: Vanishing torsion classes in special SU(3) structure manifolds [100].

where e = ¢® A e A €° and a,b,c are frame indices. One may check that ¢ is
invariant under a natural action of M2 € Gy C SO(7) given by Mge® so that
defines a principal Gy sub-bundle of frames {e”} of the frame bundle. This relates to

an invariant spinor 7 through the bilinear:
w =iy dzp ANdzy Adz, = 0t eq A ey A e (2.2.17)

provided one chooses a basis such that:

A 26, AT (2.2.18)

where the gamma matrices are those given in eq. (6.2.6) (see also section 6.1 for our

conventions).

Since Gy C SO(7) C SL(7,R) i defines a metric and a volume form [72][73][119]:

Gmn = det(R) " Yh,m |

1 .
hmn = m‘ﬂmpq@nrscptuvqursmv: (2219)
*7]. =@ A k70

where € is the “pure-number” Levi-Civita pseudo-tensor, which in particular makes
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no reference to the determinant of the metric and only takes values (£1,0). hyp is the
unique rank two symmetric object that can be constructed from ¢ up to a conformal
rescaling. The factor in 2.2.19 is determined by the requirement that ¢ transform
properly as a tensor.

To determine the torsion classes note that the adjoint representation of SO(T7)
decomposes as 21 — 7 + 14 where 14 is the adjoint representation of G;. The

intrinsic torsion is then described by four classes [136],

T'eN ®gr =W W, W3 O Wy,
(2.2.20)

TXT=1+144+27+T7.

Failure to reach integrability is encoded only by the exterior derivatives dy and d*; ¢

which are the only non-trivial content of V,,:
4
do=Wrxpo+Wip+W5 | d*go:§W4*go+ng0. (2.2.21)

which in turn is in line with the torsion classes corresponding to the decomposition

of a four and a five-form as representations of GL(7,R) under Gs:
35 51+27+7 , 211447 (2.2.22)

where both 7s can be shown to be the same as there are four and not five classes.

Explicitly for example:
Wi=padp=—xpadxep and W, =x(pAdy) (2.2.23)

In analogy with the SU(3) case one may identify conformally G5 holonomy man-
ifolds by noting that under a conformal rescaling g — e2/g one has respectively

¢ — ey and #7p — e3f x, ¢. This leaves W;, W, and W; invariant while
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W, — Wy — 12df. Thus the desired manifolds correspond to choosing Wy to be
exact and having the other classes vanish. Note that this is a special case of inte-
grable manifolds with W, = 0 on which one may define a G, Dolbeault cohomology
[137].

Finally note that on a compact seven-dimensional spin manifold one is guaranteed
to have at least an SU(2)-structure and thus implicitly an SU(3)- and a G»-structure
as was shown in [138] using the fact that any compact orientable seven-manifold
naturally admits two linearly independent nowhere vanishing vector fields (which

was proved in [139]).

2.2.3 Recent applications of G-structures

Let us now comment on some recent applications of this formalism. The main fo-
cus of interest in this area is the classification of supersymmetric solutions and the
generation of new backgrounds on which to test the holographic AdS-CFT correspon-
dence. Although we will not review it here one should note the existence of a related
approach known as spinorial geometry [140]- [148].

In [132] and [108] the authors described supersymmetric solutions arising from
NS five-branes wrapping SLAG cycles. Earlier work in [149] dealt with M-theory
membranes wrapping holomorphic cycles. A complete classification of purely bosonic
minimal supergravity solutions in five dimensions was then obtained in [150]. The
most general type II compactifications on manifolds with SU(3) structure admitting
N = 1 vacua were constructed in [151, 152, 117, 153, 154]. Of high relevance to
holographic duality were a series of works systematically classifying classes of solutions
with AdS factors. All type IIB configurations with only the self-dual five-form flux
and the metric as non-trivial field content leading to near horizon geometries of D3
branes with an AdS; factor were analyzed in [155]. An analogue for M2 branes

with purely electric flux in 11D supergravity giving an AdS, factor can be found
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in [156]. (A class of M-theory compactifications with AdS; factors from wrapped
M35 branes were categorized in [157]). In both cases the internal manifold is found
to be a warped U(1) fibration over a Kdhler manifold of dimension six and eight
respectively. The corresponding supergravities preserve % of the supersymmetry and
are dual to an N = (0,2) CFT in two dimensions and supersymmetric conformal
quantum mechanics with two supercharges respectively.

Methods for an explicit construction of the Kahler manifold were given in [158]
(recovering some results from [159] which was itself extended in [160]). These were
partially inspired by parallel developments aimed at finding supersymmetric back-
grounds with AdSs x SFE5 geometry where SFEj5 is a five-dimensional Sasaki-Einstein
manifold, defined such that a cone over an SFEj5 base is a six-dimensional non-compact
Calabi-Yau with conical singularity. Such backgrounds were introduced as an exten-
sion of the standard AdSs x S5 on which the original AdS-CFT conjecture was defined
whereby the round five-sphere is replaced by its squashed equivalent. In the special
case of Sasaki-Einstein manifolds one may identify the dual CFT and perform non-
trivial checks of the correspondence. These spaces [3] all have 5% x S3 topology and
can be obtained as S' bundles over a four-dimensional Kiahler base.

The first known non-trivial example (and for a long time only one besides the
trivial case S° and quotients of both of these) was T+ = SU(2) x SU(2)/U(1) for
which the base is simply 52 X $2 and which has a metric with SU(2) x SU(2) x U(1)
isometry. It was only in [161] that a new (in fact infinite) class of such manifolds
was found (denoted as Y?? where p, g are coprime positive integers with p > ¢) with
the isometry being now SU(2) x U(1) x U(1) and whose N = 1 CFT duals were
all identified. This result was obtained using the exhaustive classification of all su-
persymmetric compactifications with a warped AdSs factor (this includes the special
case of a Minkowski factor) and non trivial flux of 11D supergravity given in [162]
and which were found to be parameterized by a one-parameter family of 4D Kahler

manifolds. The authors then explicitly described a large class of such solutions given
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by S? bundles over a four-dimensional base which can be either a Kéhler - Einstein
space with positive curvature or the product of two constant curvature Riemann sur-
faces. This last group includes spaces of topology S? x §% x T?. YP9 spaces are
obtained by dimensionally reducing on one of the T circles and doing a T-duality on
the other (a generalized framework including AdSy x X7 M-theory compactifications
was given in [163]). These results were finally extended in [164][165] to a new infinite
class denoted LP%" with metric isometry U(1) x U(1) x U(1).
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Chapter 3

Generalized geometry

3.1 Generalizing complex and Kahler geometry

While generalized (complex) geometry (GCG) originally arose from an independent
mathematical programme [166][167], its potential for application in physics was al-
ready clearly underlined in the seminal paper by Hitchin [168] (with the general for-
malism presented in detail in [169] ; see also [170] for a coordinate-based treatment).
One of the main motivations was indeed to generalize Calabi-Yau manifolds.

The central tenet of GCG is that structures are no longer defined on the tangent
bundle 7 but ! on 7' @ T* where T is the (dual) cotangent bundle. Significantly this

new bundle is endowed with a natural inner product :
1. :
(X +&Y +n) = 5(ixn +irf) (3.1.1)

where X,Y € T and €, € T*. This corresponds to a split signature metric in an

lin an even-dimensional space of dimension d
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explicit coordinate base (dz*,d,) :

0 14

I= (3.1.2)

1
2\ 1, 0

which naturally induces an O(d, d) structure paralleling the discussion of structures
defined on T in section 2.2. In analogy with traditional geometry a generalized almost

complex structure (GACS) is defined as :

J: TeT" —-TpT"
such that J2 = =144 (3.1.3)

and J'ZJ =1

where the last line makes the O(d,d) metric hermitian with respect to the almost
complex structure so that we now have a U(d/2,d/2) structure. Integrability of this
structure is established via a generalization of the Lie bracket known as the Courant

bracket:
1. .
[X +€,Y + ﬂ]c = [X, Y] + EX’I] - ﬁyf - §d(’lx’l7 - ny). (314)

where [, ] is the Lie bracket. The GACS is integrable if one may define projectors

compatible with the Courant bracket, that is:
[T (X 4 &), (Y +9)lc=0 where Il = -;—(I +iJ) (3.1.5)
or more explicitly:
(X +&6Y 4+l = [T(X+8, T +n)le + TITX +8),Y +1le+ TX +& T +n)le =0

which is analogous to the definition of the Nijenhuis N tensor in terms of the Lie
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bracket as given in eq. (2.2.3).

One may isolate special cases by introducing a useful decomposition of 7:

J P
J = , (3.1.6)

L K

where J: TM - TM,P: T"M - TM,L:TM - T*M and K : T*M — T*M

or in explicit indices J*,, Ly, P*" and K,”. So that J? = —1a implies:

JH JY + PP L, = —6%,, (3.1.7
JE P+ PP K =0, (3.1.8
KK + Ly PP = =6, (3.1.9

KMVLV,\ + Luyt]lj/\ = O (3.1.10

while the hermiticity of the O(d, d) metric with respect to J is equivalent to:

JL4+KY=0, PW=-P%  L,=-L, (3.1.11)

and finally integrability may be re-written as:

JU[/\JHP]’V + J#VJV[/\”O] =+ P“UL[,\p’y] = O (3112)
p[ulvPlz\,PJ =0 (3.1.13)
A A A A A —
Jh, PP+ P, = T, PR+ 0, PR — PP, =0 (3.1.14)
T Liso) + Lind’yy py + I Lowr + 5 Lypx + Dapd%,, + T, Loy, = 0 (3.1.15)
Choosing
J 0
J = . (3.1.16)
0 —Jt

we see for example that eq. (3.1.7) defines J as an almost complex structure and
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eq. (3.1.12) its integrability in terms of the corresponding Nijenhuis tensor. Similarly

taking:

J = (3.1.17)

embeds a symplectic structure w in the GACS with the relevant integrability equations
reducing to dw = 0. In general however a GACS interpolates between symplectic and
complex geometry. Interestingly [100] once Calabi-Yau geometry is deformed by the
introduction of H3 NS fluxes to SU(3) structure the resulting compactification man-
ifolds will be mostly complex for type IIB and mostly symplectic for type ITA. Since
both theories can be linked by T-duality the appearance of the O(d, d) group structure
becomes very suggestive. Further the A- and B-model in topological string theory,
which are related by mirror symmetry (which in the Calabi-Yau context reduces to
multiple T-duality), have observables depending exclusively on the symplectic and
complex structures respectively.

These ingredients suggest the importance of GCG in providing a unified descrip-
tion of compactification beyond the Calabi-Yau case. This is further reinforced by
the natural inclusion of the B-field. Note first that the Courant bracket admits a
non-trivial (beyond diffeomorphisms which are already present for the Lie bracket)

automorphism in terms of a closed two-form b:

(X +8),e(Y +n)]e =X + &Y +nl. +ixivdb=e’[X +£Y + 7). (3.1.18)
provided db = 0, with the action of b on 7' & T™ defined as:

(X +6) =X +E+ixb (3.1.19)
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and a resulting map on the GACS respecting integrability:

Tp = J (3.1.20)

The field strength H = dB of the B-field may then be used to twist the Courant

bracket:

(X +&Y +np=[X+EY +n].+ixivH. (3.1.21)

which under e® transforms as:

X +&Y +nlp = [ X+ &Y +nlmia (3.1.22)

which is again an automorphism for closed b and corresponds to the local gauge
ambiguity in choosing the B-field. Note that the twist is generated by an e? action
onTaT.

This is even more salient if we consider the case of generalized Kahler geometry
which is endowed with two GACS J;» and a positive definite metric G on T' @ T™

such that:

[, ] =0 5 G=-NT ; G =1 (3.1.23)

The general form of G is in fact familiar from the study of T-duality (see eq. (A.2.10)):

—-G™'B G! 1 0 G! 1 0
G- BG'B BG! B 1 G -B 1

but with G and B a priori merely symmetric and antisymmetric two-tensors. Choos-

ing the embeddings of the complex and symplectic structure as given in eq. (3.1.16)
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and eq. (3.1.17) as the pair of GACS satisfies the conditions in eq. (3.1.23) in the
special case of a traditional K&hler structure and confirms the interpretation of G as
the Riemannian metric on the manifold. This is further clarified (along with the inter-
pretation of B as the Kalb-Ramond field) by linking generalized K&hler geometry and
the bi-hermitian target spaces of worldsheet models with N = (2,2) supersymmetry
[170]. Note finally that while the above equation suggest that NS-flux backgrounds
may be generated by e? transforms of purely geometric solutions, one has to bear
in mind that since B is not closed this does not generate an automorphism of the
(twisted) Courant bracket. Thus integrability of the geometric background does not
guarantee that of the general one.

By construction the metric G is compatible? with the natural inner product Z on
ToT.

Introducing such a metric (with the third condition in eq. (3.1.23)) reduces the
structure group on T & T* from O(d, d) to O(d) x O(d). We already pointed out that
a GACS reduces the structure to U(d/2,d/2). Taken together we obtain a reduction
to U(d/2) x U(d/2). Integrability of this structure reduces to that of each of the two
GACS separately.

At this point let us note that given a topologically non-trivial B, the metric G
cannot in fact be an inner product on sections X +& € T @& T*. Instead, the relevant

objects are sections of an extension F
0 —T"—FE—T—0 (3.1.24)

where one identifies (X + &) (5) = ¥ (X + £) (o) on the intersection of two patches

U, N Upg, or in components

X +€p) = X + o) +ix WA iap))- (3.1.25)

2that is Z(G(X +£),G(Y + n) =Z(X + &Y +n) or alternatively G'ZG =7
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A(qp) is determined by the gauge transformations allowing to globally patch B, which
a priori is only locally defined. So on the overlap of two local patches U,y N Ug) we

have

B(g) = Ba) + dA(ap); (3.1.26)

so that Aag) = —A(gq), while on the triple overlap Uy N Uy N Uy
Aap) + Mgy + Aga) = dAapy)- (3.1.27)

Mathematically this means B is a connection on a gerbe (see for instance [171]). If
the flux is quantized H € H3(M,Z) then one has g, = € = € U(1) and these

elements satisfy a cocycle condition on Uiy N Uz N Uy NUs)

g(ﬂya)g@aa)g(am)g@lﬂﬂ =1. (3.1.28)

Formally the g(4s,) define the gerbe, while the A(.g) define a “connective structure”
on the gerbe. Together they encode the analogue of the topological data of a U(1)
gauge bundle.

There exists an alternative, but equivalent, description of generalized geometry in
terms of so-called Cliff (d,d) pure spinors which arises naturally from the space-time
and particularly supergravity point of view. Given the emphasis on 11D supergravity
in our original work, we shall now review this approach, following the treatment

in [100].

3.2 Pure Spinors

The traditional representation of Clifford algebras involves its matrix action on spinors

which form a representation of Spin(d). However the algebra of Cliff (d,d) (for defi-
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niteness):
{r" 1}y =0, {I™I,}=6m, {TmT.}=0. (3.2.1)

(where ,,, = 1...d and ™" = d+ 1...2d are not covariant and contravariant but
independent indices) has another representation® in terms of an action on forms which

are in one-to-one correspondence with the aforementioned spinors:

m=ds™An, T,=i, (3.2.2)

with i,: APT* — AP-IT* | i.dz A ... Adaie = péiida™ A ... Adz®. Thus we may

write the natural Clifford action of X + & € T & T* on a spinor ®:
(X+E) - 2=ixP+EAND (3.2.3)
Consequently applying the anti-commutator of two such actions leads to:
Y+7) - [(X+8 -+ (X+& - [(Y+n) @ =2X+EY +n)P  (3.24)

confirming that the generic inner product on the Clifford algebra coincides with the
natural inner product on 7 & T* with respect to Z denoted here as ( , ) .

It follows that the inner product vanishes on Lg the sub-bundle of 7' @ 7™ con-
taining the annihilators of ® which is thus isotropic. If it is maximal isotropic (i.e.
has maximal dimension d) ® is a pure spinor. The existence of a maximal subbundle
implies the existence of a projector and hence an endomorphism on T'® T™ squaring
to —1, while isotropy then implies the hermiticity condition in 3.1.3. There is thus a
one to-one correspondence between a pure spinor and a GACS with the annihilator

sub-bundle of the former being the +i eigenbundle of the latter.

3Note that this is essentially the algebra of d pairs of fermionic creation and annihilation opera-
tors.
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As a an example consider the (3,0) from Q = dz! Ad2? Ad23. It is annihilated by

the sub-bundle with action:

¥ =dzn, T =i (3.2.5)

with ¢ = 1...d/2 for d = 3 and choosing obvious complex coordinates. The corre-
sponding GACS is given by the embedding of a traditional almost complex structure
as given in eq. (3.1.16), consistent with 2 defining such a structure.

Similarly the pure spinor e=*/ where J = dz! Adz! + d2? AN d3? + dz2 AdZ3 is a
(1,1) form and is equivalent to the GACS embedding of a symplectic structure given
in eq. (3.1.17).

In terms of pure spinors integrability with respect to the Courant bracket trans-

lates into the condition:
d® = (i, + (N)D (3.2.6)

for a given v+ € T®T* . A "generalized Calabi-Yau manifold” in the sense of [168]

in particular is defined such that v+ ¢ = 0 and ® has a non-zero norm ||®|| given by:
|®|I° = (®,®)  whereingeneral (@, )= (s(®)AT)|4 (3.2.7)

is the Mukai pairing with s(®) = Y, (—1)/""/2®|,, where |, projects out the form
of degree n. Note that in terms of the Spin(d, d) representation of the spinors this is
nothing but the natural bilinear ®W.

Integrability under the twisted Courant derivative is given in terms of the twisted

exterior derivative:

dp® = (d — HA)®' = (i, + (A)D (3.2.8)

62



leading to a definition of twisted generalized Calabi-Yau in analogy with the above.
Note that d% = 0.

If & satisfies eq. (3.2.6) then @ =e®.® = (1 + BA+3B A B A+...)® satisfies
eq. (3.2.8) with the corresponding GACS related by:

. 1 0
J = J
B 1 -B 1
This picture may be neatly related to ordinary G-structures on 7' described in
section 2.2. Being a generalization of complex geometry GCG is most naturally
applied to even-dimensional spaces so we shall use SU(d/2) structures as example.

Given an SU(d/2) invariant spinor 7 we may define bi-spinors:
¢, =nif and @_ =nn’ (3.2.9)

Recall now that the anti-symmetrized products of gamma matrices together with
Iya2y94s2 form an orthogonal basis for GL(2%2, C) matrices (as the above bi-spinors)
under the inner product tr(A'B) for A, B € GL(2%2, C). The bi-spinors may thus be

decomposed as (the usual Fierz identity):

d/2 d/2

) ) L 1 ..
Q== SZ T Vil [en 5 @o_=n' =s Z EWT')’il...ik"? [ (3.2.10)
k=0 k=0
where s = m Note that as a Clifford(d, d) spinor @, has positive chirality
2 X 2!

and ®_ negative chirality. From the form point of view this means they are respec-
tively sums of even and odd degree forms. Using eq. (3.2.2) to rewrite the gamma

matrices as one-forms one finds:

b, =—c¢ and ¢®_=-—Q (3.2.11)

NI V)
[N
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where (J, ) is the usual pair defining an SU(d/2) structure whose expression in terms
of bilinears in 7 was given in eq. (2.2.6). It follows that an SU(d/2) structure on T
is equivalent to two GACS on T ® T* namely the natural embedding of a symplectic
and an almost complex structure respectively. What is more both structures are
compatible in the sense of the definition of a generalized K&ahler structure as given in
eq. (3.1.23) so that one has an U(d/2) x U(d/2) structure. From the point of view of
annihilator spaces of the corresponding pure spinors it implies that their overlap must
be of dimension d/2 i.e. they have d/2 annihilators in common. In fact since the pure
spinors are globally defined one has an SU(d/2) x SU(d/2) Calabi-Yau structure?. It
can be checked that integrability leads to the usual Calabi-Yau conditions for (J, ).

It can similarly be shown that an SU(2) structure on T is also a special case of

an SU(3) x SU(3) structure on T & T* with pure spinors:

b, =ma, and P_=mnl (3.2.12)

with 7!, n? two nowhere vanishing spinors. SU(3) structure can be understood as a
special case with ! = n?. An intermediate case is that of a so-called local SU(2)
structure which admits two nowhere vanishing spinors that are parallel (and thus
not linearly independent) in at least one point so that the structure is not globally
defined. This case is relevant for type II compactifications as the two ten-dimensional
spinors need not be decomposed in terms of the same six-dimensional internal spinor.
Requiring N = 2 SUSY ° implies that the SU(2) structure may only be local. Be-
ing midway between the above two special cases this unsurprisingly also leads to a

manifold with SU(3) x SU(3) structure with the pure spinors given by eq. (3.2.12).

4The map between pure spinors and GACSs is not one-to one: the phases and overall scales of
&, may vary and still lead to the same GACS. However these are critical to determine whether
the pure spinors are globally defined and must not vanish at any point hence the non-zero norm
condition in eq. (3.2.7).

5Note that at this point we are talking about the amount of off-shell SUSY in the lower-
dimensional effective action. In the following we shall however be interested in on-shell N =1 solu-
tions of N = 2 effective actions resulting from compactifying Type IT on a manifold of SU(3) x SU(3)
structure.
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3.3 Recent applications in String theory

Having set the scene we may now describe some of the applications of this formalism.

We shall here deal separately with on-shell and off-shell conditions.

3.3.1 On-shell supersymmetry

In [173] the authors rewrite the conditions for an N = 1 vacuum of the effective
N = 2 theory resulting from compactifying an a background with SU(3) x SU(3)
structure. Recall that the field content of type ITA and IIB has a common sector
given by the metric G, the Kalb-Ramond field B and the dilaton ¢ and differs only

in the Ramond-Ramond (RR) forms which in this context may be arranged as:
FHA:t=F0:i:F2+F4:i:F6, FIIB;tzFliF3+F5, (331)

where Fj is self-dual. Further consider the possibility of a warp factor for the metric

parameterized by ef:
ds}, = eEgl(ﬁj)dm“da:” + Gmndy™dy" | (3.3.2)

It was then shown that the SUSY equations are respectively:

e—2E+¢(d+H/\)(62E—¢(~I)+) = 0, (3.3.3)

- ~ 1
e 2E(d+ HA) P %P ) = dE AP — Ee¢[(|a|2 — [bI*) Frua - — i(|af* + [b]*) FIIA+]

for type ITA and

- ~ 1
e 2Er0(d — HA) (e %0,) = dEADL + Ee¢ [(|a12 — b*) Fus+ — i(lal® + [b]*) * Fus -

]

6—2E+¢(d_ HA)(62E_¢(§_) = 0, (334)
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for type IIB where

d,=abd,, I_=abd_ (3.3.5)

are introduced to take into account the norm of the spinors (usually set to one for

structure spinors):

it =an', i =bn?. (3.3.6)

where !, 7% are unit norm spinors. These norms are however not arbitrary and N = 1

SUSY requires that:
dla|*=|b*dE ,  d|b|* = |a|*dE , (3.3.7)

We thus see that N = 1 vacua result from compactifications on manifolds with
SU(3) x SU(3) structure, however only one pure spinor (and thus only the SU(3, 3)
structure) is integrable. We thus have a generalized complex manifold but not a
generalized Calabi-Yau manifold ®. In particular it is the RR-fields who form the
obstruction to full integrability. It was noted in [174] that turning them off 7 leads to
an N = 2 vacuum instead. This is in line with the observation that two integrable and
compatible GACS leads to generalized Kahler manifolds which are in correspondence
with bi-hermitian geometries (as noted in [169]): these in turn are the natural target
space for worldsheets with N = (2,2) SUSY while for N =1 SUSY in space-time one
would expect N = (2,1) SUSY on the worldsheet. Note finally that the integrability
condition for <i>_,_ is not just closure under the exterior derivative but the more general
form given in eq. (3.2.6) with d(—2E + ¢) playing the role of the one-form.

The symmetry of the above equations also suggests the conjecture that one may

6 Alternatively some authors call manifolds generalized Calabi-Yau even if only one structure is
integrable, using the term generalized Calabi-Yau metric for the case where both structures are
integrable.

Ttogether with E =0 and &1 = &4

66



realize mirror symmetry as :

Q, «®_ ; Fna e Fis (3.3.8)

This is further underlined by the observation in [175][176] that the closure of one pure
spinor is sufficient to define a topological model, &, for the A-model and ®_ for the
B-model.

3.3.2 Off-shell supersymmetry

Another important application was developed in [177] and further refined in [178]:
following a methodology introduced in [179] in the study of hidden symmetries of
11D supergravity: the authors isolate 8 of the 32 supercharges present in type IT and
rewrite the ten-dimensional theory in a form reminiscent of N = 2 D = 4 supergravity
without any compactification or truncation but merely by assuming that the Lorentz
group in 10D is reduced from® Spin(1,9) — Spin(1,3) ® Spin(6). In our original
research we aim to extend this work, both by achieving a geometrization of general
flux backgrounds and by applying this description in a different dimensional setting
to eleven-dimensional supergravity.

At this point it is worth noting that when we introduced Generalized Geometry we
chose the historical angle favored in the mathematical literature. From the physical
point of view this may however not be the most intuitive sequence, especially for the
application at hand and our original work. Physically the metric G is specified by
being the invariant under the maximal subgroup O(d) x O(d) of the natural O(d, d)
structure on T' ® T*. By considering a polarization map T' @& T* — T one may
then isolate a GL(d) subgroup of O(d,d) which can be identified with traditional

diffeomorphisms. Decomposing G in terms of this GL(d) subgroup allows to express

8leading to a decomposition of the 10D spinor in a 4D spinor (which is an anti-commuting
Grassmann variable) and a 6D (commuting) spinor
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it in terms of G and B, thus neatly arranging the background fields in the common
sector. From this viewpoint Generalized Complex structures are a second level of
sophistication arising when one singles out certain supercharges in a supergravity
background for the above mentioned reformulation. Similarly Cliff (d,d) spinors are
more elementary than G and can be defined with reference to the O(d, d) metric 7
only, while pure spinors arise again only in the context of supersymmetry.

Having clarified this point let us concentrate on the elements of [177] and [178]
closest to the original work presented here. Recall first the nature of potential terms
in N = 2 D = 4 supergravity (as reviewed in [180]): supersymmetric potential terms
are typically quadratic in the scalar part of the fermion variations® and for most
multiplets these are derivatives of the scalar part of the gravitino variation. For

N =2 D =4 we have:
6Pa, = D04+ iv,Sapd? | (3.3.9)

where A = 1,2, 0; 5 are the SUSY parameters and S (such that SST = 1) encodes
the SU(2) R-symmetry of the supergravity and the potential terms through the three
prepotentials P* x =1,2,3 via

Sap = %e%KVaf,BP’”, o%p = ol - io® 0 : (3.3.10)

_ 53 _sel _ 52

where Ky is the vector multiplet Kahler potential. As in [177] we specialize to the
case of SU(3) structure on T and give only a sketch outline of the derivation as we
will in the following repeat a similar process for 11D supergravity. The existence of
the aforementioned structure allows for the decomposition of all fields in terms of

SU(3) C Spin(6) representations. In particular the higher-dimensional precursor of

9This incidentally ensures that supersymmetric states minimize the Hamiltonian as expected
from the SUSY algebra.
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the four-dimensional gravitini can be identified as the singlets in the expansion of the

ten-dimensional gravitini:

‘i’ilﬁ =1t Oy +1m @0+ .. @,1212 = o, ® Ny + oy @1 +...(3.3.11)

in type ITA and
VB = ypy @0+ Yape Oy +...,  A=12. (3.3.12)

in type IIB, corresponding to the terms involving the SU (3) invariant structure spinor
ny with n- = 75 (where the indices denote chirality). Note the shift of the 10D
gravitino:

- 1

U, = Uyt 50" (3.3.13)

ensuring diagonal 4D gravitino kinetic terms. Consequently we may obtain the 10D
analogue of eq. (3.3.9) by projecting out the singlet part of the variation & obtained
from the 10D gravitino variation as given in eq. (1.2.1) in the democratic formulation.

10

Turning on only fluxes consistent with 4D Poincaré invariance " we only retain F;,

with n = 0...6 where F,, = dC,_, — H N\ C,,_3 are the field strengths including the

Chern-Simons contribution !*. The appropriate projector is given by:
I =1®2(n:®70:) . (3.3.14)

with the signs indicating the chirality of the field acted upon. The prepotentials for

type IIB can then be calculated to be :

10j . purely internal flux which is a scalar from the point of view of the compact space or its
Hodge dual
1 Note that the relation to the twisted exterior derivative dy.
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Pt = —2e3K19(H_ dRe ),

P? = 207K (@_ dIm @), (3.3.15)

1
PS = —Eew)(éi) <q)_, GIIB)-

where physically K is the vector multiplet Kahler potential for type ITA (essentially
obtained by mirror symmetry), ¢* is the 4D dilaton and Gy;p is defined in analogy
to Fyrp such that (e7V, Fy) = (e”(B+J) G,) which allows for J to be correctly

complexified as (B + iJ) giving the pure spinors:
o, =e BV . d_=Q (3.3.16)

For type IIA we find:
P = 2025+, dRe d_),

P? = —203K5 0 (P, dIm D), (3.3.17)

1
PS = ﬁ e2¢(4) <@+, G[[A),

were K, is now the vector multiplet for type IIB and Gy, is defined in analogy to
G-

Note that the vector multiplet Kahler potentials can themselves be written in
terms of the structures since each pure spinor defines a special Kéhler structure
[167, 168, 182] in terms of deformations of the NS moduli e® @ leading to the Kahler

potential :
K=-In [i/(eB@i,eB@i)] (3.3.18)

which goes as JAJAJ for type IIA and iQAQ for type IIB which is exactly the same

as for a Calabi-Yau compactification. This is unsurprising since a Calabi-Yau differs
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from a manifold with SU(3) structure through differential conditions with respect to
the internal manifold coordinates. However this data does not enter the derivation of
the kinetic term in dimensional reduction and hence not the Kahler metric nor the
Kahler potential from which it follows by differentiation with respect to the moduli.

At this point one may isolate N = 1 theories embedded in the N = 2 reformu-
lation (essentially by breaking the R-symmetry from SU(2) to U(1)) obtaining the
superpotentials:

Wi = +cos? ae? (®@F,dd™) —sin® a e (PT, d® ™) + sin 20 e?(®T, GT)

. . (3.3.19)
Wi = —cos® ae? (@7, d® ") + sin® a e (@™, ddT) — sin 20 e? (@™, G ™)

where in going form N =2 to N = 1 the two SUSY parameters 8; » are related as:

B4 = Ony, na = , a= cos e 2P , b=sin ae’? (3.3.20)

and 8 is the single N = 1 SUSY parameter and the R-symmetry corresponds to the
U(1) subgroup of SU(2) leaving n,4 invariant.
Several known superpotentials are special cases of these general expressions. For

example the Gukov—Taylor-Vafa—Witten superpotential [95, 183] corresponds to 2« =
—B=m/2:

Warvw =1 e?((F5 —7),Q) (3.3.21)

where Fj is related to Gs in the usual way and 7 = Cy + ie™® combines the dilaton
and the RR 0-form.

The IIA superpotential arising from the RR fields (as proposed in [184]) is found
by setting o = 7/4 and d®~ = 0:

WIIA,RR =—i e¢(e_(3+”), G11A> . (3322)
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Finally the superpotential proposed in [134] for the type ITA half-flat mirror manifold
dual to the Calabi-Yau compactifications with type IIB electric NS fluxes is the special

case with a = 7/2 and 3 = —n/2:

Whattaae = (€5 dQ) . (3.3.23)

The same authors generalized these results to the case of an SU(3) x SU(3)
structure [178] showing they are unmodified except for the explicit form of ®.. In
particular ®_ only contains the holomorphic 3-form 2 for an SU(3) structure while in
general it will be a generic sum of odd forms in 6D. Under mirror symmetry however,
now given by:

Ot — P, Gria— G Kj— K, (3.3.24)

the NS three-from flux H is decomposed in two : electric fluxes mapping to a four-
form and magnetic fluxes mapping to a two-form. In [134, 185] d ReQ) (which when
non-zero leads to half-flat manifolds) was identified as the dual of the electric fluxes
but to define a similar construction for the magnetic fluxes had been an outstand-
ing issue since one could not identify an appropriate two-form on the mirror side.
From the above it follows that the mirrors of compactifications with magnetic fluxes
must have a general SU(3) x SU(3) structure and the two-form in question relates
to d(®_|;). Interestingly such manifolds turn out to be so-called non-geometric back-
grounds and while in principle this means the supergravity approximation should
break down the above formalism does reproduce correctly the corresponding low-
energy effective description. This departure from geometry confirms suggestions in
[186, 187, 188]. Similar methods were used to obtain N = 1 superpotentials directly
from compactifications of the heterotic string [189] and M-theory [190].

This concludes our exposition of the literature, in the remainder of this thesis we

shall present original work undertaken.
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Chapter 4

Mathematical Interlude: The

exceptional Lie group Fr )

In this section we review the properties of the group E;(7) relevant to our original work.
A detailed definition of Er(; and an exhaustive description of its properties can be
found in Appendix B of [191] which itself refers to the original work by Cartan [192].
Relevant tables for the tensor products of representations of Er7) and its subgroups

may be found in [193].

4.1 Definition and the 56 representation

The group E(7) can be defined by its action on the basic 56-dimensional representa-
tion: Let W be a real 56-dimensional vector space with a symplectic product €2, then
Er(7) is a subgroup of Sp(56, R) leaving invariant a specific quartic invariant g.
Explicitly one can define Q and ¢ using the SL(8, R) C Ex(7) subgroup. If V is an
eight-dimensional vector space, on which SL(8, R) acts in the fundamental represen-

tation, then the 56 representation decomposes as

56 — 28 + 28’ (4.1.1)
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The 28 representation corresponds to A2V and the 28’ to A?V*. Note that using
e € A8V, the totally antisymmetric form preserved by the SL(8,R) action on V', one

can identify A2V* with A®V. In summary, one identifies

W = A’V @ A*V* (4.1.2)

and writes X € W as the pair (z®,z’,) where a,b=1,...,8.
ab

The symplectic product 2 is then given by

AUX,Y) = QpXAYE = 2%, — 2/ y® (4.1.3)

where A, B =1,...,56 and the quartic invariant ¢ is

¢(X) = qapcp X XEXCXP

1
_ ,ab_t _cd_t ab, .t cd o/
= 20, 0% T4y — 72 TapT g (4.1.4)
1
cd, ef . gh abedefgh .t
96 (Eabcdefghm Tt + e abxcdxefxgh)

or in explicit SL(8,R) indices

1
Qabcdefgh = 96 —— €abcdefgh
abedefgh __ 1 abcdefgh (415)
96
¢ eson = 5[e ol — oo

where the last line applies to the five other permutation of indices with two pairs of
indices up and two down, while all other entries vanish.

In what follows it will be useful to use a matrix notation where we write

XA = (4.1.6)
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such that the symplectic form

0 &Y
Qap = , (4.1.7)
5368 0

Throughout it is assumed that all pairs of primed and unprimed indices (a,a’) etc

are antisymmetrized.

4.2 The 133 and 912 representations

There are two other representations of interest in this thesis, the first being the
adjoint. By definition it is a 133-dimensional subspace A of the Lie algebra sp(56, R).

It decomposes under SL(8, R) as

A=(VeV) e AV”
pw= (Auaba :u'abcd) (421)

133 =63 4 70,

where (V ® V*)o denotes traceless matrices, so p%, = 0. The action on the 56 given

by
&Bab — [LaCZUCb + lLbCiBac+ *ﬂadeiU’cd,
(4.2.2)
5$:1a’ = _lu’cam’cb - )u’cbx:lc + ;u'abcd:BCda
with *p%1-% = %e“l“'“suasmag. In terms of the matrix notation we have X4 =
[LABXB with

2ﬂab5a,' *‘uaa’bb’
php = ’ e (4.2.3)
Haa’ bt _2ﬂba5gl
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Note that p4B = pA-071¢B is a symmetric matrix. Taking commutators of the

adjoint action gives the Lie algebra y” = [u, /']

acicacs !

_ facicacs
Mbclczcg *U

"Ha

1
B = (,Uac,u/cb - ,U/ac,ucb) + g(*,u /’Lb01C203)7

(4.2.4)
:uiz/bcd = (:ue[a:u;)cd}e + M/e[aﬂbcd]e)-

where the second term in the first line is obtained by use of the following identity:

(rpapt! = ' 1) ca = #p™ oo — (1 1)
-1
= ?(5‘1015”,1 — 09 Eb, — 8 E%y 4+ 6%4E°,) (4.2.5)
2
= 50" By
3

where by taking the trace we find E%, = »u®%®y/ .. — (1 < u')
The other representation of interest in this thesis is the 912. The representation

space N decomposes under SL(8,R) as

N=SVao(ANVaV oSV e (A V* e V)
¢ = (6", 0™ 4, Py Bune”) (4.2.6)
912 = 36 + 420 + 36’ + 420/,

where S*V denotes the symmetric product and (A*V ® V*), denotes traceless tensors,
so that ¢, = 0. The adjoint action of Ez(7) on ¢ is given by
1
5¢ab — ﬂac¢0b + Mbc¢ac _ §(*MacdeqblCdeb 4 *MbcdequCdea)’
5¢abcd — 3M[ae¢bc]ed _ Med¢abce + *Mabce¢16d + */Lef[abqb/efdc] _ *Mefg[aqb;fgbdg]’

1
5¢i1b = _,Ucaqb/cb - ,Ucbqbi;c - g(ﬂacde¢0deb + Mbcde¢0dea)a

5¢;bcd = _3/Le[a¢;7c]ed + 1 :zbce =+ ﬂabce¢8d + ﬂef[ab¢efd0] - Mefg[a¢efgb5g]-

(4.2.7)

C|

In terms of Sp(56,R) indices, we have ¢“BC, corresponding to the Young tableau

EOES
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with ¢*B¢Q 5 = 0. The different components are given by

’ ’ ’ ]. / / ’ ’ / /
¢aabbcc z_ﬁ(eabbccefg(béfga _Ebaaccefg(béfgb),
¢aa’bb’ o = 2¢ab52’ 52” _ ¢aa’bcég’ + ¢bb’a65g,,” (428)

¢aa’bb,cc’ — ¢ac5g' 55]’ _ 2¢aa’cb5§’ _ ¢cc’ab5;’,
with ¢ = — e’ and identical expressions for ¢eupyer etc. but with raised
and lowered indices reversed.
Finally we note the following tensor product containing a term in the adjoint for

later reference:

56 x 912 =133 +.... (4.2.9)

In terms of Sp(56, R) indices we have u4? = X Qop@dP A8 while in terms of SL(8, R)

components one finds

e B3 ac s geay, S (edy a e
Ko = Z(w Peb = Tpe® )+Z(:1: Yl — Tead™ ™),
1 (4.2.10)
Habed = -3 (¢Eabcewiﬂe + Ieabcdml...m4¢m1m2mse$m4e) .

4.3 A GL(7) subgroup

In this section we construct the embedding of the diffeomorphism group in Er(7). To
make this embedding explicit we must identify a particular GL(7,R) C SL(8,R) C
Ex(7) subgroup. In this appendix we identify this group and give explicit expressions
for part of the E77y action in terms of GL(7,R), that is space-time tensor, represen-
tations.

We start with the embedding of GL(7,R) in SL(8,R) given by the matrix

(det M)~Y4AM™,
0 (det M )3/
77
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where M € GL(7,R). If GL(7,R) acts linearly on the seven-dimensional vector space
F this corresponds to the decomposition of the eight-dimensional representation space
V as

V= (ATF)VF @ (ATF), (4.3.2)

The 56 representation of E77) as given in 4.1.2 then decomposes as
W = (A7f%)~1/2 [F @ A2F" ® A @ (ATF*)F*] . (4.3.3)
We can thus write a generic element of W as
X=z4+w+o+r, (4.3.4)

where z € (ATF*)"1/2F etc. If we write the index m = 1,...,7 for the fundamental

-1/2 .

GL(7,R) representation, note that, ignoring the tensor density factor (ATE™)
has the index structure 7, ;. n,, Where n labels the F™* factor and 71 ...n7 the ATE*
factor. We can make the identification between GL(7,R) indices and SL(8, R) indices

explicit by writing (again ignoring the (A7F*)~!/2 factor)

xmB = ™ M — ymn
1.7 (435)
:E:ng =Tm,1..7 I:nn = Wmn,
where o' = (7!/5!)6&16;‘201,3“4,7].
We can similarly decompose the 133 representation. We find
A= VRV, A"
(4.3.6)

—EFPQF* DA F A o ANEF @ ASE”,

We will be particularly interested in the action of the A3F™* and ASE™ parts of 133
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on X. Identifying
1
Hmnps = EAmnp € A3v*

(4.3.7)
ps = —A7", € AV
where A7 = (7!/6!)6;), Ap,. ) we have the action in the Lie algebra
(A+A) X =i,A+ (i, A+ Arw) + (JANG — JAAW). (4.3.8)

Here we have introduced a new notation. The symbol j denotes the pure F* index

on sections of (A7EF*)F*. Hence

7!

(P (7-p) O S
(]a P /\ /8 P )m,nl...n'; L p|(7 _ p)!am[nl...npﬁnp+1...n7] (439)

4.4 Cliff(7,0) and seven-dimensional spinors

In order to be able to define the SU(8)/Z, subgroup in the next section, let us also
fix our conventions for Spin(7). The Clifford algebra Cliff(7, 0, R) is generated by the

gamma, matrices v, with m = 1,...,7 satisfying

{'Yma')’n} = ngnl- (441)

One finds Cliff(7,0; R) ~ GL(8,C) and hence the spinor representation of the Clifford

algebra is complex and eight-dimensional. We define the intertwiners A and C by
The = A AT, —m = C 1 mC, (4.4.2)

with AT = A, CT = C and such that —v, = D™y, D with D = CAT. We also define
the conjugate spinors

n=n'4, n°=Dn". (4.4.3)



Writing

Ymi..mz = Y €my..me (444)

with €7 = /g, note that one can choose the gamma matrices such that vy =
i. The intertwiner A provides an hermitian metric on the spinor space, which is
invariant under the subgroup SU(8) C Cliff(7,0;R), with a Lie algebra spanned by
{Vmimas Ymymama» Vm...me s Ymy..mq }-

The even part of the Clifford algebra generated by the v, has Cliff (7, 0; R)oven =
GL(8,R) and hence a real spinor representation with # = n°. Thus the spin group
Spin(7) C Cliff(7, 0; R)even similarly has a real spinor representation. For real spinors,
7 = n?C~1, and C~! provides metric on the spin space. This is invariant under a
Spin(8) group with Lie algebra spanned by {Vm,mqs ¥m,..me}- Lhis can alternatively
be described by, for a,b=1,...8

{

(detg) Vv, fa=m,b=n

:}’ab = < (det g) 1/47m7(7) ]_f a = m’ b = 8 (4.4.5)

k—(det OYivyn fa=8b=n

which generate the Spin(8) Lie algebra with metric

_1/4 gmn O
0 detg

Jab = (det g) (4.4.6)

Here we have introduced some factors of det g to match the form of § used elsewhere

in this thesis (in particular the decomposition under GL(7,R) given in section 4.3).

With these conventions, the spinors 7 are of positive chirality with respect to Spin(8).
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If we make the spinor indices explicit writing n® with a = 1,...,8 we can raise

and lower spinor indices using the metric C~! so, for instance,
:}'abaﬁ = C;»)}:}’ab’yﬁv :}'abaﬁ = :}'mna'yc’m- (447)
One also has the useful completeness relations, reflecting Spin(8) triality,

2 afsab (e B
Yab Y 6 = 165 5 9
! bl (4.4.8)

a4 a5 = 166,05

4.5 The SU(8)/Zy subgroup and spinor indices

The maximal compact subgroup of Ey7) is SU(8)/Zy. In the supersymmetry trans-
formations, the spinor 7 transforms in the fundamental representation under (the
double cover) SU(8). Thus it is often useful to have the decomposition of the various
E(7) representations in terms of SU(8)/Zs.

In particular, one can use the common Spin(8) subgroup to relate the decomposi-
tions under SL(8,R) and SU(8)/Zy. Let 4% be the Spin(8) gamma matrices defined
in 4.4.5. We can raise and lower SL(8, R) indices using the metric §. Similarly, spinor
indices can be raised a lowered using C~!.Under SU(8)/Z, the decomposition of the
56 representation is thus explicitly:

= (2P, Z,
X = Zep) (4.5.1)

56 = 28 + 28.

If the symplectic product takes the form

QUX,Y) =i (2%Fap — Tapy™) (4.5.2)
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then (2%, z!,) and (z%°, Z,s) are related by

1
19 = — (2% + iz'?)4,, %P

4\f | (4.5.3)

jaﬂ — m(mab _ im,ab)ﬁ’abaﬂy

with 95%? and Y54 given by 4.4.7, or equivalently

maﬂ 1 ,.Ayabaﬂ i,:yab af mab

T A i & ab /
Top YabaB _17a af Top

Recall that there is a SU(8) subgroup of Cliff(7,0;R) which leaves the spinor norm
nn invariant. Since the defining 56 representation decomposes into objects with pair
of SU(8), both the 1 and —1 elements in SU(8) leave X invariant and hence the
subgroup of interest of Er () is actually SU(8)/Z,.

Viewing a 56-dimensional index either as a pair of SL(8,R) indices or as a pairs
of spinor indices, the relation 4.5.4 can be used to convert between SL(8,R) and
SU(8)/Zy decompositions of any other FEr7) representations. In particular, decom-
posing the adjoint representation u under SU(8)/Z, as 133 = 63 + 35 + 35 and

writing p = (u*g, 4, fiags), With fiagys = *ptap,s and u*, = 0, one finds

St = uawm'yﬁ _ #vaav 4+ uaﬁ'rﬁ Tos,

(4.5.5)
53_3&6 = _:Uﬂaff'y[i + .U“Pyﬁffa’r + ﬂaﬁ’rﬁimﬁa
with! ) :
.U“ 5= Z:U“abfyab aﬁ 4+ 5 Nade;yabcda (4 i 6)
Naﬁ’yﬁ T (I:U“abcd 4+ zﬂacgfgd) ) ,.Ayab aﬁ;ycd 76'

where (5, = 3 (tas £ p16a) a0d 3500 = 3(Habed & *itabed)-

lin the first line the minus superscript is not strictly necessary
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Chapter 5

Exceptional Generalized Geometry

In seven dimensions

In this chapter we discuss the structure of Exceptional Generalized Geometry (EGG)
in seven-dimensions. Our motivation will be the compactification of eleven-dimensional
supergravity to a four-dimensional effective theory.

Recall that Type II string backgrounds which include non-trivial fluxes have a
natural description in terms of Hitchin’s generalized geometry, where the metric and
the NS-NS B-field are combined into a single geometrical object. The aim of the
work presented here is to understand the details of how similar constructions based
on the exceptional groups Ey4) can be used to describe supersymmetric M-theory, or
more precisely, eleven-dimensional supergravity backgrounds.

We will concentrate on the physically important example of seven-dimensional
backgrounds and, following [177, 178], consider the generic form of the superpotential
in the corresponding N = 1 four-dimensional theory, or more generally, show partially
how the eleven-dimensional supergravity can be rewritten in terms of N = 1-like
structures. Specifically, we will show first how the structure of the supersymmetric
background is characterized by a particular Er7) object ¢. From a four-dimensional

perspective this encodes the scalar chiral multiplet degrees of freedom. We then show
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that the superpotential can be written as an E;(y) invariant function of ¢.

The essential idea of the construction is that the O(d, d) symmetries of general-
ized d-dimensional geometry, which in string theory are related to T-duality, should
be replaced by the U-duality exceptional symmetry groups Eyq. Since U-duality
connects all the degrees of freedom of eleven-dimensional supergravity, or for type II
theories, both NS—NS and R-R degrees of freedom, this extension should provide a
geometrization of generic flux backgrounds. These ideas have been described in some
detail recently by Hull [194], who dubbed the corresponding geometry “extended”
or more specifically “M-geometry”. In addition, the fact that supergravity could be
reformulated in terms of Eqq) objects was earlier pointed out by de Wit and Nico-
lai [179], with some recent connected work in [195], and motivated by this one might

coin the term “exceptional generalized geometries” (EGG).

5.1 The exceptional generalized tangent space and

Erry

We would thus like to describe an exceptional generalized geometry (EGG), analogous
to the generalized geometry of Hitchin, but relevant for the description of eleven-
dimensional supergravity (or type II supergravity including the RR fields) rather
than simply the NS—NS sector of type II. We will concentrate on the case of a seven-
dimensional manifold M. As already pointed out this construction has also been
described, in general dimension, in [194] and is closely related to the work of [179, 195].

Introducing the generalized tangent space allowed us to construct objects with an
O(d, d) symmetry. The g and B degrees of freedom then encoded a O(d,d)/O(d) x
O(d) coset, parameterizing the generalized metric G. This coset structure is well

known from considering the compactification of the NS-NS sector of ten-dimensional

1This is the notation we will use in this thesis. The first letter of EGG can be viewed as standing
for exceptional or extended or both
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supergravity to 10 — d dimensions. For instance, when the internal space is a torus
T, the low-energy effective theory in 10 — d dimensions has the scalar moduli param-
eterized by that same coset O(d, d)/O(d) x O(d), and a set of U(1) gauge fields in the
2d-dimensional representation of O(d,d). In addition, there is, of course, a stringy
0(d,d;Z) T-duality symmetry. The string momentum and winding charges further
couple to the 2d U(1) gauge fields [53].

In constructing the EGG we use the analogous groups, that is, those related
to U-duality. Eleven-dimensional supergravity has as boson fields a metric g and
a three-form A. Compactifying on a T torus these lead to scalars parameterizing
Eq4/H (where E; is a non-compact version of the exceptional group and H is its
maximal compact subgroup) and U(1) fields spanning a representation of E4. The
momentum, membrane, five-brane and, potentially, Kaluza—Klein monopole charges
couple to the relevant U(1) gauge fields. In particular in d = 7, the scalars parame-
terize Er(r) /(SU(8)/Z;) and the gauge fields (together with their magnetic duals) or
equivalently the M-theory charges, fill out the 56 representation of Er).

Given this analogy, since in generalized geometry the generalized tangent space is
in the same representation of O(d, d) as the U(1) gauge fields it is natural to construct
an exceptional generalized tangent space which transforms as the 56 representation
of Fr(7). As in generalized geometry, the GL(7,R) diffeomorphism group should be a
subgroup of Er7), and we also expect the gauge transformations of A to be somehow
embedded into E7(7). The construction is as follows.

As described in section 4.1, there is a natural SL(8,R) subgroup of F7(7) under

which the 56 representation space is given by

E = AV o A*V* (5.1.1)

where V is the eight-dimensional fundamental representation space of SL(8,R). It is

natural to embed the GL(7,R) diffeomorphism group in SL(8,R). Let us choose the
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embedding (see section 4.3) such that
V= [(A"THY* @ T] @ (A'T*)3/4. (5.1.2)
One then finds
E=ATY)e[TeNT e AT @& (T A'TY)]. (5.1.3)

(Note that the final term in brackets can also be written as (A"7T")? @ A®T). The
bundle (A77*)~1/2 is isomorphic to the trivial bundle, thus there is always a (non-

canonical) isomorphism
ExToNT @ AN°T @ (T A'T). (5.1.4)
Given such an isomorphism we can denote elements of E as
X=z+w+o+T17€E, (5.1.5)

where, in components, we have ™, Wmn, Om;..ms a0d Ty ny.ong-

The bundle E is what we define as the exceptional generalized tangent space
(EGT)?. Except for the overall tensor density factor of (A7T*)71/2, we see that we
can identify it as a sum of vectors, two-forms, five-forms and one-forms tensored with
seven-forms. Physically in M-theory we expect these to correspond to momentum,
membrane, five-brane and Kaluza—Klein monopole charge respectively.

Recall that the generalized tangent space had a natural invariant metric defining
the O(d,d) group. As discussed in section 4.1, the group Ey7 is defined by, not

a metric, but a symplectic structure 2 and symmetric quartic invariant ¢ on the

2Note that there is a second possible way of embedding GL(7,R), and hence choice for E, anal-
ogous to the choice of spin-structures of O(d,d) [169], where E is defined as in 5.1.3 except with
an overall factor of A7T/|A"T|. This bundle has a similar isomorphism to 5.1.4 but with T and T*
exchanged everywhere. We will ignore this second choice.
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56-dimensional representation space. This are given explicitly in terms of SL(8,R)
representations in section 4.1. In EGG they are the analogues of the O(d, d) metric
T

Next we would like to identify the analogues of the B-shifts. We note that the

133-dimensional adjoint representation space of E77y decomposes as
A=(TRT) O AT AT @ AT o AT, (5.1.6)

Given there is a three-form potential A in eleven-dimensional supergravity, the ana-
logue of B-shifts should be A-shifts generated by A € A3T*. In fact, we will also
consider A-shifts with A € A®T™* corresponding to the dual form-potential. This will
be described in more detail in the next section, for now we simply note that A and A
are both elements of the adjoint bundle given in eq. (5.1.6). Their action on X € E

is given in eq 4.3.8. It exponentiates to

eA“LAX:
1 -
T+ [w+ i Al + [o+A/\w+§A/\z'xA+z‘xA]

< | 1
+ [7’+jA/\U—jA/\w-I—jA/\z'xA+§jA/\A/\w+8jA/\A/\ixA],
(5.1.7)
where we are using a notation for elements of 7* ® (A"T™*) defined in 4.3.9. Note

that the action truncates at cubic order. Furthermore, the corresponding Lie algebra,

unlike the case of B-shifts is not Abelian. We have the commutator
[A+ A A +A]=-ANA. (5.1.8)

That is, two A-shifts commute to give a A shift [196].
As in the case of generalized geometry, we would like to consider the case where we

can make A and A shifts corresponding to non-trivially patched form-field potentials.
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Let us start with

Xo € T® AT & AT @ (T* ® ATT™). (5.1.9)

On a given patch U, we define the shifted object
X = et X, (5.1.10)
In passing from one patch to another we have, on Uiy N Uy,
X(a) = ethenrtdhian X (5.1.11)

provided the connections A and A patch as

Ay — Ay = dA(ap), (51.12)

i N 1
Aa) = Ag) = dAap) = 5dAap) N A)-

As we will see in the next section this is precisely the patching we get naturally from
eleven-dimensional supergravity, and is necessary for the twisted EGT to depend only
on the connective structure of the gerbes. We can define E more formally via a series

of extensions
0— AT*— E" — T —0,

0— AT ——SFE S E"— 0, (5.1.13)
0T QAT —E—FE —0.
Above we have only given the first level of the connective structure of the gerbes.

For instance on the corresponding multiple intersections of patches we have

Aap) + Aipy) + Aiya) = dA(apy) (5.1.14)

A(grs) = Mars) + Aass) — Masy) = dA(apre)-

For a quantized flux F' = dA(,) we have gp6) = eMesve) € U(1) with the cocycle
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condition

98769 Taryse) 9(@856) Iaune) I(and) = L. (5.1.15)

For ]\(aﬁ) there is a similar set of structures, with the final cocycle condition defined
on a octuple intersection Ui,y M-+ N U gg)-

Finally we would like to identify the analogue of the Courant bracket for the EGT.
We look for a pairing with A- and A-shifts as automorphisms when dA = dA = 0.

One finds the unique “exceptional Courant bracket” (ECB)

[t +w+o+7,2 +w +0" + 7]

1
= [z, 2] + Low' — Lopw — §d (1o — ipw)

. . . (5.1.16)
+ L0 — Lyo — §d (120" — igr0) + oW Adw — Ew’ A dw
1 1 1 1
+ §Ez'r' - E[,z/’f + E(jw Ado' — jo' Adw) — E(jw' Ado — jo Adw')

If Gepisy is the group generated by the A and A shifts, the ECB is invariant under the
DIH(M) X Gshift.

5.2 The exceptional generalized metric and SU(8)/Z,

structures

Having set up the EGT, its topology and the corresponding bracket, we now de-
scribe the analog of the generalized metric and how this encodes the fields of eleven-
dimensional supergravity. Our motivation is that, when compactified on T7, the
moduli arising from the eleven-dimensional supergravity fields g and A parameter-
ize a Eyr) /(SU(8)/Z2) coset space [179]. Rather than define the coset space and
corresponding metric (see [194]), we will define the structure in a slightly different
way.

Geometrically, the coset structure implies that g and A define an SU(8)/Z, struc-
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ture on E. Such a structure can be defined as follows. Recall that Er () preserved a
symplectic structure £ on E. As such it is a subgroup of Sp(56,R). Suppose one has
an (exceptional generalized) almost complex structure (EGACS) J which is compati-
ble with Q, that is Q(JX, JY) = Q(X,Y). This defines a unitary U(28) structure on
E. If it is also compatible with the Er(7) quartic invariant, that is ¢(JX) = ¢(X), then
it is invariant under the common subgroup of Er7) and U(28) namely SU(8)/Z,. We
will construct J explicitly below. To summarize, an SU(8)/Zy structure is equivalent

to an almost complex structure J on E such that

QUJX,JY)=QX,Y) ; q(JX)=q(X), (5.2.1)

or in other words J € FEy(7). Note that, in contrast to the generalized geometry case
where the O(d) x O(d) structure was equivalent to a compatible product structure sat-
isfying [12 = 1, for SU(8)/Z; C Er(7) the structure is defined by a compatible complex
structure satisfying J? = —1. Given J and Q we can then define the corresponding

exceptional generalized metric (EGM) G by

G(X,Y) = Q(X,JY), (5.2.2)

which gives a positive definite metric on E. We now turn to how one constructs the
generic form of J and hence G.

Given a metric g, on the SL(8,R) representation space V, a natural way to
define a particular almost complex structure Jp, using the conventions of section 4.1

(in particular pairs of indices aa’ and bb’ are antisymmetrized), is as follows

0 _gabga’ g .Tbb/ _gabga’b’zl
by’
JoX = = . 5.2.3
0 A / P b ( )
JabJa'ty 0 Ty JabJarvy @
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The corresponding EGM is

GO(Xa Y) = gabga/b/xaa'ybb’ —+ f]abf]a’blﬂrl y{,b,. (524)

aa’

From the definitions 4.1.3 and 4.1.4 of Q and gq it is clear that Jy € E7(7) provided

det § = 1. Under an infinitesimal Ey(7) transformation p € 133 we have

+aa’ +absa’b!
Uy —2uTg
6J0 = [,U,, Jo] = o oo (525)
=2 daryr —Hgy

where %, = labed T *lgpey and 1E = jiap & e and indices are raised and lowered
using §. Thus Jp is invariant under the subgroup generated by p_, and p.,. As
discussed in section 4.5 this is precisely SU(8)/Zs (see eq. (4.5.6)).

Given the embedding 5.1.2 of GL(7,R) C SL(8,R) discussed in detail in sec-

tion 4.3, we can define § in terms of a seven-dimensional metric g as

R s |9 0
Gy = (det o)~V [7™" (5.2.6)
0 detg
Acting on elements of X =z +w + ¢ + 7 we have
Go(X, X) =2(|z + |w* + o> +|7]?), (5.2.7)
where |72 = &Tmnyn, T, |0]? = %0n,.ns0™ ™ etc. and where we have

dropped on overall factor of (det g)l/ 2 50 that the result is a scalar, which is nat-
ural, since in writing X = 2 +w + ¢ + 7 we are using the isomorphism given in
eq. (5.1.4).

Given a seven-dimensional metric g we have thus been able to write a particular
SU(8)/Z; structure Jo. A generic structure, given all such structures lie in the same

orbit, will be of the form J = hJoh™! where h € Ey(7), or equivalently G(X,Y) =
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Go(h™1X, h71Y). We write h = e* with the Lie algebra element p = (1%, taobea) €
133. The elements p™, generate the GL(7,R) subgroup and acting on Jy simply
change the form of the metric g. The additional components x8,, and u™g modify the
form of § in eq. (5.2.6). Since only p, acts non-trivially on Jy, we need only consider
transformations with, say, u™s. Similarly since only pf; , acts non-trivially we can
generate a generic J using only, say fimnps. However, y™g and fignps transformations
precisely correspond to the subgroup of A- and A-shifts. Thus, given a generic g

defining Gy, the generic EGM can be written as

G(X,Y) = Gole X, e~ 4-4Y). (5.2.8)

Note that this is analogous to the form of the generalized metric in Hitchin’s gen-
eralized geometry. Note also that for non-trivial A and A, Gy is an EGM on the
untwisted EGT given by T'® A?T* & A°T* @ (T* ® A"T*), while G is an EGM on the
twisted bundle E given by eq. (5.1.13).
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Chapter 6

Supersymmetric backgrounds and

EGG

In this chapter we will relate the EGG defined in the previous section to eleven-
dimensional supergravity and in particular seven-dimensional supersymmetric back-
grounds. The physical context we are interested in corresponds to the case where
the eleven-dimensional space-time is topologically a product of a four-dimensional

“external” and a seven-dimensional “internal” manifold.
Moy = Mz x My (6.0.1)

If M; is compact we can consider compactifying eleven-dimensional supergravity to
give an effective four-dimensional theory. In particular, we could focus on the case
when the effective theory is supersymmetric. We could also look for particular ex-
amples of compactifications which are solutions of the supergravity field equations
and preserve some number of supersymmetries. In either case, the geometry of M7
is restricted. The goal here is to understand how this restricted geometry can be

naturally described in terms of EGG structure on M.
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6.1 Conventions

We adopt conventions where the eleven-dimensional supergravity action takes the

form (note this matches, for instance, the conventions of [190])

1 — 1
S= - / V=g d”x[R — U MNP iy — ZFy A *HF“}
2 Jan, 2
1 — 1
- T V=g Az TMNECRS G (F ) popg — -—/ Fy A x11Cy
192 Mi; 2 Mi1
1
- — FyAnFyANA
12 Jos, 4 4 3,

where the eleven-dimensional Newton’s constant is set to unity and

(04)MNPQ = 3E[MFNP\I’Q] . (611)

while the variation of the gravitino ¥, is given by

1
oW = Dye+ ﬁ (FM NPQE _ 85%FPQR) (F)NPQR € +..., (612)
We use uppercase indices M, N,... =0,..., 10 for curved eleven-dimensional indices,
w,v,...=0,...,3 for the four-dimensional (cxtcrnal) indices and m,n,...=1,...,7

for the indices on the internal manifold. £ is the field strength of the eleven-
dimensional three-from field.
The dots represent terms coupling ¥,, and F. The metric g has signature

(—,+,...,+) and I'p; are the eleven-dimensional gamma matrices satisfying

{Ty, Tn} = 2gun1, (6.1.3)

with Tag a0 = léas..nr, Where the volume form e satisfies €1 10 = +/—g- The
spinors € and ¥;; are Majorana. Given the intertwining relation —FE = C-'ry,C,

we define the conjugate spinor W), = ¥1,C~1. Further the equation of motion and
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Bianchi identity for the flux F' read
1
d*F+§FAF=O ; dF =0. (6.1.4)
In this context all differential forms are defined as:
1 mq m.
A(p) = aAmlmmpd:E A...dx™ . (6.1.5)

Also

(dA)ml--~mp+l = (p+1)v[m1Am2...mp+1]

(dTA)ml...mp—l = _vnAnml...mp_l (616)
(_1)p(D—p) .
(*DA)m1...mD_p = Tfml...mp_p 1mnpAAn]...np

6.2 Effective theories and field decompositions

Here we will focus on the low-energy effective theory rather than the on-shell su-
persymmetric backgrounds. Given the product manifold structure in eq. (6.0.1), the
tangent bundle decomposes as T101 = 73,1 @ 77 and all the supergravity fields can be
decomposed under a local Spin(3,1) x Spin(7) C Spin(10,1) symmetry. Normally one
would derive a four-dimensional effective description by truncating the Kaluza—Klein
spectrum of modes on M; to give a four-dimensional theory with a finite number
of degrees of freedom. For instance, compactifying on a torus and keeping mass-
less modes, one finds that the degrees of freedom actually arrange themselves into
multiplets transforming under Ey7) for the bosons and SU(8)/Z, for the fermions.
However, one can also keep the full dependence of all eleven-dimensional fields
on both the position on M;; and M;. One can then simply rewrite the eleven-
dimensional theory, breaking the local Spin(10,1) symmetry to Spin(3,1) x Spin(7)
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so that it is analogous to a four-dimensional theory. This was done explicitly by de
Wit and Nicolai in [179] retaining all 32 supersymmetries, where it was shown that
in general the degrees of freedom fall into Er¢7y and SU(8)/Z, representations. In
this work we will ultimately be interested in such reformulations focusing on only
four of the supercharges so that the theory has a structure analogous to N = 1 four-
dimensional supergravity. Note that formally the only requirement for making such
rewritings is not that Mg is topologically a product, but rather that the tangent

space T191 decomposes into a four- and seven-dimensional part
Tio1=Ts1 D F. (6.2.1)

For simplicity, here we will concentrate on the case of a product manifold, though all
of our analysis actually goes through in the more general case, with the EGT defined
in terms of F rather than 75.

Let is briefly note how the fields decompose under Spin(3,1) x Spin(7). The
degrees of freedom are the metric gpsn, three-form Ay np and gravitino Wy,. Let us
first consider the Spin(3,1) scalars. The eleven-dimensional metric decomposes as a

warped product

ds?(Myy) = eQngL‘fj)d:c“d:c” + Gmndz™dz"™. (6.2.2)

4 — det gmyn, chosen so as to obtain the standard Einstein-Hilbert term

where e~
upon dimensional reduction. In a conventional compactification, deformations of
the internal metric g, lead to scalar moduli fields in the effective theory. Moduli
fields can also arise from the flux F. Keeping only Spin(3,1) scalar parts, one can

decompose

F = *7ﬁ A e4Ee(4) + F (623)

where F € A*T? and F € A'T; and €4y = /—g@Wdz® A - .- A dz®.
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The eleven-dimensional equation of motion and Bianchi identity given in eq. (6.1.4)

then decompose as

dF‘+%F/\F:0

d(e4E X7 F) = O, (6 9 4)
dF =0

d(e'” x; F) +eF =0
so one can introduce, locally,

F = dA,
o (6.2.5)
F=dA-ZANF,

where on a patch A € A3TF and A € A®T;. By definition, F and F are globally
defined. This means that the potentials A and A must patch precisely as given by
eq. (5.1.12). We thus see that the twisting of the EGT in eq. (5.1.11) is precisely that
corresponding to the supergravity potentials.

Furthermore, given the discussion of the previous section 5.2 the scalar degrees of
freedom gm, and Ay, and flml,_,me scalars can be combined together as an EGM or
equivalently an exceptional generalized almost complex structure J on E.

Turning briefly to the remaining fields, there are 28 bosonic Spin(3,1) vector
degrees of freedom coming from off-diagonal components of the metric g, and from
An- One usually also introduces the corresponding dual potentials giving a total
of 56.

Finally for the fermionic degrees of freedom we decompose the eleven-dimensional

gamma matrices as

MM=efy'@1l TIM=iyy®y" (6.2.6)
where the seven-dimensional gamma-matrices conventions are defined in section 4.4,
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while the four-dimensional gamma matrices satisfy {v,,7v,} = 2g,([91 and Vu,.p =

'7(4)6511),,,“4. The real eleven-dimensional spinors correspondingly decompose as

S e 6.27)

32=(2,8)+(2,8)

where ivy4)f: = £6. (with 87 = DO} = 0_ and —; = D~'~,D) are chiral four-
dimensional spinors and 7 is a complex Spin(7) spinor. The factor of eF/? is con-
ventional. Thus ¥, decomposes into eight spin—% fermions, while ¥,, gives 56 Spil’l—é
fermions.

As discussed in section 4.4 there is a natural embedding of SU(8) in the Clifford
algebra CIliff(7,0; R) with the complex spinors in the fundamental representation. It
turns out the all the degrees of freedom, fermionic and bosonic arrange as SU(8)
representations. Thus we can actually promote the Spin(3,1) x Spin(7) symmetry to
Spin(3,1) x SU(8). This is summarized in the table 6.1 where rs transforms as the

r representation of SU(8) with Spin(3,1) spin s.

Gmn, Amnpv Aml...ms : 350 + 3550 U, : 561/2
Gum, Apmn + duals : 28, + 28, V,: 8z
g,(ﬂ/) S

Table 6.1: Decomposition of eleven-dimensional supergravity fields under Spin(3,1) x

SU(8)

Note the familiar result that these representations precisely fill out the form of
the N = 8 four-dimensional supergravity multiplet.

From an EGG perspective, the scalar degrees of freedom define a SU(8)/Zs struc-
ture on the EGT. Given this structure (or rather the existence of a double cover
SU(8) structure, which is not always guaranteed) one can then define SU(8) spinors
and hence the fermionic degrees of freedom. This is the EGG analogue of requiring a

metric, or O(d) structure, and hence a set of vielbeins, before one can define ordinary
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spinors on a curved manifold.
Let us now turn to how this analysis changes when we pick out a single set of
supersymmetry parameters, so that the four-dimensional effective theory has N =1

supersyminetry.

6.3 N =1 M-theory backgrounds and SU(7) struc-

tures

We would now like to identify the analogue of the N =2 SU(3) x SU(3) structure of
type II theories for N = 1 compactifications of eleven-dimensional supergravity. This
means picking out four preferred supersymmetries out of 32, or equivalently a fixed
seven-dimensional spinor 7 in the general decomposition given in eq. (6.2.7). Note
the this decomposition is that most general compatible with four-dimensional Lorentz
invariance [197], and generically has complex 7. Recall that the EGM G defines an
SU(8)/Zg structure on E, and 7 transforms in the fundamental representation 8 of
the double cover SU(8). As before, to define a generic low-energy effective theory the
spinor 7 must be globally defined and nowhere vanishing. At each point the stabilizer
of a fixed element of the 8 representation is SU(7), thus we see it defines a special

structure on the EGT F
N =1 effective theory < SU(7) structure on E. (6.3.1)

Note that projection E — T3 allows us to pick out a GL(7,R) subgroup of 7y, and
similarly, given a EGM G it allows us to define a natural Spin(7) C SU(8) subgroup.

Under Spin(7) we can choose real spinors so

n=m—in (6.3.2)
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Each #; is stabilized by a Gy € Spin(7) subgroup. Thus from the point of the view of
the ordinary tangent space T%, if 7; are globally defined and non-vanishing we have
a pair of Gy structures. However, all we really require is a globally defined non-
vanishing complex 7. Thus in general we may not have either G5 structure. Locally,
the pair of 7; are preserved by a SU(3) group.

One way to define the structure is as the pair of EGM and SU(8) spinor (G, 7),
but as in the type II case, it is interesting to see if we can find a particular orbit in an
F7(7) representation which can also be used to define the structure. Again we might
expect that it will appear as a spinor bilinear. As we discuss in a moment, this space
should also correspond to the N = 1 chiral multiplet space in the four-dimensional
effective theory.

Decomposing under SU(7), the 56 representation has no singlets so cannot have
elements stabilized by SU(7). The adjoint 133 does have a singlet. In terms of the
spinor 7, the singlet in u € 133, using its decomposition 133 = 63 + 35 + 35 under

SU(8), can be written as

o = (/J'aﬂa Maﬂ’yﬁa ﬂaﬂ76)7

(6.3.3)

However, it is easy to see that this is stabilized by U(7) rather than SU(7). In turns
out the relevant representation is the 912. We define the following SU(7)-singlet
complex element in terms of its SU(8) decomposition, that is 912 = 36 + 420+ 36 +
420,
b0 = (0™, 675, Pag, Paps’)
= (x*x*,0,0,0),

(6.3.4)

where it turns out, in what follows, to be easier to use the conjugate spinor x = n°.
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Finally we can form the structure
¢ = et 4p,. (6.3.5)

It turns out that ¢ does indeed define a generic SU(7) structure.

To see this, we first note that under an infinitesimal F;(7 transformation we have

66°% = (u™x")x? + x*(12,X"),

567 =
B (6.3.6)
ddap =0,
55)&676 = /JJaB"yeXEX(S-
Thus ¢y is stabilized by elements such that
X" =0, papyx’ =0, (6.3.7)

which implies, since i1 = *u, that the stabilizer group is SU(7) (and not as should
be noted SU(7)/Z,). Since e4t4 ¢ Er(7) the stabilizer of ¢ must also be SU(7).
Finally, note that the SU(8) representations were defined using the gamma matrices

A+A

~% defined using the seven dimensional metric g. Since the action of e generates

a generic EGM G, we see that (when taken with the choice of generic g and spinor 7,

A+A

which are implicit in eq. (6.3.4)) the action of e must generate a generic element

of the orbit under Lr(7).

Note that we could also define a real object A = Re ¢
A= eA+A(XaXB7 03 Xajéﬂv 0)7 (638)

which also manifestly defines the same SU(7) structure. If N(E) is the 912 repre-

sentation space based on the EGT E, at each point x € M;, we can view A as an
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embedding of the coset space

Eq()

A ST

x R* < N(E), (6.3.9)

where R™ just corresponds to a rescaling of A. We will call this orbit subspace X.
There should then be a natural complex structure on ¥ which allows one to define
the holomorphic ¢. Note that A far from fills out the whole of the 912 representation
space. Rather we are considering a very particular orbit. It would be interesting to
write down the particular non-linear conditions which define the orbit.

Finally let us also consider how the supergravity fields decompose under the SU(7)
subgroup and how these correspond to different N = 1 mutliplets. We have for
SU(7) c SU(8)

8=7+1, 35 = 35,

(6.3.10)
28 =21+47, 56 = 35 + 21.

This means we can arrange the degrees of freedom as in table 6.2.

multiplet SU(7) rep fields

Chiral 35 Imn Amnp’ Am1...m7a \I’m
vector 21 Gums Aungy Y

Spin—% 7 um, Aunpv \I!u

gravity i Guv \I’u

Table 6.2: Multiplet structure under SU(7)

Note that the coset space Ey(7) / SU(7) actually decomposes into 35+ 7+ 35+ 7.
Thus there are more degrees of freedom in A than chiral degrees of freedom. The same
phenomenon appears in the type I case and is associated to the gauge freedom of the
extra Spin-g multiplets. On solution is to assume in a given truncation of the theory
that there are no 7 degrees of freedom. Note that in this picture we expect there to
be a natural Kahler metric on the coset space & = Ey7y / SU(7) x RT corresponding
to the Kahler potential of N = 1 theories. We do not address this problem here.
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6.4 From G, to SU(3)

Before moving on to the calculation of the superpotential let us make the underlying
SU(3) structure arising in the presence of two Go-invariant spinors explicit using an
approach analogous to [109].

Define the fundamental SU(7) four-form as
= -y dzy, Ndzp Ndzy ANdz, = —7ydpC e, Aey Aee A ey (6.4.1)

where a, b, ¢, d are internal frame indices. Now define x; (i = 1,2) such that:

n° = ax1+ Bxe
ch = Xi (6.4.2)
Xixj = 0ij

with o, 3 € C and |a|? + |3|* = 1 given the normalization 7 = 1. Then

P = o’ + b + aB (P2 + 1) (6.4.3)

where we define
Vi; = =XV PV x; dzn Ndzp, ANdzy Adz, = —)'(w“deXj ea Nep Nee Neg (6.4.4)

The x; consequently define a plane normal (in spinor space) to the non-singlet com-

ponents of any generic spinor. So we may choose:!

71234Xi — ,71256Xi — ,73456Xi = —x;. (645)

1The chosen combinations of gamma matrices (where the indices are frame indices) all square to
unity and commute with each other and can thus be used to define projection operators reducing
the original eight-dimensional Majorana subspace to the aforementioned two-dimensional one labeled
by a specific choice of both eigenvalues (note that the third condition follows from the first two by
consistency).
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Further since ¥1x2 = 0 we have

Y x = —xa
(6.4.6)

7Y x2 = +x2-

Before rewriting + in terms of SU(3) structures we must present some useful identities.

Note that:

{77’ 71357} =0

(6.4.7)
(V) =1
From the first equality we deduce that
7 —
Y X1 = @Xe
(6.4.8)
Yx2 = bxa
where a, b are pure imaginary as:
Xi=xi= Dxi
(6.4.9)
,ym* — —D_l")/mD
Also
a=x2y'x1= (17 x2)" = b (6.4.10)

which together with the second equality in eq. (6.4.7) leads to (up to a choice in sign):

-7 x1= Xz
(6.4.11)

—iy'x2 = —xa
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and then eq. (6.4.6) gives

135

TUXL = X
(6.4.12)
7¥x2 = ixa
Remembering our convention that —iy) = A7 =1 we find:
Yx1 = ’734X1 =71 = x2
(6.4.13)
2 x2 =7 x2 = 7% = —x1
Finally
YPx =" =1 = i
By = Ay = 4130y, = _ix,
(6.4.14)
Y x1 =% = 7x = —ixa
Y x2 = 70 = 7*x5 = —ixy
and
YOx=—ix1 5 Y% = ixe (6.4.15)

We may now explicitly calculate the non-vanishing components of ¢ i.e. those whose
four-gamma matrix combinations commute with those in eq.(6.4.5). Further the
non-vanishing components of ; and 9 (¢12 and ;) will (anti-)commute with

1357 This leaves us with (commuting):

1234 1256 3456 | 1357 . 71467 . 72367 . 2457 (6416)

1367 . 1457 2467 . 2357 (6.4.17)
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It can then be shown that:

Y = ReQ/\v—I—%J/\J
s = —ReQ/\v+%J/\J (6.4.18)
Yrz= —Im QAv= oy

where
J=e?+ ¥+,
Q= (&' +ie?)(e* +ieh)(e® +ieb) (6.4.19)
v=e'.

which given eq. (6.4.5) and eq. (6.4.6) can be shown to be the only non-vanishing

components of a general SU(3) structure in seven dimensions:

Jmn = _>_(1'7mnX2a

1

anp = b_(lf}’mnpx2 - 5 (Xleanl - >_(2’Yman2) ) (6420)

Um = —1X1YmXe2-
One can in fact check that:

JANITANJT = %QAQ

JAQ= 0 (6.4.21)
ipd =1,0= 0
So in conclusion:
2 2
¢=a ;ﬁJ/\J—|—(a2—ﬁ2)ReQ/\U—ZOzﬁImQ/\v (6.4.22)
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A particularly simple special case arises when 7 = %(Xl + ix2) as then ¥ = Q A w.

In a similar fashion we define the fundamental SU(7) three-form as
@ = %7 Y = iV dz, Adxg Adx, = iy e, A ey A e, (6.4.23)
where a, b, ¢ are again internal frame indices. Then

@ = 11 + fPom + af(erz + pa) (6.4.24)
where we define
@i = T X dzp A dzg Adz = iy X ea A ey Aee (6.4.25)

It can then be shown that:

o= —Im Q+JAv

po= Im Q+JAv (6.4.26)

w12 = —Re Q =y

Thus:
o=+ JAv—(a*— ") Im Q—2a8 Re Q (6.4.27)

Again there is a special case for n = ﬁ()ﬁ +ix2) where ¢ = ¢  and thus in this case

Y = —i ¢ Av. More generally :
L s : ,
n=gelatin) i JER=Y=FipAv (6.4.28)

given the normalization 777 = 1 these are the only cases when 7m7° =0 .
One may also wish to calculate bilinears in terms of each of the individual G,

structures. Note that the (complex) structure spinor is made up of two real structure
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spinors i.e. n = m; — inz Where:

m = (ax1 + a'x2)

(6.4.29)
n2 = (bx1 +b'x2)
with @ = a+ib and 3 = d' + b, It follows that:
1 — ., m m 1 1 =, mnp mnp
N 7= §[18x8+77'7 m™ = " m ™ = ]
1
g[ISXS +7' a/B -« /B)Um7 + |Jmn7mn
i
+ 5 (lafon + B2 + (af" + @ ﬁ)sou)mnp’y’”"”]
1
§[18><8 +i(af — o Blomy™ + |Jmn7mn
i
+ - ((Jaf? + 181 Av — (laf? ~ 161 ~ (o + o F)Re),,, 7™7]
(6.4.30)

From this we may deduce the expressions for n; ® 7j; 173 ® 7 by settinga = a; g = d

and a = ¢b; 0 = ib’ respectively. Further we find that:

1
m® 7 = = [(ab+ a't)Igxs + i(ba' — ab')vpmy™ + — 5 (ba’ — ab') Jny™

(6.4.31)
((ab +a't)J Av— (ab—a't')Im Q — (ba' + ab’) Re Q)mnpfym"p]

O-"I@.oolb—l

from which one obtains 7, ® 7; by the substitution a « b;ad < ¥. It is then

trivial to obtain further relevant operators (and their expansion in terms of bilinears)

X1 ® X1, X2 ® X2, X1 ® X2 and x2 ® X1 by nothing that :

a=1d=0=>m=x,
(6.4.32)

b=1;=0= 1= x2
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Chapter 7

The effective superpotential

In the previous chapter we found the objects defining the SU(7) structure relevant
to N = 1 reformulations of eleven-dimensional supergravity. The elements ¢ € %
should correspond to the chiral multiplet degrees of freedom. As such there should be
an analogue of the four-dimensional superpotential W, appearing as a holomorphic
function of ¢. In this section, we will derive the generic structure of W and show that
it can be written in an Er(7) covariant form. This is the analogue of the corresponding
generalized geometry calculation in the case of type II given in [177, 178]. Note that
the superpotential W, for the special case of a G5 structure i.e. with a restricted
Majorana spinor Ansatz, was previously derived using a somewhat different technique
in [190] without however touching upon manifest covariance under the underlying

symmetries.

7.1 Generic form of the effective superpotential

We will read off W from the variation of the four-dimensional gravitino. Recall that

the N = 1 gravitino variations are given by

1
Py = Vs + EieKﬂny“()_ +.., (7.1.1)
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where W is the superpotential and K the Kéahler potential. The expressions for
eX/2W can then be derived directly from the eleven-dimensional gravitino variation

(see section 6.1 for our conventions)

1
5%u:VM0+%§@MMWR—%ﬁﬂWﬂﬁhmw+.”, (7.1.2)

where the dots denote terms depending on ¥j,. We must first identify the correctly
normalized four-dimensional gravitino %, which in his context appears as a SU(7)
singlet. A naive decomposition ¥y, = (¥,, ¥,,) identifying v, with ¥,, leads to
cross-terms in the kinetic energy, so instead we first need to diagonalize the four-

dimensional gravitino kinetic energy term. This requires the following shift
~ 1 m
v, =¥, + EF”F v,,. (7.1.3)

One must also introduce a rescaling to account for the warp factor in the metric

Ansatz, and hence we identify the SU(7) singlet part as
\il#:eE/zwﬂ_‘_@n—l—eE/z@bfﬁ®nc+... (7.1.4)

where the dots denote non-singlet terms. This rescaling by /2 is the reason for
adopting the conventions chosen in the spinor decomposition given in eq. (6.2.7).
Given that we may rescale by including factors in #,, we can always choose a

normalization

m = 1. (7.1.5)

This allows us to introduce the projectors

1 . _
I, = 5(1 + iy4)) ® 17
(7.1.6)

1 : c=C
II_ ;= 5(1 —1")/(4)) ®7’) 7
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such that
e BT, = ¢, 0. (7.1.7)

It is now straightforward to calculate 1, in terms of n, F and F. By definition

Shyy @ = e EPIL 60, = e /21, (5\11” + %Fﬂrmaxym)

) (7.1.8)
= §ieK/2W'y”6’_ ®mn,
which gives
i 1 L =
eI = ZeE (4777me770 + Eanpqﬁvm"pqnc —1i%q Fﬁnc) . (7.1.9)

using the fact that 7y™n° = 0 identically to remove V,, E terms. This expression can

be put in a more standard form by writing!:

77077 =3 |:(ﬁ776) - gﬁanpn'Ymnp] . (7.1.10)

Note then that

. —i ] i
[Vo(n® @ 10),7™] =g 317"V Vmper + AP A 1 Ppar

8- 8- 3!

2
= — 2ﬁ’ympqu[m(pmpqr] (7111)

]

Further

T[Vim(n® ® 1), Y"]1° = — "Vt ¢ + Va0 77" 0° + G0V Y™ n° — 77" 0° Voinfin®

=—- 277770 ﬁ’ymvmnc
(7.1.12)

1We work in a basis where 7 =
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where again we used 77™7° = 0 and the corollary V,,,77™n¢ = —y™V,»n°. Finally

i

(7—77mvm770) (77770) = _8 T (d(p)mnpq(*7(,0)mnpq
i | (7.1.13)
= —=*7 (p Ady),
8
where we used
Pmnp = iﬁ’}’mnpnc- (7114)

throughout. Similarly,

Zanpqﬁ’ym"pqnc = — %7 (F A ). (7.1.15)

Hence

2 eK/2W = %GE [_Lc(p Adp —2iF A + 213'77770:|
1 n (7.1.16)
= Z7nfe” |d(@ —i4) A (¢ — 14) + 2dA — 1d(A A §)]

where we have introduced the renormalized @ = ¢/7jn°. In the case where = n° we
have a global G5 structure, our normalization convention implies that 77 = 1 and
one finds that eq. (7.1.16) agrees with that derived in [190]. The generic SU(7) case
differs from the simple G5 case through the pre-factor 77° and the fact that ¢ is no
longer real. Note that of course the derivation of the first ¢ A dp term is problematic
when 7jn° = 0 which happens when (in the notation of section 6.4) n = %eia (x1Eix2)

(with § € R). In this case on must use a slightly more refined approach.
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Decomposing 7 in terms of x1, x» one may show using the bilinears defined at the

end of section 6.4 (with o, 3 constant) that:

A" Van® = (e + B2 [(0® + 8%) x17 Drx1+ (0% — B%) X17*Dax1 + 208%17* DaX2)
= (2 +B%2 dorho—(a* =B doAp—2aB8(”+ 3% doAp
— (o' =pY) dpAo+ (=% dpAp+2(a® - B%)af dpnp

+ 40207 dpAp+2(0* ~ B)aB dpAp-208(0°+8) dpAo

(7.1.17)
where a =1---6 and we defined p=Re(), p=ImQ and 0 = J Av.
Matching coefficients we then find that:
dpAp=dpANp=dpAp+dpAp=0 (7.1.18)
which implies that
dAAQ=dOAQ=0 (7.1.19)
Further )
i
*7 X17* Dax1 =§[do— Ap+dp Aol
*7 X17* DaX2 ='§[d0 Ap+dpAd] (7.1.20)

—4
7 17 Drxa =§[d0 A o]

Thus the torsion term will in general (with «, 3 no longer constants) be given by:

Y Vun® = *7 %[(oﬂ +B%)do Ao — (o — B3 (do A p+dp A o) (7.1.21)

— 2aB(do A p+dp Ao)]| +i[B(0ra) — a(8:8)] (7.1.22)
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In particular when #n° = 0 implying a? + 82 = 0 and 7 = —\};e"‘s(xl + ixy) where
5 € R we find %

Y™V mn® = *7 —28—2042 [(da Ap+dpAc)Fi(doAp+dpAo)

—1i24

= %, € [do/\Q+dQ/\U]

o—i26 (7.1.23)
=* — [—dJAQAv+dUNT A

o—i2b
= k7 QQ/\dJ/\’U

where in the last two lines we made use of the fact that JAQ = JAQ = 0. Now
recalling than in the special case we are looking at ¢ = i€} we find collecting all the

elements of the superpotential term:

—i26
7 X/ =< _ana (2da + idJ A v)
or (7.1.24)
e—i26
s7 X2 = o — QA (2da+id] A v)

for the case corresponding to the other sign. Note that the term in brackets suggests

the equivalent in 6d B +iJ.

7.2 An Ey7) covariant superpotential

In this section we show that one may rewrite the superpotential term in a manifestly
E7(7) invariant form using the SU(7) structure ¢ € 912. We first need to introduce an
embedding of the derivative operator into an Ey(7) representation. Given the GL(7)

decomposition of the EGT given in eq. (5.1.3) we see that, assuming for the moment

2we do the calculation for the plus sign only; the other case is analogous
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we have a metric g, we can introduce an operator
D = (D" D) € 56 (7.2.1)

with
D™ = D™ = D,,, =0, Dpns = (det g)V/4V .. (7.2.2)

Consider now product between D € 56 and ¢ € 912 and more precisely the
projection thereof unto the component in the 133. Let us denote this by (D¢)4Z =
De¢p®AB) | where indices are raised and lowered using the symplectic structure Q4p.
The expressions for D¢ are given explicitly in eq. (4.2.10). One can then take the
adjoint action of D¢ on ¢ itself, which we denote as (D¢) - ¢ € 912. We will show

that the superpotential can be written as

(D) - b = — (%@ e_EeK/2W) . (7.2.3)

That is the combination (D¢) - ¢ is an SU(7) singlet proportional to ¢ while it is W,
which is related to the constant of proportionality, which is in fact invariant under
Eq(7). Further we see that W is by definition a homogeneous holomorphic function of
@.

We shall now proceed to prove this in two steps. First recall that we defined
¢ = eA"'“iqﬁo. It is easy to see that e=4=4AD = D. This follows from the fact that
the only non-vanishing components of the potential acting on D are of the form (in
explicit indices) (#7.4)™"9 and (¥74)™s. Hence the expression in eq. (7.2.3) can be

rewritten as

3
42

Typically this expression will involve a “connection” p,, which is an element of the

(e_A_ADeA-i-AQﬁo) . ¢0 = — ( G_EGK/2W) ¢0. (724)
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E7(7) Lie algebra labeled by m entering as:
e_“l_“iVmeA"”‘i =V + =V + e_A_AVm(e‘“A) (7.2.5)
The connection u,, may be put in a useful form by using an identity similar to the

Baker-Campbell-Haussdorf formula:

N(s) = etV (esh) = f: Mme (7.2.6)

n=1

n!

for any matrix (or more generally operator) L. Here s is an auxiliary variable which
has no background dependence and may be set to a convenient constant value. This
relation is easily proven by iteration, noting that:

dN(s)
ds

= [N(s),L] + Vsl and N(0) =0 (7.2.7)

Given the commutator algebra in eq. (5.1.8) for the flux terms the above series will

truncate at quadratic order and we have:

e A Ay, A =V, + V(A4 A) + %[Vm(A + A), A+ A
4 (7.2.8)
=Vm+VmA+VmA—§VmA/\A

Now recall that in the SU(8)/Zz basis the only non-vanishing component of ¢q as

given in eq. (6.3.4) is ¢o*® = x*x” where x = n°. This means

(Vin + )™ = Vi (x*%®) + (1 ®x")x° + Xx* (1”5 X7),
(vm + /-Lm)qsaﬁ’yJ = Oa

] (7.2.9)
(Vm + Mm)¢aﬁ =0,

(Vm + ,Um)q_saﬁ'yts = ,Uma,B'yeXEXJ-
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Furthermore

D = (D%, Dyp) = (=Y Vm, Y5 Vim)- (7.2.10)

1
2v/2
Taken together we find

(e—A—ADeA+A¢O)aﬂ

3
=3 (Vi OCX)Vs + bm XX V5 — XV B b 58X — XY™ tam 185X °)
(e_A_ADeA-I-AQbO)agfy(S

_ -3 e.m .0
2\/§Nm[aﬂ’y|ex Yoo X -

(7.2.11)
Finally, again using the identity 77y™n¢ = 0, or in this context x fyaﬁxﬂ =0, we find
_ a —3i
(A~ ADeMAgy) - ¢of = =15 V5V + X gt ex) X°X°
_ai (7.2.12)

=_—’7m5vmc+—'ym mec a. B
4\/5(777 SV m§ + Y™ msnE) XX

with all other components vanishing. Finally we note that u,, corresponds to an
“A-shift” of V,,A and a “A-shift” of mel — %VmA A A. Using the decomposition in
eq. (4.5.6) together with the definitions in eq. (4.3.7) we find

m € 1 mn;
X7775Mm65X = 4.4l anqu ’776 quJ - Z(*?F)X C'yJX (7213)

__1 =7 ., MmN c
= g Fmnwdll Y PIg —Z(*7F)7777 (7.2.14)

where we used the intertwiner C' to lower and its inverse C'~! to raise SU(8)/Z, indices
and the fact that x* = 7% Together these two expressions do indeed agree with
the superpotential as given in eq. (7.1.9). Note however that there is an ambiguity
here as to whether the derivative used to define D should be covariant or not. If it
is the metric will enter through the spin connection making the expression for the

superpotential in fact highly non-linear, and thus non-trivial, function of ¢.
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Chapter 8

Towards manifestly E7(7) covariant

supersymmetry variations

In this chapter we describe the first elements of a proof that the modified SUSY Killing
spinor equation in the presence of fluxes may be rewritten concisely in a fashion which
is manifestly Fr(7) covariant. To this effect we express the supersymmetry variations
in terms of the spinor bilinears. Finally we comment briefly on a coset description
which could potentially provide a path to manifest covariance. This work is the
extension to 11D supergravity for general flux backgrounds of the results obtained in

[173] for type II as reviewed in section 3.3.1.

8.1 From spinors to forms

As a starting point we use the equation derived in [197] (with due adaptation to
our metric ansatz) in the case of a warped maximally symmetric external space with

corresponding 4D Killing spinor equation:

1 _ 1
Vﬂ0+ = —§A1’yﬂ1’y(4)0_ + §A2’7ﬂ9_; , (8.1.1)
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where A; and Ay are AdS factors relating the metric to the Ricci tensor such that:

R, = —3(A3 + Ad)g,.. (8.1.2)

If A; = Ay = 0 we have warped Minkowski space. Consistency of the 11D SUSY

variation with the 4D variation then leads to:

1 T, _
Vi = —50mBx+ 5 fe  Pymx (8.1.3)
1 1
Fn T TP — _an P 3
Tagg e X 3 Pt X
0 — 1 mn; m _g? c gl c
Efe By = @anpqv pqx—§8 Evnx +e E—2—A1X +e E§A2X (8.1.4)

where f is such that Fj,,», = fewn, and x = 1° as before and the decomposition of
the eleven-dimensional in terms of 7 and .. is given in eq. (6.2.7). In [197] the authors

then derived a series of differential constraints on corresponding spinor bilinears:

d(¢@) = 0, (8.1.5)
d(e3 o) = —2iAe*FPu) — 20¢°Fdq), (8.1.6)
d(e*®¢a)) = 0, (8.1.7)
d(e*Ppay) = —e'Px F + 3iMe* Py — 3ihoe® Py, (8.1.8)
d(e*Fpm-) = —i2M:e%F x @3, (8.1.9)
d(e*Fomy) = €3 F — i20,eF * §(3). (8.1.10)

where a numerical subscript denotes a given bilinear’s rank and a sign the real and

imaginary part, with the bilinears themselves given by:

¢ = m, (8.1.11)
o) = M, (8.1.12)
Pm = =T Yml = TYm’s (8.1.13)
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Pmn = WYl = — Ymnl"s (8.1.14)
@mnp = i'r_]'.)’mnpna (8115)

Pmnp — iﬁ'}’mnpncy (8116)

Note that eq. (8.1.5) confirms the consistency of the normalization 7 = 1 up to a
trivial overall constant. On the other hand eq. (8.1.6) implies 7n° = e=*F = (det g)¥*
in the absence of AdS factors thus implying that the special case 7m¢ = 0 corresponds
to singular solutions for the warped Minkowski case. Also for warped Minkowski
eq. (8.1.10) implies that for the Majorana spinor ansatz n = 7° corresponding to
a single G, structure, as used in [190] for example, there are no supersymmetric
solutions with internal 3-form flux as ¢ is real in this case and further one is in fact
restricted to unwarped Minkowski space-time. The generalized spinor ansatz is thus

essential to obtain non-trivial supersymmetric flux backgrounds.

8.2 From forms to spinors

At this point one may then ask if one can isolate a set of differential constraints,
expressed in terms of the structure 3-form, which is equivalent to the flux-deformed
SUSY variations. Let us specialize again to the case Ay = Ay = 0. Further let us

again use! the rescaled form ¢ = 1-,117690 and its Hodge dual ¢ = ,—,3740 = %7( which

have useful algebraic properties generalizing those of the unrescaled forms for the.

Majorana ansatz such as for example:

1 1 ~
=P Nx7p = b Np = w7l (8.2.1)

1We assume #jn° # 0.
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or alternatively

(Pmnp(‘bmnp = 42

Iﬁmnpqqzmnpq = 168

(8.2.2)

Since we are dealing with an N = 1 (off-shell) effective supergravity in 4D, the

conditions for on-shell supersymmetric, purely bosonic backgrounds are given by:

W =0 (8.2.3)
oW

- 2.4

o =0 (8.2.4)

D =0 (8.2.5)

where t¢ are the moduli scalar fields and D is the D-term. Note that interestingly
the first two equations are satisfied for W if they are satisfied by W’ = tW where
t is a nowhere vanishing, but otherwise arbitrary, function. In analogy with these
conditions we will now show that the supersymmetry variation equation is in one-to-

one correspondence with the following expressions 2

x7[(dp — idA) A (@ —iA) +2X %7 1 —id(AA@)] =0 (8.2.6)
(dp —1idA) =0 (8.2.7)
d(x;p) = =8 dE A %7 (8.2.8)

where the last two equations essentially reflect the decomposition of the internal
gravitino variation under SU(7).

The proof proceeds by construction. Define

X (8.2.9)

2where A = x;dA locally but captures the global non-trivial topology of A
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It then follows from:

X"k =0
(8.2.10)

XA =0

that {x,v™x} form an orthonormal basis for (complexified) eight-component spinors

since ¥ x¥ = 1. In particular we have:

L. mnpq = ~ m
31 WPmap T IX = UoX + U™ X (8.2.11)
with
[ o
Up = —adﬁpmnpql/) = — *¥7 (d(p A (p) (8212)
w, = __'Zd(ﬁmnpq@npq = —ip,d@ (8.2.13)

3

so that comparing with eq. (2.2.23) we find that the scalar wp and the one-form u
correspond respectively to the torsion classes® Wy and W;. Torsion class Wj does
not contribute as by construction (Ws)mnpeY™™?X = 0. Replacing then ¢ A dA by
—i@ A dp in eq. (8.2.6) using eq. (8.2.7) we find:

Up = #7[ANdA—2X %7 1)] = —2fe*F (8.2.14)

Further given the properties of the torsion class Wy as given in eq. (2.2.21) we may
read off u,, from eq. (8.2.8) with u,, = 67 8,,F, so that substituting into eq. (8.2.11)

using again eq. (8.2.7)) for d@ and multiplying by ZWI e find:
( g ag ( 12 12

1

mn 1 m
'@anpqpy qu - 56 E’)/mX (8215)

fe'Px =

3To be quite precise these torsion classes are, strictly speaking, defined for manifolds with Ga
structure. However the differential relations in eq. (2.2.23) are still valid for manifolds with a more
general SU(7) structure.
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which is the algebraic part of the flux-deformed supersymmetry variation as given in
eq. (8.1.4) for the warped Minkowski case.

To derive the differential constraint on the supersymmetry variation spinor note

first that:
1 1 o
T VmX = VXt 5O ()X (8.2.16)
further
- T AT - T~ ] . I
VX = (VX)X K + X(VinX) X = Vin(XX )X = 557 VmPrpa?™"'X (8:2.17)
where we used
. 1 e VR
(VX)X = 5[(me)Tx + X (VX)) = Eam(xTx) =0 (8.2.18)

Since V@ is expressible solely? in terms of d@ and df @ we may write:

VX = a1(d'@)mn¥™X + a2(d'@)npym ™ X
(8.2.19)

T a3 (d@)npqr'ym npqrjz + a4 (dgb) mnpq’ynpqx

where a1, a3, az, a4 are complex constants. Using eq. (8.2.8) we further have (d' @), =
—8 O EPgmn from which we may deduce that the two first terms in eq. (8.2.19) only
contain terms proportional to 8°E~v,s%x and %. This follows by decomposing the

relevant spinors using the basis {¥,7" X} such that:

FEvmsX = 10°EQemrV X; (8.2.20)
(dfgb)np')/mnp)z = 8 asEgasnpgamnpf( -8 asEgbsnp'lﬁmnpr'yrx

= OmEX — P EPemnry X (8.2.21)

4 Again, strictly this a priori only applies to the case of simple G structure where ¢ is real. One
may however argue that this does not enter in the derivation of the equalities used here.
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where in the last line we used the identities:

@mnp@npr =d (Smr

’ (8.2.22)
@mnpwnpqr =d @mqr
whit ¢, ¢, d, d’ being constants. It thus follows that:
VmX = b10°EvymsX — b0 EX
(8.2.23)
— 1b3(dP) npgrym X — ib4(d@)mnpq7npq>z
upon substituting from eq. (8.2.7) and eq. (8.2.15) implies:
-3 Zbl —2A
va = [——BmE — (bl + bg)amE]X f (8224)
b, b
+(Bs + =) Prapgr ¥ ™7 X + (ba + 22) Frampg7™1X

144 36

where® we defined x = e~ x and by, by, b, by are constants fixed by the consistency

of eq. (8.2.23) which are expected to match the coefficients in eq. (8.1.3) with b; =

2,by = 3, b3 = 135 and by = Ig . For example
~T bQ
Vi =0= 2 = b,
36 -1 (8.2.25)
~T_.m ~ Tmn; _
VX = d e PIy = 3h b

At this point a remark is in order. We could have made our discussion more general
by leaving u.,, which represented the Wy torsion class, unspecified throughout, with
its relationship with the derivative of the warp factor arising from consistency. From
this perspective eq. (8.2.8) corresponds to the vanishing of the W, torsion class, which
thus seems to be equivalent to the vanishing of the D-term. Interestingly this means

that in the case of a warped Minkowski non-compact external manifold, the internal

5The supersymmetry conditions then guarantee that this definition is consistent with that of x
as a normalized version of ¥ given in eq. (8.2.9).
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manifold is necessarily an integrable manifold with Gy Dolbeault cohomology for
supersymimetric solutions.

We expect this no longer to be the case for the warped AdS external spaces. We
will not explore in detail here how the previous calculations are modified in this case,
but by consistency with eq. (8.1.5) - (8.1.10) and the gravitino variation, they should

follow from the differential constraints:

E

wr[(dF — idA) A (G —id) +2A % 1 —id(AAB)] = elj’%(ml +Ay)
-E
- . € . R - . “
(dp — idA) = 2-?7?(“\1 + Ao)[Py A @ — i *7 D3]

where e, is a constant and ;X5 is non-vanishing two-from representing W,. The first
equation follows from the V, 6. term in the gravitino variation which vanishes for
Minkowski space but shifts eX/2W by the AdS factors in the superpotential calcula-
tion for Anti-de-Sitter space where we identify e~%/2 with % The second equation
follows from substituting eq. (8.1.6) in eq. (8.1.10). In the last one we merely pa-
rameterized calculational ambiguities which we expect to be lifted in the context of
further work with a reasonable starting point being the Hodge dual of eq. (8.1.8).
Note in passing that in the presence of non-vanishing AdS factors eq. (8.1.7) follows

trivially from eq. (8.1.6).

8.3 Elements of manifest F7;) covariance

Let us now discuss the possible manifest F7(7) covariance of the on-shell supersymme-
try constraints. Ideally one would expect all three conditions eq. (8.2.6) to eq. (8.2.8)
to be equivalent to a single Er(7) covariant expression in terms of ¢, in analogy to the

type II case in the absence of RR-fluxes as given by the integrability condition® in

6although in this case there are two conditions, namely one for each pure spinor
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eq. (3.2.6). Here we take a less ambitious intermediary step by trying to make each
equation separately manifestly covariant. The D-term not yet having been calculated,
we will may not include eq. (8.2.8) in this analysis. On the other hand eq. (8.2.6) has
already been shown to be covariant in the context of the superpotential calculation.
This thus leaves us with eq. (8.2.7). Since we expect it to appear as a derivative of W
with respect to the moduli, as hinted in eq. (8.2.4), we will start by rewriting the su-
perpotential in an alternative form. Note that at this point this is introduced mostly
as a convenient construct, without a strong reference to a specific interpretation.
Define thus ®~ transforming in the 63 of SU(8)/Z.:

¢ =Y By -1
o, = 87777% — 8,7 = % — 6 = 4—895;bcd’7ab0dl (8.3.1)

whose embedding in E;(7) is given by:

1

207,184 = E@chd('v"b)

Py, (8.3.2)

a

where ¢~ = ¢ A y® — *7¢. Further define its orthogonal complement within Ey() as:

(03 1 -~ 2,00\ 2,0
PO = e (P () (33.3)

where @t = @ A y® + *7p. Taken together these give the SU(8)/Z, decomposition
of the Ey() Lie algebra element ® given by ¢ Ay® in terms of SL(8) representations.

One may then show that the superpotential may be written as:

W =tr(vy"e TV,,e’)

. . (8.3.4)
= tr (Y"[e®etet] IV n[eTete?)
where the trace is taken in the adjoint of E7(7) and
T = 2 A’ — (2 +A+F[B,A]+A (8.3.5)
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with A and A® being respectively the embeddings of the fluxes A and A in the Lie

algebra of Ey(7). Varying now with respect” to 7 one finds (up to a surface term):

ow

i
ot
~

2
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3
®
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[
ot
~

—
2
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3
ml
N
g
®
-,
S

(8.3.6)
= tr (Y™ e TVne’ 6T ) — % tr ([v" e TVme’],TI6 T )

where, in going from the first to the second line, we used the identities
STy =—eTo(eT)e T ; Vme T =—e TVneTe? (8.3.7)

together with the cyclicity of the trace. Further in the last line we used an analogue

of the previously derived identity
1
e T5(eT)=6T + 3 [67,7T) (8.3.8)

The second term in the last line of eq. (8.3.6) vanishes identically. Projecting out the

parts vanishing identically in the first term one finds:
W=0e[y"e TV |- (p o -, A —A A A)=0 (8.3.9)

which is equivalent to eq. (8.2.7). This expression is covariant, as well as the super-

potential invariant, under a rigid transformation S € Er() acting as:

A = SymSTL B SBSTY A SASTT AP SASSTT (8.3.10)

"More precisely the variation is with respect to either @ or A. The variation with respect to A
vanishes identically, in line with the fact that the six-form only contributes to the superpotential
trough its non-trivial topology; such a contribution does not appear in a variational derivation.
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A priori the projection in eq. (8.3.9) seems problematic in the sense that it appears
difficult to phrase it in a covariant way independent of the underlying degrees of free-
dom. A generic Ey(7) transformation will mix the different GL(7) representations, so
the projection will no longer be effected by simple sign inversion. A general back-
ground, which might no longer be described by 11D supergravity and may in fact be
non-geometrical, would probably be characterized by 7' = S7 S~1. This 7’ would
then need to be decomposed into the images of ®,.4, A% under S using a covariant
algorithm based on group theoretic arguments. For example note that the statement
that A% commutes with ®, A is in fact covariant. As an aside note also that ®, A, A%
live in an isotropic subspace of the 133 as defined by the natural inner product on
the Lie algebra.

Another problem with this approach is that physically the theory is most naturally
formulated in terms of ¢ € 912 rather than ¢ € 133. Although we defined a map®
between these it involves the intertwiner C, whose definition relies on the existence of
Clifford algebra and thus a metric, making it a highly non-linear function of ¢ a priori.
This in turn implies that the derivation presented here would lead to a very involved
picture in terms of ¢ although a priori one might expect a rather simple expression
such as D¢ = 0. To explain this one must remember that ¢ is not a generic element
of the 912 but is highly constrained, nor is ¢ a generic element of the 133. The
constrained orbit of ¢ in the 912 would generically be linked to a projector, which
supposedly acts trivially on the superpotential (as do the sign changes in eq. (8.3.9))
while leading to a complicated form for the susy variations in terms of ¢. Nevertheless
this route is most promising when attempting a fully covariant formulation. The
description in terms of ¢ is however useful as a Er;) / SU(7) coset description of the
orbit of ¢, although there is the outstanding issue of defining a fiducial point on the
orbit which is invariant under SU(7). As defined @ has in fact U(7) as stabilizer (see
the discussion of eq. (6.3.3)).

8which also maps the differential operator from the 56 to the 133
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A different, but equally promising, approach would be to phrase the SUSY vari-
ations in terms of the integrability of the EGACS. More precisely one would need
to show the equivalence of the supersymmetry equations and the closure of the +32
eigenbundles of the EGACS under the action of the generalized Courant bracket.

Since we introduced the coset construction let us comment on its possible rele-
vance to the calculation of the Kihler potential. An important point to emphasize
is that we expect the Kahler potential in this case to coincide with that of eleven-
dimensional supergravity compactified on manifolds of G5 holonomy. This follows
first because the flux does not enter the metric on the Kahler moduli space resul-
ting from dimensional reduction. Secondly the G5 holonomy compactifications are a
special case of a G5 structure manifold, singled out by differential conditions on the
structure forms. However in obtaining the aforementioned Kahler metric, and by ex-
tension the Kahler potential, from dimensional reduction such differential constraints
with respect to the internal manifold’s coordinates do not come into play. Thus we
expect the Kihler potential to be proportional to Indet g,,,,,. It then seems probable
that the Kahler potential is in fact proportional to the determinant of the 28 x 28
upper left sub-matrix of Gy as given in eq. (5.2.7), when thought of as a 56 x 56
matrix. This procedure may seem extremely ad hoc but is in fact a generic feature of
Kihler potentials emerging from coset constructions (see for example [198, 199, 200]

or [201] for a more recent description).
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Chapter 9

Conclusions and further Outlook

There has always been a rich interplay between string theory and geometry. We re-
viewed for example the connection between supersymmetric low-energy phenomenol-
ogy in four dimensions and special holonomy internal manifolds in early purely geo-
metric compactification schemes of the heterotic string or eleven-dimensional super-
gravity. One might equally have focussed on the description of mirror symmetry in
terms of the Dolbeault cohomology of Calabi-Yau manifolds or the importance of
complex and symplectic compactification manifolds in topological string theories.
One common thread throughout our discussion is the role of fluxes as obstructions
to the integrability of a given geometric structure, introduced to describe supersym-
metric backgrounds. More specifically we focussed on how the obstruction is lifted
through an embedding in a larger structure, which is now integrable. Alternatively,
given that said integrability is generically phrased in terms of the on-shell supersym-
metry conditions, one finds, in off-shell supersymmetric formulations, that the fluxes
are geometrized. In the first set of examples given, fluxes appear as the torsion of
G-structures defined on the tangent bundle T. More precisely the fluxes parameter-
ize their departure from integrable special G-holonomy. Such an example, is afforded
by the deformation of Calabi-Yau (SU(3) holonomy) three-folds to manifolds with
non-integrable SU(3) structure. However in the case of NS B-field flux, this SU(3)
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structure maybe embedded in a SU(3) x SU(3) structure defined on the bundle T&T™,
which turns out to be integrable. The main tool in this context is Generalized (Com-
plex) Geometry as developed by Hitchin and his collaborators. Remarkably this
formalism not only naturally includes the B-field and introduces it on equal footing
with the metric, but does so in a form manifestly covariant under the O(d, d) in terms

of which T-duality is formulated, for example by reproducing the coset structure of

O(d,d,R)
the O(dR)x O(dR)

However even the SU(3) x SU(3) structure on Té&T™ fails to integrate in the pres-

moduli space appearing for toroidal compactifications.

ence of RR-fluxes or put differently, in the context of off-shell supersymmetry, these
fluxes fail to geometrize. The original work presented here remedies this problem by
considering Exceptional Generalized Geometry (EGG) with structures defined on a
yet larger bundle E = (A"T*)"Y2[T @ A*T* © A°T* @ (A"T*)T*] in the context of
eleven-dimensional supergravity. Physically each component of the bundle may be
associated to a conserved charge of the supergravity, such as the membrane charges.
It was then shown that the bosonic degrees of freedom may be arranged in a mani-
festly E;(7y covariant way combining the metric and the three-form potential on equal
footing (via an exceptional generalized almost complex structure) in an exceptional
generalized metric (EGM), which is invariant under SU(8)/Z,. This approach thus
automatically incorporates the RR potentials (as well as the NS B-field) given they
arise from the three-form through dimensional reduction on a circle for type IIA, from
which type IIB is obtained via T-duality. Further, provided this setting is preserved
under quantum corrections, it could give rise to a manifestly E77)(Z) covariant for-
mulation in eleven dimensions without resorting to specific compactification Ansétze,
thus providing a first step towards manifest U-duality covariance. In this context we
explicitly calculated the superpotential to show that it could be expressed solely in
terms of the Er() covariant objects and is in fact invariant under E7(7) transforma-

tions.
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In the course of this work a rich new geometry was uncovered. Specifically, besides
the extension of Generalized Geometry already described above, we identified a non-
trivial twisting of the Exceptional Generalized Tangent bundle (EGT) E. Further
the Chern-Simons term was naturally integrated in this formalism. Additionally we
defined the analogue of the Courant bracket appearing in Generalized Geometry,
which we termed the Exceptional Courant Bracket (ECB). Given the ECB one may
explicitly check the integrability of the Exceptional Generalized Almost Complex
Structure.

At this point let us note some a priori limitations of this approach to be resolved
in the course of further work. First of all, while there is a clearly defined structure on
the bundle E = (ATT*)~Y2[T © A?T* © AST* © (A"T*)T*] with the corresponding
Ey7y covariant generalized geometric objects, only the superpotential in the N =
1 D = 4 rearrangement of eleven dimensional supergravity was explicitly shown to be
invariant, the most obvious omission being the K&hler potential. More significantly
our discussion is rooted in the supergravity approximation and thus in particular
does not guarantee that the manifestly Er7 formulation would be preserved if o
corrections where introduced. Of course this is an issue when considering the long
term goal of understanding M-theory within this language but might also be an
obstacle to semi-realistic phenomenology. Indeed the flux backgrounds studied here
would be subjected to the no-go theorems we reported on earlier, with higher order
corrections being precisely one possible resolution besides the introduction of localized
sources. Another such caveat is that the backgrounds presented here are smooth
and thus would fail to reproduce chiral fermions or non-Abelian gauge groups in
lower dimensions. On a more formal note, it is as yet unclear whether the derivative
appearing in the superpotential calculation should be a covariant or a simple partial
derivative. In the former case there is an implicit reference to the internal metric,

which is a related to the SU(7) structure through a non-linear map.
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These considerations naturally point to several avenues for further work. The
obvious first step consists in obtaining a covariant rewriting of the remaining bosonic
terms in the Lagrangian to be identified with the Kahler potential and the D-term in
the N =1 D = 4 reformulation. Further one would like to extend the new formalism
from off-shell to on-shell supersymmetry by formulating the supersymmetry varia-
tions in a manifestly E;) covariant form. Some preliminary work for this project
was presented here which recast the variation, originally given in terms of spinors, in
terms of the forms appearing in EGG. Another approach would consist in phrasing the
supersymmetry variations as the integrability conditions of the Exceptional General-
ized Almost Complex Structure given on terms of the closure of its +i eigenbundles
under the Exceptional Courant Bracket.

In the context of phenomenology one could then try to adapt our results to model
building by including the effect of singularities and that of negative tension objects
allowing the evasion of the no-go theorems. Another promising line of research would
lie in the rewriting of known higher-order derivative corrections of eleven-dimensional
supergravity in the language of EGG, which might further also be of significance in
circumventing the no-go theorems. In parallel one might extend EGG to compacti-
fications to other dimensions with a corresponding different group structure. Com-
pactifying to five dimensions for example, one would expect the EGG to be based
on Egg. At this point EGG might be employed as a tool for the generation and
systematic classification of supersymmetric backgrounds, potentially by developing
an analogue of Yau’s theorem, and it would be natural to apply it to testing the
AdS/CFT correspondence. Although this formalism would not yield an explicit form
for the background fields, it is probable that general conclusions may be drawn about,
for example, the dual CFT in analogy with the many results known for Calabi-Yau
manifolds in absence of an explicit metric. One would expect to be able to construct

new examples of the duality based on as yet unknown backgrounds.
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Finally one could explore connections between EGG and potentially related ap-
proaches. One such formalism is generalized holonomy where a supercovariant deriva-
tive, arising from the supersymmetry variations in generic backgrounds with fluxes,
with holonomy lying within in SL(32,R) is used to classify supersymmetric solu-
tions of 11-dimensional supergravity [202][203]. Another interesting approach, which
similarly to the work presented here involves E7(7) in a central way, is the so-called em-
bedding tensor technique used to obtain non-trivial gaugings of maximal supergravity
(see [204] for a review). Finally we might try to relate EGG to the reformulations
of eleven-dimensional supergravity in terms of the Kac-Moody algebras Eq, E1g, F11

(see for example [206][205]).
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Appendix A

Dualities

A.1 Overview of the web of dualities

As noted before the five different superstring theories are linked by a web of dualities.
In particular the type II theories are linked (after compactification on at least a circle
S1) by T-duality as are the two heterotic theories. This duality relates two equivalent
theories defined on different but dual backgrounds. It is perturbative in nature and
can be shown to hold order by order in g,, the string coupling. The formalism
introduced by Buscher [207][208] further permits to understand it as the gauging of
isometries on the worldsheet where they translate into internal symmetries of the 2D
CFT. A closely related generalization which is applicable in absence of isometries, as
is the case on generic Calabi-Yau manifolds, was dubbed mirror symmetry and relates
a type ITA theory defined on a given Calabi-Yau to a type IIB theory on a mirror
Calabi-Yau . Interestingly mirror symmetry is supposed to be reducible to multiple
T-dualities within the context of SYZ conjecture[209], where the Calabi-Yau is seen
as a T3 fibration 1.

There exists further a conjectured? non-perturbative S-duality which relates the

1a major subtlety being that generically there will be degenerate fibers locally

2It is only conjectured because formulations of string theory are mostly perturbative. It has
however passed a series of non-trivial tests based on for example non-renormalized BPS multiplets.
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strong coupling limit of one theory to the weak coupling limit of another one. It is a
symmetry for Type IIB (which is self-dual) and links heterotic SO(32) to type 1. The
S-dual of type IIA and heterotic Eg x Eg is in fact 11D supergravity compactified on
the circle S! and the interval S!/Z, respectively. The dilaton, whose expectation value
(@) is related to the string coupling as g; = '), can be interpreted as a modulus (e‘®
giving roughly the circle radius or interval length) in the context of the dimensional
reduction form 11d to 10d thus explaining the decompactification at strong coupling.
The heterotic Eg X Eg case is the focus of Hofava-Witten theory[210][211] which posits
two ” end-of-the world” 9-branes at each end of the interval on which respectively one
of the Eg gauge theories lives. An interesting phenomenological approach consists in
embedding the SM in one of the Eg while the other gives the hidden sector possibly
responsible for SUSY breaking.

Both these dualities have a group theoretic interpretation. In fact S- and T-duality
are conjectured to be part of a much larger U-duality group[53]. In the following we
will describe these dualities in more technical detail focussing particularly on the
group structure as this is the aspect most apparent in the Generalized Geometry

description which is the focus of this thesis.

A.2 T-duality

A.2.1 T-duality and O(d,d,Z)

T(arget space)-duality (for areview see [212]) relates different backgrounds in the ten-
dimensional target space which all give rise to the same spectrum and CFT correlation
functions and are thus physically equivalent. The typical example is that of a string
propagating on a circular subspace of radius R. T-duality asserts that this will lead
to the same physics as a string propagating along a circle of radius QRL. The reason

for this are the enhanced degrees of freedom of extended objects: A point particle
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can only propagate along the circle, whose periodicity results in a quantization of
the momentum and thus the energy such that it goes as g—z. On the other hand a
string may wind around m times leading to an energy m?R?. Another example is
familiar from the context of the SYZ conjecture for mirror symmetry (which can be
understood as multiple T-duality under well defined conditions) where the momentum
modes of a 0-brane are exchanged with the winding modes of a 3-brane.

Let us now look at the specific case of d-dimensional toroidal backgrounds and

how T-duality can be implemented as an O(d,d, Z) transformation. Consider the

usual sigma model action for the bosonic string:

27
S = Zl; dU/dT [V99°°Gi;0aX 05 X7 + €° B0, X095 X7 + /PR (A.2.1)
0

with the periodicity condition X* &~ X?+2rm!. Now introduce the canonical conjugate

momenta of the X* :
21 P, = G X7 + B;; X?' = p; + oscillators, (A.2.2)

with p; = n; where the n; must be integers because of the periodicity of the torus.

From this we may the calculate the Virasoro constraints:

H = Lo+ Lor
27
N [(2m)?(P.GYP;) + X"(G — BG™'B); X?' + 4n X" By, G P}

4m Jo
1 2 ) 5
= Z;r— o dU(PL + PR)a
PLa = [27FP, + (G - B)injl]eai, PRa = [27FP, - (G + B)injl]ezi,
2
/ doPX' = Lo —Lop=0 (A.2.3)
0

: * d a,.a __ d a *j __ £ d *1 k] __
with e and e* such that )7 _,efe] = 2Gy;, D . efel) =6, D, ere’d =

a=1 "1 a

2(G71)9. The former represent a choice of einbeins coinciding with the basis of the
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compactification lattice, the latter are just the dual to this basis. By then truncating

to the terms containing no oscillators 3 we find:

1
H = Lo+ Lor = Q(P% + p%)
) (A.2.4)

T2 [7:(G™)9n; +m' (G — BG™'B)iym? + 2m’ By (G™")"n;]

with n; and m; being the momentum and winding modes respectively and pr =
[nt + mi(B — G)le*, andp, = [n* + m'(B + G)]e*. Note that the pair (pg,pr) thus
encodes all the physics of the problem with G and B determining the local geomet-
rical/gauge nature of the manifold, while (m;, n;) describes its topological properties
(the periodicity). Now we may ask whether we may build the moduli space cor-
responding to different choices of metric and Kalb-Ramond field at fixed (m,n;)
through the action of a given group. The relevant quantity to parameterize the mod-

uli is the length of the lorentzian vector (pg,pr):

P — Py = 2m'n; € 27, (A.2.5)
The group conserving this relation a prioriis O(d, d,R). However since only the norm
of pr(pr) enter physical quantities, we must mod out a pair of O(d, R) rotation so
that the required moduli space is [213][214] aﬁ%——wﬁ .

We must now identify the symmetry group i.e. the subgroup of the group sweeping
out the moduli space leaving the Hamiltonian invariant and surviving after quantum
corrections. This turns out be O(d,d,Z) as shown in [215][216][217][218]. Before

we can give a justification for this statement we must find an appropriate action of

O(d, d,R) on the background which may be represented by £ = G + B.

3since we are only interested in the relation between winding and momentum modes which en-

compass the geometrical degrees of freedom of the string
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In this context recall the standard matrix representation of O(d, d, R):

g= , (A.2.6)

where a, b, ¢, d are d x d matrices such that given

o I
J= , (A.2.7)
I 0
we have ?
gJg=J = dc+cla=0, ¥d+db=0, a'd+cb=1 (A.2.8)

To describe the action of O(d, d, R) we parameterize the hamiltonian as:

1 1
H= Q(P% +PR) = §ZtMZ, Z = (maq, np). (A.2.9)
where
G - BG™'B BG™!
M(E) = ) (A.2.10)
-G B G1

Note that M (first introduced in [215]) is itself an element of the group and can in

fact be decomposed as M(E) = gggk ° if we take

9E=G+B = , (A.2.11)

where gp € O(d, d,R)

4Note that J~! = J, and thus g7 !J(¢*)~! = J leading to J = gJg* so that ¢* € O(d,d,R) if
g €0(d,d,R)

5This decomposition is not unique: in fact M(E) = grg’ with g = ggA where A € O(d,R) x
O(d, R) as expected given the coset structure of the moduli space.
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M then transforms as M(E') = gM(E)g"' where E' = g(F) from which we deduce
the action of O(d, d, R) to be:

E'=g(E)=(aE+b)(cE+d)™". (A.2.12)

Looking now at O(d, d,Z) i.e. the subgroup with integer entries we can substan-
tiate the claim that it is the symmetry group of the moduli. The whole group can be

generated by three sets of transformations:

e constant shifts in the Kalb-Ramond field

I ©
90 = , (A.2.13)
0 I
where ©;; € Z and O = —0;; which correspond to the transformation B;; —

B;; + ©;;. This shift leads to the addition a total divergence to the Lagrangian:

1 27 ) )
S=— | do / dT€*P0,;0, X 05 X7
am Jo

2n
- % do/dTeaﬁGjiXiaaaﬁXj + surface term (A.2.14)
0

= 0 + surface term

where in the penultimate line we use the fact that ©;; is constant. The topology
being non-trivial the surface term will in general not vanish but provided ©;; € Z

the shift is a multiple of 2m and does not change the path integral ~ e,

e Base changes

A 0

0 (At)—l
where A € GL(d,Z). This corresponds to E' = AEA! or G' = AGA* and

B’ = ABA!i.e. coordinate changes which preserve the compactification lattice.
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These can be decomposed into permutations and reflections of the coordinates

and the modular transformations SL(d,Z) of T? the d-dimensional torus.

Factorized duality

I—e¢; e;
€; I—- €;
Here e; is zero, except for the 7 component which is 1, and [ is a d-dimensional
identity matrix. In the case of a pure toroidal background (B = 0) each gp,
inverts the radius of one of the cycles i.e R; — % The generalization of T-

duality to higher dimensions is in fact background inversion whereby E' = E~1

corresponding to the O(d, d,Z) transformation

O I

I O

corresponding to the background transformations:

G - G@=(G-BG'B)Y, B-B=(B-GB'G)™,
G'B — —-BG. (A.2.18)

Clearly the Hamiltonian is invariant under this transformation if combined with an

exchange of winding and momentum modes. Note also that when B = 0 the transfor-

mation corresponds to G — G~! generalizing the one-dimensional result as claimed.

Here we did not include the transformations of the oscillators ® and refer the reader

to [212] for further details.

Swe also left aside an additional symmetry corresponding to worldsheet parity ¢ — —o equivalent
to B — —B which ¢ O(d, d, Z)
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A.2.2 T-duality and Buscher rules

An alternative way to look at T-duality is by linking it to isometries of the back-
ground in a formalism known as Buscher[208]{207] duality (which has in fact wider
applicability than the O(d,d,Z) formalism which is a priori restricted to toroidal
backgrounds). Consider again the sigma model action but now introducing complex

worldsheet coordinates:
S = % / d% [(G () + B, (2))0x"dx” + %qﬁ(z)R(Q)] (A.2.19)
with
1 1

z = —2(7' +i0), 0= —2(& — 105 ), (A.2.20)

so that d>z = dodr, and 0z0z = ((0,z)? + (9,z)?). Define also H = dB. Then a

transformation
ozt = ek* (A.2.21)
will be an isometry of the action if
LG =k +koyy=0 3 LiH=0=>LB=dw ; Lyxp=klgp,=0

for some one-formw. If the chosen isometry is abelian” one may choose a coordinate

system {z*} = {2° 2°} where the isometry is represented as a translation of z° = 6.

"Non-abelian isometries give rise to several complications such as obstructions to T-duality.
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Consequently there will be no explicit # dependence in the action which may be

rewritten as:

1 = _ _
ST, = o= / 0% [Goo(2)0090 + (Gon(x°) + Boa 1)) 0092" + (Guo(a°) + Bao(°))92°30

+(Gap(2°) + Bap(z%))02%02° + % / d?z¢(z°) RP].

The abelian isometry can then be made to hold locally by minimal gauge coupling
00 — 00+ A. We can then make A pure gauge i.e. unphysical by adding a Lagrange
multiplier §F, where F = dA — A is the field strength of the abelian gauge field.

We may now choose a gauge where § = 0 such that

| _ _ _
S, A0 = o / & [Gon AA + (Goa + Boa) AGT® + (Gao + Bao) 924 +

(Gap + Bap) 020z’ + % / d?z¢R? + OF).(A.2.22)

In fact the @ = 0 gauge corresponds to A = 99, A = 90 so that both models are
equivalent. Computing the equations of motion for A, A one finds that they are
algebraic so that they maybe inserted back into the Lagrangian giving a new dual

action:

/] 1 a ! a 2,V 1 /(,.a
§' = o [E1(Glula®) + Bulaoydy - 1 [ @26@RY) (a229)

where {y#} = {0, 2} with

1 Boa GaoGoy + BaoBos
G/ — S—— Gla — , ! — Ga _ a
00 Goo %" G ab ™ Hab Goo
a B Ba
B(I)a = GOG, B;b = Bab - G 0B + OGOb- (A224)
Goo GOO

These are the so-called Buscher rules. The dilaton on its part gets a correction at one
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loop ensuring the dual theory is conformally invariant provided the original theory is:

¢, = ¢ - %log Goo. (A225)

A.3 S-duality and electromagnetic duality

S-duality was first described in the context of N =4 D = 4 Super Yang-Mills (SYM)
in terms of the Montonen-Olive duality introduced in [219] for SO(3) Yang-Mills and
embedded in SYM # in [220]. Consider the Lagrangian:

1

1
L=— F"F,, ——F*"xF,, — =D*®D,®
ighy " 3em? v (A3.1)
1 1
= —3771_:[111 [T(FILV + 1% F”V)(Fp,z/ + % * Fp,u)] - ED“CI)DlL(I)

where 7 = -2—97; 4 4L This action can be shown to possess an SL(2,Z) symmetry

IyMm

under which 7 transforms according to a fractional linear transformation as:

ar +b
N

, with a,be,d€Z and ad—bc=1. (A.3.2)
et +d

A general such SL(2,7Z) transformation can be generated by a succession of only two

operations:

-1
T—7+1 and T — (A.3.3)

The first one corresponds to a 27 shift in the vacuum angle 6 parameterizing the
topological term and leaves the path integral invariant. The second one is most easily
understood in absence of a topological term when 6 = 0 where it can be seen to

correspond to a strong-weak coupling duality, the hallmark of S-duality.

8The introduction of supersymmetry resolved some of the caveats raised by the authors of the
first paper such as the control of quantum corrections.
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This last transformation is sometimes referred to as electro-magnetic duality in
analogy with Abelian Maxwell theory. The latter has long been known to be invari-
ant under exchange of electric and magnetic fields in the absence of sources. In the
presence of electric charges however the symmetry only holds provided there are mag-
netic monopoles. In this case the Dirac-Schwinger-Zwanziger quantization condition

relating electric charge g, and magnetic charge g, :

GeQm = 270, newz (A.3.4)

implies the strong-weak duality under exchange of magnetic and electric degrees of
freedom.

S-duality appears in an analogous fashion in string theory. In fact this is not a
coincidence: the AdS-CFT correspondence links N = 4 SYM (which is conformal)
to string theory on an AdSs X Ss background and in particular relates their coupling
constants®. Consider for example type IIB for which S-duality is a symmetry. Defining
T =Cy+ie? (where Cy is the RR 0-form sometimes referred to as the axion and ¢ is

0

the dilaton) the above fractional linear transformation !° can be written as a matrix

action by A € SL(2,Z) on a matrix M such that:

—_I\T -1 . 1 |T|2 —Rer
M — (A7) MA with M= -— (A.3.5)
Im7 —Rer 1
where
d ¢
A= (A.3.6)
b a

9Tt may in fact be shown that given some assumptions 7y = T1B.

10T this context the 7 — 7 + 1 shift arises from the periodicity of Cp in the space perpendicular
to the 7-brane to which it couples magnetically. The other transformation is a strong-weak coupling
duality in terms of g; .
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One may then put the kinetic terms for Cy and ¢ in a manifestly SL(2,Z) invariant

form:

1 _ 1 _
(0900 + 0" CoDlCo) = sy 0" 707 = —tr (" MOM™T) - (AT

[N

All the other fields in the IIB action transform under the S-duality group !! and in fact
the whole action can be shown to be invariant. Note that in principle the symmetry
is SL(2,R) in the classical supergravity approximation, which is however broken to
the discrete subgroup with integer entries by quantum corrections. In addition to this
global invariance there is also a SO(2) or U(1) local symmetry. The two moduli in
fact parameterize a SL(2,R)/U(1) coset or rather [SL(2,R)/U(1)]/SL(2,Z) taking
into account identifications under S-duality. This construction is quite generic for
supergravity theories with global symmetries and in fact plays an important role in
describing U-dualities to which we turn in the next section (in fact we encountered
a similar construction for the moduli of toroidal compactifications when discussing
T-duality with the equivalent of M being M(E) defined in eq. (A.2.10)).

But before that let us comment on the obvious resemblance between the above
action of SL(2,Z) and the modular transformations of a two-torus 72 with complex
structure 7. This has prompted the conjecture [221] (inspired by work in [222]) that
type IIB may be a T compactification of a 12D theory known as F-theory thus giving

S-duality a geometric interpretation.

4t Jeast strictly speaking as some are singlets like the Einstein-frame metric and the four-form,
while the RR two-form and the B-field form a doublet transforming linearly.
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A.4 U-duality

As pointed out before T- and S-duality embed into a larger U-duality group relating
different backgrounds'?. In particular compactifying a higher-dimensional supergrav-
ity on these backgrounds results in an lower-dimensional effective supergravity having
the U-duality group as an internal symmetry. Consider the canonical form of the
bosonic part of a D = 4 supergravity Lagrangian in the absence of a potential for the

moduli and non-Abelian Yang-mills fields:
1 1 i j 1 vI ;g 1 vpo I J
L=+—-g ZR - 591']'((]5)5#45 ot — ZmIJ(¢)Fu F,, — geu Par(@)FFpy (A.4.1)

with I = 1...k and where g;; is the metric on the space of scalar moduli ¢; resulting
from the metric and fluxes of the internal manifold (including the dilaton), while
FJV are the U(1) abelian field strengths corresponding to gauge potentials AL and
—Nijy = ary+imyyis a k X k complex symmetric matrix with /mN < 0 to guarantee
a positive definite kinetic term for the gauge vectors. The symmetry group of the
abelian field strengths and thus that of the whole Lagrangian must be contained [223]
in Sp(2k,R). To illustrate this define:

oL

1
20— =mxF’ +a F? with *xFL =Z¢,,,F*! A.4.2
OFuvI uv mv pv puyvp

Gqu = 5

One may then succinctly write both the equations of motion and the Bianchi identity
for the gauge fields as:

FI

dF =d =0 (A.4.3)

12hy which now we mean not just geometry but also general field content and coupling constants
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A priori this system of equations is invariant under an GL(2k, R) symmetry:

F1 A B
F—F = =AF = F (A.4.4)
G C D
where A, B,C, D are arbitrary non-singular £ x k matrices. For these equations to
result from a Lagrangian of the above form we must however require:

, oL

uyI = W = mIIJ*FIZV + a’,IJFIZy (A4.5)

Requiring m’, a’ to be symmetric implies A € Sp(2k, R).

Many of the known supergravities do in fact possess a global symmetry group G
whose maximal compact subgroup H acts as a local symmetry [53]. Clearly from
the above G C Sp(2k,R) for a theory with & U(1) gauge fields transforming linearly
under G. The moduli on the other hand transform non-linearly and parameterize a

coset G/ H described by a G-valued matrix V which transforms as:
V(z) — h(z)V(2)A™! heH,AecG (A.4.6)

Typically H will be orthogonal or unitary so that one may define a coset representative
as M = VTV or respectively M = V'V (which is the equivalent of the M we described
in the context of S-duality or M (E) in that of T-duality) in terms of which the kinetic
term will typically be proportional to tr (0¥ MJ,M™1).

This is the case for all supergravities with N > 4 in 4D and in particular maximal
N = 8 supergravity which has 28 U(1) gauge fields for which G = E7(7) C Sp(56,R)
and H = SU(8) . For N = 4 supergravity with m vector multiplets &k = 6 + m and
G = SL(2,R) x O(6,m) and H =U(1) x O(6) x O(m). The so-called ” exceptional”
N = 2 supergravity[224][225], another theory with 28 gauge bosons, has G = E7(_ss)
and H = Eg x U(1).
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n En(n) Hn dim(En(n)) dim(En(n)/Hn)
2] SLIZR) xR S0(2) 1 3
3| SL(3,R) x SL(2,R)  SO(3) x SO(2) 11 7
4 SL(5,R) SO(5) 24 14
5 Spin(5, 5) (Sp(2) x Sp(2))/Zy 45 25
7 Ern) SU(8)/Z; 133 70

Table A.1: The U-duality groups E,, their maximal compact subgroups H,, and the
dimensions of E, and the cosets E,/H,.

However as in the case of S-duality the actual symmetry group is broken by
quantum to a discrete subgroup G(Z) = G N Sp(2k, Z) which can be interpreted as
resulting from the Dirac-Schwinger-Zwanziger quantization condition on the electric
and magnetic charges corresponding to the abelian gauge fields.

In particular for N = 8 supergravity one has G(Z) = E7(7)(Z) which has a sub-
group O(6,6,Z) x SL(2,Z). Noting that the theory may be obtained as a six-torus
T compactification of type IIB these subgroups are interpreted respectively as the
T-duality group of the torus and the S-duality group of type IIB. This is part of a
pattern for toroidal compactifications that extends to other dimensions: in general
the effective theory obtained from compactifying type IIB to d dimensions where
d =11 —n '3 has a symmetry group G(Z) = Ey(;)(Z) where E,,) is the nth element
in a formal class completing the set of maximal non-compact forms of the exceptional
groups Eg, B, Eg. Further there is a corresponding coset structure Ey,)/H, where
H, is the maximal compact subgroup of E,,) (see table A.1. [194]) Note the dimen-
sionality of the coset for n = 7 corresponding to a T compactification of M-theory
giving maximal N = 8 supergravity in four dimensions. This corresponds to the 70
moduli arising from the internal metric g,,,, the internal part of the 11D SUGRA

3-form a,,p, and an internal 6-form arising from the 3-form through the non-trivial

Bor alternatively using T-duality and the fact that M-theory compactified on a circle is Type IIA,
this also corresponds to 11D supergravity compactified on a n-torus 77
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equation of motion linked to the Chern-Simons term. Further the above table maybe
completed by including IIB supergravity for n = 1 and it is conjectured that the
theories corresponding to n = 9,10, 11 have the symmetry groups Ey, Eq9, E11 whose
generators do not form a Lie but a Kac-Moody algebra.

Note also that for n = 2 the interplay between T- and S-duality is trivial*. In
fact the factor R is isomorphic to the T-duality group for compactification of Type
II on a circle, namely SO(1,1,R). Recall that SO(2) is isomorphic to U(1) which is
itself isomorphic to the circle ST. SO(1,1,R) being the non-compact form of SO(2) it
follows that it is isomorphic to the real line and thus R. The non-trivial embeddings
of T- and S-duality for compactification on higher-dimensional tori may be traced to
the requirement that E,,)(Z) must contain both SL(n,Z), the geometric modular
group for T™ expected from the M-theory point of view, and SO(n — 1,n — 1, Z), the
T-duality group resulting from the type II compactifications. The U-duality groups
are generated non-trivially from a combination of both these subgroups. This is most
easily seen for n = 3 where Ej32)(Z) = SL(3,Z) x SL(2,Z) is the minimal group
containing SL(3,Z) and SO(2,2,Z) = SL(2,Z) x SL(2,Z).

Finally let us remark that since in our original work we focus on seven-dimensional
compactifications of 11D supergravity, we see the group structure for n = 7 emerge

from a exceptional generalized geometry approach.

14More so for n = 1 corresponding to uncompactified type II which has only S-duality.
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Appendix B

Parallel research interests:
Neutrino oscillations and modified

Lorentz Invariance

This work forms part of much larger programme initiated by Blasone and Vitiello to
give neutrino oscillations a description within Quantum field theory! (QFT). They
consistently defined a Hilbert space for eigenstates of definite flavor (circumventing
an earlier no-go theorem by Giunti, Kim et al.) which led to a series of surprises
such as, amongst others, the existence of a new "flavor” vacuum (unitarily equivalent
to the naive QFT "mass” vacuum), corrections to the usual Pontecorvo oscillation
formula and non-trivial propagators.

As far as the PhD is concerned, this parallel strand of research originated as an

MSci project? and eventually led to three articles:

e M. Blasone, P. Pires Pacheco and H-W.C. Tseung, "Neutrino oscillations from

relativistic flavor currents,” Phys. Rev. D 67 (2003) 073011 [arXiv:hep-ph/0212402]

IThe original Pontecorvo formalism within non-relativistic Quantum Mechanics (QM) is in fact
inconsistent since the required superposition of energy eigenstates with different masses is forbidden
by the Bargmann QM superselection rule.

2That is a 4th year undergraduate project.
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In this article [226] flavor four-currents, defined by Blasone and Vitiello using
a Noether-type formalism, are used to solve a longstanding phenomenological
problem in the literature, namely the direct calculation of a space oscillation
formula by defining a flux through the detector surface®. It was shown to repro-
duce the standard results in the literature in the highly-relativistic limit, while
numerically a deviation was predicted in the low-energy regions, allowing the

theory to be tested.

M. Blasone, J. Magueijo and P. Pires Pacheco, “Neutrino mixing and Lorentz
invariance,” Europhys. Lett. 70 (2005) 600 [arXiv:hep-ph/0307205] ;

M. Blasone, J. Magueijo and P. Pires Pacheco, “Lorentz invariance for mixed
neutrinos,” Braz. J. Phys. 35 (2005) 447 [arXiv:hep-ph/0504141].

The central idea of these articles [227][228] is to derive a dispersion relation for
the neutrino from the expectation value of a suitably defined Hamiltonian on
the flavor states®. It was further shown that the covariance of the expression
could only be guaranteed if one defined a Poincaré algebra deformed by the
generator of (neutrino) mixing transformations.® Finally an experimental test
was suggested to apply these results to the end-point of beta decay to settle
the controversy in the literature as to which of the flavor or mass eigenstates

constitute the fundamental physical objects.

8This replaces a conceptually dubious shortcut through the more easily obtained time oscillation
formula. The obtained formula describes neutrino oscillation in fully three-dimensional terms and
allows naturally for the inclusion of a wave-packet (as necessary for a realistic description).

4In fact this represents only a classical limit on which quantum fluctuations should in principle
superimposed.

5The dispersion relation was indeed shown to be expressible in the parametrization introduced
by Magueijo et al. for non-linear representations of the Lorentz algebra.
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