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Abstract 

After introducing the basic structure of string theory, we review some of the geomet-

ric tools used to describe string backgrounds, specifically those endowed with a cer-

tain amount of supersymmetry, namely special holonomy, G-structures and Hitchin's 

Generalized Geometry. We also report on relevant recent developments using the 

latter two approaches. We then proceed to present our proposed extension of these 

approaches, building in particular on the language of Generalized Geometry, based 

on a new formalism (for M-theory compactifications on seven-dimensional manifolds) 

termed Exceptional Generalized Geometry owing to the central role of the exceptional 

Lie group E7(7). In this context we define an Exceptional Generalized Tangent (EGT) 

bundle endowed with a non-trivial twisted topology giving rise to a gerbe structure 

and a generalized Courant Bracket, the Exceptional Courant bracket (ECB). Fur-

ther we introduce an Exceptional Generalized Almost Complex Structure defining an 

SU(8)/Z2  structure on the EGT allowing the definition of an Exceptional General-

ized Metric (EGM). These results are the applied to eleven-dimensional supergravity 

where the SU(8)/Z2  structure arises from the bosonic sector. We then show how 

a reduced SU(7) structure corresponds to backgrounds with effective N = 1 (off-

shell) supersymmetry. Specifically, reformulating eleven-dimensional supergravity in 

an N = 1 D = 4 language, we identify the effective superpotential as an SU(7) singlet 

in the gravitino variation. We then rewrite the resulting expression in a manifestly 

E7(7)  invariant form. Finally we report on preliminary work aimed at formulating the 

supersymmetry variations in an E7(7)  covariant way. 
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Chapter 1 

Introduction 

In this chapter we review the fundamentals of string theory. Starting from the ap-

pearance of a spin 2 particle in the string spectrum, implying the natural inclusion 

of General Relativity in the theory, we explain the role of string theory as the UV 

completion of point-particle field theories, particularly those including gravity. We 

then present the specifics of the theory, emphasizing the role of supersymmetry and 

dualities. We further describe the process of compactification and in particular we 

review the early geometric compactification schemes of the heterotic string and eleven-

dimensional supergravity. This leads us to consider the moduli problem and its re-

solution through flux compactifications. Finally we consider the geometric constructs 

used to characterize the supersymmetric sector of the resulting "landscape", that is 

G-structures and Hitchin's Generalized Geometry, and outline how the original work 

presented here proposes to extend them. 

1.1 A perturbative Quantum Gravity 

String theory (reviewed in [1][2][3]) was introduced in 1968 [4] as an attempt to 

describe the strong interaction. The so-called Veneziano amplitude successfully re-

produced the crossing-symmetry between interaction channels (s — t duality) while 

maintaining the UV divergences under control by introducing an infinite tower of 
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states (linked to the amplitude's poles) of increasing squared masses M2  and spin J. 

These could then be seen to match the nearly linear relationship between M2  and J 

for the many hadron resonances appearing in accelerators: 

M2 , 
 J 
a'  

where a' 	1 GeV-2  is the Regge slope. It was then pointed out by Nambu [5], 

Nielsen [6] and Susskind [7] that this was consistent with the quantization of an 

extended elementary relativistic string. 

Despite these successes, it was soon realized that strong interactions could more 

easily be described within the framework of non-Abelian (Yang-Mills) gauge theories, 

specifically quantum chromodynamics (QCD)1. 

One of the difficulties that had plagued string theories as models of the strong 

force was the systematic presence in the spectrum of a massless spin 2 particle [8][9]. 

This apparent drawback turns into a virtue if one identifies this excitation with the 

graviton. In fact the existence of this interacting spin 2 mode means that string theory 

necessarily encompasses Einstein Relativity. In the framework of General Relativity 

(GR) one tends to think of gravity as a geometric property of (pseudo-)Riemannian 

manifolds. Perturbatively however one may picture small departures from a fixed 

background metric as excitations of a spin two gauge field h: 

9jw = 	+ nhit, 

where n2  is proportional to Newton's gravitational constant. Writing down a La-

grangian for this perturbative gravity in analogy with U(1) gauge (Maxwell) theory, 

h is expected to couple to a rank two symmetric (stress-energy) tensor Tit, playing 

the role of the conserved current2 	= 0). 

'Ultimately however QCD is expected to emerge from string models along with the other Standard 
Model (SM) gauge interactions. 

2which is positive definite for normal matter in accordance with the attractive nature of gravity 
in absence of a negative-pressure cosmological constant 
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The most general equation of motion at most quadratic in derivatives and com-

patible with Lorentz invariance for a spin 2 particle is [10]: 

-a2h„),-.9„a,g+avax„+ao,,h,-,-71„,(-32hii,+30,,h0)=20T,,,, 

Unitarity then requires gauge invariance (to remove unphysical non-transverse nega-

tive probability modes) under: 

h 	h + a A +a jai 	pv 	p, v 

with A an arbitrary one-form. So that by gauge-fixing on may set hit, = 0 and 

a„hii,= 0 and put the equation of motion in a more standard form: 

-52h, _= 

However this picture is not fully consistent since the stress-energy tensor Tp, does 

not, as written, capture all the physics involved. The issue is that the stress-energy 

tensor as it stands only contains contributions from matter fields. However one must 

include the energy carried by the emitted graviton itself as a quadratic term so that 

now: Tt,,, = Tmatter Th This in turn modifies both the gauge transformation and 

the equation of motion which are now incompatible with the new 	which lacks 

a yet higher-order contribution from "gravity gravitating". Iteration of this process 

leads to an infinite expansion in h with the final (consistent) field equation being: 

1 R, — Rg = k2  
2 	

Tp,„ 

which is none other than Einstein's equation (for a small perturbation around a fixed 

background) and the gauge transformation sums to a general coordinate transform. 

This derivation [11] also shows that GR follows uniquely from general covariance bar 

the possibility of higher (than two) order derivative corrections. 
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Of course such a field theoretic treatment of gravity is a priori non-renormalisable 

given simple power-counting arguments, since Newton's constant has a negative power 

mass dimension. And while pure Einstein gravity was calculated in [12] to be finite at 

one-loop, it was shown in the same paper that coupling gravity to a scalar field leads 

to a divergence at first order. One-loop divergences' were then shown to exist for 

gravity coupled to a Maxwell field [13], a Yang-Mills [14] field or a Dirac fermion [15]. 

What is more even pure gravity diverges at two-loop order [16]. Considering locally 

supersymmetric field theories'', as introduced in [17] and [18], improved the situation 

somewhat [19]—[23] but only delayed divergences: first it was thought they would 

appear at three-loop order (for a review see [24]), but more recently, using a more 

refined power-counting based on harmonic superspace, the divergences were shown 

to arise at five-loop order [25]. Thus aside from the possibility of a non-trivial UV 

fixed point for Einstein gravity5  with a corresponding non-perturbative description 

(see for example [26]) or supergravity6  these difficulties seem to indicate the need to 

go beyond field theory and the point-particle paradigm. String theory in particular 

then acts as the UV completion of standard field theories: at an energy scale given by 

E ^ —1—,— (most naturally identified with the Planck scale) it gives rise to an infinite va' 

tower of new modes which soften the divergences' rather like the infinite number of 

hadron resonances in the original application of the theory to the strong force with 

2 	 now replacing the Regge slope. String theory is thus a successful model 
Planck 

for a perturbative quantum gravity on a fixed background. 

3All divergence calculations usually refer to D = 4 but in fact the situation worsens as the 
dimension increases. 

4so-called supergravities as they naturally include Einstein gravity 
'Such a fixed point does exist for gravity in 2 + E dimensions for E small but one may suspect 

that this relates critically to the remarkable properties of gravity in 2D. 
'There are recent suggestions [27] that a series of cancellations might in fact make N = 8 

supergravity UV finite. But this theory is unfortunately of questionable phenomenological use. 
71n fact it is assumed that string theories are finite. The recent suggestions regarding the possible 

finiteness of N = 8 supergravity if proven true would be an interesting hint as to the truth of this 
assumption, since this theory may be obtained by compactifying string theory on a six-torus. 
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1.2 String backgrounds: Compactification, super-

symmetry and dualities 

Interestingly it turns out that the background on which strings propagate is sub-

jected to a series of restrictions introduced both for mathematical consistency and 

phenomenological reasons. The original bosonic string theory for example can only 

be consistently defined in 26 space-time dimensions (i.e. the criticals dimension), as 

first suggested in [28]. The reason for this is best understood by considering string 

theory formulated as a two-dimensional conformal field theory (CFT) on the string's 

worldsheet as given by the Polyakov actions: 

Sp = --T f c/W—detg ea,,,X - PaoX ii np, with a, = 1,2 and 	v = 1 • • • 26 
2 

where T 	1  , is the string tension. Note that the action's name originates in 27ra 

Polyakov's emphasis on its advantages for quantization, but it was in fact introduced 

independently by Deser and Zumino [34] and Brink, Howe and Di Vecchia [35]. 

Given the conformal invariance of the action one can choose a gauge such that 

the worldsheet metric go = 77,0 and we obtain the action for 26 bosonic fields with 

the space-time indices corresponding to internal symmetries (in fact Lorentz and 

Poincare invariance in space-time) from the point of view of the worldsheet. This 2D 

CFT however suffers potentially from an anomaly of the conformal invariance. This 

is proportional to the central charge which vanishes if there are 26 fields thus fixing 

the dimension of space-time. Alternatively one may choose the so-called light-cone 

gauge quantization (first introduced for the Nambu-Goto action in [36]) procedure by 

exploiting the residual conformal invariance after the above choice of metric. 

8There are also non-critical string theories but they exhibit undesirable phenomenological features 
such as a linearly growing dilaton. 

9This action is classically equivalent (and quantum mechanically in the critical dimension but 
not in general) to the more intuitive Nambu-Goto action, proposed independently by Nambu [29], 
Goto [30] and Hara [31], which is based on extremizing the worldsheet area but is less amenable to 
the path-integral formalism as employed by Polyakov in [32] [33]. 
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The corresponding gauge choice is however non-covariant leading potentially to 

an anomaly of the Lorentz invariance which again only vanishes in 26 space-time 

dimensions. 

Bosonic string theory remained however phenomenologically unattractive because 

its spectrum contained only bosonic space-time fields. More damagingly the ground 

state of this spectrum was a tachyonl°  which was impossible to remove. Both these 

difficulties are resolved by introducing supersymmetry on the worldsheet in the guise 

of massless (for conformal invariance) worldsheet-fermions. The remaining tachyon 

may then be removed using the so-called GSO projection [37] [38] with the resulting 

spectrum now exhibiting space-time as well as worldsheet supersymmetry in the con-

text of what is termed superstring theory (which is now consistent in 10 space-time 

dimensions). 

It is important to emphasize that beyond resolving the technical issues of bosonic 

string theory, supersymmetry (more precisely space-time supersymmetry) was from 

its inception expected to play a significant role in any fundamental description of na-

ture [39]: The Coleman-Mandula no-go theorem [40] was thought to limit symmetries 

of the S-matrix to a tensor product of the Poincare group and internal symmetries. As 

a consequence it also implied that there could be no symmetry transformation linking 

the spin 2 graviton with the spin 1 vector boson carriers (photon, 147±, Z° ) of the 

other fundamental forces. It was then shown by Haag, Lopuszanski and Sohnius [41] 

that there was one possible extension scheme provided one allowed graded Lie alge-

bras which were shown to correspond to transformations linking bosons and fermions 

(the first Super-Poincare algebra had in fact been introduced for D = 4 in [42] and the 

first supersymmetric field theories were constructed in [43]). These act as interme-

diate stages for the transformations between vector bosons and graviton. Therefore 

supersymmetry (SUSY) would appear to be a natural ingredient in any unification 

10The modern view is that this signifies an instability in the vacuum which would then roll 
via tachyon condensation to a stable ground-state. Whether this may make bosonic string theory 
phenomenologically useful is however unclear. 
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of the SM interactions'. Note however that there is a further subtlety to this argu-

ment in that the vector bosons only share a multiplet with the graviton in extended 

supersymmetry. Phenomenologically however only theories with N = 1 SUSY admit 

chiral fermions, which in the SM result for example in parity violating interactions. 

The above argument might however be retained provided one embeds N = 1 SUSY in 

extended SUSY and introduces a hierarchial breaking of supersymmetry at different 

scales. This is however only possible in the context of local supersymmetry, that is 

supergravity12 . 

Further SUSY is one possible solution to the hierarchy problem [44]: The mass 

of the W or the expected mass of the Higgs can in principle not be maintained 

stable against loop-corrections that would renormalize it to higher energy scales (e.g. 

GUT scale 1015GeV or Planck scale 1019GeV) without unacceptable fine-tuning. 

By balancing contributions from fermion and bosons loops which have opposite sign 

SUSY makes the loop contributions vanish [45]. In particular quadratic divergences 

are removed, as for example in loop corrections to the Higgs mass : 

Am— = —872 (As — lAf12 )Atv • 

where mH  is the Higgs mass and Auv  the ultraviolet cut-off. For supersymmetric 

theories the coupling constants for a fermion and the corresponding scalar are equal 

(A = As = lAf12). Remarkably this mechanism still stabilizes the SM masses in the 

case of soft supersymmetry breaking. This consists in adding either mass terms or 

couplings with positive mass dimension to a supersymmetric Lagrangian explicitly 

breaking SUSY. This approach is somewhat unusual but can be understood in terms 

'It is thus less surprising that coupling constants for 3 of the forces only converge properly at 
the GUT scale in the presence of SUSY if one assumes that Grand Unification embeds in a larger 
unification scheme including gravity 

12The name originates in the fact that theories with local supersymmetry necessarily contain 
gravity: upon gauging the superalgebra the Poincare group becomes the algebra of diffeomorphisms. 
This inevitability of gravity mirrors that of string theory and interestingly superstring theories admit 
supergravities as the limit where the typical geometric scales are much larger than the string length 
i.e. in the point-particle approximation. 
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of traditional spontaneous symmetry breaking in a hidden sector. The remaining 

divergences are then logarithmic (or polynomial in logarithms for higher order cor-

rections) depending on the masses involved and correspond to the omitted terms in 

the above equation. If msoft  is the highest mass scale involved one finds: 

' n/211  = mlft 1672  [ 
	 ln(Auv/rnsoft) + • • .] • 

Obviously since msoft  is of the order of the mass difference between SM particles and 

their superpartners, the masses of the latter are bounded from above if these models 

are to succeed. This is the reason behind the belief that superpartners should be 

accessible at the LHC. 

Finally the lightest supersymmetric particle (LSP) is a strong cold dark matter 

candidate provided R-symmetry is conserved (making it the stable outcome of su-

persymmetric decay chains). Most models favor the neutralino (a mixed state of 

the photino, the zino and the higgsino) but a significant minority focusses on the 

gravitino. 

Bearing in mind the relevance of supersymmetry, consider also that phenomeno-

logically space-time is not manifestly ten-dimensional. One standard solution" to 

this problem is to consider space-time to be a (possibly warped) product M"3  x X of 

Minkowski space M"3  and an internal manifold X whose volume is sufficiently small 

to give rise to an effective four-dimensional description. Remarkably this allows string 

theory to naturally include the Kaluza-Klein mechanism' whereby lower-dimensional 

gauge fields are obtained by dimensional reduction of higher-dimensional geometry 

(metric field) or internal fluxes (higher dimensional gauge fields). 

'The Randall-Sundrum [46] [47] (and other braneworld) models offer an alternative where a four-
dimensional three-brane floats in a ten-dimensional bulk. Another attractive feature of these models 
is that they may contain an effective Planck scale circumventing the hierarchy problem. 

14As an aside note that 7 years before Kaluza [48] extracted a (ultimately flawed) unified theory 
of electromagnetism and gravity by extending GR to five-dimensions (an idea refined by Klein's [49] 
proposal that the fifth dimension be compact), a similar split of 5D GR into 4D GR and Maxwell 
theory had been proposed by Nordstrom [50] but unfortunately largely overlooked. 
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Consequently the question arises as to how to extract and classify those compacti-

fications which lead to supersymmetric theories in four dimensions. Another question 

is how to determine the duality relations between apparently distinct compactifica-

tions that give rise to the same physics and more specifically the same 4D effective 

theories. In fact after the discovery of five consistent superstring theories (type I, type 

IIA/B and heterotic with gauge group E8  x E8 or SO(32) [51] [52]) in the early 80s in 

the course of the so-called first superstring revolution, it was realized in the second 

revolution (early 90s) that all five were linked, at least when suitably compactified', 

by a set of duality relations [53] (see appendix A.1). It was then conjectured that they 

were but different perturbative expansions around several vacua of a more fundamen-

tal non-perturbative16  theory dubbed M-theory[54]. Interestingly it was proposed 

[55][56] that one of the duality relations (S-duality on type IIA) also pointed towards 

liD N = 1 supergravity, the unique locally supersymmetric field theory in eleven di-

mensions, introduced in [57], which is assumed to be the low-energy limit of M-theory. 

Compactifications of this theory are referred to (somewhat abusively) as "M-theory 

compactifications" in the literature. It is these compactifications which are the object 

of the original work presented in this thesis. The internal manifold X is in this case 

seven- rather than six-dimensional. 

Let us briefly comment on the specifics of these theories. Consider first closed 

strings: the left- and right-moving modes are decoupled and can be subjected to 

independent boundary conditions. For the worldsheet bosons these are necessarily 

periodic but for the worldsheet fermions one has the choice between periodic Ramond 

(R) boundary conditions or anti-periodic Neveu-Schwarz (NS) boundary conditions 

leading to four possible choices. Space-time bosons arise from the NS-NS and RR 

sectors, while space-time fermions arise from the NS-R and R-NS sectors. 

'The two type II theories are linked by T-duality if compactified on toroidal backgrounds but 
not in 10D. There are however also dualities for non-toroidal compactifications such as the duality 
between type IIA compactified on a K3 surface and heterotic on a four-torus T4. 

'This non-perturbativeness opens up the possibility of making the theory manifestly background-
independent i.e. treating space-time itself dynamically (maybe as a sea of strings). 
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For type IIB the two corresponding gravitini have the same chirality leading two 

N = (2, 0) chiral supersymmetry in 10D and for type IIA they have opposite chirality 

with N = (1, 1) non-chiral supersymmetry in 10D. The NS-NS sector is common to 

both theories and contains the 10D space-time metric G (corresponding to the gravi-

ton), the Kalb-Ramond B-field17  and the scalar dilaton c  . The RR sector is made up 

of differential p + 1-form potentials with p + 2 field strength Fp+2, generalizations of 

the Maxwell gauge potential, which couple to charged p +1 dimensional hyperplanes 

known as Dp branes electrically and similarly to D(6 — p) branes magnetically'. 

The significance of D-branes as carriers of RR charge was first pointed out in [58] 

(with some earlier work in [59]) and soon further explored in [60] [61] , while D-branes 

themselves were introduced in [62][63]). Further bosonic fields besides the metric 

are generically referred to as fluxes. Compactifications where they take non-zero va-

lues are consequently termed flux compactifications, otherwise one speaks of (purely) 

geometric compactifications. 

For type IIB the RR fluxes are a 0-form, a 2-form and a 4-form (with self-dual 

5-form field strength) and for type IIA a 1-form and a 3-form. The corresponding 

D-branes have p = —1, 1, 3, 5, 7 for type IIB and p = 0, 2, 4, 6 for type IIA. The case 

of p = —1 corresponds to a D-instanton, a localized point in space-time, while a 

DO brane is a point-particle. Under special conditions this list may be completed by 

space-filling D9 branes for type IIB and D8 branesig  for type IIA. There is also a mag-

netic source for the B-field, the NS five-brane which is not a D-brane. Importantly the 

endpoints of open strings with p + 1 Neumann boundary conditions, or alternatively 

9 —p Dirichlet boundary conditions, which give the D(irichlet)-branes their name, are 

17The B-field is a two-form potential with corresponding field strength H. It is the natural gauge 
potential associated with a fundamental string in the same way as point-particles naturally act as 
sources for the one-form gauge potential of Maxwell theory. 

18The nomenclature follows from the fact that magnetic coupling to a given field strength may be 
interpreted as electric coupling to its image under Hodge duality, which for the Maxwell potential 
exchanges electric and magnetic fields. 

'It does not appear in the analysis of the RR sector as the associated 10-form field strength is 
non-dynamical. 
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restricted to live on Dp-branes and the open-string massless modes define a gauge 

theory on the brane worldvolume (the generalization of the worldsheet). 

Given this Type I may be obtained from type JIB by identifying it under its 

Z2  symmetry under worldsheet parity exchanging left- and right-movers through a 

so-called orientifold projection. The resulting theory contains unoriented closed and 

open strings and the bosonic modes surviving the projection are the metric and the 

dilaton in the NS-NS sector and the 2-form in the RR sector. Correspondingly type 

I admits D1 (the D-string) and D5 branes along with D9 branes accounting for open 

strings with 10 Neumann boundary conditions. The fundamental string is in fact 

unstable but its life-time is long enough at weak string coupling to appear in the 

perturbative spectrum. Further the projection leads to N = 1 10D supersymmetry 

and anomaly cancellation implies an SO(32) gauge group. Heterotic string theories 

finally combine 26D bosonic string theory for the left-movers with 10D superstring 

theory for the right-movers. The supplementary modes for the left-movers lead to 

one-form gauge potentials which are required to transform in E8  x E8  or SO(32) to 

guarantee anomaly cancellations. There are a priori no open strings and no D-branes 

in heterotic string theory as it seems impossible to set boundary conditions for the 

mismatched left- and right-movers, although there have been recent suggestions to 

the contrary in the context of cosmic strings [64]. 

As a' 	0 all superstring theories admit a supergravity as a limit'. In this 

context the D-branes appear as non-perturbative solitons in the field theory. They 

are in fact supersymmetric BPS states with masses (in appropriate units) equal to 

their conserved charges which appear as central charges in the supersymmetry algebra. 

Their masses go as 	1s  where gs  is the string coupling which is why they do not g 
appear in the perturbative massless spectrum. They do however appear as the images 

20The corresponding equations of motion are obtained by expanding the 13 function of the world-
sheet action (which must vanish to guarantee conformal invariance) to lowest order in a'. Type 
IIB does not in fact admit an action corresponding to these equations because of the self-duality 
condition of the five-form field strength (if said field strength does not vanish). 
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of some string modes under strong-weak coupling dualities such as S-duality (reviewed 

in appendix A.3). Further the supergravity corresponding to type IIA can be obtained 

from 11D supergravity by dimensional reduction on a circle. The 11D supergravity 

spectrum contains the 11D gravitino, the 11D metric and a 3-form gauge potential 

A (with field strength F) which reduces to the type IIA B-field and RR 3-form. It 

also admits solitonic modes, namely the so-called M-theory M2 membrane and the 

M5 five-brane. The former gives rise to the fundamental string when wrapping the 

circle and a D2 brane otherwise, while the latter leads to a D4 brane and the NS 

five-brane respectively. A DO brane corresponds to an M2 brane shrinking to zero 

size with momentum along the circle, while a D6 brane corresponds to a Kaluza-

Klein monopole linked to the circle reduction. In most applications one is interested 

in purely bosonic supersymmetric backgrounds such that the only non-trivial SUSY 

variation is that of the gravitino. For later reference we will shall give the Type 

II gravitino variations explicitly. The former is compactly given in the democratic 

formulation [65]. 

1 
(Slim  = DME — —

96
e-°/2  (FM  PQRI/pQR  — 9F PQ HmpQ ) PE 

64 n! 
	 [(n  _ 	Nn  n(9 — n) jmNi rN2... Nn 	 pn  c (1.2.1) 

n 

with 

n = 0, 2, 4, 6, 8, P = Fil  and Pn  = — (Fu )n/2a1  for type IIA 

n = 1, 3, 5, 7, 9, P = —0-3  and Pn  = icr2  for n = 1, 5, 9 and Pn  = al  for n = 3, 7 

for type IIB and where 

= dCn_i  — H A Cri-3 

are the modified RR field strengths and E and FM  are the SUSY variation spinor 

and gamma matrices respectively. We use uppercase indices M, N, . = 0, 	, 9 for 
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curved ten-dimensional indices and F11  is the product of the 10D gamma matrices. 

The 11D equivalent is given in section 6.1 . 

Returning to dualities one must add that strictly speaking some of these are 

merely conjectured, typically because they represent non-perturbative maps between 

strong and weak coupling regimes making them a priori difficult to test in perturba-

tive string theory. These problems may however be circumvented in the presence of 

supersymmetry: by making use of SUSY non-renormalization theorems one may ex-

trapolate certain quantities (generically associated with supersymmetric BPS states) 

from weak to strong coupling and thus submit the dualities to more stringent tests 

which were all successful (see for example [53] for the case of U-duality, itself reviewed 

in appendix A.4). More recently interest in generating and classifying supersymmet-

ric backgrounds has been partially motivated by the need to rigorously test another 

important duality: the AdS-CFT conjecture. The proposed duality (first formulated 

in [66] with important refinements added in [67][68]) relates type IIB string theory 

or M theory on spaces which are asymptotically the product of Anti-de Sitter (AdS) 

space and a compact manifold to a conformal gauge theory. 

More precisely in the simplest examples the above asymptotic geometry arises 

as the near horizon limit of a stack of N coincident branes, typically D3 branes 

for type IIB and M2 or M5 for M-theory leading to AdS5  x S5 and AdS4  x S7 

or AdS7  x S4. These simple examples have been significantly extended - see for 

example [69] for a configuration with branes at a conical singularity in string and M-

theory. Let us however concentrate on the simple case of a D3 brane stack. At lowest 

order in a' (i.e. in the supergravity approximation) open strings stretching between 

those branes define a U(N) superconformal field theory on their worldvolume. The 

duality is holographic in nature and links the dynamics in a bulk space-time with 

an AdSd+l  factor with a conformal gauge theory in d dimensions. For D3 branes 

the CFT is D = 4 Al = 4 super Yang-Mills (SYM) with effective ('t Hooft) coupling 

A = g?,mN with g?,.m  = 47g, where gs  is the string coupling. The curvature radius 
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of both the AdS factor and the sphere in the near-horizon limit is however given by 

R4  = 47rgsNa'2  so that: 
is 	 , 
R = A 4  

where I. = Vc7 is the string length. Assuming the conjecture holds true, it follows 

that in the supergravity approximation (where strings are point-like is  << R and 

calculations are quite tractable due to the absence of stringy a' corrections) type 

IIB string theory correctly describes a strongly coupled gauge theory. This has led 

to the hope that QCD, which with its large coupling constant is difficult to treat 

perturbatively, will be amenable to a similar treatment so that one might shed light on 

phenomena such as confinement and asymptotic freedom. Conversely highly curved 

string theories for which the supergravity limit no longer applies are expected to be 

described by gauge perturbation theory. The gauge theory further simplifies in the 

limit N 	oo at fixed A (this is the 't Hooft limit [70] leading to purely planar 

diagrams) which on the string side corresponds to genus 0 (tree level) order in gs . 

This theory has an infinite number of conserved charges and is conjectured to be 

integrable. 

The AdS-CFT correspondence has already passed a series of non-trivial tests, 

the simplest of which is the agreement of the symmetries in both pictures. On the 

string side the compact space S5  and the AdS factor AdS5  have isometries SO(6) and 

80(4, 2) which have SU(4) and SU(2, 2) as double covers. On the gauge side the 

former is identified with the R-symmetry group of N = 4 SUSY while the latter is the 

conformal symmetry of the field theory. Supersymmetry is critical in guaranteeing 

that this last symmetry is not broken by quantum corrections. Ultraviolet divergences 

then cancel to all orders and the theory is finite. Further adding fermionic generators 

on both sides one may check that the full symmetry group is PSU(2, 214). A similar 

discussion applies to other instances of the conjecture but the previous example is the 

most tractable. However in all cases supersymmetry plays a central role. Note finally 
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that these are supersymmetric backgrounds with flux as for example the D3 branes 

couple to Ramond-Ramond five forms with N units of flux through the five-sphere. 

Returning now to specific compactifications, note that the first supersymmet-

ric backgrounds explored were however chosen to be purely geometric partially for 

simplicity and partially because of a series of no-go theorems involving flux compacti-

fications. They were found to be special holonomy manifolds, with specifically SU(3) 

for Calabi-Yau (complex) threefold string theory compactifications [71] and G2  for 

M-theory compactifications (introduced, after the construction of the first compact 

G2-holonomy manifolds by Joyce [72][73], in [74]). These holonomies lead to N = 1 

effective theories in 4D for compactifications of heterotic string theory and M-theory 

(as needed because of the phenomenological requirement of chiral fermions). 

Compactifications of heterotic E8  x E8  in particular proved very promising in 

producing realistic models. Using the so-called standard embedding, whereby the 

SU(3) holonomy group is embedded in Eg , one finds that one of the E8  factors leads 

to an E6  gauge group in four dimensions which may easily contain the standard model 

gauge group as well as provide an interesting GUT scenario. Further the number 

of chiral multiplets and thus the number of SM generations is fixed by topological 

constraints: in particular h" such multiplets contain scalars corresponding to the 

deformation of the (complexified) Kahler structure and 10,1  contain scalars linked to 

complex structure deformations (we will come back to these moduli shortly), where 

hm is the (p, q) Hodge number'. The corresponding superpartners are chiral fermions 

and transform respectively in the 27 and 27 while the gauge bosons transform in the 

adjoint 78. The number of generations is then given by h" — h2,1  = z where x 

is the Euler number of the manifold. In this scenario all the SM fields would be 

singlets under the other E8  and decoupled from massless fields transforming in its 

adjoint which are in turn singlets of the E6. Massive fields transforming under both 

21Hodge numbers are the equivalents in Dolbeault cohomology of the Betti numbers in De Rham 
cohomology and count cohomology classes of closed (p, q)-forms. 
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E8 factors may only appear at energies comparable to the string scale. The light E6 

singlets might however couple gravitationally to the SM and might form the hidden 

sector central in soft SUSY breaking. 

G2 compactifications were originally less successful owing to the fact that one 

may not obtain chiral 4D phenomenology from non-chiral 11D supergravity by com-

pactifying on a smooth manifold [75]. Additionally the resulting gauge groups are 

necessarily Abelian [74]. A hint as to the probable resolution of this problem arises 

from the strong coupling limit of the a priori more promising heterotic E8 X E8 which 

may be obtained by compactifying 11D supergravity on an interval Sl /Z2. This corn-

pactification is singular and in fact recent work [76, 77, 78] shows that non-Abelian 

gauge groups may arise from more general 22  singularities of co-dimension four while 

chiral fermions may live on singularities of co-dimension seven (such fermions are 

potentially charged under the gauge group). Such singularities may arise when a 

supersymmetric cycle is shrunk to a point. This has resulted in many efforts aimed 

at obtaining more realistic phenomenology from G2 manifolds [79]—[91]. 

One such application for example relates G2 holonomy seven-folds to intersecting 

D6 branes in type IIA (see for example [92]): from the M-theory point of view the cor-

responding background is a product of a flat Minkowski sevenfold and a multi-center 

Taub-NUT space. This configuration may preserve up to half the maximal supersym-

metry (for parallel branes) depending on the angle between the branes. Further for 

certain brane arrangements and given some amount of residual supersymmetry this 

geometry may be seen as four-dimensional Minkowski space-time tensored with man-

ifold of special holonomy'. Phenomenologically relevant models then correspond to 

G2 holonomy giving N = 1 in 4D. Further one may interpret the open strings stretch-

ing between the branes from the M-theory point of view as membranes wrapping 

holomorphic embeddings of two-spheres in multi-center Taub-NUT. As the branes 

22than that arising from the interval 
23This manifold is not necessarily compact however: for the case of parallel branes this would be 

multi-center Taub-NUT times R3. 
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become coincident the now massless stretched strings define a non-Abelian gauge 

theory on the brane world-volume (in analogy to the discussion for AdS-CFT) which 

from an M-theory viewpoint results form the singularities linked to the collapsed cy-

cles. Finally choosing angles carefully one may arrange for the GSO projection to 

selectively eliminate states of a given chirality leading to chiral fermions. 

1.3 Moduli fixing, fluxes and Generalized Geome-

tries 

Just like the original Kaluza-Klein ansatz however all these compactifications are 

plagued by massless scalar fields in the four-dimensional spectrum corresponding to 

the moduli (adjustable deformation parameters) of the internal manifold. These are 

not consistent with phenomenology as for example they would lead to an unobserved 

fifth long-range force. Additionally [93] [94] these fields would be at odds with cos-

mological models: in gravity-mediated hidden sector breaking of supersymmetry the 

moduli acquire masses of the order of the weak scale and would dominate the energy 

content after inflation at reheating until energy density dropped to values too low for 

nucleosynthesis. 

However turning on the internal fluxes induces potentials for those moduli (e.g. 

mass terms 24) decoupling them from the effective physics at low energies: this mecha-

nism was first proposed in [95] and it now seems that for example in the supergravity 

limit of Type IIA all moduli may be fixed by fluxes [96]—[99]. The first flux corn-

pactifications (for a review see [100]) were proposed as extensions of the Calabi-Yau 

compactifications for the heterotic string [101, 102, 103] which allowed for a non-zero 

B-field (the first M-theory equivalent is [104]). 

24at energy scales potentially significantly higher than the SUSY breaking scale 

25 



Initially however compactifications25  to Minkowski or de Sitter space-times were 

thought to be ruled out by several no-go theorems [105]—[109]. These apply to general 

compactifications (more precisely without assuming supersymmetry) and rely solely 

on rewriting the 4D Einstein equations: 

e-2ER4  Tflux  2V2e2E 

where R4 is the 4D Ricci scalar', Tflux  parameterizes the flux contribution to the 

stress energy tensor and e2E  is a warp factor for the 4D metric. Integrating over 

a compact internal manifold, the right-hand side of the equation vanishes and since 

Tflux  > 0, it follows that Minkowski and de Sitter solutions' are ruled out. Evasion of 

these no-go theorems then required the inclusion of localized negative tension sources, 

such as 09 orientifold planes providing a negative contribution to counteract Tflux  or 

the addition higher-derivative (stringy) corrections modifying Einstein's equations28. 

The existence of these mechanisms rekindled interest in the rich phenomenology of 

flux compactifications. 

Fluxes tend to reduce the lower-dimensional gauge group and break supersym-

metry which is important both to produce semi-realistic string models and open up 

novel avenues such as the possibility of N = 1 vacua from type II theories compacti-

fied on (flux-deformed) Calabi-Yau manifolds. Additionally they generically generate 

a warp factor for the non-compact space which may explain gauge hierarchies [107] 

(in a similar fashion to Randall-Sundrum models). Also from the point of view of the 

AdS-CFT correspondence the duals of flux compactifications turn out to be confining 

gauge theories [110, 111, 112] providing a first step towards the string theory descrip-

tion of QCD. In cosmology finally the flux KKLT proposal [113] realized metastable 

25including warped compactifications 
26corresponding to the unwarped metric 
27Strictly speaking constructions with only one-form flux and D7 branes have a zero contribution 

and may lead to Minkowski solutions. 
'and thus going beyond the supergravity limit 
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de Sitter vacua, thus circumventing the old problem of generating universes with pos-

itive cosmological constant from string theory. In a similar vein a model for inflation 

based on flux backgrounds was described in [114]. Despite these many successes flux 

compactifications are however an embarrassment of riches in that they produce a 

perplexingly large number of possible solutions, the now infamous "string landscape" 

[115]. Besides attempts at statistical study [116] one promising approach is to classify 

supersymmetric theories in the presence of fluxes. 

This thesis' thus focusses on the description of general supersymmetric back-

grounds through a series of geometric structures which extend those found for stan-

dard Calabi-Yau (and M-theory) compactifications. At this point one must note the 

difference between on-shell and off-shell supersymmetric backgrounds. An on-shell 

background is one for which the supersymmetry variations vanish. Often (for ex-

ample for NS flux) this together with imposing the Bianchi identity for the fluxes 

automatically solves the equations of motion (see for example [108] or [117]) so that 

the background is also on-shell in the more traditional sense. Accordingly this con-

figuration will be a solution corresponding to a given supersymmetric Lagrangian. 

However a generic solution may spontaneously break some or all of the supersym-

metries a priori present in the Lagrangian which are referred to as off-shell super-

symmetries. After the introduction of fluxes for example the condition for off-shell 

supersymmetry in 4D is that of G-structure on the internal manifold (rather than 

G-holonomy)3°  meaning that the structure group of the frame bundle (of the tangent 

bundle T) is reduced to G. The existence of a given G-structure is equivalent to that 

of globally defined G-invariant tensors or equivalently spinors, which translates into 

off-shell supersymmetry in the dimensionally reduced Lagrangians. On-shell super-

symmetry on the other hand corresponds to differential conditions on the invariant 

29For the remainder of this section we will mostly eschew bibliographic references as the topics 
addressed will be dealt with in more detail in the following chapters where the references will appear 
in a more appropriate context. 

"For a given compactification dimension and number of supercharges in 4D the groups G agree 
since G-structures reduce to G-holonomy in the limit where the fluxes vanish. 
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tensors (spinors). In this context the fluxes can be understood as an obstruction 

(torsion) to the integrability of the G-structure to G-holonomy. 

One may however recover integrability by embedding G-structures in structures 

defined on larger bundles than the tangent bundle T, as introduced in the context 

of Generalized Geometry. The original proposal - Generalized Complex Geometry 

(GCG) - was defined on T T* where T* is the cotangent bundle. One of the 

most remarkable features of GCG is that the B-field is introduced on equal footing 

with the metric thus for example giving a natural description of the common NS 

sector of Type II (and Type I) string theories'. Further GCG interpolates between 

symplectic and complex geometry thus providing a natural extension of Kaliler and 

Calabi-Yau backgrounds used for traditional compactifications. Finally GCG admits 

a natural O(d, d) metric thus naturally incorporating O(d, d, Z), the discrete subgroup 

appearing in the treatment of T-duality (see appendix A.2.1). 

However in analogy with the case of simple G-structures it turns out that the in-

troduction of Ramond-Ramond (RR) fluxes (or alternatively their D-brane sources) 

acts as an obstruction to the integrability of the new structures as encoded by the dif-

ferential equations giving on-shell supersymmetric vacua. The original work presented 

in this thesis is based on the claim that by further extending the bundle considered 

one may define an integrable structure in the presence of all fluxes. More precisely 

this is done for M-theory compactifications from which point of view all the string 

theory fluxes arise from dimensional reduction. Importantly this description hints at 

a manifestly U-duality covariant formulation of M-theory by incorporating the excep-

tional group E7,7 (see appendix A.4 for the group structure of U-duality). Thus this 

new approach is termed Exceptional Generalized Geometry (EGG). 

The rest of this thesis is divided thus: In chapter 2 we review the geometric descrip-

tion of supersymmetry backgrounds in terms of special holonomy and G-structures, 

singling out the SU(d/2) and G2 cases. We also report on some recent applications 

31The dilaton also appears, usually bundled with the warp factor, in the integrability conditions. 
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of G-structures. In chapter 3 we present Hitchin's Generalized Geometry, both in 

terms of Generalized Almost Complex Structures and the equivalent description in 

terms of pure spinors. Further we outline applications of this formalism to both on-

shell and off-shell supersymmetric backgrounds, owing to their direct relevance to 

the original work presented here. In chapter 4 we summarize the properties of the 

exceptional Lie group E7(7) relevant to this work. In chapter 5 we define the struc-

ture of Exceptional Generalized Geometry (EGG) in seven dimensions. In particular 

we identify the Exceptional Generalized Tangent bundle (EGT) and its non-trivial 

twisted topology with the corresponding gerbe structure. Further we also define a 

Exceptional Courant Bracket (ECB). We then proceed to construct an Exceptional 

Generalized Metric (EGM) using an Exceptional Generalized Almost Complex Struc-

ture (EGACS) defining an SU(8)/Z2  structure on the EGT. In chapter 6 these results 

are specifically applied to eleven-dimensional supergravity, for which we arrange all 

the degrees of freedom in E7(7) or SU(8)/Z2  representations and explain how the 

bosonic sector accounts for the aforementioned SU(8)/Z2  structure in this case. We 

then show how, upon specializing to backgrounds leading to effective theories with 

N = 1 (off-shell) supersymmetry in four dimensions, one may reduce the structure 

on the EGT to an SU(7) structure parameterized by a single object in the 912 

representation of E7(7) . Further we relate this SU(7) structure to the underlying lo-

cal SU(3) structure on the ordinary tangent bundle. In chapter 7 we reformulate 

part of the bosonic sector of eleven-dimensional supergravity according to a structure 

reminiscent of N = 1 D = 4 supergravity. In particular we read off the effective 

superpotential by projecting out the SU(7) singlet in the gravitino variation. We 

then rewrite the expression obtained in a manifestly E7(7)  invariant form in terms of 

0. In chapter 8 we report on preliminary work to find an E7(7) covariant formulation 

of the on-shell supersymmetry conditions. Specifically we show the equivalence of 

the supersymmetry variation equations to a set of constraints on differential forms 

representing the structure and flux degrees of freedom and suggest how these might 
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be rewritten in a covariant form in terms of an appropriate coset description. Chapter 

9 contains our conclusions and proposals for further work. Appendix A reviews string 

dualities with particular emphasis on the group structure, as relevant to the original 

work presented here. Finally Appendix B contains a brief summary of early work 

done on the topics of neutrino oscillations and modified Lorentz invariance and of the 

corresponding publications. 

30 



Chapter 2 

Supersymmetric backgrounds 

2.1 Killing spinors and special holonomy 

A feature of the original Kaluza-Klein compactifications is that the existence of Killing 

vectors on the internal compact manifold (which thus admits isometries) translates 

into gauge symmetries in the non-compact space-time. Similarly [118] the existence 

of Killing spinors leads to various amounts of supersymmetry in the effective lower-

dimensional theory'. A Killing spinor is one defined to be covariantly constant with 

respect to the spin connection w: 

1 
Vm77 = amr/ — 4 — wrrin

P 
eYnP7/ = 0 (2.1.1) 

with m, n, p = 1 • • • d where d is the dimension of the internal space. If 77 is chosen to 

be the supersymmetric variation parameter this leads to a supersymmetric vacuum. 

'Note however that these conditions are sufficient but not necessary. Modern Calabi-Yau corn-
pactifications for example lead to several gauged field theories in the absence of any internal isometry. 
Similarly when introducing G-structures it will become clear that supersymmetry may be achieved 
without Killing spinors. In particular Killing spinors are only relevant for purely geometric compact-
ifications. Let us emphasize however that the analogy between Killing vectors and Killing spinors 
does not extend to these modern mechanisms: G-structures are unrelated to the standard methods 
for generating gauge theories. 
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Indeed recall that SUSY variations are in general of the form: 

S(fermions) — bosons ; 6(bosons) fermions 	 (2.1.2) 

Axiomatically the vacuum is Poincare invariant and thus only scalar fields can have 

a non-zero expectation value. In particular all fermionic fields are set to 0 so that the 

variation of the bosonic fields vanishes identically. For definiteness let us now choose 

the example of 11-dimensional supergravity compactified to four dimensions. The only 

fermion is the spin 2  gravitino (for its explicit variation and other conventions see 

section 6.1). Setting the flux to 0 in the case at hand, results in an eleven-dimensional 

Killing spinor equation as expected since 11D supergravity has N=1 supersymmetry. 

As a consequence of compactification the eleven-dimensional Lorentz group is broken 

from Spin(1, 10) —+ Spin(1, 3) ® Spin(7). It follows that the variation parameter must 

itself decompose as given in eq. (6.2.7) and further there is a related decomposition 

for the gamma matrices given in eq. (6.2.6). 

Finally decomposing the eleven-dimensional [3] Killing spinor equation accord-

ingly, the equation for the internal spinor 77 leads to an integrability condition: 

[Vm, vn]n = 1  71 R.npq-y"71 = 0 
	

(2.1.3) 

where -yn are the internal gamma matrices. n solutions to this equation lead to N = n 

supersymmetry in the four-dimensional theory. Contracting with ryn on the left and 

using the fact that -ynyPq = 'ynriq gnP  'yq  — gnq-yP (g being the internal metric) together 

with the Bianchi identity for the Riemann tensor Rui[npq]  = 0 we obtain: 

217.npq gThq7P q = 2Rmp7P ri = 0 	 (2.1.4) 
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It follows that': 

gr" fryq RiiqR,p7P77 = 0 RmnRum = 0 	 (2.1.5) 

which for an Euclidean internal manifold, that is one with positive definite metric, 

implies 

Rrnn  — 
	 (2.1.6) 

hence the internal manifold must be Ricci fiat and thus a solution to Einstein's equa-

tion in vacuum, as expected in the absence of contributions from the fluxes (through 

the stress-energy tensor). 

Geometrically spaces with one or more Killing spinors may be more completely 

characterized by their special (or reduced) holonomy (for a review see [119]). In 

general the holonomy group of a manifold Ho/(M) is generated by parallel transpor-

ting arbitrary spinors (or alternatively tensors) around closed loops C to generate the 

holonomy group: 

U(C) 71 = e 71 -1-  C " WmnP/nP7)  = eP  fC """77nri 
	

(2.1.7) 

where P denotes path-ordering and the holonomy group is the set of the U(C) for all 

closed loops C on the manifold. It can be further be shown that the holonomy does not 

depend on the starting point of the loop. Clearly the most general holonomy group 

in d dimensions will be Spin(d) 3. The existence of a Killing spinor then implies that 

the holonomy group is not maximal but must be reduced and lie within its stabilizer 

group in Spin(d), that is the subgroup leaving the Killing spinor invariant'. The pos- 

2using the fact that fin is constant for a Killing spinor 
3provided the manifold is spin and spinors may be defined, otherwise the holonomy group will be 

that for vectors and other tensors i.e. 0(d) or, if the manifold is orientable, SO(d) of which Spin(d) 
is the double cover 

4The particular spinor is irrelevant since different choices will be related by Spin(d) rotations. 
The relevant point is the existence of a covariantly constant spinor irrespective of the basis chosen. 
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sible holonomy groups for irreducible, non-symmetric, simply-connected Riemannian 

manifolds fall into the 1955 Berger classification [120] (see table 2.1). 

Hol(M) dim(M) manifold other properties 
80(d) d orientable 
U(n) d = 2n Kahler Kdhler 
SU(n) d = 2n Calabi-Yau Kdhler , Ricci flat 
Sp(n) d = 4n Hyperkdhler Kdhler , Ricci flat 

Sp(n)Sp(1) d = 4n quaternionic Kdhler Einstein 
G2 d = 7 G2 Ricci flat 

Spin(7) d = 8 Spin(7) Ricci flat 

Table 2.1: Berger classification 

Note that Berger's proof relied on subjecting subgroups of SO(d) (as arising in 

the classification of Lie groups) to a pair of algebraic tests: the groups in Berger's 

classification are thus only those which are not excluded as holonomy groups and for 

example it was only shown in 1996 that there exist compact manifolds with holonomy 

G2  [72] [73] and Spin(7) [121]. In fact even in the non-compact case proof of existence 

for such spaces only dates back to 1985 [122] with the first explicit examples of com-

plete metrics given in [123]. The restriction to irreducible manifolds i.e. those which 

are not locally isomorphic to a cartesian product guarantees that the holonomy group 

falls in an irreducible representation 80(d). This restriction turns out to be somewhat 

too strong for some applications: for example while d = 7 is the canonical dimension 

for G2  holonomy according to Berger's classification, a general simply connected Rie-

mannian seven-fold in fact admits holonomies {1} C SU(2) C SU(3) C G2  C SO(7). 

The subgroups of G2  arise when there is more than one solution to the internal Killing 

spinor equation and lead to extended supersymmetry for M-theory compactifications 

to four dimensions (see table 2.3). Geometrically the manifold must then be reducible: 

the most trivial case is that of M-theory compactified on S' x Y6  where Y6  is a mani-

fold of (now canonical in six dimensions) SU(3) holonomy, which is equivalent to type 

IIA on Y6  and is known to give N = 2 supersymmetry in 4D. Symmetric (or even 
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locally symmetric) spaces on the other hand were excluded by Berger since they were 

fully classified in 1925 by Cartan as an extension of his classification of irreducible Lie 

algebras and their holonomies were accordingly categorized. In the special case were 

the symmetric space is a coset G/H the holonomy group was known to be isomorphic 

to H. This is the reason why the case with Spin(9) holonomy originally proposed 

by Berger for d= 16 was later removed as it was proven that Spin(9) manifolds are 

necessarily locally symmetric and in fact locally isomorphic to the Cayley projective 

plane F4 /Spin(9) [124] [125]. 

G2  and Spin(7) are so-called exceptional holonomies [119] because they do not fall 

in a generic class. The other classes can be seen as special cases of each other since 

a manifold of special holonomy G inherits the properties of manifolds with holonomy 

groups having G as a subset. Therefore since Sp(n) C SU(2n) C U(2n) C SO(4n) 

every Hyperkahler manifold is a Calabi-Yau and every Calabi-Yau is Kahler (and 

thus complex) and all are orientable manifolds'. One may further deduce the spe-

cial properties of some low-dimensional manifolds from accidental isomorphisms be-

tween the holonomy groups. Since 0(2) = U(1) every two-dimensional manifold 

is Kahler and the two-torus T2  is the only (trivial) two-dimensional Calabi-Yau 6. 

Also Sp(1) = SU(2) so that every four-dimensional Calabi-Yau is necessarily Hy-

perkahler. In fact there is only one such manifold, namely the K3 surface. In 

addition Sp(1)Sp(1) = SO(4) so that every orientable four-manifold is a quater-

nionic Kahler manifold. Note finally that the holonomy groups appear as auto-

morphism groups of the division algebras where 0(n), U(n), Sp(n)Sp(1), G2  (with 

SO(n), SU (n), Sp(n), G2  the corresponding subgroups of "determinant 1") corre-

spond to Rn, Cn , EP, On  respectively (an also admit Spin(7) as automorphism). 

The question now arises as to which holonomies may be associated with geometries 

admitting a Killing spinor. Given the integrability condition of the internal Killing 

5Note that quaternionic Kahler manifolds are not in general Kahler but provided the scalar 
curvature is positive they admit a twistor space which is. 

6considering only compact spaces: otherwise one must include the complex plane C 
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spinor equation we must restrict ourselves to the Ricci flat holonomies in table 2.1. 

In fact it can be shown [126] that no further restriction is needed leading to a clas-

sification for orientable simply-connected spin manifolds of dimension D > 3 with at 

least one Killing spinor (see table 2.2 where N(S+ ) and N(S_) respectively denote 

the number of positive and negative chirality spinors given an orienatation7). Note 

dim(M) Hol(M) N(S± ) N(S_) 
d= 4n 	n> 1 SU(2n) 2 0 
d = 4n 	n > 2 Sp(n) 71 + 1 0 

d= 4n + 2 n> 1 SU(2n +1) 1 1 
d = 7 G2 1 0 
d = 8 Spin(7) 1 	0 

Table 2.2: Killing spinors and holonomy 

that the restriction to Ricci flat backgrounds also excludes irreducible Riemannian 

symmetric spaces (except the real line) which are known to be Einstein with non-zero 

scalar curvature. Further this classification is again for special holonomy groups in 

their canonical dimension. 

We will now in the next two sections look at Calabi-Yau and G2 holonomy mani-

folds in more detail due to their importance in string/M-theory. 

2.1.1 SU(d/2) holonomy backgrounds in d even dimensions 

Calabi-Yau manifolds can be defined to be even-dimensional manifolds with SU(d/2) 

holonomy. For definiteness we shall use the Calabi-Yau threefold8  as an example 

[3]. For a six-dimensional manifold the maximal holonomy group is Spin(6) which is 

isomorphic to SU(4). A real spinor would transforms in the 8 of Cliff (6) but this 

can be reduced under SU(4) to a four-component complex spinor of definite chirality, 

transforming in the irreducible 4 of SU(4) (the opposite chirality conjugate spinor 

7reversing the orientation exchanges N(S+ ) and N(S_) 
8A threefold has 3 complex dimensions, hence it is a six-dimensional real manifold. 
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transforms in the 21): 

8 =4+ 4 	 (2.1.8) 

However the largest subgroup of SU(4) admitting a singlet (for which it is the stabi-

lizer group) is SU(3) with the corresponding decomposition of the spinor: 

4 = 1 + 3 	 (2.1.9) 

so that the holonomy group must lie within this subgroup in the presence of a Killing 

spinor in 6 dimensions. As already pointed out one immediate consequence is that 

Calabi-Yau manifolds are Kahler since their holonomy lies within U(d/2), U(3) in the 

case at hand. Recall that a Kahler manifold [127] is a complex manifold naturally 

endowed with an hermitian metric such the corresponding fundamental form is closed: 

The usual definition of a metric as a bilinear symmetric map from TpX, the tangent 

plane at a point p, to R can be naturally extended to a map g : TpXc x TpX c C 

by assuming the bilinearity can be analytically continued to the complex numbers: 

gelp (1),  w(2) ) = g(r + is, u + iv) = gfr, 	— g(s, v) + i [g(r, v) + g(s , u)] . (2.1.10) 

where u, v, r, s belong to TpX. Given a complex structure with corresponding coor-

dinates zi for the manifold, one may write the components of the complex metric 

as: 

gib = azi z..7) and go- = g( z
az~ 
	 (2.1.11) , 

a a 	 a a 
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with gij  = gji , gi j = g ji , gij = gij- and gib  = 	In those coordinates a hermitian 

metric satisfies the additional condition that gij  = girj = 0. 10  so that: 

g = gij dzi 0 (122  + gi j d21  0 dz.)  . 	 (2.1.12) 

One may then construct the so-called fundamental form 

J = igij dzi  A dfi such that dJ = 0 <#. Kahler 	 (2.1.13) 

i.e. the fundamental form J is closed for a Kahler manifold, in which case it is 

called the Kahler form. Note that a given Kahler form can be represented by any 

element of the corresponding cohomology class, as different choices are related by 

global holomorphic coordinate changes preserving the complex structure. On the 

other hand there are moduli linking different Calabi-Yau metrics corresponding to 

deformations which appear to make the metric non-hermitian. The point is that it 

can be put in hermitian form by a non-holomorphic coordinate change which thus 

changes the complex structure (i.e the choice of local complex coordinate patches 

covering the manifold) and the Kahler form (but still leaving it closed). Finally 

dJ = 0 implies 

agij  ago  
az1  — az' 

(2.1.14) 

with the corresponding complex conjugate equations. Thus locally i.e. on the patch 

for which the zi coordinates are valid we may define a complex function K (the Kahler 

9which follows from the fact that the original metric is a symmetric real matrix 
'°This ensures that the metric is hermitian with respect to the (in this case integrable) almost 

complex structure J on TpX i.e. g(Jv(i), Jv(2) ) = g(90, v(2) ) where 91) , v(2)  E TpX and with 
: TpX —> Tp X such that j2  = -I. 
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potential) such that' : 

a2  K 
gi3  aziav 

Consider now the of the Levi-Civita connection: 

r 	1 g • aglk 	8g13 ag jk  z 	 + 
3k 

= 
2 \ axe 	axk 	axi ) • 

(2.1.15) 

(2.1.16) 

In complex coordinates one finds that only the purely holomorphic and anti-holomorphic 

components survive: 

- riga s aia  and FT  = al s a9k
8  3k = 	aZi 	 -- • aZ3  

(2.1.17) 

with the corresponding complex Riemann and Ricci tensors: 

ar.!- 
Rod— gig azk  and R1  = 	= 

ark 
aZi 

(2.1.18) 

The simplified holonomy of Kahler manifolds precisely follows from the fact that there 

are no mixed components Christoffel symbols: on a Kahler manifold the complex 

representation of a generic vector decouples into holomorphic and anti-holomorphic 

components in a way which is consistent with parallel transport leading to a holonomy 

group reduced from SO(d) to its subgroup U(d/2) namely v = v3-AT  + vjb 

A Calabi-Yau manifold finally is then one for which this is further reduced to 

SU(d/2) by the topological restriction that the Kahler manifold admit a Ricci flat 

metric i.e. R1  = —4.7 11k  = 0, from which one may deduce that the first Chern 

class c1  vanishes. Chern classes are topological invariants usually defined in terms of 

polynomials of the curvature or Ricci form R = iRGdzi  A dze. The first Chern class in 

particular is the cohomology class of the Ricci form, more precisely c1  = [R]. For 

Kahler manifolds one may locally write R = ia5/n cflg. This being true globally, 

lithe non-mixed components being 0 by virtue of the metric being hermitian 
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meaning the Ricci form is exact and the Chern class vanishes, can be shown to be 

equivalent to the space being Ricci flat. Yau's theorem[128] then guarantees the 

converse namely that given a compact Kahler manifold with vanishing first Chern 

class one may always find metric with SU(d/2) holonomy. This is technically very 

important as many examples of Kahler manifolds are known, which can then be 

arranged to have the first Chern class vanish, while it is non-trivial to construct a 

metric knowing solely its holonomy or Killing spinor content. In particular no explicit 

Calabi-Yau metrics are known but their Ricci-flat Kahler geometry has been widely 

used to derive a vast series of results concerning this class of manifolds such as the 

geometry of the corresponding moduli spaces. 

2.1.2 Holonomy in seven dimensions: G2 and beyond 

The generic holonomy group in seven dimensions is SO(7) which when restricted to 

its different subgroups 7-1 [129] leads to different amounts of supersymmetry N (see 

table 2.3): 

7-( 8 N 

Spin(7) 8 0 
G2 1+7 1 

SU (3) 1+1+3+3 2 
SU (2) 1+1+1+1+2+2 4 

1 1+1+1+1+1+1+1+1 8 

Table 2.3: Holonomy groups in seven dimensions 

Thus M-theory compactifications on G2 manifolds lead to phenomenologically in-

teresting N = 1 effective actions in 4D ( first developed in [74] 12). The mathematical 

12If one generalizes the concept of holonomy to that of other connections beside the Levi-Civita 
connection the first examples where provided in [130] [131] for the case of the squashed seven-
sphere, an analogue of the "round" seven-sphere but with isometry group broken from SO(8) to 
SO(5) x SO(3). Strictly speaking one is however dealing with weak G2 holonomy a special case (like 
traditional holonomy) of the G2-structure description presented in the next section. Note also that 
the round seven-sphere has trivial holonomy with respect to the weak G2  connection and thus leads 
to maximal SUSY in 4D like the seven-torus, but with added cosmological constant. 
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literature on manifolds with G2  holonomy does not compare with that concerned with 

Calabi-Yau manifolds partly because there is no equivalent of Yau's theorem and more 

generally because odd-dimensional manifolds do not admit some of the rich mathe-

matical structures found in even dimension (complex, symplectic or Kaliler geometry 

for example). In fact as already mentioned the first examples of compact G2  man-

ifolds [72] [73] are rather recent (slightly earlier work on the non-compact case may 

be found in [122] [123]), while mathematicians have dealt with Calabi-Yau manifolds 

since the late 50s. 

These G2  manifolds were obtained by blowing-up singularities of orbifolds of the 

seven-torus T7/F where F is a discrete symmetry group of the torus. These were in 

fact the first non-trivial examples of compact Ricci-flat (as expected from the Killing 

spinor integrability condition) odd-dimensional Riemannian manifolds. There is a 

series of topological restrictions on these manifolds. For example the holonomy will 

only be precisely G2  if the fundamental group of the manifold 71(M) is finite. If 

the manifold admits a finite cover of the form N6  x Si. or N4  x T3  (where N,-, is a 

compact and simply-connected m-fold) the holonomy will be F tx SU(3) or respectively 

F' 1>< SU(2) where F, F' are finite groups. These results are obviously relevant to M-

theory compactifications to Calabi-Yau three-folds and the K3 surface (or T4  i.e. 

the unique four-dimensional compact manifolds with SU(2) holonomy). Further only 

the Betti numbers b0  = b7  = 1, b2  = b5  and b3  = b4  are non-zero. The number 

of vector multiplets in the N = 1 D = 4 theory (which is however non-chiral for 

smooth manifolds and thus phenomenologically uninteresting) is given by b2, while 

the number of scalar multiplets is given by b3. Additionally there will be b2  + b3  

Majorana fermions (excluding the gravitino). Finally the first Pontryagin pi  class' 

is known to be non-zero. 

13Pontryagin classes pk  are related to Chern classes ck by pk(T) = pk(T, Z) = (-1)k c2k(T ® C) E 
H4k (M, Z) where c2k (T0C) is the 2k-th Chern class of the complexification of the tangent bundle T 
of the manifold and H4k  (M, Z) is the 4k-cohomology group with integer coefficients of the manifold. 
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2.2 G-Structures 

G-holonomy can be understood as the integrability condition of a given G-structure 

(see for example [119] for a review). Technically a G-structure is defined as a principal 

G-subbundle of the tangent space frame bundle F. F itself is defined as the principal 

bundlen  consisting of the set of all ordered bases of vectors one may place on the 

tangent space at a given point of a manifold. As such it has structure group GL(d, R) 

for a d-dimensional manifold. The existence of a G-structure means one may consis-

tently define a sub-bundle on which G acts transitively and freely (by construction 

G must be a subgroup of GL(d,R)). Typically this is equivalent to the existence of 

globally defined and nowhere vanishing G-invariant tensors or equivalently spinors. 

The existence of the G-structure is to be understood as a topological restriction since 

the structure group provides the transition functions in the tangent bundle. 

The simplest example is that of an 0(d) structure with corresponds to a Rieman-

nian metric g which allows to select an orthogonal frame bundle as a subset of F. 

Another example is that of an SL(d, R) structure corresponding to orientable mani-

folds defined by the presence of a volume form a The existence of both leads to an 

SO(d) structure (simply by considering the common subgroup)15 . Note also that any 

G-structure where G C G' inherits the properties of a G'-structure: in particular any 

G-structure where G C 0(d) must admit a metric which can be constructed from the 

G-invariant tensor(s) although often trough a non-linear map. 

In this case, when G C 0(d), a G-structure is said to be integrable to G-holonomy 

if its G-invariant tensors are compatible with the Levi-Civita connection i.e. if their 

covariant derivative vanishes. Note that the Levi-Civita is only one possible con-

nection singled out by the requirement of being metric compatible (Vg = 0) and 

torsion-free. The holonomy is then specifically the holonomy of the Levi-Civita con- 

14A principal bundle is a fiber bundle whose fiber is isomorphic to a group which acts freely and 
transitively on the fiber itself. 

'Further if the manifold is a spin manifold the structure group is strictly Spin(d). 
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nection. Obviously an 80(d) structure is by the definition of the connection trivially 

integrable leading to the already mentioned result that SO (d) is the generic holonomy 

group in d dimensions'. 

A slightly less trivial example is afforded by an almost complex structure which 

is essentially a GL(d/2, C) structure, where d is obviously even in this case. The 

corresponding invariant tensor defines a map J : TpX T pX such that J2  = -I on 

the tangent space at point p. This leads to a split of the complexified tangent bundle 

Tc  = T+  e T_ where T+  and T_ are respectively the +i and —i eigenbundle of J. 

Accordingly differential forms may be decomposed into (p, q) forms i.e. antisymmetric 

maps on n  T. If the structure is integrable complex coordinates may be defined 

on local patches with transition functions given by holomorphic functions and the 

tangent bundle split translates into a consistent split into holomorphic and anti-

holomorphic coordinates and with (p, q) forms having p holomorphic and q anti-

holomorphic indices. Locally one may then represent J in explicit coordinates: 

jzz, i8zz, jzz, i6z z, jzz, jzz, 0 	 (2.2.1) 

The integrability condition corresponds to the vanishing of the Nijenhuis tensor': 

IVmnp  = Pn(avIm p  — apf-,) - ,P,(3,Jmn  - J-,) 	(2.2.2) 

Alternatively this may be phrased in terms of closure of the ±i eigenbundles of J 

under the Lie bracket given algebraically as18 : 

N(X, Y) = [X, Y] — [j X, jY] + J[JX, Y] + j[X, jY] 	(2.2.3) 

'More generally, including the case when G 0(d), integrability is given by the vanishing of the 
intrinsic torsion associated with the structure. 

17Note that of course GL(d/2, C) ct 0(d) so that the integrability of the almost complex in terms 
of the Nijenhuis tensor is given by the more general requirement of a vanishing intrinsic torsion 
mentioned earlier, which does not require referring to a metric. 

18The previous tensorial expression for the Nijenhuis tensor is obtained by choosing the special 
case of basis vectors in the Lie bracket. 
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If an almost complex manifold is further endowed with an hermitian metric g, 

corresponding as already explained to the requirement g(jv(i), Jv(2) ) = g(v(i), v(2)) 

where v(i) , v(2) E TpX, one has a U(d/2) structure. It then follows from eq. (2.2.1) 

that the fundamental form, a (1, 1) form, is naturally obtained by lowering indices on 

the almost complex structure with the hermitian metric. The integrability condition 

for U(d/2) structure is equivalent to the Kahler condition that the fundamental form 

J (both indices down) be closed. Alternatively this may be phrased in terms of the 

integrability of two separate structures: 

1. A nowhere vanishing two-form is the invariant tensor corresponding to Sp(d, R) 

symplectic structure. Closure of the fundamental ( Kahler) form corresponds to 

the integrability of the structure and thus every Kahler manifold is symplectic, 

in line with U(d/2) C Sp(d, 111). 

2. Given the metric compatibility of the Levi-Civita connection the Kahler con-

dition also implies the vanishing of the Nijenhuis tensor. Hence every Kahler 

manifold is also complex, as expected since U(d/2) C GL(d/2,(C). 

It is worth noting that the integrability of the almost complex structure is not equiv-

alent to the vanishing of its covariant derivative (as GL(d/2, C) ct 0(d)), which is a 

stronger requirement equivalent to the Kahler condition. 

2.2.1 SU(3)-structures 

To describe Calabi-Yau manifolds (following the discussion in [1091) we need to in-

troduce one new object, a (d/2, 0) form C2 which defines an SL(d/2, C) structure. 

Together with a (1, 1) form which defines a Sp(d, R) structure we obtain a struc-

ture defined by their common subgroup i.e. SU(d/2) provided both structures are 

compatible, meaning their embeddings in GL(d, R) must be chosen so the overlap is 
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indeed SU(d/2), which leads to algebraic constraints: 

i4(4±2) 

d 	JZ = 
2 

QAQ ; JAQ= 0 	 (2.2.4) 

where JZ denotes g wedge products of the (1,1) form with itself. 

Note that both structure groups are subgroups of SL(d, R) and thus naturally 

define a volume form. The first equation above guarantees that both definitions 

agree. 

The Calabi-Yau condition is then the integrability condition: 

dJ = 0 ; c/Q = 0 	 (2.2.5) 

In principle one would expect the integrability condition to involve the covariant 

rather than just the exterior derivatives vanishing. However an SU(d/2) structure 

implies an SO(d) structure meaning that the pair (J, Q) defines a metric (though 

not separately as the individual groups do not lie in SO(d)). As a result there is 

a non-trivial relationship between the pair and the Levi-Civita connection meaning 

that the above conditions are sufficient to ensure integrability. Note also that since 

SL(d/2, C) C GL(d/2, C) Q defines an almost complex structure. 

Note finally that the existence of a closed (d/2, 0) form is a Dolbeault cohomology 

constraint, so that the restriction of Kahler manifolds to Calabi-Yau manifolds is 

indeed topological. 

To link this picture to a description in terms of a Killing spinor ij  we introduce 

bilinears: 

Jmn = —iTYmnr), ; Qranp = —inTaYmnp77 
	 (2.2.6) 

On can check that these obey the constraints for the pair (J, S2) using Fierz identities. 

Further one may check that the integrability condition is equivalent to the Killing 

spinor equation for i. The existence of a nowhere vanishing ri is further equivalent to 
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that of a nowhere vanishing pair (J, 52). 

At this point it is important to note that non-integrable G-structures may still 

lead to on-shell supersymmetric backgrounds. We will again follow the description 

in [109] which builds on earlier work in [108] and [132] (together with results in 

the mathematics literature [133]). For a supersymmetric background with fluxes the 

SUSY parameter will no longer be covariantly constant with respect to the Levi-Civita 

connection but instead V;77,17/ = 0 19  where V/  n) is a new connection with torsion. 

This torsion is then expressed in terms of the fluxes. It is always possible for a given 

spinor to find a connection with respect to which it vanishes. In the presence of 

supersymmetry the SUSY variation then implies that the flux terms must be equal to 

the torsion of that connection, which encodes its deviation with respect to the Levi-

Civita connection. For three-form fluxes one further explicitly sees the flux entering 

as a correction to the spin connection (see for example eq. 1.2.1). Accordingly in the 

case of SU (3) structure for example (J, S2) will no longer be closed forms but the RHS 

of equation 2.2.5 is replaced by an expression in terms of the fluxes or alternatively 

the torsion. More explicitly we have: 

v 	= vnin — 711  K„,np r nP = 0 , 	 (2.2.7) 

where 	E Al  0 A2  is the so-called contorsion related to the torsion by: 

Tmnp = 2 (rrinp — Knntp) 
	

(2.2.8) 

Now recall that 

A2  ^ so(6) 	su(3) su(3)1 	 (2.2.9) 

19Note that this implies that the norm of 1.7 is constant which is consistent with the G-structure 
requirement that it be nowhere vanishing. 

46 



where so(6) and su(3) are the Lie algebras of SO(6) and SU(3) respectively so that 

the contorsion may be further decomposed as 

nsu(3)  + to  where k"(3)  E A l  ® su(3) and n°  E Al  ® su(3)1 	(2.2.10) 

Now since we know that 77 is a SU(3) singlet the above equation becomes: 

V 	= 	 K o P IP  71 
4 "P  

(2.2.11) 

Thus it is tc°  the intrinsic contorsion or alternatively T°mnp 
= l ( co

mnp 
_ 

nmp ) the 

intrinsic torsion which measures the obstruction to the manifold being Calabi-Yau. 

T°  can then finally be decomposed into irreducible representations of SU(3) as follows: 

E 	ED YV2  ED VV3  VV4 YV5 

where the representations 1Ni  can be given in terms of J and 52 as shown in table 2.4, 

where the subscript 0 indicates primitivity conditions such as20  Jj d42,1) = 0.  

component interpretation SU(3)-representation 
W, JAdQ or QAdJ 1 @ 1 
W2 (dS2),1 '2  8 ED 8 
W3 (dJ)'' + (dJ)16'2  6 ED 6 
W4 J A dJ 3 ED 3 
W5 (1523,1  3 ED 3 

Table 2.4: The five classes of the intrinsic torsion of a space with SU(3) structure. 

Explicitly the decomposition of Al  su(3)1  goes as: 

(3 + 3) x (1 + 3 + 3) = (1 + 1) + (8 + 8) + (6 + + (3 + + (3 + 3) (2.2.12) 

20where J denotes contraction of the form on the right over all the indices of the form on the left 
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and 

dJ E Wi QD 1N3  8 W4, ; dQ E Wi ED W2 E1) W5. 	(2.2.13) 

Specific classes of manifolds with SU(3) structure are then selected by choosing 

T°  to lie in a subset of these representations (see table 2.5 [100]) e.g. it can be shown 

that the Nijenhuis tensor NIn  E Wi ED W2  so that choosing these representations to 

vanish leads to a complex manifold. So-called half-flat manifolds, which appear as 

mirror duals of Calabi-Yau spaces deformed by electric fluxes [134], are defined by: 

dQ-  = 0 ; d(J A J) = 0 	 (2.2.14) 

where Q±  are the real and imaginary part of 12 and d1+ 2,2  is the equivalent on the 

mirror manifold of the NS 4-form giving the electric fluxes. 

Another such class corresponds to manifolds that are conformally Calabi-Yau 

manifolds. Consistency requires that under a conformal resealing of the metric g 

e2f g we have J —> e2 f J and 12 —> e4f Q. This leaves W1, W2  and W3  and the linear 

combination 

(d - 2)W5  + (-1)4+124-2-d W4  
2 - 

(2.2.15) 

invariant. These must vanish for a conformal Calabi-Yau manifolds as they do for 

the Calabi-Yau manifolds themselves. This condition is however not sufficient and 

we must further require that W4  and W5  be exact. 

2.2.2 G2-structures 

One may now repeat this analysis for G2-structures [109] [1351 for M-theory N = 1 

compactifications. A G2  structure implies the existence of a nowhere vanishing three- 

form: 

Cp = e246 - e235 — e145 — e136 + e127 d-e347  + e567 	 (2.2.16) 
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Manifold Vanishing torsion class 
Complex W1  = W2  = 0 

Symplectic W1  = W3 = W4  = 0 
Half-flat ImW1  = ImW2  = W4  = W5  = 0 

Special Hermitian W1 = W2 = W4 = W5  = 0 
Nearly Kahler W2 = W3 = W4 = W5  = 0 
Almost Kahler W1  = W3 = W4 = W5  = 0 

Kahler Wi = W2 = W3 = W4 = 0 
Calabi-Yau Wi — W2 - W3 --=-- W4 = W5  = 0 

"Conformal" Calabi-Yau W1  = W2  = W3  = 3W4  — 2W5  = 0 

Table 2.5: Vanishing torsion classes in special SU(3) structure manifolds [100]. 

where cab' = ea A eb  A ec and a, b, c are frame indices. One may check that c,o is 

invariant under a natural action of N. E G2  C S0(7) given by Web  so that y 

defines a principal G2  sub-bundle of frames {ea} of the frame bundle. This relates to 

an invariant spinor 7/ through the bilinear: 

y = ifryPqr  dxp  A dxq  A dx, = iihabcric ea A eb A ec 	(2.2.17) 

provided one chooses a basis such that: 

-7123477 	'Y1256rl = -Y 1357 	 (2.2.18) 

where the gamma matrices are those given in eq. (6.2.6) (see also section 6.1 for our 

conventions). 

Since G2  C 80(7) C S L(7,111) cp defines a metric and a volume form [72][73][119]: 

9. = det(h)-119  hr. , 

hmn 	1414 Vnipq(Pnrscotuv Pqrstuv 
	

(2.2.19) 

*71 = cP A *7(O 

where e is the "pure-number" Levi-Civita pseudo-tensor, which in particular makes 
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no reference to the determinant of the metric and only takes values (+1, 0). hAB  is the 

unique rank two symmetric object that can be constructed from co up to a conformal 

rescaling. The factor in 2.2.19 is determined by the requirement that g transform 

properly as a tensor. 

To determine the torsion classes note that the adjoint representation of SO(7) 

decomposes as 21 —> 7 + 14 where 14 is the adjoint representation of G2. The 

intrinsic torsion is then described by four classes [136], 

T°  E Al  0 ,y,L  =- liVi e w2 ED IN3 9 W47 	
(2.2.20) 

7 x 7=1 +14+27+7. 

Failure to reach integrability is encoded only by the exterior derivatives dc,o and d *7 l.p 

which are the only non-trivial content of Vin cio: 

4 
rico --= W1  * cp + VV4 y0 + W3  , d * go = —

3W4 * (10  ± W2c° • (2.2.21) 

which in turn is in line with the torsion classes corresponding to the decomposition 

of a four and a five-form as representations of GL(7, R) under G2: 

35 --4 1 + 27 + 7 , 21 —> 14 + 7. 	 (2.2.22) 

where both 'Is can be shown to be the same as there are four and not five classes. 

Explicitly for example: 

W4 	co-idco = — 1.: coi d * cia and W1 	*(4° A d(P) 
	

(2.2.23) 

In analogy with the SU(3) case one may identify conformally G2 holonomy man-

ifolds by noting that under a conformal rescaling g --+ el f g one has respectively 

c,o 	e3 fce and *7cp —> e31  *7 (p. This leaves W1 , W2 and 14)3  invariant while 
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W4 -+ W4 - 12df . Thus the desired manifolds correspond to choosing W4  to be 

exact and having the other classes vanish. Note that this is a special case of inte-

grable manifolds with W2 = 0 on which one may define a G2 Dolbeault cohomology 

[137]. 

Finally note that on a compact seven-dimensional spin manifold one is guaranteed 

to have at least an SU(2)-structure and thus implicitly an SU(3)- and a G2-structure 

as was shown in [138] using the fact that any compact orientable seven-manifold 

naturally admits two linearly independent nowhere vanishing vector fields (which 

was proved in [139]). 

2.2.3 Recent applications of G-structures 

Let us now comment on some recent applications of this formalism. The main fo-

cus of interest in this area is the classification of supersymmetric solutions and the 

generation of new backgrounds on which to test the holographic AdS-CFT correspon-

dence. Although we will not review it here one should note the existence of a related 

approach known as spinorial geometry [140]— [148]. 

In [132] and [108] the authors described supersymmetric solutions arising from 

NS five-branes wrapping SLAG cycles. Earlier work in [149] dealt with M-theory 

membranes wrapping holomorphic cycles. A complete classification of purely bosonic 

minimal supergravity solutions in five dimensions was then obtained in [150]. The 

most general type II compactifications on manifolds with SU(3) structure admitting 

N = 1 vacua were constructed in [151, 152, 117, 153, 154]. Of high relevance to 

holographic duality were a series of works systematically classifying classes of solutions 

with AdS factors. All type IIB configurations with only the self-dual five-form flux 

and the metric as non-trivial field content leading to near horizon geometries of D3 

branes with an AdS3  factor were analyzed in [155]. An analogue for M2 branes 

with purely electric flux in 11D supergravity giving an AdS2  factor can be found 
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in [156]. (A class of M-theory compactifications with AdS3  factors from wrapped 

M5 braves were categorized in [157]). In both cases the internal manifold is found 

to be a warped U(1) fibration over a Kahler manifold of dimension six and eight 

respectively. The corresponding supergravities preserve of the supersymmetry and 

are dual to an N = (0, 2) CFT in two dimensions and supersymmetric conformal 

quantum mechanics with two supercharges respectively. 

Methods for an explicit construction of the Kahler manifold were given in [158] 

(recovering some results from [159] which was itself extended in [160]). These were 

partially inspired by parallel developments aimed at finding supersymmetric back-

grounds with AdS5  x SE5  geometry where SE5  is a five-dimensional Sasaki-Einstein 

manifold, defined such that a cone over an SE5  base is a six-dimensional non-compact 

Calabi-Yau with conical singularity. Such backgrounds were introduced as an exten-

sion of the standard AdS5  x S5 on which the original AdS-CFT conjecture was defined 

whereby the round five-sphere is replaced by its squashed equivalent. In the special 

case of Sasaki-Einstein manifolds one may identify the dual CFT and perform non-

trivial checks of the correspondence. These spaces [3] all have S2  x S3  topology and 

can be obtained as S1  bundles over a four-dimensional Kahler base. 

The first known non-trivial example (and for a long time only one besides the 

trivial case S5  and quotients of both of these) was T 1' 1  = SU(2) x SU(2)/U(1) for 

which the base is simply S2  x S2  and which has a metric with SU(2) x SU(2) x U(1) 

isometry. It was only in [161] that a new (in fact infinite) class of such manifolds 

was found (denoted as Ymq where p, q are coprime positive integers with p > q) with 

the isometry being now SU(2) x U(1) x U(1) and whose N = 1 CFT duals were 

all identified. This result was obtained using the exhaustive classification of all su-

persymmetric compactifications with a warped AdS5  factor (this includes the special 

case of a Minkowski factor) and non trivial flux of 11D supergravity given in [162] 

and which were found to be parameterized by a one-parameter family of 4D Kahler 

manifolds. The authors then explicitly described a large class of such solutions given 
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by S2  bundles over a four-dimensional base which can be either a Kahler - Einstein 

space with positive curvature or the product of two constant curvature Riemann sur-

faces. This last group includes spaces of topology S2  x S2  x T 2. YThq spaces are 

obtained by dimensionally reducing on one of the T 2  circles and doing a T-duality on 

the other (a generalized framework including AdS4  x X7 M-theory compactifications 

was given in [163]). These results were finally extended in [164][165] to a new infinite 

class denoted LThq'r with metric isometry U(1) x U(1) x U(1). 
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Chapter 3 

Generalized geometry 

3.1 Generalizing complex and Kaliler geometry 

While generalized (complex) geometry (GCG) originally arose from an independent 

mathematical programme [166] [167], its potential for application in physics was al-

ready clearly underlined in the seminal paper by Hitchin [168] (with the general for-

malism presented in detail in [169] ; see also [170] for a coordinate-based treatment). 

One of the main motivations was indeed to generalize Calabi-Yau manifolds. 

The central tenet of GCG is that structures are no longer defined on the tangent 

bundle T but 1  on T ® T* where T* is the (dual) cotangent bundle. Significantly this 

new bundle is endowed with a natural inner product : 

1 (X + e, Y + n) = 2  (ixn + iYO (3.1.1) 

where X, Y E T and e,77 E T*. This corresponds to a split signature metric in an 

lin an even-dimensional space of dimension d 
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explicit coordinate base (dTP, aii ) : 

1 ( 0 ld 
= 

2 	1d 0 
(3.1.2) 

which naturally induces an O(d, d) structure paralleling the discussion of structures 

defined on T in section 2.2. In analogy with traditional geometry a generalized almost 

complex structure (GACS) is defined as : 

: T ED T* T EDT* 

such that J2 = —12d 
	 (3.1.3) 

and J1217 = / 

where the last line makes the O(d, d) metric hermitian with respect to the almost 

complex structure so that we now have a U(d/2, d/2) structure. Integrability of this 

structure is established via a generalization of the Lie bracket known as the Courant 

bracket: 

[X + e,Y + ?lb= [X, Y] + Lxn — Lye — 	— 
	 (3.1.4) 

where [ , is the Lie bracket. The GACS is integrable if one may define projectors 

compatible with the Courant bracket, that is: 

II~[II±(X + II+ (Y + 	= 0 where II± = 
1 	iJ) 
	

(3.1.5) 

or more explicitly: 

pc + e, Y + — [J(x 	j(17 + 71)], + J[J(X + 	+Me+ J[x + 	+n)]c= o 

which is analogous to the definition of the Nijenhuis N tensor in terms of the Lie 
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bracket as given in eq. (2.2.3). 

One may isolate special cases by introducing a useful decomposition of J: 

(J P 
— 

L K 

 

(3.1.6) 

 

where J : TM —> TM, P : T* .A4 —> T.M, L : T.A4 T*.A4 and K : T* M T* .A4 

or in explicit indices Pv , L,,„ Ptµ" and icy. So that J2  =  —12d implies: 

J'Lv JuA  + PPvL,A  = 	 (3.1.7) 

piLv KvA 0, 	 (3.1.8) 

KiauKu.A 	pva = 	 (3.1.9) 

lc/Lot + LiwivA= 13. 
	 (3.1.10) 

while the hermiticity of the 0(d, d) metric with respect to J is equivalent to: 

J4, ± Ki,v =0, 	— PL"` 
	

(3.1.11) 

and finally integrability may be re-written as: 

P[A,Pupbv J ilv J[A,p] 	L[Ap,v] = 0 

p[Plv 	0  

jp 
,p 
 ppA ppAv p —  P 

JA 
 ,v  pp,p ' v 

JA 
 p 

 pep ppA jp = 0  
v 	v 

J Avil[Ap,7] LvA J [-y,p] PpLyv,A JyLvp,A LApPiy, J ApLAry,v = 0 (3.1.15) 

Choosing 

(J 0 
J = 

o —Jt  • 
(3.1.16) 

we see for example that eq. (3.1.7) defines J as an almost complex structure and 
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eq. (3.1.12) its integrability in terms of the corresponding Nijenhuis tensor. Similarly 

taking: 

,7 = 
( 0 _w  ) 

ch) 	0 
(3.1.17) 

embeds a symplectic structure w in the GACS with the relevant integrability equations 

reducing to du = 0. In general however a GACS interpolates between symplectic and 

complex geometry. Interestingly [100] once Calabi-Yau geometry is deformed by the 

introduction of H3 NS fluxes to SU(3) structure the resulting compactification man-

ifolds will be mostly complex for type IIB and mostly symplectic for type HA. Since 

both theories can be linked by T-duality the appearance of the 0(d, d) group structure 

becomes very suggestive. Further the A- and B-model in topological string theory, 

which are related by mirror symmetry (which in the Calabi-Yau context reduces to 

multiple T-duality), have observables depending exclusively on the symplectic and 

complex structures respectively. 

These ingredients suggest the importance of GCG in providing a unified descrip-

tion of compactification beyond the Calabi-Yau case. This is further reinforced by 

the natural inclusion of the B-field. Note first that the Courant bracket admits a 

non-trivial (beyond diffeomorphisms which are already present for the Lie bracket) 

automorphism in terms of a closed two-form b: 

[eb(X + 	eb  (Y +'l)], = eb [X + 	+ n], + ixiydb = eb [X + 	+ 71], (3.1.18) 

provided db = 0, with the action of b on T T* defined as: 

eb(X+e)=X++ixb 	 (3.1.19) 
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1 0 1 
,7b = 

( 
b 1 —b 

0 
(3.1.20) 

1 

and a resulting map on the GACS respecting integrability: 

The field strength H = dB of the B-field may then be used to twist the Courant 

bracket: 

[X 	e , + 77]H = [X + e, Y +71]c + ix iyH. 	 (3.1.21) 

which under eb  transforms as: 

[X + Y +77]1-1  —> [X + e, Y + Mii+db 	 (3.1.22) 

which is again an automorphism for closed b and corresponds to the local gauge 

ambiguity in choosing the B-field. Note that the twist is generated by an eB  action 

on T ED T* 

This is even more salient if we consider the case of generalized Kahler geometry 

which is endowed with two GACS L11,2 and a positive definite metric g on T T* 

such that: 

[31,L7-2] = 0 ; g = -J1.72 ; g2 = 1 	 (3.1.23) 

The general form of g is in fact familiar from the study of T-duality (see eq. (A.2.10)): 

( 	 G-1 ) =  (1 0) ( G-1) (1 0 
G= 

G— BG-1B BG-1 	B 1 G 	—B 1 

but with G and B a priori merely symmetric and antisymmetric two-tensors. Choos-

ing the embeddings of the complex and symplectic structure as given in eq. (3.1.16) 
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and eq. (3.1.17) as the pair of GACS satisfies the conditions in eq. (3.1.23) in the 

special case of a traditional Kahler structure and confirms the interpretation of G as 

the Riemannian metric on the manifold. This is further clarified (along with the inter-

pretation of B as the Kalb-Ramond field) by linking generalized Kahler geometry and 

the bi-hermitian target spaces of worldsheet models with N = (2, 2) supersymmetry 

[170]. Note finally that while the above equation suggest that NS-flux backgrounds 

may be generated by eB  transforms of purely geometric solutions, one has to bear 

in mind that since B is not closed this does not generate an automorphism of the 

(twisted) Courant bracket. Thus integrability of the geometric background does not 

guarantee that of the general one. 

By construction the metric g is compatible' with the natural inner product I on 

T ®T*. 

Introducing such a metric (with the third condition in eq. (3.1.23)) reduces the 

structure group on T EDT* from 0(d, d) to 0(d) x 0(d). We already pointed out that 

a GACS reduces the structure to U(d/2, d/2). Taken together we obtain a reduction 

to U(d/2) x U(d/2). Integrability of this structure reduces to that of each of the two 

GACS separately. 

At this point let us note that given a topologically non-trivial B, the metric c 
cannot in fact be an inner product on sections X + E T T*. Instead, the relevant 

objects are sections of an extension E 

0 
	

T* 
	

E 	T 	0 	 (3.1.24) 

where one identifies (X + e)(o) = P)  (X + 0(a) on the intersection of two patches 

Ug, or in components 

X(a) 	(0) = X(0 ) 	((a) 	ix(,),) dA(0))• 	 (3.1.25) 

2that is i(c(x + 	+ 	= i(x + Y + ri) or alternatively gtig = 
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A(0)  is determined by the gauge transformations allowing to globally patch B, which 

a priori is only locally defined. So on the overlap of two local patches u(,),)  n U( p )  we 

have 

B(p) = B(a) + dA(0), 	 (3.1.26) 

so that A(0)  = —A(0,) , while on the triple overlap U(,)  n U(p) 

A(0) + 
A 

( p 7 ) + A (,ya) = dA(C,37) • 	 (3.1.27) 

Mathematically this means B is a connection on a gerbe (see for instance [171]). If 

the flux is quantized H E H3(M, Z) then one has g(07)  = eiA(aoY) E U(1) and these 

elements satisfy a cocycle condition on U(a)  n U(0)  n U( .y)  n U(6) 

g(07a)g(crya)g(005 )9(afry) = 1 . 
	 (3.1.28) 

Formally the g (,07)  define the gerbe, while the A(0)  define a "connective structure" 

on the gerbe. Together they encode the analogue of the topological data of a U(1) 

gauge bundle. 

There exists an alternative, but equivalent, description of generalized geometry in 

terms of so-called Cliff (d, d) pure spinors which arises naturally from the space-time 

and particularly supergravity point of view. Given the emphasis on 11D supergravity 

in our original work, we shall now review this approach, following the treatment 

in [100]. 

3.2 Pure Spinors 

The traditional representation of Clifford algebras involves its matrix action on spinors 

which form a representation of Spin(d). However the algebra of Cliff (d, d) (for defi- 
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niteness): 

{fm, fn.} = o , 	11.} = (5,71  , 	{Fr., riz} = o . 	(3.2.1) 

(where 	= 1 	d and m,n = d + 1 . . . 2d are not covariant and contravariant but 

independent indices) has another representation3  in terms of an action on forms which 

are in one-to-one correspondence with the aforementioned spinors: 

frn = de-LA , 	rn = in 
	 (3.2.2) 

with in: APT* —> AP-1T* , in dx" A ... A dxi P = p dxi2  A ... A dxiPi. Thus we may 

write the natural Clifford action of X+e E T ED T* on a spinor 

(X + e) • (I) = ix4) + e d) 	 (3.2.3) 

Consequently applying the anti-commutator of two such actions leads to: 

(Y + 7i) • [(X + e) • (1,J + (X + e) • [(Y + 77) • 4)] = 2(X + e, Y + 7043 	(3.2.4) 

confirming that the generic inner product on the Clifford algebra coincides with the 

natural inner product on T ® T* with respect to I denoted here as ( , ) . 

It follows that the inner product vanishes on LI, the sub-bundle of T T* con-

taining the annihilators of 4 which is thus isotropic. If it is maximal isotropic (i.e. 

has maximal dimension d) (I) is a pure spinor. The existence of a maximal subbundle 

implies the existence of a projector and hence an endomorphism on T T* squaring 

to —1, while isotropy then implies the hermiticity condition in 3.1.3. There is thus a 

one to-one correspondence between a pure spinor and a GALS with the annihilator 

sub-bundle of the former being the ±i eigenbundle of the latter. 

3Note that this is essentially the algebra of d pairs of fermionic creation and annihilation opera-
tors. 
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As a an example consider the (3,0) from Q = dzi  A dz2  A dz3. It is annihilated by 

the sub-bundle with action: 

tzt  = dzi  A , I,zi = a 
any 

(3.2.5) 

with i = 1 d I 2 for d = 3 and choosing obvious complex coordinates. The corre-

sponding GACS is given by the embedding of a traditional almost complex structure 

as given in eq. (3.1.16), consistent with Q defining such a structure. 

Similarly the pure spinor e-i-1  where J = dzi  A d2' dz2  A d22  dz3  A dz3  is a 

(1, 1) form and is equivalent to the GACS embedding of a symplectic structure given 

in eq. (3.1.17). 

In terms of pure spinors integrability with respect to the Courant bracket trans-

lates into the condition: 

dcI) = (i, + 	 (3.2.6) 

for a given v+C E T EDT* . A "generalized Calabi-Yau manifold" in the sense of [168] 

in particular is defined such that v + = 0 and (I. has a non-zero norm 1141  given by: 

0112  = ('b,(1)) 	where in general ((I, 11) = (s(4)) A W)Id 
	(3.2.7) 

is the Mukai pairing with s(1') 	En(-1)Int[n/2] I n where IT, projects out the form 

of degree n. Note that in terms of the Spin(d, d) representation of the spinors this is 

nothing but the natural bilinear il>tIf. 

Integrability under the twisted Courant derivative is given in terms of the twisted 

exterior derivative: 

dHT' = (d — HA)V = (iv  + (A)V 	 (3.2.8) 
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d/2 x—• 1 
(11+ = nn = S 	-jfrri,...io f"-" 

k=0 

1 

(13 	= 7P7T  = S 	

! nT   -yi  ik  n fik..." (3.2.10) 
k=0 

d/2 

leading to a definition of twisted generalized Calabi-Yau in analogy with the above. 

Note that d2H  = 0. 

If (I) satisfies eq. (3.2.6) then T' = eB  • 41. = (1 + B A -qB A B A -1-...)4) satisfies 

eq. (3.2.8) with the corresponding GACS related by: 

,7' = ( 1 	0) ( 1 0 ,7 
B 1 	-B 1 

This picture may be neatly related to ordinary G-structures on T described in 

section 2.2. Being a generalization of complex geometry GCG is most naturally 

applied to even-dimensional spaces so we shall use SU(d/2) structures as example. 

Given an SU(d/2) invariant spinor ri we may define bi-spinors: 

(I)+  = nfi and (1,_ = irriT 	 (3.2.9) 

Recall now that the anti-symmetrized products of gamma matrices together with 

/2d/2 x2d/2 form an orthogonal basis for GL(2d/2 ,C) matrices (as the above bi-spinors) 

under the inner product tr (At B) for A, B E GL(2d/2, C). The bi-spinors may thus be 

decomposed as (the usual Fierz identity): 

where s = 	,I 	 \. Note that as a Clifford(d, d) spinor (I)+  has positive chirality ,,y 2d/2 x2d/2) 
and 	negative chirality. From the form point of view this means they are respec- 

tively sums of even and odd degree forms. Using eq. (3.2.2) to rewrite the gamma 

matrices as one-forms one finds: 

s 	• 	 i 
c13+  = -

2 
e-iJ  and (1)_ = 

2

s 
 

(3.2.11) 
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where (J, Q) is the usual pair defining an SU(d/2) structure whose expression in terms 

of bilinears in n was given in eq. (2.2.6). It follows that an SU(d/2) structure on T 

is equivalent to two GACS on T e T* namely the natural embedding of a symplectic 

and an almost complex structure respectively. What is more both structures are 

compatible in the sense of the definition of a generalized Kahler structure as given in 

eq. (3.1.23) so that one has an U(d/2) x U(d/2) structure. From the point of view of 

annihilator spaces of the corresponding pure spinors it implies that their overlap must 

be of dimension d/2 i.e. they have d/2 annihilators in common. In fact since the pure 

spinors are globally defined one has an SU(d/2) x SU (dI2) Calabi-Yau structure'. It 

can be checked that integrability leads to the usual Calabi-Yau conditions for (J, Q). 

It can similarly be shown that an SU(2) structure on T is also a special case of 

an SU(3) x SU(3) structure on T EDT* with pure spinors: 

1̀)+_l11772 and 4)- = ni7g- 
	

(3.2.12) 

with ?71, ?72  two nowhere vanishing spinors. SU(3) structure can be understood as a 

special case with 	= 772. An intermediate case is that of a so-called local SU(2) 

structure which admits two nowhere vanishing spinors that are parallel (and thus 

not linearly independent) in at least one point so that the structure is not globally 

defined. This case is relevant for type II compactifications as the two ten-dimensional 

spinors need not be decomposed in terms of the same six-dimensional internal spinor. 

Requiring N = 2 SUSY 5  implies that the SU(2) structure may only be local. Be-

ing midway between the above two special cases this unsurprisingly also leads to a 

manifold with SU(3) x SU(3) structure with the pure spinors given by eq. (3.2.12). 

4The map between pure spinors and GACSs is not one-to one: the phases and overall scales of 
(1.± may vary and still lead to the same GACS. However these are critical to determine whether 
the pure spinors are globally defined and must not vanish at any point hence the non-zero norm 
condition in eq. (3.2.7). 

5Note that at this point we are talking about the amount of off-shell SUSY in the lower-
dimensional effective action. In the following we shall however be interested in on-shell N = 1 solu-
tions of N = 2 effective actions resulting from compactifying Type II on a manifold of SU(3) x SU(3) 
structure. 
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3.3 Recent applications in String theory 

Having set the scene we may now describe some of the applications of this formalism. 

We shall here deal separately with on-shell and off-shell conditions. 

3.3.1 On-shell supersymmetry 

In [173] the authors rewrite the conditions for an N = 1 vacuum of the effective 

N = 2 theory resulting from compactifying an a background with SU(3) x SU(3) 

structure. Recall that the field content of type IIA and IIB has a common sector 

given by the metric G, the Kalb-Ramond field B and the dilaton cb and differs only 

in the Ramond-Ramond (RR) forms which in this context may be arranged as: 

F'IIA = /10 ± F2 ± F4 + F6 , 	FI B = Fl ± F3 ± F5 , 
	 (3.3.1) 

where F5 is self-dual. Further consider the possibility of a warp factor for the metric 

parameterized by eE: 

d4.0  = eE  44)  &Mx' + gmndendyn , 	 (3.3.2) 

It was then shown that the SUSY equations are respectively: 

e-2E+0( a, + HA)(e2E-(%) = 6 , 
	 (3.3.3) 

1 
e-2E4-̀ 4'(d+ H A)(e2E-q)_) = dE A dk — Tde`P [(1a12 — 1b1 2 )FHA- — 41W +1b12 )* FHA+] 

for type IIA and 

1 
e-2E+°(d— HA)(e2E-q 	

16
+ ) = dE A (1) + — 

el5[(11112 	1b1 2 )Fm3+ — 2(lct12  + 1b12) * FIIB 

e-2E+O(d HA)(e2E-0 (I)_) = — 0, 	 (3.3.4) 
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for type IIB where 

4+  = a6 (D+  , 	ab(D_ 	 (3.3.5) 

are introduced to take into account the norm of the spinors (usually set to one for 

structure spinors): 

771 = a 	 = b712 
	

(3.3.6) 

where 7/1,972  are unit norm spinors. These norms are however not arbitrary and N =1 

SUSY requires that: 

dlar = IbrdE , 	dlbl2= lardE , 	 (3.3.7) 

We thus see that N = 1 vacua result from compactifications on manifolds with 

SU(3) x SU(3) structure, however only one pure spinor (and thus only the SU(3, 3) 

structure) is integrable. We thus have a generalized complex manifold but not a 

generalized Calabi-Yau manifold 6. In particular it is the RR-fields who form the 

obstruction to full integrability. It was noted in [174] that turning them off 7  leads to 

an N = 2 vacuum instead. This is in line with the observation that two integrable and 

compatible GACS leads to generalized Kahler manifolds which are in correspondence 

with bi-hermitian geometries (as noted in [169]): these in turn are the natural target 

space for worldsheets with N = (2, 2) SUSY while for N = 1 SUSY in space-time one 

would expect N = (2, 1) SUSY on the worldsheet. Note finally that the integrability 

condition for 43.±  is not just closure under the exterior derivative but the more general 

form given in eq. (3.2.6) with d(-2E cb) playing the role of the one-form. 

The symmetry of the above equations also suggests the conjecture that one may 

6Alternatively some authors call manifolds generalized Calabi-Yau even if only one structure is 
integrable, using the term generalized Calabi-Yau metric for the case where both structures are 
integrable. 

7together with E = 0 and (1> +  = (DI  
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realize mirror symmetry as : 

41+ 	 1_ ; 	FIIA <---• FITS 
	 (3.3.8) 

This is further underlined by the observation in [175] [176] that the closure of one pure 

spinor is sufficient to define a topological model, (1)+  for the A-model and (I3_ for the 

B-model. 

3.3.2 Off-shell supersymmetry 

Another important application was developed in [177] and further refined in [178]: 

following a methodology introduced in [179] in the study of hidden symmetries of 

11D supergravity: the authors isolate 8 of the 32 supercharges present in type II and 

rewrite the ten-dimensional theory in a form reminiscent of N = 2 D = 4 supergravity 

without any compactification or truncation but merely by assuming that the Lorentz 

group in 10D is reduced from8  Spin(1, 9) .— Spin(1, 3) 0 Spin(6). In our original 

research we aim to extend this work, both by achieving a geometrization of general 

flux backgrounds and by applying this description in a different dimensional setting 

to eleven-dimensional supergravity. 

At this point it is worth noting that when we introduced Generalized Geometry we 

chose the historical angle favored in the mathematical literature. From the physical 

point of view this may however not be the most intuitive sequence, especially for the 

application at hand and our original work. Physically the metric g is specified by 

being the invariant under the maximal subgroup 0(d) x 0(d) of the natural 0(d, d) 

structure on T ED T*. By considering a polarization map T e T* —> T one may 

then isolate a GL(d) subgroup of 0(d, d) which can be identified with traditional 

diffeomorphisms. Decomposing g in terms of this GL(d) subgroup allows to express 

8leading to a decomposition of the 10D spinor in a 4D spinor (which is an anti-commuting 
Grassmann variable) and a 6D (commuting) spinor 
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it in terms of G and B, thus neatly arranging the background fields in the common 

sector. From this viewpoint Generalized Complex structures are a second level of 

sophistication arising when one singles out certain supercharges in a supergravity 

background for the above mentioned reformulation. Similarly Cliff (d, d) spinors are 

more elementary than g and can be defined with reference to the 0(d, d) metric I 

only, while pure spinors arise again only in the context of supersymmetry. 

Having clarified this point let us concentrate on the elements of [177] and [178] 

closest to the original work presented here. Recall first the nature of potential terms 

in N = 2 D = 4 supergravity (as reviewed in [180]): supersymmetric potential terms 

are typically quadratic in the scalar part of the fermion variations9  and for most 

multiplets these are derivatives of the scalar part of the gravitino variation. For 

N = 2 D = 4 we have: 

6011µ=Dit0A+ 	ABec B 	 (3.3.9) 

where A = 1, 2, 01,2  are the SUSY parameters and S (such that SST = 1 ) encodes 

the SU(2) R-symmetry of the supergravity and the potential terms through the three 

prepotentials Px, x = 1, 2, 3 via 

i  KX 11X S AB = 	vaAsr 
6x1 26x2 _6x3 

a,fiB = _6x3 _6x1 26x2 
(3.3.10) 

where Ky is the vector multiplet Kahler potential. As in [177] we specialize to the 

case of SU(3) structure on T and give only a sketch outline of the derivation as we 

will in the following repeat a similar process for 11D supergravity. The existence of 

the aforementioned structure allows for the decomposition of all fields in terms of 

SU(3) C Spin(6) representations. In particular the higher-dimensional precursor of 

9This incidentally ensures that supersymmetric states minimize the Hamiltonian as expected 
from the SUSY algebra. 
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the four-dimensional gravitini can be identified as the singlets in the expansion of the 

ten-dimensional gravitini: 

IIA =  oiti+ ri+ + 014_  ®77 	; 	= 02 A_ ® Ti+  + 	+...(3.3.11) 

in type IIA and 

,IIB 	
VAbt-F'461 71- ± V)  A pc- 0 71+ ± • • • 	A = 1, 2 . 	(3.3.12) 

in type IIB, corresponding to the terms involving the SU(3) invariant structure spinor 

i+ with 77_ = i (where the indices denote chirality). Note the shift of the 10D 

gravitino: 

4712 =--  W A + --11-11y mkPm 	 (3.3.13) 

ensuring diagonal 4D gravitino kinetic terms. Consequently we may obtain the 10D 

analogue of eq. (3.3.9) by projecting out the singlet part of the variation 6W obtained 

from the 10D gravitino variation as given in eq. (1.2.1) in the democratic formulation. 

Turning on only fluxes consistent with 4D Poincare invariance 10  we only retain Fri  

with n = 0 ... 6 where Fn  = dC72 _1  — H A Cn-3 are the field strengths including the 

Chern-Simons contribution 11. The appropriate projector is given by: 

IIf = 	2 (77± 0 77±) . 	 (3.3.14) 

with the signs indicating the chirality of the field acted upon. The prepotentials for 

type IIB can then be calculated to be : 

wi.e. purely internal flux which is a scalar from the point of view of the compact space or its 
Hodge dual 

11Note that the relation to the twisted exterior derivative d H . 
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P1  = —2 elic.1+°(4) (4)_, dRe (1)-1-), 

p2  = 2 elKJ+cii(4) (13_, d Im CO, 	 (3.3.15) 

P3  = 	e2ch(4) 
(ID_, GHB). 

where physically K j  is the vector multiplet Kahler potential for type IIA (essentially 

obtained by mirror symmetry), 0(4)  is the 4D dilaton and GLIB is defined in analogy 

to FHB such that (e-u, FA) = (e-(B+u) , GA) which allows for J to be correctly 

complexified as (B + iJ) giving the pure spinors: 

(I)+  = e-B-u  ; 	= 

For type IIA we find: 

Ti = —2e4KP+(/'(4)  ((I)+ , d Re 4)_), 

p2  = —2e4KP-ki5(4)  (I+,dImI_),  

p3  = 
1  

e
2

(4'(4) 
((iD+, GUA), 

•\, 

were K p  is now the vector multiplet for type IIB and GIIA 

GIIB 

(3.3.16) 

(3.3.17) 

is defined in analogy to 

Note that the vector multiplet Kahler potentials can themselves be written in 

terms of the structures since each pure spinor defines a special Kahler structure 

[167, 168, 182] in terms of deformations of the NS moduli eBc1)±  leading to the Kahler 

potential : 

K= —ln [i f (eB(13±,eB4)±)] 	 (3.3.18) 

which goes as J A J A J for type IIA and iC2M-2 for type IIB which is exactly the same 

as for a Calabi-Yau compactification. This is unsurprising since a Calabi-Yau differs 
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from a manifold with SU(3) structure through differential conditions with respect to 

the internal manifold coordinates. However this data does not enter the derivation of 

the kinetic term in dimensional reduction and hence not the MIler metric nor the 

Kahler potential from which it follows by differentiation with respect to the moduli. 

At this point one may isolate N = 1 theories embedded in the N = 2 reformu-

lation (essentially by breaking the R-symmetry from SU(2) to U(1)) obtaining the 

superpotentials: 

WHA = + cos2  a ei'3(4)+ , d(1)-) - sin2  a e-i'3( ,/+, d(:D-) + sin 2a e°(613+, G+ ) 
(3.3.19) 

WIIs = - cos2  a el'3  (4)-, d(I)+) + sin2  a e-ii3(1,-, d(I)+ ) - sin 2a e4)(4,-, 

where in going form N = 2 to N = 1 the two SUSY parameters 01 ,2 are related as: 

0A  = OnA, nA = (a  , t)  a = cosae-O , b = sin aeP 	(3.3.20) 

and 9 is the single N = 1 SUSY parameter and the R-symmetry corresponds to the 

U(1) subgroup of SU(2) leaving nA  invariant. 

Several known superpotentials are special cases of these general expressions. For 

example the Gukov-Taylor-Vafa-Witten superpotential [95, 183] corresponds to 2a = 

-0 = 7r/2: 

Wurvw = i e°((F3  - 7- ), 52) , 	 (3.3.21) 

where F3 is related to G3 in the usual way and r-  = Co  + le-0  combines the dilaton 

and the RR 0-form. 

The IIA superpotential arising from the RR fields (as proposed in [184]) is found 

by setting a = 7r/4 and d(I)-  = 0: 

VVIIA,RR = -iec6(e (B+ij), Cr/A) . 	 (3.3.22) 
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Finally the superpotential proposed in [134] for the type IIA half-flat mirror manifold 

dual to the Calabi-Yau compactifications with type IIB electric NS fluxes is the special 

case with a = 7/2 and 13 = —712: 

Whalf-flat = (e—(+), dc-1) 
	

(3.3.23) 

The same authors generalized these results to the case of an SU(3) x SU(3) 

structure [178] showing they are unmodified except for the explicit form of 4:13.±. In 

particular (I)_ only contains the holomorphic 3-form SZ for an SU(3) structure while in 

general it will be a generic sum of odd forms in 6D. Under mirror symmetry however, 

now given by: 

GIIA GIIB K j H K p 	 (3.3.24) 

the NS three-from flux H is decomposed in two : electric fluxes mapping to a four-

form and magnetic fluxes mapping to a two-form. In [134, 185] d ReS2 (which when 

non-zero leads to half-flat manifolds) was identified as the dual of the electric fluxes 

but to define a similar construction for the magnetic fluxes had been an outstand-

ing issue since one could not identify an appropriate two-form on the mirror side. 

From the above it follows that the mirrors of compactifications with magnetic fluxes 

must have a general SU(3) x SU(3) structure and the two-form in question relates 

to d(4)_11)-  Interestingly such manifolds turn out to be so-called non-geometric back-

grounds and while in principle this means the supergravity approximation should 

break down the above formalism does reproduce correctly the corresponding low-

energy effective description. This departure from geometry confirms suggestions in 

[186, 187, 188]. Similar methods were used to obtain N = 1 superpotentials directly 

from compactifications of the heterotic string [189] and M-theory [190]. 

This concludes our exposition of the literature, in the remainder of this thesis we 

shall present original work undertaken. 

72 



Chapter 4 

Mathematical Interlude: The 

exceptional Lie group E7(7)  

In this section we review the properties of the group E7(7) relevant to our original work. 

A detailed definition of E7(7) and an exhaustive description of its properties can be 

found in Appendix B of [191] which itself refers to the original work by Cartan [192]. 

Relevant tables for the tensor products of representations of E7(7) and its subgroups 

may be found in [193]. 

4.1 Definition and the 56 representation 

The group E7(7) can be defined by its action on the basic 56-dimensional representa-

tion: Let W be a real 56-dimensional vector space with a symplectic product S-2, then 

E7(7) is a subgroup of Sp(56, R) leaving invariant a specific quartic invariant q. 

Explicitly one can define S1 and q using the SL(8, R) C E7(7)  subgroup. If V is an 

eight-dimensional vector space, on which SL(8, ]R) acts in the fundamental represen-

tation, then the 56 representation decomposes as 

56 = 28 + 28' 
	

(4.1.1) 
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The 28 representation corresponds to A2V and the 28' to A2V*. Note that using 

c E A8V, the totally antisymmetric form preserved by the SL(8, IR) action on V, one 

can identify A2 V* with A6V. In summary, one identifies 

W = A2V ED A2V* 	 (4.1.2) 

and writes X E W as the pair (xab , x'ab ) where a, b = 1, 	, 8. 

The symplectic product SZ is then given by 

CN X  Y) = QABX AY B  = X 
ab y at b  

XtabY a  

where A, B = 1, 	, 56 and the quartic invariant q is 

q(X) qA  Bc  DxAxBx cx D 

ab 	cd 	_at) 	,,„cd = X 	X be X X da  — 	•Lab"cd 
1 
6 + 9— Vabcde f ghxab 

xcd xef xgh Eabcdef gh x fabxlcdxief x gi h ) 

or in explicit SL(8, IR) indices 

1 
qabcdef gh = 96 Eabcdef gh 

abcdef gh = —1 Eabcdef gh 
96 

q abed ef gh 	246 [[: 6  fbi]6gc6dhi 	
46  ea 

6bf 6gc 6 11 

(4.1.3) 

(4.1.4) 

(4.1.5) 

where the last line applies to the five other permutation of indices with two pairs of 

indices up and two down, while all other entries vanish. 

In what follows it will be useful to use a matrix notation where we write 

x A = ea') 
xa  a, 

(4.1.6) 
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(2ita b6f * tea' bb' 
A 

B = 	 • 
btaa'bb' _24ba5a, 

(4.2.3) 

such that the symplectic form 

( 0 o',6ba;) 
AB = 

bb 6t,' 	0 
(4.1.7) 

Throughout it is assumed that all pairs of primed and unprimed indices (a, a') etc 

are antisymmetrized. 

4.2 The 133 and 912 representations 

There are two other representations of interest in this thesis, the first being the 

adjoint. By definition it is a 133-dimensional subspace A of the Lie algebra sp(56, R). 

It decomposes under SL(8, R) as 

A = (V 0 V*)0  AT* 

= (bla b, ilabcd) 
	

(4.2.1) 

133 = 63 + 70, 

where (V 0 V*)c, denotes traceless matrices, so paa  = 0. The action on the 56 given 

by 
6 xab = /la cxcb itb Cxac * „abed 'cd) 	

(4.2.2) 
(54a, = — ticax'cb — 1-lcbx'ac + Pabcdxcd, 

,, with *pal 	1 ,aias kka5 _as. In terms of the matrix notation we have (5X A  = 

it ABxB with  
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= 	ccr 1 CB Note that II AB 	 is a symmetric matrix. Taking commutators of the 

adjoint action gives the Lie algebra p" = La, 

a 	lc 	a c 	1  I 	acic2c3 
b = 	ciu b 	di bl + —3 l*/-1 	c2c3 

n, e 
Pabcd 	1̀0-1  [a fibcd]e 	P' [a 1-1bcci]e) • 

*tit 	c3itbcic2c3 )1 
(4.2.4) 

where the second term in the first line is obtained by use of the following identity: 

	

(*mil * ioab cd  = vabef ef cd 
	P) 

— 1 
= —6—  ( 6a  cEb  d 6a  dEb  c 6b  cEa  d 6b  dEa  c) 

—2 
= —6[a  Ebl  3 	{c 	di 

(4.2.5) 

where by taking the trace we find Ea  b = itacde 1
11  cdeb 

The other representation of interest in this thesis is the 912. The representation 

space N decomposes under SL(8, HZ) as 

N = S2V e (A3v v*)0  e s2v* (A3V* V)0  

= (0ab 0abc tab, qyabc  d) 

912 = 36 + 420 + 36' + 420', 

(4.2.6) 

where SnV denotes the symmetric product and (A3V® V*)0  denotes traceless tensors, 

so that 0ab', = 0. The adjoint action of E7(7) on 0 is given by 

6 	 ab 	cod. ± coac 	1  (* ttacde 0lcdeb 	* iibode 01cdea) ,  

0abc d  = 3 ti[a e0bde d 	[te d0abc e 	*itabce (tied 	*ttef [ab ole f dc] 	vef  
Ye 

g[a f gb dc] 

1 

6  Olab = lac  agYeb — 11a  bc C ja 	( -1acde(11ada  b 	AbcdeOcclea), 3  

	

50'abcd  = —311e  [a06de d  + P e(Yabce  PabceOed  Pal[abOef d  c) 	g[aOef g  661. 

(4.2.7) 

, In terms of Sp(56, III) indices, we have 0ABc corresponding to the Young tableau )L1c1  
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((det M)-114Mmi, 	0 

0 	(det A/)3/4) E 
SL(8, 

77 

with  0ABc clAB = 0. The different components are given by 

oaa'bb' cc' = 	1  ( ebb' cc' f g ciye f g a' 	ebaa' cc' e f g At 
) 12' 	 e f g  7  

cbaa'bb' cc,  = 20ab 6 g, ' C1 1, 	oaa' b eV, 	bb' cscS 

aa' 
bb' cc' = 	

ao c 	20aa' c b(g: 	occ' a b6g,' 

(4.2.8) 

with r aa' bb' cg  = 	bb' ace cc/  and identical expressions for 6 ,aaiblice etc. but with raised 

and lowered indices reversed. 

Finally we note the following tensor product containing a term in the adjoint for 

later reference: 

56 x 912 = 133 + . . . . 	 (4.2.9) 

In terms of Sp(56, R) indices we have itAB = xCQcD0D(AB ) while in terms of SL(8, R) 

components one finds 

a 3  ac 	 3 
1-t b = 	(x b  cb 	xibcCb 	( x  ca ) + 	ed  O 	— lcdb a 	

c,. Ascda 
4 	 4 	 b ) 

1 
Pabcd 	abc —3 (f eT'die + 7E abcdmi • -rn4 Orninl2m3  ex 

mle 

4.3 A GL(7) subgroup 

(4.2.10) 

In this section we construct the embedding of the diffeomorphism group in E7(7). To 

make this embedding explicit we must identify a particular GL(7, I18) C SL(8, R) C 

E7(7)  subgroup. In this appendix we identify this group and give explicit expressions 

for part of the E7(7)  action in terms of GL(7, R), that is space-time tensor, represen-

tations. 

We start with the embedding of GL(7, R) in SL(8, R) given by the matrix 

(4.3.1) 



where M E GL(7, ]R). If GL(7,R) acts linearly on the seven-dimensional vector space 

F this corresponds to the decomposition of the eight-dimensional representation space 

V as 

V = (A7P)-1i4P (A7P)3/4. 	 (4.3.2) 

The 56 representation of E7(7) as given in 4.1.2 then decomposes as 

W = (A7  P*)-v2  [P G A2P* e A5P* e (A7P)P1 . 	(4.3.3) 

We can thus write a generic element of W as 

X =X+W+0- +T, 	 (4.3.4) 

where x E (A7P* )-1/2P etc. If we write the index m = 1, 	, 7 for the fundamental 

GE(7,R) representation, note that, ignoring the tensor density factor (A7P*)-1/2, 7 

has the index structure T 	where n labels the F* factor and n1  ... n7  the A7F* 

factor. We can make the identification between GL(7,R) indices and SL(8,R) indices 

explicit by writing (again ignoring the (A7 t*)-1/2  factor) 

Xm8 = X m 	xmn  = 0 - .77 	
(4.3.5) 

X m8  = Tm,1...7 Xmn  = Wmn , 

where apmin...p7  = (7!/5!)6npi 6pri2o-p3...p7]. 

We can similarly decompose the 133 representation. We find 

A = 	V*)0  ®A4V* 

= F ® P* A€ P ® A6F* ED A3P ED A3P*. 
(4.3.6) 

We will be particularly interested in the action of the A3F* and A6P* parts of 133 
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(ja(p+i) A 0(7-p)) C in[r11•••np/3np±i...n7] 
P1 (7  — P)! 

(4.3.9) 
7! 

on X. Identifying 
1 

Pmnp8 = Amnp  E A3  V* 

8
m = —AT.  i..7  E A6V* 

(4.3.7) 

where A" 	= (7!/6!)S[prni Ap, ...p7] we have the action in the Lie algebra 

(A + A) • X = ixA + (ixA + A A w) (jA A a — jA A 4 	(4.3.8) 

Here we have introduced a new notation. The symbol j denotes the pure F* index 

on sections of (A7 P*)P*. Hence 

4.4 	Cliff(7, 0) and seven-dimensional spinors 

In order to be able to define the SU(8)/7L2  subgroup in the next section, let us also 

fix our conventions for Spin(7). The Clifford algebra Cliff (7, 0, R) is generated by the 

gamma matrices -yn, with m = 1, 	, 7 satisfying 

	

{7,7,7.} = 2g,,,,1. 	 (4.4.1) 

One finds Cliff(7, 0; R) 	GL(8, C) and hence the spinor representation of the Clifford 

algebra is complex and eight-dimensional. We define the intertwiners A and C by 

7tzi1  = 	 = 	 (4.4.2) 

with At = A, CT  = C and such that 	= D-1-y,D with D = CAT . We also define 

the conjugate spinors 

=771A, 	77c  = Dry*. 	 (4.4.3) 
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Writing 

7rni—m7 = a7(7)Erni...m7 
	 (4.4.4) 

with E1...7 = V5, note that one can choose the gamma matrices such that 7(7)  = 

i. The intertwiner A provides an hermitian metric on the spinor space, which is 

invariant under the subgroup SU(8) C Cliff (7, 0; R), with a Lie algebra spanned by 

{7m1rn21 7m1rn2m3 71711.--m6 777/1--rn7}• 

The even part of the Clifford algebra generated by the -ymn  has Cliff(7, 0; Ek)even 2-2  

GL(8, R) and hence a real spinor representation with 7/ = 7f. Thus the spin group 

Spin(7) C Cliff (7, 0; 1R)even  similarly has a real spinor representation. For real spinors, 

= T , and C-1  provides metric on the spin space. This is invariant under a 

Spin (8) group with Lie algebra spanned by f-y ,rnim21 'Yrni.--ms 1. This can alternatively 

be described by, for a, b = 1, . . . 8 

(det g)-1147rrir, 	if a = m , b = n 

(det g)1147in7'(7)  if a = m, b = 8 

—(det g)1 / 477 ,-y(7)  if a = 8, b = n 

(4.4.5) 

  

which generate the Spin(8) Lie algebra with metric 

( gab = (det g)--114  ‘ - gnin 
0 

0 

det g) • 
(4.4.6) 

Here we have introduced some factors of det g to match the form of .^g used elsewhere 

in this thesis (in particular the decomposition under GL(7, R) given in section 4.3). 

With these conventions, the spinors 7/ are of positive chirality with respect to Spin(8). 
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If we make the spinor indices explicit writing 71' with a = 1, 	, 8 we can raise 

and lower spinor indices using the metric C-1  so, for instance, 

'Yab cti3 = Cry 7Yab-Y  /3 	%bal3  = '51inna  7C7I 3  • 	 (4.4.7) 

One also has the useful completeness relations, reflecting Spin(8) triality, 

7Yaba13,-.),,  ab 	= 	f 	1 166[7°6'4, 

	

o03,4rd co  = 	dl 166[:6bf . 
(4.4.8) 

4.5 The SU(8)/Z2  subgroup and spinor indices 

The maximal compact subgroup of E7(7) is SU(8)/Z2. In the supersymmetry trans-

formations, the spinor 77 transforms in the fundamental representation under (the 

double cover) SU(8). Thus it is often useful to have the decomposition of the various 

E7(7)  representations in terms of SU(8)/Z2. 

In particular, one can use the common Spin(8) subgroup to relate the decomposi-

tions under SL(8, R) and SU(8)/Z2. Let =yab  be the Spin(8) gamma matrices defined 

in 4.4.5. We can raise and lower SL(8, R) indices using the metric g. Similarly, spinor 

indices can be raised a lowered using C-1.Under SU(8)/Z2  the decomposition of the 

56 representation is thus explicitly: 

X = (e ) , co) 	
(4.5.1) 

56 = 28 + 28. 

If the symplectic product takes the form 

SI(X, Y) = i W/390  - Z„3el3 ) 	 (4.5.2) 
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then (xab ,x'ab ) and (x0, to) are related by 

with ;y'aba'3  and ;yabo given 

(xa,(3 

xo 

1 ix fab),%ba,3 

xab 

X al  b  

(4.5.3) 

(4.5.4) 

X 	= 4 	( xab + 

1 	 f 	ab) b ao = — 	IX  	iab at3 

by 4.4.7, or equivalently 

1 	Yabal3 
	ab ai3 

4 	cro 	ab 
—17 ap 

Recall that there is a SU(8) subgroup of Cliff(7, 0; R) which leaves the spinor norm 

7771 invariant. Since the defining 56 representation decomposes into objects with pair 

of SU(8), both the 1 and —1 elements in SU(8) leave X invariant and hence the 

subgroup of interest of E7(7)  is actually SU(8)/Z2. 

Viewing a 56-dimensional index either as a pair of SL(8, R) indices or as a pairs 

of spinor indices, the relation 4.5.4 can be used to convert between SL(8, IR) and 

SU(8)/Z2  decompositions of any other E7(7)  representations. In particular, decom-

posing the adjoint representation p, under SU(8)/Z2  as 133 = 63 + 35 + 35 and 

writing pc = (A" 0 , pai316  , [Goya), with p1 	= *i.t076  and fla  a  = 0, one finds 

Se° = it"7 x713  — ,u13 ,1e7  + 1.01376  yb 

OXcv,f3 = — PaX-y0 117  oxay Pa(3-ysivj  
(4.5.5) 

with' 

  

1 	— 	ab — i 	 abed a 
/PO = Vtab7  ,8 + 48  l'abcd I 	13  

ita" = il±b 16 ( i  a d c 	
2/1a+ced))abck0,(Cd ̂ ya 

where 	 and pa+bcd  = = -1(Pab Pba) 	 abcd f *Pabcd) • 

(4.5.6) 

lin the first line the minus superscript is not strictly necessary 
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Chapter 5 

Exceptional Generalized Geometry 

in seven dimensions 

In this chapter we discuss the structure of Exceptional Generalized Geometry (EGG) 

in seven-dimensions. Our motivation will be the compactification of eleven-dimensional 

supergravity to a four-dimensional effective theory. 

Recall that Type II string backgrounds which include non-trivial fluxes have a 

natural description in terms of Hitchin's generalized geometry, where the metric and 

the NS—NS B-field are combined into a single geometrical object. The aim of the 

work presented here is to understand the details of how similar constructions based 

on the exceptional groups Ed(d) can be used to describe supersymmetric M-theory, or 

more precisely, eleven-dimensional supergravity backgrounds. 

We will concentrate on the physically important example of seven-dimensional 

backgrounds and, following [177, 178], consider the generic form of the superpotential 

in the corresponding N = 1 four-dimensional theory, or more generally, show partially 

how the eleven-dimensional supergravity can be rewritten in terms of N = 1-like 

structures. Specifically, we will show first how the structure of the supersymmetric 

background is characterized by a particular E7(7)  object cb. From a four-dimensional 

perspective this encodes the scalar chiral multiplet degrees of freedom. We then show 
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that the superpotential can be written as an E7(7)  invariant function of 0. 

The essential idea of the construction is that the 0(d, d) symmetries of general-

ized d-dimensional geometry, which in string theory are related to T-duality, should 

be replaced by the U-duality exceptional symmetry groups Ed(d). Since U-duality 

connects all the degrees of freedom of eleven-dimensional supergravity, or for type II 

theories, both NS—NS and R—R degrees of freedom, this extension should provide a 

geometrization of generic flux backgrounds. These ideas have been described in some 

detail recently by Hull [194], who dubbed the corresponding geometry "extended" 

or more specifically "M-geometry". In addition, the fact that supergravity could be 

reformulated in terms of Ed(d)  objects was earlier pointed out by de Wit and Nico-

lai [179], with some recent connected work in [195], and motivated by this one might 

coin the term "exceptional generalized geometries" (EGG)'. 

5.1 The exceptional generalized tangent space and 

E7(7) 

We would thus like to describe an exceptional generalized geometry (EGG), analogous 

to the generalized geometry of Hitchin, but relevant for the description of eleven-

dimensional supergravity (or type II supergravity including the RR fields) rather 

than simply the NS—NS sector of type II. We will concentrate on the case of a seven-

dimensional manifold M. As already pointed out this construction has also been 

described, in general dimension, in [194] and is closely related to the work of [179, 195]. 

Introducing the generalized tangent space allowed us to construct objects with an 

0(d, d) symmetry. The g and B degrees of freedom then encoded a 0(d, d)/O(d) x 

0(d) coset, parameterizing the generalized metric G. This coset structure is well 

known from considering the compactification of the NS-NS sector of ten-dimensional 

'This is the notation we will use in this thesis. The first letter of EGG can be viewed as standing 
for exceptional or extended or both 
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supergravity to 10 — d dimensions. For instance, when the internal space is a torus 

T d , the low-energy effective theory in 10 — d dimensions has the scalar moduli param-

eterized by that same coset 0(d, d) I 0(d) x 0(d), and a set of U(1) gauge fields in the 

2d-dimensional representation of 0(d, d). In addition, there is, of course, a stringy 

0(d, d; Z) T-duality symmetry. The string momentum and winding charges further 

couple to the 2d U(1) gauge fields [53]. 

In constructing the EGG we use the analogous groups, that is, those related 

to U-duality. Eleven-dimensional supergravity has as boson fields a metric g and 

a three-form A. Compactifying on a Td  torus these lead to scalars parameterizing 

Ed /H (where Ed is a non-compact version of the exceptional group and H is its 

maximal compact subgroup) and U(1) fields spanning a representation of Ed. The 

momentum, membrane, five-brane and, potentially, Kaluza—Klein monopole charges 

couple to the relevant U(1) gauge fields. In particular in d = 7, the scalars parame-

terize E7(7)  /(SU(8)/Z2) and the gauge fields (together with their magnetic duals) or 

equivalently the M-theory charges, fill out the 56 representation of E7(7) . 

Given this analogy, since in generalized geometry the generalized tangent space is 

in the same representation of 0(d, d) as the U(1) gauge fields it is natural to construct 

an exceptional generalized tangent space which transforms as the 56 representation 

of E7(7) . As in generalized geometry, the GL(7 , R) diffeomorphism group should be a 

subgroup of E7(7), and we also expect the gauge transformations of A to be somehow 

embedded into E7(7) . The construction is as follows. 

As described in section 4.1, there is a natural SL(8, R) subgroup of E7(7)  under 

which the 56 representation space is given by 

E = A2V A2V* 	 (5.1.1) 

where V is the eight-dimensional fundamental representation space of SL(8, III). It is 

natural to embed the GL(7,R) diffeomorphism group in SL(8, R). Let us choose the 
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embedding (see section 4.3) such that 

V = [(A7T*)1/4 	G (A7 T*)-3/ 4  . 	 (5.1.2) 

One then finds 

E = (A7 T*)-1/2  [T A2T* e A5T* e (T* A7 T*)] . 	(5.1.3) 

(Note that the final term in brackets can also be written as (A7T*)2  A6T). The 

bundle (A7T*)-1/2  is isomorphic to the trivial bundle, thus there is always a (non-

canonical) isomorphism 

E 	T e A2T* A5T.  e (T* A7T*). 	 (5.1.4) 

Given such an isomorphism we can denote elements of E as 

X=x+w+a-FTEE, 	 (5.1.5) 

where, in components, we have xm, wmn ,  am,...,, and Tm,n,...". 

The bundle E is what we define as the exceptional generalized tangent space 

(EGT)2. Except for the overall tensor density factor of (A7T*)-172, we see that we 

can identify it as a sum of vectors, two-forms, five-forms and one-forms tensored with 

seven-forms. Physically in M-theory we expect these to correspond to momentum, 

membrane, five-brane and Kaluza-Klein monopole charge respectively. 

Recall that the generalized tangent space had a natural invariant metric defining 

the O(d, d) group. As discussed in section 4.1, the group E7(7)  is defined by, not 

a metric, but a symplectic structure S-2 and symmetric quartic invariant q on the 

2Note that there is a second possible way of embedding GL(7,IR), and hence choice for E, anal-
ogous to the choice of spin-structures of O(d, d) [169], where E is defined as in 5.1.3 except with 
an overall factor of A7771  A7TI. This bundle has a similar isomorphism to 5.1.4 but with T and T* 
exchanged everywhere. We will ignore this second choice. 
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56-dimensional representation space. This are given explicitly in terms of SL(8, R) 

representations in section 4.1. In EGG they are the analogues of the O(d, d) metric 

Z. 

Next we would like to identify the analogues of the B-shifts. We note that the 

133-dimensional adjoint representation space of E7(7)  decomposes as 

A = (T T*) e A6T A6T* e A3T e A3T*. 	 (5.1.6) 

Given there is a three-form potential A in eleven-dimensional supergravity, the ana-

logue of B-shifts should be A-shifts generated by A E A3T*. In fact, we will also 

consider A-shifts with A E A6T* corresponding to the dual form-potential. This will 

be described in more detail in the next section, for now we simply note that A and A 

are both elements of the adjoint bundle given in eq. (5.1.6). Their action on X E E 

is given in eq 4.3.8. It exponentiates to 

A-FA e 	A =  

X—I—Pd—ix  AP- [a +A Acv 	A A ix A + ix A] 

+[T+jAno--jAnw+jAnixA+JAAAAw4AAAnixA], 
(5.1.7) 

where we are using a notation for elements of T* (A7T*) defined in 4.3.9. Note 

that the action truncates at cubic order. Furthermore, the corresponding Lie algebra, 

unlike the case of B-shifts is not Abelian. We have the commutator 

[A + A, + 	= —A A A'. 	 (5.1.8) 

That is, two A-shifts commute to give a A shift [196]. 

As in the case of generalized geometry, we would like to consider the case where we 

can make A and A shifts corresponding to non-trivially patched form-field potentials. 
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Let us start with 

Xo E T A2T* e A5T* e (T* A7T*). 	 (5.1.9) 

On a given patch U0,0  we define the shifted object 

X(a)  = eA(a)+A(co xo. 	 (5.1.10) 

In passing from one patch to another we have, on U( ,)  n Up ) , 

X(a) = edA(0)-EdA(c,p)x(0),  

provided the connections A and A patch as 

A(0) — A(Q) = dA(o), 
1 

A( a ) — A(0) = CIA(0) — dA( c,i3) A A(0). 

(5.1.11) 

(5.1.12) 

As we will see in the next section this is precisely the patching we get naturally from 

eleven-dimensional supergravity, and is necessary for the twisted EGT to depend only 

on the connective structure of the gerbes. We can define E more formally via a series 

of extensions 
0 —> A2T* 	Ell 	T 	0, 

0 —› A5T* 	E' 	E" —> 0, 	 (5.1.13) 

0 T* A7T* E 	->0. 

Above we have only given the first level of the connective structure of the gerbes. 

For instance on the corresponding multiple intersections of patches we have 

A(o) A(07) A(,ya) = dA(0.0 	
(5.1.14) 

A(078) — A(,76) + A(05) — A(07) = dA(07,). 

For a quantized flux F = dA(a)  we have g(as- )  = eiA(c'13'Y 6)  E U(1) with the cocycle 
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condition 

g(0-y5c)g(or
1
y6E)g(c33e)g(co-yog(a076) = 1. 

	 (5.1.15) 

For A(0)  there is a similar set of structures, with the final cocycle condition defined 

on a octuple intersection U( ,1)  fl • • • fl U(,8 ). 

Finally we would like to identify the analogue of the Courant bracket for the EGT. 

We look for a pairing with A- and A-shifts as automorphisms when dA = dA = 0. 

One finds the unique "exceptional Courant bracket" (ECB) 

[x +w+a+T, x'+w' +a'+T' ]  

1 
= [x, x'] + Lxw' — f x ,w — —

2 
 (isw' — ix,w) 

+ Lxo-' — Leo-  — 	(ixo-' — ix,u)+ w A dw' — —12w' A du.) 

1 	1 	1 	 1 
— 	+ —

2 
(jw A do-' — ja' A dw) — —

2 
(jw' A do-  — jar A dw') 

(5.1.16) 

If Gshift  is the group generated by the A and A shifts, the ECB is invariant under the 

Diff(M) K Gshift• 

5.2 	The exceptional generalized metric and SU(8)/Z2  

structures 

Having set up the EGT, its topology and the corresponding bracket, we now de-

scribe the analog of the generalized metric and how this encodes the fields of eleven-

dimensional supergravity. Our motivation is that, when compactified on T7 , the 

moduli arising from the eleven-dimensional supergravity fields g and A parameter-

ize a E7(7)  /(SU(8)/Z2) coset space [179]. Rather than define the coset space and 

corresponding metric (see [194]), we will define the structure in a slightly different 

way. 

Geometrically, the coset structure implies that g and A define an SU(8)/Z2  struc-
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ture on E. Such a structure can be defined as follows. Recall that E7(7)  preserved a 

symplectic structure 11 on E. As such it is a subgroup of Sp(56, R). Suppose one has 

an (exceptional generalized) almost complex structure (EGACS) J which is compati-

ble with 12, that is C2(JX, JY) = St(X,Y). This defines a unitary U(28) structure on 

E. If it is also compatible with the E7(7)  quartic invariant, that is q(JX) = q(X), then 

it is invariant under the common subgroup of E7(7)  and U(28) namely SU(8)/Z2. We 

will construct J explicitly below. To summarize, an SU(8)/Z2  structure is equivalent 

to an almost complex structure J on E such that 

11(JX,JY)=11(X,Y) ; q(JX) = q(X), 	 (5.2.1) 

or in other words J E E7(7) . Note that, in contrast to the generalized geometry case 

where the 0(d) x 0(d) structure was equivalent to a compatible product structure sat-

isfying [12 = 1, for SU(8)/Z2  C (7)  the structure is defined by a compatible complex 

structure satisfying J2  = —1. Given J and 52 we can then define the corresponding 

exceptional generalized metric (EGM) G by 

G(X,Y)= SZ(X, JY), 	 (5.2.2) 

which gives a positive definite metric on E. We now turn to how one constructs the 

generic form of J and hence G. 

Given a metric :gab  on the SL(8, R) representation space V, a natural way to 

define a particular almost complex structure J0 , using the conventions of section 4.1 

(in particular pairs of indices aa' and bb' are antisymmetrized), is as follows 

0 	.4ab 	xbb' 	b•,ab ."gai x fw  
JOX = 

A  ^ 
jab:gaib' 	0 	X bl b f 	9ab9a'b'x

bb 
 

(5.2.3) 
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The corresponding EGM is 

Go(X, Y) = ab a' b' Xaa/ 
ybbi  ± -jab 	x a, ybb, 	 (5.2.4) 

From the definitions 4.1.3 and 4.1.4 of S1 and q it is clear that Jo  E E7(7)  provided 

det .0 = 1. Under an infinitesimal E7(7)  transformationµ E 133 we have 

(

,,-Faa' 

	

r-- 	W 	—211-1-ab •ja' b' 

	

_2 	+ĝ a, b, 	_ pa+ ,bb' 

 

(5.2.5) 

 

where abcd = [tabcd 	t  abcd and bia6 = gUab + Ma  and indices are raised and lowered 

using .0. Thus Jo  is invariant under the subgroup generated by 	and ttabcd• As 

discussed in section 4.5 this is precisely SU(8)/Z2  (see eq. (4.5.6)). 

Given the embedding 5.1.2 of GL(7,R) C SL(8, R) discussed in detail in sec- 

tion 4.3, we can define 0 in terms of a seven-dimensional metric g as 

( 
gab = (det g)-114 gam 

0 

0 

det g) 
(5.2.6) 

Acting on elements of X = xd-wd-o- +T we have 

Go(X,X)= 2 Or +1w12  +1012  + (71 2) , 
	 (5.2.7) 

rn.ni...n7yrn,rii...n7 ,  1 
1
0.12 = 	 arti...n5 where 1712  = —7!  T 	 etc. and where we have 5! ni...n5 

dropped on overall factor of (det g)1/2  so that the result is a scalar, which is nat-

ural, since in writing X = x±w+a-FT we are using the isomorphism given in 

eq. (5.1.4). 

Given a seven-dimensional metric g we have thus been able to write a particular 

SU(8)/Z2  structure Jo. A generic structure, given all such structures lie in the same 

orbit, will be of the form J = hJoh-1  where h E E7(7), or equivalently G(X, Y) = 
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Go(h-1X, hT lY). We write h = e'l with the Lie algebra element [t = (teb, btabcd) E 

133. The elements ,umn  generate the GL(7, R) subgroup and acting on Jo  simply 

change the form of the metric g. The additional components pen, and ,c08  modify the 

form of in in eq. (5.2.6). Since only pa+b  acts non-trivially on Jo , we need only consider 

transformations with, say, [ens. Similarly since only ,ua+bed  acts non-trivially we can 

generate a generic J using only, say [4,2,21,8. However, [08  and itmrip8 transformations 

precisely correspond to the subgroup of A- and A-shifts. Thus, given a generic g 

defining Go, the generic EGM can be written as 

G(X,Y) = Go(e-A-AX, CA-AY). 	 (5.2.8) 

Note that this is analogous to the form of the generalized metric in Hitchin's gen-

eralized geometry. Note also that for non-trivial A and A, Go  is an EGM on the 

untwisted EGT given by T ED A2T* ED A5T* ED (T* ® A7T*), while G is an EGM on the 

twisted bundle E given by eq. (5.1.13). 
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Chapter 6 

Supersymmetric backgrounds and 

EGG 

In this chapter we will relate the EGG defined in the previous section to eleven-

dimensional supergravity and in particular seven-dimensional supersymmetric back-

grounds. The physical context we are interested in corresponds to the case where 

the eleven-dimensional space-time is topologically a product of a four-dimensional 

"external" and a seven-dimensional "internal" manifold. 

A4-10J  == A4-3,1  x A4-7 	 (6.0.1) 

If M7 is compact we can consider compactifying eleven-dimensional supergravity to 

give an effective four-dimensional theory. In particular, we could focus on the case 

when the effective theory is supersymmetric. We could also look for particular ex-

amples of compactifications which are solutions of the supergravity field equations 

and preserve some number of supersymmetries. In either case, the geometry of M7 

is restricted. The goal here is to understand how this restricted geometry can be 

naturally described in terms of EGG structure on /1/7. 
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6.1 Conventions 

We adopt conventions where the eleven-dimensional supergravity action takes the 

form (note this matches, for instance, the conventions of [190]) 

S = 

	

2f 	
-\/ - g dllx [R  -717  mrmNPV NT p - -

1
F4  A *11F4] 

mn   

192 /mil 	 .‘ 

	

1 	 1 
Vv dii x.TmrmNpQRso-, 	\ 	

fmn 
NV 4)PQRS - -,) 

1 I 
12 jm„ 

where the eleven-dimensional Newton's constant is set to unity and 

F4 A F4 A A3 

F4 A *11  C4  

(C4)MNPQ = 3111[MFNPWQ] • 
	 (6.1.1) 

while the variation of the gravitino Wm  is given by 

SWAT = DME + 288 `rM 
NPQR 867TPQR) (F)NPQR E ± • • • 7 

	 (6.1.2) 

We use uppercase indices M, N,... = 0, 	, 10 for curved eleven-dimensional indices, 

. . . = 0, 	, 3 for the four-dimensional (external) indices and m, n, 	= 1, 	, 7 

for the indices on the internal manifold. F is the field strength of the eleven-

dimensional three-from field. 

The dots represent terms coupling Wm  and F. The metric g has signature 

(-, ±,... , +) and FM  are the eleven-dimensional gamma matrices satisfying 

frm,rN1 = 2gmN1, 	 (6.1.3) 

with 	11, =  iEMi..M„ where the volume form € satisfies €01..io = 	g. The 

spinors € and Wm  are Majorana. Given the intertwining relation -FM = 

we define the conjugate spinor hiM  = iniC-1. Further the equation of motion and 
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Bianchi identity for the flux F read 

d*F+ 2FAF=0 ; dF=0. 

In this context all differential forms are defined as: 

A(p) = 1 -Am mpdxml A ... dxmP 
P 

! 	 1.•• 

Also 

(6.1.4) 

(6.1.5) 

(dA)rni ...rrip+, = (P+1)v[miA.,....p+1] 

 

(*DA)mi ...mp_ p  

- 
(_i)p(D-p) ni...n, A  

Emi—rnp-p 

(6.1.6) 

6.2 Effective theories and field decompositions 

Here we will focus on the low-energy effective theory rather than the on-shell su-

persymmetric backgrounds. Given the product manifold structure in eq. (6.0.1), the 

tangent bundle decomposes as T10 ,1  = T3,1  e T7  and all the supergravity fields can be 

decomposed under a local Spin(3, 1) x Spin(7) C Spin(10, 1) symmetry. Normally one 

would derive a four-dimensional effective description by truncating the Kaluza-Klein 

spectrum of modes on M7  to give a four-dimensional theory with a finite number 

of degrees of freedom. For instance, compactifying on a torus and keeping mass-

less modes, one finds that the degrees of freedom actually arrange themselves into 

multiplets transforming under E7(7)  for the bosons and SU(8)/Z2  for the fermions. 

However, one can also keep the full dependence of all eleven-dimensional fields 

on both the position on M3 ,1  and M7 . One can then simply rewrite the eleven-

dimensional theory, breaking the local Spin(10, 1) symmetry to Spin(3, 1) x Spin(7) 
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so that it is analogous to a four-dimensional theory. This was done explicitly by de 

Wit and Nicolai in [179] retaining all 32 supersymmetries, where it was shown that 

in general the degrees of freedom fall into E7(7) and SU(8)/Z2  representations. In 

this work we will ultimately be interested in such reformulations focusing on only 

four of the supercharges so that the theory has a structure analogous to N = 1 four-

dimensional supergravity. Note that formally the only requirement for making such 

rewritings is not that M10 ,1  is topologically a product, but rather that the tangent 

space T10,1  decomposes into a four- and seven-dimensional part 

T10,1 = T3,1 ED P. 	 (6.2.1) 

For simplicity, here we will concentrate on the case of a product manifold, though all 

of our analysis actually goes through in the more general case, with the EGT defined 

in terms of F rather than T7. 

Let is briefly note how the fields decompose under Spin(3, 1) x Spin(7). The 

degrees of freedom are the metric gmN , three-form AMNP and gravitino Wm. Let us 

first consider the Spin(3, 1) scalars. The eleven-dimensional metric decomposes as a 

warped product 

ds2  (M11) = e2Eg(p4) 
ijcixt`de + gnindeldxn. (6.2.2) 

where e-4E  = det g„,„, chosen so as to obtain the standard Einstein-Hilbert term 

upon dimensional reduction. In a conventional compactification, deformations of 

the internal metric gni, lead to scalar moduli fields in the effective theory. Moduli 

fields can also arise from the flux F. Keeping only Spin(3, 1) scalar parts, one can 

decompose 

F = 4,7 11  A e4E€(4) F 	 (6.2.3) 

where F E A4777 and F E A7T7 and E(4) = V—g(4)dx°  A • • • A dx3 . 
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The eleven-dimensional equation of motion and Bianchi identity given in eq. (6.1.4) 

then decompose as 

c1P+-1
2
FAF = 0 

d(e4E  *7 	= 0, 

dF = 0 

d(e4E  *7 F) e4EF = 0 

so one can introduce, locally, 

F = dA, 

P=dA--1  
2
AAF 

(6.2.4) 

(6.2.5) 

where on a patch A E A.377 and A E A6T7. By definition, F and F are globally 

defined. This means that the potentials A and A must patch precisely as given by 

eq. (5.1.12). We thus see that the twisting of the EGT in eq. (5.1.11) is precisely that 

corresponding to the supergravity potentials. 

Furthermore, given the discussion of the previous section 5.2 the scalar degrees of 

freedom gmn  and Amnp  and Ami...7,6  scalars can be combined together as an EGM or 

equivalently an exceptional generalized almost complex structure J on E. 

Turning briefly to the remaining fields, there are 28 bosonic Spin(3, 1) vector 

degrees of freedom coming from off-diagonal components of the metric gµm  and from 

A pm,„. One usually also introduces the corresponding dual potentials giving a total 

of 56. 

Finally for the fermionic degrees of freedom we decompose the eleven-dimensional 

gamma matrices as 

= 	® 1 	rni  = i^/(4) yni 
	

(6.2.6) 

where the seven-dimensional gamma-matrices conventions are defined in section 4.4, 
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while the four-dimensional gamma matrices satisfy {-yo, -y,,} = 2gi,,4, 1 and lit„...t„ = 

7(4) Et„(4)  ...124 . The real eleven-dimensional spinors correspondingly decompose as 

eE120+ ri eE/20 if 	

(6.2.7) 
32 = (2, 8) + (2, 8) 

where i-y(4)0±  = ±O±  (with n  = D0±* = 0_ and —7'1, = D-1-yi,D) are chiral four-

dimensional spinors and i is a complex Spin(7) spinor. The factor of eE/2  is con- 

ventional. Thus 	decomposes into eight spin- fermions, while xliff, gives 56 spin-

fermions. 

As discussed in section 4.4 there is a natural embedding of SU(8) in the Clifford 

algebra Cliff(7, 0; III) with the complex spinors in the fundamental representation. It 

turns out the all the degrees of freedom, fermionic and bosonic arrange as SU(8) 

representations. Thus we can actually promote the Spin(3, 1) x Spin(7) symmetry to 

Spin(3, 1) x SU(8). This is summarized in the table 6.1 where rs  transforms as the 

r representation of SU(8) with Spin(3, 1) spin s. 

gm„, Amnp,  Ani,..:  
g kart) Apron + duals : 

(4) 

g  350  + 350  
281  + 281 

12 : 561/2 
83/2 

Table 6.1: Decomposition of eleven-dimensional supergravity fields under Spin(3, 1) x 
SU(8) 

Note the familiar result that these representations precisely fill out the form of 

the N = 8 four-dimensional supergravity multiplet. 

From an EGG perspective, the scalar degrees of freedom define a SU(8)/Z2  struc-

ture on the EGT. Given this structure (or rather the existence of a double cover 

SU(8) structure, which is not always guaranteed) one can then define SU(8) spinors 

and hence the fermionic degrees of freedom. This is the EGG analogue of requiring a 

metric, or 0(d) structure, and hence a set of vielbeins, before one can define ordinary 
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spinors on a curved manifold. 

Let us now turn to how this analysis changes when we pick out a single set of 

supersymmetry parameters, so that the four-dimensional effective theory has N =1 

supersymmetry. 

6.3 N = 1 M-theory backgrounds and SU(7) struc-

tures 

We would now like to identify the analogue of the N = 2 SU(3) x SU(3) structure of 

type II theories for N = 1 compactifications of eleven-dimensional supergravity. This 

means picking out four preferred supersymmetries out of 32, or equivalently a fixed 

seven-dimensional spinor 77 in the general decomposition given in eq. (6.2.7). Note 

the this decomposition is that most general compatible with four-dimensional Lorentz 

invariance [197], and generically has complex 77. Recall that the EGM G defines an 

SU(8)/Z2  structure on E, and n  transforms in the fundamental representation 8 of 

the double cover SU(8). As before, to define a generic low-energy effective theory the 

spinor 77 must be globally defined and nowhere vanishing. At each point the stabilizer 

of a fixed element of the 8 representation is SU(7), thus we see it defines a special 

structure on the EGT E 

N =1 effective theory .4=> SU(7) structure on E. 	 (6.3.1) 

Note that projection E T7 allows us to pick out a GL(7, R) subgroup of E7(7) , and 

similarly, given a EGM G it allows us to define a natural Spin(7) C SU(8) subgroup. 

Under Spin(7) we can choose real spinors so 

71 = 711 — 1772 	 (6.3.2) 
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Each m is stabilized by a G2 E Spin(7) subgroup. Thus from the point of the view of 

the ordinary tangent space T7, if 77i  are globally defined and non-vanishing we have 

a pair of G2 structures. However, all we really require is a globally defined non-

vanishing complex 77. Thus in general we may not have either G2 structure. Locally, 

the pair of m are preserved by a SU(3) group. 

One way to define the structure is as the pair of EGM and SU(8) spinor (G, 77), 

but as in the type II case, it is interesting to see if we can find a particular orbit in an 

E7(7) representation which can also be used to define the structure. Again we might 

expect that it will appear as a spinor bilinear. As we discuss in a moment, this space 

should also correspond to the N = 1 chiral multiplet space in the four-dimensional 

effective theory. 

Decomposing under SU(7), the 56 representation has no singlets so cannot have 

elements stabilized by SU(7). The adjoint 133 does have a singlet. In terms of the 

spinor 77, the singlet in µ E 133, using its decomposition 133 = 63 + 35 + 35 under 

SU(8), can be written as 

tto = (Pa  0, 1100-y6, TO"), 
_ 	1 _ 

= (71a11,3 — ( 7777)Aa  g, 0,  0)- 
(6.3.3) 

However, it is easy to see that this is stabilized by U(7) rather than SU(7). In turns 

out the relevant representation is the 912. We define the following SU(7)-singlet 

complex element in terms of its SU(8) decomposition, that is 912 = 36 + 420 + 36 + 

420, 

00 = (0"' 0a13- Y  al 001 00-M 	
(6.3.4) 

= (XaXl3, 0,0, 0), 

where it turns out, in what follows, to be easier to use the conjugate spinor x = 77e. 
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Finally we can form the structure 

= eA-1-110o. 
	 (6.3.5) 

It turns out that 0 does indeed define a generic SU(7) structure. 

To see this, we first note that under an infinitesimal E7(7)  transformation we have 

6,0'13  = (tta 	)2e3  X a  ([14 3  X7 ) 

60°1  = 0, 

M ao = 0, 

(500-y5  — Acti3-y€X €  X5  

Thus 00  is stabilized by elements such that 

(6.3.6) 

/Pox°  = o, n 
ito03-y6X

6  u, (6.3.7) 

which implies, since µ = *,u, that the stabilizer group is SU(7) (and not as should 

be noted SU(7)/Z2). Since eA± A  E E7(7) the stabilizer of 0 must also be SU(7). 

Finally, note that the SU(8) representations were defined using the gamma matrices 

7a defined using the seven dimensional metric g. Since the action of eA+A  generates 

a generic EGM G, we see that (when taken with the choice of generic g and spinor 

which are implicit in eq. (6.3.4)) the action of eA+A  must generate a generic element 

of the orbit under E7(7) . 

Note that we could also define a real object A = Re 0 

A = eA+A (Xa X13 , 0, XaX/3,  °), 
	 (6.3.8) 

which also manifestly defines the same SU(7) structure. If N(E) is the 912 repre-

sentation space based on the EGT E, at each point x E M7, we can view A as an 
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embedding of the coset space 

E7(71 
A:  SU 

" 	 x 111+ 	N(E), 
(7) 

(6.3.9) 

where R+ just corresponds to a resealing of A. We will call this orbit subspace E. 

There should then be a natural complex structure on E which allows one to define 

the holomorphic 0. Note that A far from fills out the whole of the 912 representation 

space. Rather we are considering a very particular orbit. It would be interesting to 

write down the particular non-linear conditions which define the orbit. 

Finally let us also consider how the supergravity fields decompose under the SU(7) 

subgroup and how these correspond to different N = 1 mutliplets. We have for 

SU(7) c SU (8) 

8 = 7 + 1, 	35 = 35, 	
(6.3.10) 

28 = 21 + 7, 	56 = 35 + 21. 

This means we can arrange the degrees of freedom as in table 6.2. 

multiplet SU(7) rep fields 
chiral 	35 	97711 AIT1,71191 11-  T111...7717 111m  

vector 	21 	gpm, Aimp, Wm 

spin-2 	7 	gpm, Apnp, Wp 
gravity 	1 	gPv W. 

Table 6.2: Multiplet structure under SU(7) 

Note that the coset space E7(7)  / SU(7) actually decomposes into 35 + 7 + 35 + 7. 

Thus there are more degrees of freedom in A than chiral degrees of freedom. The same 

phenomenon appears in the type II case and is associated to the gauge freedom of the 

extra spin-i multiplets. On solution is to assume in a given truncation of the theory 

that there are no 7 degrees of freedom. Note that in this picture we expect there to 

be a natural Kahler metric on the coset space E = E7(7)  / SU(7) x R+ corresponding 

to the Kahler potential of N =1 theories. We do not address this problem here. 
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6.4 From G2 to SU(3) 

Before moving on to the calculation of the superpotential let us make the underlying 

SU(3) structure arising in the presence of two G2-invariant spinors explicit using an 

approach analogous to [109]. 

Define the fundamental SU (7) four-form as 

= —71-ynPqr 	 —777abed nc ea  dx„ A dx p  A dxq  A dx, = 	 A eb A ec  A ed 	(6.4.1) 

where a, b, c, d are internal frame indices. Now define xi  (i = 1, 2) such that: 

= aXl + 3X2 

)(7, = Xi 

XiXj = 6ii 

with a, E C and 10z12  + 2 = 1 given the normalization fir/ = 1. Then 

= a2011 + i32 22 + 0(012 + On) 

(6.4.2) 

(6.4.3) 

where we define 

j = —50-ynPqr xi  dxq, i ,.yabed xi  A dx p  A dxq  A dx, = 	 ea  A eb  A ee  A ed 	(6.4.4) 

The xi consequently define a plane normal (in spinor space) to the non-singlet com-

ponents of any generic spinor. So we may choose:1  

-Y
1234

Xi = 'Y
1256 	3456 

Xi = Xi = — Xi. (6.4.5) 

   

'The chosen combinations of gamma matrices (where the indices are frame indices) all square to 
unity and commute with each other and can thus be used to define projection operators reducing 
the original eight-dimensional Majorana subspace to the aforementioned two-dimensional one labeled 
by a specific choice of both eigenvalues (note that the third condition follows from the first two by 
consistency). 
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Further since k-1x2 = 0 we have 

1357 -Y X1 = — X1 

1357 7 	X2 = +X2. 
(6.4.6) 

Before rewriting I  in terms of SU(3) structures we must present some useful identities. 

Note that: 

{1,7,  1357} = 0 

(77)2  = 1  

From the first equality we deduce that 

77X1 = aX2 

77X2 = bX1 

where a, b are pure imaginary as: 

Xi = Xti = DX: 

= —D-11 D 

(6.4.7) 

(6.4.8) 

(6.4.9) 

Also 

a = g277Xi = (i-y7x2)* = b* 	 (6.4.10) 

which together with the second equality in eq. (6.4.7) leads to (up to a choice in sign): 

—i77X1 = X2 	
(6.4.11) 

—177X2 = — Xi 
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and then eq. (6.4.6) gives 

7135
X1 = iX2 

7
135

X2 = 2X1 

Remembering our convention that —i7(7)  = 7[1-71  = 1 we find: 

712
X1 = 7

34
X1 = 756

X1 = X2 

12
X2 -= 7

34
X2 = 756

X2 = -X1 

Finally 

7235X1 = 7145X1 = 7136 X1 = 2X1 

7235
X2 = 

7145X2 = 7136 X2 
7236

X1 = 7146  X = 7245  X = X2 

7236X2 
  = 7146X2 = 7

245
X2 

(6.4.12) 

(6.4.13) 

(6.4.14) 

and 
7246X1 = 	; 7246

X2 = 2X2 
	 (6.4.15) 

We may now explicitly calculate the non-vanishing components of i.e. those whose 

four-gamma matrix combinations commute with those in eq.(6.4.5). Further the 

non-vanishing components of On  and 'ilir 22 (012 and 021) will (anti-)commute with 

71357.This leaves us with (commuting): 

7 1 2 3 4
; 	

1256 ; 	73456 ; 	71357 ; 	71467 ; 	72367 ; 	72457 	(6.4.16) 

and (anti-commuting) 

71367 ; 71457 
; '72467 

; 72357 	 (6.4.17) 
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It can then be shown that: 

Oil= Re52Av-F 2JAJ 

1 
022= —ReS2Av+ 2JAJ 

012 =  — Im Si A v = V)21 

(6.4.18) 

where 
j = el2 ± e34 ± e56,  

Q = (el + ie2)(e3 + ie4)(e5  + ie6) 
	

(6.4.19) 

v = e7 . 

which given eq. (6.4.5) and eq. (6.4.6) can be shown to be the only non-vanishing 

components of a general SU(3) structure in seven dimensions: 

Jrnn = — X17InnX2, 

1 i  
Qmnp = iX17mnpX2 — lX17mnpX1 — X27TrinpX2) , 

Vrn = —iXi-YrnX2- 

One can in fact check that: 

3i 
JAJAJ= —

4
S2 A Si 

JAQ= 0 

iv J = i,„St = 0 

(6.4.20) 

(6.4.21) 

So in conclusion: 

VI 
2 + p (12 

= a 	J A J+ (a2  — 02)Re S-2 A v — 2a0Im S2 A v 
2 

(6.4.22) 
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A particularly simple special case arises when i =(X1 + ix2) as then = S2 A v. 

In a similar fashion we define the fundamental SU(7) three-form as 

cp = *7 11) = WI-e4' dx A dxq  A der = ifnabcnc a  e A eb A ec  

where a, b, c are again internal frame indices. Then 

co = (124911 + /32W22 + ai3((P12 + p21) 

where we define 

= iXi7Pqrxi dx p  A dxq  A dxr 
= ozaabcX  ea A eb  A ec 

It can then be shown that: 

(6.4.23) 

(6.4.24) 

(6.4.25) 

V11 = —Im 5-2+JAv 

P22 = Im S2+JAv 
	 (6.4.26) 

V12 = —Re C2 = (,021 

Thus: 

cp = (a2  + /32) J A v — (a2  — /32) Im SZ — 2a0 Re S2 	(6.4.27) 

Again there is a special case for 71 = 0(X1 +iX2) where co = i S2 and thus in this case 

= 	A v. More generally : 

n= 	e
46
' ( Xi + ix2) ; 6 Elib 	 7p=±i(pnv 

	(6.4.28) 

given the normalization 	= 1 these are the only cases when fin' = 0 . 

One may also wish to calculate bilinears in terms of each of the individual G2 

structures. Note that the (complex) structure spinor is made up of two real structure 
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spinors i.e. ri = r7i  — i7/2  where: 

111 = (axi + a'X2) 	
(6.4.29) 

7/2  = (bxi + b'x2) 

with a = a + ib and 13 = a' + ib'. It follows that: 

F 

 1

T  fr  mn rnn 
11 	71 	g L8x8 	7T.Y inn'Y m

77 

1 	 1 
= — 

8 
Li-8x 	2(0*  — a* 0)vm-ym + —2! ..17,„7'mn  

T(larSoli + 1/312(1022 + (a/3* + a*M(P12),7"P] 

= -8 Vaxa + i(a/3*  — ct*O)vrn7m  + —2! JrnnYmn  

+ T((1x12  + 1,312)J A v — (lar — 1012)ImQ — (a0* + a*O)ReQ) mnp-ymni 
(6.4.30) 

From this we may deduce the expressions for Th ® rig 0172  by setting a = a ; = a' 

and a = ib ; )3 = ib' respectively. Further we find that: 

1 
771 ® 712  = g [(ab + a' b') I - 8 xa + i (ba — ali)vm-ym + —

1
(ba' — ab') Jmn-yran 

2! 	 (6.4.31) 
+ - i ((al) + a' b' ) J A v — (ab — a' b') Im 52 — (ba' + ab') Re S2) mnp-ymnP1 

from which one obtains 772 ®771  by the substitution a H b ; a' 	b'. It is then 

trivial to obtain further relevant operators (and their expansion in terms of bilinears) 

Xi ®X1, X2 ®X2, X1 ®X2 and  X2 ®Xi by nothing that : 

a= 1; a'=0=771 = Xi 	
(6.4.32) 

b= 1; b' = 0 	172 = X2 
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Chapter 7 

The effective superpotential 

In the previous chapter we found the objects defining the SU(7) structure relevant 

to N = 1 reformulations of eleven-dimensional supergravity. The elements 0 E E 

should correspond to the chiral multiplet degrees of freedom. As such there should be 

an analogue of the four-dimensional superpotential W, appearing as a holomorphic 

function of cb. In this section, we will derive the generic structure of W and show that 

it can be written in an E7(7)  covariant form. This is the analogue of the corresponding 

generalized geometry calculation in the case of type II given in [177, 178]. Note that 

the superpotential W, for the special case of a G2 structure i.e. with a restricted 

Majorana spinor Ansatz, was previously derived using a somewhat different technique 

in [190] without however touching upon manifest covariance under the underlying 

symmetries. 

7.1 	Generic form of the effective superpotential 

We will read off W from the variation of the four-dimensional gravitino. Recall that 

the N = 1 gravitino variations are given by 

sip,+  = voo+  + 2 ieK/2W-4,0_ + . . . , 	 (7.1.1) 
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1 	NPQR 86a1 PQR) NpQ  
j P̀m = VM€288 (FM 

where W is the superpotential and K the Kahler potential. The expressions for 

eK/2W can then be derived directly from the eleven-dimensional gravitino variation 

(see section 6.1 for our conventions) 

(7.1.2) 

where the dots denote terms depending on WM. We must first identify the correctly 

normalized four-dimensional gravitino 'Om , which in his context appears as a SU(7) 

singlet. A naive decomposition ‘Iim  = (4111 , gym) identifying ON, with iIf tt , leads to 

cross-terms in the kinetic energy, so instead we first need to diagonalize the four-

dimensional gravitino kinetic energy term. This requires the following shift 

:= + r„,r-wm. 	 (7.1.3) 

One must also introduce a rescaling to account for the warp factor in the metric 

Ansatz, and hence we identify the SU(7) singlet part as 

I 	= eE/20„ 0 71+ eE1271) pc  _F  71c  + 
	

(7.1.4) 

where the dots denote non-singlet terms. This rescaling by eE/2  is the reason for 

adopting the conventions chosen in the spinor decomposition given in eq. (6.2.7). 

Given that we may rescale ri by including factors in 0+, we can always choose a 

normalization 

77r) = 1. 	 (7.1.5) 

This allows us to introduce the projectors 

1 
II+  := —

2 
(1 + i7(4) ) ii 

:= 2 —
1

(1 — him) 7ffie 
(7.1.6) 
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ex/2w  
4 
eE (471  .yrnymne+ 

4! Fmnpqn 
_7mnpqnc i *7  Pfrric) 

such that 

(7.1.7) 

It is now straightforward to calculate him, in terms of II, F and P. By definition 

so,u+  ®r7 = e-E/211+64iii  = e-E7211, (sw, + 1-‘,,r7nokif„,) 

= 2 
-
1
ielow-yo_ 77, 

which gives 

(7.1.8) 

(7.1.9) 

using the fact that frymrie = 0 identically to remove 1777,E terms. This expression can 

be put in a more standard form by writings: 

Note then that 

[v.(7f ® 77), -rm] 

f7) 

= 

= 

1 
= g 

r _ 
[(7777 

1 _ 
) - yrry,717"2"] 

2 

(7.1.10) 

(7.1.11) 

+ 8 	3! -YPqr-YrnVm(P"- 
i„„, 

1--i[m(iOnipqr] 

niPqr  CLP mpqr 

28 — • 3! 

2
8 • 4! 

Further 

Ti[vm(it fi), -ym] 77c = 	in7 f '1177c  + fly Tof T7ym7f + iiievmfrymif - fimnc vmfric 

= - 2 flif firyinVmric 
(7.1.12) 

1We work in a basis where i7 = /it 
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where again we used IT-y."17f 

where we used 

throughout. Similarly, 

Hence 

*7 e-K12 	
1 

e  s 
 

— 
= 8 

1 
=-- —firfeE  

8 

(77mV17171c)  

4 ! 

= 0 and the corollary VmTi-ynlif —7Ty'Vni7f. Finally 

(7.1.13) 

(7.1.14) 

co). 	 (7.1.15) 

(7.1.16) 
— id(A A co)] 

°if)  = 	8 14! (c1CD)mnPq(*7(P)mnPq  

= —
8 

*7 (c0 A dco), 

(Pmnp = ill7mnplf • 

Fmn
Pq 

7TymnPq 77C  = — *7 (F A 

[ 	
77c 

 
71 

A 	2iF A 	2Pflif] cl(io — 	co + 

	

[d(C7) — iA) A (c-o — iA) 	2dA 

where we have introduced the renormalized Ci3 = co/777f. In the case where = if we 

have a global G2 structure, our normalization convention implies that f/7f = 1 and 

one finds that eq. (7.1.16) agrees with that derived in [190]. The generic SU(7) case 

differs from the simple G2 case through the pre-factor fin' and the fact that Co is no 

longer real. Note that of course the derivation of the first co A cico term is problematic 

when Fin' = 0 which happens when (in the notation of section 6.4) 77 = ÷ei6  (Xi ± iX2 

(with b e R). In this case on must use a slightly more refined approach. 
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Decomposing n in terms of Xi, X2 one may show using the bilinears defined at the 

end of section 6.4 (with a, 0 constant) that: 

7777c Trynivmric = (a2 + i
32 ) [( a2 1- 

, Q2\ 
N ) 	X1"-Y7  D7X1 + (a2  — 02) i`"YaDaXi. + 2a0ki7aDax2] 

(a2  + 02)2  da A a — (a4  — 04 ) do-  A /3 — 2a0(a2  + 02) da A p 

(a4  — 04) 0 A a + (cE2  — 02 )2  d"p A 16 -I- 2(a2  — 02)0 0 A p 

+ 4a202  dp A p ± 2(a2  — 132 )a,(3 dp A 16 — 2a0(a2  +132 ) dp A a 
(7.1.17) 

where a = 1 • • • 6 and we defined p = Re S2, j3 = Im12 and a = J A v. 

Matching coefficients we then find that: 

dj)/q, --dpAp=dpA;od-d'ioAp=0 	 (7.1.18) 

which implies that 

d5-2AS2=dS2AS2= 0 	 (7.1.19) 

Further 
i r  

*7 Xl7a  DaXi '
s

[da A 16 + dp A a] 

i 
*7 Xl7a  DaX2 =-

8
[do-  A p+ dp A a] (7.1.20) 

r  

*7 X1')/7  D7X1 =i 
8

[do-  A a] 

Thus the torsion term will in general (with a, 0 no longer constants) be given by: 

17mVm71e  = *7 	[(a2  + 02 )do-  A o-  — (a2  —132 )(do-  A ji+ di) A o- ) (7.1.21) 

— 2a0(da A p + dp A a)] +43(07a) — a(070)] 	(7.1.22) 
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8 [ 
dJACMv+MAJAv] 

e-i26 

8 

= *7  8 [do-M2+42Ao-] 
e-225 (7.1.23) 

= *7  

= *7  2S2AdJAv 

In particular when firic = 0 implying oz2  /32  = 0 and 7/ = 	 ix2) where 

6 E R we find 2: 

Fl7mV c = *7 
8

2o2  [(da A lo d'io A cr) i(do-  A p + dp A o- )] 

where in the last two lines we made use of the fact that JAQ=JA S2 = 0. Now 

recalling than in the special case we are looking at co = iS2 we find collecting all the 

elements of the superpotential term: 

,—i28 
*7 elf/2w =  8  Q A (2da + idJ A v) 

Or 	 (7.1.24) 
,--i28 

*7 eK/2W = 	 S2 A (2da + idJ A v) 
8 

for the case corresponding to the other sign. Note that the term in brackets suggests 

the equivalent in 6d B + iJ. 

7.2 An E7(7 ) covariant superpotential 

In this section we show that one may rewrite the superpotential term in a manifestly 

E7(7)  invariant form using the SU(7) structure 0 e 912. We first need to introduce an 

embedding of the derivative operator into an E7(7)  representation. Given the GL(7) 

decomposition of the EGT given in eq. (5.1.3) we see that, assuming for the moment 

ewe do the calculation for the plus sign only; the other case is analogous 
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we have a metric g, we can introduce an operator 

D = (Dab , Dab ) E 56 	 (7.2.1) 

with 

D" = Dm8  = Dmn  = 0, 	Dms  = (det g)1/4Vm. 	(7.2.2) 

Consider now product between D C 56 and 0 E 912 and more precisely the 

projection thereof unto the component in the 133. Let us denote this by (D0)AB  = 

Dc0c(AB) , where indices are raised and lowered using the symplectic structure C2AB• 

The expressions for DO are given explicitly in eq. (4.2.10). One can then take the 

adjoint action of Dq5 on o itself, which we denote as (D0) • 0 E 912. We will show 

that the superpotential can be written as 

(DO) . 0 = - (-3—
V2  e

-Eeici2W) 0. 	 (7.2.3) 

That is the combination (DO) • 0 is an SU(7) singlet proportional to 0 while it is W, 

which is related to the constant of proportionality, which is in fact invariant under 

E7(7). Further we see that W is by definition a homogeneous holomorphic function of 

ich• 

We shall now proceed to prove this in two steps. First recall that we defined 

= eA+A00. It is easy to see that e-A-AD = D. This follows from the fact that 

the only non-vanishing components of the potential acting on D are of the form (in 

explicit indices) (4,7 A)mnP9  and (*7A)m8. Hence the expression in eq. (7.2.3) can be 

rewritten as 

(e-A-ADeA+A-00 ) • 00  = -
3 -E K/2 

4V2 
(7.2.4) 

Typically this expression will involve a "connection" pm  which is an element of the 
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co
s n[. Lin-1  N(s) = e—sLvm ( esL) E  , 	vmL  

n! n=1 
(7.2.6) 

E7(7)  Lie algebra labeled by m entering as: 

-A-A— AH-A 	 -A- e 	vme := Vm  + pm  = Vm  + e A-V A+A  m( e) (7.2.5) 

The connection pm  may be put in a useful form by using an identity similar to the 

Baker-Campbell-Haussdorf formula: 

for any matrix (or more generally operator) L. Here s is an auxiliary variable which 

has no background dependence and may be set to a convenient constant value. This 

relation is easily proven by iteration, noting that: 

dN(s)  
= [N(s), Li] ± N7 ,,L and N(0) = 0 

ds 
(7.2.7) 

Given the commutator algebra in eq. (5.1.8) for the flux terms the above series will 

truncate at quadratic order and we have: 

7 	1 
e-A-ilvmeA-Fil = Vni  ± Vm(A + A) + -

2 
[Vm  (A + A), A ± A] 

= Vm  + VmA + VmA --1-  VmA A A 
(7.2.8) 

Now recall that in the SU(8)/Z2  basis the only non-vanishing component of 00  as 

given in eq. (6.3.4) is 4'13  = xaxf  where x = 7f. This means 

(vm + um)cba)3  = v.(exil + (itima,x7)x' + xa(i-tm'7x7), 

(Om + pm)oa'57 s = 0, 

(vm + iim)00 = 0, 

(Vm + atim)OctOIS  = Amai37e)(6X(5 . 
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Furthermore 

D = ( Da  Dal = 
1 	 (7.2.10) 

Taken together we find 

(e-A-A-DeA42100 )ao  
32 

(Vm(fX7 )'Yr773 + oni'-yx'x'7[573 — xa-rAl-trn76x5  — xa-r-7(sitme,5,3a€) 

Al — — A D eA- A yo)ct/376 
-3i 	e m e 
2Vern[ce071EX 76.1eX • 

(7.2.11) 

Finally, again using the identity 7777Thrie = 0, or in this context xc5Cpx13  = 0, we find 

8A/2 

m€ 	a(e-A-ADeA+A00) • 95o a'3 - -
-3i 

(X7775VmX5  + X77 I-1  X ) X X 4A/2 	
m E 

(fiY'Ym-y.C7m77 +1777m-r6 iLm6670 Xak3  
-3i 
4V2- 

(7.2.12) 

with all other components vanishing. Finally we note that bt, corresponds to an 

"A-shift" of VmA and a "A-shift" of VmA - 2OmA A A. Using the decomposition in 

eq. (4.5.6) together with the definitions in eq. (4.3.7) we find 

x7-411:5[2,x€ — 
1  

F 
4 • 4! mnpq X '7.- y6 X 

mnpq 6 

1 	 mnpq5 c 
	F 	 115 4 • 4! innP°

7 	^y 
 

-4 (*7P)X7C-r6X6  

4(*711)f/17c  

(7.2.13) 

(7.2.14) 

where we used the intertwiner C to lower and its inverse C-1  to raise SU(8)/Z2  indices 

and the fact that xa = if. Together these two expressions do indeed agree with 

the superpotential as given in eq. (7.1.9). Note however that there is an ambiguity 

here as to whether the derivative used to define D should be covariant or not. If it 

is the metric will enter through the spin connection making the expression for the 

superpotential in fact highly non-linear, and thus non-trivial, function of 0. 
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Chapter 8 

Towards manifestly E7(7)  covariant 

supersymmetry variations 

In this chapter we describe the first elements of a proof that the modified SUSY Killing 

spinor equation in the presence of fluxes may be rewritten concisely in a fashion which 

is manifestly E7(7)  covariant. To this effect we express the supersymmetry variations 

in terms of the spinor bilinears. Finally we comment briefly on a coset description 

which could potentially provide a path to manifest covariance. This work is the 

extension to 11D supergravity for general flux backgrounds of the results obtained in 

[173] for type II as reviewed in section 3.3.1. 

8.1 From spinors to forms 

As a starting point we use the equation derived in [197] (with due adaptation to 

our metric ansatz) in the case of a warped maximally symmetric external space with 

corresponding 4D Killing spinor equation: 

1 
= — 	 + A2-700_; , 
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where Al  and A2 are AdS factors relating the metric to the Ricci tensor such that: 

Rt , = -3(A? + 	 (8.1.2) 

If Al  = A2 = 0 we have warped Minkowski space. Consistency of the 11D SUSY 

variation with the 4D variation then leads to: 

1 	i  —4E 
VniX = 	amEx + —12 fe  'No( 

FnPqr7mnPqr X 
 —36FmnPg7n pg X,  

(8.1.3) 

fe -4EX = 
288 

E., 

"
7mnPqX - 

1 
amE7Trix + 	Aac  e-E  —21  A2Xc  (8.1.4) 

6 	
2 

 

where f is such that Fi,,,Ap  = fe iivAp  and x = if as before and the decomposition of 

the eleven-dimensional in terms of i  and 61±  is given in eq. (6.2.7). In [197] the authors 

then derived a series of differential constraints on corresponding spinor bilinears: 

d ( 	(0 )  ) 

d(e3E(p(o ) ) 

d(e2E0(1) ) 

d(e4E0(2) ) 

d(e3Ecp(3)_) 

d(e3E(p(3)+) 

= 0, 

= -2iAle2Ec"a'( 1) - 2A2e2Eco(1), 

= 0, 

_e4E * 	• F + 3zAie3E  co(3 )+  - 3iA2e3Eco(3)-, 

= 	* co(3), 

= ie3Eco(o) F - i2A2e2E  * co(3) .  

(8.1.5) 

(8.1.6) 

(8.1.7) 

(8.1.8) 

(8.1.9) 

(8.1.10) 

where a numerical subscript denotes a given bilinear's rank and a sign the real and 

imaginary part, with the bilinears themselves given by: 

= 

(P(0) = 7/17c, 

Ci3rn = —7i7m77 7 f7ranc l 
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mn = 	= —irle'Yrrinne  

Ymnp = in7ninp17, 

c 11171P = iirrrinPne  

Note that eq. (8.1.5) confirms the consistency of the normalization 7717 = 1 up to a 

trivial overall constant. On the other hand eq. (8.1.6) implies fine = e-3E 	(det g)314  

in the absence of AdS factors thus implying that the special case Firic = 0 corresponds 

to singular solutions for the warped Minkowski case. Also for warped Minkowski 

eq. (8.1.10) implies that for the Majorana spinor ansatz 	= if corresponding to 

a single G2 structure, as used in [190] for example, there are no supersymmetric 

solutions with internal 3-form flux as co is real in this case and further one is in fact 

restricted to unwarped Minkowski space-time. The generalized spinor ansatz is thus 

essential to obtain non-trivial supersymmetric flux backgrounds. 

8.2 From forms to spinors 

At this point one may then ask if one can isolate a set of differential constraints, 

expressed in terms of the structure 3-form, which is equivalent to the flux-deformed 

SUSY variations. Let us specialize again to the case Al  = A2  = 0. Further let us 

again use' the resealed form Co = -1-ca and its Hodge dual V, = 	= *7(7) which frie 	 fric 

have useful algebraic properties generalizing those of the unrescaled forms for the.  

Majorana ansatz such as for example: 

 

1 	_ 	1 _ 
—co A *7(p — 7 A — *71 
7  

(8.2.1) 

'We assume fpic 0. 
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or alternatively 

(p. ,,,,pcOmnP = 42 	
(8.2.2) 

'1AnnpimnPq  = 168 

Since we are dealing with an N = 1 (off-shell) effective supergravity in 4D, the 

conditions for on-shell supersymmetric, purely bosonic backgrounds are given by: 

W 
aw 

= 

= 

0 

0 

(8.2.3) 

(8.2.4) ata 
D = 0 (8.2.5) 

where to are the moduli scalar fields and D is the D-term. Note that interestingly 

the first two equations are satisfied for W if they are satisfied by W' = tW where 

t is a nowhere vanishing, but otherwise arbitrary, function. In analogy with these 

conditions we will now show that the supersymmetry variation equation is in one-to-

one correspondence with the following expressions 2: 

*7 [(C1c0 — idA) A (cb — iA) 2 A *7  1 — id(A A co)] = 0 	(8.2.6) 

(dca — idA) = 0 	 (8.2.7) 

d(*7c)) = —8 dE A *7c6 	 (8.2.8) 

where the last two equations essentially reflect the decomposition of the internal 

gravitino variation under SU(7). 

The proof proceeds by construction. Define 

 

1 
X = 	_ 	X 

INIWc  
(8.2.9) 

2where A = *7dA locally but captures the global non-trivial topology of A 
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It then follows from: 

5(T7mi" = 0  

kTeyinn, 	0  
(8.2.10) 

that fi,-yrajd- form an orthonormal basis for (complexified) eight-component spinors 

since XT  X = 1. In particular we have: 

4! 	Pq  dcomn 'YmnPq 5( = 	un{Ym )( (8.2.11) 

with 

1 
U0 	Tvd(PmnpqininPq  = *7 (dc0 A Co) (8.2.12) 

um 	= —dcomm
Pq 

 conPq = 	dfo 
3!  

(8.2.13) 

so that comparing with eq. (2.2.23) we find that the scalar uo  and the one-form u 

correspond respectively to the torsion classes3  W1  and W4. Torsion class W3 does 

not contribute as by construction (VV3),„pq-ymnPqk = 0. Replacing then Co A dA by 

-ico A dco in eq. (8.2.6) using eq. (8.2.7) we find: 

uo  = *7[A A dA - 2 A *7 1)] = — 2 fe -4E 	 (8.2.14) 

Further given the properties of the torsion class W4  as given in eq. (2.2.21) we may 

read off um  from eq. (8.2.8) with urn  = 6i am E , so that substituting into eq. (8.2.11) 

(using again eq. (8.2.7)) for 43 and multiplying by 	 we find: 

1 
-
6 

fe -4E
X = 

28 
Fmnpq7m"qX 2arnE7mX (8.2.15) 

3To be quite precise these torsion classes are, strictly speaking, defined for manifolds with G2 
structure. However the differential relations in eq. (2.2.23) are still valid for manifolds with a more 
general SU(7) structure. 
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which is the algebraic part of the flux-deformed supersymmetry variation as given in 

eq. (8.1.4) for the warped Minkowski case. 

To derive the differential constraint on the supersymmetry variation spinor note 

first that: 

	vrnx  = vr,m5 + 	am(fricA 
ifFic 	 27-mc 

(8.2.16) 

further 

Vm)( = (Vrni)V)C + 	T = Vrn(70CT)5 = 8 	2 3I Vri-i(7).pq'ynPq 	(8.2.17) 

where we used 

(vink)a = [(v.5()a + 5(Tcyrnm] = 2  a„,(5(T5() = 0 
	

(8.2.18) 

Since Vmco is expressible solely' in terms of dca" and dt co we may write: 

	

Vrn)( = ai(clIc6).-rn +a2(cia")np-yrn"5(' 	
(8.2.19) 

+ a3(c/cp)npqr'ymnPqr 	a4(d(19)Trtnpq'ynPqk' 

where al , a3, a3, a4  are complex constants. Using eq. (8.2.8) we further have (dtc,C3),,„ = 

—8 as Ecosmn  from which we may deduce that the two first terms in eq. (8.2.19) only 

contain terms proportional to asE-ymsk and X. This follows by decomposing the 

relevant spinors using the basis {56 -yrk-} such that: 

as 	= ias Ecb.-yri; 

(dt co)nP-ymnp5( = 8i asE(1)871Pcomnpk - 8 asEcosnPiAnnpr-Y r 5( 

= 	camEk — c' as Ecasmr -yrk" 

   

4Again, strictly this a priori only applies to the case of simple G2 structure where (p is real. One 
may however argue that this does not enter in the derivation of the equalities used here. 
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where in the last line we used the identities: 

c 0 mnp371Pr  d b r rn  

inziplP71Pqr  = d 	 qrco„,, 

whit c, c', d, d' being constants. It thus follows that: 

noc = bias  E77,A — b2arnEi- 

- ib3(43)npqr'ymnPqr 	ib4(C1c0)TrinpOnPq  

(8.2.22) 

(8.2.23) 

upon substituting from eq. (8.2.7) and eq. (8.2.15) implies: 

x = 	[73  arnE — (b1  + b2)3,Elx 

+(b3  + 144 )Fnpqr-YmnPqr X + 

ibl —2A 
Tfe 

(b4  + -13)i)F,..pq7nPqx 

(8.2.24) 

where' we defined x = eP5( and b1, b2, b3, b4  are constants fixed by the consistency 

of eq. (8.2.23) which are expected to match the coefficients in eq. (8.1.3) with bi = 
41'

= 4  b, 3b3  	192 = 	and b4 	. For example 

	

)(Tv„,;( = o 	36= b4 	
(8.2.25) 

)(T  7"2.7 	d = 192 LPinn 
 pibmn P q )--"( 	3b3 b4  = 192 

At this point a remark is in order. We could have made our discussion more general 

by leaving um, which represented the W4 torsion class, unspecified throughout, with 

its relationship with the derivative of the warp factor arising from consistency. From 

this perspective eq. (8.2.8) corresponds to the vanishing of the VV2  torsion class, which 

thus seems to be equivalent to the vanishing of the D-term. Interestingly this means 

that in the case of a warped Minkowski non-compact external manifold, the internal 

5The supersymmetry conditions then guarantee that this definition is consistent with that of x 
as a normalized version of 5"( given in eq. (8.2.9). 
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manifold is necessarily an integrable manifold with G2 Dolbeault cohomology for 

supersymmetric solutions. 

We expect this no longer to be the case for the warped AdS external spaces. We 

will not explore in detail here how the previous calculations are modified in this case, 

but by consistency with eq. (8.1.5) - (8.1.10) and the gravitino variation, they should 

follow from the differential constraints: 

-E 
*7[(c1(7) — idA) A (Co — 	+ 2 A *7 1 — id(A A c-0- )1

7f 	
+ A2) 

77/ 
—E 

(chi() — idA) 	= 7r7c 	+ A2)[(19(1) A cP — i *7 (10(3)] 

d(*7 c0) = —8 dE A *7C0 + X5 

where el  is a constant and *7X5  is non-vanishing two-from representing W2. The first 

equation follows from the V, O+  term in the gravitino variation which vanishes for 

Minkowski space but shifts eic/ 2W by the AdS factors in the superpotential calcula- 

tion e-K12 with  en7; for Anti-de-Sitter space where we identify 	 The second equation 

follows from substituting eq. (8.1.6) in eq. (8.1.10). In the last one we merely pa-

rameterized calculational ambiguities which we expect to be lifted in the context of 

further work with a reasonable starting point being the Hodge dual of eq. (8.1.8). 

Note in passing that in the presence of non-vanishing AdS factors eq. (8.1.7) follows 

trivially from eq. (8.1.6). 

8.3 	Elements of manifest E7(7)  covariance 

Let us now discuss the possible manifest E7(7) covariance of the on-shell supersymme-

try constraints. Ideally one would expect all three conditions eq. (8.2.6) to eq. (8.2.8) 

to be equivalent to a single E7(7) covariant expression in terms of cb, in analogy to the 

type II case in the absence of RR-fluxes as given by the integrability condition' in 

Galthough in this case there are two conditions, namely one for each pure spinor 
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eq. (3.2.6). Here we take a less ambitious intermediary step by trying to make each 

equation separately manifestly covariant. The D-term not yet having been calculated, 

we will may not include eq. (8.2.8) in this analysis. On the other hand eq. (8.2.6) has 

already been shown to be covariant in the context of the superpotential calculation. 

This thus leaves us with eq. (8.2.7). Since we expect it to appear as a derivative of W 

with respect to the moduli, as hinted in eq. (8.2.4), we will start by rewriting the su-

perpotential in an alternative form. Note that at this point this is introduced mostly 

as a convenient construct, without a strong reference to a specific interpretation. 

Define thus (13-  transforming in the 63 of St/(8)/Z2: 

41— ay 	877V11( 

 Sary 
 = 80,a003'Y  

 	 ja-y 	co- 	_;ilabcdry 
rinc 	 Tic 	 48 a' 	a 

whose embedding in E7(7)  is given by: 

24)-[cE[76461 	16 CCbcd(7ab)a13(7cd) 
ryd 

(8.3.1) 

(8.3.2) 

where (7)-  = ","o A y8  — *7c O. Further define its orthogonal complement within E7(7)  as: 

4)+076 	1 
16(P ab 

±
cdk7 ) 

 ab\o0 ed\-0 	 (8.3.3) 

where co+ = cp A y8  + *7 co. Taken together these give the SU(8)/Z2  decomposition 

of the E7(7)  Lie algebra element (I,  given by (;(3 A y8  in terms of SL(8) representations. 

One may then show that the superpotential may be written as: 

W = tr (yme-TVm eT )  

= tr (7rn[e(l'eAeA6]-1Vm[el'eAeA61) 

where the trace is taken in the adjoint of E7(7) and 

er = eAeA6 = ecD-F.A+1[4),A+A6 
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with A and A6  being respectively the embeddings of the fluxes A and A in the Lie 

algebra of E7(7). Varying now with respect?  to T one finds (up to a surface term): 

6W = tr (-ym8(e-T )Vm eT  ) — tr -ynTrme— 7-6(er) ) 

= — tr (-yrne-2-15(eT )e-T'' v me ) tr (7me-Tymere-7-6(eT)) 

tr ( [7m , e-7-vmeT]e- 7-6(eT)  ) =  

= 	tr Vy'n, e—TV in eT16 T ) — tr [[-ym , TV m eT ], 7]6 T ) 

where, in going from the first to the second line, we used the identities 

6(e-r )  = _e-7-6(eT )e-T . V m e-  = —e-TVmeTe- T 	(8.3.7) 

together with the cyclicity of the trace. Further in the last line we used an analogue 

of the previously derived identity 

T6(eT) = T + [6 T , '2] 
	

(8.3.8) 

The second term in the last line of eq. (8.3.6) vanishes identically. Projecting out the 

parts vanishing identically in the first term one finds: 

SW -= 0 <=> [-ym , e-T  V m eT ] — (Ci6 	—(7), A <-4 — A, A 4-+ A) = 0 	(8.3.9) 

which is equivalent to eq. (8.2.7). This expression is covariant, as well as the super-

potential invariant, under a rigid transformation S E E7(7) acting as: 

—> Sc-yrnS-1 	84:13S-1  A 	S 	A6  —> S A6  S-1 	(8.3.10) 

7More precisely the variation is with respect to either (i3 or A. The variation with respect to A 
vanishes identically, in line with the fact that the six-form only contributes to the superpotential 
trough its non-trivial topology; such a contribution does not appear in a variational derivation. 
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A priori the projection in eq. (8.3.9) seems problematic in the sense that it appears 

difficult to phrase it in a covariant way independent of the underlying degrees of free-

dom. A generic E7(7)  transformation will mix the different GL(7) representations, so 

the projection will no longer be effected by simple sign inversion. A general back-

ground, which might no longer be described by 11D supergravity and may in fact be 

non-geometrical, would probably be characterized by 7' = ST S-1. This 7' would 

then need to be decomposed into the images of 1, A, A6  under S using a covariant 

algorithm based on group theoretic arguments. For example note that the statement 

that A6  commutes with (1., A is in fact covariant. As an aside note also that J, A, A6  

live in an isotropic subspace of the 133 as defined by the natural inner product on 

the Lie algebra. 

Another problem with this approach is that physically the theory is most naturally 

formulated in terms of 0 E 912 rather than Co E 133. Although we defined a map8  

between these it involves the intertwiner C, whose definition relies on the existence of 

Clifford algebra and thus a metric, making it a highly non-linear function of cb a priori. 

This in turn implies that the derivation presented here would lead to a very involved 

picture in terms of 0 although a priori one might expect a rather simple expression 

such as DO = 0. To explain this one must remember that 0 is not a generic element 

of the 912 but is highly constrained, nor is Cp" a generic element of the 133. The 

constrained orbit of 0 in the 912 would generically be linked to a projector, which 

supposedly acts trivially on the superpotential (as do the sign changes in eq. (8.3.9)) 

while leading to a complicated form for the susy variations in terms of 0. Nevertheless 

this route is most promising when attempting a fully covariant formulation. The 

description in terms of ce,  is however useful as a E7(7)  / SU(7) coset description of the 

orbit of 0, although there is the outstanding issue of defining a fiducial point on the 

orbit which is invariant under SU(7). As defined P has in fact U(7) as stabilizer (see 

the discussion of eq. (6.3.3)). 

8which also maps the differential operator from the 56 to the 133 
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A different, but equally promising, approach would be to phrase the SUSY vari-

ations in terms of the integrability of the EGACS. More precisely one would need 

to show the equivalence of the supersymmetry equations and the closure of the +i 

eigenbundles of the EGACS under the action of the generalized Courant bracket. 

Since we introduced the coset construction let us comment on its possible rele-

vance to the calculation of the Kdhler potential. An important point to emphasize 

is that we expect the Kdhler potential in this case to coincide with that of eleven-

dimensional supergravity compactified on manifolds of G2  holonomy. This follows 

first because the flux does not enter the metric on the Kdhler moduli space resul-

ting from dimensional reduction. Secondly the G2 holonomy compactifications are a 

special case of a G2 structure manifold, singled out by differential conditions on the 

structure forms. However in obtaining the aforementioned Kdhler metric, and by ex-

tension the 'Miler potential, from dimensional reduction such differential constraints 

with respect to the internal manifold's coordinates do not come into play. Thus we 

expect the Kaliler potential to be proportional to In det grnri. It then seems probable 

that the Kahler potential is in fact proportional to the determinant of the 28 x 28 

upper left sub-matrix of Go  as given in eq. (5.2.7), when thought of as a 56 x 56 

matrix. This procedure may seem extremely ad hoc but is in fact a generic feature of 

Kdhler potentials emerging from coset constructions (see for example [198, 199, 200] 

or [201] for a more recent description). 
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Chapter 9 

Conclusions and further Outlook 

There has always been a rich interplay between string theory and geometry. We re-

viewed for example the connection between supersymmetric low-energy phenomenol-

ogy in four dimensions and special holonomy internal manifolds in early purely geo-

metric compactification schemes of the heterotic string or eleven-dimensional super-

gravity. One might equally have focussed on the description of mirror symmetry in 

terms of the Dolbeault cohomology of Calabi-Yau manifolds or the importance of 

complex and symplectic compactification manifolds in topological string theories. 

One common thread throughout our discussion is the role of fluxes as obstructions 

to the integrability of a given geometric structure, introduced to describe supersym-

metric backgrounds. More specifically we focussed on how the obstruction is lifted 

through an embedding in a larger structure, which is now integrable. Alternatively, 

given that said integrability is generically phrased in terms of the on-shell supersym-

metry conditions, one finds, in off-shell supersymmetric formulations, that the fluxes 

are geometrized. In the first set of examples given, fluxes appear as the torsion of 

G-structures defined on the tangent bundle T. More precisely the fluxes parameter-

ize their departure from integrable special G-holonomy. Such an example, is afforded 

by the deformation of Calabi-Yau (SU(3) holonomy) three-folds to manifolds with 

non-integrable SU(3) structure. However in the case of NS B-field flux, this SU(3) 
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structure maybe embedded in a SU(3) x SU(3) structure defined on the bundle TEBT*, 

which turns out to be integrable. The main tool in this context is Generalized (Com-

plex) Geometry as developed by Hitchin and his collaborators. Remarkably this 

formalism not only naturally includes the B-field and introduces it on equal footing 

with the metric, but does so in a form manifestly covariant under the 0(d, d) in terms 

of which T-duality is formulated, for example by reproducing the coset structure of 

the 0(d 
0(

)
d
x
,d
0
,ffk

(
)
d,118)  moduli space appearing for toroidal compactifications. 

However even the SU(3) x SU(3) structure on T EDT* fails to integrate in the pres-

ence of RR-fluxes or put differently, in the context of off-shell supersymmetry, these 

fluxes fail to geometrize. The original work presented here remedies this problem by 

considering Exceptional Generalized Geometry (EGG) with structures defined on a 

yet larger bundle E = (A7  T*)-112 [T  A2—. A5T* e (A7T*)T*] in the context of 

eleven-dimensional supergravity. Physically each component of the bundle may be 

associated to a conserved charge of the supergravity, such as the membrane charges. 

It was then shown that the bosonic degrees of freedom may be arranged in a mani-

festly E7(7) covariant way combining the metric and the three-form potential on equal 

footing (via an exceptional generalized almost complex structure) in an exceptional 

generalized metric (EGM), which is invariant under SU(8)/Z2. This approach thus 

automatically incorporates the RR potentials (as well as the NS B-field) given they 

arise from the three-form through dimensional reduction on a circle for type IIA, from 

which type IIB is obtained via T-duality. Further, provided this setting is preserved 

under quantum corrections, it could give rise to a manifestly E7(7) (Z) covariant for-

mulation in eleven dimensions without resorting to specific compactification Ansatze, 

thus providing a first step towards manifest U-duality covariance. In this context we 

explicitly calculated the superpotential to show that it could be expressed solely in 

terms of the E7(7)  covariant objects and is in fact invariant under E7(7) transforma-

tions. 
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In the course of this work a rich new geometry was uncovered. Specifically, besides 

the extension of Generalized Geometry already described above, we identified a non-

trivial twisting of the Exceptional Generalized Tangent bundle (EGT) E. Further 

the Chern-Simons term was naturally integrated in this formalism. Additionally we 

defined the analogue of the Courant bracket appearing in Generalized Geometry, 

which we termed the Exceptional Courant Bracket (ECB). Given the ECB one may 

explicitly check the integrability of the Exceptional Generalized Almost Complex 

Structure. 

At this point let us note some a priori limitations of this approach to be resolved 

in the course of further work. First of all, while there is a clearly defined structure on 

the bundle E = (A7  T*)-112 [T  A2—. G A5T* (A7T*)T*] with the corresponding 

E7(7)  covariant generalized geometric objects, only the superpotential in the N = 

1 D = 4 rearrangement of eleven dimensional supergravity was explicitly shown to be 

invariant, the most obvious omission being the Kaliler potential. More significantly 

our discussion is rooted in the supergravity approximation and thus in particular 

does not guarantee that the manifestly E7(7)  formulation would be preserved if cx' 

corrections where introduced. Of course this is an issue when considering the long 

term goal of understanding M-theory within this language but might also be an 

obstacle to semi-realistic phenomenology. Indeed the flux backgrounds studied here 

would be subjected to the no-go theorems we reported on earlier, with higher order 

corrections being precisely one possible resolution besides the introduction of localized 

sources. Another such caveat is that the backgrounds presented here are smooth 

and thus would fail to reproduce chiral fermions or non-Abelian gauge groups in 

lower dimensions. On a more formal note, it is as yet unclear whether the derivative 

appearing in the superpotential calculation should be a covariant or a simple partial 

derivative. In the former case there is an implicit reference to the internal metric, 

which is a related to the SU(7) structure through a non-linear map. 
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These considerations naturally point to several avenues for further work. The 

obvious first step consists in obtaining a covariant rewriting of the remaining bosonic 

terms in the Lagrangian to be identified with the Kahler potential and the D-term in 

the N = 1 D = 4 reformulation. Further one would like to extend the new formalism 

from off-shell to on-shell supersymmetry by formulating the supersymmetry varia-

tions in a manifestly E7(7)  covariant form. Some preliminary work for this project 

was presented here which recast the variation, originally given in terms of spinors, in 

terms of the forms appearing in EGG. Another approach would consist in phrasing the 

supersymmetry variations as the integrability conditions of the Exceptional General-

ized Almost Complex Structure given on terms of the closure of its ±i eigenbundles 

under the Exceptional Courant Bracket. 

In the context of phenomenology one could then try to adapt our results to model 

building by including the effect of singularities and that of negative tension objects 

allowing the evasion of the no-go theorems. Another promising line of research would 

lie in the rewriting of known higher-order derivative corrections of eleven-dimensional 

supergravity in the language of EGG, which might further also be of significance in 

circumventing the no-go theorems. In parallel one might extend EGG to compacti-

fications to other dimensions with a corresponding different group structure. Corn-

pactifying to five dimensions for example, one would expect the EGG to be based 

on 46) . At this point EGG might be employed as a tool for the generation and 

systematic classification of supersymmetric backgrounds, potentially by developing 

an analogue of Yau's theorem, and it would be natural to apply it to testing the 

AdS/CFT correspondence. Although this formalism would not yield an explicit form 

for the background fields, it is probable that general conclusions may be drawn about, 

for example, the dual CFT in analogy with the many results known for Calabi-Yau 

manifolds in absence of an explicit metric. One would expect to be able to construct 

new examples of the duality based on as yet unknown backgrounds. 
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Finally one could explore connections between EGG and potentially related ap-

proaches. One such formalism is generalized holonomy where a supercovariant deriva-

tive, arising from the supersymmetry variations in generic backgrounds with fluxes, 

with holonomy lying within in SL(32, R) is used to classify supersymmetric solu-

tions of 11-dimensional supergravity [202] [203]. Another interesting approach, which 

similarly to the work presented here involves E7(7)  in a central way, is the so-called em-

bedding tensor technique used to obtain non-trivial gaugings of maximal supergravity 

(see [204] for a review). Finally we might try to relate EGG to the reformulations 

of eleven-dimensional supergravity in terms of the Kac-Moody algebras E9, E10, Ell 

(see for example [206] [205]). 
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Appendix A 

Dualities 

A.1 	Overview of the web of dualities 

As noted before the five different superstring theories are linked by a web of dualities. 

In particular the type II theories are linked (after compactification on at least a circle 

S1) by T-duality as are the two heterotic theories. This duality relates two equivalent 

theories defined on different but dual backgrounds. It is perturbative in nature and 

can be shown to hold order by order in gs , the string coupling. The formalism 

introduced by Buscher [207] [208] further permits to understand it as the gauging of 

isometries on the worldsheet where they translate into internal symmetries of the 2D 

CFT. A closely related generalization which is applicable in absence of isometries, as 

is the case on generic Calabi-Yau manifolds, was dubbed mirror symmetry and relates 

a type IIA theory defined on a given Calabi-Yau to a type IIB theory on a mirror 

Calabi-Yau . Interestingly mirror symmetry is supposed to be reducible to multiple 

T-dualities within the context of SYZ conjecture[209], where the Calabi-Yau is seen 

as a T3  fibration 1. 

There exists further a conjectured2  non-perturbative S-duality which relates the 

la major subtlety being that generically there will be degenerate fibers locally 
2It is only conjectured because formulations of string theory are mostly perturbative. It has 

however passed a series of non-trivial tests based on for example non-renormalized BPS multiplets. 
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strong coupling limit of one theory to the weak coupling limit of another one. It is a 

symmetry for Type IIB (which is self-dual) and links heterotic SO(32) to type I. The 

S-dual of type IIA and heterotic E8 x E8 is in fact 11D supergravity compactified on 

the circle Si  and the interval Sl /Z2  respectively. The dilaton, whose expectation value 

(0) is related to the string coupling as gs  = e(95)  , can be interpreted as a modulus (e()  

giving roughly the circle radius or interval length) in the context of the dimensional 

reduction form lid to 10d thus explaining the decompactification at strong coupling. 

The heterotic E8 X E8 case is the focus of Horava-Witten theory[210][211] which posits 

two "end-of-the world" 9-branes at each end of the interval on which respectively one 

of the E8 gauge theories lives. An interesting phenomenological approach consists in 

embedding the SM in one of the E8 while the other gives the hidden sector possibly 

responsible for SUSY breaking. 

Both these dualities have a group theoretic interpretation. In fact S- and T-duality 

are conjectured to be part of a much larger U-duality group[53]. In the following we 

will describe these dualities in more technical detail focussing particularly on the 

group structure as this is the aspect most apparent in the Generalized Geometry 

description which is the focus of this thesis. 

A.2 T-duality 

A.2.1 T-duality and 0(d, d, Z) 

T(arget space)-duality (for a review see [212]) relates different backgrounds in the ten-

dimensional target space which all give rise to the same spectrum and CFT correlation 

functions and are thus physically equivalent. The typical example is that of a string 

propagating on a circular subspace of radius R. T-duality asserts that this will lead 

to the same physics as a string propagating along a circle of radius 5-'t  . The reason 

for this are the enhanced degrees of freedom of extended objects: A point particle 
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can only propagate along the circle, whose periodicity results in a quantization of 

the momentum and thus the energy such that it goes as R2. On the other hand a 

string may wind around m times leading to an energy m2R2. Another example is 

familiar from the context of the SYZ conjecture for mirror symmetry (which can be 

understood as multiple T-duality under well defined conditions) where the momentum 

modes of a 0-brane are exchanged with the winding modes of a 3-brane. 

Let us now look at the specific case of d-dimensional toroidal backgrounds and 

how T-duality can be implemented as an 0(d, d, Z) transformation. Consider the 

usual sigma model action for the bosonic string: 

27r 

 S 	= 	
47r 0 

I 
do-  f dr krqg'i 3Gii k,X iaoXi + ea° BAX iatai + Nrq(DR(2) ] (A.2.1) 

with the periodicity condition Xi  ti Xi  +27rmi. Now introduce the canonical conjugate 

momenta of the Xi : 

27rPi  = GijXj + Bii Xi' = pi  + oscillators, 	 (A.2.2) 

with pi  = ni  where the ni  must be integers because of the periodicity of the torus. 

From this we may the calculate the Virasoro constraints: 

H = LoL LOR 
1  

f27r
47r 

	do-  [(27r)2  (Pi Gu  Pi ) + Xi'(G — BG-1B)ii  Xi' + 47rXiTikG1" Pj] 

—1  /27'  do-(P2 + P/2 ), 
47r o  

= [271-Pi  + 	— 	 P1  = [27 r — 	+ B)ij X 3'14i, 

= LOL — LOR= 0 
	

(A.2.3) 

with e and e* such that Ed 	c!eq = 2Gij, 	\---Nd 	*j 	
Si 

 
a=1 e  3 	 L-da=1 ei

a 
 ea 	Z-da=1 'a 'a

j = 
 

(G-1)i3 . The former represent a choice of einbeins coinciding with the basis of the 
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compactification lattice, the latter are just the dual to this basis. By then truncating 

to the terms containing no oscillators 3  we find: 

1 2  , 
H = LOL + LOR 	+ PR) 

1 
= -

2 
 [ni (G-1 )x' 	mi  (G - BG-1  B)ij mi + 	Bik(G-1 )ki n 

(A.2.4) 

with ni  and m, being the momentum and winding modes respectively and PR  = 
[n,t mt (B - 	 . G\ie,  )i 	andm = [Tit  + mt (B + C)]e* . Note that the pair (pR ,pL ) thus 

encodes all the physics of the problem with G and B determining the local geomet-

rical/gauge nature of the manifold, while (mi, ni ) describes its topological properties 

(the periodicity). Now we may ask whether we may build the moduli space cor-

responding to different choices of metric and Kalb-Ramond field at fixed (mi , ni ) 

through the action of a given group. The relevant quantity to parameterize the mod-

uli is the length of the lorentzian vector (pR,pL): 

2 	2 
PL — PR = 2mini E 2Z, (A.2.5) 

The group conserving this relation a priori is 0(d, d, R). However since only the norm 

of pR(pL ) enter physical quantities, we must mod out a pair of 0(d, IR) rotation so 

that the required moduli space is [213] [214] 	0(d,d,R)  
0(d,R)x 0(d,R) ' 

We must now identify the symmetry group i.e. the subgroup of the group sweeping 

out the moduli space leaving the Hamiltonian invariant and surviving after quantum 

corrections. This turns out be 0(d, d, Z) as shown in [215] [2161121711218]. Before 

we can give a justification for this statement we must find an appropriate action of 

0(d, d, IR) on the background which may be represented by E = G + B. 

3since we are only interested in the relation between winding and momentum modes which en-
compass the geometrical degrees of freedom of the string 
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In this context recall the standard matrix representation of O(d, d, R): 

a 	b 
g= 

( 
(A.2.6) 

where a, b, c, d are d x d matrices such that given 

I 
J= (A.2.7) 

we have 4  

gt jg 	j 	 atc+ eta 	0,  

0 

b y ± d t b  at d 	ct b  (A.2.8) 

To describe the action of 0(d, d, R) we parameterize the hamiltonian as: 

1 	 1 
H = 	+p2R)= 2 Zt MZ, Z = (Mal nb). (A.2.9) 

where 
— BG-1B BG-1  

M(E) = 

(

G 
(A.2.10) 

—G-1B G-1  

Note that M (first introduced in [215]) is itself an element of the group and can in 

fact be decomposed as M(E) = gE gtE  5  if we take 

gE=G+B = 
	e B(et)-1 	

(A.2.11) 
0 (et )-1  

where gE  e O(d, d, 

4Note that J-' = J, and thus g-1J(gt` ) 	= J leading to J = gJgt  so that gt  E 0(d,d, R) if 
g E O(d,d,R) 

5This decomposition is not unique: in fact M(E) = gEgE with -jE = gE A where A e 0(d,1l) x 
O(d, R) as expected given the coset structure of the moduli space. 
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M then transforms as M(E') = gM(E)gt  where E' = g(E) from which we deduce 

the action of O(d, d, R) to be: 

E' 	g(E) = (aE + b)(cE + d)-1. 	 (A.2.12) 

Looking now at O(d, d, Z) i.e. the subgroup with integer entries we can substan-

tiate the claim that it is the symmetry group of the moduli. The whole group can be 

generated by three sets of transformations: 

• 	constant shifts in the Kalb-Ramond field 

I 

g°  = 

	 (A.2.13) 

where e 3 E Z and eji  = —Oil  which correspond to the transformation Big  —+ 

Biz + Oil . This shift leads to the addition a total divergence to the Lagrangian: 

27 
471-  0  

S = 	
1 

do-  drEa'30ijk,X 200 X 3  

f = —
1 f 2' 

do-  d €'13  8 iiX i 	+ surface term 
47r 0  

= 0 + surface term 

(A.2.14) 

where in the penultimate line we use the fact that Oil  is constant. The topology 

being non-trivial the surface term will in general not vanish but provided Oil E Z 

the shift is a multiple of 27r and does not change the path integral ti  eis. 

• Base changes 

( A 	0 
gA = 

0 (At ) -1  

 

(A.2.15) 

 

where A E GL(d,Z). This corresponds to E' = AEAt  or G' = AGA' and 

B' = ABAt  i.e. coordinate changes which preserve the compactification lattice. 
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gpi = 
/ — ei 	ei )ei 	I — ei 

(A.2.16) 

These can be decomposed into permutations and reflections of the coordinates 

and the modular transformations SL(d, Z) of Td  the d-dimensional torus. 

• Factorized duality 

Here ei  is zero, except for the ii component which is 1, and I is a d-dimensional 

identity matrix. In the case of a pure toroidal background (B = 0) each gDi  

inverts the radius of one of the cycles i.e Ri 	k The generalization of T- 

duality to higher dimensions is in fact background inversion whereby E' = 

corresponding to the 0(d, d, Z) transformation 

0 I 

gp  = I 0) 
(A.2.17) 

corresponding to the background transformations: 

	

G 	= (G — BG-1  B)-1  , B 	= (B — G B-1G)-1  , 

	

G-1  B 	—BG-1 	 (A.2.18) 

Clearly the Hamiltonian is invariant under this transformation if combined with an 

exchange of winding and momentum modes. Note also that when B = 0 the transfor-

mation corresponds to G G-1  generalizing the one-dimensional result as claimed. 

Here we did not include the transformations of the oscillators 6  and refer the reader 

to [212] for further details. 

'we also left aside an additional symmetry corresponding to worldsheet parity a -4 —a equivalent 
to B —B which 0(d,d,Z) 
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A.2.2 T-duality and Buscher rules 

An alternative way to look at T-duality is by linking it to isometries of the back-

ground in a formalism known as Buscher[208][207] duality (which has in fact wider 

applicability than the 0(d, d, Z) formalism which is a priori restricted to toroidal 

backgrounds). Consider again the sigma model action but now introducing complex 

worldsheet coordinates: 

with 

1 	 1 S = —27 f d2z 	+ B t ,,,(x))axiiaxv + —2 0 (x)R(2) ] 

1 z 	—(7- +io-), a =—(ar  - 
N /1 

(A.2.19) 

(A.2.20) 

so that d2 z = dady, and axax = 1((arx)2  + (3x)2). Define also H = dB. Then a 

transformation 

6x4  = Ekµ 	 (A.2.21) 

will be an isometry of the action if 

GkGo, = 	+ 	= 0 ; Gk H = 0 rk B = dcv ; .Ck0 = 	= 0 

for some one-form co. If the chosen isometry is abelian7  one may choose a coordinate 

system {xi} = {x°, xal where the isometry is represented as a translation of x°  0. 

7Non-abelian isometries give rise to several complications such as obstructions to T-duality. 

142 



Consequently there will be no explicit 0 dependence in the action which may be 

rewritten as: 

S[xa, = — fd2z [Goo(xc )3030 + (Goa (xe) + Boa(xe))019axa  + (Gao(xe) + Bao(xc ))axaa0 
27r 

+(Gab(X C ) + Bab(xe))axaaxb  + f d2z0(xc)R(2)]. 

The abelian isometry can then be made to hold locally by minimal gauge coupling 

ae 	ae + A. We can then make A pure gauge i.e. unphysical by adding a Lagrange 

multiplier OF, where F = aA — aA is the field strength of the abelian gauge field. 

We may now choose a gauge where 0 = 0 such that 

S[xa, A, 0] = —27 fd 2z [GooAA + (Goa + Boa)Aaxa  + (Gao + Bao)axaA + 

(Gab + Bab)aX a 	f d 2  ZOR(2) 	(A.2.22) 

In fact the 0 = 0 gauge corresponds to A = ae, A = ae so that both models are 

equivalent. Computing the equations of motion for A, A one finds that they are 

algebraic so that they maybe inserted back into the Lagrangian giving a new dual 

action: 

1 
= —27 fd2z [(q,,,(xa) + gi,„(xa))3yPayv —  

4 
f d 2 zgY(xa)R(2) ], 	(A.2.23) 

where fel = xa} with 

1Ga0G0b Ba0  Bob  BOa 
G'oa = Goo 	 Goo 

— Gab 
 

GOO ' 	 00 	 GOO 

Goa 	Bal  b = Bab G
a0Bob Ba0 Gob  

G'00 = 

Boa = 
Goo GOO 

(A.2.24) 

These are the so-called Buscher rules. The dilaton on its part gets a correction at one 
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loop ensuring the dual theory is conformally invariant provided the original theory is: 

, 	
— 2 

—1 
log Goo- 	 (A.2.25) 

A.3 S-duality and electromagnetic duality 

S-duality was first described in the context of N = 4 D = 4 Super Yang-Mills (SYM) 

in terms of the Montonen-Olive duality introduced in [219] for SO(3) Yang-Mills and 

embedded in SYM in [220]. Consider the Lagrangian: 

1

M  

	 0 	 1 
=  	3272  FP' * 	— -2-DPcDDA 

— 	
1 

32
7.r lm[y(Fiw + i * Fuv )(Fil, + i * Ft„)] — 1 

	
D IA) 

(A.3.1) 

where T = 2 + gam. This action can be shown to possess an SL(2, Z) symmetry ym  

under which T transforms according to a fractional linear transformation as: 

aT + b 
T -> 	 with a, b, c, d E Z and ad — be = 1. 

cy + d' 
(A.3.2) 

A general such SL(2, Z) transformation can be generated by a succession of only two 

operations: 

T ->T+1 and T -
1 	

(A.3.3) 
T 

The first one corresponds to a 27 shift in the vacuum angle 0 parameterizing the 

topological term and leaves the path integral invariant. The second one is most easily 

understood in absence of a topological term when 0 = 0 where it can be seen to 

correspond to a strong-weak coupling duality, the hallmark of S-duality. 

8The introduction of supersymmetry resolved some of the caveats raised by the authors of the 
first paper such as the control of quantum corrections. 
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— ReT I T I 2  
IMT —Rey 1 

1 M 	(A-1)T.A4A-1  with M = (A.3.5) 

This last transformation is sometimes referred to as electro-magnetic duality in 

analogy with Abelian Maxwell theory. The latter has long been known to be invari-

ant under exchange of electric and magnetic fields in the absence of sources. In the 

presence of electric charges however the symmetry only holds provided there are mag-

netic monopoles. In this case the Dirac-Schwinger-Zwanziger quantization condition 

relating electric charge qe  and magnetic charge qm  : 

qeqm  = 27rn, 	n E Z 	 (A.3.4) 

implies the strong-weak duality under exchange of magnetic and electric degrees of 

freedom. 

S-duality appears in an analogous fashion in string theory. In fact this is not a 

coincidence: the AdS-CFT correspondence links N = 4 SYM (which is conformal) 

to string theory on an AdS5  x S5 background and in particular relates their coupling 

constants9 . Consider for example type IIB for which S-duality is a symmetry. Defining 

T = Co ± ie-( I )  (where Co  is the RR 0-form sometimes referred to as the axion and 0 is 

the dilaton) the above fractional linear transformation 10  can be written as a matrix 

action by A E SL(2, Z) on a matrix M such that: 

where 

 

db  c 

a 

 

A= (A.3.6) 

  

91t may in fact be shown that given some assumptions Tym = TIIB• 
10In this context the T 	+ 1 shift arises from the periodicity of Co  in the space perpendicular 

to the 7-brane to which it couples magnetically. The other transformation is a strong-weak coupling 
duality in terms of g, . 
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One may then put the kinetic terms for Co  and cb in a manifestly SL(2, Z) invariant 

form: 

1 
—
2 

(al'oaI, + e20  icoa,c0 ) =  
2(Imr)2 

atiyati f = — 	( aP.A4att.A4-1 ) (A.3.7) 

All the other fields in the IIB action transform under the S-duality group 11  and in fact 

the whole action can be shown to be invariant. Note that in principle the symmetry 

is SL(2, R) in the classical supergravity approximation, which is however broken to 

the discrete subgroup with integer entries by quantum corrections. In addition to this 

global invariance there is also a SO(2) or U(1) local symmetry. The two moduli in 

fact parameterize a SL(2, 11)/U(1) coset or rather [SL(2,R)1U(1)]1SL(2,Z) taking 

into account identifications under S-duality. This construction is quite generic for 

supergravity theories with global symmetries and in fact plays an important role in 

describing U-dualities to which we turn in the next section (in fact we encountered 

a similar construction for the moduli of toroidal compactifications when discussing 

T-duality with the equivalent of M being M(E) defined in eq. (A.2.10)). 

But before that let us comment on the obvious resemblance between the above 

action of SL(2, Z) and the modular transformations of a two-torus T2  with complex 

structure T. This has prompted the conjecture [221] (inspired by work in [222]) that 

type IIB may be a T2  compactification of a 12D theory known as F-theory thus giving 

S-duality a geometric interpretation. 

slat least strictly speaking as some are singlets like the Einstein-frame metric and the four-form, 
while the RR two-form and the B-field form a doublet transforming linearly. 
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A.4 U-duality 

As pointed out before T- and S-duality embed into a larger U-duality group relating 

different backgrounds'. In particular compactifying a higher-dimensional supergrav-

ity on these backgrounds results in an lower-dimensional effective supergravity having 

the U-duality group as an internal symmetry. Consider the canonical form of the 

bosonic part of a D = 4 supergravity Lagrangian in the absence of a potential for the 

moduli and non-Abelian Yang-mills fields: 

1 	 1 
= \F-5 (-

1 
4

R — —
1

gi3 (0)3t Abi alW — —
4
mij (0)FP'I F J  — —

8
emvPaaij (0)Fi f ,,F;( ,)(A.4.1) Au 

with I = 1... k and where gii  is the metric on the space of scalar moduli Oi  resulting 

from the metric and fluxes of the internal manifold (including the dilaton), while 

F121,, are the U(1) abelian field strengths corresponding to gauge potentials Aµ and 

—N1  = aij ±imij  is a k x k complex symmetric matrix with ImN < 0 to guarantee 

a positive definite kinetic term for the gauge vectors. The symmetry group of the 

abelian field strengths and thus that of the whole Lagrangian must be contained [223] 

in Sp(2k, III). To illustrate this define: 

G 	2°FAO. = mij*F J al iF J  with * F I = —E v
13°- 

F po-I 
111, 	 14V 	 2 

(A.4.2) 

One may then succinctly write both the equations of motion and the Bianchi identity 

for the gauge fields as: 

(1,F= d F 	0 
	

(A.4.3) 
GI  

12by which now we mean not just geometry but also general field content and coupling constants 
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A priori this system of equations is invariant under an GL(2k, R) symmetry: 

F'' 	 ( A B 
.F —* = 	= AT = 

C D 

 

(A.4.4) 

 

where A, B, C, D are arbitrary non-singular k x k matrices. For these equations to 

result from a Lagrangian of the above form we must however require: 

2 a" - 	 'j 
aFanii 

= *F ± If Fij  (A.4.5) 

Requiring m', a' to be symmetric implies A e Sp(2k, R). 

Many of the known supergravities do in fact possess a global symmetry group G 

whose maximal compact subgroup H acts as a local symmetry [53]. Clearly from 

the above G C Sp(2k, R) for a theory with k U(1) gauge fields transforming linearly 

under G. The moduli on the other hand transform non-linearly and parameterize a 

coset G/H described by a G-valued matrix V which transforms as: 

V(x) 	h(x)V(x)A-1- 	hEll, AEG 	 (A.4.6) 

Typically H will be orthogonal or unitary so that one may define a coset representative 

as M = VTV or respectively M = VtV (which is the equivalent of the M we described 

in the context of S-duality or M(E) in that of T-duality) in terms of which the kinetic 

term will typically be proportional to tr 

This is the case for all supergravities with N > 4 in 4D and in particular maximal 

N = 8 supergravity which has 28 U(1) gauge fields for which G = E7(7)  C Sp(56, R) 

and H = SU(8) . For N = 4 supergravity with m vector multiplets k = 6 + m and 

G = SL(2, R) x 0(6, m) and H = U(1) x 0(6) x 0(m). The so-called "exceptional" 

N = 2 supergravity[224][225], another theory with 28 gauge bosons, has G = E7(_25) 

and H = E6 x U(1). 
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n En(n) Hn  diM(En(n)) dim(En(n)/1/n) 
2 SL(2, R) x R SO(2) 4 3 
3 SL(3, IR) x SL(2,IR) SO(3) x SO(2) 11 7 
4 SL(5, R) SO(5) 24 14 
5 Spin(5, 5) (Sp(2) x Sp(2))/Z2  45 25 
6 46) Sp(4)/Z2  78 42 
7 E7(7)  SU(8)/Z2  133 70 
8 E8(8) Spin(16)/Z2  248 128 

Table A.1: The U-duality groups En, their maximal compact subgroups lin, and the 
dimensions of En  and the cosets En' Hn. 

However as in the case of S-duality the actual symmetry group is broken by 

quantum to a discrete subgroup G(Z) = G n Sp(2k, Z) which can be interpreted as 

resulting from the Dirac-Schwinger-Zwanziger quantization condition on the electric 

and magnetic charges corresponding to the abelian gauge fields. 

In particular for N = 8 supergravity one has G(Z) = E7(7)  (7Z) which has a sub-

group 0(6, 6, Z) x SL(2,Z). Noting that the theory may be obtained as a six-torus 

T6  compactification of type IIB these subgroups are interpreted respectively as the 

T-duality group of the torus and the S-duality group of type IIB. This is part of a 

pattern for toroidal compactifications that extends to other dimensions: in general 

the effective theory obtained from compactifying type IIB to d dimensions where 

d = 11 — n 13  has a symmetry group G(Z) = En(n) (Z) where En(n) is the nth element 

in a formal class completing the set of maximal non-compact forms of the exceptional 

groups E6 , E7 , E8 . Further there is a corresponding coset structure En(n) /lin  where 

lin  is the maximal compact subgroup of En(n) (see table A.1. [194]) Note the dimen-

sionality of the coset for n = 7 corresponding to a T7  compactification of M-theory 

giving maximal N = 8 supergravity in four dimensions. This corresponds to the 70 

moduli arising from the internal metric gran , the internal part of the 11D SUGRA 

3-form aninp  and an internal 6-form arising from the 3-form through the non-trivial 

'or alternatively using T-duality and the fact that M-theory compactified on a circle is Type IIA, 
this also corresponds to 11D supergravity compactified on a n-torus Tn 
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equation of motion linked to the Chern-Simons term. Further the above table maybe 

completed by including IIB supergravity for n = 1 and it is conjectured that the 

theories corresponding to n = 9, 10, 11 have the symmetry groups E9, E10, Ell whose 

generators do not form a Lie but a Kac-Moody algebra. 

Note also that for n = 2 the interplay between T- and S-duality is trivial'. In 

fact the factor R is isomorphic to the T-duality group for compactification of Type 

II on a circle, namely SO(1,1, R). Recall that SO(2) is isomorphic to U(1) which is 

itself isomorphic to the circle S1. SO(1, 1, R) being the non-compact form of SO(2) it 

follows that it is isomorphic to the real line and thus R. The non-trivial embeddings 

of T- and S-duality for compactification on higher-dimensional tori may be traced to 

the requirement that En(n) (Z) must contain both SL(n, Z), the geometric modular 

group for Tn expected from the M-theory point of view, and SO(n — 1, n —1, Z), the 

T-duality group resulting from the type II compactifications. The U-duality groups 

are generated non-trivially from a combination of both these subgroups. This is most 

easily seen for n = 3 where E3(2)(Z) = SL(3, Z) x SL(2, Z) is the minimal group 

containing SL(3, Z) and SO(2, 2, Z) = SL(2, Z) x SL(2, Z). 

Finally let us remark that since in our original work we focus on seven-dimensional 

compactifications of 11D supergravity, we see the group structure for n = 7 emerge 

from a exceptional generalized geometry approach. 

14More so for n = 1 corresponding to uncompactified type II which has only S-duality. 
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Appendix B 

Parallel research interests: 

Neutrino oscillations and modified 

Lorentz Invariance 

This work forms part of much larger programme initiated by Blasone and Vitiello to 

give neutrino oscillations a description within Quantum field theory' (QFT). They 

consistently defined a Hilbert space for eigenstates of definite flavor (circumventing 

an earlier no-go theorem by Giunti, Kim et al.) which led to a series of surprises 

such as, amongst others, the existence of a new "flavor" vacuum (unitarily equivalent 

to the naive QFT "mass" vacuum), corrections to the usual Pontecorvo oscillation 

formula and non-trivial propagators. 

As far as the PhD is concerned, this parallel strand of research originated as an 

MSci project2  and eventually led to three articles: 

• M. Blasone, P. Pires Pacheco and H.W.C. Tseung, "Neutrino oscillations from 

relativistic flavor currents," Phys. Rev. D 67 (2003) 073011 [arXiv:hep-ph/0212402] 

1The original Pontecorvo formalism within non-relativistic Quantum Mechanics (QM) is in fact 
inconsistent since the required superposition of energy eigenstates with different masses is forbidden 
by the Bargmann QM superselection rule. 

2That is a 4th year undergraduate project. 
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In this article [226] flavor four-currents, defined by Blasone and Vitiello using 

a Noether-type formalism, are used to solve a longstanding phenomenological 

problem in the literature, namely the direct calculation of a space oscillation 

formula by defining a flux through the detector surface'. It was shown to repro-

duce the standard results in the literature in the highly-relativistic limit, while 

numerically a deviation was predicted in the low-energy regions, allowing the 

theory to be tested. 

• M. Blasone, J. Magueijo and P. Pires Pacheco, "Neutrino mixing and Lorentz 

invariance," Europhys. Lett. 70 (2005) 600 [arXiv:hep-ph/0307205] ; 

M. Blasone, J. Magueijo and P. Pires Pacheco, "Lorentz invariance for mixed 

neutrinos," Braz. J. Phys. 35 (2005) 447 [arXiv:hep-ph/0504141]. 

The central idea of these articles [227][228] is to derive a dispersion relation for 

the neutrino from the expectation value of a suitably defined Hamiltonian on 

the flavor states4. It was further shown that the covariance of the expression 

could only be guaranteed if one defined a Poincare algebra deformed by the 

generator of (neutrino) mixing transformations.5  Finally an experimental test 

was suggested to apply these results to the end-point of beta decay to settle 

the controversy in the literature as to which of the flavor or mass eigenstates 

constitute the fundamental physical objects. 

3This replaces a conceptually dubious shortcut through the more easily obtained time oscillation 
formula. The obtained formula describes neutrino oscillation in fully three-dimensional terms and 
allows naturally for the inclusion of a wave-packet (as necessary for a realistic description). 

41n fact this represents only a classical limit on which quantum fluctuations should in principle 
superimposed. 

5The dispersion relation was indeed shown to be expressible in the parametrization introduced 
by Magueijo et al. for non-linear representations of the Lorentz algebra. 
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