

Research on Emerging Medical radIonoIuclides from the X-sections (REMIx): The Accelerator-based Production of ^{47}Sc , ^{149}Tb , ^{152}Tb , ^{155}Tb and ^{161}Tb

G Pupillo^{1*}, U Anselmi-Tamburini^{2,3}, F Barbaro^{4,5}, M Bello^{1,6}, S Bortolussi³, A Boschi⁷, M Campostrini¹, L Canton⁴, M P Carante^{3,5}, E Cazzola⁸, S Cisternino^{1,9}, A Colombi^{3,5}, M Colucci¹⁰, L De Dominicis^{1,6}, L De Nardo^{4,6}, A Duatti⁷, A Fontana³, G Gorgoni⁸, F Groppi¹⁰, F Haddad^{11,12}, S Manenti¹⁰, P Martini¹³, L Meléndez-Alafort¹⁴, L Mou¹, E Nigron¹², V Rigato¹, G Sciacca^{1,9} and J Esposito¹

¹Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL), Viale dell'Università 2, 35020 Legnaro (PD), Italy

²Dipartimento di Chimica dell'Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy

³INFN Sezione di Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy

⁴INFN Sezione di Padova, Via F. Marzolo 8, 35131 Padova, Italy

⁵Dipartimento di Fisica dell'Università di Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy

⁶Dipartimento di Fisica e Astronomia dell'Università di Padova, Via F. Marzolo 8, 35131 Padova, Italy

⁷INFN Sezione di Ferrara and Dipartimento di Scienze chimiche, farmaceutiche ed agrarie dell'Università di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy

⁸IRCCS Sacro Cuore – Don Calabria, Negrar, Viale Luigi Rizzardi 4, 37024 Negrar di Valpolicella, Verona, Italy

⁹Dipartimento di Ingegneria Industriale dell'Università di Padova, Via Giovanni Gradenigo, 6a, 35131 Padova, Italy

¹⁰Dipartimento di Fisica dell'Università di Milano e INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

¹¹Laboratoire Subatech, IN2P3-CNRS, IMT Atlantique, Nantes Université, 4 rue Alfred Kastler, 44307 Nantes, France

¹²GIP Arronax, 1 rue Aronnax, 44817 Saint-Herblain, France

¹³Dipartimento di Scienze dell'Ambiente e della Prevenzione dell'Università di Ferrara, Palazzo Turchi di Bagno, C.so Ercole I D'Este 32, Ferrara, Italy

¹⁴Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy

*Corresponding author: gaia.pupillo@lnl.infn.it

Abstract. The REMIX project is focused on the cyclotron-based production of ^{47}Sc , ^{149}Tb , ^{152}Tb , ^{155}Tb and ^{161}Tb radionuclides, whose decay characteristics make them suitable for medical applications. This work will outline the main results achieved withing the REMIX collaboration, that is organized in the following Work Packages (WP): WP1. Target manufacturing (^{49}Ti , ^{50}Ti and $^{155}\text{Gd}_2\text{O}_3$) and characterization; WP2. Nuclear cross section (XS) measurements with ^{49}Ti and ^{50}Ti targets for ^{47}Sc production; WP3. Nuclear XS measurements with ^{nat}Dy , ^{159}Tb and ^{nat}Eu targets for ^{xx}Tb production; WP4. Nuclear XS modeling for ^{47}Sc and ^{155}Tb production; WP5. Dosimetric calculations for ^{47}Sc - and ^{xx}Tb -labelled radiopharmaceuticals; WP6. ^{155}Tb Thick Target Yield (TTY) measurements; WP7. Apparatus design and realization for irradiation tests with the LARAMED beamline. Since the LARAMED bunkers and ancillary laboratories are currently under completion at the INFN-LNL, the nuclear XS experiments are carried out in collaboration with the GIP ARRONAX facility (Saint-Herblain, France) and the Thick Target Yield (TTY) measurements are performed at the Sacro Cuore Don Calabria hospital (SCDCh, Negrar, Verona, Italy).

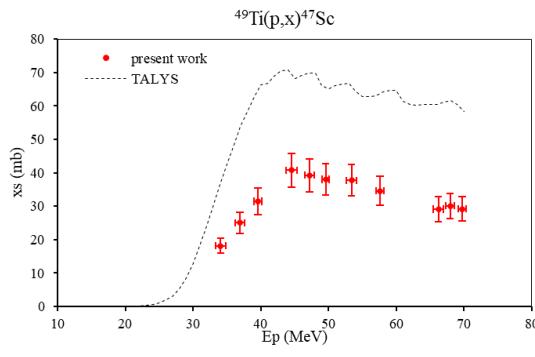
Content from this work may be used under the terms of the [Creative Commons Attribution 3.0 licence](#). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction

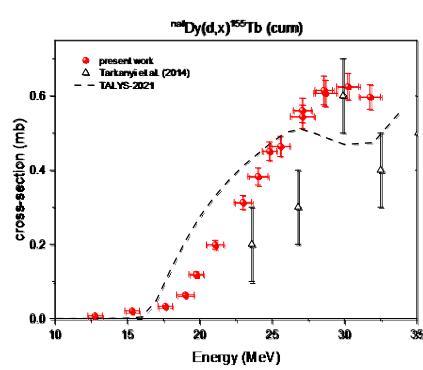
REMIX is a project funded by INFN-CSN5 in 2021-2023, with the goal of studying ^{47}Sc and medical Terbium isotopes (^{149}Tb , ^{152}Tb , ^{155}Tb and ^{161}Tb) production routes by using accelerators. The framework of REMIX is the LARAMED (LAboratory of RADionuclides for MEDicine) program [1, 2], that will exploit the 70 MeV proton cyclotron installed at the INFN-LNL for the SPES project [3]. Since the LARAMED bunkers and ancillary laboratories are currently under completion (WP7), nuclear cross section (XS) experiments of the REMIX project are carried out in collaboration with the GIP (Groupement d'Intérêt Public) ARRONAX (Accélérateur pour la Recherche en Radiochimie et Oncologie à Nantes Atlantique) facility (Nantes, France) [4] while the Thick Target Yield (TTY) measurements are performed in collaboration with the Sacro Cuore Don Calabria hospital (SCDCh, Negar, Verona, Italy). All the radionuclides of interest in the REMIX project, except for the therapeutic ^{161}Tb , can be used to obtain theranostic radiopharmaceuticals, since they emit radiation suitable for both therapeutic and diagnostic purposes, as shown in Table 1 [5].

Table 1. Main nuclear data of the radionuclides of interest in REMIX.

	Half-life	Imaging radiation	Therapeutic radiation
^{47}Sc	3.3492 d	γ : 159.381 keV, Int. 68.3%	Mean β^- : 162.0 keV, Int. 100%
^{149}Tb	4.1 h	Mean β^+ energy: 730 keV, Int. 7% γ : 164.98 keV, Int. 26.4%	Auger, IC elec.: $E_{\text{mean}} = 32$ keV, Int. 85% α : 3967 keV, Int. 16.7%
^{152}Tb	17.5 h	Mean β^+ energy: 1140 keV, Int. 20.3% γ : 344.28 keV, Int. 63.5%	Auger, IC elec.: $E_{\text{mean}} = 36$ keV, Int. 69%
^{155}Tb	5.32 d	Main γ energy: 105 keV, Int. 25%	Auger, IC elec.: $E_{\text{mean}} = 19$ keV, Int. 204%
^{161}Tb	6.89 d	γ : 74.57 keV, Int. 10.2%	Mean β^- : 154 keV, Int. 100% Auger, IC elec.: $E_{\text{mean}} = 19$ keV, Int. 227%


The study of the possible production routes of ^{47}Sc are under the spotlight of the scientific community since 2016, as underlined by the IAEA project focused on “Therapeutic Radiopharmaceuticals Labelled with New Emerging Radionuclides (^{67}Cu , ^{186}Re , ^{47}Sc)” (CRP no. F22053) [6, 7]. Studies to find the best ^{47}Sc production route have to consider not only the resulting ^{47}Sc yield but also the simultaneous minimization of the co-production of all possible contaminants: particular attention must be paid to the Sc-isotopes since they cannot be chemically separated from the produced ^{47}Sc and to their impact on the patient dose (WP5). As already reported, the proton-based production of ^{47}Sc was first studied in the PASTA project [8-11] and the goal of REMIX is to measure the proton-induced nuclear reactions by using isotopically enriched ^{49}Ti and ^{50}Ti targets (WP1, WP2). On the other hand, the medically relevant Tb-isotopes are obtaining increasing attention in the last years [12], but there are many challenges in their production. For this reason, within the REMIX project nuclear XS for Tb-production are investigated both experimentally (WP3) and theoretically (WP4), with a focus on the low energy $^{155}\text{Gd}(\text{p},\text{n})^{155}\text{Tb}$ route, investigated at the SCDCh (WP6).

2. Results from the Work Packages (WPs)


2.1. WP1. Target manufacturing (^{49}Ti , ^{50}Ti and $^{155}\text{Gd}_2\text{O}_3$) and characterization (resp. S. Cisternino). During 2021 and up to June 2022 the WP1 realized with the HIgh energy VIBrational Powder Plating (HIVIPP) method and characterized with Ion Beam Analysis (IBA) techniques the isotopically enriched ^{49}Ti and ^{50}Ti thin targets (ca. $550 \mu\text{g}/\text{cm}^2$) [13], to be irradiated at GIP ARRONAX cyclotron for nuclear XS measurements (WP2). From July 2022 to December 2023, the WP1 will study the manufacturing of Gd_2O_3 targets by Spark Plasma Sintering (SPS) to be irradiated at the SCDCh first by using ^{nat}Gd and then by using the isotopically enriched ^{155}Gd to produce ^{155}Tb (WP6). A dedicated capsule designed by WP7 will be used for this purpose.

2.2. WP2. Nuclear cross section (XS) measurements with ^{49}Ti and ^{50}Ti targets for ^{47}Sc production. (resp. L. Mou). The thin targets realized by WP1 are irradiated with the proton-beam available at GIP ARRONAX having a tunable energy 35-70 MeV. Considering the pandemic and up to mid-2022, no.6 irradiation runs have been performed: in total no.12 of ^{49}Ti and no.6 ^{50}Ti targets were irradiated. Figure 1 shows the preliminary results of the $^{49}\text{Ti}(\text{p},\text{x})^{47}\text{Sc}$ XS. Further WP2 experiments are scheduled for autumn 2022 and 2023.

WP3. Nuclear XS measurements with $^{\text{nat}}\text{Dy}$, ^{159}Tb and $^{\text{nat}}\text{Eu}$ targets for ^{xx}Tb production (resp. S. Manenti). These thin targets are available on the market and are irradiated at the GIP ARRONAX facility to find out the best production parameters for Tb-radionuclides, in collaboration with WP4. The γ -spectrometry measurements are carried out at the LASA lab. Up to mid-2022, no.4 irradiation runs have been performed on no.16 $^{\text{nat}}\text{Dy}$ targets. Figure 2 shows the preliminary results of the $^{\text{nat}}\text{Dy}(\text{d},\text{x})^{155}\text{Tb}$ XS.

Figure 1. $^{49}\text{Ti}(\text{p},\text{x})^{47}\text{Sc}$ cross sections

Figure 2. $^{\text{nat}}\text{Dy}(\text{d},\text{x})^{155}\text{Tb}$ cross sections

2.3. WP4. Nuclear XS modeling for ^{47}Sc and ^{155}Tb production (resp. L. Canton and A. Fontana). The nuclear codes TALYS [14], EMPIRE [15] and FLUKA [16] are used to estimate the production of ^{47}Sc [9], ^{155}Tb and ^{161}Tb . Experimental data from WP2 and WP3 will be compared with theoretical results, to find out the most promising production routes for these radionuclides. It is important to remind the need to properly estimate the co-production of contaminants, including the ones that are difficult to be measured, such as the fast-decaying ones and stable isotopes.

2.4. WP5. Dosimetric calculations for ^{47}Sc - and ^{xx}Tb -labelled radiopharmaceuticals (resp. L. Meléndez-Alafort and L. De Nardo). As already done for ^{47}Sc production using $^{\text{nat}}\text{V}$ targets [10], the OLINDA code is used to estimate the dose increase, due to the presence of contaminants in the labelling of specific radiopharmaceuticals. These results, carried out with both ^{47}Sc and Tb-isotopes, will indicate whether radionuclides obtained with the production route under investigation could be used in clinical practice.

2.5. WP6. ^{155}Tb Thick Target Yield (TTY) measurements (resp. P. Martini). During 2023, the enriched $^{155}\text{Gd}_2\text{O}_3$ target realized by WP1 will be irradiated at the 19 MeV cyclotron of the SCDCh. Dissolution of the target will be performed to take an aliquot of the solution, determine thick target yield and measure ^{155}Tb RadioNuclidic Purity (RNP) by γ -spectrometry, in collaboration with WP2.

2.6. WP7. Apparatus design and realization for irradiation tests with the LARAMED beamline (resp. G. Sciacca). The target-station and the beam-dump to be installed in the LARAMED beam-line devoted to XS measurements is designed and will be realized at the LNL. Additional mechanical devices, useful for the REMIX project (e.g. collimator for the GIP ARRONAX facility, capsule for the SCDCh target station, etc.), are designed and realized within WP7.

3. Conclusions: a mid-report of the REMIX project

REMIX project started in 2021, a year still affected by the pandemic. However, results have been achieved without delay, also thanks to the solid network of collaborations and the mutual support in the team. A more detailed description of REMIX major outcomes can be found in specific works.

Acknowledgments

Authors would like to thank the LARAMED project, the staff at the GIP ARRONAX and SCDCh for their constant support to these research activities and all the colleagues for the fruitful discussions. The cyclotron Arronax is supported by CNRS, Inserm, INCa, the Nantes Université, the Regional Council of Pays de la Loire, local authorities, the French government and the European Union. This work has been, in part, supported by a grant from the French National Agency for Research called "Investissements d'Avenir", Equipex Arronax-Plus noANR-11-EQPX-0004, Labex IRON noANR-11-LABX-18-01 and ISITE NExT no ANR-16-IDEX-007.

References

- [1] Esposito J et al., LARAMED: A Laboratory for Radioisotopes of Medical Interest 2019 *Molecules* 24, 20. DOI:10.3390/molecules24010020
- [2] Pupillo G et al., The Laramed Project at LNL: ^{67}Cu and ^{47}Sc Production for Theranostic Applications 2020 *AIP Conference Proceedings* 2295, 020001. DOI 10.1063/5.0032898
- [3] Marchi T et al., The SPES facility at Legnaro National Laboratories 2020 *J. Phys.: Conf. Ser.* 1643 012036
- [4] Haddad F et al., ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine 2008 *Eur J Nucl Med Mol Imaging* 35, 7:1377-87. DOI: 10.1007/s00259-008-0802-5
- [5] National Nuclear Data Center (NNDC), NuDat 3.0 webpage: <https://www.nndc.bnl.gov/nudat3/>
- [6] Jalilian AR et al., IAEA Activities on ^{67}Cu , ^{186}Re , ^{47}Sc Theranostic radionuclides and Radiopharmaceuticals 2021 *Current Radiopharmaceuticals* DOI:0.2174/1874471013999200928162322
- [7] IAEA TEC-DOC-1945 Therapeutic Radiopharmaceuticals Labelled with Copper-67, Rhenium-186 and Scandium-47 2021 available online: <https://www-pub.iaea.org/MTCD/publications/PDF/TE-1945web.pdf>
- [8] Pupillo G et al., Production of ^{47}Sc with natural vanadium targets: results of the PASTA project 2019 *J Radioanal Nucl Ch* 297, 3. DOI 10.1007/s10967-019-06844-8
- [9] Barbaro F et al., New results on proton-induced reactions on Vanadium for ^{47}Sc production and the impact of level densities on theoretical cross sections 2021 *PHYSICAL REVIEW C* 104, 044619. DOI: 10.1103/PhysRevC.104.044619
- [10] De Nardo L et al., Preliminary dosimetric analysis of DOTA-folate radiopharmaceutical radiolabelled with ^{47}Sc produced through $^{nat}\text{V}(\text{p},\text{x})^{47}\text{Sc}$ cyclotron irradiation 2021 *Physics in Medicine and Biology* DOI:10.1088/1361-6560/abc811
- [11] Skliarova H et al., HIVIPP deposition and characterization of isotopically enriched ^{48}Ti targets for nuclear cross-section measurements 2020 *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 981 164371
- [12] Müller C et al., Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application 2018 *Br J Radiol* 91: 20180074
- [13] Cisternino S et al., Upgrade of the HIVIPP Deposition Apparatus for Nuclear Physics Thin Targets Manufacturing 2022 *Instruments* 6, 23. DOI: 10.3390/instruments6030023
- [14] Goriely S, Hilaire S, Koning AJ, Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications 2008 *Astron. Astrophys.* 487, 767 DOI:10.1051/0004-6361:20078825
- [15] Herman M et al., EMPIRE: Nuclear Reaction Model Code System for Data Evaluation 2007 *Nuclear Data Sheets* 108, 2655–715 DOI:10.1016/j.nds.2007.11.003
- [16] Böhlen TT et al., The FLUKA code: Developments and challenges for high energy and medical applications 2014 *Nuclear Data Sheets* 120, 211–214 DOI:10.1016/j.nds.2014.07.049