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Abstract
In recent years, the systems comprising of bosonic atoms confined to optical lattices at ultra-cold
temperatures have demonstrated tremendous potential to unveil novel quantum mechanical
effects appearing in lattice boson models with various kinds of interactions. In this progress
report, we aim to provide an exposition to recent advancements in quantum simulations of such
systems, modeled by different ‘non-standard’ Bose–Hubbard models, focusing primarily on
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long-range systems with dipole–dipole or cavity-mediated interactions. Through a carefully
curated selection of topics, which includes the emergence of quantum criticality beyond Landau
paradigm, bond-order wave insulators, the role of interaction-induced tunneling, the influence of
transverse confinement on observed phases, or the effect of cavity-mediated all-to-all
interactions, we report both theoretical and experimental developments from the last few years.
Additionally, we discuss the real-time evolution of systems with long-range interactions, where
sufficiently strong interactions render the dynamics non-ergodic. And finally to cap our
discussions off, we survey recent experimental achievements in this rapidly evolving field,
underscoring its interdisciplinary significance and potential for groundbreaking discoveries.

Keywords: quantum simulators, extended Bose–Hubbard model,
ultracold atoms in optical lattices, dipolar interactions
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1. Introduction

Since its derivation in 1963 [1], the Hubbard model became
an iconic Hamiltonian in condensed matter physics [2, 3].
As originally conceived, this model mimics electrons in
a discrete geometry characterized by different two-body
interactions: pair- and density-induced-tunneling processes,
as well as inter-site and onsite density-density interaction.
Nevertheless, the peculiar screened shape of the Coulomb

potential led to a drastic simplification of this model where
the inter-particle interactions reduce to onsite processes
only. After almost three decades, this last point in addi-
tion to the lack, at that time, of concrete physical imple-
mentations influenced the derivation of the bosonic counter-
part of the Hubbard Hamiltonian: the Bose–Hubbard model
(BHM) [4] capturing the motion of bosonic particles inter-
acting through contact repulsion. Let us note, that the ori-
ginal derivation of the lattice boson model should be cred-
ited to Gersch and Knollman [5]—this work preceded that of
Hubbard.

In such a context, the end of twentieth century represents
the beginning of a new and exciting era where the advent
of atomic quantum simulators working at ultra-low temper-
atures [6] promised, among other things, to revolutionize the
way that Hubbard models were studied and conceived [7,
8]. This promise became reality in the early 2000 s, when a
new technology, the optical lattices, enabled the first exper-
imental realization of the BHM [9]. This revolutionary res-
ult allowed for the blossoming of new ideas [10, 11] to
experimentally realize non-standard BHMs [12], character-
ized by beyond onsite interacting terms, which can result in
the appearance of new states of matter. As shown by the
first realizations of BHMswith density-induced tunneling [13]
and density-density inter-site interaction [14], nowadays non-
standard BHMs [12] can be realized efficiently, paving the
way for a new adventure in the exploration of strongly cor-
related quantum matter.

Nine years have passed since the appearance of a previ-
ous review on extended Hubbard models [12]. The aim of
this report in progress is to provide an update on this rap-
idly developing field covering some of the advancements that
occurred in the last decade in the engineering and character-
ization of novel non-standard BHMs. The progress is stimu-
lated by the realization that non-standard BHMs yield thrill-
ing possibilities to demonstrate novel states of matter, often
with quite intriguing properties. More importantly, however,
is the enormous recent experimental progress with modifying
and manipulating optical lattices, harnessing and controlling
inter-atomic interactions, and, in particular, recent success
with experimental implementations of long-range interactions
either of dipolar nature or those mediated by resonant cavities.
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The progress in this areas over the last few years is quite
broad and spectacular. Instead of providing a comprehens-
ive review of various aspects of the field, we have chosen
to describe a few carefully chosen examples to illustrate the
recent progress. We also restrict our discussions to spinless
bosons, and would refer the reader to a recent review of exper-
iments with magnetic quantum gases for an overview regard-
ing fermions and spinful Hamiltonians [15]. To make this
work self contained we introduce the basics of the tight bind-
ing description in section 2. Section 3 discusses ground state
properties coming from different non-standard BHMs discuss-
ing e.g. topological quantum criticality, the role of interac-
tion induced tunnelings (IIT) or how the transverse confine-
mentmay profoundly affect the phase diagram of non-standard
BHMs. The next section 4 reviews phases for cavity-mediated
interactions, again of current experimental interest. We do not
restrict ourselves, however, to ground state physics, we discuss
possible nontrivial dynamics occurring at ‘infinite’ temperat-
ure i.e. for initial high-energy states in section 5. Importantly,
we do not forget about the real excitement in this field describ-
ing the current status of leading experiments (section 6). We
conclude by speculating on the possible future developments
as well as we mention topics that we had to omit in this, neces-
sarily, brief report.

2. Construction of the ‘lattice’ representation

The usual derivation of a Bose–Hubbard Hamiltonian starts
by considering a system of ultracold bosons trapped in
an optical lattice having wave-number k0 = 2π/λ0 with
λ0/2= a being the lattice constant. The single-particle
Hamiltonian describing the dynamics of the bosonic atoms is
given by

H0
sp =− h̄2

2m
∇2 +V0

(
cos2 (k0z)+β cos2 (k0x)

+ γ cos2 (k0y)
)
, (1)

where the first term corresponds to the kinetic energy of the
atoms and the second term denotes the potential seen by the
atoms due to the optical lattice with V0, βV0, γV0 being the
lattice depths in z, x, and y directions respectively. In this pro-
gress report, in particular, we focus on scenarios where atoms
can either move in the two-dimensional (2D) x-z plane or in
a one-dimensional (1D) line along the z-direction, by restrict-
ing atomic motion along the y direction by setting γ ≫ 1. For
the standard isotropic 2D lattice system we have β= 1, while
β ≫ 1 further restricts the motion along x direction and cor-
responds to the 1D case.

Unless stated otherwise, we predominantly keep our dis-
cussion concentrated on 1D optical lattice systems throughout
this progress report. The lattice depth V0 is typically meas-
ured in the units of the lattice recoil energy ER = h̄2k20/2m,
e.g. s= V0/ER. The resulting many-body Hamiltonian, in the
second-quantization language, that takes into account two-
body interactions, reads as [6]

Ĥ=

ˆ
d3r Ψ̂† (r) H0

sp Ψ̂(r)

+
1
2

ˆ
d3r
ˆ

d3r ′ Ψ̂† (r)Ψ̂† (r ′)Uint
(
r− r ′

)
Ψ̂
(
r ′
)
Ψ̂(r) ,

(2)

where the field operators Ψ̂(r) and Ψ̂†(r) obey the commut-

ation relation
[
Ψ̂(r),Ψ̂(r ′)†

]
= δ3 (r− r ′), while the specific

form of the two-body interaction, Uint(r− r ′), depends on the
experimental setup.

The field Ψ̂(r)/Ψ̂†(r) operators may be decom-
posed in terms of annihilation/creation bosonic operat-
ors b̂j/b̂

†
j , labeled by the lattice site j= ( jx, jy, jz) using

the lowest-band Wannier function Wj(r) localized at pos-
ition rj = (ajx− a/2,ajy− a/2,ajz− a/2)11 as Ψ̂(r) =∑

jWj(r)b̂j [6]. If the atoms are restricted to move in 2D
x-z plane by setting γ ≫ 1, thenWj(r)≈Wjx(x)Wjz(z)Φ

γ
0 (y−

a/2), where Wjx(x) and Wjz(z) are the lowest band Wannier
functions along x and z directions respectively, and Φγ

0 (y−
a/2) is the ground state wavefunction of a harmonic oscillator
peaked at y= a/2 with mω2/2= γV0. As a result, in such a
scenario, the atoms are localized at y= a/2 (or integer mul-
tiples of a/2) and move on a 2D lattice described by lattice
sites ( jx, jz)

12. Let us stress that we restrict the models studied
to that of the single lowest band, the approach valid for suffi-
ciently deep lattices and not too strong interactions. Extension
of the formalism to higher bands is described in details in the
former review [12].

In a 1D geometry, after evaluating the integrals involving
Wannier functions (for details see, e.g. [12, 16, 17]) and keep-
ing themost relevant terms, one obtains the general description
of the system in equation (2):

Ĥ=−t
L−1∑
j=1

(
b̂†j b̂j+1 +H.c.

)
+
U
2

L∑
j=1

n̂j (n̂j− 1)

+
1
2

L∑
j̸=k

V|j−k|n̂jn̂k

−T
L−1∑
j=1

[
b̂†j (n̂j+ n̂j+1) b̂j+1 +H.c.

]

+
P
2

L−1∑
j=1

(
b̂†j+1b̂

†
j+1b̂jb̂j+H.c.

)
. (3)

The first line gives the standard 1D Bose–Hubbard
Hamiltonian [4] with tunneling amplitude t and onsite inter-
action strength U. Note that we take into account the nearest
neighbor (NN) tunneling only. This approximation is valid
for sufficiently deep optical lattices, say s> 5 (compare [18]).

11 We note that with cosine-squared potential in equation (1), the lattice sites
are created at odd multiples of a/2.
12 Similarly, if one further restricts the atomic movement in 1D by β ≫ 1,
then Wj(r)≈Wjz (z)Φ

β
0 (x− a/2)Φγ

0 (y− a/2), and the atoms are localized
around (x,y) = (a/2,a/2) (or its integer multiples) and can hop along the z
direction.
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The second line gives inter-site interactions whose possible
shapes will be discussed in the next sections. The third line in
equation (3) denotes the IITs, while the last line describes pair
tunneling processes. We point out that in all the models and
setups covered in this review, these last terms result in P≈ 0.
Nevertheless, as described in [19], pair tunnelings might be of
fundamental relevance in order to investigate the physics of
p-orbital models. In this regard, we underline that proposals
to explore such systems in atomic quantum simulators have
been very recently derived [20, 21].

3. Ground state physics for the non-standard
Bose–Hubbard model

Let us start this section with a short preamble on phase trans-
itions in quantum many-body systems and the role of dimen-
sion. We focus our discussion on the standard BHM and fol-
low the handbook [22–24]. Standard BHM is characterized
by three parameters: NN tunneling strength t, on-site inter-
action strength U, and chemical potential µ, or alternatively
number of particles N. In three dimensions (3D) and at finite
temperatures, BHM exhibits three phases: high-temperature
phase without any order, (plain) superfluid phase (SF) at low
temperatures when tunneling dominates interactions, andMott
insulator (MI) phase in the opposite case with a fixed num-
ber of particles per site. Transition to the SF phase occurs via
the standard Landau-Ginsburg mechanism, i.e. spontaneous
breaking of the continuous U(1) symmetry, corresponding to
the invariance of the Hamiltonian concerning the global phase
change of the superfluid, which can be regarded as an order
parameter. In the SF phase in 3D, there is a true long-range
order, i.e. in SF phase two-point correlation function tend to a
non-zero constant at large distances. In the Mott phase, dens-
ity fluctuations have high energetic costs; thus averaged fluc-
tuations of the number of particles on site serves as a good
‘order parameter’, characterizing this insulating phase by its
vanishing value. The situation changes dramatically in 2D and
1D. In 2D at any non-zero temperature, there is only quasi-
long-range order with algebraic decay of correlation in the SF
due to the phase fluctuations. This situation is analogous to the
Kosterlitz-Thouless phase in the spin XY model. Long-range
order persists only at zero temperature. In 1D, phase fluctu-
ations destroy the long-range order even at zero temperature.

In this section, we consider the case of zero temperature,
i.e. we discuss ground-state physics only, in one spatial dimen-
sion. The standard BHM has two quantum phases: plain SF
phase and Mott insulator. What may happen if we go bey-
ond the standard model? Here we expect the appearance of
the novel SF and insulating phases. In addition to plain SF
phase, we expect a possibility of a staggered SF phase (with
superfluid phase changing from site to site, a kind of analog of
anti-ferromagnet, see [16, 25, 26]), or a supersolid (SS) phase
(i.e. an SF phase with modulations of the density of the SF
order parameter, see [27]). Similarly, in addition to the stand-
ard Mott insulators, we may encounter charge-density waves
(CDWs), i.e. Mott-like insulators with density modulations, or
even more exotic Haldane insulators. The latter are analogs of

Figure 1. The phase diagram of the ‘standard’ EBH model at unity
filling in the (U/t,V/t)-plane obtained by quantum Monte Carlo
(QMC) calculations. Reprinted figure with permission from [37].
Copyright 2014 by the American Physical Society.

the Haldane phase in the spin-1 anti-ferromagnets in 1D. A
non-local string-order parameter and degeneracy of the entan-
glement spectrum characterize this phase. Indeed, in 1D we
can encounter a whole variety of topological phases, protec-
ted by the discrete symmetry in the system, such as inversion,
parity, and so on.

Before considering the non-standard effects, let us then first
review the physics of the ‘standard’ extended Bose–Hubbard
(EBH) model, i.e. the Hamiltonian (3) in the regime where
T= P= 0, and V1 = V while V|j−k| = 0 for |j− k|> 1. Many
of the phasesmentioned above are present in this model.While
in higher dimensions such EBH models have been investig-
ated, both theoretically [28] and experimentally [14, 29], to
capture the presence of states of matter with broken transla-
tional symmetry, i.e. CDW and SS phases, along with stand-
ard MI and SF phases, its 1D version has provided an incom-
parable resource to investigate symmetry protected topolo-
gical (SPT) [30] phases. As first pointed out in [31] and sub-
sequently confirmed in a series of papers [32–38], for interme-
diate and comparable values of the onsite interaction strength
U and the inter-site interaction amplitude V the system sup-
ports a topological phase, called the Haldane insulator (HI),
at the unit density regime ρ= N/L= 1 (with N being the
total particle number and L being the number of lattice sites),
see section 3.2. The phase diagram of the EBH model, at
unit filling, is shown in figure 1 with HI separating MI (with
unit mean occupation of sites) and CDW (with |202020..⟩
or |020202..⟩ occupation patterns. Apart from the different
phases mentioned above, a region of phase separation (PS)
appears for smaller U and large V [25, 37].

Let us also mention shortly that interesting physics may
occur also for fillings larger than unity. For example, filling 3/2
allows one to find low-lying excitations as fractional domain
walls build on top of different CDWs such as |303030..⟩,
|030303..⟩, |212121..⟩ and |121212..⟩. By fractional domain
wall one understands a quasiparticle-quasihole excitation

4
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Table 1. Different phases and their acronyms appearing in ‘non-standard’ EBH systems with corresponding values of the observables in the
thermodynamic limit.

Phase Acronym
∆n

(equation (4))
∆c

(equation (4))
M(q)
(equation (6))

S(q)
(equation (7))

Oz
S

(equation (8))
Ox
S

(equation (8))

Mott insulator MI ̸= 0 ̸= 0 = 0 = 0 = 0 = 0
Superfluid SF = 0 = 0 ̸= 0 (q= 0) = 0 = 0 = 0
Charge-density wave CDW ̸= 0 ̸= 0 = 0 ̸= 0 (q ̸= 0) ̸= 0 = 0
Haldane insulator HI ̸= 0 ̸= 0 = 0 = 0 ̸= 0 ̸= 0
Supersolid SS = 0 = 0 ̸= 0 (q= 0) ̸= 0 (q ̸= 0) ̸= 0 = 0
Staggered superfluid SSF = 0 = 0 ̸= 0 (q ̸= 0) = 0 = 0 = 0
staggered supersolid SSS = 0 = 0 ̸= 0 (q ̸= 0) ̸= 0 (q ̸= 0) ̸= 0 = 0

occurring at the border between two different domain walls,
e.g. states of the form ..21211212..⟩ or ..21213030..⟩. These
excitations may be interpreted as non-Abelian Fibonacci any-
ons [39, 40]. While of limited importance in 1D, when com-
bined into a 2D network, braiding of Fibonacci anyon excit-
ations has potential applications for fault tolerant, universal,
topological quantum computation.

3.1. Order parameters

To distinguish different phases appearing in the EBH mod-
els, several observables have been considered in literature. For
example, to determine the spectral properties of the system one
can calculate the so-called bulk neutral gap∆En and the charge
gap ∆Ec defined as [36, 37]

∆En = E1 (N,L)−E0 (N,L) ,

∆Ec = E0 (N+ 1,L)+E0 (N− 1,L)− 2E0 (N,L) , (4)

where E0(N,L) and E1(N,L) are the ground-state and first
excited-state energies respectively for a system of length L
with particle number N. Finite values of the charge gap ∆c

implies the presence of an insulating state such as MI, CDW,
or HI, while on the other hand, for the gapless phases (e.g.
the standard SF phase) both gaps vanish in the thermodynamic
limit13.

Since in 1D the gapless phases are Luttinger liquids [32,
41, 42], the off-diagonal correlation

Cj (r) = ⟨b̂†j b̂k⟩ (5)

is expected to strictly decay algebraically with the distance
r= |j− k|. Moreover, any modulations in the off-diagonal cor-
relations can be revealed by the momentum distribution being
defined as the averaged Fourier transform of Cj(r) [43]:

M(q) =
1
L2

∑
j,r

e−i qrCj (r) . (6)

13 It should be noted that for the spontaneous symmetry broken (SSB) phases,
such as the CDW, the above definition of ∆En vanishes due to ground-state
degeneracy. In such cases, the neutral gap is defined after adding a symmetry
breaking perturbation to the Hamiltonian by hand so that it remains finite for
gapped SSB phases.

For a standard SF phase the maximum component of M(q) is
at q= 0, while for other gapless phases with modulations in
the off-diagonal correlations, like the staggered SF (SSF) dis-
cussed below,M(q) can attain the maximum value for specific
non-zero values of q.

Density modulated phases, i.e. regimes where the transla-
tional symmetry of the system is broken, can be distinguished
by the diagonal density–density correlations [32, 35] and their
Fourier transform:

S(q) =
1
L2

∑
j,k

ei q( j−k)⟨n̂jn̂k⟩, (7)

the so-called structure factor. As an example, it is straightfor-
ward to understand that for two-site translational symmetry
broken phases S(q) shows a peak at q= π. Such density-
modulated phases, where S(q) attains a maximum at q ̸= 0, can
be either a CDWor a SS phase depending onwhether the phase
is gapped or a superfluid.

The topological nature of the HI phase is uniquely cap-
tured by the long-range behavior of non-local string correl-
ation functions [31, 32, 36, 37]:

Oα
S (r) = ⟨Ŝαj e

iπ
∑j+r

k=j Ŝ
α
k Ŝαj+r⟩ α= x,z, (8)

where Ŝxj =
1√
2

(√
1− n̂j

2 b̂j+ b̂†j

√
1− n̂j

2

)
and Ŝzj = n̂j− ρ. In

the HI phase, both Oz
S and Ox

S remain finite as r→∞.
Phases and corresponding values of these observables are

summarized in table 1.

3.2. Topological quantum criticality

The observation that the string correlations Oα
S ,α= x,z show

long-range behaviors in the HI phase has made it possible, on
one side, to reveal the SPT nature of this regime and, on the
other, to establish a rigorous connection between this EBH
Hamiltonian and the spin-1 Heisenberg model [44], whose
topological nature has already been deeply understood [30].
It has become further clear that larger values of V renders
the HI phase unstable. In particular, a strong inter-site repul-
sion makes it possible for the breaking of the translational
symmetry and therefore for the appearance of a CDW SSB
phase characterized by the perfect alternation between pairs
of bosons and empty sites. Such specific symmetry breaking
implies that the string correlation functionOz

S(r) as well as the

5
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Figure 2. (a) The bulk ξb and (b) the edge ξe correlation lengths in
units of the lattice spacing a as a function of V/t for the EBH model
at unit filling with U/t= 6. The insets show the finite size
extrapolation of ξe and ξb at the MI-HI (squares) and HI-CDW
(pentagons) critical points where Lm is the maximum length to
extract ξe. (c) The neutral gap ∆En (orange) and the charge gap
∆Ec (blue) for L= 200. The gaps are computed by fixing the edge
occupation by means of large chemical potential. (d)–(f) The decay
of C(r) (green), Ox

S(r) (purple) and Oz
S(r) (magenta) relative to: (d)

HI at V/t= 3.65, (e) the HI-CDW critical point at V/t= 3.86, and
(f) CDW at V/t= 3.91. Reprinted figure with permission from [17].
Copyright 2022 by the American Physical Society.

two-point correlator C(r) = ⟨SzjSzj+r⟩ shows long-range beha-
vior, while the other string correlation function Ox

S(r) decays
exponentially with the distance r.

Recently, an important question has been put forward, won-
dering whether topological properties can persist at critical
points not captured by Landau’s theory [45] like the ones
involving a topological phase. In order to shed light on this
subject, a recent matrix-product state (MPS) [46–48] based
analysis in [17] has explored the behavior of both the bulk
ξb and the edge ξe correlation lengths, see figures 2(a) and
(b), and of both the bulk and charge gaps as reported in
figure 2(c). Specifically, it has been shown that ∆En, van-
ishes at the critical point between the HI and CDW phases
and, as a consequence, the bulk correlation length ξb ∼∆E−1

n
has been found to diverge, see figure 2(a). As, in general,
SPT phases are expected to occur in the presence of a finite
gap, the previous results were pointing in the direction that
the topological properties of the HI are lost at this critical
point. Nevertheless, the same analysis has revealed that the
charge gap, ∆Ec, presented in figure 2(c), remains finite at
this transition point. Moreover, it has been discovered that
the edge states of the HI phase are still present at the crit-
ical point as pointed out by the thermodynamic finite value

of the edge correlation length ξe
14 depicted in figure 2(b).

Finally, the long-range character of Oz
S(r) along with the

algebraic decay of Ox
S(r) and C(r) = ⟨SzjSzj+r⟩ reported in

figures 2(d)–(f) allowed one to identify this critical point as
new SPT regime called topological quantum critical point
(TQCP) – previously uniquely predicted to occur in a spin-
1 chain [49]. Furthermore, the same investigation in [17] has
also shown the possible appearance of TQCPs in a Hubbard
chain subject to a lattice dimerization along with inter-site
repulsion.

3.3. Frustrated extended Bose–Hubbard model

Effective geometrical frustration can be naturally generated
in the EBH model by specifically tuning the sign of the
hopping processes and by enlarging their range up to next-
nearest neighbor (NNN) sites. An example of a frustrated
EBH (FEBH)Hamiltonian fulfilling such constraints is the one
derived in [50]:

ĤFEBH =−
∑
j

[
t2
(
b̂†j b̂j+2 +H.c.

)
+ t1 (−1)j

(
b̂†j b̂j+1 +H.c.

)]
+
U
2

∑
j

n̂j
(
n̂j− 1

)
+V

∑
j

n̂jn̂j+1. (9)

Here, t2 refers to the tunneling processes connecting sites
spaced by two lattice sites, while the frustration is induced
by the staggered sign of t1. Notice that this is in strict ana-
logy with the effective frustration induced by an odd num-
ber of antiferromagnetic links in triangular Heisenberg models
[51], see [50, 52] for a rigorous mapping between bosonic
and spin-1/2 systems. Contrary to previous proposals [52–
58] to generate frustration in BHMs, the implementation of
equation (9) does not require either Floquet procedures to
tune the hopping sign or direct realizations of frustrated geo-
metries. Specifically, it can be achieved through optical lat-
tices at the anti-magic wavelength [59–61] where, depend-
ing on the atom polarizability, bosons can be effectively
trapped both in the maxima and the minima of the optical
lattice. As a result, the effective lattice spacing is reduced
by a factor two, i.e. λ/4, with respect to usual optical lat-
tices. This point allows to induce strong inter-site interactions
not only through dipolar couplings but, when possible [50],
also by tuning the scattering length to large values. The
phase diagram of the model in equation (9) is reported in
figure 3(a).

Here, as expected, for low t2 and V a normal superfluid
occurs. On the other hand, the results in figure 3 show that at
the specific density ρ= 1/2 the presence of frustration gives

14 ξe is extracted from a linear fit of log(|E+ −E−) versus L, where E±
are the energies of the two degenerate ground states |L⟩± |R⟩ with |L⟩(|R⟩)
denoting a state with the left (right) edge state occupied by a bosonic pair and
the right (left) edge state empty.
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Figure 3. Effect of the nearest-neighbor repulsion V in the FEBH
model described by the Hamiltonian (9). For all the panels, we fix
U/t1 = 6 and density ρ= 1/2. (a) Phase diagram of HFEBH in the
(V/t1, t2/t1) plane. (b) ∆B and δN as a function of V/t1 for
t2/t1 = 0.45. (c) The bulk correlation length ξb as a function of V/t1
for different MPS bond dimensions χ and fixed t2/t1 = 0.45. Inset:
scaling of the entanglement entropy S(ξb) as a function of ξb at the
critical point for bond dimensions χ = 400,500,600 showing the
extrapolated central charge c= 1. (d) Decay of correlation functions
OCDW(r) = ⟨(n̂j− ρ)(n̂j+r− ρ)⟩ and OBOW(r) = ⟨(B̂j+ B̂j+1)⟩
(B̂j+r+ B̂j+r+1)⟩ at the critical point for fixed t2/t1 = 0.45.
Reprinted figure with permission from [50]. Copyright 2024 by the
American Physical Society.

rise to a SSB bond-order-wave (BOW) insulating phase cap-
tured by the local order parameter15

∆B=
1
L

∑
j

⟨B̂j+ B̂j+1⟩, (10)

with B̂j = (b̂†j b̂j+1 + b̂†j+1b̂j) and where ∆B ̸= 0 implies the
breaking of the discrete site inversion symmetry. This latter
accounts for the appearance of a lattice dimerization where
the even links connecting two sites have different values than
odd links. By increasing V, the BOW is replaced by a CDW
phase where, as already pointed out, the discrete translational

15 Notice that the + in the definition of ∆B between the two operators is
required because of the specific gauge constraint in which we are working,
namely by the staggered t1.

symmetry is broken, which can be captured by the density
modulation

⟨δN⟩= 1
L

∑
j

(−1)j (⟨n̂j⟩− ρ) . (11)

The Landau-Wilson-Ginsburg paradigm of phase trans-
itions [45, 62] states that, as a long as two different SSB are
connected through a phase transition, this has to be discontinu-
ous where, therefore, the gap never vanishes. Nevertheless, the
analysis in [50] shown in figure 3 demonstrated instead this
phase transition to be continuous. This is confirmed by the
fact that the local order parameters relative to the BOW and
CDW clearly vanish continuously at the same transition point,
see figure 3(b). As a consequence, at this transition point the
gap is expected to vanish and therefore to support the diver-
ging correlation length reported in figure 3(c). In addition, in
figure 3(d), the presence of a critical transition point is fur-
ther confirmed by the algebraic decay of the correlators cap-
turing the BOW and CDW ordering. These results allow the
identification of this transition point as a deconfined quantum
critical point [63], whose existence has been first predicted in
two dimensional frustrated quantummagnets [64] and systems
with multi-spin interactions [65], and subsequently extended
to systems in both lower [66, 67] and higher dimensions [68,
69]. Their relevance lies in the fact that on one side they repres-
ent an example of transition points totally induced by quantum
fluctuations and therefore not captured by the Landau-Wilson-
Ginsburg paradigm and, on the other, they can be characterized
by fractional excitations and emergent gauge fields.

3.4. Interaction induced tunnelings

Let us now enrich the problem a bit by considering the role
of IITs in the Hamiltonian (3), i.e. we consider the situation
with non-zero T coefficient. The role of IIT terms for contact
interactions was discussed in detail in [12] here we shall con-
centrate more on physics of dipolar interactions for which IIT
may strongly affect the phase diagram.

In the case particles have strong dipole moments, Uint(r)
consists of both, the contact interaction term Uc(r) = gδ(3)(r)
with g= 4π h̄2as/m and as being the s-wave scattering length,
and the dipolar term

Ud (r) =
Cdd
4π

1− 3cos2 (θ)
r3

, (12)

where θ is the angle between the dipole and r [we assume the
dipoles to be polarized perpendicularly to the lattice, i.e. in y
direction, compare (1)], and Cdd is either µ0µ

2
m for particles

having a permanent magnetic dipole moment µm (µ0 being
the permeability of vacuum) or µ2

e/ε0 for particles having a
permanent electric dipole moment µe (ε0 being the vacuum
dielectric constant). We shall use a dimensionless quantity

d= mCdd/
(
2π3h̄2a

)
(13)
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Figure 4. (a) Interaction induced tunneling coefficient T (blue) and
pair-hopping coefficient P (green) as a function of t/U for
V/U= 0.5. (b) The corresponding values of the dimensionless
dipolar interaction strength d (blue) and of the s-wave scattering
length as in units of a (green) are shown. By changing both d and as
the ratio V/U is changed. The vertical black line in (a) indicates the
value of t/U for which kinetic and interaction induced tunnelings
mutually cancel in the mean-field consideration for uniform density
ρ= 2. Reprinted figure with permission from [16]. Copyright 2020
by the American Physical Society.

to characterize the dipole interaction strength. Both the scat-
tering length as and d determine the values of interaction
parameters in (3). In particular, for sufficiently deep lattices
the dipolar interactions may be, typically, parametrized as
V|j−k| = V/a3|j− k|3 in (3) (see, however, the discussion in the
Sections that follow).

For shallow enough lattices, as mentioned above, one may
consider even next-neighbor tunnelings, see e.g. [70, 71].
However, even with NN hopping, the ground state of the
Hamiltonian (3) is very rich, as it may be affected by several
parameters: t, U, V|i−j|, and T, which depend in turn on the
optical lattice geometry and depth as well as on the mutual
strengths of the dipolar and contact interactions. These have
to be determined with care for any experimental realization, as
the physics of the model strongly depends on them. We shall
just give a few examples here.

Figure 4(a) shows the relations between typical paramet-
ers appearing in the Hamiltonian for 1D lattices (assumed
depth s= 8) obtained when varying the dipolar strength d
and the scattering length as as shown in figure 4(b). In effect
V/U= 0.5 is kept constant here. Note that the IIT coefficient
T is negative and is of the same order as the kinetic tunneling
t. This immediately suggests a possible negative interference
between both mechanisms of particle motion. Writing the tun-
neling terms together as [72]:

T̂ eff =
∑
j

b̂†j b̂j+1 [−t−T(n̂j+ n̂j+1 − 1)]+H.c. (14)

one observes that for density ρ the mean-field value of this
term vanishes for −t−T(2ρ− 1) = 0. For ρ= 2 this leads to
the condition 3T=−t , visualized in figure 4(a) by the dotted
line. The IIT will strongly modify the phase diagram as dis-
cussed below. On the other hand the pair-tunneling coefficient
P is 2 orders of magnitude smaller and thus can be neglected.

Let us first consider the higher density ρ= 2. The char-
acteristics of the phases found by MPS-based density-matrix
renormalization group (DMRG) [73, 74] is determined by

Figure 5. (Top panel) Rich phase diagram of dipolar gas in 1D
optical lattice for density ρ= 2 as visualized by the ground state
entanglement entropy. The MI and SF phases are accompanied by
period-2 charge-density wave (CDW2) and period-2 staggered
supersolid (SSS2) phases. Staggered superfluid (SSF) appears close
to V/U= 0.5. (Bottom panel) The correlation function in the SSF
phase in the middle of the chain reveals characteristic oscillations
with a power-law decaying envelope. Reprinted figure with
permission from [16]. Copyright 2020 by the American Physical
Society.

measuring the site occupation number variance, directly pro-
portional to the compressibility [75–77], as well as the
momentum distribution of the off-diagonal correlations M(q)
defined in equation (6) and the structure factor S(q) defined in
equation (7).

The standard superfluid reveals a peak of M(q) at q= 0,
the staggered superfluid (SSF) at q= π [78]. On the other
hand, a maximum of S(q) at q= π reveals period-2 density
correlations. For an incompressible gapped phase, this will be
a period-2 charge-density wave (CDW2) as mentioned earlier,
while the compressible gapless phase will be a period-2 super-
solid (SS2). When the supersolid phase is accompanied by a
staggering in the off-diagonal correlations, i.e. displays a peak
of M(q) at q= π, it will be a period-2 staggered supersolid
(SSS2). All these phases are shown in figure 5(a) with the color
coding representing the entanglement entropy of the ground
state—that is why no border between MI and CDW2 appears
in this plot. Figure 5(b) presents a correlation function of the
SSF phase with its staggered shape. Let us note here also that
the SSF may also be observed in 2D systems as revealed by
cluster mean field study [26].

Consider now the often studied unit filling case, mentioned
already above, and let us consider the differences in phase dia-
grams in the presence and in the absence of IIT as shown in
figure 6 [16] obtained via infinite DMRG (iDMRG) [79]. For
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Figure 6. The phase diagram of EBH at unit filling in the
(U/t,V/t)-plane obtained with iDMRG. Squares indicate
boundaries identified using iDMRG and correspond to the values
where the string OS(ρ) (black) and/or parity OP (red) order
parameters vanish. The left panel shows the von-Neumann entropy
for T ̸= 0, whereas the right panel is for T = 0. Reprinted figure with
permission from [25]. Copyright 2020 by the American Physical
Society.

this comparison, the interactions has been restricted to NNs
only as in the earlier studies [35–37]. The colors in the figure
indicate the value of the von-Neumann entropy of the ground
state calculated by splitting the (infinite in iDMRG numerical
treatment) 1D chain in two parts. Observe that in the presence
of IIT, insulating phases move towards lower interaction val-
ues as IIT partially cancels the kinetic tunneling. The borders
of the phases in the plot are calculated using order parameters
mentioned in table 1. This also helps to identify the topological
Haldane insulator where the string correlations Oα

S , α= x,z,
remain finite in the thermodynamic limit.

3.5. The role of the transverse confinement

Above we have assumed a standard 1/r3 decay of the inter-
site interactions. This decay may be significantly altered by
transverse lattice confinement [80]. For a tight transverse con-
finement the decay may be faster leading to an effective decay
of 1/rβeff with βeff > 3 affecting the location of transition
between different phases in the phase diagram. The problem
has been revisited recently [81] for a weak transverse confine-
ment after realizing that such a geometry also strongly affects
the dynamics for interacting dipoles (see below and [82]).

The inter-site interaction between dipoles located at site 0
and j is

Vj =
ˆ

d3r
ˆ

d3r ′ Ud (r− r ′) |W(r) |2|W(r− jaẑ) |2, (15)

with a being the lattice constant and the interaction Ud(r)
given by equation (12).

As discussed in detail in [80], the inter-site interaction
dependence on the distance may be safely estimated (for suffi-
ciently deep optical lattice) using a Gaussian approximation16

16 Note that such an approach is not justified for the calculation of tunneling
amplitudes.

for the Wannier functions:

W(r) =
e−z2/2ℓ√√

πℓ

e−(x
2+y2)/2ℓ⊥
√
πℓ⊥

, (16)

with ℓ⊥ =
√
h̄/mω⊥ being the transverse harmonic oscillator

length and ℓ= a/(π s1/4), where s is the depth of optical lattice
potential in the units of the recoil energy, ER = π2 h̄2

2ma2 . With this
notation and for ℓ⊥ > ℓ, one arrives at [70, 82–84]

Vj
ER

=
dB3/2

4

(
3cos2 θ− 1

)
f
(√

Bj
)
, (17)

where d is defined in (13), χ = h̄ω⊥/ER, while

B=
π2

2
χ

1− χ
2
√
s

, (18)

and

f(ξ) = 2ξ −
√
2π
(
1+ ξ2

)
eξ

2/2erfc
(
ξ/
√
2
)
. (19)

We note that Vj = VGj(B) where V= V1 and Gj(B) =
f(
√
Bj)/f(

√
B) depends on the confinement geometry only.

Thus fixing the ratio of NNN to NN coupling V2/V= 1/2βeff

determines the potential shape. In particular, the ground state
properties are determined by V/t and βeff. For tight transversal
binding, ℓ⊥ << ℓ, βeff may slightly exceed the standard value
of 3 corresponding to ℓ⊥ = ℓ [80]. Importantly, for a shallow
perpendicular trap βeff may reach much smaller values [82],
strongly affecting the ground state properties [81].

Assumption of a shallow perpendicular trap brings, how-
ever, an additional problem—a possible necessity of taking
into account the higher transverse modes of the shallow trap
since the energy separation to the first excited band, h̄ω⊥
becomes small. A sufficient condition for that is to assure that
U,V≪ h̄ω⊥, and then the population of the excited band is
energetically prohibited. Since interesting parameter values
(see below) are of the order of V/t,U/t∼ 5, small values of
interaction parameters require low tunneling amplitudes, i.e.
deep 1D optical lattices. The detailed estimation of parameters
for, e.g. Dy [85] suggests that a single ground state transverse
mode may be assumed at s≈ 10 for βeff = 2, while βeff = 1
requires s= 20.

This scenario has been discussed in detail for hard-core
bosons in [81] both for repulsive and attractive interactions. In
the former case, significant shifts of the boundaries of differ-
ent insulating devil’s staircase phases for fractional filling was
found—see figure 7. The plot utilizes particle hole symmetry
of the diagram when represented with the rescaled chem-
ical potential µ̃= µ/[2

∑
jGj(B)]. For attractive interactions,

the standard model predicts the appearance of self-bound lat-
tice droplets [86–88]. Smaller βeff < 3 interactions result in
a reduction of the critical dipole interaction strength for the
formation of self-bound clusters, and for an enhancement of
the region of liquefied lattice droplets [81].

A very interesting case is the celebrated unit density filling
in 1D, studied in detail earlier [31, 33–36, 38], as mentioned
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Figure 7. Phase diagram in the (t/V, µ̃/V) plane for the standard
βeff = 3 decay (blue lobes) and the modified dipolar interaction with
βeff = 2 (red lobes). The inset reveals the details of the top left
corner of the main plot. Reprinted figure with permission from [81].
Copyright 2023 by the American Physical Society.

Figure 8. The phase diagram of EBH at unit filling in the
(U/t,V/t)-plane obtained with iDMRG for different lattice
geometry: (a) Standard dipolar tail for βeff = 3. Observe the
existence of topologically trivial insulator (TTI) absent for the
nearest neighbor model; (b) The phases for a shallow perpendicular
binding with βeff = 1. In addition to TTI a new topological insulator
(TI) phase appears. See text for discussion and [89] for more details.
Reprinted figure with permission from [89]. Copyright 2024 by the
American Physical Society.

above. The recently obtained [89] phase diagrams are presen-
ted in figure 8 for sufficiently deep lattice (s= 13) such that
the density-dependent tunnelings do not play any role. In order
to identify different density wave insulators (not only CDW2

with period two, but also period-3 CDW3 and period-4 CDW4)
the iDMRG with 12-sites unit cell was used (assuring conver-
gence with respect to on-site Hilbert space dimension). The
dashed yellow lines in the diagrams show that the transition
points are not determined accurately in the approach assumed,
mainly in the transition between superfluid and Haldane insu-
lator. For small U and large V a region with phase sep-
aration is predicted for the EBH model [36, 37, 90], but
let us note that this parameter region may be hard to reach
experimentally.

We shall concentrate here, however, on the role of the long-
range interaction tail, typically neglected in the standard EBH
model. The left panel of figure 8 depicts the phase diagram
for the interactions not limited to NNs as before, but when

the full dipolar tail is taken into account (in numerics, con-
verged results are obtained for interaction ranges bigger than
10 sites). While the occurrence of a period-3 CDW3—denoted
as a brown patch in the right down corner of figure 8(a) – is
to be expected for sufficiently large V, a new phase denoted
as TTI (topologically trivial insulator) [89] also appears in
figure 8(a). We shall discuss the properties of this phase in
detail below. Upon increasing the role of the dipolar tail by
making the trap shallow in the directions perpendicular to the
one of the lattice, the phase diagram becomes even more inter-
esting as visualized in figure 8(b) for βeff = 1. In addition to
different charge density waves and the TTI phase a novel topo-
logical insulator is found (denoted as TI), sandwiched between
the TTI and CDW4 phase. The gray triangle in figure 8(b) is
excluded from the calculations. It may contain higher order
density waves as well as phase separation as for the standard
EBH model [36, 37, 90].

Let us now discuss the properties of the novel phases found:
TTI and TI. Their existence is surprising, as it shows that the
long tail of the interactions breaks the common understand-
ing of the equivalence between dipolar models and the unit
spin physics (see section 3.2). There the only expected gapped
phases are either the disordered one (i.e. MI), SSB phases
(charge density waves), or the topological HI. The insulat-
ing character of the TTI phase is indicated by the correlator
Cj(r) (see equation (5)) exponentially decaying with distance.
The entanglement spectrum is not fully degenerate in TTI,
ruling out its topological character. Also, contrary to CDW2

and CDW3, the phases that show a pronounced peak in S(k) at
k= π/2 and k= 2π/3, respectively, S(k) does not indicate any
spacial periodicity in the TTI phase. TTI is, however, not fully
disordered as the MI phase is. Instead, it is characterized by
an intricate correlation between occupations of sites, which is
not revealed by the standard string correlator (8). The relevant
combinations are | . . .030030030 . . .⟩ as in CDW3 with 120 or
021 replacing 030 in quite an intricate fashion. For example,
in the vicinity of a single 030 string containing a triplon, there
is a statistically high probability of having another similar 030
string glued to it (for a detailed discussion, and, in particular,
the definition of proper string correlators defining this phase
see [89]). The long-range periodic positional correlations are
lost in the TTI phase as revealed by lack of pronounced peaks
in S(k)).

Let us now consider the TI phase. Similarly to TTI it is
insulating with exponentially decaying correlation Cj(r). S(k)
does not reveal any significant positional ordering, in particu-
lar the k= π/2 peak, characterizing CDW4, vanishes at the
transition between CDW4 and TI (this property is used to
determine the border between these phases). The stand-
ard string order vanishes in this phase. This is due to the
fact that both triplons and 4-bosons occupancies are abund-
ant in that phase. Importantly, the TI phase satisfies the
necessary condition for being a topological phase with a
doubly degenerate entanglement spectrum. While [89] does
not indicate which symmetries protect the possible topo-
logy, a subsequent study [85] indicates that the TI is protec-
ted by the same lattice inversion symmetry as the HI phase
is [91].
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Amore detailed analysis reveals [89] that HI-TTI and TTI-
TI transitions belong to the Luttinger liquid universality class
(as the MI-HI transition [32, 91]) with the central charge c= 1
as obtained from the scaling of the entanglement entropy at
the criticality. Similar analysis shows that the HI-CDW2 trans-
ition belongs to the Ising universality class with c= 1/2 in
agreement with the finding for extended Hubbard model with
nearest neighbor interactions [32, 91]. However, TTI-CDW3

belongs to 3-state Potts universality class of with c= 4/5
while TI-CDW4 yields again c= 1 which is attributed to 4-
state Potts universality class [92].

3.6. Induced density dependent tunnelings

Up till now we considered EBH models with inter-site terms
appearing due to interactions. On the other hand, one may
design models where the IIT’s are induced in the system
externally, e.g. due to inter-species interactions or due to the
so-called Floquet engineering [11, 93]. We provide here a few
examples of such situations, realizing that the list is far from
being complete.

One proposition considers the mixture of two types of
particles with each type being confined to its own lattice with
the spacing between both lattices being λ/4. Due to interac-
tions between ‘a’ and ‘b’ particles, the tunneling of say ‘a’
particles depends on the presence or absence of the ‘b’ spe-
cies. Such situations were considered e.g. in [94–98], result-
ing in novel physics. Interestingly, in the seminal paper [6],
where such a configuration was also considered, the IIT
terms were omitted. In particular , [94] suggested the exist-
ence of a bosonic analog of Peierls transition with spontan-
eously broken translational symmetry of the underlying lat-
tice. This leads to an analogous to the Su-Schrieffer-Heeger
(SSH) model, a topological insulator in the presence of inter-
actions. The phase diagram of the model shows different types
of bond order waves (BOWs) and topological solitons [94–97].
Similarly, [98] finds unusual superfluid phases with cluster-
ing properties. Those are probably closely linked to staggered
superfluid phases discussed above for dipolar systems. Let us
note, that the creation of density-dependent tunnelings due to
interspecies interactions shows a great similarity with the link
model for lattice gauge theory implementations [99]. We do
not want to review this exciting and rapidly developing field
further and refer the reader to recent reviews [100, 101].

A second possibility arises due to Floquet engineering.
Consider a standard Bose–Hubbard model, given by the first
line of (3), with periodically driven onsite interactions U(t) =
U0 +U1 cos(ωt) [102, 103]. The corresponding effective time-
independent Hamiltonian obtained after averaging the rapidly
oscillating terms contains the modified tunneling term, leading
to:

Heff =−J
∑
<ij>

b̂†i J0

(
U1

h̄ω
(n̂i − n̂j)

)
b̂i +

U0

2

∑
i

n̂i (n̂i− 1) .

(20)

Note that the density-dependent tunnelings remain as the
only possible tunneling mechanism in this scenario. The

argument of the Bessel function contains the difference
between occupations on the nearby sites. In effect one may
expect a strong modification of the phase diagram with cre-
ation of pair superfluidity. An extension of this model to two
types of particles sitting in nearby sites allows for the cre-
ation of density-dependent synthetic gauge fields [104]. The
important drawback of Floquet engineering is related to a pos-
sible heating due to time-dependent driving of a given sys-
tem.While high frequency driving remains relatively safe [11],
situation is much more complicated in general [105–109] due
to possible instabilities [110]. The experimental demonstration
of Floquet engineering based on (20) is described below in the
experimental section.

3.7. Two dimensional extended Bose–Hubbard models

Extending the analysis to higher dimensional lattices is of par-
ticular interest also from the experimental point of view. Here,
various novel phases have been predicted, in particular for
standard square lattices, using quantum Monte Carlo (QMC)
techniques, as reviewed in [12]. Since then, a further signific-
ant progress has been made with the help of EBH models for
interacting dipoles with different orientation with respect to
the plane of the optical lattice. On one side, Gutzwiller mean
field cluster calculations have been developed [26, 111], on the
other a further spectacular progress has been made with QMC
techniques [112–115]. In particular [115] brings a most recent
analysis for dipoles tilted with respect to the lattice plane,
taking into account a possible shaping of lattice sites in the
transverse direction. The study is done for different fractional
fillings at rather strong on-site interactionsU/t= 20. A multi-
tude of different phases were found that depend on the direc-
tion of the dipoles, in particular various types of supersolids
(e.g. checkerboard, stripe) and solids (checkerboard, stripe,
diagonal stripe).

Interestingly, also a cluster supersolid is found. It is char-
acterized by the formation of horizontal clusters of particles.
These clusters further order along a direction at an angle
with the horizontal. This arrangement results from the com-
petition between attractive interaction along the x direction
which favors a stripe solid structure, and also attractive inter-
action along the positive diagonal. Another new phase found
is dubbed a grain-boundary superfluid, as in it regions with
solid order are separated by extended defects-grain bound-
aries, supporting superfluidity. In another study of a similar
system [116] a cluster mean field approach is combined with
infinite projected entangled-pair tensor network techniques to
improve on the phase boundaries.

Let us mention briefly that other lattice geometries are also
considered for dipolar interactions [117, 118].

4. Ground-state physics with cavity-mediated
interactions

Up to this point, our discussion has predominantly revolved
around scenarios in which the interaction between the bosons
and the trapping laser light is minimal. In essence, this implies
that the likelihood of a photon being scattered by a particle
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Figure 9. (a) Schematic depiction of cavity quantum
electrodynamics setup to simulate extended Bose–Hubbard model
with long-range interactions in 2D geometry. The ultracold bosons
(red spheres) are tightly confined by an optical lattice with lattice
constant λ0/2 and dispersively interacting with a standing-wave
mode of the cavity having wavelength λ. The setup is driven by a
transverse pump laser beams with Rabi frequency Ω. Photon
scattering off the atoms result into cavity-mediated long-range
interactions among the bosons. (b) The phase diagram of the
extended Bose–Hubbard model with cavity-mediated infinite-range
interactions experimentally determined by the Quantum Optics
Group at ETH Zurich. The interplay between the global and
short-range interactions gives rise to superradiant CDW and SS
phases, alongside the standard SF and MI phases. (a) Reprinted
figure with permission from [123]. Copyright 2013 by the American
Physical Society. (b) Reproduced from [139]. With permission from
Springer Nature.

is so low that the occurrence of a subsequent scattering event
involving the same photon is exceedingly rare. As a res-
ult, laser light forms a static ‘classical’ optical lattice for
the ultracold bosons. However, the dynamics change not-
ably when the optical lattice setup is placed inside a high-
finesse optical cavity that is pumped by an external transverse
laser field (see figure 9(a) for the schematic of the setup in
2D geometry) [119–137]. In this situation, photons from the
pump field get scattered off the atoms and populate the cavity
mode(s), and thereby lead to the emergence of effective light-
mediated long-range interactions between the bosons due to
cavity backaction [123, 128, 138, 139].

Such cavity quantum electrodynamics (cQED) setups
with bosonic ultracold atoms, recently realized experiment-
ally [138–142], have become extremely suitable for real-
izing quantum simulations of effective many-body long-
range Hamiltonians. This has allowed exploration of non-
conventional superradiant [143, 144] quantum many-body
phases beyond the typical superfluid and Mott-insulator
phases in controllable experimental conditions (see figure 9(b)
for a recent experimental phase diagram). In these superradi-
ant phases, the cavity modes develop finite coherences, which
in turn influence the dynamics of atoms in the optical lattice. It
is to be noted that the cQED with ultracold atoms is a rapidly
evolving area of research, accompanied by an extensive body
of literature. For detailed and comprehensive discussions on
this subject, we refer to the recent reviews [145–147] and ref-
erences therein. Moreover, in this progress report, we focus
specifically on single cavity-mode setups. For discussions on
multi-mode cavity systems, which have been experimentally

realized in studies such as [148–150], we direct readers to the
aforementioned reviews.

The typical setup for cQED supporting a single cavity-
mode is depicted in figure 9(a) where atoms can move in a
2D layer. Here, a static optical lattice with lattice constant
λ0/2 (wavenumber k0 = 2π/λ0) is placed inside a high-finesse
cavity that can support standing-wave modes of periodicity
λc (wavenumber kc = 2π/λc). The setup is driven using a
standing-wave pump laser with Rabi frequency Ω, oriented
along the x-axis. For a large detuning ∆a = ωL−ωa between
the pump frequency ωL and atomic transition frequency ωa,
excited atomic states can be adiabatically eliminated and the
single-particle Hamiltonian in the reference frame rotating at
frequency ωL is given by [123, 138, 139]

Hsp =H0
sp+Vc cos

2 (kcx+ϕx)

+ h̄
(
∆c−U0 cos

2 (kcz+ϕz)
)
â†â

+ h̄η
(
â+ â†

)
cos(kcx+ϕx)cos(kcz+ϕz) , (21)

where H0
sp is defined in equation (1). As before, for the stand-

ard isotropic 2D lattice system, we have β= 1, while β ≫ 1
corresponds to the 1D case. The second term in the equation
above is due to the standing-wave potential of depth Vc =
h̄Ω2/∆a along the x direction created by the pump laser. In the
third term operators â and â† denote the photon annihilation
and creation operators, ∆c = ωL−ωc is the detuning between
the pump frequencyωL and the cavity-mode frequencyωc, and
U0 = g20/∆a is the dynamical Stark shift of a single maximally
coupled atomwith g0 being the atom-cavity coupling strength.
The last term represents a dynamical square-lattice potential
describing the coherent pumping of the cavity field via photon
scattering by the atoms. Here, η = g0Ω/∆a is the amplitude
of scattering of a laser photon into the cavity mode by a single
atom. The phases ϕx,z denote the phase differences between
the cavity mode and the optical lattice along x and z directions
respectively.

After performing second quantization and expanding the
field operators Ψ̂(r)/Ψ̂†(r) in the basis of lowest-band
Wannier functions (see section 2) in the lowest-order approx-
imation, we arrive at the boson-cavity Hamiltonian [120]:

Ĥcavity =−
∑
j,δ̂

tj+δ̂

(
b̂†j b̂j+δ̂

+ h.c.
)
+
U
2

∑
j

n̂j
(
n̂j − 1

)
+
∑
j

(
h̄VcM

x
j −µ

)
n̂j + h̄U0â

†â
∑
j

Mz
j n̂j

+ h̄η
(
â+ â†

)∑
j

Zjn̂j +∑
δ̂

Yj+δ̂

(
b̂†j b̂j+δ̂

+ h.c.
)

− h̄∆câ
†â. (22)

Here, tj+δ̂ =
´
dr Wj(r)

[
H0
sp+V1 cos2(kcx+ϕx)

]
Wj+δ̂(r)

describes the NN tunneling amplitude and U= g
´
dr W4

j (r)
is the onsite Hubbard interaction with g being the contact
interaction strength. The other coefficients are given by the
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Wannier function overlap integrals as

Mµ
j =

ˆ
dr W2

j (r)cos
2 (kcµ+ϕµ) ;µ= x,z,

Zj =
ˆ

dr W2
j (r)cos(kcx+ϕx)cos(kcz+ϕz) ,

Yj+δ̂ =

ˆ
dr Wj (r)cos(kcx+ϕx)cos(kcz+ϕz)Wj+δ̂ (r) .

(23)

Here, the terms beyond the NN ones are neglected due to the
strong localization of the Wannier functions. Due to the same
reason, Yj+δ̂ ≪ Zj, except for very fine-tuned scenarios (see
below) [135] and hence the Yj+δ̂ term can be also dropped
from the above Hamiltonian.

The EBH model with cavity mediated infinite-range inter-
actions (cEBH) arises after adiabatically integrating-out the
cavity degree of freedom in the limit of large detuning∆c and
cavity decay-rate κ. In this limit, the timescale of the atomic
dynamics is much larger compared to that of the photons, and
thus the cavity field reaches its steady state very fast [121, 123,
129]. Assuming ∆c,κ≫ U0

∑
jM

z
j n̂j, up to second-order in

1/∆c, we arrive at the cEBHHamiltonian [123, 129, 134, 135,
139]:

ĤcEBH =−
∑
j

tj+δ̂

(
b̂†j b̂j+δ̂ + h.c.

)
+
U
2

∑
j

n̂j (n̂j − 1)

+
∑
j

(
h̄VcM

x
j −µ

)
n̂j +

U1

L
Θ̂2. (24)

The last term in equation (24) describes the cavity-mediated
infinite-range interaction with strengthU1 = 2h̄∆cη

2L/(∆2
c +

κ2), with L the total number of lattice sites, and with

Θ̂ =
∑
j

Zjn̂j +∑
δ̂

Yj+δ̂

(
b̂†j b̂j+δ̂ + h.c.

) (25)

being a global operator acting on the bosonic degrees of
freedom.

In case of attractive cavity-mediated interactions (U1 < 0),
the system may attain non-zero Θ= ⟨Θ̂⟩ featuring a modu-
lated spatial profile, while the parameterΘ vanishes for stand-
ard MI and SF phases. The phases with non-vanishing Θ are
the superradiant ones where the steady-state cavity field âss ∝
Θ̂ becomes finite. Therefore, the parameter Θ can serve as an
order parameter for spatially modulated superradiant phases.
The exact nature of the superradiant phases depends on the
ratio λc/λ0 and the phase differencesϕx,z, as we discuss below.

4.1. Charge-density wave and supersolid phases

In a 2D geometry (β= 1), for commensurate cavity-mediated
interactions, i.e. λc/λ0 = 1, and zero phase differences
between the cavity-mode and the optical lattice, i.e. ϕx,z = 0,
one obtains

tj+δ̂ = t=
ˆ

dr Wj (r)H0
spWj+δ̂ (r) ,

Mx
j =Mx =

ˆ
dr W2

j (r)cos
2 (k0x) ,

Zj = (−1)jx+jz Z=

ˆ
dr W2

j (r)cos(k0x)cos(k0z) ,

Yj+δ̂ = 0. (26)

The cEBH Hamiltonian (24) then simplifies further to

ĤcEBH =−t
∑
j

(
b̂†j b̂j+δ̂ + h.c.

)
+
U
2

∑
j

n̂j (n̂j − 1)

+ (h̄VcM
x−µ)

∑
j

n̂j +
Z2U1

L
D̂2, (27)

with D̂=
∑

j(−1)jx+jz n̂j. The same Hamiltonian can also be
obtained in 1D geometry (β ≫ 1). The corresponding phase
diagram of the system has been studied extensively, both
in 2D and 1D settings, using mean-field analysis, different
Monte-Carlo methods, exact diagonalization, and tensor net-
work techniques [128–130, 133, 135, 151], as well as in exper-
iments (see figure 9(b)).

In the absence of cavity-mediated interactions, the sys-
tem refers to the standard BHM, where for integer densit-
ies and below a critical hopping amplitude t< tc the system
is in a gapped MI phase, otherwise a (gapless) compressible
SF phase is observed. These two phases are distinguished
by either the superfluid order parameter bSF = ⟨b̂⟩avg or
the momentum distributionM(q) = 1

L2

∑
j1,j2

eiq.(j1−j2)⟨b̂†j1 b̂j2⟩
defined in equation (6) for the 1D scenario. In the SF phase, bSF
andM(0,0) (orM(0) in case of 1D) are finite, while they van-
ish for theMI phase. In the case of negative cavity interactions,
the D̂2 term may favor population imbalance between odd and
even sites that spontaneously breaks the discrete Z2 lattice
translational symmetry. For low values of the tunneling amp-
litude t, such Z2 symmetry breaking results in a CDW phase.
This incompressible phase with diagonal (density) long-range
order is characterized by finite OD = 1

L |⟨D⟩| and vanishing
M(0,0) (orM(0)). In between the gapless SF and gappedCDW
phase, an exotic Z2-broken gapless phase—the SS phase—
appears, where the diagonal (density) long-range order due
to spontaneous breaking of the lattice translational symmetry
coexists with the superfluid order. In the SS phase, both OD

and M(0,0) are non-zero. The phase diagram of the system is
depicted in figure 10.

It is important to note that here we are ignoring the effect
of dipolar interactions among the bosons. Nonetheless, in
case of atoms with substantial dipole moments, such as Er or
Dy, inter-atomic dipole–dipole interactions with a power-law
tail may coexist with cavity-meditated infinite-range density–
density interactions. In a recent study [152], such a scen-
ario has been considered where bosons interact via repuls-
ive V|i−j| ∝ 1/|i− j|3 dipolar interactions in 2D setting. Using
QMC simulations, it has been shown that CDW and SS phases
having checkerboard order get enhanced due to additional
inter-atomic dipolar interactions.
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Figure 10. (a) The phase diagram of the EBH Hamiltonian (27)
with cavity-mediated long-range interaction in 2D geometry. The
colorbar corresponds t= 0 plane and indicates (twice) the order
parameter OD indicating average density imbalance. The
transparent colors show the different phases: MI (green), CDW
(red), and SS (blue). SF phase is not indicated by colors, but fills the
remaining space. The panel has been adapted and reprinted with
permissions from [129] published in 2016 by the American Physical
Society. (b), (c) The phase diagram of the same system but in 1D
and at unit density. The panels (b) and (c) depict the order
parameters maxqM(q) =M(0) and OD respectively. Reprinted
figure with permission from [135]. Copyright 2022 by the American
Physical Society.

4.2. Bond order and topology

In case of a commensurate geometry λc/λ0 = 1, when the
phase differences ϕx,z between the cavity mode and the optical
lattice are not zero, the parameter Yj+δ̂ does not vanish.
Furthermore, the relation Yj+δ̂ ≪ Zj is no longer valid for
ϕx,z ≈ π/2, and thus Yj+δ̂ may no longer be neglected and the
effective EBH Hamiltonian (27) needs to be modified. For 1D
chains (β ≫ 1) along the z axis (see figure 9(a)), the effective
Hamiltonian reads [128]:

ĤcEBH =−t
∑
j

(
b̂†j b̂j+1 +H.c.

)
+
U
2
n̂j (n̂j− 1)

+
U1

L

(
ZD̂+YB̂

)2
, (28)

where D̂=
∑

j(−1)jn̂j, B̂=
∑

j(−1)j(b̂†j b̂j+1 +H.c.), and the
parameters Z and Y are defined by the Wannier function over-
lap integrals:

Z=

ˆ
dz W2

j (z)cos(k0z+ϕz) ,

Y=

ˆ
dz Wj (z)cos(k0z+ϕz)Wj+1 (z) . (29)

Here, we have identified j = jz, and assumed Wjx(x) =
δ(λ0x/2) for β ≫ 1 and ϕx = 0.

For ϕz = 0 the parameter Y vanishes and we go back to
the previous scenario, whereas it becomes finite for ϕz = π/2
while Z is zero [134, 135]. The scenario of ϕz = π/2 arises
when the 1D optical lattice along z has minima (i.e. the lat-
tice sites) at the nodes of the cavity mode. In this case (Z= 0),
for attractive cavity-mediated interactionsU1 < 0, the B̂2 term

Figure 11. Bond-ordered wave and symmetry protected topological
phases in the EBH model (28) with cavity-mediated long-range
interaction at Z= 0 at half-filling. (a) The phase diagram of the
EBH model in 1D geometry in terms of the maximum of the
momentum distributionM(q) and the bond order parameter OB. The
blue dashed lines indicate the borders between different phases.
Here, Y = 0.0658 corresponding to the lattice depth V0 = 4ER. (b)
Site-dependent properties of the trivial and topological states of the
insulating BOW phase. (Left) Effective tunneling amplitudes
⟨b̂†i b̂i+1 +H.c.⟩ as a function of the bonds (i, i+ 1). Orange (teal)
bars denote the even (odd) bond. (Right) Density ⟨n̂i⟩ as a function
of the lattice site. The dashed lines are guide to the eyes. Panels (a)
and (b) Reproduced from [134]. CC BY 4.0. (c) Two-mode cQED
setup for realizing the EBH model of equation (28) with Z= 0 in 2D
geometry. Here the atoms are coupled to two cavity modes created
by two optical cavities aligned in the x and z directions, and to a
laser pump aligned in the y direction. In each direction, the relative
phase between the optical lattice (blue) and the cavity mode
(orange) is chosen such that the nodes of the latter coincide with the
lattice sites. (d) Topological corner states in the 2D EBH model (28)
with Z= 0. The panel shows real-space bond pattern and local
occupation for the topological configuration for a system with
lattice sites L= 10× 10. Panels (c) and (d) Reprinted figure with
permission from [137]. Copyright 2023 by the American Physical
Society.

in equation (28) induces global correlated hopping among the
bosons, and favors dimerized bond order OB =

1
2L |⟨B̂⟩| ̸= 0

in the system. Apart from the MI and SF phases, the system
supports a bond-ordered superfluid (BSF) phase [128, 134,
135] where the Fourier transform M(q) at quasi-momentum
q=±π/2 attains sharp-peaks indicating (quasi-)long-range
coherence among the bosons. Moreover, in this compressible
fluid, OB is also non-zero due to spontaneous breaking of the
discrete Z2 translational symmetry by dimerization in altern-
ating bonds.

Themost interesting scenario occurs for half-integer densit-
ies, where an incompressible insulating phase appears between
the gapless SF and BSF phases (see figure 11(a)). This insulat-
ing phase is a BOW with finite OB ̸= 0 and vanishingM(q) =
0. The emergence of the BOW phase corresponds to a bosonic
Peierls insulator where dimerization by Z2 symmetry break-
ing is driven by atom-photon interaction—reminiscent of the
Peierls transition driven by electron–phonon interactions in
the SSH model [153, 154]. Furthermore, similar to the SSH
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model, the BOW phase is a SPT phase that is characterized
by the existence of two-fold degenerate edge states having
particle-hole excitations on the edges (see figure 11(b)), and
other indicators of a topological phase, such as non-zero string
order, degeneracy in the entanglement spectrum, quantized
many-body Berry phase etc [134].

It is important to note that in this system the two-fold
degenerate topological states are only quasi-degenerate with
the non-topological ground state. This is because for finite
sizes with open boundaries, the lowest-energy state is the
one with positive values of ⟨b̂†j b̂j+1 +H.c.⟩ at the boundar-
ies. However, the topological states can be reliably prepared
by implementing a tailored SSH-like alternating potential and
subsequently removing it adiabatically. The two dimensional
version of the system (28) with Z= 0 is rich as well [137].
In [137] an alternate setup for realizing the system with two
single-mode cavities has been proposed (figure 11(c)), and a
higher order SPT phase has been observed with corner states
(figure 11(d)) via bosonic Peierls transition. Additionally, a
photon-mediated Peierls transition has been recently repor-
ted in setups involving multi-mode cavities, particularly in the
limits of strong repulsive interactions among the bosons [155].

In the scenarios where the phase difference ϕz is not
zero or π/2, e.g. ϕz = π/4, both the coefficients Z and Y in
equation (29) are finite. In such cases, the spatial modulation
appears both in the lattice sites and the bonds, and the sys-
tem supports a gapless bond-ordered supersolid phase, and an
insulating phase with both CDW and bond order, in conjunc-
tion with the MI, SF, and SS phases [128, 135].

4.3. Incommensurate cavity and the Bose glass phase

Let us now consider the situation when the wavelength λc
of the cavity mode is not commensurate with the optical lat-
tice wavelength λ0, i.e. when λc/λ0 is not a rational number
(for simplicity, here we fix ϕx,z = 0, and assume Θ̂ =

∑
jZjn̂j

as usually Zj ≫ Yj+δ̂). In such instances, the cavity-mediated
interaction induces an effective quasi-periodic potential for
the bosons [123, 124, 151]—a situation that is reminiscent
of cold atoms confined in bichromatic quasi-periodic optical
lattices [156–158]. Figure 12(a) shows the phase diagram of
the EBH model with incommensurate cavity in a 1D (β ≫
1) setup. Apart from standard MI and SF phases, the sys-
tem supports gapless Bose glass (BG) phases sandwiched
between different MI lobes. BG phases, originally found in
disordered Bose–Hubbard systems originating due to localiz-
ation effects [4, 159–165], are insulating phases characterized
by finite compressibility (i.e. gapless) with no superfluid order.
Since the strength of the cavity interaction now oscillates at a
wavelength λc which is incommensurate with respect to the
optical lattice wavelength λ0 (see equations (22)–(25)), the
atoms fails to develop proper CDW order due to incommen-
surability effects. Instead, the system features a gapless com-
pressible state (∂n̄/∂µ= 0 with n̄ being the average density)
with vanishing superfluid order and leading CDW instability,
resulting in the BG phase akin to disordered Bose–Hubbard
systems. In this phase, the leading CDW instability manifests
in quasi-periodic density modulations that oscillate with the

Figure 12. (a) The phase diagram of the 1D EBH model with
incommensurate cavity-meditated interactions for (semi-) irrational
ratio λc/λ0 = 830/785 and η

√
L/κ= 0.004. The gray regions

indicate incompressible MI phases at integer densities and the blue
regions indicate gapless and compressible Bose glass (BG) phases
with vanishing superfluid order. (b) Local density ⟨n̂j⟩ and local
density fluctuations ⟨n̂2j ⟩− ⟨n̂j⟩2 as a function of the site index in the
BG phase for µ= 0 and η

√
L/κ= 0.004. Reprinted figure with

permission from [123]. Copyright 2013 by the American Physical
Society.

beating frequency |kc− k0|/2π (see figure 12(b)). In 1D, the
BG phase corresponds to a superradiant phase where ⟨Θ̂⟩ is
non-zero and the cavity field is finitely populated as the atoms
coherently scatter the photons coming from the pump field
into the cavity at wavelength λc. On the other hand, in 2D
(i.e. β= 1), the BG phase can also occur due to the pump
field being incommensurate with the optical lattice resulting
in a ‘disordered’ chemical potential for the lattice bosons (see
the third term in equation (22) or in equation (24)). In such
cases, finite superfluid order can coexists with the CDW lead-
ing instability in the BG phases [124, 151].

5. Excited states dynamics

While up to now we have considered mainly the properties
of low lying (or just solely ground) states, interesting phys-
ics may occur for highly excited states. Those are often asso-
ciated with many-body localization (MBL) phenomena that
are postulated for strongly disordered systems [166]. Recent
doubts [167] concerning the existence of MBL in the ther-
modynamic limit [168–171] made some authors to shift the
MBL border to very large disorder values [172, 173], while a
search for models different than the paradigmatic Heisenberg
chain resulted in studies of the Quantum Sun model [174–
176], which shows a genuine MBL transition in the thermo-
dynamic limit.

Already much earlier, a similar discussion concerning
the existence of MBL in systems with power law decaying
tunnelings or interactions took place [177–182], and sim-
ilar studies have been recently performed for infinite-range
cavity-induced interactions [183–185]. The character of MBL
changes in such systems in comparison to short range models.
Without going into details that are beyond the scope of this
review let us mention that the thermodynamic limit problem
in these cases becomes even more cumbersome.

On the other hand, typical quantum simulators work in
finite-size configurations. Additionally, the times at which one
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may consider such systems to be effectively isolated from the
surroundings are finite. From a pragmatic point of view, the
thermodynamic limit is then not of primary importance, as
cold-atomic systems are typically finite and coherent dynam-
ics may be observed, e.g. in optical lattices, for up to at
most several hundreds of tunneling times [186]. Thus, a slow
approach to ergodicity may be unnoticed—on experimental
scales one may still observe spectacular nonergodic dynam-
ics that may be identified as MBL both for BH model with
on-site disorder [187] or even if disorder is introduced on the
level of on-site interactions only [188].

Such a situation may happen also in systems without dis-
order. A seminal example of such a scenario was discussed
by Carleo and collaborators [189] for the standard BHM.
If the onsite interaction, U, between bosons is sufficiently
strong, the dynamics may slow down, the spectrum of the
BH Hamiltonian becomes fragmented, and a slow nonergodic
dynamics may be realized. This is due to repulsively bound
pairs (doubly occupied sites or doublons dynamically formed
due to an additional energy, U, that makes their decay via tun-
neling costly) whose motion is effectively slowed down [189].
Additional slow down is due to an effective attraction of doub-
lons which makes their clusters hard to break.

Note that too large U may results in an effective splitting
of the Hilbert space between states with at most singly occu-
pied sites and those with multiple occupations. The latter, due
to high energy cost, are necessarily lying high in energy and
affect little the evolution of the singly occupied subspace. The
low energy subspace is then well described in terms of hard-
core bosons, appearing already several times in this review.

5.1. Out-of-equilibrium dipoles

The similar situation for dipolar particles was analyzed
in [190]. Here the long-range strong interactions may lead to
inter-site doublons, i.e. situations, where two atoms on neigh-
boring sites are bound together. Moreover, clusters of big-
ger sizes are possible to be formed—those move even slower
than inter-site doublons. The effective dynamics becomes
extremely slow, resulting in the fact that if some non-
equilibrium steady state is formed, it remembers its initial
configuration for quite a long time, often exceeding the pos-
sible experimental time. In this way a quasi-MBL is formed
involving those large clusters, realizing localization even in
the absence of disorder.

While the dynamics described in [190] considered very
strong dipolar attractive interactions with V=−100t, it turns
out that nonergodic dynamics appears also for weaker repuls-
ive interactions V/t= 50. As pointed out in [191] it is par-
ticularly important to take into account the dipolar tail of the
interactions and not to restrict the tail to the leading NN terms.
Due to the, typically, 1/r3 tail, the NNN interaction strength
is just 1/8 of the NN contribution. Taking into account NNN
terms may lead, in the spectral domain, to Hilbert space shat-
tering [192], and in the time dynamics to the appearance of the
intermediate time scale in the evolution when the dynamics
reaches a slowly-evolving (pre-thermalized) state that is not
thermal. As long as approximate constants of motion of the

Figure 13. Time evolution of the initial density wave 5.1, for
V/t= 16 and (a) Vj = V/j3 and (b) Vj = VGj(B) with B= 2.54
(βeff ≈ 2). The system size is L= 60 and the result is obtained with
time-dependent variational principle algorithm [48, 193, 194].
Reprinted figure with permission from [82]. Copyright 2024 by the
American Physical Society.

system, i.e. the number of NN pairs and the number of NNN
pairs, are conserved, the dynamics seems nonergodic, and
the time evolved state resembles its initial state. Eventually,
approximately conserved quantities are destroyed and the sys-
tem becomes ergodic at large time scales, however, that may
be typically well beyond the capability of current experimental
realizations. Thus, for times of the order of hundreds of tunnel-
ing times, the dynamics may appear to be effectively strongly
nonergodic and seemingly many-body localized [191]. Only
at later times one observes the decay of the prethermalized
phase towards the ergodic long time characteristics. Let us
stress that this behavior is observed for hard-core bosons with
strong dipole-dipole interactions of V/t≈ 50.

As discussed in section 3.5, the inter-site interactions may
be significantly altered by changing the transverse confine-
ment. This in turn affects not only the ground state prop-
erties as discussed there, but also the time dynamics [82].
Changing the interactions from 1/23 to 1/2βeff with βeff < 3
enhances long-range interactions. One might naively expect
more ergodic dynamics in such a case due to the enhanced
interactions range. In fact the situation is opposite, small βeff

enhances the role of NNN couplings that were found to be
particularly important for the Hilbert space shattering mech-
anism [191]. This is reflected in the time dynamics as exem-
plified in figure 13 for the hard-core interacting bosons model.
As the initial state the following density wave is taken:

| • • ◦ ◦ • • ◦ ◦ • • ◦ ◦· · · ⟩,

(where • (◦) denote filled (empty) site, respectively. Such a
state may be prepared experimentally using superlattice tech-
niques [195]). Figure 13 shows the time dynamics for such
an initial state for Vj = V/j3 and for B= 2.54 (βeff ≈ 2). In
the latter case, the initial state density pattern is preserved
for a much longer time, exceeding 500 tunneling times. This
correlates well with the result of [191] who found that NNN
terms slow down the relaxation. While NNN terms are present
in both simulations, they are more significant for the case of
smaller βeff ≈ 2, explaining the stronger nonergodic effect. As
discussed in the original work [82], the nonergodic charac-
ter of the dynamics for strong dipolar interactions is within
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the experimental reach for 164Dy in an UV lattice (e.g. λ=
370nm) or for NaK molecules in a λ= 532nm lattice.

5.2. The role of density-dependent tunnelings for the motion
of soft-core bosons

While up-till-now we have discussed only the hard-core
bosonic systems, it is also interesting to consider the general
soft-core bosons and, in particular, the role of IITs. As for the
ground state properties we consider now the full Hamiltonian
of the problem

ĤEBH =−t
L−1∑
j=1

(
b̂†j b̂j+1 +H.c.

)
+
U
2

L∑
j=1

n̂j (n̂j− 1)

+
V
2

∑
i ̸=j

1
|i− j |3

n̂in̂j

−T
L−1∑
j=1

[
b̂†j (n̂j+ n̂j+1) b̂j+1 +H.c.

]
(30)

with on-site interaction U (consisting of contact and dipolar
terms) as well as IITs T. We fixU/t= 3 [196] and adjust V and
T by changing the lattice depth s= U0/ER (this requires tuning
the contact interactions via a suitable Feshbach resonance).

Let us consider such a system with half-filling and look
at the dynamics. As a measure of the inhomogeneity we
take [196]:

I (τ) =
∑L

i=1 (⟨n̂i (τ)⟩− ρ)
2∑L

i=1 (⟨n̂i (0)⟩− ρ)
2 , (31)

with ρ= N/L= 1/2 being the overall particle density.
The normalization assures that 0< I(τ)< 1, interpolating
between being homogeneous and fully correlated with the ini-
tial state density. For the latter we assume a random Fock-like
separable state with a well defined number of nearby pairs
NNN, as this determines the dynamics [191] for large V/t.

The final time inhomogeneity, I from exact time propaga-
tion up to time τf = 500/t for N= 6 bosons on L= 12 sites
with open boundary conditions is plotted in figure 14 as a
function of V/t in the presence and in the absence of IIT T.
One can observe that for large V/t the IIT partially restores
ergodicity—in fact this process dominates tunneling. On the
other hand, there exists an optical lattice depth, s, depending
on the strength of the interaction value V/t, for which T=−t,
where destructive interference between the kinetic and interac-
tion driven tunnelings occurs [compare (14)]. This point mani-
fests itself as a spectacular maximum of the inhomogeneity for
relatively low V/t.

The small system size makes it also possible to perform
a spectral analysis, summarized in figure 15. For sufficiently
large V the density of states, P(ϵ), shows signatures of frag-
mentation in the form of pronounced peaks, responsible for
the lack of full ergodicity. This structure is partially destroyed
by IIT, explaining the enhanced localization. A common sig-
nature of global spectral properties is the mean gap ratio, r,

Figure 14. Final inhomogenity, I(τf), as a function of V/t, for
N= 6, L= 12. In the absence of IIT (dot-dashed: red (black) curve
for the NNN = 2 (3) sector), the dynamics becomes steadily more
non-ergodic with increasing V/t. The blue (black) dashed line show
our results for s= 8 for the NNN = 2 (3) in the presence of IIT. The
green dashed line corresponds to a deeper s= 10 lattice (for the
NNN = 2 sector). Observe that the peak of enhanced inhomogeneity
depends on the lattice depth, being at V/t= 8.8 for s= 8 and at
V/t≈ 13 for s= 10. The inset shows the dependence of T/t on V/t
for s= 10. The confluence of tunnelings T/t=−1 occurs for
V/t≈ 13. Reprinted figure with permission from [196]. Copyright
2023 by the American Physical Society.

Figure 15. Energy density for T = 0 (a) and in the presence of
IIT (b) for V/t= 30 and for N= 7 bosons in L= 14 sites. (c) Mean
gap ratio, r and (d) mean fractal dimensions Dα of the eigenstates
as a function of V with (circles) and without (triangles) IIT.
Reprinted figure with permission from [196]. Copyright 2023 by the
American Physical Society.

defined as an average of gap ratios, rn:

rn ≡
min{∆n,∆n+1}
max{∆n,∆n+1}

, (32)

where ∆n = ϵn+1 − ϵn are the spacings between subsequent
eigenenergies. For truly ergodic system, following random
matrix theory predictions, r≂ 0.53 while for the orderly,
integrable case, r≃ 0.389 [197]. The mean gap ratio, for a
model without IIT, shows a monotonic decrease with V to the
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integrable value. In the presence of IIT we observe a sharp
minimum around T=−t, the point where the negative inter-
ference of tunnelings occurs—cf figure 15(c) - as well as
mixed statistics even for the largest values of V/t considered.
These results are additionally confirmed by the fractal dimen-
sions of the eigenstates, Dα, defined as Dα = Sα/N , where
N is the Hilbert space dimension and

Sα =
1

1−α
ln

( N∑
i=1

|⟨i |Ψ⟩|2α
)
, (33)

are the participation entropies—compare figure 15(d). Since
D1 ̸=D2, the eigenstates seem to be multifractal, their higher
values for the model which includes IIT for sufficiently large
V/t supports delocalization in that case.

While the results reviewed for the full soft-core bosons case
are obtained with exact diagonalization for small system sizes,
they are expected to hold for larger systems as well as in 2D.
In particular, the effect of negative interference of kinetic tun-
nelings with IIT [16, 196] should be amenable to experiments.

6. Experimental realizations

6.1. Periodically modulated contact-interacting systems

Contact-interacting systems usually are sufficiently described
via the standard Bose–Hubbard Hamiltonian, as all additional
terms typically are orders of magnitude smaller than the main
terms on-site interactions U and single-particle tunneling t.
Nonetheless, under certain conditions this does not hold any-
more, and additional extensions have to be taken into account
to accurately describe the physics at play. Often, dynamical
modifications of the lattice structure or of the interactions are
key to induce those additional terms.

An example of such a situation comes from Floquet engin-
eering described as a second example in section 3.6 and real-
ized via equation (20). One successful experimental realiz-
ation of this concept used cesium atoms in an optical lat-
tice [198], which enables modulation of U via its magnetic
scattering length tunability [199]. To measure the effective
tunneling rate of the system, they investigated the response
of a singly-occupied Mott insulator to a quench in the on-
site interaction, see figure 16. More specifically, it was first
quenched to zero U= 0 to induce tunneling dynamics, and
then—after some evolution time—quenched to a deep lattice
J≈ 0 to freeze the system. The observed reduction of singly
occupied sites during this evolution time due to an increase of
doubly- and triple-occupied sites matched the expected single-
particle tunneling rate. Now they modulate the on-site inter-
action with varying δU= U1/ω and observe a clear Bessel-
type dependence of the tunneling dynamics on the modulation
strength with pronounced minima indicating coherent destruc-
tion of tunneling. By using an additional gradient similar to
earlier work [200] they were able to independently measure
the dependence on the occupation difference, see figure 16.

Combining periodic modulation of the interaction strength
with the periodic modulation of the bare tunneling rates via
lattice shaking has also been experimentally demonstrated

Figure 16. Floquet engineering. (a) Effective tunneling rate as a
function of the modulation strength for two different occupation
scenarios. (b) Measurement procedure to detect the modified
tunneling rates. (c) Measured tunneling strengths normalized to the
bare single-particle tunneling rate for the two processes indicated in
(a). Reprinted figure with permission from [198]. Copyright 2016
by the American Physical Society.

recently in [201], realizing a density-dependent gauge field.
Here, they again use a BEC of cesium atoms, now loaded into
a single 2D square lattice plane with spacing d= 532nm. The
phase and therefore the lattice site positions of each lattice dir-
ection can be modulated independently, enabling full control
over the relative phase θs. The shaking frequency has been
chosen to be slightly higher than the excitation gap. The result-
ing effective single-particle dispersion relation—for modula-
tion amplitudes larger than a critical strength—develops four
minima at finite momentum and induces a phase transition in
which the condensate segregates into domains, each contain-
ing atoms occupying one of the minima.

This picture stays only valid as long as interactions are not
included. As the resulting micro-motion within a single lat-
tice site modulates the onsite density, the onsite interaction
strength gets modulated as well. When averaging this effect
over a modulation period it can be shown that in general the
modulation does not cancel out and shifts compared to the bare
interaction strength. This means that the interaction energy
develops a dependence on the direction of modulation, i.e. an
interaction-momentum coupling, breaking the four-fold sym-
metry of the effective single-particle dispersion relation. Only
for circular modulation θs = π/2, this effect again vanishes.
In this case, a synchronized modulation of the bare interac-
tion strength with relative phase θg allows to reestablish the
density-dependent gauge field.

A different scenario is realized when interactions are
becoming comparable to the bandgap. Such a system has
been realized again by using Cesium atoms in an optical lat-
tice, but pushing the interactions to large positive or negative
values [202]. In this case, also higher-order terms, normally
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neglected, and on-site three-body losses enhanced by the prox-
imity to Feshbach resonances have been taken into account.
The full Hamiltonian of the system then reads

Ĥ=−t
∑
i

(
b̂†i b̂i+1 +H.c.

)
+
U
2

∑
i

n̂i (n̂i− 1)

−T
∑
i

(
b̂†i b̂

†
i b̂ib̂i+1 + b̂†i b̂

†
i+1b̂i+1b̂i+1 +H.c.

)
− i

γ3

12

∑
i

b̂†3i b̂
3
i . (34)

Here, γ3 denotes the corresponding three-body loss coeffi-
cient (in principle scaling with the fourth power of the scat-
tering length), and T the NN two-body interaction arising
purely from contact interactions. For the contact interaction
terms, the analytic corrections [203] due to the renormaliza-
tion have been included as well. In the experiment, they are
probing atom loss from a doubly occupied Mott insulator after
a quench in the interaction parameter. They observe a pecu-
liar scaling of the loss as a function of the scattering length
with a strong asymmetry in positive vs. negative scattering
lengths. While the overall behavior can be captured by the the-
ory, a more quantitative description fails. The paper speculates
that the effects of mixing ground and excited on-site three-
body states and a further renormalization of the tunneling rates
would be necessary to reproduce the experimental dynamics.

6.2. Dipolar long-range systems

The experimental realization of BHMs including dipolar
extensions was a long-standing challenge. The reasons behind
this weremanifold: First, themost promising candidate to real-
ize suchmodels—heteronuclear ground-statemolecules yield-
ing a large electric dipole moment—turned out to be much
more difficult to prepare with a reasonable phase space density
or lattice occupation, as even for chemically stable combina-
tions fast collisional losses occurred. This limited the realized
Hamiltonians to spinful systems in a frozen regime to avoid
collisions and subsequent losses. Only very recent advances
in experimental techniques have shown a workaround which
allows efficient shielding of losses [204], which will open
again the doors for future use of heteronuclear molecules
for Bose–Hubbard physics. Second, magnetic atoms—while
brought to degeneracy without big hurdles on the way already
more than 10 years ago [205–207]—feature only a compar-
atively weak dipolar strength and it was a priori not clear if
the expected effects will be strong enough to be detected at
realistic experimental parameters [112].

Nonetheless, in 2016, the first experiment reported on the
observation of dipolar long-range effects using spin-polarized
bosonic 168Er atoms in a three-dimensional optical lattice [14].
A short lattice spacing along two directions, forming a tet-
ragonal unit cell with spacings (266,266,512)nm, and the
large magnetic moment of 7µB resulted in a comparatively
large NN interaction of V/h≈ 30Hz in side-by-side config-
uration and V/h≈−60Hz in head-to-tail orientation within
planes. After adiabatic loading of a BEC of 168Er into the lat-
tice and forming a Mott-insulating state, lattice modulation

Figure 17. Extended Bose–Hubbard model with dipolar bosons. (a)
Detection scheme for the nearest neighbor interaction using
directional particle-hole excitations. (b) Experimental measurement
of the nearest neighbor interaction. (c) Experimental evidence of an
anisotropic shift of the superfluid to Mott insulator transition caused
by anisotropic density-induced tunneling. From [14]. Reprinted
with permission from AAAS.

spectroscopy [209] was used to map out the excitation spec-
trum as a function of lattice depths and dipole orientation rel-
ative to the (anisotropic) on-site wavefunction. This revealed
the contribution of DDI to the on-site interaction energy which
vanishes for a spherical symmetric situation. Doublon-hole
excitations in the Mott-insulator can also change the number
of attractive and repulsive NN bonds when the dipoles are
oriented along one lattice direction, see figure 17. By using
a differential measurement method, Baier et al managed to
experimentally determine the NN interaction energy differ-
ence between head-to-tail and side-by-side configurations to
∆V/h= 80.5(17)Hz. Finally, they characterized the angle-
dependence of the quantum phase transition between super-
fluid and Mott-insulator. Here, not only the on-site contri-
bution of DDI plays a significant role, but they found better
agreement with theory when including density-induced tun-
neling being modified by DDI.

The extended BHMwas recently also realized using dipolar
excitons [208], a quasiparticle formed by an electron–hole pair
in a semiconductor [210]. The lattice is created by electric
fields from an array of electrodes, forming a sinusoidal 2D
square lattice with 250nm period. Excitons are then optic-
ally injected with laser pulses, whose power controls the mean
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Figure 18. Extended Bose–Hubbard model with dipolar excitons.
(a) Illustration of the physical system. (b) Relevant energy terms of
the realized Hubbard system. (c) Expected phase diagram with the
checkerboard phase at half filling. (d) Measured compressibility of
the system, indicating incompressible phases at half and unity
filling. Reproduced from [208]. With permission from Springer
Nature.

density per lattice site. After they thermalize within a few
nanoseconds they occupy essentially two Wannier states with
large on-site interactions compared to tunneling (U≫ t) and
comparatively strong NN interactions (V/t≈ 20). From pho-
toluminescence spectra, Lagoin et al deduced the compressib-
ility and found an incompressible state at unity filling, corres-
ponding to a Mott-insulator, see figure 18. Here they addition-
ally observe a shift in energy compared to very low fillings,
in good agreement with the energy given by four times the
NN interaction energy, 4V. They also found such an incom-
pressible state at half filling, indicating the preparation of a
checkerboard phase.

The first single-site resolved observation of dipolar
quantum solids has been realized very recently using a
quantum gas microscope for erbium [29]. Using a single plane
with lattice spacings of (266,266)nm, again, NN couplings
of V/h≈ 30Hz (V/h≈−60Hz) were reached. The target
state is prepared by adiabatically ramping the lattice depth
up. The final imaging is done by freezing out the motion of
atoms, expanding the density pattern with an accordion lattice
and performing single-site resolved ultra-fast imaging [211].
Here, two counter-propagating imaging beams resonant with
the main cooling transition of erbium at 401nm—pulsed in
alternating order—illuminate the atoms in order to scatter the
maximum amount of photons within a few µs. This results in
stochastic momentum kicks during this time and a diffusive
broadening of the atom position. The favorable combination of
a broad transition (= fast scattering rate), small wavelength (=
high resolution) and large mass ( = small momentum kicks)
in lanthanides as erbium makes them especially applicable to
such an imaging scheme. The final detection fidelity reaches
above 99% and additionally allows a parity-projection-free
imaging [211].

For half filling, the resulting ground states [27, 112, 116,
212, 213] are sensitively depending on the dipole orient-
ation, with θ the polar angle and ϕ the azimuthal angle.
For dipoles oriented perpendicular to the plane (θ = 0◦) they
observe a checkerboard solid, while dipoles oriented along
one lattice direction (θ = 90◦,ϕ = 0◦) results in a stripe phase.
For diagonal orientation (θ = 50◦,ϕ = 45◦) the system exhib-
its diagonal ordering. This diagonal ordered pattern changes
with the polar angle until at (θ = 90◦,ϕ = 45◦) phase separ-
ation happens with a central (elliptic) area with unity filling.
The experiment also probed out-of-equilibrium dynamics by
ramping from the superfluid into the phase-separated state
(θ = 90◦,ϕ = 45◦) with varying ramp speed, showing that at
fast ramps meta-stable diagonal stripes form, while adiabatic
ramps lead to the phase-separated state.

6.3. Cavity-enhanced systems

As we already discussed in section 4, long-range interactions
and therefore extended Hubbard models can be also intro-
duced by harnessing the back-action of a cavity onto the atoms
inside of it. Specifically, light scattering from atoms into the
cavity mode and back introduce an effective light-mediated
up-to-infinite-range interaction that can be controlled inde-
pendently to the other system parameters.

Such a system has been realized in [139], see also figure 19.
Here, they realized a lattice model with on-site and infinite
range interactions mediated by the cavity photons. For this,
they prepared a BEC of 87Rb atoms within an optical cavity
with a Finesse of more than F > 105 [138]. Then they split
up their system into separated 2D layers by an optical lattice
formed by a back-reflected beam at λ= 670nm propagating
perpendicular to the cavity. Finally they create a 2D square
lattice within each layer formed by one back-reflected beam
at λ= 785nm, again propagating perpendicular to the cav-
ity, and light at λ= 785nm co-linear with the cavity mode.
The perpendicular 785nm lattice is also responsible for indu-
cing long-range interactions via off-resonant scattering of its
photons into the cavity mode. The realized Hamiltonian, as
derived in section 4.1, equation (27)17, can be written as:

Ĥ=− t
∑
⟨e,o⟩

(
b̂†e b̂o+H.c.

)
+
U
2

∑
i

n̂i (n̂i− 1)

− U1

L

(∑
e

n̂e−
∑
o

n̂o

)2

−
∑
i

µin̂i. (35)

The infinite-range interaction, given by U1, acts between even
(e) and odd (o) sites and—for positive U1—favors a particle
imbalance between the two checkerboard sublattices located
on even and odd sites respectively. It can be controlled inde-
pendently by the detuning of the perpendicular λ= 785nm
lattice light with respect to the cavity resonance frequency.
To characterize the system, they measure the presence of

17 Equations (27) and (35) are indeed identical if one identifies µ− h̄VcMx →
µ and Z2U1 → U1 in equation (27).
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Figure 19. Extended Bose–Hubbard model with cavity.
(a) Illustration of the experimental setup indicating the 2D lattice
structure relative to the cavity. (b) Experimentally determined phase
transitions. (c) Hysteresis in the imbalance when quenching close to
the phase transition point. (d) Hysteresis in the MI-CDW phase
transition observed for the different ramp directions. (e) Full phase
diagram including the information where the hysteresis area opens
(green and orange diamonds) and where imbalance jumps occur
(blue diamonds) [141]. The panels (a) and (b) Reproduced from
[139]. With permission from Springer Nature, and the panels (c)–(e)
Reproduced with permission from [141].

global phase coherence by probing the interference pattern
of the cloud after free expansion. This information indicates
the transition between a superfluid and an insulating state.
Additionally they record the amplitude of the scattered light
leaking out of the cavity. This amplitude is directly propor-
tional to the population imbalance between even and odd sites,
indicating a transition from a regularMott insulator to a charge
density wave, or from a superfluid to a supersolid.

Figure 19 shows the experimentally obtained phase trans-
itions using the two probes, which can be used to construct the
full phase diagram as shown in figure 9. For large detunings
(small U1) they observe the usual superfluid-to-Mott insulator
phase transition, while for small detunings (large U1) they
detect that the Mott insulator is replaced by a charge density
wave state, and that a supersolid state—sharing both superfluid
and charge density wave properties—lies in between the isol-
ating state and the superfluid state. They also observed hys-
teresis appearing when performing ramps between the Mott

insulator and the charge density wave state, pointing towards
a first-order phase transition between them.

This also shows that the system can be used to explore
out-of-equilibrium dynamics within this Hamiltonian. In a
subsequent work [141] the group investigated the initially
observed hysteresis and additional quench dynamics in more
detail. Especially the availability of real-time information on
the system obtained from the scattered light signal allows an
in-depth analysis. Using quench experiments they observe a
metastable region where the measured imbalance depends on
the starting state of the quench. They characterize this region
by recording the time-resolved imbalance when ramping over
the phase transition and determining the turning points of the
imbalance against the ramp value. They also observe a pecu-
liar jump in the time-resolved imbalance data when ramp-
ing from a Mott insulator into the charge density wave state.
This behavior could be explained by atoms within the cent-
ral Mott insulator tunneling collectively to even (odd) sites
and thereby building up the charge density wave. This collect-
ive event gets triggered by individual tunneling events hap-
pening first in the outer layers due to the experimental har-
monic trapping, increasing themobility at the outer areas of the
system.

7. Conclusions

In this report on progress we collected some of the most
recent and exciting results on the investigation of non-
standard BHMs in the context of atomic quantum simulators.
Specifically, we first provided a general derivation of these
iconic Hamiltonians and subsequently discussed how differ-
ent interacting terms and/or geometrical configurations can
give rise to intriguing states of matter and quantummechanical
effects. Notably, we tackled these subjects both from a theor-
etical and an experimental perspective.

Specifically to the theory side, we covered topics ran-
ging from beyond Landau’s criticality and the role of IITs
to cavity mediated interactions and dipolar systems in out-
of-equilibrium configurations. The experimental sections have
described recent setups made of ultracold atoms with special
attention on Floquet engineerings, phases of matter induced
by strong dipolar repulsion and atom-cavity setups.

This impressive amount of recent results which were not
present in the last review on this fascinating subject [12],
demonstrates again the central importance that non-standard
Hubbard models had, have and will have in order to under-
stand fundamental laws of nature appearing in condensed mat-
ter and, as recently realized, high energy physics [214] and
quantum chemistry [215]. We thus believe that this review
poses the ground towards many more scientific achievements
that the future will bring.
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