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ABSTRACT

High level abstractions in Python that can utilize computing hard-
ware well seem to be an attractive option for writing data reduction
and analysis tasks. In this paper, we explore the features available in
Python which are useful and efficient for end user analysis in High
Energy Physics (HEP). A typical vertical slice of an HEP data anal-
ysis is somewhat fragmented: the state of the reduction/analysis
process must be saved at certain stages to allow for selective repro-
cessing of only parts of a generally time-consuming workflow. Also,
algorithms tend to to be modular because of the heterogeneous
nature of most detectors and the need to analyze different parts
of the detector separately before combining the information. This
fragmentation causes difficulties for interactive data analysis, and
as data sets increase in size and complexity (010 TiB for a “small”
neutrino experiment to the 010 PiB currently held by the CMS
experiment at the LHC), data analysis methods traditional to the
field must evolve to make optimum use of emerging HPC technolo-
gies and platforms. Mainstream big data tools, while suggesting a
direction in terms of what can be done if an entire data set can be
available across a system and analysed with high-level program-
ming abstractions, are not designed with either scientific computing
generally, or modern HPC platform features in particular, such as
data caching levels, in mind.

Our example HPC use case is a search for a new elementary
particle which might explain the phenomenon known as “Dark
Matter”. Using data from the CMS detector, we will use HDF5 as
our input data format, and MPI with Python to implement our use
case.
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1 INTRODUCTION

The field of experimental High Energy Physics (HEP) is concerned
with the design, creation, running and analysis of data from ma-
chines which will improve our understanding of the fundamental
particles and the forces between them. The interactions studied are
statistical in nature, so we have always been relatively demand-
ing of computational, data storage and transfer resources in order
to measure properties of the particles known exist, or to discover
those which have hitherto only been predicted by theory. As the
field advances, these demands have only increased as we attempt to
discover and characterise ever-more-elusive particles and interac-
tions. From the discovery of the Higgs boson at the Large Hadron
Collider (LHC) in Switzerland where over 300 trillion (3 x 10'4)
proton-proton collisions were required for analysis [5], the up-
coming high luminosity run [2] (dubbed “HL-LHC”) will generate
interactions for study at nearly 8 times the rate of the previous
run, each of which will require significantly more data to describe,
allowing us to push for a deeper understanding of the Higgs boson
and its implications for the fundamental laws of nature.

An HEP data analysis workflow can generally be subdivided
into Data Acquisition (DAQ), event reconstruction, and data anal-
ysis stages, the results of each being saved to storage separately.
Dedicated hardware-adjacent systems are generally responsible
for the collection of data and “event building”—structuring the
data for each particle bunch interaction—and the initial saving of
the data to the storage system for subsequent stages. These raw
data are refined during the event reconstruction phase to produce
physically-significant information such as particle trajectories, par-
ticle identification, and energy measurements. This step generally
employs time-consuming algorithms and may actually produce a
larger data set than the original raw data from which it is derived.
Reconstruction, like DAQ, is usually a process coordinated across
the experimental collaboration and while the algorithms may evolve
over time, there is often only one such workflow per experiment.
Data analysis is usually tailored for an individual physical interac-
tion process, result or paper, but generally includes data reduction
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via selection and statistical summarization, and the creation of ex-
ploratory plots prior to the production of the final result. There
are thus often many data analysis workflows per experiment, and
they are individually generally more demanding of I/O than com-
pute cycles, with the notable exception of deep learning training
operations for certain analysis algorithms.

A given data analysis workflow will usually have multiple data
reduction steps necessary to produce a data set suitable for in-
teractive analysis. The execution time of such workflows vary in
duration up to weeks, and multiple iterations of this reduction pro-
cess may be necessary during the refinement of an analysis. Figure 1
describes these steps for the example use case, and the data storage
requirements for the intermediate stages. Our overarching aim is to
enable interactive in-memory analysis of data volumes of the order
of that expected from HL-LHC while minimizing where possible
costs of intermediate storage and the need for the handling of large
numbers of files. High performance Python looks promising for
our purpose: it provides a familiar programming environment to
the physicist, it provides efficient ways to deal with the data we
have formatted for the HPC platforms, and it provides efficient
vectorized operations to doing these data analyses.
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Figure 1: The left-hand side shows the current flow of oper-
ations and data, the frequency of each operation, and time
taken by each operation, for the CMS Dark Matter analysis.
Our proposed design is shown on the right-hand side [9].

A secondary goal of the study is to close in on a paradigm that
will allow physicist programmers to construct and refine an analysis
workflow without the need to develop expertise in parallel program-
ming. This notional toolbox will have different aspects for different
styles of analysis, but the common thread will be ease of use for
the physicist whose primary interest is developing their analysis
rather than any broad or deep knowledge of HPC programming
techniques and technologies.

In Section 2, we explain the CMS Dark Matter search use case,
and current approach and computing available to perform this anal-
ysis. In Section 3, we briefly describe the fundamental concepts of
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HPC I/O used in this paper, and provide details about the input data
format and analysis encoding. Section 4 explains the experimental
setup, and discusses results. We provide a list and discussion of
lessons learned in Section 5. We discuss the conclusion and future
work in Section 6.

2 SCIENCE USE CASE: CMS DARK MATTER
SEARCH

The CMS detector is a physically large, heterogeneous detector ca-
pable of measuring various properties of particle collision products,
such as charged particle tracks, the energy depositions of charged
and neutral particles in calorimeters, collision product identity and
mass. An example of a particle bunch collision (“event”) in CMS
is shown in figure 2. Due to the probabilistic nature of the science
behind such collisions, huge numbers of them are required to be
able to make statistical observations about the physical processes
these events depict. The particular use case studied in this work
is a the search for a hypothetical particle that may be responsible
for Dark Matter in the universe, the gross effects of which can be
seen in the rotation of galaxies, and the dynamics of intergalactic
collisions. One possible indicator of the existence of such a particle
is the production of events containing a single top quark. Given a
description of the detectable signature of such an event, the analysis
must search the entire data set to obtain statistically significant
evidence for discovery, or based on the amount of data examined,
to place limits on the likelihood of the existence of the postulated
particle. One would reduce the data based on attributes of the postu-
lated signature such as expected spatially-isolated electrons within
a particular momentum range, accompanied by higher momentum
muons and a relatively low measurement of the “missing energy”,
which is a measure of the imbalance of momentum in the particles
observed in the detector.

CMS Experiment at the i
Data recorded: 2016-4fl
2 Run / Event / LS: 2765:

Figure 2: A collision inside the CMS detector. Identified par-
ticle tracks are color coded, with red for muons and green
for electrons [7].

The data to be analyzed is from the 2015 data set of about 200 TiB,
comprising both DAQ-obtained data and simulated events produced
with Monte Carlo techniques. With HL-LHC, the data volume avail-
able for the analysis will be significantly greater. For our analysis,
the required components of the data are converted to “n-tuples”,
flat data structures of homogeneous collections of mainly integers
and floating point numbers. Each row of the n-tuple contains a
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metadata description and identity of a particle, and its properties.
Because each event may contain several identified particles of a
given type, multiple rows may be necessary to completely describe
an event. Data reduction filters are applied to reduce further the
data size from ~ 2 TiB to a few GiB, suitable for interactive analysis.
Quantities from this reduced n-tuple are then summarized, com-
bined and plotted to look for evidence of the postulated particle
against the representative background of simulated data where the
postulated particle is known to be absent. The whole workflow can
take from days to weeks to execute depending on the amount of
data examined and the iterations required to refine the analysis.

3 DESIGN AND IMPLEMENTATION

Our proposed approach for the CMS analysis is contrasted with the
current CMS approach in Figure 1. The input data in the original
workflow is stored using ROOT [4], which is the most common data
format in HEP. We have chosen to use the Hierarchical Data Format,
version 5 (HDF5) [10] because of the widespread availability and
support of optimized installations at HPC centers, and because
of the wide variety of analysis and visualization tools that can
efficiently access data stored in this format.

The Python library pandas [8] provides a popular high-level
set of facilities for transformation and statistical analysis of data.
The pandas library provides a class DataFrame that represents a
table of data. The use of DataFrames, which in turn use numpy
ndarrays, allows us to make use of vectorized operations in data
transformations. In addition, the Python library mpidpy [3] provides
a high-level interface to MPI that makes it sufficiently easy to use
for programmers without expertise in MPI, which is our target
community.

We discuss the input data, its representation in HDF5, reading
and analysis implementation in the following subsections.

3.1 Tabular data storage using HDF5

The HDF5 libraries can be used in a wide variety of manners; it does
not mandate any single usage pattern. Because we are interested
in writing tabular data, and in reading that data using a variety
of programming language tools, we have chosen to use a specific
format that makes both writing and reading of the data simple and
efficient.

In each HDF5 file, we store one or more tables. The top-level
root node of the HDF5 files we write contain only these tables. This
makes discovery of the number and names of tables in our files
simple.

Each table is implemented as an HDF5 group. This allows us to
attach any relevant metadata, and to have an arbitrary number of
columns in the table. Our own data writing API makes sure that all
columns in a given table have the same length. This organization
makes it simple to discover the number and types of the columns
in a table.

Each column is implemented as an HDF5 dataset. Our format
allows for datasets that contain multi-dimensional arrays. For the
use case described in this paper, such arrays are not needed; how-
ever, for other use cases they are necessary. Because the dataset
carries information about the dimensionality of the arrays stored
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in it, the code reading the dataset does not have to have knowledge
of what had been written.

The combination of choices in this design allows us to write
generic code, in a variety of languages supported by HDF5, to read
any file written in our format. The code does not need to have been
written with knowledge of the names of tables, nor with knowledge
of the number and types of columns in each table.

Figure 3 shows the organization of the CMS data in the ROOT
files, where each row contains all the data for different particles and
their properties in an event. In the HDF5 format, we store the data
for each particle type in a table named for that particle type, and
each property of the particle as a column in that table, as shown
in Figure 4. Since, in this format, the rows do not correspond to
individual events, we also need to store a column that identifies to
which event each particle belongs.

In addition to the particles, the general general properties of
an event are also stored in a different table. Each table can be pro-
cessed independently and in parallel. Additionally, column-oriented
transformations and reductions can be executed in parallel.

eventip | eventinfo |
1 pt

met weight pt eta eta
17 0.1
150 05 130 0.4
55 0.3
50 1.3
44 1.9
2 met weight pt eta pt eta
210 0.65 67 -0.5 34 1.5
87 1.9 44 0.3

Figure 3: An example of the CMS data organization in the
current ROOT format. Each row represents an event. Each
event has two types of particles; electrons and taus [9].

Event Info
1= [~
1 150 0.5
2 210 0.65

Taus

o
CaCmCE -

1 130 0.4 4 55 0.3
1 50 13 4 44 1.9
2 67 SOi5 2 34 15
2 87 1.9 2 44 0.3

Figure 4: The data of figure 3, in our HDF5 organization [9].
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3.2 Reading tabular data into pandas
DataFrames

Our HDF5 file format can store data that pandas is unable to rep-
resent; in particular, our columns can carry not only scalar values,
but also multi-dimensional arrays. Thus we are unable to use the
facilities that pandas provides to read HDF5 files. However, using
the Python package h5py [1], we are able to read the columns into
numpy ndarray objects. When, as in this use case, the columns con-
tain only scalar values, the set of ndarrays read from the columns of
one table can be efficiently converted into a DataFrame. The h5py
package is capable of using HDF5’s MPI1/O support, which we take
advantage of.

Each column in a table is divided into equal chunks of a size that
depends on the number of MPI processes; using mpi4py [3] makes
this task simple. The analysis task requires that each MPI rank has a
portion of all the columns needed; each rank has different rows, and
no data are shared. Using h5py, each MPI rank reads a contiguous
portion of each column in a table into a numpy ndarray. We put
all the ndarrays corresponding to columns of a table into a Python
dictionary. This dictionary is converted to a pandas DataFrame.
Figure 5 shows an example of this read operation.

HDF5 Group

HDF5 Dataset 1
HDF5 Dataset 2

HDF5 Dataset 3

I ghunk | I |

HDF5 Dataset 4

L1 [ |

1 pandas DataFrame per rank

4 Numpy arrays per rank

MPrank1 |:| |:| |:| _—

MPI rank 2 __ ConverttoPandas
DataFrame

MPI rank 3 |:| |:| |:| _—

Figure 5: An example of parallel reading and creation of a
pandas DataFrame, using three MPI ranks. There are four
columns in the example table; a portion of each column is
read into a numpy ndarray by each of MPI ranks. Each MPI
rank creates one pandas DataFrame from its ndarrays.

3.3 Encoding Analysis

The organization of data determines what APIs can be used to ef-
ficiently implement the analysis of those data. Our analysis task
involves mutations (defining new quantities using one or more
columns in a DataFrame), filtering operations across multiple columns
within a DataFrame, and reduction operations on the resulting data.
Use of column-based (numpy vectorized) operations is critical for
good performance. Parallel execution of the transformations and
filtering does not require writing of any additional code, because
each MPI rank is processing an independent DataFrame. Parallel
execution of reduction operations is made easy by the high-level
mpidpy API (we note in section 6 how it can be made even easier).
Listing 1 shows an example of parallel filtering code; the full
analysis requires tens of such filtering operations. Note that the
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parallelism is implicit: no special code needs to be written to par-
allelize the operation because each MPI rank is processing data
independently of every other rank.

def filter_electrons(df):
f = ((iso < 0.126xdf.pt)
| (dEtaln < 0.01520)
| (df .sieie < 0.01140))
& f_scEtao
return df[(abs(df.eta) < 2.5)
& (df.pt >= 10)
& f]

Listing 1: Example of the filtering criteria for electrons.

In this example, df is the electrons DataFrame. sieie, etaand pt
are three of the columns in the DataFrame. iso, dEtanln, f_scEta@
are new quantities calculated by transformations omitted from the
code for clarity. For such transformation and filtering, no MPI
synchronization or communication is needed, and so we would
expect excellent scaling.

Listing 2 shows the code for filling a histogram. Each rank calcu-
lates a local histogram; all have the same binning, so combination of
the local histograms into a single global histogram can be done with
an MPI reduction that does a bin-by-bin addition of the counts in
each histogram. The code shows the two-step process: first, filling
of the local histogram, and second the reduction. While this does
not require much MPI expertise, we view this as a place where we
can make improvement for our user community.

fdf = filter_electrons(df)

bins = [0, 20, 30, 40, 50, 100, 500]
myhist, _ = np.histogram(fdf['pt'],
bins = bins)

hist = MPI.COMM_WORLD.reduce(myhist,
op = MPI.SUM,
root = @)

Listing 2: Histogramming of electron transverse momenta.

4 RESULTS AND DISCUSSION

We ran tests on both Cori Phase I (Haswell compute nodes) and
Phase II (KNL compute nodes). We used 2-64 nodes on Cori Phase
I, and 2-32 nodes on Cori Phase II, in all cases using one physical
core per MPI rank. Each Haswell node has two sockets, and each
socket is populated with a 16-core Intel Xeon Processor E5-2698 v3
(Haswell) with a clock speed of 2.3 GHz. Each node has 128 GiB
DDR4 2133 MHz memory (four 16 GiB DIMMs per socket). Each
core has its own L1 (64 KiB) and L2 (256 KiB) caches, and a 40 MiB
shared L3 cache per socket. Each KNL node has 68 cores and 96 GiB
DDR4 2400 MHz memory per node. Each node has 16 GiB of on-
package, high-bandwidth multi-channel DRAM (MCDRAM). We
have used both of the flexible memory modes available, cache mode
(effectively an L3 cache) and flat mode (a unique NUMA domain,
separate from DDR4).
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The CMS data are stored uncompressed in one 506 GiB file. The
file is striped using 40 Object Storage Targets on the Lustre file sys-
tem. The data consists of information about all the particles found
in the events. In this example, however, we only use electrons, along
with one event property. There are a total of 360 million events con-
taining 180 million electrons, so we need to hold ~ 60 GiB of data in
memory for this analysis. The analysis we implemented creates a
histogram of the transverse momentum of the leading electron (the
electron with the greatest transverse momentum) in events that
passed the filtering criteria. The filtering criteria are applied to tens
of properties of electrons, and several new quantities are created
as part of the processing. We extensively used the pandas-supplied
logical operators on columns in the DataFrames.

Figure 6 shows the scaling behavior of the reading of the CMS
data from the HDF5 file, as we vary the number of nodes used in
the processing. In each case, we measured the time taken to read
the same data file. For the Cori Phase I and Cori Phase II (cache)
configurations, we repeated each measurement three times; due
to time constraints we were able to complete only one such set of
measurements for the Cori Phase II (flat) configuration. Each panel
shows the data for a different platform. We plot the processing
speed (the number of records processed per second) versus the
number of nodes used. If the scaling were perfect, each of the
panels would show a straight line going through the origin. The
line drawn on each panel is a linear fit to the data, for a line with
an intercept of zero. The dominant feature of these plots is that
the read times are wildly variable: for a given number of nodes,
reading speeds can vary by more than an order of magnitude. We
suspect a significant contribution to the difference is something
that users of HPC systems can not, in general, control: the load
on the global filesystem. Verification of this would require access
to performance data for the system at the exact time at which the
program in question is running. The variability is greater on the
Haswell nodes than on the KNL nodes. The maximum reading speed
achieved by the Haswell nodes is much greater than that achieved
on the KNL nodes. This is consistent with the observations of [6],
which, however, concentrates primarily on writing performance.

The variability of the results on the Haswell nodes was such
that we performed additional studies, described below. For the Cori
Phase II (cache) nodes, the scaling appears to be worse than linear,
especially after 8 nodes. For the flat mode, we have insufficient
data to judge. The KNL nodes in cache mode show dramatically
poorer read performance than do the Haswell nodes. In flat mode,
the KNL node performance improves, and is plausibly equivalent
to the Haswell nodes, indicating that the I/O stack may be taking
advantage of the special memory available in this mode. We note
that nothing in our own code was specialized to take advantage of
this.

Figure 7 shows the scaling behavior of the analysis portion of
the task, which is the in-memory processing. For each rank, this
is after all the reading is done; however, it is possible and even
likely for one rank to finish reading and move on to analysis before
another rank has finished reading (when no barriers are used).
We note that most of the in-memory work is done independently
for each rank; only the reduction of each ranks’s histogram to
produce the resulting single histogram requires communication

between ranks. The layout of the plot is similar to that of figure 6.
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Figure 6: Scaling performance of reading CMS data from and
HDF5 file, for Cori Phase I and Phase II.

Comparison between these two figures shows that the reading is
much slower than the analysis, in all cases. The analysis scales
reasonably well out to 32 nodes for both Haswell and KNL, and for
both memory modes of the KNL nodes. At 64 nodes, the variability
in performance is large. Comparing the KNL cache and flat modes,
we see that for analysis the cache mode provides uniformly superior
performance, albeit by a small margin. Unlike the reading task,
nothing in the software stack takes advantage of the special memory
made available in flat mode; thus the larger cache available in cache
mode yields the improved performance.
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Figure 7: Scaling of processing speed for analysis of CMS
data in memory, for Cori Phase I and Phase IL.

Figure 8 shows another view of the same data, but displayed
in a fashion to highlight any deviations from perfect scaling. This
figure shows how the total computing work done (measured in
node-seconds, rather than the more common CPU-hours) changes
with the number of nodes. For a program that scales perfectly, the
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Figure 8: Scaling total work done for analysis of CMS data
in memory, for Cori Phase I and Phase IL.

amount of work that needs to be done does not change as the num-
ber of nodes used for the task is increased; thus a program that
scales perfectly would yield performance data that would form a
horizontal line. For the Haswell nodes, the variability of the data
make it difficult to reach a clear conclusion, except that the per-
formance at 64 nodes is clearly worse than that at 32 nodes. For
the KNL nodes, in both modes, using either too few or too many
nodes results in an increase in the amount of work that needs to
be done. This is especially dramatic when only two nodes are used.
The improved memory locality obtained by using an appropriate
number of nodes provides superior performance. In comparing
the cache and flat modes, we also see the clear advantage of the
additional local memory available in the cache mode.

Because of the wide variations in read performance seen in fig-
ure 6, we studied the read performance on the Haswell nodes in
more detail. First, in order to avoid any migration of processes
between cores, we used the --cpu_bind=rank option of the srun
command. We also explored whether the lack of coordination be-
tween ranks might have been responsible for the large variations in
read performance. We chose three strategies for controlling synchro-
nization by placement of MPI barriers. The first strategy, labeled
nobarrier, employed no barriers; this reproduced our original run-
ning conditions. The second strategy, labeled 1barrier, employed
a single MPI barrier placed before the reading of the data. This
ensured that the start-up time of different ranks (observed to be up
to ~ 60 seconds) did not cause the read step to begin at different
times for different ranks of the same program. The third strategy
(labeled 2barrier) used barriers before and after the reading; this
ensured that the in-memory processing was not begun by any rank
until all ranks had finished reading. For each of these strategies, we
measured the performance of both 8- and 32-node jobs. We chose
these jobs because the 8-node jobs were the largest that showed rel-
atively modest variation in read time, and the 32-node jobs showed
very dramatic variation. For each of these configurations, we ran
two batches (each submitted as an independent batch job) of 8 runs
each. Finally, we instrumented the program to collect data on all
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ranks of the program independently (the previous runs collected
data only on rank 0 of each program). We note that all of the runs of
a given batch were executed within 30 minutes of each other. The
different batches were separated in time by much larger intervals.
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Figure 9: Distribution of read speeds for each MPI rank, for
8-node runs on Cori I (Haswell nodes). The green ribbon
shows the batch job number, and the tan ribbon shows the
synchronization strategy. Each panel corresponds to a sin-
gle batch job. Each line corresponds to a single program run,
and shows the distribution of reading speeds for each of 256
ranks. Note the x-axis is logarithmic.

Figure 9 shows the results of these measurements for the 8-
node runs, and figure 10 show the results for the 32-node runs.
Each numbered panel in the plots shows the results of one of the
8 runs. The data are displayed as a violinplot [11], which shows
the distribution of processing speeds (as estimated by a Gaussian
kernel density estimate). Each “violin” denotes 256 measurements
(one per rank) for the 8-node runs and 1024 measurements for the
32-node runs. Qur first observation is that all of the distributions,
save one, are multi-modal; such data are not well-described by a
single statistic such as a mean or median. For the 8-node data, the
1barrier runs show somewhat worse performance than do either of
the other configurations, and dramatically so for a few of the runs.

For the 32-node data, the difference between the Ibarrier and
2barrier results is even more dramatic, but the 1barrier reads are
faster. Most remarkable is the observation that the variation be-
tween ranks within a single program execution was neglible for
the 1barrier strategy. Figure 11 shows the details of one of these
runs; note the extremely small range of the x-axis.

Using the performance data we collected for the 8- and 32-node
runs, we looked in more detail at the in-memory processing. Rather
than measuring the speed for the entire in-memory processing,
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Figure 10: Distribution of read speeds for each MPI rank, for
32-node runs on Cori I (Haswell nodes); see figure 9 for de-
tails. In this figure, there are 1024 ranks per program run.
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Figure 11: Distribution of read speeds for each MPI rank, for
run 2, batch 1, of the 32-node run on Cori I (Haswell nodes),
for the 1barrier strategy.

we measured each step (merging of DataFrames, selection of elec-
trons, per-rank histogramming, and reduction to a single histogram)
separately. We observed the slowest of the steps was the merging.

Figures 12 and 13 shows the measurements of the speed for
the merging step. These data are single-modal, and show a much
smaller fractional variation than do the reading speeds. We ob-
serve no significant difference between the different syncronization
strategies. The 32-node runs process at approximately 4 times the
rate of the 8-node runs, consistent with the excellent scaling show
in figure 7.

5 LESSONS LEARNED

Input data format and organization: We now have data organized
within the file to facilitate reading for analysis. A wide variety of
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Figure 12: Distribution of merge speeds for each MPI rank,
for 8-node runs on Cori I (Haswell nodes). The green ribbon
shows the batch job number, and the tan ribbon shows the
synchronization strategy. Each panel corresponds to a sin-
gle batch job. Each line corresponds to a single program run,
and shows the distribution of merge speeds for each of 256
ranks. Note the x-axis is logarithmic.

HEP data are easily stored in tabular format, including an over-
whelming majority of data used in interactive analysis. It is worth-
while storing data in HDF5 groups in a way that can be easily
represented in memory, with a form that makes it easier and more
efficient to describe operations on these data. Such an organization
allows reading and visualization to be simplified as well.

Data distribution: The number and size of files determine how
to distribute data among MPI ranks. If there is one large file, it is
straightforward to divide the data among all MPI ranks; if there are
a large number of small files, each MPI rank can process one file.
Our original data was organized into several files of different sizes.
We consolidated data into one large file, where file size ranged from
hundreds of MiBs to 100 GiB. The code to read one large file is
simpler and efficient.

High Level API: Many operations commonly used in HEP analysis
tasks can be directly described using the high-level APIs provided
by numpy and pandas DataFrame APIL The resulting code is easy
to read and efficient as well.

Application tuning: The first version of the code we wrote, for
both reading and analysis, had substantially worse performance
than the version presented in this paper. Because the development
environment and tools provided by Python were sufficiently easy
to use, we were able to quickly identify performance bottlenecks.
Such ease-of-development for non-experts is a critical advantage
for our community.
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Figure 13: Distribution of merge speeds for each MPI rank,
for 32-node runs on Cori I (Haswell nodes); see figure 12 for
details. In this figure, there are 1024 ranks per program run.

Performance evaluations: Many HEP analysis tasks are very de-
manding of the I/O system. Performance evaluation of such pro-
cessing is made difficult by the fact that the global filesystem is a
shared resource, and is thus influenced by things other than the
processing being measured. In order to understand the performance
of such programs, access to performance data for the machine as a
whole seems necessary.

6 CONCLUSION AND FUTURE WORK

The processing stages in the CMS Dark Matter analysis represent
an important class of problems in experimental HEP. These stages
include applying several selection and filtering criteria and plotting.
HEP scientists use Python for several data processing tasks, provid-
ing them with data layouts to enable efficient analysis operations
in Python is promising.

We will study scalability with a data set that is 100 times larger.
and performance with the implementation of the same use case in
Spark, an industry standard “big data” analysis system. We will also
implement more use cases from HEP analyses. Read performance
on the KNL nodes will also be investigated; it may not be best to
read data on KNL nodes from all active ranks. A better organization
may be to read from few ranks, or even one rank, per node. We will
work on removing the explicit synchronization and communication
aspects from the user code (as was visible in the reduction step of
the histogramming example) by providing interfaces that abstract
away the complexities of parallel code.

S. Sehrish et al.
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