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ABSTRACT
High level abstractions in Python that can utilize computing hard-
ware well seem to be an attractive option for writing data reduction
and analysis tasks. In this paper, we explore the features available in
Python which are useful and efficient for end user analysis in High
Energy Physics (HEP). A typical vertical slice of an HEP data anal-
ysis is somewhat fragmented: the state of the reduction/analysis
process must be saved at certain stages to allow for selective repro-
cessing of only parts of a generally time-consuming workflow. Also,
algorithms tend to to be modular because of the heterogeneous
nature of most detectors and the need to analyze different parts
of the detector separately before combining the information. This
fragmentation causes difficulties for interactive data analysis, and
as data sets increase in size and complexity (O10 TiB for a “small”
neutrino experiment to the O10 PiB currently held by the CMS
experiment at the LHC), data analysis methods traditional to the
field must evolve to make optimum use of emerging HPC technolo-
gies and platforms. Mainstream big data tools, while suggesting a
direction in terms of what can be done if an entire data set can be
available across a system and analysed with high-level program-
ming abstractions, are not designed with either scientific computing
generally, or modern HPC platform features in particular, such as
data caching levels, in mind.

Our example HPC use case is a search for a new elementary
particle which might explain the phenomenon known as “Dark
Matter”. Using data from the CMS detector, we will use HDF5 as
our input data format, and MPI with Python to implement our use
case.
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1 INTRODUCTION
The field of experimental High Energy Physics (HEP) is concerned
with the design, creation, running and analysis of data from ma-
chines which will improve our understanding of the fundamental
particles and the forces between them. The interactions studied are
statistical in nature, so we have always been relatively demand-
ing of computational, data storage and transfer resources in order
to measure properties of the particles known exist, or to discover
those which have hitherto only been predicted by theory. As the
field advances, these demands have only increased as we attempt to
discover and characterise ever-more-elusive particles and interac-
tions. From the discovery of the Higgs boson at the Large Hadron
Collider (LHC) in Switzerland where over 300 trillion (3 × 1014)
proton-proton collisions were required for analysis [5], the up-
coming high luminosity run [2] (dubbed “HL-LHC”) will generate
interactions for study at nearly 8 times the rate of the previous
run, each of which will require significantly more data to describe,
allowing us to push for a deeper understanding of the Higgs boson
and its implications for the fundamental laws of nature.

An HEP data analysis workflow can generally be subdivided
into Data Acquisition (DAQ), event reconstruction, and data anal-
ysis stages, the results of each being saved to storage separately.
Dedicated hardware-adjacent systems are generally responsible
for the collection of data and “event building”—structuring the
data for each particle bunch interaction—and the initial saving of
the data to the storage system for subsequent stages. These raw
data are refined during the event reconstruction phase to produce
physically-significant information such as particle trajectories, par-
ticle identification, and energy measurements. This step generally
employs time-consuming algorithms and may actually produce a
larger data set than the original raw data from which it is derived.
Reconstruction, like DAQ, is usually a process coordinated across
the experimental collaboration andwhile the algorithmsmay evolve
over time, there is often only one such workflow per experiment.
Data analysis is usually tailored for an individual physical interac-
tion process, result or paper, but generally includes data reduction
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via selection and statistical summarization, and the creation of ex-
ploratory plots prior to the production of the final result. There
are thus often many data analysis workflows per experiment, and
they are individually generally more demanding of I/O than com-
pute cycles, with the notable exception of deep learning training
operations for certain analysis algorithms.

A given data analysis workflow will usually have multiple data
reduction steps necessary to produce a data set suitable for in-
teractive analysis. The execution time of such workflows vary in
duration up to weeks, and multiple iterations of this reduction pro-
cess may be necessary during the refinement of an analysis. Figure 1
describes these steps for the example use case, and the data storage
requirements for the intermediate stages. Our overarching aim is to
enable interactive in-memory analysis of data volumes of the order
of that expected from HL-LHC while minimizing where possible
costs of intermediate storage and the need for the handling of large
numbers of files. High performance Python looks promising for
our purpose: it provides a familiar programming environment to
the physicist, it provides efficient ways to deal with the data we
have formatted for the HPC platforms, and it provides efficient
vectorized operations to doing these data analyses.
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Figure 1: The left-hand side shows the current flow of oper-
ations and data, the frequency of each operation, and time
taken by each operation, for the CMS Dark Matter analysis.
Our proposed design is shown on the right-hand side [9].

A secondary goal of the study is to close in on a paradigm that
will allow physicist programmers to construct and refine an analysis
workflowwithout the need to develop expertise in parallel program-
ming. This notional toolbox will have different aspects for different
styles of analysis, but the common thread will be ease of use for
the physicist whose primary interest is developing their analysis
rather than any broad or deep knowledge of HPC programming
techniques and technologies.

In Section 2, we explain the CMS Dark Matter search use case,
and current approach and computing available to perform this anal-
ysis. In Section 3, we briefly describe the fundamental concepts of

HPC I/O used in this paper, and provide details about the input data
format and analysis encoding. Section 4 explains the experimental
setup, and discusses results. We provide a list and discussion of
lessons learned in Section 5. We discuss the conclusion and future
work in Section 6.

2 SCIENCE USE CASE: CMS DARK MATTER
SEARCH

The CMS detector is a physically large, heterogeneous detector ca-
pable of measuring various properties of particle collision products,
such as charged particle tracks, the energy depositions of charged
and neutral particles in calorimeters, collision product identity and
mass. An example of a particle bunch collision (“event”) in CMS
is shown in figure 2. Due to the probabilistic nature of the science
behind such collisions, huge numbers of them are required to be
able to make statistical observations about the physical processes
these events depict. The particular use case studied in this work
is a the search for a hypothetical particle that may be responsible
for Dark Matter in the universe, the gross effects of which can be
seen in the rotation of galaxies, and the dynamics of intergalactic
collisions. One possible indicator of the existence of such a particle
is the production of events containing a single top quark. Given a
description of the detectable signature of such an event, the analysis
must search the entire data set to obtain statistically significant
evidence for discovery, or based on the amount of data examined,
to place limits on the likelihood of the existence of the postulated
particle. One would reduce the data based on attributes of the postu-
lated signature such as expected spatially-isolated electrons within
a particular momentum range, accompanied by higher momentum
muons and a relatively low measurement of the “missing energy”,
which is a measure of the imbalance of momentum in the particles
observed in the detector.

Figure 2: A collision inside the CMS detector. Identified par-
ticle tracks are color coded, with red for muons and green
for electrons [7].

The data to be analyzed is from the 2015 data set of about 200 TiB,
comprising both DAQ-obtained data and simulated events produced
with Monte Carlo techniques. With HL-LHC, the data volume avail-
able for the analysis will be significantly greater. For our analysis,
the required components of the data are converted to “n-tuples”,
flat data structures of homogeneous collections of mainly integers
and floating point numbers. Each row of the n-tuple contains a
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metadata description and identity of a particle, and its properties.
Because each event may contain several identified particles of a
given type, multiple rows may be necessary to completely describe
an event. Data reduction filters are applied to reduce further the
data size from ≈ 2 TiB to a few GiB, suitable for interactive analysis.
Quantities from this reduced n-tuple are then summarized, com-
bined and plotted to look for evidence of the postulated particle
against the representative background of simulated data where the
postulated particle is known to be absent. The whole workflow can
take from days to weeks to execute depending on the amount of
data examined and the iterations required to refine the analysis.

3 DESIGN AND IMPLEMENTATION
Our proposed approach for the CMS analysis is contrasted with the
current CMS approach in Figure 1. The input data in the original
workflow is stored using ROOT [4], which is the most common data
format in HEP.We have chosen to use the Hierarchical Data Format,
version 5 (HDF5) [10] because of the widespread availability and
support of optimized installations at HPC centers, and because
of the wide variety of analysis and visualization tools that can
efficiently access data stored in this format.

The Python library pandas [8] provides a popular high-level
set of facilities for transformation and statistical analysis of data.
The pandas library provides a class DataFrame that represents a
table of data. The use of DataFrames, which in turn use numpy
ndarrays, allows us to make use of vectorized operations in data
transformations. In addition, the Python librarympi4py [3] provides
a high-level interface to MPI that makes it sufficiently easy to use
for programmers without expertise in MPI, which is our target
community.

We discuss the input data, its representation in HDF5, reading
and analysis implementation in the following subsections.

3.1 Tabular data storage using HDF5
The HDF5 libraries can be used in a wide variety of manners; it does
not mandate any single usage pattern. Because we are interested
in writing tabular data, and in reading that data using a variety
of programming language tools, we have chosen to use a specific
format that makes both writing and reading of the data simple and
efficient.

In each HDF5 file, we store one or more tables. The top-level
root node of the HDF5 files we write contain only these tables. This
makes discovery of the number and names of tables in our files
simple.

Each table is implemented as an HDF5 group. This allows us to
attach any relevant metadata, and to have an arbitrary number of
columns in the table. Our own data writing API makes sure that all
columns in a given table have the same length. This organization
makes it simple to discover the number and types of the columns
in a table.

Each column is implemented as an HDF5 dataset. Our format
allows for datasets that contain multi-dimensional arrays. For the
use case described in this paper, such arrays are not needed; how-
ever, for other use cases they are necessary. Because the dataset
carries information about the dimensionality of the arrays stored

in it, the code reading the dataset does not have to have knowledge
of what had been written.

The combination of choices in this design allows us to write
generic code, in a variety of languages supported by HDF5, to read
any file written in our format. The code does not need to have been
written with knowledge of the names of tables, nor with knowledge
of the number and types of columns in each table.

Figure 3 shows the organization of the CMS data in the ROOT
files, where each row contains all the data for different particles and
their properties in an event. In the HDF5 format, we store the data
for each particle type in a table named for that particle type, and
each property of the particle as a column in that table, as shown
in Figure 4. Since, in this format, the rows do not correspond to
individual events, we also need to store a column that identifies to
which event each particle belongs.

In addition to the particles, the general general properties of
an event are also stored in a different table. Each table can be pro-
cessed independently and in parallel. Additionally, column-oriented
transformations and reductions can be executed in parallel.

Figure 3: An example of the CMS data organization in the
current ROOT format. Each row represents an event. Each
event has two types of particles; electrons and taus [9].

Figure 4: The data of figure 3, in our HDF5 organization [9].
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3.2 Reading tabular data into pandas
DataFrames

Our HDF5 file format can store data that pandas is unable to rep-
resent; in particular, our columns can carry not only scalar values,
but also multi-dimensional arrays. Thus we are unable to use the
facilities that pandas provides to read HDF5 files. However, using
the Python package h5py [1], we are able to read the columns into
numpy ndarray objects. When, as in this use case, the columns con-
tain only scalar values, the set of ndarrays read from the columns of
one table can be efficiently converted into a DataFrame. The h5py
package is capable of using HDF5’s MPI I/O support, which we take
advantage of.

Each column in a table is divided into equal chunks of a size that
depends on the number of MPI processes; using mpi4py [3] makes
this task simple. The analysis task requires that each MPI rank has a
portion of all the columns needed; each rank has different rows, and
no data are shared. Using h5py, each MPI rank reads a contiguous
portion of each column in a table into a numpy ndarray. We put
all the ndarrays corresponding to columns of a table into a Python
dictionary. This dictionary is converted to a pandas DataFrame.
Figure 5 shows an example of this read operation.

HDF5 Group

Convert to Pandas 
DataFrame

HDF5 Dataset 1
HDF5 Dataset 2

HDF5 Dataset 3

HDF5 Dataset 4
Chunk 

MPI rank 1

MPI rank 2

MPI rank 3

4 Numpy arrays per rank 1 pandas DataFrame per rank

Figure 5: An example of parallel reading and creation of a
pandas DataFrame, using three MPI ranks. There are four
columns in the example table; a portion of each column is
read into a numpy ndarray by each of MPI ranks. Each MPI
rank creates one pandas DataFrame from its ndarrays.

3.3 Encoding Analysis
The organization of data determines what APIs can be used to ef-
ficiently implement the analysis of those data. Our analysis task
involves mutations (defining new quantities using one or more
columns in aDataFrame), filtering operations acrossmultiple columns
within a DataFrame, and reduction operations on the resulting data.
Use of column-based (numpy vectorized) operations is critical for
good performance. Parallel execution of the transformations and
filtering does not require writing of any additional code, because
each MPI rank is processing an independent DataFrame. Parallel
execution of reduction operations is made easy by the high-level
mpi4py API (we note in section 6 how it can be made even easier).

Listing 1 shows an example of parallel filtering code; the full
analysis requires tens of such filtering operations. Note that the

parallelism is implicit: no special code needs to be written to par-
allelize the operation because each MPI rank is processing data
independently of every other rank.

def filter_electrons(df):
f = ((iso < 0.126* df.pt)

|( dEtaIn < 0.01520)
|(df.sieie < 0.01140))
& f_scEta0

return df[(abs(df.eta) < 2.5)
& (df.pt >= 10)
& f]

Listing 1: Example of the filtering criteria for electrons.

In this example, df is the electrons DataFrame. sieie, eta and pt
are three of the columns in the DataFrame. iso, dEtanln, f_scEta0
are new quantities calculated by transformations omitted from the
code for clarity. For such transformation and filtering, no MPI
synchronization or communication is needed, and so we would
expect excellent scaling.

Listing 2 shows the code for filling a histogram. Each rank calcu-
lates a local histogram; all have the same binning, so combination of
the local histograms into a single global histogram can be done with
an MPI reduction that does a bin-by-bin addition of the counts in
each histogram. The code shows the two-step process: first, filling
of the local histogram, and second the reduction. While this does
not require much MPI expertise, we view this as a place where we
can make improvement for our user community.

fdf = filter_electrons(df)
bins = [0, 20, 30, 40, 50, 100, 500]
myhist , _ = np.histogram(fdf['pt'],

bins = bins)
hist = MPI.COMM_WORLD.reduce(myhist ,

op = MPI.SUM ,
root = 0)

Listing 2: Histogramming of electron transverse momenta.

4 RESULTS AND DISCUSSION
We ran tests on both Cori Phase I (Haswell compute nodes) and
Phase II (KNL compute nodes). We used 2–64 nodes on Cori Phase
I, and 2–32 nodes on Cori Phase II, in all cases using one physical
core per MPI rank. Each Haswell node has two sockets, and each
socket is populated with a 16-core Intel Xeon Processor E5-2698 v3
(Haswell) with a clock speed of 2.3 GHz. Each node has 128 GiB
DDR4 2133 MHz memory (four 16 GiB DIMMs per socket). Each
core has its own L1 (64 KiB) and L2 (256 KiB) caches, and a 40 MiB
shared L3 cache per socket. Each KNL node has 68 cores and 96 GiB
DDR4 2400 MHz memory per node. Each node has 16 GiB of on-
package, high-bandwidth multi-channel DRAM (MCDRAM). We
have used both of the flexible memory modes available, cache mode
(effectively an L3 cache) and flat mode (a unique NUMA domain,
separate from DDR4).
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r e as o n a bl y w ell o ut t o 3 2 n o d es f or b ot h H as w ell a n d K N L, a n d f or
b ot h m e m or y m o d es of t h e K N L n o d es. At 6 4 n o d es, t h e v ari a bilit y
i n p erf or m a n c e is l ar g e. C o m p ari n g t h e K N L c a c h e a n d l at m o d es,
w e s e e t h at f or a n al ysis t h e c a c h e m o d e pr o vi d es u nif or ml y s u p eri or
p erf or m a n c e, al b eit b y a s m all m ar gi n. U nli k e t h e r e a di n g t as k,
n ot hi n g i n t h e s oft w ar e st a c k t a k es a d v a nt a g e of t h e s p e ci al m e m or y
m a d e a v ail a bl e i n l at m o d e; t h us t h e l ar g er c a c h e a v ail a bl e i n c a c h e
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Fi g u r e 7: S c ali n g o f p r o c e s si n g s p e e d f o r a n al y si s of C M S
d at a i n m e m o r y, f o r C o ri P h a s e I a n d P h a s e II.

Fi g ur e 8 s h o ws a n ot h er vi e w of t h e s a m e d at a, b ut dis pl a y e d
i n a f as hi o n t o hi g hli g ht a n y d e vi ati o ns fr o m p erf e ct s c ali n g. T his
i g ur e s h o ws h o w t h e t ot al c o m p uti n g w or k d o n e ( m e as ur e d i n
n o d e-s e c o n ds, r at h er t h a n t h e m or e c o m m o n C P U- h o urs) c h a n g es
wit h t h e n u m b er of n o d es. F or a pr o gr a m t h at s c al es p erf e ctl y, t h e
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Fi g u r e 8: S c ali n g t ot al w o r k d o n e f o r a n al y si s o f C M S d at a
i n m e m o r y, f o r C o ri P h a s e I a n d P h a s e II.

a m o u nt of w or k t h at n e e ds t o b e d o n e d o es n ot c h a n g e as t h e n u m-
b er of n o d es us e d f or t h e t as k is i n cr e as e d; t h us a pr o gr a m t h at
s c al es p erf e ctl y w o ul d yi el d p erf or m a n c e d at a t h at w o ul d f or m a
h ori z o nt al li n e. F or t h e H as w ell n o d es, t h e v ari a bilit y of t h e d at a
m a k e it di i c ult t o r e a c h a cl e ar c o n cl usi o n, e x c e pt t h at t h e p er-
f or m a n c e at 6 4 n o d es is cl e arl y w ors e t h a n t h at at 3 2 n o d es. F or
t h e K N L n o d es, i n b ot h m o d es, usi n g eit h er t o o f e w or t o o m a n y
n o d es r es ults i n a n i n cr e as e i n t h e a m o u nt of w or k t h at n e e ds t o
b e d o n e. T his is es p e ci all y dr a m ati c w h e n o nl y t w o n o d es ar e us e d.
T h e i m pr o v e d m e m or y l o c alit y o bt ai n e d b y usi n g a n a p pr o pri at e
n u m b er of n o d es pr o vi d es s u p eri or p erf or m a n c e. I n c o m p ari n g
t h e c a c h e a n d l at m o d es, w e als o s e e t h e cl e ar a d v a nt a g e of t h e
a d diti o n al l o c al m e m or y a v ail a bl e i n t h e c a c h e m o d e.

B e c a us e of t h e wi d e v ari ati o ns i n r e a d p erf or m a n c e s e e n i n i g-
ur e 6, w e st u di e d t h e r e a d p erf or m a n c e o n t h e H as w ell n o d es i n
m or e d et ail. First, i n or d er t o a v oi d a n y mi gr ati o n of pr o c ess es
b et w e e n c or es, w e us e d t h e - - c p u _ b i n d = r a n k o pti o n of t h e s r u n
c o m m a n d. We als o e x pl or e d w h et h er t h e l a c k of c o or di n ati o n b e-
t w e e n r a n ks mi g ht h a v e b e e n r es p o nsi bl e f or t h e l ar g e v ari ati o ns i n
r e a d p erf or m a n c e. We c h os e t hr e e str at e gi es f or c o ntr olli n g s y n c hr o-
ni z ati o n b y pl a c e m e nt of M PI b arri ers. T h e irst str at e g y, l a b el e d
n o b arri er , e m pl o y e d n o b arri ers; t his r e pr o d u c e d o ur ori gi n al r u n-
ni n g c o n diti o ns. T h e s e c o n d str at e g y, l a b el e d 1 b arri er , e m pl o y e d
a si n gl e M PI b arri er pl a c e d b ef or e t h e r e a di n g of t h e d at a. T his
e ns ur e d t h at t h e st art- u p ti m e of di f er e nt r a n ks ( o bs er v e d t o b e u p
t o ∼ 6 0 s e c o n ds) di d n ot c a us e t h e r e a d st e p t o b e gi n at di f er e nt
ti m es f or di f er e nt r a n ks of t h e s a m e pr o gr a m. T h e t hir d str at e g y
(l a b el e d 2 b arri er ) us e d b arri ers b ef or e a n d aft er t h e r e a di n g; t his
e ns ur e d t h at t h e i n- m e m or y pr o c essi n g w as n ot b e g u n b y a n y r a n k
u ntil all r a n ks h a d i nis h e d r e a di n g. F or e a c h of t h es e str at e gi es, w e
m e as ur e d t h e p erf or m a n c e of b ot h 8- a n d 3 2- n o d e j o bs. We c h os e
t h es e j o bs b e c a us e t h e 8- n o d e j o bs w er e t h e l ar g est t h at s h o w e d r el-
ati v el y m o d est v ari ati o n i n r e a d ti m e, a n d t h e 3 2- n o d e j o bs s h o w e d
v er y dr a m ati c v ari ati o n. F or e a c h of t h es e c o n i g ur ati o ns, w e r a n
t w o b at c h es ( e a c h s u b mitt e d as a n i n d e p e n d e nt b at c h j o b) of 8 r u ns
e a c h. Fi n all y, w e i nstr u m e nt e d t h e pr o gr a m t o c oll e ct d at a o n all

r a n ks of t h e pr o gr a m i n d e p e n d e ntl y (t h e pr e vi o us r u ns c oll e ct e d
d at a o nl y o n r a n k 0 of e a c h pr o gr a m). We n ot e t h at all of t h e r u ns of
a gi v e n b at c h w er e e x e c ut e d wit hi n 3 0 mi n ut es of e a c h ot h er. T h e
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di f er e nt b at c h es w er e s e p ar at e d i n ti m e b y m u c h l ar g er i nt er v als.

Fi g u r e 9: Di st ri b uti o n of r e a d s p e e d s f o r e a c h M PI r a n k, f o r
8- n o d e r u n s o n C o ri I ( H a s w ell n o d e s). T h e g r e e n ri b b o n
s h o w s t h e b at c h j o b n u m b e r, a n d t h e t a n ri b b o n s h o w s t h e
s y n c h r o ni z ati o n st r at e g y. E a c h p a n el c o r r e s p o n d s t o a si n-
gl e b at c h j o b. E a c h li n e c o r r e s p o n d s t o a si n gl e p r o g r a m r u n,
a n d s h o w s t h e di st ri b uti o n of r e a di n g s p e e d s f o r e a c h of 2 5 6
r a n k s. N ot e t h e x - a xi s i s l o g a rit h mi c.

Fi g ur e 9 s h o ws t h e r es ults of t h es e m e as ur e m e nts f or t h e 8-
n o d e r u ns, a n d i g ur e 1 0 s h o w t h e r es ults f or t h e 3 2- n o d e r u ns.
E a c h n u m b er e d p a n el i n t h e pl ots s h o ws t h e r es ults of o n e of t h e
8 r u ns. T h e d at a ar e dis pl a y e d as a vi oli n pl ot [1 1 ], w hi c h s h o ws
t h e distri b uti o n of pr o c essi n g s p e e ds ( as esti m at e d b y a G a ussi a n
k er n el d e nsit y esti m at e). E a c h “ vi oli n” d e n ot es 2 5 6 m e as ur e m e nts
( o n e p er r a n k) f or t h e 8- n o d e r u ns a n d 1 0 2 4 m e as ur e m e nts f or t h e
3 2- n o d e r u ns. O ur irst o bs er v ati o n is t h at all of t h e distri b uti o ns,
s a v e o n e, ar e m ulti- m o d al; s u c h d at a ar e n ot w ell- d es cri b e d b y a
si n gl e st atisti c s u c h as a m e a n or m e di a n. F or t h e 8- n o d e d at a, t h e
1 b arri er r u ns s h o w s o m e w h at w ors e p erf or m a n c e t h a n d o eit h er of
t h e ot h er c o n i g ur ati o ns, a n d dr a m ati c all y s o f or a f e w of t h e r u ns.

F or t h e 3 2- n o d e d at a, t h e di f er e n c e b et w e e n t h e 1 b arri er a n d
2 b arri er r es ults is e v e n m or e dr a m ati c, b ut t h e 1 b arri er r e a ds ar e
f ast er. M ost r e m ar k a bl e is t h e o bs er v ati o n t h at t h e v ari ati o n b e-
t w e e n r a n ks wit hi n a si n gl e pr o gr a m e x e c uti o n w as n e gli bl e f or
t h e 1 b arri er str at e g y. Fi g ur e 1 1 s h o ws t h e d et ails of o n e of t h es e
r u ns; n ot e t h e e xtr e m el y s m all r a n g e of t h e x - a xis.

Usi n g t h e p erf or m a n c e d at a w e c oll e ct e d f or t h e 8- a n d 3 2- n o d e
r u ns, w e l o o k e d i n m or e d et ail at t h e i n- m e m or y pr o c essi n g. R at h er
t h a n m e as uri n g t h e s p e e d f or t h e e ntir e i n- m e m or y pr o c essi n g,
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Fi g u r e 1 0: Di st ri b uti o n o f r e a d s p e e d s f o r e a c h M PI r a n k, f o r
3 2- n o d e r u n s o n C o ri I ( H a s w ell n o d e s); s e e i g u r e 9 f o r d e-
t ail s. I n t hi s i g u r e, t h e r e a r e 1 0 2 4 r a n k s p e r p r o g r a m r u n.

Fi g u r e 1 1: Di st ri b uti o n o f r e a d s p e e d s f o r e a c h M PI r a n k, f o r
r u n 2, b at c h 1, of t h e 3 2- n o d e r u n o n C o ri I ( H a s w ell n o d e s),
f o r t h e 1 b a r ri e r st r at e g y.

w e m e as ur e d e a c h st e p ( m er gi n g of D at a Fr a m es, s el e cti o n of el e c-
tr o ns, p er-r a n k hist o gr a m mi n g, a n d r e d u cti o n t o a si n gl e hist o gr a m)
s e p ar at el y. We o bs er v e d t h e sl o w est of t h e st e ps w as t h e m er gi n g.

Fi g ur es 1 2 a n d 1 3 s h o ws t h e m e as ur e m e nts of t h e s p e e d f or
t h e m er gi n g st e p. T h es e d at a ar e si n gl e- m o d al, a n d s h o w a m u c h
s m all er fr a cti o n al v ari ati o n t h a n d o t h e r e a di n g s p e e ds. We o b-
s er v e n o si g ni i c a nt di f er e n c e b et w e e n t h e di f er e nt s y n cr o ni z ati o n
str at e gi es. T h e 3 2- n o d e r u ns pr o c ess at a p pr o xi m at el y 4 ti m es t h e
r at e of t h e 8- n o d e r u ns, c o nsist e nt wit h t h e e x c ell e nt s c ali n g s h o w
i n i g ur e 7.

5 L E S S O N S L E A R N E D

I n p ut d at a f or m at a n d or g a ni z ati o n: We n o w h a v e d at a or g a ni z e d
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wit hi n t h e il e t o f a cilit at e r e a di n g f or a n al ysis. A wi d e v ari et y of

Fi g u r e 1 2: Di st ri b uti o n of m e r g e s p e e d s f o r e a c h M PI r a n k,
f o r 8- n o d e r u n s o n C o ri I ( H a s w ell n o d e s). T h e g r e e n ri b b o n
s h o w s t h e b at c h j o b n u m b e r, a n d t h e t a n ri b b o n s h o w s t h e
s y n c h r o ni z ati o n st r at e g y. E a c h p a n el c o r r e s p o n d s t o a si n-
gl e b at c h j o b. E a c h li n e c o r r e s p o n d s t o a si n gl e p r o g r a m r u n,
a n d s h o w s t h e di st ri b uti o n of m e r g e s p e e d s f o r e a c h of 2 5 6
r a n k s. N ot e t h e x - a xi s i s l o g a rit h mi c.

H E P d at a ar e e asil y st or e d i n t a b ul ar f or m at, i n cl u di n g a n o v er-
w h el mi n g m aj orit y of d at a us e d i n i nt er a cti v e a n al ysis. It is w ort h-
w hil e st ori n g d at a i n H D F 5 gr o u ps i n a w a y t h at c a n b e e asil y
r e pr es e nt e d i n m e m or y, wit h a f or m t h at m a k es it e asi er a n d m or e
e i ci e nt t o d es cri b e o p er ati o ns o n t h es e d at a. S u c h a n or g a ni z ati o n
all o ws r e a di n g a n d vis u ali z ati o n t o b e si m pli i e d as w ell.

D at a distri b uti o n: T h e n u m b er a n d si z e of il es d et er mi n e h o w
t o distri b ut e d at a a m o n g M PI r a n ks. If t h er e is o n e l ar g e il e, it is
str ai g htf or w ar d t o di vi d e t h e d at a a m o n g all M PI r a n ks; if t h er e ar e
a l ar g e n u m b er of s m all il es, e a c h M PI r a n k c a n pr o c ess o n e il e.
O ur ori gi n al d at a w as or g a ni z e d i nt o s e v er al il es of di f er e nt si z es.
We c o ns oli d at e d d at a i nt o o n e l ar g e il e, w h er e il e si z e r a n g e d fr o m
h u n dr e ds of Mi Bs t o 1 0 0 Gi B. T h e c o d e t o r e a d o n e l ar g e il e is
si m pl er a n d e i ci e nt.

Hi g h L e v el A PI: M a n y o p er ati o ns c o m m o nl y us e d i n H E P a n al ysis
t as ks c a n b e dir e ctl y d es cri b e d usi n g t h e hi g h-l e v el A PIs pr o vi d e d
b y n u m p y a n d p a n d as D at a Fr a m e A PI. T h e r es ulti n g c o d e is e as y
t o r e a d a n d e i ci e nt as w ell.

A p plic ati o n t u ni n g: T h e irst v ersi o n of t h e c o d e w e wr ot e, f or
b ot h r e a di n g a n d a n al ysis, h a d s u bst a nti all y w ors e p erf or m a n c e
t h a n t h e v ersi o n pr es e nt e d i n t his p a p er. B e c a us e t h e d e v el o p m e nt
e n vir o n m e nt a n d t o ols pr o vi d e d b y P yt h o n w er e s u i ci e ntl y e as y
t o us e, w e w er e a bl e t o q ui c kl y i d e ntif y p erf or m a n c e b ottl e n e c ks.
S u c h e as e- of- d e v el o p m e nt f or n o n- e x p erts is a criti c al a d v a nt a g e
f or o ur c o m m u nit y.
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Fi g u r e 1 3: Di st ri b uti o n of m e r g e s p e e d s f o r e a c h M PI r a n k,
f o r 3 2- n o d e r u n s o n C o ri I ( H a s w ell n o d e s); s e e i g u r e 1 2 f o r
d et ail s. I n t hi s i g u r e, t h e r e a r e 1 0 2 4 r a n k s p e r p r o g r a m r u n.

P erf or m a nc e e v al u ati o ns: M a n y H E P a n al ysis t as ks ar e v er y d e-
m a n di n g of t h e I/ O s yst e m. P erf or m a n c e e v al u ati o n of s u c h pr o-
c essi n g is m a d e di i c ult b y t h e f a ct t h at t h e gl o b al il es yst e m is a
s h ar e d r es o ur c e, a n d is t h us i n l u e n c e d b y t hi n gs ot h er t h a n t h e
pr o c essi n g b ei n g m e as ur e d. I n or d er t o u n d erst a n d t h e p erf or m a n c e
of s u c h pr o gr a ms, a c c ess t o p erf or m a n c e d at a f or t h e m a c hi n e as a
w h ol e s e e ms n e c ess ar y.

6 C O N C L U SI O N A N D F U T U R E W O R K

T h e pr o c essi n g st a g es i n t h e C M S D ar k M att er a n al ysis r e pr es e nt
a n i m p ort a nt cl ass of pr o bl e ms i n e x p eri m e nt al H E P. T h es e st a g es
i n cl u d e a p pl yi n g s e v er al s el e cti o n a n d ilt eri n g crit eri a a n d pl otti n g.
H E P s ci e ntists us e P yt h o n f or s e v er al d at a pr o c essi n g t as ks, pr o vi d-
i n g t h e m wit h d at a l a y o uts t o e n a bl e e i ci e nt a n al ysis o p er ati o ns
i n P yt h o n is pr o misi n g.

We will st u d y s c al a bilit y wit h a d at a s et t h at is 1 0 0 ti m es l ar g er.
a n d p erf or m a n c e wit h t h e i m pl e m e nt ati o n of t h e s a m e us e c as e i n
S p ar k, a n i n d ustr y st a n d ar d “ bi g d at a” a n al ysis s yst e m. We will als o
i m pl e m e nt m or e us e c as es fr o m H E P a n al ys es. R e a d p erf or m a n c e
o n t h e K N L n o d es will als o b e i n v esti g at e d; it m a y n ot b e b est t o
r e a d d at a o n K N L n o d es fr o m all a cti v e r a n ks. A b ett er or g a ni z ati o n
m a y b e t o r e a d fr o m f e w r a n ks, or e v e n o n e r a n k, p er n o d e. We will
w or k o n r e m o vi n g t h e e x pli cit s y n c hr o ni z ati o n a n d c o m m u ni c ati o n
as p e cts fr o m t h e us er c o d e ( as w as visi bl e i n t h e r e d u cti o n st e p of
t h e hist o gr a m mi n g e x a m pl e) b y pr o vi di n g i nt erf a c es t h at a bstr a ct
a w a y t h e c o m pl e xiti es of p ar all el c o d e.

7 A C K N O W L E D G M E N T S

We w o ul d li k e t o t h a n k o ur t e a m at F er mil a b: Oli v er G uts c h e, M at-
t e o Cr e m o n esi, B o J a y atil a k a, Cristi n a M a ntill a, Al e c B u c h a n a n,
a n d at Pri n c et o n U ni v ersit y: Ji m Pi v ars ki, Al e x e y S v y at k o vs ki y f or
pr o vi di n g d et ails o n t h e s ci e n c e us e c as e a n d c o m p uti n g m o d el. T his
m a n us cri pt h as b e e n a ut h or e d b y F er mi R es e ar c h Alli a n c e, L L C
u n d er C o ntr a ct N o. D E- A C 0 2- 0 7 C H 1 1 3 5 9 wit h t h e U. S. D e p art m e nt
of E n er g y, O i c e of S ci e n c e, O i c e of Hi g h E n er g y P h ysi cs. T his
r es e ar c h us e d r es o ur c es of t h e N ati o n al E n er g y R es e ar c h S ci e nti i c
C o m p uti n g C e nt er, a D O E O i c e of S ci e n c e Us er F a cilit y s u p p ort e d
b y t h e O i c e of S ci e n c e of t h e U. S. D e p art m e nt of E n er g y u n d er
C o ntr a ct N o. D E- A C 0 2- 0 5 C H 1 1 2 3 1.
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