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2.2 Paritätsverletzende Elektron-Nukleon-Streuung und die schwache Ladung des

Protons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Kinematik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Formfaktoren des Nukleons . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Differenzieller Wirkungsquerschnitt . . . . . . . . . . . . . . . . . . . 19
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1 Einleitung und Überblick

In der Physik kennt man nach heutigem Wissensstand vier fundamentale Wechselwirkungen;
die Gravitation, die elektromagnetische, die schwache und die starke Wechselwirkung. Mit
Ausnahme der Gravitation werden diese Wechselwirkungen vom Standardmodell der Ele-
mentarteilchenphysik beschrieben. Abbildung 1 bietet einen Überblick über die Elementar-
teilchen, die im Standardmodell vorkommen.
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Abbildung 1: Klassifizierung der Elementarteilchen im Standardmodell der Elementarteil-
chenphysik: Quarks sind in Gelb dargestellt, Leptonen in Blau. Die Eichbosonen sind grün
unterlegt, das Higgs-Boson ist in Orange gezeigt. Für jedes Teilchen sind die Ruhemasse, die
elektrische Ladung in Einheiten der Elementarladung sowie die Spinquantenzahl angegeben.

Quarks und Leptonen werden in dieser Theorie als elementare Teilchen ohne innere Struktur
betrachtet. Sie sind Fermionen mit Spinquantenzahl 1/2. Quarks treten in sechs Flavours
auf, welche in drei Generationen untergliedert werden. Sie nehmen an allen Wechselwirkun-
gen teil. Es gibt sechs Leptonen, die ebenfalls in drei Generationen untergliedert werden.
Leptonen nehmen nicht an der starken Wechselwirkung teil, im Allgemeinen jedoch an den
übrigen Wechselwirkungen, wobei Neutrinos keine elektrische Ladung besitzen und somit
nicht an der elektromagnetischen Wechselwirkung teilnehmen.
Wechselwirkungen werden im Standardmodell durch den Austausch von Eichbosonen zwi-
schen Fermionen beschrieben. Eichbosonen sind Bosonen mit Spinquantenzahl 1. Die elek-
tromagnetische Wechselwirkung wird durch den Austausch von Photonen, die starke Wech-
selwirkung durch den Austausch von Gluonen und die schwache Wechselwirkung duch den
Austausch von W+-, W−- und Z0-Bosonen vermittelt.
Das Higgs-Teilchen ist ein Boson mit Spinquantenzahl 0, welches an der schwachen Wech-
selwirkung teilnimmt. Die Eichbosonen der schwachen Wechselwirkung sowie Quarks und
Leptonen erhalten ihre Ruhemassen durch Wechselwirkung mit dem Higgs-Feld im Rah-
men des Higgs-Mechanismus. Das Higgs-Boson wird nicht als Eichboson angesehen, da seine
Existenz im Rahmen des Standardmodells nicht aus einer Eichsymmetrie folgt. Beim Higgs-
Boson handelt es sich um das einzige Teilchen dieser Theorie, dessen Existenz zum Zeitpunkt
der Anfertigung dieser Arbeit noch nicht abschließend verifiziert ist. Im Juli 2012 wurde vom
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Conseil Européen pour la Recherche Nucléaire (CERN) die Entdeckung eines neuen Teilchens
bekanntgegeben, bei welchem es sich wahrscheinlich um das Higgs-Boson handelt [1].

Das Standardmodell der Elementarteilchenphysik stellt einen der größten Triumphe der Phy-
sik des 20. Jahrhunderts dar. Es beschreibt mit großem Erfolg die elektromagnetische, star-
ke und schwache Wechselwirkung für den heute experimentell zugänglichen Energiebereich.
Die präzise Übereinstimmung des g-Faktors des Elektrons in Theorie und Experiment ist
ein eindrucksvolles Beispiel für die Aussagekraft des Standardmodells. Die Theorie sagte
die Existenz des W+, W−, Z0, der Gluonen sowie des Charm- und Top-Quarks vor de-
ren Entdeckung voraus. Die vorhergesagten Eigenschaften dieser Teilchen stimmen mit den
experimentellen Befunden überein.
Das Standardmodell bietet jedoch keine vollständige Beschreibung der Physik: Es berücksichtigt
offensichtlich keine gravitativen Effekte. Das Hierarchieproblem ist ungelöst. Die Massen der
Elementarteilchen und die Kopplungsstärken der fundamentalen Wechselwirkungen ergeben
sich nicht aus der Theorie. Es fehlt eine Begründung für das Auftreten von je drei Generatio-
nen an Quarks und Leptonen. Die CP-Verletzung alleine ist darüber hinaus nicht geeignet,
um die vermutete Asymmetrie im Vorkommen von Materie und Antimaterie im Universum
zu begründen. Es ist daher anzunehmen, dass das Standardmodell Teil einer bislang un-
bekannten, einheitlichen Theorie der Physik ist. Es existieren zahlreiche Modelle, die als
mögliche Erweiterungen des Standardmodells in Frage kommen. Ein bekanntes Beispiel ist
etwa Supersymmetrie.

Die Suche nach Erweiterungen des Standardmodells ist eine der zentralen Herausforderungen
der modernen Kern- und Teilchenphysik. Eine Möglichkeit der direkten Suche nach neuen
Teilchen und Effekten neuer Wechselwirkungen ist die Durchführung von Experimenten an
Teilchenbeschleunigern mit den höchsten technisch realisierbaren Energien. Derartige Expe-
rimente finden am Large Hadron Collider (LHC) am CERN statt. Eine zu Hochenergieex-
perimenten komplementäre Möglichkeit der Verifizierung von Erweiterungen des Standard-
modells besteht in der präzisen experimentellen Bestimmung zentraler Theorieparameter;
Hypothetische Erweiterungen des Strandardmodells sagen Abweichungen der Parameter-
werte vorher, die nur im Rahmen von Präzisionsexperimenten beobachtet werden können.

Einer der zentralen Parameter des Standardmodells ist sin2(θW), wobei θW den elektroschwa-
chen Mischungswinkel, der oft auch als Weinbergwinkel bezeichnet wird, darstellt. Kapitel 2
dieser Arbeit beginnt mit einer Diskussion des elektroschwachen Mischungswinkels im Stan-
dardmodell der Elementarteilchenphysik. Der elektroschwache Mischungswinkel ergibt sich
nicht aus dem Standardmodell, es sind experimentelle Resultate zu seiner Festlegung im
Rahmen der Theorie notwendig. Der Wert des elektroschwachen Mischungswinkels hängt
ferner vom Impulsübertrag im Experiment ab, in dessen Rahmen er bestimmt wird. Auch
hierauf wird in Kapitel 2 eingegangen.
Die beiden bislang präzisesten Bestimmungen von sin2(θW) wurden an Kollidern bei hohen
Energie- und Impulsüberträgen ausgeführt. Die Resultate dieser Messungen weichen jedoch
um mehr als drei Standardabweichungen voneinander ab. Es wurden auch Bestimmungen
von sin2(θW) bei niedrigen Impulsüberträgen durchgeführt, deren Unsicherheiten jedoch ver-
gleichsweise groß sind. Kapitel 3 bietet einen Überblick über ausgewählte abgeschlossene
sowie künftige Experimente, die eine Bestimmung von sin2(θW) erlauben.
Die bislang erzielten experimentellen Resultate lassen Spielraum für Abweichungen des elek-
troschwachen Mischungswinkels von der Standardmodell-Vorhersage, die von neuen physi-
kalischen Effekten herrühren können. Ein Überblick über entsprechende hypothetische Er-
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weiterungen des Standardmodells findet sich am Ende von Kapitel 2.

Die P2-Kollaboration plant ein Experiment am neuen Elektronenbeschleuniger
”
Mainz Ener-

gy recovering Superconducting Accelerator“ (MESA) der Johannes Gutenberg-Universität in
Mainz, dessen Ziel die weltweit präziseste Messung der schwachen Ladung des Protons QW(p)
bei niedrigem negativen Viererimpulsübertragsquadrat Q2 ist. Man kann sich die schwache
Ladung des Protons als Analogon zur elektrischen Ladung bezüglich des neutralen Stroms
der schwachen Wechselwirkung vorstellen. Im Standardmodell hängt QW(p) von sin2(θW)
ab und eignet sich auf besondere Weise für eine präzise Bestimmung des elektroschwachen
Mischungswinkels, da die schwache Ladung des Protons im Standardmodell unterdrückt ist.
Die Bestimmung von QW(p) wird im P2-Experiment aus einer Präzisionsmessung der pa-
ritätsverletzenden AsymmetrieAPV

ep im Wirkungsquerschnitt der elastischen Elektron-Proton-
Streuung erfolgen. Die paritätsverletzende Streuung longitudinal polarisierter Elektronen an
einem unpolarisierten Protonen-Target ist eine wohletablierte experimentelle Methode. APV

ep

ist bei kleinem Q2 im Wesentlichen durch die schwache Ladung des Protons gegeben. Einen
Überblick über die Theorie der paritätsverletzenden Elektron-Proton-Streuung findet man in
Kapitel 2. Dort wird auch die schwache Ladung des Protons diskutiert und ihre Abhängigkeit
vom elektroschwachen Mischungswinkel herausgearbeitet. In Kapitel 3 werden ausgewählte
abgeschlossene und zukünftige Experimente zur Messungen des neutralen Stroms der schwa-
chen Wechselwirkung vorgestellt. Im P2-Experiment erwartet man sehr kleine Werte von
APV

ep ∼ 10−8, woraus sich hohe Anforderungen an einen zur präzisen Messung von APV
ep geeig-

neten Messaufbau ergeben. Eine Beschreibung von MESA und des geplanten Messaufbaus
findet sich in Kapitel 4.

Hauptgegenstand dieser Arbeit ist die Konzeptionierung eines Messaufbaus zur Durchführung
der Asymmetriemessung. Hierzu wird in Kapitel 5 zunächst die Kinematik der paritätsverletzenden
Elektron-Proton-Streuung für das P2-Experiment festgelegt. Dies geschieht, indem die Unsi-
cherheit ∆ sin2(θW) bei der Bestimmung von sin2(θW) im Rahmen von Fehlerfortpflanzungs-
rechnungen in Abhängigkeit von der Energie des Elektronenstrahls und dem Streuwinkel-
intervall der Elektronen im Endzustand der paritätsverletzenden Elektron-Proton-Streuung
minimiert wird.
Nach der Festlegung der Streukinematik wird in Kapitel 6 die Entwicklung eines grundlegen-
den Messaufbau-Konzepts dokumentiert. Wie in Kapitel 4 ausgeführt wird, ist zur Messung
der Asymmetrie im P2-Experiment der Einsatz eines Magnetspektrometers unverzichtbar.
Daher wurden die Bahnkurven von elastisch an Flüssigwasserstoff gestreuten Elektronen in
solenoidalen und toroidalen Magnetfeldern simuliert, um geeignete Positionen für das Target
und den zum Nachweis der gestreuten Elektronen vorgesehenen Detektor zu finden. Basie-
rend auf diesen Simulationsergebnissen wurde das grundlegende Konzept des Messaufbaus
im Rahmen dieser Arbeit entwickelt.
Um die Durchführbarkeit des P2-Experiments mit dem entworfenen Messaufbau-Konzept
sicherzustellen, wurde das Experiment auf umfassende Weise am Computer simuliert. Die
Simulationsanwendung wurde im Rahmen dieser Arbeit entwickelt und wird in Kapitel 7
vorgestellt. Im Anschluß hieran werden die Resultate der Simulation präsentiert und dis-
kutiert. Auf Grundlage der Simulationsergebnisse wurden Fehlerfortpflanzungsrechnungen
durchgeführt, welche die Bestimmung der im P2-Experiment erwarteten Präzision bei der
Messung der Asymmetrie und der Bestimmung des elektroschwachen Mischungswinkels ge-
statten. Die Resultate dieser Berechnungen werden am Ende von Kapitel 7 vorgestellt.
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2 Theoriegrundlage des P2-Experiments

Dieses Kapitel beginnt mit einer kurzen Diskussion der Theorie der elektroschwachen Wech-
selwirkung, in deren Verlauf der elektroschwache Mischungswinkel θW eingeführt wird. Hieran
schließt sich eine Diskussion der paritätsverletzenden Elektron-Proton-Streuung an. Es wer-
den die schwache Ladung des Protons QW(p) und die paritätsverletzende Asymmetrie der
elastischen Elektron-Proton-Streuung APV

ep definiert. Im weiteren Verlauf werden die für das
P2-Experiment relevanten Strahlungskorrekturen zur schwachen Ladung des Protons dis-
kutiert. Abschließend wird die Bedeutung präziser Messungen schwacher Ladungen bei der
Suche nach Physik jenseits des Standardmodells der Elementarteilchenphysik diskutiert, und
es werden ausgewählte Modelle zur Erweiterung des Standardmodells beleuchtet.

2.1 Der Weinbergwinkel in der elektroschwachen Wechselwirkung

Im Standardmodell kommt der schwachen Wechselwirkung eine Sonderrolle zu, da sie als
einzige der vier fundamentalen Wechselwirkungen die Parität verletzt. Die Verletzung der
Parität durch die schwache Wechselwirkung wurde erstmals im Jahr 1956 von den Theoreti-
kern Lee & Yang postuliert [2]. Kurz darauf, im Jahr 1957, wurde die Paritätsverletzung im
Rahmen des Wu-Experiments durch eine sorgfältige Analyse des β-Zerfalls von 60Co nach-
gewiesen [3]. Im selben Jahr wurde durch Garwin, Lederman und Weinrich gezeigt, dass der
Zerfall des Myons die Parität verletzt [4]. Die Idee, dass es einen neutralen Strom der schwa-
chen Wechselwirkung gibt, welcher für den β-Zerfall verantwortlich ist [5], sollte schließlich
zur Beobachtung der Paritätsverletzung in der Atomphysik sowie zu Experimenten zur pa-
ritätsverletzenden Elektronenstreuung an Teilchenbeschleunigern führen.
Die Theorie der elektroschwachen Wechselwirkung wurde um das Jahr 1970 entwickelt [6, 7].
Sie sagt die Existenz der schweren Bosonen W+, W− und Z0 vorher, welche als Austausch-
teilchen der schwachen Wechselwirklung fungieren. In einer vereinheitlichten Theorie der
elektromagnetischen und schwachen Wechselwirkung ist eine Mischung der beiden Wechsel-
wirkungen notwendig [8]. Der Grad der Mischung der beiden Wechselwirkungen wird vom
elektroschwachen Mischungswinkel θW, der oft auch als Weinbergwinkel bezeichnet wird, fest-
gelegt. Die Existenz der Eichbosonen der schwachen Wechselwirkung wurde erstmals Mitte
der 1980’er Jahre am Conseil Européen pour la Recherche Nucléaire (CERN) experimentell
verifiziert [9].

Die Theorie der elektroschwachen Wechselwirkung ist eine Eichtheorie mit Symmetriegruppe
SU(2)L × U(1)Y [10]. Die kinetischen und Wechselwirkungs-Terme der Lagrange-Dichte für
Fermionen und Eichbosonen können unter Verwendung der Einstein’schen Summenkonven-
tion folgendermaßen geschrieben werden:

LEW = χ̄Lγ
µi∂µχL − gJ iµW i

µ −
g′
2
jµ(χL)Bµ

+ ψ̄Rγ
µi∂µψR −

g′
2
jµ(ψR)Bµ

− 1

4
~Wµν · ~W µν − 1

4
BµνB

µν .

(1)

Hierin bezeichnet γµ die Dirac-Matrizen, χL ist der Dirac-Spinor eines linkshändigen Fermion-
Dubletts bezüglich des schwachen Isospins, und ψR ist der Dirac-Spinor eines rechtshändigen
Fermion-Singlets bezüglich des schwachen Isospins. Für die adjungierten Spinoren χ̄L und
ψ̄R gilt:

Ψ̄ = Ψ†γ0, Ψ ∈ {χL, ψR}, (2)
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wobei Ψ† der komplex konjugierte und transponierte Spinor Ψ ist. Die Projektion eines
Spinors Ψ auf seine links- und rechtshändige Komponente ΨL und ΨR berechnet man wie
folgt:

ΨL ≡
1

2
(1− γ5)Ψ,

ΨR ≡
1

2
(1 + γ5)Ψ,

(3)

wo γ5 ≡ i
4!
εµναβγ

µγνγαγβ mit dem vollständig antisymmetrischen Tensor εµναβ in vier Di-

mensionen ist. In Gleichung (1) bezeichnet ~Wµ die Eichfelder der Gruppe SU(2)L, Bµ ist das
Eichfeld der Gruppe U(1)Y. g und g′ sind die Kopplungskonstanten zwischen den Fermion-
und den Eichfeldern. Für den Strom der schwachen Hyperladung jµ und die Ströme der
schwachen Ladung J iµ gilt:

jµ(Ψf) = Ψ̄fγ
µYfΨf,

J iµ = χ̄Lγ
µT if χL,

(4)

wo Ψf ∈ {χL, ψR}. In Gleichung (4) sind die Komponenten des schwachen Isospin-Operators
T if die Generatoren der Gruppe SU(2)L, und der Operator der schwachen Hyperladung Yf ist
der Generator der Gruppe U(1)Y. Die letzten beiden Summanden auf der rechten Seite von

Gleichung (1) bezeichnen die kinetische Energie und die Selbstenergie des Feldes ~Wµ sowie
die kinetische Energie des Feldes Bµ. Es gilt:

~Wµν = ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν ,

Bµν = ∂µBν − ∂νBµ.
(5)

Damit LEW invariant unter SU(2)L- und U(1)Y-Eichtransformationen

χL → ei~α(x)·~Tf+iβ(x)YfχL,

ψR → eiβ(x)YfψR

(6)

der Fermion-Felder ist, müssen die Felder der Eichbosonen in führender Ordnung in ~α(x)
und β(x) folgendermaßen transformiert werden:

~Wµ → ~Wµ − g−1∂µ~α(x)− ~α(x)× ~Wµ,

Bµ → Bµ − (g′)−1∂µβ(x).
(7)

Dabei sind αi(x) und β(x) reelle Funktionen, die von der Raumzeit-Koordinate x abhängen.

In Gleichung (1) treten die Felder W±
µ , Zµ und Aµ der experimentell beobachbaren W±-

und Z0-Bosonen sowie Photonen nicht explizit in Erscheinung. Diese Felder sind wie folgt
definiert:

W±
µ ≡

1√
2

(
W 1
µ ∓ iW 2

µ

)
,

Zµ ≡ −Bµ sin(θW) +W 3
µ cos(θW),

Aµ ≡ Bµ cos(θW) +W 3
µ sin(θW),

(8)

wobei mit θW der elektroschwache Mischungswinkel eingeführt wurde. Für die geladenen
Ströme (J±)µ der schwachen Wechselwirkung gilt:

(J±)µ = χ̄Lγµτ±χL, (9)
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wo τ± = T 1
f ± iT 2

f = 1
2
(τ 1 ± iτ 2) mit den Pauli-Matrizen τ 1,2 ist. Mit der Elementarladung

e ≡ g · sin(θW) = g′ · cos(θW) (10)

findet man für den neutralen Strom der schwachen Wechselwirkung Jnc
f folgenden Ausdruck:

(Jnc
f )µ =

1

2
Ψ̄fγµ

(
gV

f − gA
f γ

5
)

Ψf, (11)

wo Ψf ∈ {χL, ψR}. Die Koeffizienten gV
f und gA

f bezeichnen die neutralen Vektor- und
Axialvektor-Kopplungen der Fermionen. Sie sind ein Maß für das Verhältnis des polaren
und axialen Anteils von (Jnc

f )µ. Es gilt:

gV
f ≡ T 3

f − 2Qf sin2(θW),

gA
f ≡ T 3

f .
(12)

Hierin ist Qf der Operator der elektrischen Ladung, welcher als Generator der Symmetrie-
gruppe U(1)em der elektromagnetischen Wechselwirkung fungiert. Es gilt

Qf = T 3
f +

Yf

2
. (13)

Entsprechend gilt für den elektromagnetischen Strom

(jem)µ = J3
µ +

jµ
2
, (14)

Tabelle 1 listet die dritten Komponenten des schwachen Isospins sowie Werte der schwachen
Hyperladungen und elektrischen Ladungen von Teilchen im Standardmodell auf.
Schreibt man LEW mithilfe der soeben definierten Felder und Stromdichten auf, so findet man
folgenden Ausdruck für die kinetischen und Wechselwirkungs-Terme von Fermion-Feldern
und Feldern der Austauschbosonen der elektromagnetischen und schwachen Wechselwirkung:

LEW = χ̄L(iγµ∂µ)χL + ψ̄R(iγµ∂µ)ψR

− g√
2

[
(J+)µ(W+)µ + (J−)µ(W−)µ

]
− e(jem)µA

µ − g

cos(θW)
(Jnc

f )µZ
µ

− 1

4
~Wµν · ~W µν − 1

4
BµνB

µν .

(15)

Die Theorie der schwachen Wechselwirkung besitzt eine (V−A)-Struktur ((
”
Vektor“−

”
Axi-

alvektor“)-Struktur). Entsprechend treten in LEW Lorentz-Vektoren der Gestalt ψ̄γµψ sowie
Lorentz-Pseudovektoren der Form ψ̄γµγ5ψ auf. Lorentz-Vektoren und -Pseudovektoren ver-
halten sich unterschiedlich unter Paritätstransformationen. Als Paritätstransformation P
bezeichnet man im Allgemeinen die Abbildung

P : t 7→ t,

P : ~x 7→ −~x, (16)

unter welcher dem Ortsvektor ~x ∈ R3 der Vektor −~x zugewiesen wird und die Zeitkoor-
dinate t ∈ R auf sich selbst abgebildet wird. Ein Lorentz-Vektor verhält sich unter einer
Paritätstransformation wie folgt:

P : ψ̄γµψ(t, ~x) 7→
{

+ψ̄γµψ(t,−~x), µ = 0

−ψ̄γµψ(t,−~x), µ = 1, 2, 3.
(17)
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Teilchen T 3
f Yf Qf

Quark-Dubletts uL, cL, tL +1/2 +1/3 +2/3
dL, sL, bL −1/2 +1/3 −1/3

Quark-Singletts uR, cR, tR 0 +4/3 +2/3
dR, sR, bR 0 +2/3 −1/3

Lepton-Dubletts (νe)L, (νµ)L, (ντ )L +1/2 −1 0
e−L , µ−L , τ−L −1/2 −1 −1

Lepton-Singletts e−R, µ−R, τ−R 0 −2 −1

Boson-Triplett W+ +1 0 +1
Z0 0 0 0
W− −1 0 −1

Boson-Singlett γ 0 0 0

Higgs-Boson-Dublett φ+ +1/2 +1 +1
φ0 −1/2 +1 0

Tabelle 1: Überblick über die dritten Komponenten des schwachen Isopins T 3
f , der schwachen

Hyperladungen Yf sowie der elektrischen Ladungen Qf von Teilchen im Standardmodell. Der
Index R bezeichnet Teilchen positiver Chiralität, der Index L entsprechend Teilchen negativer
Chiralität.

Ein Lorentz-Pseudovektor transformiert gemäß

P : ψ̄γ5γµψ(t, ~x) 7→
{
−ψ̄γ5γµψ(t,−~x), µ = 0

+ψ̄γ5γµψ(t,−~x), µ = 1, 2, 3.
(18)

Die (V −A)-Struktur führt aufgrund des unterschiedlichen Verhaltens von Lorentz-Vektoren
und -Pseudovektoren unter Partitätstransformationen zur Paritätsverletzung durch die schwa-
che Wechselwirkung. Die (V −A)-Struktur der schwachen Wechselwirkung kann im Rahmen
des Standardmodells nicht erklärt werden. Sie muss explizit eingeführt werden, um die ex-
perimentell beobachtete Paritätsverletzung durch die schwache Wechselwirkung beschreiben
zu können.

Die Austauschbosonen der elektromagnetischen und schwachen Wechselwirkung erhalten ihre
Massen im Standardmodell durch spontane Brechung der SU(2)L- und U(1)Y-Eichsymmetrie
im Grundzustand des Higgs-Feldes. Die unter lokalen Eichtransformationen der SU(2)L ×
U(1)Y symmetrische Lagrangedichte LH für das skalare Higgs-Isospin-Dublett φ lautet:

LH =

∣∣∣∣(i∂µ − g ~Tf · ~Wµ − g′
Yf

2
Bµ

)
φ

∣∣∣∣2 − V. (19)

Hierin ist

φ =

(
φ+

φ0

)
mit

φ+ ≡ (φ1 + iφ2)/
√

2

φ0 ≡ (φ3 + iφ4)/
√

2
(20)

mit den vier reellen Skalarfeldern φi, i = 1, 2, 3, 4 und der schwachen Hyperladung Yf = 1.
V ist das Potential des Higgs-Felds. Es gilt:

V = µ2φ†φ+ λ
(
φ†φ
)2
, (21)
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wobei µ2 < 0 und λ > 0. V besitzt eine unendliche Anzahl Minima, die als Vakuum-Zustände
des Higgs-Feldes in Frage kommen. Man spricht im Zusammenhang mit der Auswahl ei-
nes Vakuum-Zustands φ0 von spontaner Symmetriebrechung. Eine geeignete Wahl für den
Vakuum-Zustand φ0 ist

φ0 =

√
1

2

(
0
ν

)
, (22)

wobei ν ≡ −µ2/λ. Mit

sin(θW) =
g′√

g2 + g′2
,

cos(θW) =
g√

g2 + g′2
(23)

findet man durch Einsetzen in Gleichung (19), dass∣∣∣∣(g ~Tf · ~Wµ + g′Yf

2
Bµ

)
φ0

∣∣∣∣2 = m2
W ·W+

µ W
−µ +m2

Z · ZµZµ +m2
γ · AµAµ (24)

gilt, wobei

mW =
ν

2
g,

mZ =
ν

2

√
g2 + g′2,

mγ = 0

(25)

die Ruhemassen der W±-Bosonen, des Z0-Bosons sowie des Photons sind. Die experimentell
bestimmten Massen der Eichbosonen der schwachen Wechselwirkung betragen [11]:

mW = 80,385(15) GeV/c2, (26)

mZ = 91,1876(21) GeV/c2. (27)

Aus (23) und (25) folgt

sin2(θW) = 1− m2
W

m2
Z

≈ 0,223. (28)

Der Zahlenwert von sin2(θW) wird im Rahmen des Standardmodells nicht vorhergesagt,
er muss so festgelegt werden, dass die Theorie experimentelle Beobachtungen korrekt be-
schreibt. Bestimmt man etwa die Massen der Eichbosonen mW und mZ und misst zusätzlich
den Wert der Kopplungskonstante der elektromagnetischen Wechselwirkung

αem =
g2

4πε0~c
sin2(θW), (29)

worin ε0 = 8,854 187 817 · 10−12 As/(Vm) die elektrische Feldkonstante ist, unter Ausnutzung
des Quanten-Hall-Effekts oder über eine Bestimmung des anomalen magnetischen Momentes
des Elektrons, so können sin2(θW), g und g′ festgelegt werden.
Die Beziehungen (23), (28) und (29) sind lediglich in niedrigster Ordnung Störungstheorie
korrekt, sie erfahren Korrekturen bei der Berücksichtigung höherer Ordnungen. Der Wert
von sin2(θW) hängt dann von der Wahl des Renormierungsschemas sowie der Energieskala,
auf der die betrachtete Wechselwirkung abläuft, ab.
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Abbildung 2: Elastische Streuung eines Elektrons an einem Nukleon. Als Bezugssystem wird
das Laborsystem verwendet, in welchem das Nukleon im Anfangszustand ruht. Das Elek-
tron besitzt im Anfangszustand den Spin ~si und den Viererimpuls ki, wobei ~si entweder
parallel oder antiparallel zur Impulsrichtung des Elektrons ist. Das Elektron wird am Nukle-
on unter dem Winkel θf relativ zu seiner Impulsrichtung im Anfangszustand gestreut. Der
Viererimpuls des Elektrons im Endzustand wird mit kf bezeichnet. Das Nukleon besitzt im
Anfangszustand den Viererimpuls pi, im Endzustand sei sein Viererimpuls pf.

Auf Strahlungskorrekturen sowie die Skalenabhängigkeit von sin2(θW) wird in Abschnitt 2.3
eingegangen. Der folgende Abschnitt ist einer Diskussion der paritätsverletzenden Elektron-
Nukleon-Streuung gewidmet, in deren Verlauf die paritätsverletzende Asymmetrie APV

ep der
elastischen Elektron-Proton-Streuung sowie die schwache Ladung des Protons QW(p) defi-
niert werden.

2.2 Paritätsverletzende Elektron-Nukleon-Streuung und die schwa-
che Ladung des Protons

Wir betrachten die elastische Streuung longitudinal polarisierter Elektronen an unpolarisier-
ten Nukleonen. Die Diskussion in diesem Abschnitt beschränkt sich auf die führende Ordnung
der Störungstheorie. Es wird ein rechtshändiges, kartesisches Koordinatensystem verwendet,
dessen z-Achse mit der Impulsrichtung der Elektronen im Anfangszustand des Streuprozesses
zusammenfällt und in dem die Nukleonen vor der Streuung in Ruhe sind. Der Streuvorgang
ist in Abbildung 2 illustriert. Es wird zunächst die Kinematik des Streuprozesses diskutiert.

2.2.1 Kinematik

Der Viererimpuls des Elektrons im Anfangszustand des Streuprozesses sei ki, der des Nukle-
ons pi. Die beiden Viererimpulse können wie folgt geschrieben werden:

ki =

(
Ei

c
, 0, 0, 1

c

√
E2

i − (mec2)2

)T
, (30)

pi = (mNc, 0, 0, 0)T . (31)
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Abbildung 3: Energie des Elektrons im Endzustand Ef als Funktion des Laborstreuwinkels
θf für Ei = 155 MeV bei elastischer Streuung am Proton. Der Wendepunkt des Verlaufs von
Ef liegt bei θf = 90◦.

Im Anfangszustand des Streuprozesses habe das Elektron den Spin ~si und die Helizität

h ≡ ~si · ~ki

‖~si · ~ki‖
= ±1, (32)

wo ~ki den Dreierimpuls des Elektrons bezeichnet. Die Viererimpulse im Endzustand des
Prozesses seien kf für das Elektron und pf für das Nukleon. Es gilt:

kf =

(
Ef

c
,
1

c

√
E2

f − (mec2)2 [sin(θf) cos(φf), sin(θf) sin(φf), cos(θf)]

)T
,

pf = ki + pi − kf.

(33)

In (31) und (33) ist Ei die Gesamtenergie des Elektrons im Anfangszustand, Ef die Ge-
samtenergie des Elektrons im Endzustand, c = 299 792 458 m/s die Lichtgeschwindigkeit im
Vakuum, me = 0,510 998 946 1(31) MeV/c2 die Elektron-Ruhemasse und mN entweder die
Ruhemasse des Protons mp = 938,272 081 3(58) MeV/c2 oder die Ruhemasse des Neutrons
mn = 939,565 413 3(58) MeV/c2. In (33) sind θf und φf die Streuwinkel des Elektrons im
Laborsystem.
Im relativistischen Grenzfall, wo Ei, f � mec

2, kann die Ruheenergie die Elektrons ver-
nachlässigt werden, so dass für die Energie des Elektrons im Endzustand des Streuprozesses
in guter Näherung

Ef(Ei, θf) ≈
Ei

1 + 2Ei

mNc2
sin2

(
θf
2

) (34)

gilt. Abbildung 3 zeigt ein Beispiel für den Verlauf von Ef als Funktion von θf für den Fall
der Elektron-Proton-Streuung. Für das negative Viererimpulsübertragsquadrat Q2 ≡ −q2 =
−(kf − ki)

2 findet man im relativistischen Grenzfall:

Q2(Ei, θf) ≈
4EiEf

c2
sin2

(
θf

2

)
. (35)

Abbildung 4 zeigt den Verlauf von Q2 als Funktion von θf im Fall der elastischen Elektron-
Proton-Streuung für Ei = 155 MeV.
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Abbildung 4: Verlauf des negativen Viererimpulsübertragsquadrats Q2 als Funktion des
Elekton-Streuwinkels θf im Fall der elastischen Elektron-Proton-Streuung für Ei = 155 MeV.

2.2.2 Formfaktoren des Nukleons

Abbildung 5 zeigt die Feynman-Graphen des Streuprozesses auf Baumgraphen-Niveau; im
Rahmen der elektromagnetischen Wechselwirkung erfolgt der Austauch eines virtuellen Pho-
tons, die schwache Wechselwirkung wird durch den Austausch eines Z0-Bosons vermittelt.
In Bornscher Näherung und bei kleinem Q2 gilt für die Streuamplituden Mγ und MZ der
elektromagnetischen bzw. schwachen Wechselwirkung:

Mγ = −e
2

q2
(jγ)µ(Jγ)

µ,

MZ = − GF

2
√

2
(jZ)µ(JZ)µ,

(36)

worin GF die Fermi-Konstante bezeichnet. Es gilt

GF

(~c)3
≡
√

2

8

(
g

mW

)2

=

√
2

8

(
g2 + g′2
m2

Z

)
= 1,166 37 · 10−5 GeV−2. (37)

In (36) bezeichnen jγ,Z und Jγ,Z die neutralen Ströme des Elektrons und des Nukleons. Für
die neutralen Ströme des Elektrons gilt

(jγ)
µ = ūe(kf)γ

µue(ki),

(jZ)µ = ūe(kf)
(
gV

e γ
µ + gA

e γ
µγ5
)
ue(ki),

(38)

worin ue der Elektron-Spinor ist. Nukleonen besitzen eine innere Struktur aus Quarks und
Gluonen, deren Beiträge zu den Strömen des Nukleons mithilfe des Dirac-Formfaktors F1(Q2)
und des Pauli-Formfaktors F2(Q2) parametrisiert werden können. Für die neutralen Ströme
des Nukleons gilt:

(Jγ)
µ = ūN(pf)

(
γµFNγ

1 (Q2) + i
σµνqν
2mN

FNγ
2 (Q2)

)
uN(pi),

(JZ)µ = ūN(pf)

(
γµFNZ

1 (Q2) + i
σµνqν
2mN

FNZ
2 (Q2) + γµγ5GNZ

A (Q2)

)
uN(pi),

(39)

17



e− e−

N N

Z

e− e−

N N

Abbildung 5: Feynman-Graphen zur elastischen Elektron-Nukleon-Streuung auf
Baumgraphen-Niveau: Der Hauptbeitrag zur Streuamplitude stammt vom Austausch
eines virtuellen Photons im Rahmen der elektromagnetischen Wechselwirkung, wie im
linken Graphen gezeigt. Im Rahmen der schwachen Wechselwirkung zwischen Elektron und
Nukleon kann der Austausch eines virtuellen Z0-Bosons erfolgen, wie im rechten Graphen
dargestellt.

worin uN mit N ∈ {n, p} das Nukleon charakterisiert und GNZ
A (Q2) der axiale Formfaktor

des Nukleons ist, welcher nur im neutralen Strom der schwachen Wechselwirkung auftritt.

Für ζ ∈ {γ,Z} können FNζ
1 (Q2) und FNζ

2 (Q2) mit den Sachs-Formfaktoren GNζ
E (Q2) und

GNζ
M (Q2) wie folgt in Beziehung gesetzt werden [12]:

GNζ
E (Q2) = FNζ

1 (Q2)− τ · FNζ
2 (Q2),

GNζ
M (Q2) = FNζ

1 (Q2) + FNζ
2 (Q2),

(40)

wobei

τ ≡ Q2

4mNc2
. (41)

Im Standardmodell der Elementarteilchenphysik werden Nukleonen als aus Quarks, Gluo-
nen sowie einem See aus Quark-Antiquark-Paaren bestehend aufgefasst. Die Formfakto-
ren können bezüglich der Quark-Flavours aufgespalten werden. Dabei können Beiträge von
Charm-Quarks sowie Top- und Bottom-Quarks in guter Näherung vernachlässigt werden, da
die Energieskala der starken Wechselwirkung ΛQCD ≈ 200 MeV beträgt, und die Masse eines
Charm-Quarks 1,25 GeV/c2 ist. Man schreibt [13, 14]:

GNγ
E, M =

∑
q=u, d, s

Qq ·GNγq
E, M,

GNZ
E, M =

∑
q=u, d, s

gV
q ·GNZq

E, M,

GNZ
A =

∑
q=u, d, s

gA
q ·GNZq

A .

(42)

Hierbei finden die elektrischen Ladungen Qq sowie die schwachen Vektor- und Axialvektor-
Ladungen gV

q und gA
q der Quarks Verwendung als Gewichtungsfaktoren. Die Beiträge für u-

und d-Quarks schließen sowohl die der Valenz- als auch die der See-Quarks ein. Der Beitrag
der s-Quarks beschränkt sich auf den Quark-See.

Nimmt man Isospin-Symmetrie an, so fordert man, dass die Lagrange-Dichte der Quan-
tenchromodynamik unter Vertauschung von Up- und Down-Quarks symmetrisch ist. Dies
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impliziert die Forderung, dass sich ein Up-Quark im Proton so verhält wie ein Down-Quark
im Neutron und umgekehrt. Entsprechend kann man schreiben:

Gnγu
E, M = Gpγd

E, M,

Gnγd
E, M = Gpγu

E, M,

Gnγs
E, M = Gpγs

E, M.

(43)

Fordert man ferner die Universalität der Quarkverteilungen und somit

GNq
E, M ≡ GNγq

E, M = GNZq
E, M, (44)

so kann man die Formfaktoren GpZ
E, M und GnZ

E, M mittels (42), (43), (44) und Gs
E, M ≡ Gpγs

E, M

wie folgt schreiben:

GpZ
E, M =

[
1− 4 sin2(θW)

]
Gpγ

E, M −Gnγ
E, M −Gs

E, M,

GnZ
E, M =

[
1− 4 sin2(θW)

]
Gnγ

E, M −Gpγ
E, M −Gs

E, M.
(45)

Bei einer Brechung der Isospin-Symmetrie kann man GpZ
E, M und GnZ

E, M dennoch durch die
in (45) auftretenden Formfaktoren ausdrücken, indem man die Isospin brechenden Form-
faktoren Gud

E, M einführt [15]. Man erhält dann anstelle des in Gleichung (45) angeführten
Ausdrucks für GnZ

E, M folgenden Ausdruck:

GnZ
E, M =

[
1− 4 sin2(θW)

]
Gnγ

E, M −Gpγ
E, M −Gs

E, M −Gud
E, M, (46)

wo

Gud
E, M ≡

2

3

(
Gpd

E, M −Gnu
E, M

)
− 1

3

(
Gpu

E, M −Gnd
E, M

)
. (47)

2.2.3 Differenzieller Wirkungsquerschnitt

Für den differenziellen Wirkungsquerschnitt dσ±eN der elastischen Streuung eines longitudinal
polarisierten Elektrons mit Helizität h = ±1 am Nukleon gilt(

dσ±eN

dΩ

)
=

(
αem~c

4mNQ2

Ef

Ei

)2 ∣∣M±
eN

∣∣2. (48)

Hierin ist ∣∣M±
eN

∣∣2 =
∣∣Mγ +M±

Z

∣∣2 (49)

durch das Übergangsmatrixelement M±
eN gegeben, welches wiederum als Summe der Wahr-

scheinlichkeitsamplituden der elektromagnetischen und schwachen Wechselwirkung,Mγ und
M±

Z , geschrieben werden kann. Wegen

Mγ ∼ (jγ)µ
1

Q2
(Jγ)

µ,

M±
Z ∼ (jZ)µ

1

Q2 +m2
Z

(JZ)µ
(50)

gilt Mγ �M±
Z , falls Q2 � m2

Zc
2. Vernachlässigt man M±

Z und schreibt den differentiellen
Wirkungsquerschnitt mittels der Sachs-Formfaktoren auf, erhält man die Rosenbluth-Formel
[16]: (

dσep

dΩ

)
=

(
dσMott

dΩ

)
·
[

(GNγ
E )

2
+ τ(GNγ

M )
2

1 + τ
+ 2τ

(
GNγ

M tan

(
θf

2

))2
]
. (51)
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Abbildung 6: Verlauf des Mott-Wirkungsquerschnitts und der Rosenbluth-Formel als Funkti-
on des Elektron-Streuwinkels θf für Ei = 155 MeV im Falle der elastischen Elektron-Proton-
Streuung.

In Gleichung (51) ist (
dσMott

dΩ

)
=

(2αem~c)2 ·
[
1− β2 sin2(θf/2)

]
· E3

f

(~q)4 · Ei · c4
(52)

der Mott-Wirkungsquerschnitt [17], und es gilt

(~q)2 =

(
Ei − Ef

c

)2

+Q2 (53)

für das Quadrat des Dreierimpulsübertrags ~q. Abbildung 6 zeigt den Verlauf der Rosenbluth-
Formel und des Mott-Wirkungsquerschnitts für Ei = 155 MeV und mN = mp als Funkti-
on des Laborstreuwinkels θf. Man erkennt, dass die Streuung mit Rückwärtswinkeln θf ∼
180◦ beim Mott-Wirkungsquerschnitt unterdrückt ist. Dies entspricht der Erwartung, da
bei der Berechnung von dσMott nur der Spin des Elektrons berücksichtigt wurde, und die
Rückwärtsstreuung in diesem Fall aufgrund der Helizitätserhaltung nicht möglich ist.

2.2.4 Paritätsverletzende Asymmetrie

Die paritätsverletzende Asymmetrie APV
eN der elastischen Elektron-Nukleon-Streuung ist eine

Asymmetrie im Wirkungsquerschnitt der Streuung longitudinal polarisierter Elektronen an
unpolarisierten Nukleonen. Sie ist wie folgt definiert:

APV
eN ≡

dσ+
eN − dσ−eN

dσ+
eN + dσ−eN

. (54)

Setzt man (48) in diesen Ausdruck ein, so erhält man

APV
eN =

|Mγ|2 + 2Re
(
M∗

γM+
Z

)
+
∣∣M+

Z

∣∣2 − |Mγ|2 − 2Re
(
M∗

γM−
Z

)
−
∣∣M−

Z

∣∣2
|Mγ|2 + 2Re

(
M∗

γM+
Z

)
+
∣∣M+

Z

∣∣2 + |Mγ|2 + 2Re
(
M∗

γM−
Z

)
+
∣∣M−

Z

∣∣2 . (55)
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q C1q C2q

u −1
2

+ 4
3

sin2(θW) −1
2

+ 2 sin2(θW)

d 1
2
− 2

3
sin2(θW) 1

2
− 2 sin2(θW)

s 1
2
− 2

3
sin2(θW) 1

2
− 2 sin2(θW)

Tabelle 2: Schwache Quark-Kopplungen für Up-, Down- und Strange-Quarks auf
Baumgraphen-Niveau.

Für Q2 � m2
Zc

2 ist |Mγ|2 � Re
(
M∗

γM±
Z

)
�
∣∣M±

Z

∣∣2, so dass man APV
eN näherungsweise wie

folgt schreiben kann:

APV
eN ≈

Re
(
M∗

γ

[
M+

Z −M−
Z

])
|Mγ|2

. (56)

Aus Gleichung (56) wird ersichtlich, dass sich APV
eN aus der Interferenz des γ- und Z0-

Austauschs im Rahmen des Streuprozesses ergibt.

Der paritätsverletzende Anteil der Lagrangedichte LPV
eff , welcher die Elektron-Nukleon-Streuung

im Standardmodell in niedrigster Ordnung Störungsrechnung als effektive Kontaktwechsel-
wirkung beschreibt, kann nach [18] folgendermaßen geschrieben werden:

LPV
eff = −GF√

2

(
ēγµγ

5e
∑

q=u, d, s

C1q q̄γ
µq + ēγµe

∑
q=u, d, s

C2q q̄γ
µγ5q

)
. (57)

Die Summen in (57) beinhalten die Beiträge von Up-, Down- und Strange-Quarks. Beiträge
schwererer Quarks werden vernachlässigt. Die beiden Terme korrespondieren zu den V(q)×
A(e)- sowie den V(e)×A(q)-Beiträgen zum Streuprozess, welche beide die Parität verletzen.
C1q und C2q bezeichnen die schwachen Quark-Kopplungen. Für sie gilt:

C1q ≡ −gA
e g

V
q = −gV

q ,

C2q ≡ gV
e g

A
q =

(
1− 4 sin2(θW)

)
gA
q .

(58)

In Tabelle 2 sind die schwachen Quark-Kopplungen für Up-, Down- und Strange-Quarks auf
Baumgraphen-Niveau angegeben. Für die schwache Ladung QW(Z,N) eines Kerns mit Z
Protonen und N Neutronen gilt in niedrigster Ordnung Störungstheorie

QW(Z,N) = −2 ([2Z +N ]C1u + [Z + 2N ]C1d) . (59)

Nach Gleichung (59) ergibt sich die schwache Ladungen QW(p) des Protons und die schwache
Ladung QW(n) des Neutrons zu

QW(p) = −2(2C1u + C1d) = 1− 4 · sin2(θW) ≈ 0, 072,

QW(n) = −2(C1u + 2C1d) = −1.
(60)

Führt man die Flavour-Dekomposition gemäß Gleichung (42) aus und nimmt die Universa-
lität der Quarkverteilungen nach Gleichung (44) an, so kann die paritätsverletzende Asym-
metrie APV

ep der elastischen Elektron-Proton-Streuung auf folgende Form gebracht werden:

APV
ep =

−GFQ
2

4παem

√
2

[
QW(p)− F (Ei, Q

2)
]
. (61)
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Hierin ist F (Ei, Q
2) eine Funktion, in welcher die Beiträge der Nukleon-Formfaktoren zu

APV
ep zusammengefasst sind. Man kann F (Ei, Q

2) nach den Formfaktor-Beiträgen aufspalten:

F (Ei, Q
2) ≡ FEM(Ei, Q

2) + FA(Ei, Q
2) + F S(Ei, Q

2). (62)

Hierin ist

FEM(Ei, Q
2) ≡ εGpγ

E G
nγ
E + τGpγ

MG
nγ
M

ε(Gpγ
E )2 + τ(Gpγ

M )2 (63)

der durch die elektromagnetischen Formfaktoren von Proton und Neutron gegebene Anteil,

FA(Ei, Q
2) ≡

(
1− 4 sin2(θW)

)√
1− ε2

√
τ(1− τ)Gpγ

MG
pZ
A

ε(Gpγ
E )2 + τ(Gpγ

M )2 (64)

der zum axialen Formfaktor des Protons proportionale Teil von F (Ei, Q
2) und

F S(Ei, Q
2) ≡ εGpγ

E G
s
E + τGpγ

MG
s
M

ε(Gpγ
E )2 + τ(Gpγ

M )2 +
εGpγ

E G
ud
E + τGpγ

MG
ud
M

ε(Gpγ
E )2 + τ(Gpγ

M )2 , (65)

beinhaltet die Strangenss-Formfaktoren. In den obigen Beziehungen ist τ durch Gleichung
(41) gegeben und für den kinematischen Faktor ε gilt

ε ≡
[
1 + 2(1 + τ) tan2

(
θf

2

)]−1

. (66)

Auf dem Baumgraphen-Niveau entspricht ε dem transversalen Linearpolarisationsgrad des
ausgetauschten virtuellen Photons im Fall vernachlässigter Elektron-Ruheenergie. Die trans-
versale Ebene steht dabei senkrecht zum Impulsübertragsvektor. ε kann als Maß für die
Beiträge der axialen Kopplungen der Quarks zum Streuprozess angesehen werden. Diese
Beiträge sind kinematisch unterdrückt, wenn ε → 1 (θf → 0◦) und dominant, falls ε → 0
(θf → 180◦).
Abbildung 7 zeigt den betragsmäßigen Verlauf vonAPV

ep als Funktion von θf für Ei = 155 MeV.
Ebenfalls dargestellt sind die Beträge der durch die schwache Ladung des Protons und die
Formfaktoren des Nukleons gegebenen Beiträge

AQW
ep ≡− A0 ·QW(p),

AEM
ep ≡A0 · FEM,

AA
ep ≡A0 · FA,

AS
ep ≡A0 · F S

(67)

zu APV
ep , wobei

A0 ≡
−GFQ

2

4
√

2παem

(68)

gesetzt wurde. Man kann Abbildung 7 entnehmen, dassAPV
ep bei kleinen Viererimpulsüberträgen

von dem zu QW(p) proportionalen Term A
QW
ep dominiert wird. Dieser Umstand ermöglicht

eine Bestimmung der schwachen Ladung des Protons und des elektroschwachen Mischungs-
winkels aus einer Messung von APV

ep bei kleinem Q2 und bildet die Grundlage für das P2-
Experiment.

Die bisherigen Betrachtungen wurden unter Vernachlässigung von Strahlungskorrekturen
angestellt. Bei der im P2-Experiment angestrebten relativen Unsicherheit von ∆APV

ep /A
PV
ep ∼

2 % bei der Bestimmung von APV
ep ist die Einbeziehung von Strahlungskorrekturen notwendig,

um die Messdaten mit Blick auf eine Bestimmung von QW(p) und sin2(θW) interpretieren
zu können. Im nächsten Abschnitt wird auf Korrekturen zu APV

ep und QW(p) eingegangen.
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Abbildung 7: Betragsmäßiger Verlauf der paritätsverletzenden Asymmetrie APV
ep der elasti-

schen Elektron-Proton-Streuung als Funktion des Elektron-Streuwinkels θf für die Elektron
Anfangszustands-Energie Ei = 155 MeV. Es sind ebenfalls die betragsmäßigen Verläufe der
in (67) gegebenen Beiträge zur APV

ep dargestellt. Bei niedrigen Viererimpulsüberträgen im
Bereich θf ∼ 35◦ wird APV

ep durch den zur schwachen Ladung des Protons proportionalen

Beitrag A
QW
ep dominiert.

2.3 Strahlungskorrekturen zur schwachen Ladung des Protons

Um die im P2-Experiment geplante Messung von APV
ep mit Blick auf eine Bestimmung der

schwachen Ladung des Protons QW(p) interpretieren zu können, müssen Strahlungskorrek-
turen berücksichtigt werden, welche durch Feynman-Diagramme mit Schleifen dargestellt
werden können. Im Allgemeinen hängen die Korrekturen von den kinematischen Variablen
Ei und Q2 ab. Analog zur Darstellung in [19, 20] wird die schwache Ladung des Protons
unter Berücksichtigung von Ein-Schleifen-Korrekturen im Folgenden als

Q1-loop
W (p) = lim

Ei→0
lim
Q2→0

APV(Ei, Q
2)

A0

(69)

definiert. Hierin besitzt APV
ep (Ei, Q

2) die Form

APV
ep (Ei, Q

2) = A0

[
Q1-loop

W (p)− F (Ei, Q
2) + ∆�(Ei, Q

2)−∆�(0, 0)
]
, (70)

welche eine Verallgemeinerung von Gleichung (61) darstellt. Ein Ausdruck für Q1-loop
W im

MS-Renormierungsschema ist in [21] gegeben:

Q1-loop
W (p) = (ρnc + ∆e)

(
1− 4 sin2(θ̂W)(µ) + ∆′e

)
+ ∆�(0, 0). (71)

Hierin ist θ̂W (µ) der von der Skala µ =
√
|Q2| abhängige elektroschwache Mischungswin-

kel im MS-Renormierungsschema. Der Veltman-Parameter ρnc = 1, 00066 renormiert das
Verhältnis der Wechselwirkungsstärken für neutrale und geladene Ströme bei niedrigen Ener-
gien [22]. Es handelt sich um eine universelle, vom betrachteten Prozess unabhängige Kor-
rektur. ∆e und ∆′e sind kleine, nicht-universelle Korrekturen am Elektron-Vertex. Es gilt:

∆e = −αem

2π
,

∆′e = −αem

3π

(
1− 4 · ŝ2

Z

) [
ln

(
m2

Z

m2
e

)
+

1

6

]
,

(72)
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wobei die Abkürzung
ŝ2

Z ≡ sin2(θ̂W)(µ = mZc) ≈ 0, 231 (73)

eingeführt wurde, die im weiteren Verlauf dieser Arbeit oftmals Verwendung finden wird.
Der Term ∆� in Gleichung (71) fasst Quantenkorrekturen, die durch Boxgraphen dargestellt
werden können, zusammen. Auf sie wird in Abschnitt 2.3.2 eingegangen. Zunächst wird die
Abhängigkeit von sin2(θ̂W)(µ) von der Skala µ näher betrachtet.

2.3.1 Skalenabhängigkeit des elektroschwachen Mischungswinkels

In Gleichung (71) ist
sin2(θ̂W)(µ) ≡ κ(µ) · sin2(θ̂W)(µ0) (74)

der von der Skala µ abhängige Wert von sin2(θW) im MS-Renormierungsschema. Die Ska-
lenabhängigkeit von sin2(θ̂W) wurde in [23] und [24] untersucht. Sie ergibt sich aus einer Re-
normierungsgruppenentwicklung der Kopplungskonstanten im Standardmodell. In (74) ist
sin2(θ̂W)(µ) das Produkt eines bekannten, experimentell festgelegten Wertes sin2(θW)(µ0)
und einer Funktion κ(µ), welche universelle, elektroschwache Strahlungskorrekturen ein-
schließt, die zur Skalenabhängigkeit von sin2(θ̂W) führen. Abbildung 8 zeigt typische Feynman-
Diagramme von Prozessen, die zu dieser Abhängigkeit beitragen. Je nach Wahl des Renor-
mierungsschemas können auch nicht-universelle Korrekturen in κ(µ) berücksichtigt werden,
ein Beispiel hierfür findet sich in [25].

Der Verlauf von sin2(θ̂W)(µ) stellt eine der zentralen Vorhersagen des Standardmodells dar.
Er ist in Abbildung 9 zusammen mit Resultaten von abgeschlossenen Experimenten so-
wie Projektionen zukünftiger Bestimmungen des elektroschwachen Mischungswinkels dar-
gestellt. Ein Überblick über ausgewählte Experimente, die eine Bestimmung von sin2(θ̂W)
ermöglichen, findet sich in Kapitel 3.
Die präzisesten experimentellen Bestimmungen des elektroschwachen Mischungswinkels wur-
den bislang am Z0-Pol (µ = mZc) durchgeführt, weshalb sin2(θ̂W)(µ0) ≡ ŝ2

Z eine geeignete
Wahl ist. Nach [21] ergibt sich der Wert des elektroschwachen Mischungswinkels bei niedrigen

Abbildung 8: Feynman-Diagramme von Strahlungskorrekturen, welche zur Abhängigkeit von
sin2(θ̂W) von der Skala µ beitragen.
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Abbildung 9: Verlauf von sin2(θ̂W) in Abhängigkeit von der Skala µ =
√
|Q2| im MS-

Renormierungsschema (blaue Kurve). Die Abbildung wurde [26] entnommen. Die roten
Punkte sind Resultate abgeschlossener Experimente. Der Punkt des QWeak-Experiments ist
mit der erwarteten Unsicherheit des vollständigen Datensatzes dargestellt, er wurde, ebenso
wie die Punkte künftiger Experimente, an einer willkürlichen Stelle entlang der Ordinaten-
achse platziert.

Viererimpulsüberträgen (µ = 0) zu

sin2(θ̂W)(µ = 0) = ŝ2
Z + ∆κ

(5)
had

+
αem

π

{
1− 4ŝ2

Z

12

[∑
`

ln

(
m2

Z

m2
`

)(
1 +

3αem

4π

)

+
135αem

32π

]
−
[

7(1− ŝ2
Z)

4
+

1

24

]
ln

(
m2

Z

m2
W

)
+
ŝ2

Z

6
− 17

8

}
= 1, 0317 · sin2(θ̂W)(µ = mZc)

≈ 0, 239,

(75)

worin ∆κ
(5)
had ≈ 7,90 · 10−3 durch hadronische Beiträge gegeben ist und die Summe über

geladene Leptonen gebildet wird. Gleichung (75) stellt den Zusammenhang zwischen der
Standardmodell-Vorhersage für den Wert von sin2(θ̂W ) am Z0-Pol und an der Stelle µ = 0
her.

2.3.2 Quantenkorrekturen aus Boxgraphen

In Gleichung (70) fasst ∆� die Beiträge zu APV
ep zusammen, welche aus dem Austausch von

zwei Bosonen resultieren:

∆� ≡ Re(�WW) + Re(�ZZ) + Re(�γZ) + Re(�γγ). (76)
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Abbildung 10: Repräsentative Diagramme der Boxgraph-Korrekturen zur schwachen Ladung
des Protons. Von links nach rechts dargestellt sind WW -, ZZ-, γZ- and γγ-Austausch. Die
grau unterlegten Ellipsen in den unteren Teilen der Graphen repräsentieren hadronische
Zwischenzustände des Protons.

�WW bezeichnet den Beitrag von Feynman-Graphen, in denen zwei W -Bosonen ausgetauscht
werden, �ZZ den Beitrag aus dem Austausch zweier Z0-Bosonen, �γZ den Beitrag aus dem
Austausch eines Photons und eines Z0-Bosons, und �γγ resultiert aus dem Austausch zweier
Photonen. Abbildung 10 zeigt repräsentative Feynman-Graphen für die zu ∆� beitragenden
Prozesse. Nur die Realteile der Boxgraph-Korrekturen �XY, welche in (76) durch die Terme
Re(�XY) dargestellt werden, tragen zu APV

ep bei.

Für Re(�WW) und Re(�ZZ) findet man in [21] folgende Ausdrücke:

Re(�WW) =
7α̂em

4πŝ2
Z

≈ 0, 0170,

Re(�ZZ) =
α̂em

4πŝ2
Z (1− ŝ2

Z)

(
9

4
− 5ŝ2

Z

)(
1− 4ŝ2

Z + 8ŝ4
Z

)
≈ 0, 0017,

(77)

wobei α̂em ≡ αem(mZc) die Feinstrukturkonstante der elektromagnetischen Wechselwirkung
im MS-Renormierungsschema ist, ausgewertet an der Stelle µ = mZc. Damit liefern Re(�WW)
und Re(�ZZ) folgende relative Beiträge zur schwachen Ladung des Protons:

Re(�ZZ)/Q1-loop
W (p)

∣∣∣∣
µ=0

≈ 4 %,

Re(�WW )/Q1-loop
W (p)

∣∣∣∣
µ=0

≈ 35 %.

(78)

Aufgrund der direkten Proportionalität vonAPV
ep zuQ1-loop

W (p) darf somit insbesondere Re(�WW)
nicht vernachlässigt werden. Da sowohl Re(�WW) als auch Re(�ZZ) lediglich von α̂em und ŝ2

Z

abhängen, sind die Unsicherheiten dieser Beiträge vernachlässigbar. Darüber hinaus hängen
diese beiden Boxgraphen nur schwach von ŝ2

Z ab, so dass Re(�WW) und Re(�ZZ) im weiteren
Verlauf näherungsweise als Konstanten betrachtet werden können.

Der Beitrag Re(�γγ) wird bei kleinen Viererimpulsüberträgen vernachlässigbar klein [26].

Man erwartet eine Korrektur zu APV
ep der Größenordnung (αem/π)(Q2/E2

i )Q1-loop
W (p), was bei

der im P2-Experiment vorgesehenen Streukinematik einer relativen Änderung ∼ O(10−5)
der Asymmetrie entspricht, die im Folgenden vernachlässigt wird.

Die Bestimmung von �γZ ist komplizierter als die Auswertung der anderen Boxgraphen.
Aufgrund des masselosen Photons in der in Abbldung 10 gezeigten Schleife ist Re (�γZ)
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sensitiv auf die Struktur des Protons im Niederenergiebereich [21]. �γZ spaltet sich in zwei
Beiträge auf,

�γZ = �V
γZ +�A

γZ, (79)

welche zu gV
e und gA

e korrespondieren.
Das optische Theorem kann verwendet werden, um die Imaginärteile der beiden Summan-
den auf der rechten Seite mit den Strukturfunktionen der γ-Z-Interferenz der inelastischen
Elektron-Proton-Streuung F γZ

k (x,Q2) in Beziehung zu setzen:

Im
(
�V
γZ

)
−αemgV

e

=

s∫
W 2
π

dW 2

(s−M2)2

Q2
max∫

0

dQ2

1 + Q2

m2
Z

(
2(s−M2)

W 2 −M2 +Q2
− 1

)
F γZ

3 ,

Im
(
�A
γZ

)
αemgA

e

=

s∫
W 2
π

dW 2

(s−M2)2

Q2
max∫

0

dQ2

1 + Q2

m2
Z

(
F γZ

1 +
s(Q2

max −Q2)

Q2(W 2 −M2 +Q2)
F γZ

2

)
,

(80)

wo x = Q2/(2piq), W
2 = (pi + q)2, M = 1

2
ūNuN, W 2

π = (M + π)2, νπ = (W 2
π −M2)/(2M)

und Q2
max = (s−M2)(s−W 2)/s.

Im Fall der Vorwärtsstreuung (Q2 → 0) kann man den Realteil von �γZ mithilfe von Disper-
sionsrelationen durch den Imaginärteil wie folgt ausdrücken:

Re
(
�A
γZ

)
=

2Ei

π

∞∫
νπ

dν ′

ν ′2 − E2
i

Im
(
�A
γZ

)
(ν ′),

Re
(
�V
γZ

)
=

2

π

∞∫
νπ

ν ′dν ′

ν ′2 − E2
i

Im
(
�V
γZ

)
(ν ′).

(81)

Man beachte, dass Re
(
�A
γZ

)
in (81) direkt proportional zur Energie Ei des Elektrons im

Anfangszustand des Streuprozesses ist. Die Integrale in (80) umfassen den vollständigen ki-
nematischen Bereich, wobei kleinen Viererimpulsüberträgen ein starkes Gewicht zukommt.
Demnach ist eine genaue Kenntnis der Strukturfunktionen F γZ

k im gesamten kinematischen
Bereich wünschenswert. Die F γZ

k sind im Rahmen der Elektron-Proton-Streuung prinzipiell
bestimmbar, Messdaten existieren jedoch nur für einen kleinen kinematischen Bereich. Dies
macht eine Modellierung der F γZ

k in den verbleibenden Bereichen notwendig.

Die Bestimmung von �γZ wurde in jüngster Vergangenheit von verschiedenen Arbeitsgrup-
pen durchgeführt und ist nach wie vor Gegenstand der Forschung [19, 27, 28, 29, 30, 31].
Die korrekte Methode zur Berechnung der Unsicherheit von Re (�γZ) ist umstritten, da

die Funktionen F γZ
k modelliert werden müssen. Bei der Bestimmung des Erwartungswertes

von Re (�γZ) stimmen die Resultate jedoch überein. Abbildung 11 zeigt den Verlauf von
Re(�γZ)(Ei, 0) − Re(�γZ)(0, 0) als Funktion von Ei. Man erkennt, dass sowohl der Erwar-
tungswert als auch die Unsicherheit der Boxgraph-Korrektur mit wachsender Energie zuneh-
men. Daher ist es im Hinblick auf eine präzise Bestimmung des elektroschwachen Mischungs-
winkels von Vorteil, die Asymmetriemessung bei niedrigen Strahlenergien durchzuführen.

Die Extrapolation vom im P2-Eperiment erwarteten Wert von Q2 ≈ 4,8 · 10−3 (GeV/c)2 hin
zu Q2 = 0 (GeV/c)2 kann wie in [19] beschrieben durchgeführt werden, man erwartet einen
vernachlässigbaren Beitrag der Extrapolation sowohl für den Erwartungswert als auch für
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Abbildung 11: Verlauf von Re(�γZ)(Ei, 0)− Re(�γZ)(0, 0) in Abhängigkeit von der Energie
Ei des Elektrons im Anfangszustand der elastischen Elektron-Proton-Streuung. Die Abbil-
dung wurde [26] entnommen. Der Verlauf des Erwartungswertes ist durch die rote Kurve
dargestellt, das hellblaue Band repräsentiert die Unsicherheit von Re(�γZ).

die Unsicherheit der Boxgraph-Korrektur [26]. Für die im P2-Experiment gewählte Streuki-
nematik mit einer Stahlenergie von Ebeam = 155 MeV findet man [26]:

Re(�γZ)(Ebeam = 155 MeV, Q2 = 0)− Re(�γZ)(0, 0) = (1, 06± 0, 32) · 10−3, (82)

wobei die Unsicherheit sich aus quadratischer Addition der Unsicherheiten

∆Re(�A
γZ) = 0,27 · 10−3, (83)

∆Re(�V
γZ) = 0,18 · 10−3 (84)

ergibt.
Die im Rahmen des P2-Experiments vorgesehene Formfaktor-Messung unter Rückwärts-
Streuwinkeln führt zu einer Reduzierung von ∆Re(�A

γZ) auf

∆Re(�A
γZ) = 0,07 · 10−3, (85)

was

Re(�γZ)(Ebeam = 155 MeV, Q2 = 0)− Re(�γZ)(0, 0) = (1, 06± 0, 19) · 10−3, (86)

entspricht. Hierzu korrespondiert ein relativer Anteil von[
Re(�γZ)(Ebeam = 155 MeV, Q2 = 0)− Re(�γZ)(0, 0)

]
/Q1-loop

W (p)

∣∣∣∣
µ=0

≈ 2 % (87)

von Re(�γZ) an Q1-loop
W (p) an der Stelle µ = 0.

Im weiteren Verlauf dieser Arbeit wird angenommen, dass die Unsicherheit ∆(∆�) von ∆�
im Wesentlichen durch Unsicherheit von �γZ gegeben ist, so dass

∆(∆�) ≈ ∆Re(�γZ). (88)
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2.3.3 Quantenkorrekturen aus elektromagnetischen Prozessen

Korrekturen im Rahmen der Quantenelektrodynamik (QED) verletzen die Parität nicht, da-
her erfährt der in Gleichung (61) gegebene Ausdruck für APV

ep keine explizite Modifikation.
Die Emission reeller Photonen im Zuge des Streuvorgangs führt jedoch zu einer Reduzie-
rung von Q2. Im Falle der Abstrahlung eines reellen Photons im Rahmen des Streuvor-
gangs ist das durch Gleichung (35) gegebene Q2 durch das reduzierte negative Viererim-
pulsübertragsquadrat Q2

1γ zu ersetzen:

Q2 = (ki − kf)
2 → Q2

1γ = (ki − kf − kγ)2. (89)

Hierin bezeichnet kγ den Viererimpuls des Photons im Endzustand des Streuprozesses. Bei
Berücksichtigung von QED-Korrekturen ist die Kinematik der elastischen Elektron-Proton-
Streuung nicht mehr eindeutig durch die Angabe von Ei und θf festgelegt, so dass auch Q2

und APV
ep nicht mehr eindeutig durch diese Größen festgelegt sind.

In Abbildung 12 ist die relative Änderung in Q2 aufgrund der Emission eines reellen Photons
dargestellt. Die Verschiebung in Q2 hängt neben Ei und θf von der minimalen Energie des
Elektrons im Endzustand E ′min ab, für die ein Streuereignis im P2-Experiment nachgewiesen
werden kann. Man erwartet für die im P2-Experiment gewählte Kinematik eine Reduktion
von Q2 zwischen 3 % und 5 %.

QED-Korrekturen der Ordnung O(α2
em) spielen eine wesentlich geringere Rolle, da es sich bei

der Emission reeller Photonen um einen kinematischen Effekt handelt; bereits die Erzeugung
eines einzelnen Photons führt dazu, dass die Streukinematik nicht mehr eindeutig durch Ei
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Abbildung 12: Relative Änderung von Q2 durch die Erzeugung eines reellen Photons im
Endzustand der Elektron-Proton-Streuung als Funktion von θf für Ei = 155 MeV. Die Ab-
bildung wurde von R.-D. Bucoveanu (P2-Kollaboration) erstellt. Es sind Verläufe der Q2-
Verschiebung für drei verschiedene Werte der minimalen Energie des Elektrons E ′min im
Endzustand des Streuprozesses dargestellt.
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und θf festgelegt ist. Die Erzeugung weiterer Photonen führt lediglich zu Korrekturen O(α2
em)

des Wirkungsquerschnitts.

2.4 Schwache Ladungen und Physik jenseits des Standardmodells

Präzise experimentelle Bestimmungen des elektroschwachen Mischungswinkels stellen einen
Test des Standardmodells dar. Dies gilt für den Bereich der spontanen Symmetriebrechung
in der elektroschwachen Wechselwirkung, denn nach den Gleichungen (25) und (28) kann
sin2(θW) sowohl durch die Kopplungskontanten g und g′ als auch durch die Massen mW und
mZ der Vektorbosonen ausgedrückt werden:

sin2(θW) =
g′2

g2 + g′2
= 1− m2

W

m2
Z

. (90)

Präzise Messungen des elektroschwachen Mischungswinkels können ebenfalls als Test bei
der Erforschung des Higgs-Bosons dienen, denn Werte für sin2(θW) können in Werte für die
Masse des Higgs-Bosons transformiert werden, was einen Vergleich mit den am LHC erzielten
Messergebnissen ermöglicht. Abbildung 13 zeigt den Verlauf des effektiven elektroschwachen
Mischungswinkels

sin2 θleff ≡
1

4

(
1− vl

al

)
(91)

für Leptonen, der durch die Vektor- und Axialvektor Kopplungen vl und al des Z0-Bosons
an Leptonen definiert ist, in Abhängigkeit von der Masse MH des Higgs-Bosons. In der Ab-
bildung sind auch die Resultate der beiden bislang präzisesten Bestimmungen von sin2(θ̂W)
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Abbildung 13: Verlauf des effektiven elektroschwachen Mischungswinkels sin2 θeff für Lep-
tonen in Abhängigkeit von der Masse MH des Higgs-Bosons. Die Abbildung wurde [32]
entnommen. Das gelbe Band repräsentiert den Erwartungswert von sin2 θeff am Z0-Pol.
Die Datenpunkte der beiden bislang präzisesten experimentellen Bestimmungen des elek-
troschwachen Mischungswinkels am SLC (ALR(had)) und am LEP (Afb(b)) weichen um 3, 2
Standardabweichungen voneinander ab. Nur der Mittelwert der beiden Datenpunkte ist mit
der beobachteten Higgs-Masse vereinbar, die durch das grüne Band gekennzeichnet ist.
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Abbildung 14: Verschiebungen der schwachen Ladungen von Proton und Elektron, QW(p)
und QW(e), für ausgewählte Modelle zur Erweiterungen des Standardmodells. Die Abbil-
dung wurde [33] entnommen. Dargestellt sind die Erwartungswerte der beiden schwachen
Ladungen im Standardmodell sowie deren experimentelle Unsicherheiten. Die aufgeführten
Modelle zur Erweiterungen des Standardmodells sagen unterschiedliche Verschiebungen für
die schwachen Ladungen von Elektron und Proton vorher, deren Beträge und Richtungen
durch die Pfeile angedeutet sind.

am Z0-Pol eingezeichnet, die im Rahmen von Experimenten am SLC und LEP durchgeführt
worden sind (s. Abschnitt 3.1). Die Resultate weichen um 3, 2 Standardabweichungen von-
einander ab, und die Ursache hierfür ist bislang ungeklärt. Der in Abbildung 9 dargestellte
Verlauf von sin2(θ̂W) in Abhängigkeit von der Energieskala µ ist experimentell nicht mit
hoher Genauigkeit verifiziert. Die Datenpunkte im Bereich µ� mZc weisen hohe Unsicher-
heiten im Vergleich mit den präzisesten Z0-Pol-Messungen auf. Es besteht demnach Raum
für Abweichungen von der Standardmodell-Vorhersage für den Verlauf von sin2(θ̂W)(µ).

Diese Umstände motivieren die Durchführung neuer Projekte zur präzisen Bestimmung von
sin2(θ̂W), wobei in künftigen Experimenten mit µ � mZc eine mit den am Z0-Pol aus-
geführten Bestimmungen vergleichbare Präzision angestrebt wird. Eine kurze Beschreibung
der Experimente, deren erwartete Unsicherheiten in Abbildung 9 dargestellt sind, findet sich
in Kapitel 3. Im Folgenden wird auf einige hypothetische Erweiterungen des Standardmodells
eingegangen, welche Abweichungen im Verlauf von sin2(θ̂W)(µ) vorhersagen, die im Rahmen
neuer Präzisionsexperimente beobachtet werden können.

Genaue Messungen der schwachen Ladungen von Elektron und Proton, QW(e) und QW(p),
wie sie im MOLLER- und P2-Experiment geplant sind, eignen sich in besonderer Weise
zur präzisen Bestimmung des elektroschwachen Mischungswinkels, da kleine Variationen
in sin2(θW) zu großen Änderungen in QW(e) und QW(p) führen: In niedrigster Ordnung
Störungstheorie besitzen QW(e) und QW(p) denselben Betrag, jedoch unterschiedliche Vor-
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zeichen. Für die relative Unsicherheit von sin2(θW) folgt mit Fehlerfortpflanzung nach Gauß

∆ sin2(θW)

sin2(θW)
=

1− 4 sin2(θW)

4 sin2(θW)
· ∆QW(p)

QW(p)
≈ 0, 09 · ∆QW(p)

QW(p)
. (92)

Ihre unterschiedlichen Beträge erhalten QW(e) und QW(p) im Standardmodell erst durch die
Einbeziehung von Strahlungkorrekturen.

Messungen schwacher Ladungen bei niedrigen Q2-Werten können sensitiv auf die Effekte hy-
pothetischer neuer Teilchen und Wechselwirkungen sein, die in Hochenergie-Experimenten
am Z0-Pol nicht nachgewiesen werden können, falls diese nicht mit hinreichender Stärke an
das Z0-Boson koppeln. Die Messungen tragen dabei auf komplementäre Weise zur Verifika-
tion hypothetischer Erweiterungen des Standardmodells bei, da die verschiedenen Modelle
unterschiedliche Verschiebungen der schwachen Ladungen in Betrag und Vorzeichen vorher-
sagen [21]. In Abbildung 14 ist dies für die schwachen Ladungen von Elektron und Proton
illustriert.

Beispiele für Erweiterungen des Standardmodells sind supersymmetrische (SUSY-) Model-
le, Leptoquarks sowie neue, neutrale Z ′-Bosonen aus einer neuen U(1)′-Eichsymmetrie,
welche in vielen GUT-, Technicolor-, SUSY- und String-Modellen auftreten. Die direk-
ten Kopplungen bislang unbekannter Teilchen an Fermionen können durch effektive Vier-
Fermion-Kontaktwechselwirkungen beschrieben werden, deren hypothetische Auswirkungen
auf die Werte schwacher Ladungen in Experimenten zur Paritätsverletzung mit Q2 � m2

Zc
2

überprüft werden können. Im Folgenden wird auf einige ausgewählte Hypothesen eingegan-
gen.

2.4.1 Neue Kontaktwechselwirkungen

Im Folgenden wird angenommen, dass es neue physikalische Prozesse mit bislang nicht nach-
gewiesenen Teilchen gibt, deren typische Energieskala Λ ist. Λ sei viel größer als die Energies-
kala der elektroschwachen Wechselwirkung, die sich im Bereich des Vakuum-Erwartungswerts
des Higgs-Felds (∼ 246 GeV) bewegt. Ein direkter Nachweis neuer Teilchen oder Wechsel-
wirkungen im Rahmen von Präzisionsmessungen des neutralen Stroms der schwachen Wech-
selwirkung bei Q2c2 � Λ2 ist in diesem Fall nicht möglich. Messungen bei niedrigem Q2

können dennoch Aufschluß über die Größenordnung von Λ geben, da sich bislang unbekann-
te Dynamiken in Form neuer, effektiver 4-Fermion-Kontaktwechselwirkungen manifestieren
können. Diese können zu messbaren Verschiebungen der schwachen Ladungen gegenüber den
Standardmodell-Erwartungswerten führen.

Der paritätsverletzende Anteil der Lagrange-Dichte LPV
eff , welcher die Dynamik bei niedrigen

Energien als effektive 4-Fermion-Kontaktwechselwirkung beschreibt, kann unter Einbezie-
hung neuer Effekte folgendermaßen geschrieben werden [21]:

LPV
eff = LPV

SM + LPV
neu. (93)

Da die schwache Ladung des Protons lediglich von C1q abhängt, genügt es für die folgenden
Betrachtungen, den ersten Summanden aus Gleichung (57) mit LPV

SM zu identifizieren:

LPV
SM = −GF√

2
ēγµγ

5e
∑
q

C1q q̄γ
µq. (94)
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Experiment Präzision (%) ∆ sin2(θ̂W)(0) Λ (TeV)

SLAC-E122 8,3 0,011 5,3

SLAC-E122 110 0,44 0,9

APV (205Tl) 3,2 0,011 13,5

APV (133Cs) 0,58 0,0019 32,3

SLAC-E158 14 0,0013 17

JLab-QWeak (Run 1) 19 0,0030 17,0

JLab-Hall A 4,1 0,0051 7,8

JLab-Hall A 61 0,051 2,9

JLab-QWeak (final) 4,5 0,0008 33

JLab-SOLID 0,6 0,00057 22

JLab-MOLLER 2,3 0,00026 39

Mainz-P2 2,0 0,00036 49

APV (225Ra+) 0,5 0,00018 34

APV (213Ra+/225Ra+) 0,1 0,0037 16

PVES (12Cs) 0,3 0,0007 49

Tabelle 3: Auflistung der Sensitivitäten bereits durchgeführter und geplanter Bestimmun-
gen des elektroschwachen Mischungswinkels bezüglich neuer Kontaktwechselwirkungen. Die
Werte wurden [34] entnommen. Die oberen acht Zeilen gehören zu bereits abgeschlossenen
Experimenten, die unteren sieben Zeilen geben Werte für andauernde bzw. künftige Bestim-
mungen von sin2(θW) an. Die zweite Spalte gibt die relative Präzision in der Messgröße des
jeweiligen Experiments an. Λ bezeichnet die Obergrenze für die Energieskala einer neuen
Dynamik, welche im jeweiligen Experiment eine Verschiebung der gemessenen schwachen
Ladung bewirken kann.

Der Term

LPV
neu =

g2
neu

4Λ2
ēγµγ

5e
∑
q

hV
q q̄γ

µq (95)

beschreibt Neue Physik, wobei gneu die Kopplungkonstante der neuen Wechselwirkung und
Λ deren Energieskala ist. Die quarkspezifischen Koeffizienten hV

q sind proportional zu den

Änderungen der schwachen Quarkladungen, welche sich aus der neuen Dynamik ergeben.
Misst man in einem Experiment beispielsweise den Wert Qexp

W (p) für die schwache Ladung
des Protons, so gilt aufgrund von (95):

Qexp
W (p) = QSM

W (p) +Qneu
W (p), (96)

wo QSM
W (p) die schwache Ladung im Standardmodell bezeichnet und Qneu

W (p) der aus der
neuen Kontaktwechselwirkung resultierende Beitrag ist. Da die Unsicherheit der schwachen
Ladung des Protons im Standardmodell klein ist, kann man für die Unsicherheit von Qexp

W (p)
näherungsweise

∆Qneu
W (p) ≈ ∆Qexp

W (p) (97)
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annehmen. Damit kann man für Λ, basierend auf der Annahme, dass man im Experiment
innerhalb eines Konfidenzintervalls von 95 % Abweichungen von QSM

W (p) beobachtet, die
Größenordnung

Λ

gneu

≈ 1√√
2GF|∆Qexp

W (p)|
(98)

angeben [21]. Zu beachten ist hierbei, dass Messungen bei kleinen Q2-Werten lediglich auf
das Verhältnis von Λ und gneu sensitiv sind. Für spezifische Modelle existieren Konventionen
für die Wahl von gneu, was die Angabe einer Größenordnung für Λ gestattet. Beispielsweise
ist die Wahl gneu = 2π üblich für Modelle, in welchen die im Standardmodell punktförmigen
Fermionen aus elementaren Teilchen bestehen, welche durch eine neue, nicht perturbativ be-
rechenbare Wechselwirkung mit Energieskala Λ gebunden sind. Tabelle 3 gibt einen Überblick
über entsprechende Energieskalen für verschiedene Experimente. Man kann der Tabelle ent-
nehmen, dass insbesondere künftige Präzisionsmessungen des neutralen Stroms der schwa-
chen Wechselwirkung sehr hohe Sensitivitäten bezüglich entsprechender neuer Vier-Fermion-
Kontaktwechselwirkungen aufweisen.

2.4.2 Neue, schwere Z′-Bosonen

Bei Z ′-Bosonen handelt es sich um eine Klasse neuer, elektrisch neutraler Eichbosonen, wel-
che aus einer neuen U(1)′-Eichsymmetrie resultieren. Für die Masse mZ′ eines Z ′-Bosons gilt
dabei typischerweise mZ′c

2 ∼ O(1 TeV). Z ′-Bosonen kommen in vielen der hypothetischen
Erweiterungen des Standardmodells vor, wie etwa SO(10), E6 sowie in Modellen mit Extra-
Dimensionen. Umfassende Beschreibungen der Phänomenologie der Z ′-Bosonen finden sich
in [35] und [36].

Während eine direkte Suche nach Z ′-Bosonen mit Massen mZ′ ∼ 1 − 5 TeV/c2 im Rahmen
des Studiums von Dilepton- oder Dijet-Ereignissen am Large Hadron Collider möglich ist,
kann der Z ′-Austausch für präzise Messungen des neutralen Stroms der schwachen Wech-
selwirkung im Fall Q2 � m2

Z′c
2 durch eine effektive Vier-Fermion-Kontaktwechselwirkung

beschrieben werden. Dabei wird für die Energieskala der Kontaktwechselwirkung Λ ∼ mZ′c
2

gesetzt.

Präzise Messungen des neutralen Stroms der schwachen Wechselwirkung bei niedrigem Q2

sind in besonderer Weise sensitiv auf Abweichungen schwacher Ladungen von der Standardmodell-
Vorhersage, welche durch leptophobische Z ′-Bosonen verursacht werden können. Leptopho-
bische Z ′-Bosonen sind Z ′-Bosonen, deren Kopplung an Leptonen als vernachlässigbar klein
angenommen wird [37]. Der Nachweis derartiger Teilchen mit Massen mZ′ ≤ 300 GeV/c2

in Hochenergie-Kollisionsexperimenten mit Hadronen gestaltet sich aufgrund des Unter-
grunds, welcher in diesen Experimenten entsteht, als schwierig. Im Rahmen von Experimen-
ten zur paritätsverletzenden Elektronenstreuung bei niedrigen Energien könnten Z ′-Bosonen
jedoch zu messbaren Abweichungen der C2q von deren Standardmodell-Erwartungswerten
führen, während die C1q im Wesentlichen unverändert blieben. Der für Experimente zur Pa-
ritätsverletzung dominante Beitrag zur Verschiebung der C2q bei kleinen Q2-Werten könnte
auf die Mischung von Photon und Z ′ zurückgeführt werden [38]. Der zugehörige Prozess ist in
Abbildung 15 dargestellt. Die Mischung von Z und Z ′ im Rahmen der Wechselwirkung, wel-
che simultane Verschiebungen in C1q und C2q verursacht, führt zu einem vernachlässigbaren
Beitrag [39].
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Abbildung 15: Feynman-Diagramm zum dominanten Beitrag von Z ′-Bosonen zur Verschie-
bung der C2q.

Die C1q werden mit hoher Präzision durch das QWeak-, das P2-Experiment und durch Ex-
perimente zur Paritätsverletzung in Atomen (APV) bestimmt. Das SoLID-Experiment wird
die Linerakombination 2C2u−C2d mit einer geplanten Unsicherheit von ±0, 007 bestimmen.
Mit diesen Resultaten wird es möglich sein, neue Bedingungen hinsichtlich der Eigenschaften
möglicher Z ′-Bosonen aufzustellen.

2.4.3 Supersymmetrie

Als Supersymmetrie (SUSY) bezeichnet man die Symmetrie unter Vertauschung bosonischer
und fermionischer Freiheitsgrade. Dabei wird jedem Teilchen im Standardmodell ein Super-
partner zugewiesen, dessen Spinquantenzahl gegenüber der des Standardmodell-Teilchens um
1/2 reduziert ist. SUSY ist eine der am besten motivierten Möglichkeiten zur Erweiterung
des Standardmodells; SUSY bietet einen eleganten Mechanismus zur elektroschwachen Sym-
metriebrechung sowie zur Stabilisierung der elektroschwachen Energieskala. Wählt man die
Massen der Superpartner im TeV-Bereich, so ermöglicht SUSY die Vereinigung der Kopp-
lungskonstanten auf der Energieskala der Großen Vereinheitlichten Theorien. SUSY kann
durch neue Beiträge zum Higgs-Potential und neue CP-verletzende Interaktionen einen Bei-
trag zur Erklärung des Überschusses an baryonischer Materie leisten. Darüber hinaus eignet
sich das leichteste supersymmetrische Teilchen als Kandidat zur Erklärung der hypotheti-
schen Dunklen Materie, sofern es stabil sein sollte.

Im Rahmen des Minimal-Supersymmetrischen-Standardmodells (MSSM) sind Prozesse möglich,
welche die Erhaltung von Baryonen- und Leptonenzahl verletzen. Dies erlaubt einen ra-
schen Zerfall des Protons im Widerspruch zur experimentellen Beobachtung. Die Proton-
Lebensdauer wird durch die Einführung der Erhaltung der R-Parität stabilisiert. Die R-
Parität ist durch PR = (−1)3B+L+2s definiert, wo B die Baryonenzahl, L die Leptonen-
zahl und s der Spin des betrachteten Teilchens ist. Für Standardmodell-Teilchen gilt somit
PR = +1, für deren Superpartner PR = −1. Aus der Forderung nach R-Paritätserhaltung
ergeben sich zwei wichtige Konsequenzen: Das leichteste supersymmetrische Teilchen ist sta-
bil und eignet sich somit als Kandidat zur Erklärung der hypothetischen Dunklen Materie.
Ferner koppeln Standardmodell-Teilchen stets an eine gerade Anzahl von Superpartnern,
so dass Beiträge von Superpartnern zu Niederenergie-Prozessen, deren Anfangs- und End-
zustände ausschließlich Standardmodell-Teilchen enthalten, nur durch Paarproduktion virtu-
eller Superpartner möglich ist. Fordert man keine exakte Erhaltung der R-Parität, so ist die
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Abbildung 16: Relative Verschiebungen der schwachen Ladungen des Elektrons und des Pro-
tons aufgrund von SUSY-Effekten. Die Abbildung wurde [33] entnommen. Die mit

”
SUSY-

LOOPS“ gekennzeichneten Punkte markieren die aufgrund von Schleifenkorrekturen im
MSSM vorhergesagten Verschiebungen. Jeder Punkt entspricht einem Satz von zufallsverteilt
gewählten SUSY-Parametern. Es wurden ca. 3000 Parameter-Sätze generiert. Die Fläche,
welche durch die mit RPV-SUSY”gekennzeichnete Kurve umrandet wird, markiert den Be-
reich möglicher Verschiebungen für SUSY-Prozesse, welche die R-Parität nicht erhalten. Die
im Rahmen des MOLLER-, QWeak- und P2-Experiments angestrebten relativen Unsicher-
heiten bei der Bestimmung vonQW(e) bzw.QW(p) sind durch die farblich unterlegten Bänder
gekennzeichnet.

Erhaltung der Proton-Stabilität etwa durch die Forderung der Erhaltung der Baryonenzahl
immer noch möglich, das leichteste supersymmetrische Teilchen jedoch ist nicht mehr stabil.
In diesem Fall sind Beiträge von die R-Parität verletzenden Prozessen zu Streuamplituden
auf Baumgraphen-Niveau möglich.

Präzise Messungen der paritätsverletzenden Asymmetrien der elastischen Elektron-Elektron-
und Elektron-Proton-Streuung bei niedrigen Q2-Werten sind sensitiv auf mögliche Verschie-
bungen δQW(e) und δQW(p) der schwachen Ladungen QW(e) und QW(p), welche durch
SUSY-Prozesse induziert werden. Abbildung 16 gibt einen Überblick über die möglichen
Verschiebungen sowie die Sensitivitäten des MOLLER-, QWeak- und P2-Experiments. Die
in Abbildung 16 dargestellten Punkte markieren Verschiebungen der schwachen Ladungen
von Elektron und Proton gegenüber deren Werte im Standardmodell aufgrund von SUSY-
Schleifenkorrekturen im Rahmen des MSSM. Abbildung 17 zeigt Feynman-Diagramme der
Prozesse, welche die dominanten Beiträge zu den Verschiebungen der schwachen Ladungen
leisten.
Es ergeben sich relative Verschiebungen von bis zu 4 % für QW(e) und bis zu 8 % für
QW(p) aus SUSY-Schleifenkorrekturen. Mögliche Verschiebungen, welche aus Prozessen re-
sultieren, die die R-Parität verletzen, sind zwei- bis drei Mal so groß, da in diesem Fall
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Abbildung 17: Feynman-Diagramme repräsentativer SUSY-Prozesse, welche Beiträge zu den
Verschiebungen der schwachen Ladungen von Elektron und Proton im Falle der Erhaltung
der R-Parität leisten. Die Diagramme wurden [33] entnommen. In den Diagrammen bezeich-
net χ± sogenannte

”
Charginos“, und F̃ bezeichnet Masse-Eigenzustände von Superpartnern

der im Standardmodell vorkommenden Fermionen.

Beiträge auf Baumgraphen-Niveau möglich sind. Das geplante MOLLER-Experiment wird
QW(e) mit einer relativen Genauigkeit von δQW(e)/QW(e) = 2,3 % für den Erwartungswert
〈Q2〉 = 0,0025 GeV2/c2 bestimmen. Das QWeak-Experiment wird QW(p) mit einer relativen
Unsicherheit von δQW(p)/QW(p) = 4 % für 〈Q2〉 = 0,026 GeV2/c2 messen, und die P2-
Kollaboration plant eine Bestimmung von QW(p) mit einer relativen Unsicherheit von 3,3 %
bei 〈Q2〉 = 0,0045 GeV2/c2. Diese Experimente können somit Hinweise auf Effekte geben,
welche durch SUSY-Strahlungkorrekturen hervorgerufen werden können.
Bei den in Abbildung 17 dargestellten Prozessen handelt es sich um universelle Strahlung-
korrekturen, d. h. sie hängen nicht von den Fermionen im Anfangs- und Endzustand des
betrachteten Streuprozesses ab. Daher ergibt sich eine lineare Korrelation in den Verschie-
bungen von QW(e) und QW(p), die man in Abbildung 16 erkennen kann. Die relativen
Verschiebungen für QW(e) und QW(p) haben fast immer dasselbe Vorzeichen. Da im Stan-
dardmodellQW(e) < 0 undQW(p) > 0 gilt, erwartet man somit δQW(e) < 0 und δQW(p) > 0
aufgrund von SUSY-Schleifeneffekten. Bei Nichterhaltung der R-Parität ist die für QW(e)
erwartete Verschiebung niemals positiv, während für QW(p) sowohl positive als auch ne-
gative Verschiebungen möglich sind. Künftige Präzisionsmessungen von QW(e) und QW(p)
bei niedrigen Energien können somit nicht nur den Wertebereich erlaubter SUSY-Parameter
einschränken, sondern auch Hinweise hinsichtlich der Erhaltung/Verletzung der R-Parität
geben.

2.4.4 Dunkles Z-Boson

Beim Zd-Boson handelt es sich um ein hypothetisches, leichtes Vektor-Boson mit einer Masse
10 MeV/c2 ≤ mZd

≤ 10 GeV/c2 [41, 42, 43]. Es resultiert aus der spontanen Brechung einer
neuen U(1)d-Eichsymmetrie, welche mit Dunkler Materie in Verbindung gebracht werden
kann. Die durch das Zd hervorgerufenen Effekte können nicht in einer Kontaktwechselwir-
kung absorbiert werden, solange m2

Zd
c2 ≤ Q2 gilt. Das Zd muss in diesem Fall als dynamischer

Freiheitsgrad mit geringer Masse behandelt werden.

Die Interaktion des Zd mit den Fermionen des Standardmodells erfolgt über kinetische Mi-
schung zwischen Photon und Zd sowie Zd-Z-Massenmischung. Die Wechselwirkung wird
durch die Lagrange-Dichte

Lint = − g√
2

[
ε · jem

µ +
εZ

2 cos θW

· Jnc
µ

]
Zµ

d (99)
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Abbildung 18: Abhängigkeit von sin2(θ̂W) vom negativen Viererimpulsübertrag Q. Die Ab-
bildung wurde von H. Spiesberger (P2-Kollaboration) erstellt. Die schwarze Kurve stellt die
Standardmodell-Vorhersage für den Verlauf der Energieabhängigkeit von sin2(θ̂W) dar. Die
farbigen Bänder repräsentieren Vorhersagen für den Verlauf von sin2(θ̂W) in Gegenwart ei-
nes Zd-Bosons der Masse mZd

= 100 MeV/c2 (blaues Band) bzw. mZd
= 200 MeV/c2 (rotes

Band). Die Breite der Bänder ergibt sich aus den Wertebereichen für ε und δ, für welche
die Existenz des Zd die gµ − 2-Diskrepanz [40] erklären würde. Da das Vorzeichen von ε · δ
gegenwärtig unbekannt ist, spalten sich die Vorhersagen in je ein Band für ε · δ > 0 und
ε · δ < 0 auf. Die schwarzen Datenpunkte repräsentieren bereits abgeschlossene Bestimmun-
gen des elektroschwachen Mischungswinkels, die rot gezeichneten Punkte markieren künftige
Bestimmungen von sin2(θ̂W). Die Positionierung der Punkte künftiger Experimente entlang
der Ordinatenachse ist willkürlich gewählt, die Fehlerbalken entsprechen den erwarteten Un-
sicherheiten bei der Bestimmung von sin2(θ̂W)(Q).

beschrieben. Hierin ist jem der elektromagnetische Strom und Jnc der neutrale Strom der
schwachen Wechselwirkung. Der Parameter ε legt den Grad der kinetischen Mischung zwi-
schen Photon und Zd fest, sein Wertebereich wurde auf ε . 10−3 eingegrenzt [44, 45, 46].
Ferner gilt

εZ =
mZd

mZ

δ, (100)

wo δ ein modellabhängiger Parameter ist, welcher die Massenmischung von Z und Zd cha-
rakterisiert. Es muss 0 ≤ δ2 < 1 gewählt werden, um auszuschließen, dass das Zd eine
unendliche Reichweite besitzt oder tachyonisch ist.

Der Effekt der aus (99) resultierenden Wechselwirkungen auf die im Rahmen von Experi-
menten zur Paritätsverletzung auftretenden Amplituden kann durch die Ersetzungen

√
2GF →

√
2GF

(
1 + δ2

m2
Zd
c2

Q2 +m2
Zd
c2

)
,

sin2(θ̂W)→ sin2(θ̂W)

(
1− εδ mZ

mZd

cos(θ̂W)

sin(θ̂W)

m2
Zd
c2

Q2 +m2
Zd
c2

) (101)

berücksichtigt werden. Man erkennt an Gleichung (101), dass die Energieabhängigkeit von
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sin2(θ̂W) im Falle der Existenz eines dunklen Zd-Bosons gegenüber der Standardmodell-
Vorhersage modifiziert wird. Der Effekt hängt vom Vorzeichen von ε · δ, der Masse des Zd

und Q2 ab. Aufgrund des Faktors (m2
Zd
c2)/(Q2 + m2

Zd
c2) erwartet man insbesondere bei

niedrigen Q2-Werten Abweichungen von der Standardmodell-Vorhersage für den Verlauf der
Energieabhängigkeit. Abbildung 18 zeigt Beispiele für mögliche Verläufe von sin2(θ̂W) in
Gegenwart eines Zd. Man erkennt, dass der Verlauf von sin2(θ̂W) für 100 MeV/c2 ≤ mZd

≤
200 MeV/c2 signifikante Abweichungen von dem im Standardmodell vorhergesagten Verlauf
bei niedrigenQ2-Werten aufweist. Künftige, hochpräzise Bestimmungen des Weinbergwinkels
bei niedrigem Q2 sind sensitiv auf mögliche, durch das Zd induzierten Abweichungen und
werden einen wesentlichen Beitrag zur Validierung der Zd-Boson-Hypothese leisten.
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3 Ausgewählte Experimente zur Messung des neutra-

len Stroms der schwachen Wechselwirkung

Dieses Kapitel widmet sich einer kurzen Beschreibung ausgewählter Experimente, welche auf
der Messung des neutralen Stroms der schwachen Wechselwirkung beruhen.
Es werden zunächst Experimente beleuchtet, welche eine Bestimmung von sin2(θW) ermöglicht
haben. Dabei werden sowohl Hochenergie-Experimente an Kollidern betrachtet als auch
Experimente, die bei niedrigen Impulsüberträgen durchgeführt wurden. Die unterschiedli-
chen experimentellen Methoden werden beleuchtet. Abbildung 9 zeigt die Resultate bereits
durchgeführter Experimente sowie Projektionen der erwarteten Unsicherheiten künftiger
experimenteller Bestimmungen des Weinbergwinkels zusammen mit der Standardmodell-
Vorhersage für dessen Skalenabhängigkeit.
Des Weiteren wird in diesem Kapitel ein Überblick über Experimente zur paritätsverletzenden
Elektronenstreuung gegeben. Die Experimente werden gemäß ihrer Zielstellung klassifiziert.
Ausgewählte Projekte werden vorgestellt.

3.1 Elektron-Positron-Kollisionen

Die beiden bislang präzisesten experimentellen Bestimmungen des elektroschwachen Mi-
schungswinkels wurden an Elektron-Positron-Kollidern mit hohen SchwerpunktsenergienES ∼
mZc

2 durchgeführt.

Am
”
Large Electron-Positron Collider“ (LEP1) am

”
Conseil Européen pour la Recherche

Nucléaire“ (CERN) wurden unpolarisierte Elektronen mit unpolarisierten Positronen zur
Kollision gebracht [47]. Abbildung 19 zeigt ein Diagramm zur Veranschaulichung des physi-
kalischen Prozesses. Da die rechts- und linkshändigen Kopplungen des Z0-Bosons an Fermio-
nen nicht gleich sind, erwartet man für die Eichbosonen eine effektive Polarisation entlang
der Strahlachse, selbst dann, wenn die sie erzeugenden Elektronen und Positronen unpolari-
siert sind. Die Verletzung der Parität durch die schwache Wechselwikung impliziert, dass die
Winkelverteilung der aus dem Zerfall der Z0-Bosonen entstehenden Fermionen eine Vorwärts-
Rückwärts-Asymmetrie aufweist.

Die Schwerpunktsenergie zur Durchführung des Experiments wurde in der Nähe der Z0-

e−

e+

Z0 b

b̄

Abbildung 19: Zur Veranschaulichung des Prozesses e+e− → bb̄.
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Resonanz gewählt. Gemessen wurde die Vorwärts-Rückwärts-Asymmetrie

AFB(bb̄) ≡ NF −NB

NF +NB

(102)

im Prozess e+e− → bb̄. In (102) bezeichnet NF die Anzahl der Fermionen, welche nach der
e+-e−-Kollison in die durch die Richtung des Elektronenstrahls definierte Hemisphäre mit
Polarwinkeln θ < 90◦ erzeugt wurden. NB ist entsprechend die Anzahl der mit Winkeln θ ≥
90◦ generierten Fermionen. Aus dieser Messung wurde der elektroschwache Mischungswinkel
zu

sin2(θ̂W)(µ = mZc) = 0,231 93(29) (103)

bestimmt [48].

Am
”
Stanford Linear Collider“ (SLC) wurden longitudinal polarisierte Elektronen mit un-

polarisierten Positronen zu Kollision gebracht [47]. Auch hier wurden Schwerpunktsenergien
nahe der Z0-Resonanz gewählt. Als Obervable diente die Links-Rechts-Asymmetrie

ALR ≡ 1

Pe

NL −NR

NL +NR

, (104)

wo NL, R die Anzahl der Z0-Bosonen ist, welche für links- bzw. rechtshändige Elektronen
erzeugt wurden. Pe bezeichnet den Erwatungswert der mit der Luminosität gewichteten
Polarisation des Elektronenstrahls. Der elektroschwache Mischungswinkel wurde im Rahmen
dieser Messung zu

sin2(θ̂W )(µ = mZc) = 0,230 70(26) (105)

bestimmt [49].

Die Resultate der LEP1-Messung und der SLC-Messung weichen um 3, 2 Standardabweichun-
gen voneinander ab. Eine durch systematische Fehler bedingte Ursache für diese Abweichung
konnte bislang nicht festgestellt werden.

Der Erwartungswert 〈ŝ2
Z〉 aller am Z-Pol durchgeführten Bestimmungen des elektroschwa-

chen Mischungswinkels beträgt nach [50]:

〈ŝ2
Z〉 = 0,231 25(16). (106)

3.2 Paritätsverletzung im Caesium-Atom

Die Messung der Paritätsverletzung durch die schwache Wechselwirkung zwischen Hüllenelektronen
und Nukleonen von Atomen stellt eine Methode dar, um den elektroschwachen Mischungs-
winkel bei sehr niedrigen Viererimpulsüberträgen zu bestimmen. Im Jahr 1997 wurde die
schwache LadungQW(137Cs) des 137Cs-Kerns beiQ ≈ 2,4 MeV/c gemessen [51]. Hierzu wurde
ein Stark-Interferenz-Schema zur Bestimmung der E1-Übergangsraten zwischen den 6S- und
7S-Zuständen verwendet. Diese Übergänge sind aufgrund der Paritäts-Auswahlregel streng
verboten. Die Wahrscheinlichkeit für einen direkten Übergang zwischen diesen Zuständen ist
sehr klein, die Übergangsrate

RPNC =
∣∣APNC

∣∣2 , (107)

wo APNC die Amplitude des paritätsverletzenden Übergangs darstellt, ist um den Faktor
10−22 kleiner als die Rate eines typischen erlaubten elektrischen Dipolübergangs. Daher ist
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Abbildung 20: Vereinfachte Darstellung von Übergängen zwischen den Energieniveaus von
Caesium, welche für das APV-Experiment von Relevanz sind.

eine direkte Messung von RPNC nicht zielführend. Die Bestimmung von QW(137Cs) erfolg-
te daher mittels der

”
Stark-Interferenz-Methode“ [52]. Hierbei wird die Übergangsrate R,

welche sich aus der Interferenz von APNC und der Amplitude AE eines durch die Paritäts-
Auswahlregel erlaubten elektromagnetischen Übergangs ergibt, gemessen. Für diese gilt

R ≡
∣∣AE + APNC

∣∣2 = (AE)2 ± 2AEAPNC + (APNC)2. (108)

Der Term 2AEAPNC ist linear in AE und daher experimentell zugänglich. Die Observable im
Experiment ist die relative Änderung der Übergansrate ∆R/R bei Änderung der Parität.

Im Experiment wurde APNC mit der durch ein elektrisches Feld induzierten E1-Amplitude
des Übergangs 6S → 6P zur Interferenz gebracht. Der Übergang 6S → 7S wurde mittels
eines Farbstofflasers angeregt. Der 7S-Zustand zerfällt in den 6P-Zustand. Es wurde die
Übergangsrate für 6P → 6S gemessen. Abbildung 20 zeigt ein stark vereinfachtes Niveau-
schema zur Veranschaulichung der Übergänge zwischen diesen Energieniveaus. Zur Interpre-
tation der Messdaten ist die Berücksichtigung der atomaren Struktur von 137Cs notwendig.
Unter Berücksichtigung entsprechender Korrekturen [53] erhält man

QAPV
W (137Cs) = −72,58(43), (109)

was
sin2(θ̂W)(µ = mZc) = 0,2283(20) (110)

entspricht. Die Standardmodell-Vorhersage für QW(137Cs) beträgt

QSM
W (137Cs) = −73,24(5). (111)

Der Unterschied zwischen QAPV
W (137Cs) und QSM

W (137Cs) beträgt 1, 5 Standardabweichungen.
Trotz der vergleichsweise großen Unsicherheit gestattet dieses Resultat die Einschränkung
möglicher neuer Lepton-Quark-Wechselwirkungen auf der TeV-Skala und komplementiert
die aus Hochenergie-Experimenten an Kollidern stammenden Resulate [52].

3.3 Neutrino-Nukleus-Streuung

Am Fermilab wurde das NuTeV-Experiment durchgeführt [54]. Das Experiment ermöglichte
eine Bestimmung von sin2(θW) für Q = 5 GeV/c durch eine Messung des geladenen und
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Abbildung 21: Diagramme der Neutrino-Nukleus-Reaktionen, welche in NuTeV zur Bestim-
mung von sin2(θW) ausgenutzt wurden. Links: Wechselwirkung durch den geladenen Strom
der schwachen Wechselwikung. Im Stahl-Target entstanden Myonen sowie Hadron-Schauer.
Die Impulse der Myonen wurden im Toroid-Spektrometer bestimmt, die Hadronen-Schauer
wurden mit den im Target verbauten Szintillatoren und Driftkammern analysiert. Rechts:
Wechselwirkung durch den neutralen Strom der schwachen Wechselwirkung. Hier entstand
nur ein Hadronen-Schauer im Stahl-Target, es kann kein Myon im Toroid-Spektrometer
nachgewiesen werden.

neutralen Stroms der schwachen Wechselwirkung in der Neutrino-Nukleus-Streuung.

Zur Durchführung des Experiments wurde am Tevatron ein Strahl von Neutrinos bzw. An-
tineutrinos erzeugt, indem Protonen der Energie 800 GeV/c2 mit einem BeO-Target zur
Wechselwirkung gebracht wurden. Die Neutrinos durchquerten anschließend ein 18 m langes
und 690 t schweres Stahl-Target, welches mit Szintillatoren und Driftkammern durchsetzt
war. An das Target schloss sich ein Toroid-Spektormeter zur Bestimmung der Impulse von
Myonen an. Abbildung 21 zeigt Diagramme der für die Bestimmung des elektroschwachen
Mischungswinkels relevanten Prozesse im Stahl-Target.

Die zur Bestimmung von sin2(θW) verwendete Observable ist die Paschos-Wolfenstein Rela-
tion

R− =
σνNC − σνNC

σνCC − σνCC

= ρ2

(
1

2
− sin2(θW)

)
, (112)

wo σν, νNC, CC der Wirkungsquerschnitt für die Neutrino- (ν) bzw. Anitneutrino- (ν) Streuung
am Nukleon unter Austausch eines W - (CC) bzw. Z- (NC) Bosons ist.

Als Wert für den elektroschwachen Mischungswinkel im MS-Renormierungsschema an der
Stelle µ = mZc ergab sich

sin2(θ̂W)(µ = mZc) = 0,2329(13), (113)

was einer Abweichung von 3 Standardabweichungen vom Standardmodell-Erwartungswert
entspricht. Es existieren zahlreiche Versuche, dieses Resultat im Rahmen des Standardmo-
dells [55, 56, 57, 58] sowie im Kontext Neuer Physik [59] zu erklären.
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3.4 Komplementäre Experimente zur paritätsverletzenden Elek-
tronenstreuung

Die paritätsverletzende Elektronenstreuung (PVES) stellt eine wohletablierte experimen-
telle Methode dar [60], [61]. Sie beruht auf dem Beschuss eines Targets mit longitudinal
polarisierten Elektronen, deren Helizität periodisch wechselt, um die Parität im Streupro-
zess umzukehren. Abbildung 22 gibt einen Überblick über abgeschlossene sowie zukünftige
Experimente, welche sich diese Methode zunutze gemacht haben bzw. machen werden.

Als Pionierexperiment zur paritätsverletzenden Elektronenstreuung wird E122 angesehen
[62]. Es wurde im Jahr 1978 durchgeführt und diente der Bestimmung der paritätsverletzenden
Asymmetrie in der tiefinelastischen Streuung von Elektronen an Deuterium. Das Experiment
war richtungsweisend auf dem Weg hin zur Etablierung der heutigen Theorie der schwachen
Wechselwirkung und lieferte eine gute Übereinstimmung mit den von Weinberg und Salam
getroffenen Vorhersagen.
Der Erfolg dieses Experiments basierte auf technischen Neuerungen, welche bis heute in die-
sem Forschungsfeld Anwendung finden. So wurde etwa eine auf Photoemission aus GaAs ba-
sierende Quelle polarisierter Elektronen eingesetzt, um einen longitudinal polarisierten Elek-

Abbildung 22: Überblick über Experimente zur paritätsverletzenden Elektronenstreuung. Die
Abbildung wurde [61] entnommen. Aufgetragen ist die Unsicherheit δAPV der gemessenen
paritätsverletzenden Asymmetrie gegen den Betrag der Asymmetrie APV. Die Datenpunk-
te gehören zu Experimenten, die bereits durchgeführt wurden bzw. in Planung sind. Die
Experimente werden in vier Generationen eingeteilt. Die zugehörige Diskussion findet sich
im Text. Die Diagonalen grenzen Gebiete unterschiedlicher relativer Unsicherheiten in APV

gegeneinander ab.
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tronenstrahl mit umschaltbarer Helizität zu generieren. Ferner wurden Strahlmonitore ent-
wickelt, um die Strahleigenschaften, insbesondere bei der Helizitätsumschaltung, überwachen
zu können. Die in E122 gemessene Asymmetrie besitzt die Größenordnung O(10−4). In Folge
wurden zwei weitere Experimente in Mainz (Mainz-Be, [63]) und am Massachusetts Institute
of Technology (MIT-12C, [64]) durchgeführt, welche zusammen mit E122 als die Pionierex-
perimente der ersten Generation betrachtet werden.

Die zweite Generation der PVES-Experimente war der Bestimmung des Beitrags der Strange-
See-Quarks zur Struktur des Nukleons gewidmet. Motiviert wurden diese Experimente durch
die sogenannte

”
Spin-Krise“ [65], [66]; Messungen der Spin-Strukturfunktionen des Protons

hatten darauf hingedeutet, dass der Spin des Protons sich nicht einfach aus den Spins von
Valenz-Quarks ergibt. Es wurden vier experimentelle Programme an drei Forschungseinrich-
tungen ins Leben gerufen: SAMPLE [67, 68, 69] wurde am MIT-Bates-Labor durchgeführt,
HAPPEX [70, 71, 72] und G0 [73, 74] am Jefferson National Laboratory (Jefferson Lab) und
das A4-Experiment [75, 76, 77] am Mainzer Mikrotron (MAMI). Die in diesen Experimenten
gemessenen Asymmetrien sind von der Größenordnung 10−5 − 10−6.

Die in diesen Experimenten gewonnenen Erfahrungen und Resultate bildeten die Grundlage
für die Experimente der dritten und vierten Generation, welche in Abbildung 22 aufgeführt
sind. Diese Experimente wurden dazu konzipiert, die Vorhersagen des Standardmodells durch
die präzise Bestimmung zentraler Theorieparameter zu testen. Im Folgenden wird ein kurzer
Überblick über SLAC-E158, QWeak, MOLLER und SoLID gegeben.

3.4.1 SLAC-E158

Im Rahmen von SLAC-E158 wurden longitudinal polarisierte Elektronen mit einer Energie
vonEi ≈ 45 GeV auf ein 1,5 m langes Wasserstoff-Target geschossen und die paritätsverletzende
Asymmetrie in der elastischen Elektron-Elektron-Streuung bei Q2 = 0,026 (GeV/c)2 gemes-
sen [78]. Da es sich bei der Møller-Streuung um einen rein leptonischen Prozess handelt,
sind hadronische Beiträge zur Streuamplitude klein, was eine hohe Genauigkeit bei der Be-
rechnung von Strahlungskorrekturen und der Extraktion von sin2(θW) aus den Messdaten
ermöglicht. Das Experiment lieferte

QW(e) = −0,0369(52) (114)

als Resultat für die schwache Ladung des Elektrons im statischen Grenzfall (Ei, Q
2) → 0,

was
sin2(θ̂W)(µ = mZc) = 0,2329(13) (115)

für den Wert von sin2(θW) am Z0-Pol unter Berücksichtigung von Strahlungkorrekturen ent-
spricht. Das E158-Experiment lieferte die bis heute präziseste Bestimmung des elektroschwa-
chen Mischungswinkels bei niedrigem Q2, welche im Rahmen ihrer Unsicherheit mit der
Vorhersage des Standardmodells der Elementarteilchenphysik übereinstimmt.

3.4.2 QWeak

Das Ziel des QWeak-Experiments war die weltweit erste, präzise Bestimmung der schwachen
Ladung des Protons QW(p) bei Q2 � m2

Zc
2 durch eine Messung der paritätsverletzenden

Asymmetrie APV
ep der elastischen Elektron-Proton-Streuung [79]. Das Experiment wurde im

Jahr 2001 vorgeschlagen und im Zeitraum von 2006 bis 2009 am Jefferson Lab in Newport
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Abbildung 23: Schematische Darstellung des Aufbaus des QWeak-Experiments. Die Abbil-
dung wurde [80] entnommen. Die von links ins Bild einfallenden Strahlelektronen werden im
`H2-Target elastisch gestreut, passieren drei aus Pb bestehende Kollimatoren, werden an-
schließend in einem toroidalen Magnetfeld abgelenkt, passieren eine Schild-Wand und werden
schließlich in einem aus acht Modulen bestehenden Cherenkov-Detektor nachgewiesen. Im
Bild sind zusätzlich Driftkammern sowie ein Trigger-Szintillator zu erkennen, welche zur
Bestimmung des Mittelwerts von Q2 bei niedrigem Strahlstrom eingesetzt wurden.

News, USA, aufgebaut. Die Datennahme wurde 2012 abgeschlossen.

Abbildung 23 zeigt ein Schema des Experimentieraufbaus. Zur Durchführung des Experi-
ments wurde an der

”
Continuous Electron Beam Accelerator Facility“ (CEBAF) ein Strahl

longitudinal polarisierter Elektronen erzeugt und auf ein in Strahlrichtung 35 cm langes `H2-
Target gerichtet. Der Strahlstrom betrug zwischen 150µA und 180µA, die Strahlenergie war
Ebeam = 1,165 GeV. Die mittlere Strahlpolarisation betrug P ≈ 87 %. Der Helizitätszustand
der longitudinal polarisierten Strahlelektronen wurde mit einer Frequenz von 960 Hz umge-
schaltet. Die Experimentieranordnung wurde darauf ausgelegt, Strahlelektronen, welche im
Target elastisch an Protonen unter Winkeln θf ∈ [6◦, 10◦] gestreut wurden, zur Messung von
APV

ep nachzuweisen. Diese Elektronen passierten nach der Streuung im Target eine Anordnung
von drei Kollimatoren und wurden anschließend im Magnetfeld eines Toroiden abgelenkt, um
sie von geladenen Teilchen aus Untergrund-Prozessen zu separieren. Anschließend passier-
ten die Elektronen eine Schildwand und wurden in einem Cherenkov-Detektor registriert.
Der Cherenkov-Detektor bestand aus acht Modulen, welche symmetrisch um die Strahlachse
angeordnet waren. Als aktives Medium der Detektormodule diente amorphes SiO2. Bei nomi-
nellem Strahlstrom wurde eine integrierende Messung zur Bestimmung von APV

ep ausgeführt.
Bei niedrigem Strahlstrom wurden die Flugbahnen der gestreuten Teilchen mithilfe von Drift-
kammern rekonstruiert, wobei Szintillatoren als Trigger zum Nachweis einzelner Teilchen im
Cherenkov-Detektor dienten. Dies erlaubte die Bestimmung der Q2-Verteilung derjenigen
Elektronen, welche zum Signal des Cherenkov-Detektors beitrugen und ermöglichte somit
die experimentelle Bestimmung des Impulsübertrags, welcher zur Extraktion von QW(p)
und sin2(θW) aus den bei nominellem Strahlstom gewonnenen Daten verwendet wurde.
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Die Resultate des QWeak-Experiments wurden in [81] veröffentlicht. Im Experiment wurde
eine Asymmetrie von

APV
ep = (−226, 5± 7, 3(stat.)± 5, 8(syst.)) ppb (116)

gemessen. Hieraus ergibt sich für die schwache Ladung des Protons:

QW(p) = 0, 0719± 0, 0045, (117)

was einer relativen Unsicherheit von

∆QW(p)

QW(p)
≈ 6,3 % (118)

entspricht. Der experimentell bestimmte Wert von QW(p) stimmt im Rahmen der Unsicher-
heit mit der Standardmodell-Vorhersage überein.

Gegenwärtig befinden sich PVES-Experimente der vierten Generation in Vorbereitung. Die-
se Gruppe wird aus dem MOLLER-Experiment, dem SoLID-Experiment und dem P2-
Experiment gebildet. Diese Experimente werden sehr hohe Präzisionen bei der Bestimmung
der jeweiligen paritätsverletzenden Asymmetrie erreichen und somit zusammen mit den an
Kollidern gewonnenen Daten einen stringenten Test der Standardmodell-Vorhersage für den
Verlauf von sin2(θW) im Bereich µ� mZc

2 ermöglichen. Das MOLLER-Experiment und das
SoLID-Experiment werden im Folgenden kurz besprochen.

3.4.3 MOLLER

Die MOLLER-Kollaboration plant eine hochpräzise Bestimmung der schwachen Ladung des
Elektrons QW(e) am Jefferson Lab mit einer relativen Unsicherheit von ∆QW(e)/QW(e) =
2,4 % [82]. Dieser Wert entspricht einer um den Faktor Fünf reduzierten Unsicherheit bei
der Bestimmung von QW(e) im Vergleich zum Resultat des E158-Experiments. Hierzu soll
die paritätsverletzende Asymmetrie APV

ee im Møller-Streuprozess mit einem Erwartungswert
von 〈APV

ee 〉 ≈ 33 ppb und einer statistischen Unsicherheit von ∆APV
ee ≈ 0,7 ppb bestimmt

werden. Dies entspricht einer relativen Unscherheit von ∆ sin2(θW)/ sin2(θW) = 0,1 % bei
der Bestimmung des elektroschwachen Mischungswinkels.

Abbildung 24 zeigt eine Zeichung der vorgesehenen Experimentieranordnung. Es ist geplant,
einen longitudinal polarisierten Elektronenstrahl der Energie Ebeam = 11 GeV mit einem in
Strahlrichtung 1,5 m langen `H2-Target zur Wechselwirkung zu bringen. Der Strahlstrom soll
75µA betragen, und es wird eine Strahlpolarisation von P = 80 % mit einer relativen Unsi-
cherheit von ∆P/P = 0,4 % angestrebt. Ein Kollimatorsystem wird alle Elektronen im End-
zustand des Møller-Streuprozesses akzeptieren, für deren Streuwinkel im Schwerpunktsystem
60◦ ≤ θCM

f ≤ 120◦ gilt. Dies entspricht einer Akzeptanz von 5 mrad ≤ θf ≤ 17 mrad für den
Streuwinkel im Laborsystem. Die Elektronen werden mithilfe zweier Toroid-Spektrometer
von Elektronen im Endzustand der elastischen und inelastichen Elektron-Proton-Streuung
separiert werden. Es sind jeweils sieben Spulen für die Toroiden vorgesehen. Obwohl die To-
roiden etwa die Hälfte des Azimuts abdecken werden, wird durch die Topologie des Møller-
Streuprozesses zusammen mit der Wahl einer ungeraden Anzahl an Toroid-Spulen der Nach-
weis nahezu sämtlicher Møller-Streuereignisse ermöglicht werden; zur Bestimmung von APV

ee

reicht es aus, eins der beiden Elektronen im Endzustand des Streuprozesses nachzuweisen.
Durch die Magnetfelder der Toroid-Spektrometer werden die gestreuten Elektronen auf ein
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Abbildung 24: Geplanter Aufbau des Møller-Experiments. Die Abbildung wurde [82] ent-
nommen.

Detektorsystem fokussiert werden, welches sich in Strahrichtung etwa 28 m vom Target ent-
fernt befinden wird. Das geplante Detektorsystem deckt den gesamten Azimut ab und wird in
der Lage sein, Elektronen im Endzustand des Møller-Streuprozesses sowie der elastischen und
inelastischen Elektron-Proton-Streuung nachzuweisen. Es wird eine simultane Bestimmung
der paritätsverletzenden Asymmetrien der drei zuvor genannten Streuprozesse im Rahmen
einer integrierenden Messung ermöglichen. Hierzu ist eine Segmentierung der Detektorringe
in azimutaler Richtung als auch senkrecht zur Strahlachse vorgesehen. Der Detektor zur Be-
stimmung der paritätsverletzenden Asymmetrien wird aus ca. 220 Modulen bestehen, es wird
der Cherekov-Effekt zum Teilchennachweis ausgenutzt werden. Als aktives Medium ist amor-
phes SiO2 vorgesehen. Das im aktiven Medium erzeugte Cherenkov-Licht wird durch einen
Luft-Lichtleiter zu einem Photomultiplier geleitet werden, wo es in ein elektrisches Signal
umgesetzt werden wird. Prototypen der Detektor-Module zur Asymmetriemessung wurden
im Rahmen von Tests an MAMI in Mainz in Zusammenarbeit mit der P2-Kollaboration
erfolgreich erprobt. Neben den Detektoren zur Asymmetriebestimmung sind Detektoren zur
Luminositätsüberwachung sowie zur Bestimmung hadronischer Beiträge zu den zu messen-
den Raten und Asymmetrien in Planung befindlich. Ähnlich wie beim QWeak-Experiment
wird es auch im MOLLER-Experiment notwendig sein, den mittleren Viererimpulsübertrag
〈Q2〉 bei niedrigen Strahlströmen zu bestimmen, um eine Extraktion von QW(e) und sin2(θW)
aus den Messdaten zu ermöglichen. Zu diesem Zweck ist der regelmäßige Einsatz von Gas-
Elektron-Multipliern (GEMs) geplant.

3.4.4 SoLID

Anfang 2010 wurde am Jefferson Lab der Antrag zur Durchführung des SoLID-Experiments
angenommen [83]. Ziel dieses Experiments ist die Bestimmung neuer Linearkombinationen
von Vektor- und Axialvektor-Kopplungen der Quarks mit hoher Präzision im Rahmen der
paritätsverletzenden tiefinelastischen Streuung (PVDIS) von Elektronen an 2H. Die geplan-
te Messung würde in einer Bestimmung des elektroschwachen Mischungswinkels mit einer
Unsicherheit von ∆ sin2(θ̂W) = 6 · 10−4 bei 〈Q2〉 ∼ 5 (GeV/c)2 münden und eine Sensiti-
vität gegenüber möglichen neuen Lepton-Quark-Interaktionen auf der TeV-Skala besitzen.
Die angestrebte Präzision bei der Bestimmung der paritätsverletzenden Asymmetrie der tie-
finelastischen Streuung von Elektronen an flüssigem Deuterium liegt im Bereich von 0,5 %
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Abbildung 25: Geplanter Aufbau des SoLID-Experiments, mit freundlicher Genehmigung
der SoLID-Kollaboration, [84]. Eine Diskussion der dargestellten Komponenten findet sich
im Text.

bis 1 %.

Abbildung 25 zeigt eine Darstellung des geplanten Aufbaus des SoLID-Experiments. Es
ist ein longitudinal polarisierter Elektronenstrahl mit P ≈ 85 % ± 0,5 % und Ebeam ∈
{6,6 GeV, 11 GeV} mit einem Strahlstrom von Ibeam = 50 µA vorgesehen. Dieser wird auf
ein in Strahlrichtung 40 cm langes `D-Target gerichtet werden. Das Target wird sich im In-
neren eines großen Solenoiden befinden, welcher im zentralen Bereich ein Magnetfeld der
Stärke 1,5 T parallel oder antiparallel zur Strahlachse generieren wird. Der Einsatz eines
solchen Solenoiden erlaubt die Verwendung eines langen Targets und gestattet den Nachweis
von Elektronen, welche unter großen Laborstreuwinkeln θf ∼ 30◦ gestreut werden. Ferner
ermöglicht ein derartiges Spektrometer die Separation niederenergetischer, geladener Teil-
chen von den nachzuweisenden tiefinelastisch gestreuten Elektronen und erlaubt die Ab-
schirmung der vorgesehenen Detektoren gegen aus dem Target stammende Photonen. Zur
Abschirmung der Detektoren und zur Selektion der Elektronen im erwünschten kinemati-
schen Bereich werden mehrere Abschirmungs-Ebenen (Baffle) zum Einsatz kommen, welche
mit Schlitzen versehen sein werden, um den Elektronen, welche sich im Magnetfeld auf einer
Spiralbahn bewegen, das Durchkommen zu ermöglichen. Das konzipierte Detektorsystem
ist darauf ausgelegt einzelne Teilchen nachzuweisen. Die Trajektorien im Target gestreu-
ter Elektronen werden mittels GEMs rekonstruiert, aufgrund der hohen erwarteten Pion-
Produktionsrate sind Gas-Cherenkov-Detektoren zur Teilchenidentifikation vorgesehen. Ein
elektromagnetisches Kalorimeter wird als Trigger zum Nachweis der Elektronen eingesetzt
werden.

Das SoLID-Experiment könnte unter anderem wertvolle Hinweise auf eine Verletzung der
Ladungssymmetrie in Parton-Verteilungen sowie Quark-Quark-Korrelationen bei mittlerem
Q2, welche zur Abkehr vom Parton-Modell führen könnten, liefern. Falls SUSY am LHC
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beobachtet wird, könnte SoLID auf eine mögliche Erhaltung bzw. Verletzung der R-Parität
hindeuten.

Das P2-Experiment, welches an der im Aufbau befindlichen MESA-Forschungseinrichtung
in Mainz durchgeführt werden wird, hat die hochpräzise Bestimmung der schwachen Ladung
des Protons bei niedrigem Q2 zum Ziel. Das nachfolgende Kapitel ist der Beschreibung
des neuen Elektronenbeschleunigers MESA und des zur Durchführung von P2 vorgesehenen
Messaufbaus gewidmet.
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4 Das P2-Experiment an MESA

Seit 2012 werden die Durchführung des P2-Experiments und der Bau des
”
Mainz Ener-

gy recovering Superconducting Accelerator“ (MESA) vorbereitet. Diese Projekte werden im
Rahmen des Exzellenzclusters

”
Precision Physics, Fundamental Interactions and Structure of

Matter“ (PRISMA) und des Sonderforschungsbereichs 1044 (SFB1044) gefördert. Mit MESA
wird ein neuer, supraleitender, rezirkulierender Dauerstrich-Elektronen-Linearbeschleuniger
errichtet werden. Zum Betrieb von MESA sind zwei Modi vorgesehen, um die Elektronen-
strahlen für das MAGIX- [85] und das P2-Experiment bereitzustellen. Bei P2 handelt es sich
um ein Experiment der vierten Generation zur paritätsverletzenden Elektronenstreuung, vgl.
Abbildung 22. Ziel des Experiments ist die hochpräzise Bestimmung der schwachen Ladung
des Protons QW(p) mittels paritätsverletzender Elektron-Proton-Streuung bei niedrigen Vie-
rerimpulsüberträgen.

Dieses Kapitel ist einer Beschreibung von MESA und des P2-Experiments gewidmet. Zunächst
wird das experimentelle Prinzip zur Bestimmung der schwachen Ladung des Protons disku-
tiert. Anschließend werden Anforderungen an einen geeigneten Messaufbau zur Durchführung
des Experiments formuliert. Hieran schließt sich ein Überblick über die Konzepte zur Reali-
sierung von MESA und P2 an.

4.1 Grundprinzip zur Bestimmung der schwachen Ladung des Pro-
tons

Um eine präzise Bestimmung von QW(p) im Rahmen des P2-Experiments zu ermöglichen,
ist eine präzise Messung der paritätsverletzenden Asymmetrie APV

ep der elastischen Elektron-
Proton-Streuung vorgesehen. Eine Diskussion der Asymmetrie findet sich in Abschnitt 2.2.4.
Die nachfolgende Diskussion zum Prinzip der Asymmetriemessung beschränkt sich auf den
Prozess der elastischen Streuung von Elektronen an einem langen Proton-Target.

Das Prinzip zur experimentellen Bestimmung von APV
ep ist in Abbildung 26 veranschaulicht.

Es wird ein Strahl longitudinal polarisierter Elektronen mit Helizität h = +1 oder h = −1
mit einem im Laborsystem ruhenden, unpolarisierten Proton-Target zur Wechselwirkung ge-
bracht. Die Strahlenergien für die beiden Helizitätszustände seien E±beam, die Strahlströme
seien I±beam. Die Strahlrichtung entspreche der z-Richtung. Die im Target elastisch an Pro-
tonen unter Winkeln θf ∈ [θ±min, θ

±
max] gestreuten Elektronen werden mithilfe eines Detektors

nachgewiesen. Im Folgenden wird angenommen, dass der Detektor den gesamten Azimut-
winkel abdeckt.
Die Summe aller Strahlelektronen mit h = ±1, welche im Detektor nachgewiesen werden,
führt zu Detektor-Signalen S±, für welche

S± = Φ± · ρ± · L · 〈σ±ep〉L · ε± · T± (119)

gilt. Hierin ist Φ± ≡ I±beam/e der Fluss der Strahlelektronen, e die Elementarladung, ρ± die
Volumendichte der Protonen im Targetmaterial in der Einheit m−3, L die Länge des Targets
in Strahlrichtung, ε± ein Faktor, welcher das Antwortverhalten und die Nachweiseffizienz des
Detektors berücksichtigt, T± die Messdauer und

L · 〈σ±ep〉L =

L∫
0

dz

2π∫
0

dφf

θ±max∫
θ±min

dθf

[
sin(θf) ·

(
dσ±ep

dΩ

)(
E±i (z), θf

)]
(120)
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Abbildung 26: Elastische Elektron-Proton-Streuung an einem langen Target: Ein longitudi-
nal polarisierter Elektronenstrahl wird mit einem unpolarisierten Proton-Target, welches in
Strahlrichtung die Länge L besitzt, zur Wechselwirkung gebracht. Die Strahlelektronen be-
sitzen die Strahlenergie Ebeam und befinden sich entweder im Helizitätszustand h = +1 oder
h = −1. Die unter Winkeln θf ∈ [θmin, θmax] an den Protonen elastisch gestreuten Elektronen
werden in einem Detektor nachgewiesen.

das Integral des differentiellen Wirkungsquerschnitts der elastischen Elektron-Proton-Streuung
über die Ausdehnung des Targets entlang der z-Achse sowie das vom Detektor akzeptierte
Raumwinkelelement. In (120) ist E±i (z) die Energie der Elektronen im Anfangszustand des
Streuprozesses an der Stelle z im Target. E±i nimmt mit wachsendem z ab, da die Elektro-
nen beim Durchqueren des Targets Kollisions- und Strahlungsverluste erfahren. Die Winkel
θ±min und θ±max hängen bei vorgegebener Position und Geometrie des Detektors im Allgemei-
nen von den Koordinaten des Orts ab, an dem ein Streuereignis im Target stattfindet. Im
weiteren Verlauf dieser Arbeit und zum Design des Messaufbaus werden sie jedoch bis auf
Weiteres als Konstanten betrachtet. Die Idee dabei ist, θ±min, max bei festgelegten experimen-
tellen Rahmenbedingungen so zu wählen, dass QW(p) mit minimaler Unsicherheit bestimmt
werden kann. Für diese Wahl von θ±min, max wird dann ein Messaufbau so konzipiert, dass

die Detektorakzeptanz in θf über die volle Targetlänge hinweg dem Intervall [θ±min, θ
±
max] ent-

spricht. Die Annahme, dass dσ±ep durch E±i und θf festgelegt ist, bedeutet QED-Korrekturen
zum Streuprozess, welche in Abschnitt 2.3.3 beschrieben werden, zu vernachlässigen. Für
den differentiellen Wirkungsquerschnitt schreibt man(

dσ±ep

dΩ

)
≡
(
1± P · APV

ep

)
·
(

dσep

dΩ

)
, (121)

wo P die Strahlpolarisation ist und dσep den polarisationsunabhängigen Anteil des diffe-
rentiellen Wirkungsquerschnitts der elastischen Elektron-Proton-Streuung darstellt, welcher
durch die Rosenbluth-Formel (51) gegeben ist.

Aus den Detektorsignalen für die beiden Helizitätszustände kann man den Erwartungswert
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der Rohasymmetrie

〈Araw〉sig ≡
S+ − S−
S+ + S−

(122)

bestimmen. Man bezeichnet 〈Araw〉sig als Rohasymmetrie, weil sämtliche systematischen Ef-
fekte in ihr enthalten sind. Die eckigen Klammern deuten an, dass es sich um einen Erwar-
tungswert handelt. Die Bezeichnung

”
sig“ deutet an, dass lediglich der

”
Signalprozess“ der

elastischen Elektron-Proton-Streuung bei der Berechnung von 〈Araw〉sig berücksichtigt wird.
Der Vorteil einer Messung von 〈Araw〉sig gegenüber einer Bestimmung des differentiellen Wir-
kungsquerschnitts aus einer direkten Messung der Streurate liegt darin begründet, dass bei
einer Asymmetriemessung eine präzise Messung des Absolutwerts der Luminosität

L± ≡ Φ± · ρ± · L (123)

nicht notwendig ist: Alle vom Helizitätszustand unabhängigen Faktoren, die zu S+ und S−

beitragen, kürzen sich aus (122) heraus. Unter der Voraussetzung, dass helizitätskorrelierte
Schwankungen der Strahlparameter hinreichend klein sind, ist es ausreichend, die relativen
Änderungen der Strahlparameter zu verfolgen, was die Durchführung des Experiments er-
heblich vereinfacht.

Im Folgenden wird der Zusammenhang zwischen 〈Araw〉sig und APV
ep hergestellt und auf den

Einfluss helizitätskorrelierter Schwankungen der Strahleigenschaften eingegangen. Es sei

η± ∈
{

Φ±, ρ±, ε±, T±
}

(124)

und
η± ≡ η ± δη. (125)

Mit den Definitionen
C± ≡ Φ± · ρ± · L · ε± · T±, (126)

und
C± ≡ C ± δC, (127)

wo C = Φ · ρ · L · ε · T , lässt sich (122) wie folgt schreiben:

〈Araw〉sig =
C
[
〈σ+

ep〉L − 〈σ−ep〉L
]

+ δC
[
〈σ+

ep〉L + 〈σ−ep〉L
]

C
[
〈σ+

ep〉L + 〈σ−ep〉L
]

+ δC
[
〈σ+

ep〉L − 〈σ−ep〉L
] . (128)

Es wird angenommen, dass helizitätskorrelierte Schwankungen in den η klein sind, so dass∣∣δC [〈σ+
ep〉L − 〈σ−ep〉L

]∣∣� 1. Dann kann man (128) in eine Taylorreihe nach δC
[
〈σ+

ep〉L − 〈σ−ep〉L
]

um die Stelle δC
[
〈σ+

ep〉L − 〈σ−ep〉L
]

= 0 entwickeln. Man findet:

〈Araw〉sig =
〈σ+

ep〉L − 〈σ−ep〉L
〈σ+

ep〉L + 〈σ−ep〉L
+
δC

C
+O(δC

[
〈σ+

ep〉L − 〈σ−ep〉L
]
). (129)

〈σ±ep〉L kann als Funktion der Strahlenergie E±beam und der Grenzen des vom Detektor abge-
deckten Streuwinkelintervalls θ±min und θ±max aufgefasst werden:

〈σ±ep〉L = 〈σ±ep〉L
(
E±beam, θ

±
min, θ

±
max

)
. (130)

Aufgrund helizitätskorrelierter Schwankungen der Strahleigenschaften unterscheiden sich die
Werte von E±beam, θ±min und θ±max für h = +1 und h = −1 im Allgemeinen voneinander. Mit

x±1 ≡ E±beam, (131)

x±2 ≡ θ±min, (132)

x±3 ≡ θ±max (133)
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und
x±i = xi ± δxi, i = 1, 2, 3, (134)

sowie der Voraussetzung, dass δxi � xi, lässt sich 〈σ±〉L in eine Taylorreihe nach den x±i
um die Stelle δxi = 0 entwickeln:

〈σ±ep〉L = 〈σ±ep〉L (x1, x2, x3)±
3∑
i=1

[
∂〈σ±ep〉L
∂xi

· δxi
]

+O(δx2
i ). (135)

Setzt man (135) in (129) ein und führt unter der Annahme, dass

(∂〈σ+
ep〉L/∂xi)− (∂〈σ−ep〉L/∂xi)

(∂〈σ+
ep〉L/∂xi) + (∂〈σ−ep〉L/∂xi)

� 1 (136)

eine weitere Taylorentwicklung durch, so findet man unter Vernachlässigung von Termen
höherer Ordnung der bisher durchgeführten Reihenentwicklungen, dass

〈Araw〉sig ≈
〈σ+

ep〉L(xi)− 〈σ−ep〉L(xi)

〈σ+
ep〉L(xi) + 〈σ−ep〉L(xi)

+
δC

C
+

3∑
i=1

[
∂〈σ+

ep〉L
∂xi

+
∂〈σ−ep〉L
∂xi

]
δxi

〈σ+
ep〉L(xi) + 〈σ−ep〉L(xi)

. (137)

Durch Einsetzen von (120) und (121) in (137) kann man 〈Araw〉sig als

〈Araw〉sig = P · 〈APV
ep 〉sig + Afalse (138)

schreiben. Hierbei wurde angenommen, dass die Erwartungswerte der Strahlpolarisation für
die beiden Helizitätszustände sich nicht signifikant voneinander unterscheiden und somit
P+ ≈ P− ≡ P ist. In (138) ist

〈APV
ep 〉sig ≡

L∫
0

dz
θmax∫
θmin

dθf

[
sin(θf) ·

(
dσep

dΩ

)
(Ei(z), θf) · APV

ep (Ei(z), θf)
]

L∫
0

dz
θmax∫
θmin

dθf

[
sin(θf) ·

(
dσep

dΩ

)
(Ei(z), θf)

] (139)

der Erwartungswert von APV
ep bei Mittelung über die Targetlänge L und das vom Detektor

abgedeckte Streuwinkel-Intervall δθf ≡ [θmin, θmax]. Für den Term Afalse in (138) gilt

Afalse ≈ δC

C
+

3∑
i=1

[
∂〈σ+

ep〉L
∂xi

+
∂〈σ−ep〉L
∂xi

]
δxi

〈σ+
ep〉L(xi) + 〈σ−ep〉L(xi)

, (140)

wobei Terme höherer Ordnung in δC und δxi vernachlässigt wurden. Dieser Beitrag zu
〈Araw〉sig wird durch helizitätskorrelierte Schwankungen von Strahllage, Strahlenergie, Strahl-
strom, der Dichte der Protonen im Targetmaterial, des Antwortverhaltens und der Effizienz
des Detektors sowie der Messzeit bedingt, weshalb man Afalse häufig als

”
falsche“ oder

”
ap-

parative“ Asymmetrie bezeichnet.

In Abschnitt 2.2.4 wurde angeführt, dass APV
ep bei kleinen Viererimpulsüberträgen und Strahl-

energien im Wesentlichen durch die schwache Ladung des Protons gegeben ist (vgl. Abbildung
7). Nach Gleichung (138) bietet eine präzise Messung von 〈Araw〉sig bei niedriger Strahlenergie
und kleinem Viererimpulsübertrag eine Möglichkeit zur akkuraten und präzisen Bestimmung
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von QW(p). Gleichung (138) impliziert, dass zur akkuraten und präzisen Bestimmung von
QW(p) eine präzise und akkurate Bestimmung der Strahlpolarisation notwendig ist und dass
helizitätskorrelierte Schwankungen der Strahlparameter zu minimieren sind.

Im Folgenden Abschnitt werden die sich aus den soeben angestellten Überlegungen ergeben-
den, grundlegenden Anforderungen an einen geeigneten Messaufbau zur Durchführung der
Asymmetriemessung im Rahmen des P2-Experiments formuliert.

4.2 Konzeptionelle Anforderungen an den Messaufbau des Expe-
riments

Um eine möglichst präzise Bestimmung der schwachen Ladung des Protons im P2-Experiment
zu gewährleisten, müssen statistische und systematische Unsicherheiten bei der Bestimmung
von 〈Araw〉sig minimiert werden. Ausgehend von Gleichung (138) kann man der Poisson-
Statistik folgend zeigen, dass für die statistische Unsicherheit ∆stat〈Araw〉sig von 〈Araw〉sig
näherungsweise

∆stat〈Araw〉sig ≈
1√
N

(141)

gilt, wobei N ≈ 2 · N± die Gesamtzahl der nachgewiesenen elastischen Streuereignisse ist,
und N± die Anzahl der nachgewiesenen elastischen Streuereignisse für h = ±1 darstellt.
Man erwartet im P2-Experiment einen Wert für 〈Araw〉sig der Größenordnung O(10−8). Um
eine statistische Unsicherheit der Größenordnung O(10−9) zu erreichen, sind nach Gleichung
(141) N ∼ 1018 elastische Streuereignisse innerhalb der anvisierten Messzeit von T = 104 h
nachzuweisen.

Dieser Umstand motiviert einen hohen Strahlstrom von Ibeam = 150µA sowie den Einsatz
eines langen Flüssigwasserstoff-Targets der Länge L = 600 mm. Die Designluminosität LD
des P2-Experiments beträgt

LD ≡ Ibeam/e · ρ · L = 2,38 · 1039 cm−2s−1. (142)

Aufgrund der hohen Luminosität erwartet man eine hohe Rate elastischer Streuereignisse im
Target. Die im Experiment nachzuweisende Gesamtrate der elastisch an Protonen gestreuten
Elektronen ist von der GrößenordnungO(1011 s−1). Der Nachweis einzelner Teilchen würde in
diesem Fall eine räumliche Segmentierung des Detektors in O(104) voneinander unabhängige
Module notwendig machen. Mit der im P2-Experiment angedachten Segmentierung des De-
tektors in 82 Module können die Signalpulse, die von Detektortreffern einzelner Teilchen
verursacht werden, zeitlich nicht aufgelöst werden, da sie mit so geringem Zeitunterschied
aufeinander folgen, dass man nicht zwischen ihnen unterscheiden kann, und lediglich ein
Strompegel messbar ist. Im Zusammenhang mit der Messung dieses Strompegels wird im
Folgenden der Begriff der

”
integrierenden Messung“ der Asymmetrie verwendet. Das Zei-

tintervall zur Messung des Strompegels ist kürzer zu wählen als die Zeit, für welche der
Helizitätszustand der Strahlelektronen konstant ist und muss mit der Umschaltung der He-
lizität der Strahlelektronen synchronisiert werden.

Aus den hohen erwarteten Ereignisraten ergibt sich die Forderung nach einem schnellen
Antwortverhalten des einzusetzenden Detektors. Der Detektor sollte darüber hinaus ei-
ne möglichst rauscharme Messung des Signals ermöglichen sowie eine geringe Sensitivität
gegenüber Untergrundprozessen aufweisen. Darüber hinaus muss der Detektor eine hohe
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Abbildung 27: Verlauf der differentiellen Wirkungsquerschnitte der elastischen Elektron-
Elektron- und der elastischen Elektron-Proton-Streuung als Funktionen des Elektron-
Streuwinkels θf für Ei = 155 MeV.

Beständigkeit gegen Stahlenschäden besitzen. Die P2-Kollaboration plant daher den Ein-
satz eines Cherenkov-Detektors zur integrierenden Messung der Asymmetrie. Cherenkov-
Detektoren zeichnen sich durch ein schnelles Antwortverhalten aus und können aus Ma-
terialien hergestellt werden, die eine hohe Strahlenbeständigkeit aufweisen. Sie sind nicht
sensitiv gegenüber ungeladenen Teilchen wie etwa Photonen, da nur geladene Teilchen im
Cherenkov-Medium zur Erzeugung von Cherenkov-Photonen beitragen.

Da der diffentielle Wirkungsquerschnitt der elastischen Elektron-Proton-Streuung, der durch
Gleichung (51) gegeben ist, nicht von φf abhängt, ist es sinnvoll, den Messaufbau azimutal-
symmetrisch zu konzipieren und eine möglichst große Detektor-Akzeptanz im Azimutwinkel
anzustreben, um die Zeitdauer zum Erreichen der notwendigen Statistik bei der Asymme-
triemessung zu minimieren.

Bei einer integrierenden Messung ist keine Unterscheidung zwischen den Detektorsignalen,
welche von den nachzuweisenden Elektronen aus elastischer Elektron-Proton-Streuung stam-
men und den Detektorsignalen, welche von Teilchen aus Untergrundprozessen erzeugt wer-
den, möglich. Der Messaufbau muss daher auf eine Minimierung von Untergrundbeiträgen
zum Detektorsignal ausgelegt sein.
Bei der Wechselwirkung der Strahlelektronen mit dem `H2-Target bilden aus dem Møller-
Streuprozess stammende Elektronen sowie Bremsstrahlungs-Photonen den Hauptteil des Un-
tergrunds. Man erwartet im P2-Experiment eine deutlich höhere Rate für die elastische
Elektron-Elektron-Streuung als für die elastische Elektron-Proton-Streuung im Streuwinkel-
Intervall θf ∈ [6◦, 90◦], was man aus den Verläufen der differentiellen Wirkungsquerschnitte
schließen kann, die in Abbildung 27 dargestellt sind.
Es gilt, die Elektronen aus diesen beiden Streuprozessen räumlich zu separieren. Dies kann
mithilfe eines Magnetfelds erfolgen, da die Energien der Elektronen in den Endzuständen der
beiden Streuprozesse bereits für kleine Streuwinkel θf stark voneinander abweichen, wie man
Abbildung 28 entnehmen kann. Das Magnetfeld muss darüber hinaus die im Experiment
nachzuweisenden Elektronen auf den Cherenkov-Detektor fokussieren und die Bahnkurven
dabei so krümmen, dass der Detektor gegen aus dem Target stammende Bremsstrahlung
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Abbildung 28: Elektron-Energie Ef im Endzustand des Møller-Streuprozesses und der ela-
stischen Elektron-Proton-Streuung als Funktionen des Elektron-Streuwinkels θf für den Fall
Ei = 155 MeV. Der Unterschied im Verlauf der Endzustandsenergien ist auf die stark ver-
schiedenen Ruhemassen von Elektron und Proton zurückzuführen.

abgeschirmt werden kann.
Da der Messaufbau azimutalsymmetrisch sein soll, kommen solenoidale und toroidale Ma-
gnetfelder in Frage. Aufgrund der geometrischen Anordnung der Feldspulen eines Toroiden,
wie er beispielsweise beim QWeak-Experiment eingesetzt wurde, deckt ein solcher Magnet
einen beachtlichen Teil (∼ 50 %) des Azimutwinkels ab. Ein Solenoid von hinreichender
Größe hingegen gestattet die Ausnutzung des gesamten Azimutwinkels zum Teilchennach-
weis. Der Einsatz eines Toroiden würde somit gegenüber dem Einsatz eines Solenoiden zu
einer näherungsweisen Verdopplung der Zeitdauer führen, die zur Durchführung der Daten-
nahme benötigt wird. Die P2-Kollaboration hat sich daher zur Konzipierung eines Messauf-
baus mit einem Solenoid-Spektrometer entschieden. Beim Einsatz eines Solenoiden ist zu be-
achten, dass ein zur Strahlachse paralleles Magnetfeld zu einer Polarisation des `H2-Targets
führen kann. Eine Polarisation des Targets bedingt einen zusätzlichen Beitrag zur im Expe-
riment gemessenen Asymmetrie, den es bei der Bestimmung von QW(p) zu berücksichtigen
gilt. Auf diesen Effekt wird in Abschnitt 4.3.2 eingegangen.

UmQW(p) aus einer integrierenden Messung der Asymmetrie extrahieren zu können, benötigt
man detaillierte Kenntnis über die Zusammensetzung des Detektorsignals. Insbesondere ist
die Kenntnis der Q2-Verteilung der elastischen Elektron-Proton-Streuereignisse, welche zum
Messwert der Asymmetrie beitragen, vonnöten. Zur Bestimmung dieser Verteilung ist die
Installation eines Systems von Spurdetektoren vorgesehen, welches die Rekonstruktion der
Trajektorien einzelner Elektronen im Magnetfeld bei reduziertem Strahlstrom gestattet. Die
Spurdetektoren müssen bei reduziertem Stahlstrom in Koinzidenz mit dem zur Asymmetrie-
messung vorgesehenen Cherenkov-Detektor betrieben werden, um beim Nachweis einzelner
Ereignisse das rekonstruierte Q2 mit dem Beitrag des Ereignisses zur gemessenen Asymme-
trie verknüpfen zu können.

Um eine akkurate Bestimmung von QW(p) zu ermöglichen, müssen systematische Unsicher-
heiten bei der Asymmetriemessung minimiert werden. Hierzu ist eine akkurate und präzise
Bestimmung der Strahlpolarisation vonnöten. Ein schnelles Umschalten zwischen den Heli-
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zitätszuständen h = +1 und h = −1 mit einer Frequenz im Bereich von 1 kHz bis 2 kHz wird
dafür sorgen, dass sich langsame Veränderungen der Experimentierbedingungen nicht nach-
teilig auf die Asymmetriemessung auswirken. Ferner ist eine kontinuierliche Überwachung
der Strahleigenschaften (Strahlstrom, -Energie und -Lage) vorgesehen. Mit der Umschaltung
der Helizität der Strahlelektronen korrelierte Schwankungen der Strahleigenschaften werden
durch Stabilisierungssysteme minimiert werden. Auf weitere, ausgewählte Quellen systema-
tischer Unsicherheiten wird im nachfolgenden Abschnitt eingegangen.

Nicht zuletzt muss der Messaufbau die Platzvorgaben innerhalb der MESA-Forschungseinrichtung
respektieren. Die Konzepte zur Realisierung von MESA und P2 werden in den Abschnitten
4.4 und 4.7 vorgestellt.

4.3 Ausgewählte systematische Effekte bei der Bestimmung der
schwachen Ladung des Protons

Im Folgenden wird auf ausgewählte systematische Effekte bei der Bestimmung der schwachen
Ladung des Protons durch eine Messung der paritätsverletzenden Asymmetrie der elastischen
Elektron-Proton-Streuung im P2-Experiment eingegangen. Es wird der Asymmetriebeitrag
diskutiert, der sich aus der Streuung der Strahlelektronen in den Aluminium-Fenstern des
Flüssigwasserstoff-Targets ergibt, über die der Strahl in das Target eindringt und es wieder
verlässt. Anschließend wird der Asymmetriebeitrag betrachtet, der sich aus der Polarisation
des `H2-Targets im Magnetfeld eines Solenoiden ergibt. Abschließend wird auf den Asymme-
triebeitrag eingagangen, der aus einer Fehlstellung der Spins der Strahlelektronen resultiert.

4.3.1 Streuung der Strahlelektronen an den Targetfenstern

Das Flüssigwasserstoff-Target des P2-Experiments wird voraussichtlich dünne Fenster aus
Aluminium besitzen, über die der Elektronenstrahl in die Targetzelle eindringt und sie wie-
der verlässt. Die Streuung der longitudinal polarisierten Strahlelektronen an Aluminium ist
mit einer die Parität verletzenden Asymmetrie APV

eAl versehen, deren Beitrag zur im Experi-
ment messbaren Asymmetrie 〈Araw〉sig im Folgenden diskutiert wird.

Man kann den Asymmetriebeitrag der e-Al-Streuung zu 〈Araw〉sig formal berücksichtigen,
indem man Gleichung (138) wie folgt modifiziert:

〈Araw〉sig = P ·
[
(1− f) · 〈APV

ep 〉sig + f · 〈APV
eAl〉
]

+ Afalse. (143)

Hierin ist f ein Ausdünnungsfaktor, der durch

f ≡ YeAl

Yep + YeAl

(144)

gegeben ist, wobei Yep die bei der Asymmetriemessung erreichte Ausbeute an elastischen
e-p-Streuereignissen und YeAl die Ausbeute an e-Al-Streuereignissen ist. 〈APV

eAl〉 stellt den Er-
wartungswert der partitätsverletzenden Asymmetrie der e-Al-Streuung im Experiment dar.

Es wird notwendig sein, sowohl f als auch 〈APV
eAl〉 im Rahmen des P2-Experiments durch

Messungen zu bestimmen, da eine verlässliche Berechnung von APV
eAl aufgrund der Beiträge

von elastischer und quasielastischer e-Al-Streuung schwierig ist. Eine Abschätzung des Ef-
fekts der e-Al-Streuung wurde von S. Baunack (P2-Kollaboration) vorgenommen, sie findet
sich in [26] und wird hier kurz wiedergegeben. Die Abschätzung von 〈APV

eAl〉 und f erfolgt
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Abbildung 29: Fehlerbeiträge aus der Streuung von Strahlelektronen an den Al-Fenstern des
Targets in Abhängigkeit von der Gesamtdicke der Targetfenster. Die Abbildung wurde von
S. Baunack (P2-Kollaboration) erstellt und [26] entnommen. Es wurde ∆〈APV

eAl〉 = 6 ppb und
∆f/f = 0, 05 angenommen. In Blau ist der zu ∆〈APV

eAl〉 proportionale Beitrag zu ∆〈APV
ep 〉sig

in Gleichung (145) dargestellt. In Pink ist der zu ∆f proportinale Beitrag zu ∆〈APV
ep 〉ep ge-

zeigt. Die schwarz dargestellte Linie ergibt sich durch quadratisches Addieren diese beiden
Beiträge. Die lineare Abhängigkeit von der Gesamtdicke d der Targetfenster entsteht durch
Multiplikation von f mit dem Faktor d/d0, wo d0 = 250µm. Zum Vergleich ist ein Referenz-
wert für die statistische Unsicherheit ∆stat〈Araw〉sig der Rohasymmetrie in Rot eingezeichnet.

auf Grundlage der im A4-Experiment [86] und im QWeak-Experiment [87] durchgeführten
Messungen. Im A4-Experiment wurde der gleiche zentrale Elektron-Streuwinkel θ̄f = 35◦

verwendet, allerdings waren die Strahlenergien mit 570 MeV und 854 MeV deutlich höher
als die im P2-Experiment vorgesehene Energie von 155 MeV. Skaliert man die Messergeb-
nisse von A4 auf eine Targetlänge von L = 600 mm, so findet man für eine Gesamtdicke
der Al-Fenster in Strahlrichtung von d0 = 250µm, dass f = 0, 010. Die P2-Kollaboration
plant den Ausdünnungsfaktor f mit einer relativen Gesamtunsicherheit von ∆f/f ≤ 5 %
zu bestimmen. Dies kann durch eine Messung mit leerer Targetzelle erreicht werden. Die
von der QWeak-Kollaboration durchgeführten Messungen implizieren, dass der Betrag von
〈APV

eAl〉 um etwa eine Größenordnung größer ist als der Betrag von 〈APV
ep 〉sig, so dass im Fol-

genden 〈APV
eAl〉 = 400 ppb angenommen wird. Die P2-Kollaboration sieht eine Messung von

〈APV
eAl〉 mit einem 3 mm dicken Al-Target über einen Zeitraum von T = 500 h zur Messung

der Asymmetrie der e-Al-Streuung vor. Die im Rahmen einer solchen Messung erwartete
statistische Unsicherheit von 〈APV

eAl〉 beträgt ∆stat〈APV
eAl〉 = 6 ppb.

Mithilfe dieser Zahlen kann der Beitrag der e-Al-Streuung an den Targetfenstern zur Asym-
metriemessung abgeschätzt werden. Vernachlässigt man Strahlpolarisation, andere Unter-
grundbeiträge zum Detektorsignal sowie apparative Asymmetriebeiträge, so erhält man für
die Unsicherheit von 〈APV

eAl〉sig durch eine Fehlerfortpflanzung nach Gauß folgenden Ausdruck:

∆〈APV
ep 〉sig ≈

√(
∆〈Araw〉sig

1− f

)2

+

(
f∆〈APV

eAl〉
1− f

)2

+

(〈Araw〉sig − 〈APV
eAl〉

(1− f)2
∆f

)2

. (145)

Abbildung 29 zeigt den Verlauf der Beiträge zu (145) in Abhängigkeit von der Gesamtdicke
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der Targetfenster in Richtung des Elektronenstrahls. Man kann der Abbildung entnehmen,
dass der Gesamtbeitrag der e-Al-Streuung zur Unsicherheit der Asymmetrie für hinreichend
dünne Fenster (d ∼ 300µm) etwa halb so groß ist wie die erwartete statistische Unsicherheit
der paritätsverletzenden Asymmetrie der elastischen e-p-Streuung. Beim Design des Targets
ist es für das Experiment von Vorteil, in Strahlrichtung möglichst dünne Fenster für den
Strahlein- bzw. -austritt vorzusehen.

4.3.2 Polarisation des Targets im Magnetfeld des Solenoiden

Das `H2-Target des P2-Experiments wird sich im Inneren eines Solenoidmagneten befin-
den und dessen Magnetfeld ausgesetzt sein. Das Magnetfeld führt zu einer Teilpolarisation
des `H2, was wiederum zu einem zusätzlichen Beitrag bei der Asymmetriemessung führt.
Im Folgenden wird die Targetpolarisation im Magnetfeld bestimmt und der resultierende
Asymmetriebeitrag berechnet.

4.3.2.1 Ortho- und Para-Wasserstoff. Man unterscheidet zwischen Ortho- und Para-
Wasserstoff. Um den Unterschied zwischen diesen Wasserstoff-Zuständen verstehen zu können,
betrachten wir zunächst den Aufbau des Wasserstoffmoleküls. Es besteht aus zwei Elektronen
und zwei Protonen. Die Elektronen werden im weiteren Verlauf nicht betrachtet, der Fokus
der Diskussion liegt auf dem Molekülkern, der von den beiden Protonen gebildet wird. Da
es sich bei Protonen um Fermionen handelt, muss die Gesamtwellenfunktion ψges des H2-
Molekülkerns dem Pauli-Prinzip entsprechend antisymmetrisch gegenüber Vertauschung der
beiden Protonen sein. ψges lässt sich als Produkt von drei Wellenfunktionen schreiben, so
dass

ψges ≡ ψvib · ψrot · ψspin. (146)

Hierin beschreibt ψvib den Vibrationszustand, ψrot den Rotationszustand und ψspin den
Gesamtspin-Zustand des Molekülkerns. Aufgrund der linearen zweiatomigen Struktur des
Wasserstoffmoleküls und des Fehlens eines Partikelaustauschs zwischen den Kernen ist ψvib

stets symmetrisch [88] gegenüber Vertauschung der Protonen. Da Protonen Teilchen mit
Spinquantenzahl 1/2 sind, ergeben sich nach Drehimpulsaddition vier mögliche Spinkonfi-
gurationen, die durch ψspin repräsentiert werden: Für den Gesamtspin I = 1 ergibt sich ein
Triplett mit den Magnetquantenzahlen M = −1, 0,+1, und I = 0 charakterisiert einen
Singulett-Zustand mit M = 0. Die Triplett-Zustände sind symmetrisch unter Vertauschung
der Kernspins. Man spricht beim Vorliegen dieser Zustände von Para-Wasserstoff (pH2).
Der Singulett-Zustand ist antisymmetrisch, und man bezeichnet H2 in diesem Zustand als
Ortho-Wasserstoff (oH2). Da die Spinwellenfunktionen von oH2 und pH2 gegensätzliche Sym-
metrien aufweisen, und ψvib stets symmetrisch ist, müssen die Rotationswellenfunktionen
ψrot von Ortho- und Para-Wasserstoff ebenfalls entgegengesetzt symmetrisch sein. Damit
ψges antisymmetrisch ist, muss die Rotationswellenfunktion von oH2 antisymmetrisch sein
und die zugehörigen Energieeigenzustände werden durch ungerade Rotationsquantenzahlen
J = 2n−1, n ∈ N charakterisiert. Analog hierzu muss die Rotationswellenfunktion von pH2

symmetrisch sein, die zugehörigen Energiezustände werden durch geradzahlige Quantenzah-
len J = 2(n − 1), n ∈ N beschrieben. Dabei gilt, dass ein Zustand geringerer Energie stets
einem niedrigeren Wert von J entspricht. Da die Energieaufspaltung der Kernspinzustände
gegenüber den Energien der Rotationszustände vernachlässigbar klein ist, stellt pH2 die ener-
getisch günstigere und oH2 die energiereichere Form von H2 dar.

Im Allgemeinen ist Wasserstoff ein Gemisch aus Ortho- und Para-Wasserstoff. Die Verteilung
von oH2 und pH2 im thermodynamischen Gleichgewicht genügt der Boltzmann-Statistik. Für
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Abbildung 30: Temperaturabhängigkeit des Stoffmengenverhältnisses xortho/xpara von Ortho-
zu Para-Wasserstoff im thermodynamischen Gleichgewicht. Im linken Bild ist der Tempe-
raturverlauf im Intervall T ∈ [0 K, 300 K] gezeigt. Das Stoffmengenverhältnis konvergiert
für hohe Temperaturen gegen einen Wert von 3/1, im Grenzfall T → 0 K konvergiert das
Verhältins gegen 0. Im rechten Bild ist der Verlauf für das Intervall T ∈ [10 K, 25 K]
dargestellt, welches für das P2-Experiment von Interesse ist.

das Verhältnis der Stoffmengenanteile xortho und xpara von Ortho- und Para-Wasserstoff gilt
nach [89]:

xortho

xpara

= 3 ·

∑
j=1,3,...

(2j + 1) · e−j(j+1)Θ
kT∑

j=0,2,...

(2j + 1) · e−j(j+1)Θ
kT

≈ 3 · 3 · e−2· Θ
kT + 7 · e−12· Θ

kT

1 + 5 · e−6 Θ
kT

,

(147)

wo Θ ≡ h2

8π2Γ
die Rotationskonstante des Wasserstoffmoleküls mit dem Planck’schen Wir-

kungsquantum h = 6,626 · 10−34 Js, der Boltzmann-Konstanten k = 1,3806 · 10−23 J/K,
der Temperatur T und dem Trägheitsmoment Γ = 4,67 · 10−48 kgm2 ist. Die Temperatu-
rabhängigkeit des Stoffmengenverhältnisses ist in Abbildung 30 dargestellt. Bei Tempera-
turen oberhalb von 250 K besteht Wasserstoff im Wesentlichen aus drei Teilen Ortho- und
einem Teil Para-Wasserstoff. Bei niedrigeren Temperaturen verschiebt sich das Verhältnis in
Richtung des energetisch günstigeren Para-Wasserstoffs, im Grenzfall T → 0 K liegt 100 %
Para-Wasserstoff vor.
Da Flüssigwasserstoff-Targets bei Normaldruck im Temperaturintervall T ∈ [14 K, 20 K] be-
trieben werden, werden im weiteren Verlauf die Grenztemperaturen dieses Intervalls T =
14 K und T = 20 K betrachtet. Für das Stoffmengenverhältnis findet man:

xortho

xpara

(T = 14 K) = 4 · 10−5,

xortho

xpara

(T = 20 K) = 1,62 · 10−3.
(148)

Dies entspricht den folgenden Anteilen

X =
xortho/xpara

xortho/xpara + 1
(149)

von Ortho-Wasserstoff an der gesamten Stoffmenge:

X(T = 14 K) = 4 · 10−5,

X(T = 20 K) = 1,62 · 10−3.
(150)
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Liegt kein thermodynamischer Gleichgewichtszustand vor, stellt sich dieser in reinem Was-
serstoff im Laufe der Zeit durch den Prozess der Selbstumwandlung von Ortho- in Para-
Wasserstoff ein. Die Halbwertszeiten für diesen Umwandlungsprozess hängen stark von der
Temperatur, dem Druck ρ und der Anfangszusammensetzung des Wasserstoffs ab. Eine
umfassende Abhandlung dieser Thematik findet sich in [90]. Für T = 20 K, ρ = 1 bar
und pH2-Anfangskonzentrationen zwischen 95 % und 98 % werden hier Halbwertszeiten zwi-
schen 70 und 200 Tagen angeführt. Eine Verkürzung der Halbwertszeiten kann durch den
Einsatz von Katalysatormaterialien erreicht werden. Hierbei wurde in den letzen Jahren
hauptsächlich Eisen(III)-Oxid (Fe2O3) als Katalysatormaterial zur Umwandlung von Ortho-
zu Para-Wasserstoff in Wasserstoffverflüssigern eingesetzt. Bei Verwendung von Eisen(III)-
Oxid kann in guter Näherung davon ausgegangen werden, dass sich das thermodynamische
Gleichgewicht unmittelbar einstellt.

4.3.2.2 Polarisationsgrad von H2 im Magnetfeld. Für die Berechnung des Polaria-
tionsgrads von Flüssigwasserstoff im Magnetfeld des Solenoiden wird im Folgenden thermo-
dynamisches Gleichgewicht angenommen. Für die Besetzungszahl N(M) der Energieniveaus
des Kernspin-Systems gilt dann gemäß der Boltzmann-Statistik

N(M) ∼ e−
E(M)
kT . (151)

Für die zugehörigen Energie-Eigenwerte E(M) gilt:

E(M) = −g · µN ·M ·B, (152)

wo g = 5, 5858 den g-Faktor des Protons, µN = 3,152 452 · 10−14 MeV/T das Kernmagne-
ton und B die magnetische Flussdichte ist. Unter Verwendung der Feldkarte des FOPI-
Solenoiden (s. Abschnitt 4.7.2) findet man für eine Positionierung des Targets im Intervall
z ∈ [−1000 mm,−400 mm] einen Erwartungswert von

B =

L∫
0

dz {z ·Bz}
L∫
0

dz {z}
= 0,56 T (153)

bei Mittelung über die Targetlänge L = 600 mm entlang der Strahlachse.

Von den beiden im vorangehenden Abschnitt vorgestellten Wasserstoff-Formen ist lediglich
Ortho-Wasserstoff polarisierbar. Daher gilt für den temperaturabhängigen Polarisationsgrad
PH2(T ) von Flüssigwasserstoff

PH2(T ) = X(T ) · N(M = 1)−N(M = −1)

N(M = 1) +N(M = 0) +N(M = −1)
. (154)

Man findet:

PH2(T = 14 K) = 2,19 · 10−9 ,

PH2(T = 20 K) = 6,10 · 10−8 (155)

4.3.2.3 Berechnung des Asymmetriebeitrags. Der differentielle Wirkungsquerschnitt
für die Streuung longitudinal polarisierter Elektronen an polarisiertem Wasserstoff ist durch
die Super-Rosenbluth-Formel

dσsr

dΩ
=

dσep

dΩ
·
(

1 + azz′P
e
zP

N
z′ (Gp,γ

M )2 + azx′P
e
zP

N
x′G

p,γ
E Gp,γ

M

)
(156)
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Abbildung 31: Verlauf von 〈AH2〉 in Abhängigkeit von B für Ebeam = 155 MeV, P = |P e
z | =

85 % und θf ∈ [25◦, 45◦].

gegeben [91]. Hierin ist P e
z die longitudinale Polarisation der Strahlelektronen,

PN
z′ = PH2 · cos(θvirt,γ), (157)

PN
x′ = PH2 · sin(θvirt,γ) (158)

sind die Polarisationskomponenten des gestreuten Nukleons mit dem Winkel θvirt,γ, unter dem
das virtuelle Photon im Rahmen der Beschreibung der elektromagnetischen Wechselwirkung
zwischen Elektron und Nukleon relativ zur Einfallsrichtung des Elektrons emittiert wird. Bei
azz′ und azx′ handelt es sich um kinematische Faktoren, für die gilt:

azz′ =
2τ
√

tan2(θf/2)+ 1
1+τ

F 2 · tan2(θf/2), (159)

azx′ =
2
√
τ(τ+1)

F 2(τ+1)
· tan2(θf/2), (160)

wobei

F 2 ≡ (Gpγ
E )2 + τ(Gpγ

M )2

1 + τ
+ 2τ(Gpγ

M )2 tan2(θf/2) (161)

gesetzt wurde. Für die Asymmetrie im Streuprozess gilt allgemein

P e
z · AH2 ≡

dσ+
sr − dσ−sr

dσ+
sr + dσ−sr

, (162)

worin dσ±sr die Super-Rosenbluth-Formel im Falle positiver bzw. negativer Helizität der Stahl-
elektronen bezeichnet. Setzt man Gleichung (156) in (162) ein, so findet man:

AH2 = PH2

[
azz′ (G

p,γ
M )2 cos(θvirt,γ) + azx′G

p,γ
E Gp,γ

M sin(θvirt,γ)
]
. (163)

Im P2-Experiment ist die Messung der elastischen Elektron-Proton-Streuung bei einer Strah-
lenergie von Ebeam = 155 MeV, einer Strahlpolarisation von P = |P e

z | = 85 % unter Elektron-
Streuwinkeln θf ∈ δθf = [25◦, 45◦] vorgesehen. Der Erwartungswert der Asymmetrie bei
Mittelung über das Streuwinkelintervall δθf ist durch

〈AH2〉 =

∫
δθf

d cos(θf)
[

dσep

dΩ
· AH2

]
∫
δθf

d cos(θf)
[

dσep

dΩ

] (164)
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Abbildung 32: Verlauf von 〈AH2〉 in Abhängigkeit von T für Ebeam = 155 MeV, P e
z = 85 %,

B = 0,56 T und θf ∈ [25◦, 45◦].

gegeben, wobei die Rosenbluth-Formel (51) als Gewichtungsfaktor bei der Mittelung dient.
Abbildung 31 zeigt den Verlauf von 〈AH2〉 in Abhängigkeit von B für die im P2-Experiment
vorgesehenen Parameter-Werte. Für die mittlere Magnetfeldstärke von B = 0,56 T erwartet
man folgende Asymmetrie-Werte:

〈AH2〉(T = 14 K) = 0,05 ppb, (165)

〈AH2〉(T = 20 K) = 1,34 ppb. (166)

Abbildung 32 zeigt den Verlauf von 〈AH2〉 in Abhängigkeit von der Temperatur. Um den
aus der Targetpolarisation resultierenden Asymmetriebeitrag möglichst gering zu halten, ist
es von Vorteil, wenn die Temperatur des `H2 so niedrig wie möglich ist. Ferner ist eine
kontinuierliche Überwachung der Targettemperatur während der Durchführung des Experi-
ments anzuraten, um die Interpretierbarkeit der Messdaten sicherzustellen. Nimmt man an,
dass das Target bei einer Temperatur von 15 K betrieben wird und die Targettemperatur
während der Durchführung des Experiments auf ±0,1 K genau konstant gehalten werden
kann, so kann man die Unsicherheit von 〈AH2〉 wie folgt abschätzen:

∆〈AH2〉(15 K) =
1

2
· [〈AH2〉(15,1 K)− 〈AH2〉(14,9 K)] ≈ 0,01 ppb. (167)

Die Polarisation des Flüssigwasserstoff-Targets im Magnetfeld führt somit zu einem geringen
systematischen Beitrag bei der Bestimmung von sin2(θW) aus der gemessenen Asymmetrie,
der berücksichtigt werden kann, indem man Gleichung (143) wie folgt modifiziert:

〈Araw〉sig = P ·
[
(1− f) · {〈APV

ep 〉sig + 〈AH2〉}+ f · 〈APV
eAl〉
]

+ Afalse. (168)

4.3.3 Fehlstellung des Spins

In der bisherigen Diskussion wurde stets angenommen, dass die Spins der Strahlelektronen
exakt parallel bzw. antiparallel zur Impulsrichtung der Elektronen ausgerichtet sind. Ist dies
nicht der Fall, so erhält man einen Beitrag zur experimentell gemessenen Asymmetrie, der
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im Folgenden diskutiert wird.

In der elastischen Elektron-Proton-Streuung führt die Interferenz von Ein- und Zwei-Photon-
Austausch zur Normalspin-AsymmetrieA⊥ep im Wirkungsquerschnitt. Der Zwei-Photon-Austausch
ist in Abbildung 10 dargestellt.
Die Streuamplitude M der elastischen Elektron-Proton-Streuung unter Einbeziehung des
Zwei-Photon-Austauschs kann nicht einfach im Rahmen der Quantenelektrodynamik berech-
net werden, da der intermediäre Zustand des Protons eine hadronische Struktur aufweist.
Allgemein kann man die Streuamplitude als Summe eines helizitätserhaltenden und eines
helizitätsumkehrenden Beitrags schreiben:

M =Mflip +Mnon-flip, (169)

wobeiM durch sechs komplexe Funktionen ĜM, F̂2, F̂3, F̂4, F̂5, F̂6 parametrisiert wird. Für
den helizitätsumkehrenden Beitrag Mflip gilt [92]:

Mflip =
mee

2

mpQ2
[ū(kf)u(ki)ū(pf)

[
F̂4 + F̂5

γK

mp

]
u(pi)

+ F̂6ū(kf)γ5u(ki)ū(pf)γ5u(pi)].

(170)

Hierin sind ki (pi) und kf (pf) die Viererimpulse des Elektrons (Protons) im Anfangs- bzw.
Endzustand des Prozesses. Das Elektron (Proton) wird durch den Spinor u(ki, f) (u(pi, f))
repräsentiert. Ferner ist K ≡ 1

2
(ki + kf). Der helizitätserhaltende Beitrag Mnon-flip schließt

den Zwei-Photon-Austrausch ein und schreibt sich

Mnon-flip =
e2

Q2
ū(kf)γµu(ki)ū(pf)

[
ĜMγµ − F̂2

P µ

mp

+ F̂3
γKP µ

m2
p

]
u(pi), (171)

wo P ≡ (pi + pf)/2. Eine Bestimmung des Realteils der Zwei-Photon-Austauschampliude
ist durch einen Vergleich von Elektron-Proton- und Elektron-Positron-Streuung prinzipiell
möglich.

Die Normalspin-Asymmetrie ist durch den Wirkungsquerschnitt mit Spin ~s parallel (σR)

bzw. antiparallel (σL) zu dem Einheitsvektor ~n ≡ ~ki × ~kf/‖~ki × ~kf‖ definiert, wobei ~ki, f den
Dreierimpuls des Elektrons im Anfangs- bzw. Endzustand des Streuprozesses bezeichnet:

A⊥ep ≡
σR − σL

σR + σL
∼ ~s • ~n. (172)

Da bei geeigneter Wahl des verwendeten Koordinatensystems

~s •
~ki × ~kf

‖~ki × ~kf‖
∼ sin(φf) (173)

gilt, kann man schließen, dass die Normalspin-Asymmetrie von Azimutwinkel φf abhängig
ist; die Asymmetrie verschwindet, wenn ~ki, ~kf und ~s in einer Ebene liegen, und sie wird
extremal, wenn ~s senktrecht auf der durch ~ki und ~kf aufgespannten Streuebene steht. Nach
[92] gilt:

A⊥ep =
2me

Q

√
2ε (1− ε)

√
1 +

1

τ

(
(Gp,γ

M )2 +
ε

τ
(Gp,γ

E )2
)−1

× [−τGp,γ
M Im

(
F̂3 +

1

1 + τ

ν

m2
p

F̂5

)
−Gp,γ

E Im

(
F̂4 +− 1

1 + τ

ν

m2
p

F̂5

)
],

(174)
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Abbildung 33: Vorhersage für den Verlauf der Normalspin-Asymmetrie in Abhängigkeit vom
Elektron-Streuwinkel θf aus [92]. Die dargestellten Verläufe gehören zu unterschiedlichen
Energien Ei des Elektrons im Anfangszustand des Streuprozesses.

wobei ν den Energieübertrag auf das Proton bezeichnet. Im Fall der Born’schen Näherung
gilt F̂3,4,5,6 = 0, so dass A⊥ep = 0 ist. Eine experimentelle Bestimmung der Imaginärteile von

F̂3,4,5 ist unter Zuhilfenahme von Modellrechnungen möglich [92].

Abbildung 33 zeigt Vorhersagen für die Abhängigkeit von A⊥ep vom Elektron-Streuwinkel θf

für verschiedene Energien. Für Ei = 200 MeV ist A⊥ep = 1,01 ppm bei θf = 35◦. Im Folgenden
wird angenommen, dass die Normalspin-Asymmetrie für niedrige Energien Ei ∼ 200 MeV li-
near mit Ei skaliert, und es wird eine Abschätzung des Beitrags der Normalspin-Asymmetrie
zur im Experiment messbaren Asymmetrie vorgenommen.

Führt man den Spinwinkel Φspin ein, so dass ~ki • ~s ≡ ‖~ki‖ · ‖~s‖ · cos(Φspin), kann der Beitrag
der Normalspin-Asymmetrie zu Aexp berücksichtigt werden, indem man Gleichung (143) wie
folgt modifiziert:

〈Araw〉sig = P ·
{

sin(Φspin) · 〈A⊥ep〉+ cos(Φspin) ·
[
(1− f) · 〈APV

ep 〉sig + f · 〈APV
eAl〉
]}

+ Afalse.
(175)

Bei der Bestimmung von 〈A⊥ep〉, welche durch Mittelung von A⊥ep über die Targetlänge und das
vom Detektor akzeptierte Raumwinkelelement erfolgt, ist die sinusförmige Abhängigkeit von
A⊥ep vom Azimutwinkel φf zu beachten. Diese führt bei einem ideal azimutalsymmetrischen
Messaufbau dazu, dass 〈A⊥ep〉 verschwindet, wenn man das über den Azimut integrierte Si-
gnal eines Ringdetektors betrachtet. Der Cherenkov-Ringdetektor des P2-Experiments wird
aus nmod = 82 baugleichen Detektormodulen aufgebaut sein. Daher wird angenommen, dass
die Normalspin-Asymmetrie bei Mittelung über den Azimut näherungsweise um den Faktor
2π/82 verkleinert wird. Ferner ist die Verwendung eines langen Targets mit L = 600 mm vor-
gesehen, welches einem solenoidalen Magnetfeld ausgesetzt ist, das eine mittlere Feldstärke
von B = 0,56 T entlang der Ausdehnung des Targets in Strahlrichtung besitzt. Ist Φspin 6= 0,
so präzediert der Spin um die Strahlachse, während sich die Strahlelektronen durch das
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`H2-Target bewegen. Für hochrelativistische Elektronen (v ≈ c) erwartet man

nL ≈
e ·B · L

2π ·me · c
≈ 31, 3 (176)

vollständige Drehungen des Spins um die z-Achse aufgrund der Larmorpräzession im Magnet-
feld. Da A⊥ep ∼ sin(φf), kann man die Reduktion des Beitrags der Normalspin-Asymmetrie
aufgrund der Larmorpräzession des Elektron-Spins grob abschätzen, indem man A⊥ep mit
dem Faktor

ρL ≡
1

2πnL

2πnL∫
0

dφf{sin(φf)} ≈ 6,7 · 10−4 (177)

multipliziert. Insgesamt erwartet man somit bei einer Strahlenergie Ebeam = 155 MeV

〈A⊥ep〉 ∼
Ebeam

200 MeV
· A⊥ep(Ei = 200 MeV, θf = 35◦) · 2π

nmod

· ρL ∼ 4 · 10−11 (178)

für den Erwartungswert der Normalspin-Asymmetrie der elastischen Elektron-Proton-Streuung.
Die P2-Kollaboration geht davon aus, dass an MESA Spinwinkel Φspin ≤ 3◦ möglich sein wer-
den, was den Beitrag der Normalspin-Asymmetrie zu 〈Araw〉sig um einen Faktor sin(Φspin) ≈
0, 05 reduziert. Da im P2-Experiment O(〈APV

ep 〉sig) = 10−8 erwartet wird, ist der Effekt der
Spinfehlstellung vernachlässigbar klein.

4.4 Der neue Teilchenbeschleuniger MESA

Der
”
Mainz Energy recovering Superconducting Accelerator“ MESA wurde als supralei-

tender, rezirkulierender Dauerstrich-Elektronenbeschleuniger konzipiert. Abbildung 34 gibt
einen Überblick über die geplante Forschungseinrichtung und stellt Komponenten des Be-
schleunigers heraus, welche zur Durchführung des P2-Experiments von besonderer Relevanz
sind.

Für MESA sind zwei Betriebsarten vorgesehen. Im sogenannten
”
Energy Recovery Mode“

(ERL-Modus) wird ein unpolarisierter Strahl mit einem Strom von Ibeam = 1 mA und ei-
ner Energie von Ebeam = 105 MeV generiert und durch das pseudo-interne Gas-Target des
MAGIX-Experiments geführt werden. Da der Strahl aufgrund der geringen Dichte des Ga-
stargets nur geringfügig beeinflusst wird, kann der Elektronenstrahl nach der Passage des
Targets in den Kavitäten des Beschleunigers zur Rückgewinnung der Strahlenergie abge-
bremst werden. Die Rückführung des Strahls in die Kavitäten muss dabei so erfolgen, dass
die Elektronen auf die negative Halbwelle der zur Beschleunigung verwendeten Hochfrequenz
treffen, abgebremst werden und ihre Energie in das Hochfrequenz-Feld rückgeführt wird. An-
schließend wird der Strahl mit einer verbleibenden Energie von 5 MeV in einen Strahlfänger
geführt und dort gestoppt. Man erwartet trotz des hohen Strahlstroms keine starke Aktivie-
rung des Strahlfängers aufgrund der niedrigen Restenergie der Elektronen. Die Verbindung
von Mehrfach-Rezirkulation und der Möglichkeit zur Energie-Rückgewinnung stellt eine her-
ausragende Eigenschaft von MESA dar. Sie ermöglicht die wirtschaftlich effiziente Erzeugung
hoher Strahlströme über einen langen Zeitraum hinweg.
Bei der zweiten für MESA vorgesehenen Betriebsart handelt es sich um den

”
External Be-

am Mode“ (EBM): Ein Strahl longitudinal polarisierter Elektronen mit Polarisationsgrad
P ≈ 0,85 % wird mittels einer Quelle polarisierter Elektronen erzeugt und dann in den

”
ME-

sa Low-energy Beam Apparatus“ (MELBA) eingespeist. Hier werden die Spins der Elektro-
nen mithilfe von Wienfiltern manipuliert, um eine möglichst exakte Ausrichtung der Spins
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Abbildung 34: Darstellung der geplanten MESA-Forschungseinrichtung, mit freundlicher Ge-
nehmigung von K. Aulenbacher und D. Simon. Eine Beschreibung der bezeichneten Kom-
ponenten findet sich im Text.

entlang der Impulsrichtung der Elektronen zu erreichen. Anschließend wird der Strahl mit-
tels eines α-Magneten in das Strahl-Bündelungs- und Kollimierungs-System geführt, wo er
zur Einspeisung in den Vorbeschleuniger

”
MilliAMpere BOoster“ (MAMBO) aufbereitet

wird. Strahlabwärts des α-Magneten ist Platz für die Installation eines Doppelstreu-Mott-
Polarimeters reserviert. Das Polarimeter operiert bei einer Energie von 100 keV und kann
nach Abschaltung des α-Magneten genutzt werden. Nachdem der Stahl in MAMBO auf eine
Energie von Ebeam = 5 MeV beschleunigt wurde, wird er entweder in den Hauptbeschleuniger
oder zur Polarisationsbestimmung in ein bei einer Energie von 5 MeV operierendes Mott-
Polarimeter eingespeist. Die Polarisationsmessung mit den beiden Mott-Polarimetern kann
nur bei transversaler Spinpolarisation erfolgen. Im Hauptteil des Beschleunigers werden die
Elektronen in zwei Kryomodulen auf die zur Durchführung des P2-Experiments vorgesehene
Strahlenergie von Ebeam = 155 MeV beschleunigt. Beim Passieren jedes Kryomoduls wird
die Energie der Elektronen um 25 MeV erhöht, so dass insgesamt drei Umläufe benötigt
werden, um die angedachte Strahlenergie zu erreichen. Anschließend wird der Stahl mittels
einer Magnetschikane aus dem Beschleuniger extrahiert und in die P2-Strahlführung ein-
gespeist. Die P2-Strahlführung wird zur Strahl-Diagnostik und -Stabilisierung genutzt. Der
letzte 180◦-Umlenkbogen, welchen die Elektronen passieren, bevor sie den Messaufbau des
P2-Experiments erreichen, kann verwendet werden, um aus der longitudinalen Dispersion
der Strahlelektronen die Strahlenergie zu messen. Hierauf kann die Stabilisierung der Strah-
lenergie aufbauen. Ferner ist vorgesehen, den geradlinigen Streckenabschnitt direkt vor dem
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Messaufbau zum Zweck der Strahllagestabilisierung zu instrumentieren. In diesem Strecken-
abschnitt ist auch die Installation eines Hydro-Møller-Polarimeters vorgesehen, welches eine
Polarisationsbestimmung gestattet, die simultan zur Asymmetriemessung mit dem Messauf-
bau des P2-Experiments erfolgen kann.

Im Folgenden werden die Konzepte ausgewählter Komponenten von MESA näher beleuchtet.

4.4.1 Quelle polarisierter Elektronen

Das Design der für MESA vorgesehenen Quelle polarisierter Elektronen basiert auf dem der
am

”
MAinzer MIkrotron“ (MAMI) verwendeten Quelle [93, 94, 95]. Das Design wurde für

den Einsatz an MESA angepasst und weiterentwickelt [96, 97].

Das Funktionsprinzip der Quelle polarisierter Elektronen basiert auf der Photoemission aus
Galliumarsenid. Hierzu wird zirkular polarisiertes Laserlicht erzeugt und auf eine Photoka-
thode gerichtet. Durch den Photoeffekt werden Elektronen aus dem Material herausgelöst
und anschließend mittels einer Hochspannung beschleunigt. Das Funktionsprinzip wird im
Folgenden kurz erläutert. Eine umfassende Beschreibung der physikalischen und technischen
Aspekte der an MAMI verwendeten Quelle findet sich in [98].

Abbildung 35 zeigt ein Schema zur Veranschaulichung des Funktionsprinzips der Quelle pola-
risierter Elektronen. Mithilfe eines Lasers wird Licht der Wellenlänge 800 nm erzeugt, welches
sich im Vakuum entlang der z-Achse des in Abbildung 35 dargestellten Koordinatensystems
ausbreitet. Die Frequenz der Laserpulse wird mit der zur Beschleunigung der Elektronen ver-
wendeten Hochfrequenz von 1,3 GHz synchronisiert. Das Licht wird nach seiner Erzeugung
mittels eines Polarisationsfilters linear polarisiert.

Das linear polarisierte Licht trifft anschließend auf eine Pockelszelle. Die Pockelszelle ist ein
doppelbrechendes optisches Gerät, das wie eine Wellenplatte wirkt, deren Phasenverschie-
bung durch Variation des an ihr anliegenden longitudinalen elektrischen Feldes verändert
werden kann. Das elektrische Feld kann elektronisch mit der zur Helizitätsumschaltung vor-
gesehenen Frequenz umgeschaltet werden, so dass die Phasenverschiebung des Lichts beim
Passieren der Pockelszelle zwischen +λ/4 und−λ/4 umgeschaltet wird. Das in die Pockelszel-
le eintretende, linear polarisierte Licht wird somit in zirkular polarisiertes Licht der Helizität
h = +1 oder h = −1 umgewandelt. Da die Pockelszelle nicht perfekt justiert werden kann,
besitzt das Licht nach dem Durchqueren der Pockelszelle noch eine kleine lineare Polarisati-
onskomponente.

An der Oberfläche der Photokathode kann das zirkular polarisierte Licht durch den Photoef-
fekt Elektronen auslösen. Um einen polarisierten Elektronenstrahl zu erhalten, muss bei der
Photoemission die Polarisation der Photonen auf die Elektronen übertragen werden. Dies
ist bei Kristallgittern mit reduzierter Symmetrie möglich, wobei typischerweise Kristalle mit
einer Vorzugsrichtung verwendet werden. In derartigen Kristallen existieren durch die ani-
sotrope Gitterstruktur bedingte Aufspaltungen der Valenzniveaus, welche zur Selektion von
Übergängen führen, die eine Spinpolarisation der ausgelösten Elektronen zur Folge haben.
Abbildung 36 zeigt die vereinfachte Darstellung eines entsprechenden Niveauschemas. Der
Photoemissionsübergang befindet sich zwischen einem P-Zustand des Valenzbandes und ei-
nem S-Zustand des Leitungsbandes. Übergänge aus den P1/2-Zuständen in die S-Zustände
sind aufgrund der Niveauaufspaltung durch die Spin-Bahn-Kopplung und die scharf definier-
te Energie Eγ der Photonen nicht möglich. Abbildung 36 zeigt erlaubte Übergänge im Fall des
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Abbildung 35: Schema des Aufbaus der für MESA vorgesehenen Quelle polarisierter Elek-
tronen. Die Erläuterung des Funktionsprinzips findet sich im Text.

Einfalls rechtshändiger Photonen (h = +1). Es gilt die Auswahlregel ∆Mj = +1. Durch die
Anisotropie der Kristallgitter wird die Entartung der P3/2-Zustände aufgehoben; durch die re-
sultierende Energieaufspaltung ∆E wird der Übergang P3/2, Mj = −3/2→ S1/2,Mj = −1/2
selektiert, wodurch der Spin der Elektronen im Leitungsband festgelegt wird, so dass das
ausgelöste Elektronen-Ensemble in hohem Maße polarisiert ist. Die aus der Kristallstruktur
ausgelösten Elektronen werden mittels einer Hochspannung von 100 kV extrahiert und be-
schleunigt.

Zur Minimierung systematischer Unsicherheiten bei der Asymmetriemessung befinden sich
zwei λ/2-Platten an der Quelle. Die erste Platte befindet sich zwischen dem Polarisationsfil-
ter und der Pockelszelle und kann optional in den Strahlengang des Laserlichts eingebracht
werden. Sie kehrt die Helizität des aus der Pockelszelle austretenden Lichts um. Man bezeich-
net diese λ/2-Platte als Generalvorzeichenwechsler (GVZ), sie gestattet eine Überprüfung
auf systematische Fehler bei der Asymmetriemessung, da sich im Idealfall bei Verwendung
des Generalvorzeichenwechslers das Vorzeichen der gemessenen Asymmetrie ändert, der Be-
trag jedoch gleich bleibt. Die zweite λ/2-Platte befindet sich zwischen der Pockelszelle und
der Photokathode. Ihr Verwendungszweck ist die Minimierung der Strahlstromasymmetrie,
welche sich aus unterschiedlichen Strahlintensitäten für die beiden Helizitätszustände er-
gibt. Die Strahlstromasymmetrie kann etwa dadurch entstehen, dass die Quantenausbeute
an der Photokathode für die beiden Helizitätszustände systematisch verschieden ist. Dies
wird hauptsächlich durch den geringen linearen Anteil der Polarisation der Photonen nach
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Abbildung 36: Vereinfachte Darstellung des Niveauschemas einer anisotropen Kristallan-
ordnung (

”
Strained-Layer“ oder

”
Super-Lattice“). Durch die Anisotropie der Gitterstruk-

tur wird die Entartung der P3/2-Niveaus aufgehoben. Die Energieaufspaltung zwischen
den Niveaus mit Mj = ±1/2 und Mj = ±3/2 beträgt ∆E. Mit rechtshändigen, zirku-
lar polarisierten Photonen der Energie Eγ ist im gezeigten Bild nur der Übergang von
P3/2,Mj = −3/2 → S1/2,Mj = −1/2 möglich, was eine Polarisation der ausgelösten Elek-
tronen zur Folge hat.

dem Passieren der Pockelszelle bedingt. Ferner können sowohl das Vakuumfenster als auch
die Photokathode doppelbrechend wirken und somit den Polarisationszustand der Photonen
verändern. Mittels der λ/2-Platte kann die verbliebene Linearkomponente der Photonpo-
larisation minimiert werden. Die Platte wird um die Ausbreitungsrichtung des Laserlichts
drehbar in den Strahlengang verbaut. Durch Drehen der Platte drehen sich die Ellipsen,
welche die elektrischen Feldvektoren ~E± des Lichts in der x-y-Ebene beschreiben. Wird die
Platte so gedreht, dass die Polarisationsrichtung der Photokathode, wie in Abbildung 35 dar-
gestellt, in Richtung des Schnittpunktes dieser Ellipsen zeigt, so wird die helizitätskorrelierte
Asymmetrie in der Intensität des Strahlstroms minimiert. Bestimmt man im Experiment die
Strahlstromasymmetrie in Abhängigkeit von der Ausrichtung der λ/2-Platte, so kann man
diejenige Ausrichtung der λ/2-Platte wählen, für welche helizitätskorrelierte Schwankungen
des Strahlstroms minimal sind.

4.4.2 Wienfilter-System

Aufgrund der Präzession, welche die Elektron-Spins durch die Wechselwirkung mit elek-
tromagnetischen Feldern beim Durchqueren des Beschleunigers erfahren, benötigt man ein
System zur Spinmanipulation, um die Spins im P2-Experiment longitudinal auszurichten.
Um die Ausrichtung des Elektron-Spins manipulieren und optimieren zu können, ist der
Einsatz von Wien-Filtern vorgesehen. Ein Wien-Filter gestattet die Manipulation der Rich-
tung des Spins relativ zur Impulsrichtung in einer vorgegebenen Ebene. Abbildung 37 zeigt
ein Schema für den Aufbau eines Wien-Filters. Der zentrale Bestandteil eines Wien-Filters
ist eine Kavität, in welcher ein elektrisches und ein hierzu senkrechtes magnetisches Feld
erzeugt wird. Beide Felder stehen senkrecht zur Flugrichtung der Elektronen, die den Wien-
Filter passieren. Die Stärken der beiden Felder sind so gewählt, dass die Lorentz-Kraft und
die elektrostatische Kraft sich aufheben. Die Elektronen erfahren somit keine Ablenkung
von ihrer Flugbahn. Der Spin der Elektronen erfährt aufgrund der Thomas-Präzession in
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Abbildung 37: Schema für den Aufbau eines Wien-Filters. Die Abbildung wurde [98] ent-
nommen. Weitere Erläuterungen finden sich im Text.

den Feldern eine Richtungsänderung relativ zur Impulsrichtung der Elektronen. Die Rich-
tungsänderung des Spins kann durch die Wahl der Feldstärken von −90◦ bis 90◦ variiert
werden. Die Quadrupol-Magnete vor bzw. hinter dem Wien-Filter dienen der Fokussierung
des Elektronenstrahls. Da die zur Spinmanipulation benötigte Flugstrecke der Elektronen
linear mit deren Energie wächst, ist der Einsatz von Wien-Filtern vor dem Einspeisen der
Elektronen in den Injektor sinnvoll.

Die im P2-Experiment benötigte Spindrehung kann durch den Einsatz von Wienfiltern er-
reicht werden, welche dem Design der an MAMI eingesetzten Wienfilter entsprechen [99].
Es ist ein System bestehend aus zwei Wienfiltern und einem Solenoiden vorgesehen, welches
dem an der Thomas Jefferson National Accelerator Facility verwendeten System nachemp-
funden ist [100]. Hierbei werden die Spins der Elektronen zunächst mittels eines Wienfilters
um einen konstanten Winkel von 90◦ aus der Beschleunigerebene herausgedreht. Mithilfe
eines in Flugrichtung der Elektronen longitudinalen Magnetfeldes, welches von einem Sole-
noiden erzeugt wird, werden die Spins anschließend in die Beschleunigerebene gedreht, so
dass sie transversal zur Impulsrichtung der Elektronen stehen. Mittels des zweiten Wienfil-
ters werden die Spins hiernach longitudinal ausgerichtet, wobei Effekte der Spinpräzession
kompensiert werden. Durch Umkehren der Richtung des Magnetfeldes kann eine Umkehr
der Helizität erreicht werden, die unabhängig von der optischen Helizitätsumkehr an der
Quelle polarisierter Elektronen ist und somit eine weitere Möglichkeit zur systematischen
Überprüfung der Strahleigenschaften darstellt. Werden die Spins nicht mithilfe des zweiten
Wienfilters parallel zur Impulsrichtung gedreht, so kann eine Messung der Strahlpolarisation
mit den Mott-Polarimetern erfolgen, welche nur bei transveralser Spinstellung möglich ist.

4.4.3 Chopper-System

Als
”
Chopper“ bezeichnet man ein Bauteil des Vorbeschleuniger-Systems eines Teilchenbe-

schleunigers, welches der longitudinalen Anpassung des Teilchenstrahls vor der Beschleuni-
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Abbildung 38: Zur Veranschaulichung der Wirkungsweise des Chopper-Buncher-Systems.
Die Abbildung wurde [101] entnommen. Schematisch dargestellt ist der erwartete Verlauf
der relativen Intensitäten I/I0 des Elektronenflusses als Funktion der auf die Umlaufdau-
er der Hochfrequenz THF normierten Zeit t. Der obere Graph zeigt den erwarteten Inten-
sitätsverlauf des Eletronenstrahls vor Eintritt in den Chopper. Das mittlere Bild zeigt die
Gestalt des erwarteten Intensitätsverlaufs nach Passieren des Choppers. Das untere Bild
ist eine Darstellung des erwarteten Verlaufs, nachdem die Elektronen-Pakete den Buncher
passiert haben. Ebenfalls eingezeichnet ist das zur Beschleunigung der Elektronen geeignete
Phasenintervall.

gung im Hauptteil der Anlage dient. In einem Elektronenbeschleuniger erfolgt die Beschleuni-
gung in Hohlraumresonatoren mittels eines zeitlich mit der Hochfrequenz fHF oszillierenden
elektrischen Feldes, welches entlang der Flugbahn der Elektronen parallel bzw. antiparallel
zu deren Impulsrichtung ausgerichtet ist, vgl. Abschnitt 4.4.6. Es exitstiert ein Phasenin-
tervall um eine Sollphase φsoll, welches sich zur Beschleunigung der Elektronen eignet. Die
Aufgabe eines Choppers ist die Selektion derjenigen Elektronen, deren Phase mit dem zur
Beschleunigung geeigneten Phasenintervall verträglich ist.

Der Laser der Quelle polarisierter Elektronen liefert Pulse, welche zeitlich mit der Hochfre-
quenz zur Beschleunigung der Elektronen synchronisiert sind. Daher werden aus der Photoka-
thode Elektronen-Pakete emittiert. Das longitudinale und transversale Profil der Elektronen-
Pakete hängt von der Form des Laserpulses sowie der charakteristischen Pulsantwort des
Kathodenmaterials ab. Elektronen aus den unteren Schichten des Kathodenmaterials errei-
chen die Oberfläche mit zeitlicher Verzögerung gegenüber den Elektronen aus den oberen
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Abbildung 39: Schematische Darstellung des für MESA vorgesehenen Choppers aus [102].
Die Erläuterung findet sich im Text.

Schichten. Hierdurch vergrößert sich das longitudinale Profil der Elektronen-Pakete, es ent-
steht eine große Phasenablage gegenüber φsoll, welche mithilfe des Choppers limitiert wird.
Abbildung 38 veranschaulicht die Wirkungsweise eines Choppers auf Elektronen-Pakete.

Der für MESA vorgesehene Chopper basiert auf dem an MAMI verwendeten Design [102].
Das System besteht aus zwei Chopper-Resonatoren sowie einem Kollimator. Abbildung 39
zeigt eine schematische Darstellung. Der erste Resonator lenkt den Strahl mit der Frequenz
fHF zeitlich periodisch ab, so dass die Trajektorien im Anschluß auf der Oberfläche eines
Kegels liegen. Jeder Phase der Hochfrequenz kann somit ein Winkel zugeordnet werden.
Der Kollimatorspalt wird so gewählt, dass nur die Elektronen mit einer zur Beschleunigung
geeigneten Phase den Kollimator passieren können. Der zweite Resonator kompensiert die
Transversalimpulse der Elektronen, das Solenoid-Paar bildet die Elektronen zwischen den
beiden Resonatoren ab.

4.4.4 Buncher-System

Die Aufgabe des Buncher-Systems ist die Fokussierung der aus dem Chopper austretenden
Elektronen-Pakete in longitudinaler Richtung. Abbildung 40 dient der Veranschaulichung des
Funktionsprinzips. Als

”
Buncher“ bezeichnet man einen Hochfrequenz-Resonator, in dem ei-

ne TM010-Mode schwingt. Die Elektronen eines Pakets, welches den Chopper verlassen hat
und in den Buncher eintritt, erfahren im Hochfrequenz-Resonator eine phasenabhängige Ge-
schwindigkeitsmodulation. Diese ist so gewählt, dass die Elektronen des Pakets, welche den
Buncher zuerst erreichen, abgebremst werden. Die Elektronen im Zentrum des Pakets er-
fahren keine Änderung der Geschwindigkeit, und diejenigen Elektronen des Pakets, welche
den Buncher zuletzt erreichen, erfahren im Resonator eine Beschleunigung. Nachdem das
Elektronen-Paket den Buncher passiert hat, durchläuft es eine Driftstrecke Lf. Aufgrund der
Geschwindigkeitsmodulation verringert sich die longitudinale Ausdehung des Elektronen-
Pakets, während es die Driftstrecke durchläuft, bis es schließlich im Fokus des Bunchers
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Abbildung 40: Zur Veranschaulichung der Funktionsweise eines Bunchers. Die Abbildung
wurde [103] entnommen. Weitere Erläuterungen finden sich im Text.

seine minimale Ausdehnung erreicht. Die Position des Fokus befindet sich in der Beschleu-
nigersektion. Das longitudinal fokussierte Elektronen-Paket wird anschließend auf nahezu
Lichtgeschwindigkeit beschleunigt, so dass sich sämtliche Elektronen des Pakets im weiteren
Verlauf mit näherungsweise gleicher Geschwindigkeit bewegen, was einer räumlichen Disper-
sion des Elektronenpakets entgegenwirkt.

Da der Phaseneinfangsbereich bei Verwendung eines einzelnen Bunchers relativ gering ist,
wird für MESA ein System bestehend aus mehreren Hochfrequenz-Resonatoren entwickelt
[103], so dass die Elektronen-Pakete mit hoher Ausbeute in die Injektor-Sektion eingebracht
werden können.

4.4.5 Injektor

Der Zweck der Injektor-Sektion ist es, die Elektronen auf näherungsweise Lichtgeschwindig-
keit zu beschleunigen, damit sie im Hauptbeschleuniger weiter beschleunigt werden können.
Für MESA wird der Injektor

”
MilliAMpere BOoster“ (MAMBO) entwickelt [104], [105].

Das Design von MAMBO basiert auf dem des MAMI-Injektors ILAC [106]. Es handelt sich
um einen normalleitenden Linearbeschleuniger, in welchem Elektronen der Anfangsenergie
100 keV beschleunigt werden, so dass ihre Energie beim Verlassen des Injektors 5 MeV be-
trägt. Der Linearbeschleuniger wird aus vier normalleitenden Hochfrequenz-Sektionen be-
stehen, die bei Raumtemperatur betrieben werden. Die Frequenz der Mikrowelle zur Erzeu-
gung der elektrischen Felder innerhalb der Resonatoren beträgt - wie im Hauptbeschleu-
niger - 1,3 GHz. In der ersten Sektion werden die Elektronen von einer Geschwindigkeit
β0 = v/c = 0, 55 auf β1 = 0, 96 beschleunigt. Die erste Sektion besitzt aufgrund der niedrigen
Eintrittsgeschwindigkeit der Elektronen eine sogenannte

”
graded-β“-Struktur, was bedeutet,

dass die Länge der Resonatoren in Flugrichtung der Elektronen zunimmt. Für die übrigen
Strukturen ist kein β-Profil vorgesehen, alle weiteren Resonatoren derselben Stufe besitzen
die gleiche Länge. Es sind β2 = 0, 98 und β3,4 ≈ 1 vorgesehen.

4.4.6 Rezirkulierender Linearbeschleuniger

Nachdem die Elektronen den Injektor mit einer Energie von 5 MeV verlassen haben, werden
sie im Hauptteil der Anlage auf die für MAGIX bzw. P2 vorgesehene Energie von 105 MeV
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bzw. 155 MeV beschleunigt und anschließend zum Target des jeweiligen Experiments geleitet.
Der Hauptbeschleuniger ist als Linearbeschleuniger konzipiert, welcher von den Elektronen in
bis zu drei Rezirkulationen mehrfach durchlaufen wird. Das Herzstück der Anlage bilden zwei
supraleitende Hochfrequenz-Module (SRF-Module), in welchen die Elektronen beschleunigt
bzw. im ERL-Modus abgebremst werden. Das Design der SRF-Module sieht zwei neunzellige,
TESLA/XFEL-ähnliche Kavitäten vor, welche in ein Rossendorf-artiges Kryomodul einge-
bettet sind [107]. Jede der Kavitäten besitzt einen Energiehub von 12,5 MeV, so dass die
Elektronen pro Umlauf im Hauptbeschleuniger einen Energiezuwachs von 50 MeV erfahren
können. Der Einsatz supraleitender SRF-Module ermöglicht aufgrund der hohen möglichen
Feldstärken zur Teilchenbeschleunigung ein kompaktes Design des Beschleunigers, wie in Ab-
bildung 34 dargestellt. Die Umlenkbögen der Strahlführung im Hauptteil des Beschleunigers
sind teils übereinander angeordnet. Das gegenwärtige Design der Strahlführung sieht den
Einsatz von 60 Dipolmagneten zur Richtungsänderung der Strahlelektronen sowie über 100
Quadrupolmagneten, welche der Strahlfokussierung dienen, vor. Im ERL-Moduls gestatten
die supraleitenden SRF-Module darüber hinaus den energieeffizienten Betrieb von MESA,
indem die Energie der Elektronen beim Abbremsvorgang in den Kavitäten in das Feld der
SRF-Module rückgeführt wird.

4.5 Strahlmonitore und Strahlstabilisierung

Die Überwachung und Stabilisierung der Eigenschaften des von MESA generierten Elektro-
nenstrahls sind zur Durchführung des P2-Experiments unerläßlich. Mit der Helizitätsumschaltung
korrelierte Schwankungen der Strahleigenschaften führen zu einer systematischen Verschie-
bung des Erwartungswerts der im Experiment gemessenen Asymmetrie. Mit der Polari-
sationsumschaltung unkorrelierte Abweichungen von den Sollwerten der Strahlparameter
führen zu einer Verbreiterung der gemessenen Asymmetrieverteilung. Es ist daher notwen-
dig, Strahlstrom, -lage und -energie zu überwachen und helizitätskorrelierte Unterschiede in
diesen Parametern zu minimieren. Hierzu sind eine Reihe von Monitor-Systemen vorgesehen,
welche im Folgenden kurz beschrieben werden.

4.5.1 Strahlstrom und Strahllage

Zur Überwachung von Strahlstrom und Strahllage werden aller Voraussicht nach Phasen-
intensitätsmonitore zum Einsatz kommen. Bei einem Phasenintensitätsmonitor handelt es
sich um eine Hochfrequenz-Resonanz-Kavität. Eine solche Kavität ist ein Hohlraum, dessen
Wände aus einem elektrisch gut leitenden Material bestehen. Passieren Strahlelektronen die
Kavität, so erregen deren elektromagnetische Felder Hochfrequenzwellen im Resonator, wel-
che nach Einschwingvorgängen einen stationären Zustand erreichen. Mit einer in den Resona-
tor eingelassenen Antenne oder Koppelschleife kann die im Resonator angeregte Schwingung
in ein elektrisches Signal überführt werden.

Eine Möglichkeit zur Überwachung und Regelung des Strahlstroms stellt die Platzierung
eines TM010-Resonators zwischen der Quelle polarisierter Elektronen und dem Injektor dar.
Mittels des Resonators wird der Strahlstrom gemessen und mit einem Sollwert verglichen.
Eine Abweichung vom Sollwert führt zu einem Regelsignal, welches in der Anpassung der
Intensität des Lasers in der Quelle polarisierter Elektronen resultiert.

Die Strahllage kann mithilfe von XYMOs (XY-Monitoren) überwacht und stabilisiert werden.
Ein XYMO besteht aus zwei Kavitäten, eine zur Messung der Strahlablage in x-Richtung
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und eine für die y-Richtung. In den Kavitäten wird die TM110-Mode des elektromagneti-
schen Felds angeregt, deren elektrisches Feld entlang der Resonatorachse Null ist, so dass
bei mittigem Durchgang der Elektronen kein Signal abgegriffen werden kann. Das elektri-
sche Feld steigt mit wachsender Entfernung von der Strahlachse näherungsweise linear an,
entsprechend wächst auch die Amplitude des vom XYMO gelieferten Signals. Abweichun-
gen der Lage des Strahls von den Sollwerten können mithilfe von schnellen Steuermagneten
(Wedlern) korrigiert werden.

4.5.2 Strahlenergie

Die Energie des Elektronenstrahls kann über den Laufzeitunterschied von Elektronen ver-
schiedener Energie beim Durchgang durch einen Umlenkmagneten mit Hilfe zweier Hochfrequenz-
Resonanz-Kavitäten vor und nach dem Magneten bestimmt werden. Unterschiedliche Ener-
gien der Strahlelektronen führen zu unterschiedlichen Trajektorien durch das Magnetfeld.
Ein möglicher Ort für eine solche Messung an MESA ist der letzte Umlenkbogen vor dem
Target des P2-Experiments. Eine solche Messung könnte auch dazu benutzt werden, die
Strahlenergie zu stabilisieren, indem die Einschußphase in den Hauptbeschleuniger so ge-
steuert wird, dass die Laufzeit der Elektronen zwischen den Flugzeitmonitoren möglichst
konstant gehalten wird.

4.6 Polarimetrie

Für das P2-Experiment wird eine Bestimmung der Strahlpolarisation P mit einer relativen
Unsicherheit von ∆P/P = 0,5 % über die Messdauer von T = 104 h hinweg angestrebt. Es
sind drei Polarimeter geplant, von denen jedes eine relative Unsicherheit von ∆P/P ≤ 1 %
gewährleisten soll. Es ist ein Doppelstreu-Mott-Polarimeter vorgesehen, das bei einer Strah-
lenergie von Ebeam = 100 keV betrieben wird, ein Mott-Polarimeter, das bei Ebeam = 5 MeV
operiert sowie ein Hydro-Møller-Polarimeter, welches in der P2-Strahlführung vor dem `H2-
Target des Experiments positioniert werden soll, wie in Abbildung 34 erkennbar. Während
das Hydro-Møller-Polarimeter eine Polarisationsbestimmung parallel zur Asymmetriemes-
sung im P2-Experiment bei den selben Strahlparametern ermöglichen wird, kann eine Pola-
risationsbestimmung mit den Mott-Polarimetern nur bei wesentlich geringeren Strahlener-
gien, transversaler Spinstellung und somit nicht parallel zur Asymmetriemessung im P2-
Experiment erfolgen. Im Gegenzug gestatten Mott-Polarimeter eine schnelle Bestimmungen
der Strahlpolarisation. Im Folgenden werden die Funktionsweisen der vorgesehenen Polari-
metertypen beschrieben.

4.6.1 Doppelstreu-Mott-Polarimeter

Das Prinzip eines Doppelstreu-Mott-Polarimeters basiert auf der Streuung transversal pola-
risierter Elektronen an einem Target mit hoher Ordnungszahl Z. Die Meßgröße zur Bestim-
mung des Polarisationsgrades ist die Zählratenasymmetrie

ALR ≡
IL − IR

IL + IR

= P · Seff, (179)

wo IL, R die Zählraten der im Target unter Winkeln ±Θ relativ zur Einfallsrichtung gestreu-
ten Elektronen ist. P ist der Polarisationsgrad der Elektronen und Seff die Analysierstärke
(
”
Sherman-Funktion“) des Targets. Der Vorteil eines Doppelstreu-Mott-Polarimeters liegt

darin begründet, dass Seff im Rahmen der Kalibration des Polarimeters experimentell be-
stimmt werden kann und somit keine Unsicherheiten seitens einer theoretischen Bestimmung
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Abbildung 41: Zur Erläuterung der Bestimmung von Seff bei einem Doppelstreu-Mott-
Polarimeter mit identischen Target-Folien. Die Abbildung entstammt [108]. Im Bild trifft
ein von oben links kommender, unpolarisierter Elektronenstrahl auf eine Target-Folie. Nach
Streuung am ersten Target unter dem Winkel Θ besitzen die Elektronen die Polarisation
P = Seff, welche der effektiven Analysierstärke des ersten Targets entspricht. Die Elektronen
treffen anschließend auf ein zweites Target, welches mit dem ersten identisch ist. Die hier
unter den Winkeln ±Θ gestreuten Elektronen werden in zwei symmetrisch um das zweite
Target angeordneten Detektoren nachgewiesen. Im mit L (R) bezeichneten Detektor wird
die Zählrate IL (IR) gemessen.

der Sherman-Funktion des Targets in die Bestimmung von P einfließen. Abbildung 41 ver-
anschaulicht das Prinzip zur Bestimmung von Seff bei Verwendung eines unpolarisierten
Elektronenstrahls und zweier identischer Targets. In diesem Fall gilt ALR = S2

eff [108].

Durch Verwendung eines polarisierten Elektronenstrahls und Umschalten der Polarisation
lässt sich Seff auch bei Verwendung zweier unterschiedlicher Targets bestimmen [109]. Die
Genauigkeit, mit der Seff ermittelt werden kann, ist bei einem Doppelstreu-Mott-Polarimeter
durch die Genauigkeit limitiert, mit welcher der Beitrag apparativer Asymmetrien zu ALR

bestimmt werden kann. Ist Seff hinreichend genau bekannt, so kann ALR durch Streuung an
einem einzelnen Target innerhalb kurzer Zeit so bestimmt werden, dass eine präzise Extrak-
tion der Strahlpolarisation möglich ist. Das Doppelstreu-Mott-Polarimeter gestattet keine
Polarisationsbestimmung parallel zur Asymmetriemessung mit dem P2-Messaufbau, da ei-
ne Messung der Strahlpolarisation nur bei transversaler Spinstellung, niedriger Strahlenergie
∼ 100 keV und geringem Stralstrom ∼ 5 nA durchgeführt werden können. Abbildung 42 zeigt
eine schematische Darstellung des für MESA entwickelten Doppelstreu-Mott-Polarimeters.

4.6.2 Einzelstreu-Mott-Polarimeter

Aufgrund der ähnlichen Strahlenergien kann das Design des bei 3,5 MeV an MAMI operie-
renden Einzelstreu-Mott-Polarimeters [110] mit kleinen Modifikationen zur Polarisationsbe-
stimmung an MESA übernommen werden. Abbildung 43 zeigt ein Schema des Aufbaus des
sich an MAMI im Einsatz befindlichen Polarimeters. Die Messgröße zur Polarisationsbestim-
mung ist die Zählraten-Asymmetrie in der Rückwärtswinkel-Streuung transversal polarisier-
ter Elektronen an einem dünnen Au-Target, welche als

ALR
eAu ≡

R↑ −R↓
R↑ +R↓

(180)
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Abbildung 42: Technische Zeichnung des für MESA entwickelten Doppelstreu-Mott-
Polarimeters, mit freundlicher Genehmigung von M. Molitor (B2-Kollaboration, Mainz).
Das Polarimeter ist zur Installation in Richtung des Elektronenstrahls hinter dem Wienfilter-
System vorgesehen. Die Detektoren des Polarimeters werden auf einer um die erste Streufolie
rotierbaren Vorrichtung platziert. Dies gestattet es den Streuwinkel Θ einzustellen und so-
wohl die Kalibration als auch die Polarisationsmessung durchzuführen.

geschrieben werden kann. Dabei ist R↑,↓ die Nachweisrate der unter Rückwärtswinkeln an
der Goldfolie gestreuten Elektronen für die beiden Spinstellungen senkrecht zur Streuebene.
Für die transversale Polarisation P der einfallenden Elektronen gilt:

P =
A0

S0

, (181)

worin S0 die Analysierstärke (
”
Sherman-Funktion“) des Streuprozesses ist und A0 die Asym-

metrie im Streuprozess an einem Target mit differenzieller Dicke in Richtung des Elektro-
nenstrahls darstellt. S0 muss berechnet werden. A0 kann bestimmt werden, indem Kalibra-
tionsmessungen von ALR

eAu mit Targets unterschiedlicher Dicke ausgeführt werden und die
Resultate zu verschwindender Targetdicke hin extrapoliert werden.

Ein Vorteil des Einzelstreu-Mott-Polarimeters liegt darin begründet, dass es für ein großes
Intervall von Strahlströmen zwischen Ibeam ≈ 6 nA und Ibeam = 50µA präzise Polarisations-
messungen gestattet. Messungen mit dem Einzelstreu-Mott-Polarimeter können sowohl bei
Strahlströmen durchgeführt werden, bei denen das Doppelstreu-Mott-Polarimeter operiert,
als auch bei Strahlströmen, die sich der Größenordnung des im P2-Experiment vorgesehenen
Strahlstroms von 150µA annähern und bei denen das Hydro-Møller-Polarimeter operieren
soll.

Die größten Beiträge zur Unsicherheit in Polarisationsbestimmungen mit Einzelstreu-Mott-
Polarimetern stammen von Untergrundprozessen, der Unsicherheit in der Extrapolation hin
zu verschwindender Targetdicke sowie der Unsicherheit bei der Bestimmung der Analy-
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Abbildung 43: Schematische Darstellung des Einzelstreu-Mott-Polarimeters, welches an MA-
MI verwendet wird. Die Abbildung wurde [110] entnommen. Der im Bild von rechts oben
einfallende, transversal polarisierte Elektronenstrahl trifft auf eine dünne Goldfolie, welche
als Target fungiert. Die unter Streuwinkeln θ = 164◦ senkrecht zur Ebene, welche durch
Strahl- und Spinrichtung aufgespannt wird, gestreuten Elektronen werden mithilfe von Ma-
gneten abgelenkt und in Szintillationsdetektoren nachgewiesen. Das Polarimeter zeichnet
sich durch seine Kompaktheit aus.

sierstärke in der Theorie. Die Minimierung dieser Unsicherheiten zum Einsatz eines wei-
terentwickelten Designs an MESA ist Gegenstand der Forschung [26]. Die P2-Kollaboration
geht davon aus, dass mit einem Einzelstreu-Mott-Polarimeter an MESA Polarisationsmes-
sungen mit einer relativen Unsicherheit von ∆P/P < 1 % möglich sein werden.

4.6.3 Hydro-Møller-Polarimeter

Die Grundidee hinter dem Konzept des Hydro-Møller-Polarimeters ist, das ferromagnetische
Target eines konventionellen Møller-Polarimeters durch longitudinal polarisierte Wasserstof-
fatome zu ersetzen [111]. Die Wasserstoffatome werden dabei in einem starken Magnetfeld
~B, das von einem Solenoiden entlang der Strahlachse generiert wird, gefangen gehalten.
Abbildung 44 dient der Erklärung des Funktionsprinzips eines Hydro-Møller-Polarimeters.
Atomarer Wasserstoff wird auf eine Temperatur von T = 30 K gekühlt und anschließend
in eine aus reinem Kupfer bestehende Speicherzelle eingebracht. Die Speicherzelle befindet
sich im Inneren eines Solenoiden, der im zentralen Bereich der Speicherzelle ein starkes Ma-
gnetfeld B ≈ 8 T erzeugt, das parallel zur Strahlachse ausgerichtet ist. Im Randfeld werden
die Atome durck Kollisionen mit den Wänden der Speicherzelle auf eine Temperatur von
T = 0,3 K gekühlt. Rekombination und Adsorption der Wasserstoff-Atome an der Ober-
fläche der Speicherzelle können durch Aufbringen eines Films superfluiden Heliums auf die
Oberfläche vermieden werden. Das Magnetfeld und die Hyperfein-Wechselwirkung spalten
den Grundzustand des Wasserstoffs in vier Zustände unterschiedlicher Energie auf, wobei
|a〉 und |b〉 die Zustände mit den niedrigsten Energien bezeichen, |c〉 und |d〉 die Zustände
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Abbildung 44: Schematische Darstellung der Wasserstoff-Speicherzelle eines Hydro-Møller-
Polarimeters. Die Abbildung wurde [111] entnommen.

mit höheren Energien. Es gilt

|a〉 = cos(θ) · |↓↑〉 − sin(θ) · |↑↓〉,
|b〉 = |↓↓〉,
|c〉 = sin(θ) · |↓↑〉+ cos(θ) · |↑↓〉,
|d〉 = |↑↑〉,

(182)

wobei der erste (zweite) Pfeil die Projektion des Spins des Elektrons (Protons) auf die Rich-
tung des Magnetfelds angibt. Bei den für T und B gewählten Werten ist sin(θ) ≈ 0, 003,
so dass die Elektronen in den Zuständen |a〉 und |b〉 nahezu vollständig polarisiert sind.
Eine Beimischung ∼ 10−5 der entgegengesetzten Polarisationsrichtung stammt von Zustand
|a〉 . Abbildung 45 zeigt die Energieniveaus in Abhängigkeit von der Stärke des angeleg-
ten Magnetfeldes. Aufgrund der durch den Gradienten des Magnetfeldes induzierten Kraft
−~∇( ~µH · ~B) werden die Atome in den Zuständen |a〉 und |b〉 zum Zentrum der Speicherzelle
gezogen, wo die Stärke des Magnetfelds maximal ist. Die Zustände |c〉 und |d〉 werden durch
die aus dem Feldgradienten resultierenden Kraft aus der Speicherzelle entfernt. Es können
Elektronen-Dichten von 6 · 1016 cm−2 für das Gas-Target in der Speicherzelle erreicht werden
[112].

Die Strahlelektronen streuen an den polarisierten Elektronen des in der Speicherzelle gefange-
nen atomaren Wasserstoffs. Für den diffenziellen Wirkungsquerschnitt des Møller-Streuprozesses
gilt im Schwerpunktsystem(

dσ

dΩ

)
CM

=

(
dσ0

dΩ

)
CM

·
(

1 +
∑

i,j=x, y, z

aijP
B
i P

T
j

)
, (183)

wo PB
i und PT

j die Polarisationskomponenten von Strahl- und Target-Elektronen sind. Als
Einfallsrichtung der Strahlelektronen in die Speicherzelle wurde ~ez gewählt. Die Messgröße
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Abbildung 45: Energieniveaus |a〉 , |b〉 , |c〉 und |d〉 in Abhängigkeit vom angelegten Magnet-
feld B. Die Abbildungen wurden [112] entnommen. Die Zustände |a〉 und |b〉 können bei
hohen Feldstärken aufgrund ihrer niedrigeren Energien von den Zuständen |c〉 und |d〉 im
Magnetfeld separiert werden.

zur Bestimmung von PB
z ist die Doppelspin-Asymmetrie

AP
B,PT

=
N↑↑ −N↑↓
N↑↑ +N↑↓

= azzP
B
z P

T
z , (184)

im Møller-Streuprozess, für die im Fall PT
z ≈ 1

AP
B,PT ≈ −7

9
PB

z (185)

gilt, was eine Extraktion der Strahlpolarisation P = PB
z gestattet.

Die Bestimmung der Strahlpolarisation mit dem geplanten Hydro-Møller-Polarimeter soll
simultan zur Messung der paritätsverletzenden Asymmetrie mit dem Messaufbau des P2-
Experiments erfolgen. Die Platzierung des Polarimeters ist im letzten Abschnitt der P2-
Strahlführung vorgesehen, wie in Abbildung 34 dargestellt. Aufgrund des hohen Polarisa-
tionsgrades des Gas-Targets eines Hydro-Møller-Polarimeters kann eine relative statistische
Unsicherheit ∼ 0,5 % bei der Bestimmung der Strahlpolarisation in weniger als einer Stunde
erreicht werden [26]. Ein entsprechendes Polarimeter wird gegenwärtig entwickelt.

4.7 Messaufbau des P2-Experiments

Im Folgenden wird der Messaufbau des P2-Experiments beschrieben. In Beschleunigerexperi-
menten zur paritätsverletzenden Elektronenstreuung besteht eine enge Verflechtung zwischen
Beschleuniger und Messaufbau, da Präparation und Kontrolle der Strahleigenschaften für
das Gelingen des Experiments von entscheidender Bedeutung sind. Darüber hinaus muss die
Datennahme im Experiment mit dem Helizitätswechsel des Elektronenstrahls synchronisiert
sein. Die Umsetzung der in den vorangegangenen Abschnitten dieses Kapitels beschriebenen
Konzepte erfolgt im Hinblick auf eine erfolgreiche Durchführung des P2-Experiments. Die
formale Trennung der Beschreibungen von Beschleuniger, dessen Instrumentierung und des
Messaufbaus des P2-Experiments dient somit lediglich der Verbesserung der Übersicht.

Abbildung 46 gibt einen Überblick über den geplanten Messaufbau des P2-Experiments.
Der von MESA erzeugte Elektronenstrahl tritt im Bild von unten links kommend in die
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Abbildung 46: Der geplante Messaufbau des P2-Experiments. Die Abbildung wurde [26]
entnommen. Erläuterungen finden sich im Text.

Streukammer ein und wechselwirkt dort mit dem 600 mm langen `H2-Target. Target und
Streukammer befinden sich im Inneren eines supraleitenden Solenoiden. Das von dem So-
lenoiden generierte Magnetfeld verläuft im zentralen Innenbereich des Magneten parallel
zur Strahlachse und besitzt eine Stärke von B ≈ 0,6 T. Das Magnetfeld dient dazu, die im
Target elastisch an Protonen gestreuten Elektronen von den Elektronen im Endzustand des
Møller-Streuprozesses zu separieren. Die im Experiment nachzuweisenden, elastisch an Pro-
tonen unter Winkeln θf ∈ [25◦, 45◦] gestreuten Elektronen verlassen die Streukammer durch
ein dünnes Kevlar-Fenster und treten anschließend in eine mit Helium gefüllte Kammer ein,
welche die Spur-Detektoren beherbergt. Die Spur-Detektoren dienen der Rekonstruktion
der Elektron-Bahnkurven bei niedrigen Strahlströmen zur Q2-Bestimmung. Die Elektronen
werden anschließend mithilfe eines Cherenkov-Ringdetektors nachgewiesen, welcher zur Be-
stimmung der paritätsverletzenden Asymmetrie der elastischen Elektron-Proton-Streuung
eingesetzt wird. Um den Cherenkov-Detektor gegen aus dem Target hervortretende Photo-
nen abzuschirmen, werden Bleischilde eingesetzt. Im Folgenden wird auf die Komponenten
des geplanten Messaufbaus näher eingegangen.

4.7.1 Flüssigwasserstoff-Target

Das Target, welches im P2-Experiment zum Einsatz kommen wird, wird von der Arbeits-
gruppe um S. Covrig an der Thomas Jefferson National Accelerator Facility in den USA
angefertigt und befindet sich gegenwärtig in der Entwicklungsphase. Das aktuelle Design
basiert auf dem des Targets, welches im G0-Experiments verwendet wurde [113]. Abbildung
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Abbildung 47: Vorläufiges Design des Flüssigwasserstoff-Targets des P2-Experiments. Dar-
gestellt ist der in die Streukammer eingebettete `H2-Kreislauf, welcher die `H2-Zelle, einen
Wärmetauscher sowie eine Zentrifugalpumpe beinhaltet. Das Design sieht vor, die `H2-Zelle
auf einem Verfahrtisch zu platzieren, welcher eine präzise Ausrichtung des Targets entlang
der Strahlachse gestattet. Die Abbildung wurde [26] entnommen.

47 zeigt ein mögliches Design des P2-Targets.

Die an das Target des P2-Experiments gestellten Anforderungen sind sehr hoch, da die im
Experiment zu messende Asymmetrie O(10−8) sehr klein ist und mit sehr hoher Präzision
bestimmt werden soll. So soll die Dichtereduktion des `H2 durch den Wärmeeintrag des
Elektronenstrahls nicht mehr als 2 % betragen. Ferner sollen Dichteschwankungen des Tar-
gets im Strahlbetrieb nicht mehr als 10 ppm über den Zeitraum der Helizitätsumkehr des
Elektronenstrahls betragen. Dies entspricht der Forderung, dass die zu messende Asymme-
trieverteilung durch Dichteschwankungen im Target um nicht mehr als 2 % verbreitert wird.
Ferner soll die Hülle des Targets über die gesamte Länge von 600 mm in Strahlrichtung so
dünn wie möglich sein, so dass die gestreuten Elektronen möglichst wenig Material durch-
queren müssen. Bei nominellem Strahlstrom von 150µA erwartet man eine im `H2-Target
deponierte Wärmeleistung von 3,1 kW [26]. Die P2-Kollaboration sieht eine Leistung von
4000 W zur Kühlung des Targets vor, um die Restwärme der Komponenten des Aufbaus zu
berücksichtigen.

Im Wärmetauscher findet die Verflüssigung von gasförmigem H2 statt. Ferner wird der `H2-
Kreislauf hier gekühlt, um das Target stabil zu halten. Abbildung 48 zeigt ein Bild des
aktuellen Designs des Wärmetauschers. Es sieht zwei Schichten längstberippter Kupferrohre
vor, die um eine zentrale Trennwand gewickelt sind, welche die Rohre vom `H2-Kreislauf
separiert. Durch die Rohre wird das zur Kühlung eingesetzte He geführt.

Es ist vorgesehen, das Target permanent zu heizen, um Dichtefluktuationen und einem Ge-
frieren des Flüssigwasserstoffs im Falle eines Strahlausfalls entgegenzuwirken. Zu diesem
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Abbildung 48: Design des Wärmetauschers, der zur Verflüssigung des Wasserstoffs und ther-
mischen Stabilisierung des Targets dient. Die Abbildung wurde [26] entnommen.

Zweck ist ein Heizer vorgesehen, der über eine Feedback-Schleife mit Temperatursensoren
verbunden ist, um die Targettemperatur unabhängig vom Strahlbetrieb konstant zu halten.

Das Design des Targets sieht den Einsatz einer Zentrifugalpumpe vor. Die Pumpe wird vor-
aussichtlich einen Massenfluss ≤ 2 kg/s an `H2 bei einem Druck von 0,1 bar am Pumpkopf
erzeugen. Dies entspricht einem Volumenfluss von ≤ 28 l/s.

Das vorläufige Design der `H2-Zelle ist in Abbildung 49 dargestellt. Die Außenwand der
`H2-Zelle wird aus einer Al-Legierung bestehen. Es wird eine Wandstärke ≤ 0,25 mm in dem
Bereich, der von den im Experiment nachzuweisenden Elektronen passiert werden muss,
angestrebt. Die Zelle wird voraussichtlich einen Durchmesser von 100 mm besitzen. Die Tar-
getlänge L = 600 mm entlang der Strahlachse ist zwischen dem Al-Fenster, über das der
Strahl in die `H2-Zelle eindringt, und dem hemisphärischen Fenster, über welches die Strahl-
elektonen das Target verlassen, definiert. Die beiden Fenster sind in Abbildung 49 dargestellt.
Für das Fenster, über das der Strahl in das `H2-Target eindringt, ist ein Durchmesser von
12 mm senkrecht zur Strahlrichtung sowie eine Dicke von 0,125 mm in Strahlrichtung vor-
gesehen. Das Design sieht einen konischen Flussteiler im Inneren der `H2-Zelle vor, der aus
einer 0,0075 mm dicken Al-Folie mit Löchern besteht. Das Design sieht vor, dass das `H2 über
den Innenbereich des Flussteilers in die Zelle einfließt und diesen über den Außenbereich des
Flussteilers wieder verlässt.

Zusätzlich zum `H2-Target sind eine Reihe Festkörper-Targets vorgesehen, welche entlang
einer Leiter an der `H2-Zelle befestigt werden. Hierzu zählen Al-Targets, welche aus dem
gleichen Material wie die Hülle der `H2-Zelle bestehen und an denselben Stellen entlang
der Strahlachse wie die Al-Fenster der `H2-Zelle angebracht sind. Diese Targets werden
das Studium der Einflüsse der Al-Fenster der `H2-Zelle auf die gemessene Asymmetrie
ermöglichen. Darüber Hinaus sind Targets zur Zentrierung des Elektronenstrahls vorgesehen
sowie Kohlenstoff-Targets, welche eine Messung der schwachen Ladung von 12C mit dem
Messaufbau des P2-Experiments ermöglichen [26].
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Abbildung 49: Vorläufiges Design der `H2-Zelle des P2-Experiments. Die Abbildung wurde
[26] entnommen. Das Design entspricht dem der Targetzelle des G0-Experiments.

4.7.2 Supraleitender Solenoid

Der geplante Messaufbau sieht den Einsatz eines großen, supraleitenden Solenoiden zur Er-
zeugung eines Magnetfelds vor, s. Abbildung 46. Der Solenoid erfüllt vier Aufgaben:

• Fokussierung der nachzuweisenden Elektronen aus elastischer Elektron-Proton-Streuung
auf den Cherenkov-Ringdetektor

• Separation der im Target elastisch an Protonen gestreuten Elektronen von Elektronen
im Endzustand des Møller-Streuprozesses

• Separation von Elektronen im Endzustand der elastischen Elektron-Proton-Streuung
von Photonen, die Bremsstrahlungsprozessen im Target entstammen

• Ermöglichung der Q2-Bestimmungen mittels der Spur-Detektoren. Zur hierfür notwen-
digen Impulsbestimmung sind gekrümmte Bahnkurven erforderlich.

Die P2-Kollaboration plant den Einsatz eines Solenoiden, dessen Eigenschaften denen des
Magneten ähneln, welcher im Rahmen des FOPI-Experiments [114] verwendet wurde. Ta-
belle 4 listet einige Eigenschaften des FOPI-Magneten auf.

Die FOPI-Kollaboration hat der P2-Kollaboration die Magnetfeldkarte des FOPI-Solenoiden
zur Durchführung vorbereitender Studien mit freundlicher Genehmigung zur Verfügung ge-
stellt. Die Feldkarte fand insbesondere bei den im Rahmen dieser Arbeit durchgeführten
Simulationen des P2-Experiments Verwendung. Die Feldkarte ist in Abbildung 50 darge-
stellt.

Der FOPI-Solenoid befindet sich zum gegenwärtigen Zeitpunkt am GSI Helmholtzzentrum
für Schwerionenforschung in Darmstadt, wo er nach dem Ende des FOPI-Experiments au-
ßer Betrieb genommen wurde. Eine Wiederverwendung des FOPI-Solenoiden ist aufgrund
technischer Probleme nicht möglich. Die P2-Kollaboration plant die Wiederverwendung des
Eisenjochs des FOPI-Solenoiden in Verbindung mit der Fertigung eines neuen Kryostaten
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Abbildung 50: Magnetfeldkarte des FOPI-Solenoiden, mit freundlicher Genehmigung von
Y. Leifels (FOPI-Kollaboration). Im oberen Bild ist die z-Komponente Bz des Magnetfelds
gegen den Abstand r von der Strahlachse und die z-Koordinate aufgetragen. Der Punkt
(z = 0 cm, r = 0 cm) entspricht dem idealisierten Massenschwerpunkt des Solenoiden. Im
unteren Bild ist die radiale, zur Strahlrichtung senkrecht stehende Feldkomponente Br gegen
r und z aufgetragen. Die azimutale Komponente Bφ des Magnetfelds ist gegenüber den
beiden anderen Komponenten vernachlässigbar klein und wurde daher beim Erstellen der
Feldkarte durch die FOPI-Kollaboration nicht berücksitigt.
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Max. Feldstärke 0,6 T
Spulenstrom 725 A
Gespeicherte Energie 3,4 MJ
Supraleiter Cu/Nb-Ti-Verbund
Kabellänge 22,5 km
Innendurchmesser 2,4 m
Gesamtlänge 3,8 m
Länge des Kryostaten 3,3 m
Gesamtgewicht 108,7 t
Gewicht Eisenjoch 100 t
Flüssig-He-Verbrauch 0,02 g/s, (0,6 l/h)
Flüssig-N-Verbrauch 3 g/s, (13 l/h)

Tabelle 4: Eigenschaften des FOPI-Solenoiden.

sowie eines neuen Suparleiters durch ein externes Unternehmen. Da im P2-Experiment ein
beachtliches Maß an ionisierender Strahlung erwartet wird, ist es notwendig, den Kryostaten
gegen aus dem Target hervortretende Strahlung abzuschirmen, um den Wärmeeintrag zu
minimieren. Zu diesem Zweck ist ein zylinderförmiger Schild aus Blei an der Innenseite des
Kryostaten vorgesehen.

4.7.3 Cherenkov-Ringdetektor

Die im Target elastisch an Protonen gestreuten Elektronen, welche im Experiment nachge-
wiesen werden sollen, werden durch das Magnetfeld des Solenoiden auf einen ringförmigen
Cherenkov-Detektor fokussiert. Der Cherenkov-Ringdetektor dient dem Nachweis der Elek-
tronen zur integrierenden Messung der paritätsverletzenden Asymmetrie.

Das Prinzip zum Nachweis der Elektronen basiert auf dem Cherenkov-Effekt. Dieser tritt
auf, wenn sich ein elektrisch geladenes Teilchen in einem dielektrischen Medium mit einer
Geschwindigkeit bewegt, die größer ist als die Phasengeschwindigkeit elektromagnetischer
Wellen in diesem Medium. Das geladene Teilchen polarisiert die Atome in seiner Umge-
bung beim Durchqueren des Mediums kurzzeitig, so dass diese elektromagnetische Wellen
aussenden. Da die Geschwindigkeit des durchfliegenden Teilchens größer ist als die Phasen-
geschwindigkeit des Lichts im Medium, ergibt sich eine kegelförmige Wellenfront. Abbildung
51 illustriert diesen Prozess. Für den Winkel θC zwischen der Impulsrichtung des geladenen
Teilchens und der Ausbreitungsrichtung der Cherenkov-Photonen gilt

cos(θC) =
1

nβ
, (186)

wo n der Brechungsindex des Mediums ist, und β = v/c die auf die Lichtgeschwindigkeit im
Vakuum normierte Geschwindigkeit des geladenen Teilchens bezeichnet. Für die Anzahl N
der pro Wellenlängenelement dλ und Wegelement dx entlang der Trajektorie eines Teilchens
mit elektrischer Ladung q im Medium erzeugten Cherenkov-Photonen gilt

d2N

dλdx
=

2παemq
2

e2λ2

[
1− 1

β2n2(λ)

]
∼ 1

λ2
. (187)

Die Cherenkov-Photonen können mithilfe photosensitiver Detektoren nachgewiesen werden.
Um die Ausbeute der Cherenkov-Photonen zu maximieren, ist es nach (187) von Vorteil,
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Abbildung 51: Zur Veranschaulichung des Cherenkov-Effekts. Das sich im Bild von links
nach rechts durch ein Medium mit Brechungsindex n bewegende, elektrisch geladene Teilchen
erzeugt eine kegelförmige Wellenfront, die den Öffnungswinkel θC relativ zur Impulsrichtung
des Teilchens besitzt. Die hier gegebene Darstellung vernachlässigt Dispersionseffekte.

wenn das Detektormaterial im Ultraviolett-Bereich transparent ist und die photosensiti-
ven Detektoren Photonen mit Wellenlängen λ im Ultraviolett-Bereich nachweisen können.
Cherenkov-Detektoren sind nicht sensitiv auf elektrisch neutrale Teilchen, da diese selbst
kein Cherenkov-Licht im Radiatormaterial erzeugen. Lediglich durch physikalische Prozesse,
bei denen im Radiatormaterial geladene Teilchen mit Masse m freigesetzt werden, deren
Energien oberhalb der Schwellenenergie

Eth =
mc2√

1− (1/n2)
(188)

zur Erzeugung von Cherenkov-Photonen liegen, können elektrisch neutrale Teilchen zur Bil-
dung von Cherenkov-Licht beitragen.

Der Cherenkov-Ringdetektor des P2-Messaufbaus ist in Abbildung 46 zu erkennen. Es ist
geplant, den Ringdetektor aus 82 baugleichen Detektormodulen aufzubauen, Abbildung 52
zeigt ein vorläufiges Design. Das Design der einzelnen Detektormodule wurde auf Grundla-
ge von Computersimulationen und Tests mit Prototypen am MAMI-Teilchenbeschleuniger
entwickelt [26]. Jedes der Detektormodule besteht aus einem Cherenkov-Radiator, welcher
mit einer Licht reflektierenden Mantelung umhüllt ist, sowie einem Photomultiplier, dessen
Basis eine variable Verstärkung des Detektorsignals ermöglicht.

Als Radiatormaterial ist Spectrosil 2000 vorgesehen. Spectrosil 2000 besteht aus amorphem
SiO2 und besitzt einen Brechungsindex von n ≈ 1, 475 bei λ = 365 nm. Spectrosil 2000 zeich-
net sich durch niedrige Transmissionsverluste ∼ 0,5 % bei kleinen Wellenlängen λ ∼ 200 nm
aus [26]. Dies begünstigt nach Gleichung (187) eine hohe Lichtausbeute. Das Material zeich-
net sich ferner durch eine hervorragende Strahlenfestigkeit aus [115, 116], was bei der hohen
im P2-Experiment erwarteten Strahlendosis ≥ 80 Mrad, welcher die Radiatoren über eine
Zeitdauer von mehr als 104 h hinweg ausgesetzt sein werden, erforderlich ist.
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Abbildung 52: Links: Cherenkov-Ringdetektor bestehend aus 82 Detektormodulen. Rechts:
Detektormodul bestehend aus Cherenkov-Radiator (Spectrosil 2000), reflektierender Um-
mantelung (UV-reflektierendes Al und lichtdichte Vinyl-Folie) sowie Photomultiplier (PMT).
Die Abbildungen wurden [26] entnommen.

Abbildung 53 gibt Aufschluss über die geplanten Abmessungen der Radiatoren. Die geometri-
sche Form der Radiatoren ist so gewählt, dass sie zu einem Ring angeordnet werden können,
ohne dass es dabei zu einem Überlapp der Module in azimutaler Richtung kommt. Ein
derartiger Überlapp würde bei der Asymmetriemessung zu einer überproportional starken
Gewichtung derjenigen Elektronen führen, welche die Radiatoren im Bereich des Überlapps
passieren. Gleichzeitig ermöglicht das in Abbildung 53 dargestellte Design die Ausnutzung
des nahezu vollständigen Azimutwinkels zum Elektronennachweis, da Lücken zwischen den
Nachweisflächen der Detektormodule vermieden werden. Um das Cherenkov-Licht zu den
durch einen Bleischild abgeschirmten Photomultipliern zu führen, dient ein Teil der Radia-
toren als Lichtleiter. Um die Ausbeute des Cherenkov-Lichts zu maximieren, werden die
Radiatoren mit einer Politur versehen, deren Zweck es ist, eine möglichst glatte Oberfläche
zu erreichen, um Verluste bei Lichtreflexionen zu minimieren und eine präzise, ringförmige
Anordnung der Detektormodule zu ermöglichen.

Um Reflexionsverluste bei der Ausbreitung des Lichts im Radiator zu minimieren, werden
die Radiatoren mit einem Licht reflektierenden Mantel versehen. Der Mantel besteht aus
zwei Lagen. Als Material der inneren Lage ist Alanod 4300up vorgesehen. Alanod 4300up
besitzt eine Reflektivität im Bereich 70 % bis 90 % für Wellenlängen 260 nm < λ < 800 nm.
Die äußere Lage des Mantels wird aus einer lichtundruchlässigen Vinylfolie bestehen, um das
Eindringen von Licht in die Radiatoren von außen zu unterbinden.

Das von einem geladenen Teilchen in einem der Radiatoren erzeugte Cherenkov-Licht wird
an den Innenseiten des Radiators sowie der Mantelung reflektiert und mithilfe eines Pho-
tomultipliers in einen messbaren elektrischen Strom konvertiert. Die Cherenkov-Photonen
treffen dabei zunächst auf die Photokathode des Photomultipliers, wo sie aufgrund des Pho-
toeffekts Elektronen aus dem Kathodenmaterial auslösen können. Mittels einer zwischen
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Abbildung 53: Geplante Abmessungen der aus Spectrosil 2000 bestehenden Cherenkov-
Radiatoren aus [26]. Alle Längen sind in der Einheit mm angegeben. Das Design des Detek-
tors sieht einen Abstand von 450 mm der Radiatoren von der Strahlachse vor. Als aktive Vo-
lumina zum Elektronennachweis dienen die 450 mm langen, keilförmigen Teilstücke der Ra-
diatoren 450 mm ≤ r ≤ 900 mm. Die 200 mm langen Teilstücke mit 900 mm ≤ r ≤ 1100 mm
dienen als Lichtleiter, in denen das Cherenkov-Licht zu den Photomultipliern geleitet wird.
Die Photokathoden der Photomultiplier werden an die um 45◦ abgeschrägten Grenzflächen
der Lichtleiter bei r = 1100 mm angekoppelt, über die das Cherenkov-Licht die Radiatoren
verlassen kann.

Anode und Kathode anliegenden Hochspannung werden die Photoelektronen über einen
Elektronen-Kollektor in Richtung eines Dynodenstrangs beschleunigt, welcher als Elektro-
nenmultiplier fungiert. Der niedrige, von der Photokathode stammende Photostrom wird da-
bei näherungsweise linear verstärkt, so dass an der Anode ein messbarer elektrischer Strom
entsteht.

Die P2-Kollaboration hat im Rahmen von Detektortests an MAMI Photomultiplier vom
Typ

”
Hamamatsu R11410“,

”
ElectronTubes 9305QKMB“ und

”
ElectronTubes 9305QKFL“

getestet [26]. Alle drei Photomultiplier-Typen wurden zum Nachweis von Photonen mit
Wellenlängen im UV-Bereich entwickelt und ermöglichen hohe Ausbeuten im Bereich von 60
bis 120 Photoelektronen pro nachgewiesenem Strahlelektron.

4.7.4 Elektronik zur integrierenden Messung der Asymmetrie

Bei einem nominellem Strahlstrom von Ibeam = 150µA wird eine integrierende Messung der
Asymmetrie mit dem Cherenkov-Ringdetektor erfolgen.

”
Integrierend“ bedeutet in diesem

Zusammenhang, dass die Signalpulse eines Photomultipliers, welche von einzelnen, im Tar-
get gestreuten Elektronen generiert werden, so stark überlappen, dass eine Unterscheidung
einzelner Pulse technisch nicht möglich ist. An den Anoden der Photomultiplier kann ledig-
lich ein kontinuierlicher Strom abgegriffen werden. Nimmt man an, dass jedes Modul des
Cherenkov-Ringdetektors Elektronen mit einer Rate von 109 s−1 nachweisen muss, und dass
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jedes Elektron zu 50 an der Photokathode ausgelösten Photoelektronen führt, so erwartet
man bei einem Verstärkungsfaktor des Photomultipliers von 1000 einen Anodenstrom von
I±A = 8µA. Für diesen Strom gilt:

I±A (t) = I±S (t) +
∑
B

I±B (t) + ID(t), (189)

wo I±S (t) der von den im Experiment nachzuweisenden Elektronen verursachte Strom ist,∑
B

I±B (t) die Summe über die Strombeiträge von aus Untergrundprozessen stammenden Teil-

chen ist, und ID(t) den Dunkelstrom des Photomultipliers darstellt. Die Ströme I±S (t) und
I±B (t) in Gleichung (189) hängen im Allgemeinen vom Helizitätszustand h = ±1 der Strah-
lelektronen sowie der Zeit t ab. Es ist vorgesehen, den Anodenstrom I±A (t) mittels eines
Transimpendanzverstärkers in eine zum Strom proportionale Spannung V ±A (t) zu konvertie-
ren:

V ±A (t) = g±V(t) · I±A (t) + V ±0 (t). (190)

Hierin ist g±V der Verstärkungsfaktor des Transimpendanzverstärkers und V ±0 eine Offset-
Spannung. Das Spannungs-Signal wird im weiteren Verlauf mittels eines Analog-Digital-
Umsetzers (ADC) digitalisiert. Bei einer integrierenden Messung manifestiert sich die stati-
stische Unsicherheit der Messung in der Breite der Anodenstromverteilung des Photomulti-
pliers. Für das quadratische Mittel (σ±A)2(t) der Anodenstromverteilung gilt

σ2
A = 2QSIS + 2

∑
B

QBIB + 2QDID, (191)

wo Ii = 〈I±i (t)〉 den Erwartungswert des jeweiligen Stroms und Qi = 〈Q±i (t)〉 den Erwar-
tungswert der an der Anode gesammelten Ladung bezeichnet. Für das quadratische Mittel
σ2

ADC der mit dem ADC gemessenen Signalverteilung erwartet man

σ2
ADC ∼ σ2

A + σ2
E, (192)

wobei σ2
E sämtliche Quellen elektronischen Rauschens wie etwa Wärmerauschen und das

Rauschen aktiver Komponenten und Filter berücksichtigt.

Die Entwicklung der Elektronik zur Signalverarbeitung während der integrierenden Messung
der Asymmetrie erfolgt in Zusammenarbeit mit der MOLLER-Kollaboration [26]. Es werden
die folgenden Anforderungen an die Elektronik gestellt:

• Optimierung der Elektronik für eine Helizitätswechsel-Frequenz f ∈ [1 kHz, 2 kHz]. Ei-
ne hohe Frequenz beim Wechsel der Helizität ist notwendig, um den Effekten vergleichs-
weise langsamer Änderungen der Strahleigenschaften und Dichteschwankungen im Tar-
get entgegenzuwirken. Eine geeignete Wahl von Helizitätsfolgen ist durch

”
+−−+“ und

”
−+ +−“ gegeben, da diese Kombination lineare Änderungen der Strahl- und Target-

parameter kompensiert. Wählt man ferner das Vorzeichen des ersten Helizitätszustands
eines Quartetts zufallsverteilt aus, so können quadratische Änderungen der Strahl- und
Targetparameter kompensiert werden.

• Minimierung elektronischen Rauschens, um einen möglichst kleinen Wert von σ2
E in

Gleichung (192) zu erhalten.

• Minimierung von helizitätskorrelierten Effekten sowie Drifteffekten in den Vorverstärkern,
so dass g±V(t) ≈ gV und V ±0 (t) ≈ V0.
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• Anpassung der Bandbreiten aller auszulesender Detektoren und elektronischer Kom-
ponenten.

• Optimierung der ADC-Auflösung und -Abtastrate bezüglich der Wahl der Helizitätswechsel-
Frequenz f .

Die Elektronik zur Messung der paritätsverletzenden Asymmetrie im P2-Experiment wird
basierend auf dem Design der beim QWeak-Experiment verwendeten Elektronik entwickelt
[26]. Es ist der Einsatz von

”
Field Programmable Gate Arrays“ (FPGAs) vorgesehen, um

die Analog-Digital-Umwandler abzufragen und die Auslese der Daten zu vereinfachen.

4.7.5 Abschirmung

Von Gleichung (189) ausgehend kann man folgern, dass für die im realen Experiment mit
dem Cherenkov-Ringdetektor integrierend zu messende Asymmetrie

〈Araw〉exp ≡
I+

S − I−S +
∑
B

(I+
B − I−B )

I+
S + I−S +

∑
B

(I+
B + I−B )

(193)

gilt, worin I±S den Anodenstrom der Photomultiplier repräsentiert, welcher durch den
”
Si-

gnalprozess“ der elastischen e-p-Streuung verursacht wird, und die I±B die aus Untergrund-
prozessen stammenden Beiträge zum Anodenstrom darstellen. Man erkennt an Gleichung
(193), dass eine Minimierung der Untergrundbeiträge zu den Anodenströmen der Photo-
multiplier notwendig ist, um eine präzise Extraktion von QW(p) aus den Messdaten zu
ermöglichen. Zwar werden aus Untergrundprozessen im Target stammende, niederenergeti-
sche Teilchen im Magnetfeld des Solenoiden von den Signalteilchen separiert werden, jedoch
erwartet man im P2-Experiment eine um ca. vier Größenordnungen höhere Rate an Pho-
tonen aus Bremsstrahlungs-Prozessen im Target als elastische Streuereignisse im relevanten
Raumwinkelbereich. Der Cherenkov-Detektor sowie auf Strahlung empfindliche Komponen-
ten des Messaufbaus müssen gegen diese Photonen abgeschirmt werden. Zu diesem Zweck
wurden die Schilde konzeptioniert, welche in Abbildung 54 dargestellt sind.

Der Gamma-Schild wurde entworfen, um die SiO2-Radiatoren des Cherenkov-Ringdetektors
gegen Bremsstrahlung aus dem Target abzuschirmen. Positionierung und geometrische Form
des Schilds sind so gewählt, dass die nachzuweisenden, im Target elastisch an Protonen
gestreuten Elektronen den Raumbereich zwischen Gamma-Schild und Solenoid ungehindert
passieren können, die Sichtlinien zwischen den Cherenkov-Radiatoren und dem Target jedoch
durch den Schild verdeckt werden. Als Material zur Abschirmung ist Blei vorgesehen. Die
Abmessungen des Schilds sind in Abbildung 55 dargestellt.
Auf der dem Target zugewandten Seite des Schilds ist der Innenradius von 380 mm auf
280 mm reduziert. Dies führt zu einer signifikanten Erhöhung der Anteile der Sichtlinien,
welche durch die Abschirmung verlaufen. Die Strahlungslänge von Pb beträgt 0,5612 cm.
Die mit Blei verdeckten Abschnitte der Sichtlinien zwischen Target und den Radiatoren
betragen 30,5 cm bis 88,5 cm. Dies entspricht 54, 3 bis 157, 7 Strahlungslängen. Die Ober-
fläche des Gamma-Schilds ist mit einer azimutalsymmetrischen,

”
sägezahnförmigen“ Struk-

tur versehen, um den Untergrundbeitrag zum Signal des Cherenkov-Detektors, welcher durch
Teilchen verursacht wird, die den Schild treffen, zu reduzieren. Die Idee dabei ist, dass die

”
Sägezähne“ als zusätzliches Abschirmungsmaterial für Teilchen dienen, die sich im Rahmen

der Bildung eines elektromagnetischen Schauers im Schild in Richtung der Radiatoren bewe-
gen. Das Blei besitzt ein Gesamtgewicht von 9,3 t und ruht auf einem in radialer Richtung
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Abbildung 54: Darstellung der Schilde, welche zur Abschirmung des Cherenkov-
Ringdetektors und des Kryostaten des supraleitenden Solenoiden dienen. Der Gamma-Schild
schirmt die Cherenkov-Radiatoren des Detektors gegen Bremsstrahlung aus dem `H2-Target
ab. Der PMT-Schild schützt die Photomultiplier des Cherenkov-Ringdetektors vor Strah-
lenschäden und dient dazu Untergrundbeiträge zum Detektorsignal zu minimieren. Die In-
nenseite des Solenoiden ist mit einem zylinderförmigen Bleischild versehen, um den strah-
lungsbedingten Energieeintrag in den Kryostaten und die supraleitende Feldspule des Sole-
noiden zu reduzieren.

20 mm dicken Hohlzylinder aus Edelstahl, der ein Gewicht von ca. 2 t besitzt. Die Verwen-
dung von Edelstahl ist aufgrund der schwach ausgeprägten magnetischen Eigenschaften des
Materials angedacht, da eine Beeinträchtigung des Magnetfelds des Solenoiden vermieden
werden soll. Die Verwendung von Aluminium als Material für den Zylinder ist aufgrund des
Gewichts des Bleis nicht möglich. Der Stahlzylinder wird von einer Konstruktion aus Stahl-
trägern mit H-Profil getragen.

Der PMT-Schild dient der Abschirmung der Photomultiplier und Lichtleiter des Cherenkov-
Ringdetektors, um Untergrundbeiträge zum Detektorsignal zu reduzieren und die Photomul-
tiplier vor Strahlenschäden zu schützen. Hierzu werden die Photomultiplier und als Licht-
leiter fungierenden Teile der Cherenkov-Radiatoren, wie in Abbildung 54 dargestellt, mit
100 mm dicken Bleiwänden umgeben. Das Design des PMT-Schilds sieht Aussparungen für
die Licht leitenden Teile der Cherenkov-Radiatoren sowie Kabel zur Signalübertragung und
Spannungsversorgung der Photomultiplier vor. Der Bleischild ist in eine Trägerkonstruktion
aus Stahl eingelassen.
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Abbildung 55: Abmessungen des Gamma-Schilds. Alle Maßangaben in mm. Blei ist in Grau,
Stahl in Blau dargestellt. Der Abstand des Gamma-Schilds vom Schwerpunkt des Solenoiden
beträgt 970 mm. Durch die Absenkung des Innenradius auf r = 280 mm auf der dem Tar-
get zugewandten Seite werden die Abschnitte der Sichtlinien, welche durch Blei verlaufen,
signifikant erhöht.

Die Innenwand des Magneten wird mit einem zylinderförmigen Bleischild ausgekleidet. Der
Zweck dieser Abschirmung besteht in der Reduzierung der durch Strahlung verursachten
Energiedeposition im Kryostaten und der supraleitenden Spule des Solenoiden. Dies ist not-
wendig, um eine effiziente Kühlung der Feldspule zu gewährleisten.

4.7.6 Spur-Detektoren

Um die schwache Ladung des Protons im Rahmen des P2-Experiments bestimmen zu können,
ist die Kenntnis des mittleren Viererimpulsübertrags der im Target elastisch an Protonen
gestreuten Elektronen, welche zur gemessenen Asymmetrie beitragen, notwendig. Die Be-
stimmung dieses Mittelwerts wird durch Rekonstruktion der Elektron-Bahnkurven im Ma-
gnetfeld ermöglicht werden. Zu diesem Zweck ist der Einsatz von Spurdetektoren vorgesehen.
Sie sind in Abbildung 46 dargestellt.

Es ist angedacht, die Spurdetektoren bei reduziertem Strahlstrom Ibeam < 150µA in Ko-
inzidenz mit dem Cherenkov-Ringdetektor zu betreiben, um die Signale des Cherenkov-
Detektors mit den Q2-Werten der nachgewiesenen Streuereignisse in Korrelation setzen zu
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können. Hierzu muss die Akzeptanz der Spurdetektor-Systems mindestens die Akzeptanz
eines der Module des Cherenkov-Ringdetektors einschließen. Ferner müssen die Spurdetek-
toren in Flugrichtung der Elektronen möglichst dünn sein, um Ablenkungen der Elektronen
durch Vielfach-Coulombstreuung sowie die Erzeugung von Bremsstrahlung zu minimieren.
Darüber hinaus ist geplant, die Spurdetektoren bei nominellem Strahlstrom zum Studium
positions- und impulsabhängiger systematischer Effekte einzusetzen. Hierzu ist eine hohe
Resistenz der Spurdetektoren gegen Strahlenschäden sowie eine zuverlässige Rekonstruktion
der Bahnkurven bei hoher Auslastung vonnöten.

Zur Q2-Bestimmung muss das Spurdetektor-System im Innenraum des Solenoiden eingesetzt
werden, wo ein starkes Magnetfeld herrscht, das die Flugbahnen der Elektronen krümmt. In
diesem Bereich des Messaufbaus wird ein Teil der Spurdetektoren einem massiven Fluss von
Photonen ausgesetzt sein, welche aus Bremsstrahlungs-Prozessen im `H2-Target stammen.
Dies macht die paarweise Anordung von Spurdetektoren mit Abständen in der Größenordung
von 1 cm bis 2 cm notwendig, um ein robustes Verfahren zur Rekonstruktion der Elektron-
Bahnkurven zu gewährleisten [26]. Um eine hohe Impulsauflösung garantieren zu können,
ist eine lange Driftstrecke, die möglichst frei von Materie ist, zwischen zwei Detektorpaaren
notwendig. Die P2-Kollaboration erwartet, dass die Impulsauflösung aufgrund der niedri-
gen Teilchenimpulse von Vielfach-Coulombstreuung in den Spurdetektoren dominiert wer-
den wird. Die einzelnen Spurdetektoren decker jeweils einen Azimutwinkelbereich von 15◦

ab und schließen somit die Akzeptanz mindestens eines der Cherenkov-Detektormodule ein
[26]. Das Spurdetektor-System wird voraussichtlich aus vier unabhängig voneinander operie-
renden Teilsystemen bestehen, welche das Studium systematischer Effekte erlauben werden,
die vom Azimutwinkel abhängen.

Die hohen im P2-Experiment erwarteten Ereignisraten O(1011 s−1) und niedrigen Teilchen-
impulse erfordern den Einsatz aktiver Komponenten, die granular, strahlenfest sowie dünn
sind und darüber hinaus ein schnelles Antwortverhalten aufweisen.

”
High-Voltage Monolithic

Active Pixel Sensors“ (HV-MAPS) genügen diesen Anforderungen [117, 118, 119, 120, 121].
Abbildung 56 illustriert den Aufbau von HV-MAPS. Die Sensoren werden unter Verwendung
handelsüblicher CMOS-Technologie hergestellt, was die Integration digitaler und analoger
elektronischer Komponenten direkt auf dem Sensor gestattet. Aufgrund ihrer dünnen Sperr-
schichten können Sensoren mit Dicken ∼ 50µm gefertigt werden. Für das P2-Experiment
ist die Herstellung von 2 cm× 2 cm großen Sensoren geplant, welche in 80µm× 80µm große
Pixel segmentiert sind.

Abbildung 57 zeigt das vorläufige Design eines Detektormoduls. Ein Modul besteht aus zwei
Lagen zu je 29 gestaffelt angeordneten Leisten, auf denen die Sensoren platziert sind. Die Lei-
sten werden auf einem Rahmen angebracht, der für mechanische Stabilität sorgt und sowohl
die Kühlung der Sensoren als auch deren elektrische Anschlüsse beherbergt. Die Spannungs-
versorgung und Datenübertragung der Sensoren kann mithilfe von Al-Polyamid-Flexprint-
Kabeln erfolgen. Da es sich bei den HV-MAPS um aktive Elemente handelt, kann ein Detek-
tormodul bis zu 1 kW Wärmeleistung erzeugen, so dass eine aktive Kühlung der Spurdetek-
toren notwendig ist. Die Verwendung von Flüssigkeiten zur Kühlung würde den Einsatz von
zu viel Material bedeuten, das zu Energieverlusten und Winkelablagen der nachzuweisenden
Elektronen führt. Daher ist vorgesehen, He-Gas als Medium zur Kühlung der Detektoren
einzusetzen. Gasförmiges He ist aufgrund seiner großen Strahlungslänge (O(105 cm)) sowie
der hohen Schallgeschwindigkeit (∼ 103 m/s), welche schnelle, laminare Flüsse ermöglicht,
hervorragend geeignet. Das Gas wird durch V-förmige Kühlkanäle aus Polyamid geleitet,
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Teilchen

n-dotierte Schicht

p-dotiertes Substrat

E-Feld

Teilchen

Abbildung 56: Schematische Darstellung des Aufbaus von HV-MAPS. Die Abbildung wurde
von der Arbeitsgruppe um N. Berger (P2-Kollaboration) erstellt. Zwischen den n-dotierten
Schichten und dem p-dotierten Substrat liegt eine hohe Spannung von ca. 90 V an. Diese
ermöglicht ein schnelles Aufsammeln von Ladungsträgern, welche freigesetzt werden, wenn
ein Teilchen die dünne Sperrschicht zwischen den p- und n-dotierten Arealen passiert.

Abbildung 57: Darstellung des vorläufigen Designs eines Spurdetektor-Moduls. Die Abbil-
dung wurde [26] entnommen. Oben ist eine einzelne Sensorleiste dargestellt mit Sensoren
in Blau, Al-Polyamid-Flexprint-Kabel mit V-förmigen Kühlkanälen in Gelb, einem Teil der
Leiterplatine in Grün und Gasleitern in Grau. In der Mitte ist ein Modul ohne Frontab-
deckung gezeigt, es wurden die meisten Sensorleisten der ersten Lage zur Verbesserung der
Übersichtlichkeit entfernt. Die Leiterplatine ist in Grün gezeigt, und die Gasleiter sind in
Hellgrau gezeichnet. Man erkennt die blau dargestellten Sensoren der hinteren Lage. Im
unteren Teil des Bildes ist die hintere Abdeckung zusammen mit Gasleitern dargestellt.
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welche auf den Sensorleisten angebracht werden, sowie zwischen den Sensorlagen hindurch
und um die Außenwände der Module herum geführt, um eine ausreichende Kühlung der
Sensoren zu gewährleisten. Hierzu werden die Spurdetektoren in einer mit He-Gas gefüllten
Kammer platziert, die man ebenfalls in Abbildung 46 erkennen kann.
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5 Untersuchungen zur Festlegung der Streukinematik

Mit diesem Kapitel beginnt der Hauptteil der vorliegenden Arbeit. Er ist der im Rahmen
der Dissertation durchgeführten Studien zur grundlegenden Konzipierung des in Kapitel 4
vorgestellten Messaufbaus des P2-Experiments gewidmet.

Nachdem in Abschnitt 2.2.4 gezeigt wurde, dass die paritätsverletzende Asymmetrie APV
ep

der elastischen Elektron-Proton-Streuung bei kleinen Viererimpulsüberträgen sensitiv auf
die schwache Ladung des Protons QW(p) und das Sinus-Quadrat des elektroschwachen Mi-
schungswinkels sin2(θW) ist, besteht der erste Schritt bei der Konzipierung eines Messaufbaus
in der Festlegung des kinematischen Bereichs der elastischen Elektron-Proton-Streuung zur
Durchführung der Asymmetriemessung. Hierbei werden im Folgenden die in Abschnitt 2.3.3
vorgestellten QED-Korrekturen zum Streuprozess vernachlässigt.
In diesem Fall wird die Streukinematik durch die Wahl der Strahlenergie Ebeam und der
Akzeptanz des Cherenkov-Detektors im Elektron-Streuwinkel θf festgelegt. Die Akzeptanz
in θf wird im Folgenden durch die Angabe des Polarwinkel-Intervalls δθf ≡ [θmin

f , θmax
f ] so-

wie des zentralen Streuwinkels θ̄f ≡ (θmin
f + θmax

f )/2 festgelegt. Es wird davon ausgegangen,
dass die Akzeptanz des Cherenkov-Ringdetektors den vollen Azimutwinkel δφf = 2π abdeckt.

Zur Festlegung von Ebeam, θ̄f und δθf wurden Fehlerfortpflanzungsrechnungen ausgeführt, um
die Unsicherheit von ŝ2

Z ≡ sin2(θ̂W)(µ = mZc) in Abhängigkeit von diesen drei Parametern
zu bestimmen. Im Verlauf dieses Kapitels wird zunächst der Algorithmus zur Berechnung
der Unsicherheit von ŝ2

Z diskutiert. Im Anschluß werden die zur Durchführung der Fehler-
fortpflanzungsrechnungen benötigten Eingangsgrößen zusammengestellt. Dies schließt unter
anderem Parametrisierungen der in Abschnitt 2.2.2 eingeführten Nukleon-Formfaktoren ein,
welche zur Berechnung von APV

ep benötigt werden. Abschließend werden die Ergebnisse der
Berechnungen vorgestellt und diskutiert.

5.1 Algorithmus zur Berechnung der Unsicherheit ∆ sin2(θW)

Die Idee zur Festlegung von Ebeam, θmin
f und θmax

f besteht darin, von dem in Abschnitt 4.1
hergeleiteten Ausdruck für die im Experiment erwartete Rohasymmetrie

〈Araw〉sig = P · 〈APV
ep 〉sig + Afalse (194)

ausgehend die Unsicherheit ∆ŝ2
Z(Ebeam, θ

min
f , θmax

f ) von ŝ2
Z zu berechnen. In Gleichung (194)

ist P der Erwartungswert der Strahlpolarisation,

〈APV
ep 〉sig =

L∫
0

dz
θmax
f∫

θmin
f

dθf

[
sin(θf) ·

(
dσep

dΩ

)
(Ei(z), θf) · APV

ep (Ei(z), θf)
]

L∫
0

dz
θmax
f∫

θmin
f

dθf

[
sin(θf) ·

(
dσep

dΩ

)
(Ei(z), θf)

] (195)

der Erwartungswert von APV
ep bei Mittelung über die Targetlänge L und das vom Detektor ab-

gedeckte Streuwinkel-Intervall δθf mit der Rosenbluth-Formel (51) dσep/dΩ als Gewichtungs-
faktor, und Afalse ist eine apparative Asymmetrie, welche von helizitätskorrelierten Schwan-
kungen der Strahl- und Targeteigenschaften herrührt. Die Bezeichnung

”
sig“ in 〈Araw〉sig und

〈APV
ep 〉sig deutet an, dass bei der Berechnung der Erwartungswerte nur der

”
Signalprozess“

der elastischen Elektron-Proton-Streuung berücksichtigt wird.
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Es gilt im Folgenden einen Ausdruck für ŝ2
Z aus Gleichung (194) herzuleiten. Mit der Defi-

nition

F̃A ≡ FA

1− 4ŝ2
Z

, (196)

worin FA durch Gleichung (64) gegeben ist, kann APV
ep als

APV
ep = ŝ2

Z ·BPV
ep + CPV

ep (197)

geschrieben werden, wobei

BPV
ep ≡ −4A0

[
κ̂(ρnc + ∆e)− F̃A

]
(198)

und
CPV

ep ≡ −A0
[
FEM + F̃A + F S − (ρnc + ∆e)(1 + ∆′e)−∆�

]
. (199)

A0 ist durch Gleichung (68) gegeben. Die in (198) und (199) auftretenden Formfaktor-
Beiträge und Korrekturterme sind in den Abschnitten 2.2.4 und 2.3 definiert. Durch Einset-
zen von (197) in (194) erhält man

ŝ2
Z =

1

〈BPV
ep 〉sig

·
[〈Araw〉sig − Afalse

P
− 〈CPV

ep 〉sig
]
, (200)

wobei die Erwartungswerte 〈BPV
ep 〉sig und 〈CPV

ep 〉sig analog zu 〈APV
ep 〉sig in Gleichung (195) de-

finiert sind. Man beachte, dass ŝ2
Z in Gleichung (200) lediglich auf der linken Seite auftritt;

F̃A ist unabhängig von ŝ2
Z, da FA ∼ 1− 4ŝ2

Z.

Nach Gleichung (200) kann man ŝ2
Z formal als eine Funktion F auffassen, welche von den in

(200) auftretenden Parametern abhängt:

ŝ2
Z ≡ F

(
Ebeam, θ̄f, δθf, 〈Araw〉sig, Afalse, P, GFF, ∆�

)
. (201)

Hierin ist

GFF ≡ {Gp,γ
E , Gp,γ

M , Gn,γ
E , Gn,γ

M , Gs
E, G

s
M, G

p, Z
A , Gud

E , G
ud
M }

= {Gi}, i = 1, 2, . . . , 9
(202)

die Menge der Formfaktoren des Nukleons, welche zur Berechnung von APV
ep benötigt wird.

Die Formfaktoren wurden in Abschnitt 2.2.2 eingeführt. Im Folgenden wird angenommen,
dass für jedes Gi ∈ GFF eine Parametrisierung der Form Gi = Γi({κj}, Q2) existiert, welche
von einem Satz reeller Parameter κj und dem negativen Viererimpulsübertragsquadrat Q2

abhängt. Dann kann man schreiben:

ŝ2
Z = F({λl}), (203)

wo
λl ∈ {Ebeam, θ̄f, δθf, 〈Araw〉sig, Afalse, P, {{κj}}, ∆�} (204)

ist und {{κj}} die Menge sämtlicher Parameter, die zur Parametrisierung der Nukleon-
Formfaktoren dient.

Ausgehend von Gleichung (203) wird eine Fehlerfortpflanzungsrechnung nach Gauß durch-
geführt. Die Berechnung der Unsicherheit von ŝ2

Z ist nicht einfach, da die in den Ausdrücken
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für 〈APV
ep 〉sig, 〈BPV

ep 〉sig und 〈CPV
ep 〉sig auftretenden Integrale nicht von Hand gelöst werden

können.
Daher kommt ein computerbasiertes Monte Carlo-Verfahren zur Anwendung. Die Parame-
ter {λl} werden hierzu als voneinander unabhängige Zufallsvariablen aufgefasst. Jedem der
Parameter wird eine Normalverteilung zugewiesen, indem der Erwartungswert λl und die
Standardabweichung ∆λl der Wahrscheinlichkeitsdichte festgelegt werden.
Mithilfe eines Pseudozufallszahlengenerators wird anschließend ein Satz von Zufallswerten
{λ′l} gemäß der den Parametern zugewiesenen Wahrscheinlichkeitsdichten für alle Parameter
generiert. Durch Einsetzen der λ′l in Gleichung (203) erhält man einen Wert (ŝ2

Z)′ = F({λ′l}).
Wiederholt man dies M ×N mal, wo M,N ∈ N, so erhält man eine Menge zufallsverteilter
Werte {(ŝ2

Z)′nm}, wobei m = 1, 2, . . . ,M und n = 1, 2, . . . , N . Aus dieser Verteilung kann
man N Erwartungswerte bilden, wobei für den n-ten Erwartungswert

(ŝ2
Z)n ≡

1

M

M∑
m=1

(ŝ2
Z)′nm (205)

gilt. Ferner kann man die N Standardabweichungen

(∆sigŝ
2
Z)n ≡

√√√√ 1

M − 1

M∑
m=1

[(ŝ2
Z)n − (ŝ2

Z)′nm]
2

(206)

berechnen. Der Erwartungswert der N Standardabweichungen ist

∆sigŝ
2
Z ≡

1

N

N∑
n=1

(∆sigŝ
2
Z)n, (207)

und für die Standardabweichung der Verteilung der N Standardabweichungen gilt

∆(∆sigŝ
2
Z) ≡

√√√√ 1

N − 1

N∑
n=1

[∆sigŝ2
Z − (∆sigŝ2

Z)n]
2
. (208)

∆sigŝ
2
Z wird im Folgenden als Maß für die im P2-Experiment erreichbare Unsicherheit bei

der Bestimmung des elektroschwachen Mischungswinkels angesehen.
Der Beitrag eines einzelnen Parameters λk zu ∆sigŝ

2
Z lässt sich bestimmen, indem bei der

Berechnung von {(ŝ2
Z)′nm} lediglich für λk Zufallszahlen erzeugt werden, während für alle

übrigen Parameter λ′l = konst. = λl, ∀l 6= k gewählt wird. Die Standardabweichung ∆λk ŝ
2
Z

der auf diese Weise gewonnenen Menge an zufallsverteilten Werten von ŝ2
Z wird im Folgenden

als der Beitrag von λk zu ∆sigŝ
2
Z bezeichnet.

Das in diesem Abschnitt beschriebene Verfahren gestattet die Berechnung der Unsicherheit
∆〈Araw〉sig von 〈Araw〉sig auf analoge Weise. Hierzu werden die in Gleichung (194) auftreten-
den Parameter variiert, wobei ŝ2

Z festgehalten wird.

Die Berechnung der in Gleichung (200) auftretenden Integrale erfolgt numerisch unter Ver-
wendung der zusammengesetzten Sehnentrapezformel. Nach dieser Formel kann das Integral
einer reellen Funktion f(x) über das reelle Intervall [a, b] näherungsweise wie folgt bestimmt
werden:

F =

b∫
a

dx f(x) ≈ b− a
n

[
f(a) + f(b)

2
+

n−1∑
k=1

f

(
a+ k

b− a
n

)]
; a, b ∈ R; n ∈ N. (209)
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Um eine genaue Approximation von F zu erreichen, ist die Anzahl der Teilintervalle n von
[a, b] so groß zu wählen, dass sich der numerisch berechnete Wert des Integrals bei einer wei-
teren Erhöhung von n nicht mehr signifikant ändert. Für die Integration über die Targetlänge
wird n im Folgenden so gewählt, dass der Abstand zwischen zwei Evaluationspunkten auf
der Strahlachse 10 mm beträgt. Bei der Integration über θf wird der Abstand zwischen zwei
Evaluationspunkten auf eine Winkeldifferenz von 0,25◦ festgelegt. Die Wahl dieser Werte
gestattet eine zeitlich effiziente Berechnung der Werteverteilung von ŝ2

Z, wobei eine hinrei-
chende Genauigkeit bei der Bestimmung der Integrale gewährleistet ist.

Der Algorithmus wurde unter Verwendung von ROOT [122] in einer in der Programmier-
sprache C++ verfassten Computeranwendung unter Linux implementiert. Das Programm
gestattet die parallele Berechnung der Zufallszahlen sowie die Auswertung der erstellten
Daten auf einer vom Anwender zu wählenden Anzahl von CPU-Kernen. Zur Erzeugung
der gaußverteilten Zufallszahlen λ′l wird ein ROOT-Objekt vom Typ

”
TRandom3“ verwen-

det. TRandom3 verwendet den Pseudozufallszahlengenerator
”
Mersenne Twister MT 19937“

[123], welcher über eine Periodenlänge von 219937− 1 ≈ 4,3 · 106001 verfügt und in bis zu 623
Dimensionen gleichverteilte Zufallszahlen liefern kann.

Um Ebeam, θ̄f und δθf für das P2-Experiment festzulegen, wird ∆sigŝ
2
Z im weiteren Verlauf

als Funktion dieser drei Variablen aufgefasst und ein Minimum von ∆sigŝ
2
Z(Ebeam, θ̄f, δθf)

gesucht. Die übrigen in Gleichung (203) auftretenden Größen werden als Eingangsgrößen
zur Berechnung von ∆sigŝ

2
Z(Ebeam, θ̄f, δθf) aufgefasst. Im Folgenden Abschnitt werden die zur

Minimumsuche gewählten Erwartungswerte und Standardabweichungen der Eingangsgrößen
vorgestellt.

5.2 Eingangsgrößen zur Berechnung von ∆ sin2(θW)

In diesem Abschnitt werden die Eingangsgrößen zur Berechnung von ∆sigŝ
2
Z nach dem in

Abschnitt 5.1 vorgestellten Algorithmus zusammengestellt.

5.2.1 Experimentelle Rahmenbedingungen

Tabelle 5 listet diejenigen Eingangsgrößen auf, durch welche die experimentellen Rahmenbe-
dingungen parametrisiert werden, unter denen das P2-Experiment an MESA durchgeführt
werden soll. Da das Ziel der Fehlerfortpflanzungsrechnungen die Festlegung von Ebeam, θ̄f und
δθf ist, sind die Erwartungswerte dieser Parameter in der Tabelle als

”
variabel“ gekennzeich-

net. Die angegebenen Standardabweichungen dieser Parameter werden unabhängig von der
Wahl der Erwartungswerte verwendet. Da zur Bestimmung von 〈APV

ep 〉sig über θf integriert
wird, genügt es, Erwartungswerte und Standardabweichungen für die Integrationsgrenzen
θmin

f und θmax
f durch die Wahl von θ̄f, δθf sowie ∆(δθf) festzulegen. Darüber hinaus wer-

den die Targetlänge L und die Messdauer T als konstant angesehen und im Rahmen der
Fehlerfortpflanzungsrechnungen nicht variiert.

5.2.2 Statistische Unsicherheit der Asymmetrie

Der Erwartungswert der Rohasymmetrie 〈Araw〉sig wird für gegebene Erwartungswerte von
Ebeam, θ̄f und δθf mittels Gleichung (194) berechnet, indem die Erwartungswerte sämtlicher
Eingangsgrößen in diese Beziehung eingesetzt werden.
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λl ∆λl

Strahlenergie Ebeam variabel 0,13 MeV
Zentraler Streuwinkel θ̄f variabel 0◦

Polarwinkel-Akzeptanz δθf variabel 0,1◦

Azimutwinkel-Akzeptanz δφf 360◦ 0◦

Strahlstrom Ibeam 150 µA 0,001 µA
Strahlpolarisation P 0, 85 0, 00425
Targetlänge L 600 mm 0 mm
Messdauer T 104 h 0 h
Apparative Asymmetrie Afalse 0 0,1 ppb

Tabelle 5: Zur Durchführung der Fehlerfortpflanzungsrechnungen gewählte Erwartungswerte
und Standardabweichungen der Eingangsgrößen, welche die experimentellen Rahmenbedin-
gungen charakterisieren, unter denen das P2-Experiment durchgeführt werden soll. Diejeni-
gen Parameter, für die ∆λl = 0 gewählt wurde, wurden während der Fehlerfortpflanzungs-
rechnungen konstant gehalten.

Als Standardabweichung von 〈Araw〉sig wird der Poisson-Statistik folgend die statistische
Unsicherheit

∆stat〈Araw〉sig ≡
1√
2N

(210)

gesetzt. Hierin ist 2N ≡ N+ +N− die erwartete Gesamtzahl der nachzuweisenden, an Pro-
tonen im Target elastisch gestreuten Elektronen für die Wahl von Ebeam, θ̄f und δθf. Es
gilt:

2N ≡ Ibeam

e
· ρ · T · 2π ·

L∫
0

dz

θmax
f∫

θmin
f

dθf

{(
dσep

dΩ

)
(Ei(z), θf)

}
, (211)

wo ρ die Volumendichte der Protonen im `H2-Target ist. Zur Herleitung von (210) wurde
eine Fehlerfortpflanzung nach Gauß von dem Ausdruck

〈Araw〉sig =
N+ −N−
N+ +N−

(212)

ausgehend vorgenommen, wobei N ≈ N+ ≈ N− angenommen wurde.

Die statistische Unsicherheit, die durch Gleichung (210) gegeben ist, berücksichtigt nicht das
Antwortverhalten des geplanten Cherenkov-Detektors. Ebenfalls nicht berücksichtigt werden
Untergrundbeiträge zum Signal des Cherenkov-Ringdetektors sowie die statistischen Unsi-
cherheiten dieser Beiträge.

5.2.3 Boxgraph-Korrekturen zu QW(p)

Die Boxgraph-Korrektur

∆� ≡ Re(�WW) + Re(�ZZ) + Re(�γZ) + Re(�γγ) (213)

zu APV
ep aus Gleichung (70) wird der in Abschnitt 2.3.2 gegebenen Diskussion entsprechend

parametrisiert. Tabelle 6 listet die für die Fehlerfortpflanzungsrechnungen verwendeten Er-
wartungswerte und Standardabweichungen der einzelnen Beiträge zu ∆� auf.
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λl ∆λl

Re(�WW) 17,00 · 10−3 0
Re(�ZZ) 1,70 · 10−3 0
Re(�γZ) 1,06 · 10−3 0,19 · 10−3

Re(�γγ) 0 0

Tabelle 6: In den Fehlerfortpflanzungsrechnungen verwendete Erwartungswerte und Stan-
dardabweichungen der Boxgraph-Korrekturen zur schwachen Ladung des Protons. Die
gewählten Werte entsprechen den in Abschnitt 2.3.2 angeführten Werten.

Wie in Abschnitt 2.3.2 ausgeführt wird, sind die Unsicherheiten von Re(�WW), Re(�ZZ) und
Re(�γγ) im P2-Experiment vernachlässigbar, die Unsicherheit von ∆� ist somit in hinrei-
chend guter Näherung durch die Unsicherheit von Re(�γZ) gegeben. Die Erwartungswerte
von Re(�WW), Re(�ZZ) und Re(�γZ) werden bei der Berechnung von 〈APV

ep 〉sig berücksichtigt.

5.2.4 Energieverlust im Target

Wegen der Länge des `H2-Targets von L = 600 mm und der niedrigen Strahlenergie von
Ebeam = 155 MeV können die Energieverluste, welche die Strahlelektonen aufgrund von Kol-
lisionen und der Erzeugung von Bremsstrahlung beim Durchqueren des Targets erfahren, bei
der Berechnung der Asymmetrie nicht vernachlässigt werden. Zur Berücksichtigung des Ener-
gieverlusts wird eine Parametrisierung des Erwartungswerts der Elektron-Anfangszustandsenergie
Ei(z) in Abhängigkeit von der Eindringtiefe z ins Target verwendet, um 〈APV

ep 〉sig, 〈BPV
ep 〉sig

und 〈CPV
ep 〉sig zu berechnen. Ei(z) wird dabei rekursiv nach der Formel

Ei(z + δz) = Ei(z)− dEi

dz
(Ei) · δz (214)

bestimmt. In (214) ist δz ≡ L/n, und n ist die Anzahl der Segmente des Integrationsintervalls
[0, L] entlang der z-Achse, welche zur Evaluation der zusammengesetzten Sehnentrapezfor-
mel (209) verwendet wird. Für den gesamten Energieverlust pro Wegelement dEi

dz
entlang der

Trajektorie der Stahlteilchen gilt(
dEi

dz

)
(Ei) =

(
dEi

dz

)
coll

(Ei) +

(
dEi

dz

)
rad

(Ei), (215)

wo
(

dEi

dz

)
coll

den differentiellen Energieverlust der Elektronen durch Kollisionen und
(

dEi

dz

)
rad

den differentiellen Energieverlust durch Strahlung bezeichnet.

Kollisions- und Strahlungsverluste von Elektronen in Materie werden im Folgenden kurz
diskutiert. Anschießend wird die im Rahmen der Fehlerfortpflanzungsrechnungen verwendete
Parametrisierung der Energieverluste vorgestellt.

5.2.4.1 Kollisionsverluste. Die kollisionsbedingten Energieverluste eines relativistischen
Elektrons beim Durchqueren von Materie können in Analogie zum Energieverlust nach
Bethe-Bloch bestimmt werden. Dabei sind zwei wesentliche Unterschiede zu beachten: Zum
Einen ist die bei der Herleitung der Bethe-Bloch-Formel angenommene Bedingung, dass Ab-
lenkungseffekte aufgrund der hohen Ruhemasse des Teilchens vernachlässigt werden können,
für Elektronen nicht erfüllt. Zum Anderen sind im Falle von Elektron-Elektron-Kollisionen
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ununterscheidbaren Teilchen an dem Prozess beteiligt. Unter Beachtung dieser Unterschiede
findet man folgenden Ausdruck für den diffentiellen Energieverlust [124]:(

dEi

dz

)
coll

= −2πNar
2
eme%

Z

A

1

β2

ln

 τ 2(τ + 2)

2
(

I
mec2

)2

+ F (τ)− δ − 2
C

Z

 , (216)

wo Na die Avogadrozahl, re = 2,817 · 10−13 cm der klassische Elektronenradius, me die Elek-
tronenmasse, % die Massendichte des durchquerten Materials, Z und A die Ordnungs- bzw.
Massenzahl des Materials, β die Geschwindigkeit des Elektrons, τ ≡ (Ei −mec

2)/(mec
2), I

das mittlere Anregungspotenzial des Materials, δ eine Dichte- und C eine Schalenkorrektur
ist. In Gleichung (216) ist

F (τ) = 1− β2 +
τ 2/8− (2τ + 1) ln 2

(τ + 1)2
(217)

für Elektronen.

5.2.4.2 Stahlungsverluste. Für Elektronen mit Energien Ei, die größer als einige MeV
sind, gilt nach [124] für den differentiellen Wirkungsquerschnitt zur Emission eines Bremsstrahlungs-
Photons der Energie ν:(

dσ

dν

)
=

4Z(Z + 1)r2
eαem

ν

{
(1 + ε2)

[
Φ1(ε)

4

1

3
lnZ − f(Z)

]
− 2

3
ε

[
Φ2(ε)

4
− 1

3
lnZ − f(Z)

]}
,

(218)

wobei ε ≡ E/Ei ist und E die Gesamtenergie des Elektrons im Endzustand des Prozesses
ist. f(Z) ist eine Korrektur zur Bornschen Näherung, welche die Coulomb-Wechselwirkung
zwischen Elektron und Atomkern berücksichtigt. In [125] findet man den Ausdruck

f(Z) ≈ a2[(1 + a2)−1 + 0, 20206− 0, 0369a2 + 0, 0083a4 − 0, 002a6], (219)

wobei a = Z/137. Die Funktionen Φ1,2(ε) parametrisieren die elektromagnetische Abschir-
mung durch die Hüllenelektronen des Atoms. Es gilt:

ε =
100mec

22π~ν
EiEZ

1
3

. (220)

Der strahlungsbedingte differentielle Energieverlust kann durch Integration des Produkts aus
Wirkungsquerschnitt und Photon-Energie hν bestimmt werden:(

dE

dz

)
Strahlung

= −N
ν0∫

0

dν{hν
(

dσ

dν

)
}, (221)

wobei N die Volumendichte der Atome und ν0 die maximale Photonen-Energie ist.

5.2.4.3 Parametrisierung des Energieverlusts. Die Abhängigkeit des differentiellen
Energieverlusts von Elektronen in `H2 von deren Energie Ei ∈ [0,1 MeV, 200 MeV] wurde
mithilfe der ESTAR-Datenbank [126] parametrisiert. Die ESTAR-Datenbank ermöglicht das
Erstellen entsprechender Datensätze in tabellarischer Form für beliebige Materialien. Abbil-
dung 58 zeigt den Verlauf der Parametrisierung für `H2.
Für die zur Durchführung des P2-Experiments vorgesehene Strahlenergie Ebeam = 155 MeV
dominieren Kollisionsverluste, und man erwartet einen differentiellen Energieverlust von
dE/dz ≈ 0,45 MeV/cm. Ab einer Energie von Ei ≈ 320 MeV leisten Strahlungsverluste
den Hauptbeitrag zum Energieverlust der Elektronen in `H2.
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Abbildung 58: Differentieller Energieverlust von Elektronen in `H2 in Abhängigkeit von der
Gesamtenergie Ei des Elektrons. Der Datensatz wurde mittels der ESTAR-Datenbank [126]
erstellt. Dargestellt sind die Verläufe des differentiellen Energieverlusts durch Kollisionen
(rot) sowie die Erzeugung von Bremsstrahlung (blau).

5.2.5 Nukleon-Formfaktoren

In Abschnitt 5.1 wurde vorausgesetzt, dass die Nukleon-Formfaktoren, von denenAPV
ep abhängig

ist, durch reellwertige, stetige Funktionen parametrisiert werden können, die von einem Satz
unabhängiger, reeller Paramerter {κj} sowie Q2 abhängen. Im Folgenden werden die im
Rahmen dieser Arbeit verwendeten Parametrisierungen der Formfaktoren vorgestellt. Die
Parametrisierungen werden im Detail in Anhang A diskutiert.

5.2.5.1 Elektromagnetische Formfaktoren des Protons Die FormfaktorenGp,γ
E und

Gp,γ
M werden gemäß dem von Bernauer entwickelten

”
Dipol x Polynomial-Modell“ [127] pa-

rametrisiert. In diesem Modell wird der Standard-Dipolterm

Gstd
dipole(Q

2) =

(
1 +

Q2

0,71 (GeV/c)2

)−2

(222)

mit einem Polynom achten Grades

Gpoly
E,M(Q2) = 1 +

8∑
i=1

(
λpE,M
i ·Q2i

)
(223)

multipliziert, so dass

Gp,γ
E (Q2) = Gstd

dipole(Q
2) ·Gpoly

E (Q2),

Gp,γ
M (Q2) = (µP/µN) ·Gstd

dipole(Q
2) ·Gpoly

M (Q2). (224)

In (224) ist µP = 2, 792847356 · µN das magnetische Moment des Protons und µN =
(e~)/(2mp) das Kernmagneton.

Um in Q2 stetige Parametrisierungen für Gp,γ
E und Gp,γ

M zu erhalten, wurde eine Kurven-
anpassung mit den in (224) gegebenen Ausdrücken an die in Abschnitt K 2.2.3 von [127]
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aufgeführten Daten ausgeführt. Hierbei wurde die Methode der χ2-Minimierung zur Bestim-
mung der Kurvenparameter verwendet. Die resultierenden Erwartungswerte und Standard-
abweichungen der Kurvenparameter sind:

i λpE
i /(GeV/c)−2i ∆λpE

i /(GeV/c)−2i λpM
i /(GeV/c)−2i ∆λpM

i /(GeV/c)−2i

1 −4,701 987 · 10−1 1,133 586 · 10−2 2,445 791 · 10−1 1,285 954 · 10−2

2 4,342 292 · 100 6,849 265 · 10−2 −4,387 620 · 100 4,832 165 · 10−2

3 −2,068 202 · 101 1,718 847 · 10−1 2,244 408 · 101 8,019 477 · 10−2

4 4,406 141 · 101 3,152 484 · 10−1 −4,477 354 · 101 1,120 105 · 10−1

5 −2,474 794 · 101 5,080 538 · 10−1 2,507 312 · 101 1,455 939 · 10−1

6 −5,087 120 · 101 7,708 359 · 10−1 3,475 912 · 101 1,827 526 · 10−1

7 8,101 379 · 101 1,055 087 · 100 −5,305 466 · 101 2,105 056 · 10−1

8 −3,302 248 · 101 1,047 902 · 100 1,976 824 · 101 1,874 455 · 10−1

Die Angabe der Parameter-Werte (sowohl hier als auch in den folgenden Unterabschnitten)
erfolgt mit der numerischen Präzision, mit der sie vom zur Kurvenanpassung verwendeten
Algorithmus bestimmt wurden, um die Reproduzierbarkeit der Parametrisierungen sicher-
zustellen.

5.2.5.2 Elektromagnetische Formfaktoren des Neutrons Die Funktionen zur Pa-
rametrisierungen von Gn,γ

E und Gn,γ
M werden wie in der Dissertation von El Yakoubi [128]

angegeben gewählt. Für Gn,γ
E wird eine Parametrisierung nach Galster benutzt [129]:

Gn,γ
E (Q2) =

λnE
1 · τ

1 + λnE
2 · τ

·Gstd
dipole(Q

2), (225)

wo Gstd
dipole(Q

2) durch Gleichung (224) und τ durch Gleichung (41) gegeben ist. Aus der
Kurvenanpassung an die in [128] gegebenen Daten unter Verwendung der Methode der χ2-
Minimierung ergeben sich folgende Parameter-Werte:

i λnE
i ∆λnE

i

1 1,770 221 · 100 1,454 643 · 10−2

2 3,425 350 · 100 2,075 773 · 10−1

Zur Parametrisierung des magnetischen Formfaktors des Neutrons Gn,γ
M wird ein Polynom 9.

Grades benutzt, so dass

Gn,γ
M (Q2) =

9∑
i=0

λnM
i Q2i. (226)

Aus der Kurvenanpassung ergeben sich folgende Erwartungswerte und Standardabweichun-
gen für die Parameter {λnM

i }:
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i λnM
i /(GeV/c)−2i ∆λnM

i /(GeV/c)−2i

0 −1,916 029 · 100 4,589 687 · 10−4

1 7,092 145 · 100 3,229 584 · 10−2

2 −3,329 785 · 101 1,602 581 · 10−1

3 1,574 668 · 102 4,007 755 · 10−1

4 −4,144 474 · 102 9,176 047 · 10−1

5 1,627 159 · 102 2,025 616 · 100

6 1,152 293 · 103 4,366 665 · 100

7 −2,117 386 · 102 9,120 974 · 100

8 −4,908 379 · 103 1,819 254 · 101

9 5,114 440 · 103 3,374 769 · 101

5.2.5.3 Strangeness-Formfaktoren Die experimentelle Bestimmung der Strangeness-
Formfaktoren Gs

E und Gs
M war über einen Zeitraum von 15 Jahren hinweg Gegenstand ei-

nes umfassenden Forschungsprogramms an drei großen Forschungseinrichtungen. Messungen
mit Q2 = 0,1 (GeV/c)2, Q2 = 0,23 (GeV/c)2 und Q2 = 0,63 (GeV/c)2 wurden von SAMPLE,
HAPPEX, G0 und der A4-Kollaboration durchgeführt [86, 130, 131, 132, 133, 134]. Es wurde
eine weitere Messung der A4-Kollaboration mit Q2 = 0,1 (GeV/c)2 ausgeführt, die Analyse
der Messdaten dauert an.

Der Formfaktor Gs
E wird analog zu Gn,γ

E nach Galster [129] parametrisiert. Zur Kurvenan-
passung wird die Methode der χ2-Minimierung angewandt. Es ergeben sich die Parameter:

i λsE
i ∆λsE

i

1 3,231 461 · 10−1 8,871 228 · 10−1

2 4,704 640 · 100 3,000 726 · 101

Für Gs
M wird eine Parametrisierung nach [135] verwendet:

Gs
M = λsM

0 + λsM
1 ·Q2. (227)

Für λsM
0 und λsM

1 ergeben sich die folgenden Erwartungswerte und Standardabweichungen
aus der Kurvenanpassung an die in [135] angeführten Daten:

i λsM
i /(GeV/c)−2i ∆λsM

i /(GeV/c)−2i

0 4,411 866 · 10−2 1,393 027 · 10−1

1 9,312 301 · 10−1 1,016 812 · 100

5.2.5.4 Axialer Formfaktor des Protons Der axiale Formfaktor des Protons kann
durch die Kombination von Resultaten aus Experimenten zur paritätsverletzenden Elektro-
nenstreuung an `H2 und `D2 bestimmt werden, welche unter Rückwärts-Streuwinkeln bei
dem selben Wert von Q2 durchgeführt wurden. Entsprechende Messungen wurden von der
SAMPLE-, G0- und A4-Kollaboration ausgeführt [136, 131, 134, 137]. Die A4-Kollaboration
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hat eine Messung bei Q2 = 0,1 (GeV/c)2 ausgeführt, deren Veröffentlichung noch aussteht.

Der axiale Formfaktor des Protons Gp, Z
A wird im Rahmen dieser Arbeit wie von Musolf et

al. vorgeschlagen parametrisiert [13]. Es wurde keine Kurvenanpassung durchgeführt, da in
[13] bereits eine zur Fehlerfortpflanzungsrechnung geeignete Form gegeben ist. Es ist

Gp, Z
A (Q2) = λpA

0 ·
(

1 +
Q2

(λpA
1 )2

)−2

. (228)

mit

i λpA
i /(GeV/c)i ∆λpA

i /(GeV/c)i

0 −1,136 0,411

1 1,032 0,036

5.2.5.5 Isospin-brechende elektromagnetische Formfaktoren Im Rahmen der Ba-
chelorarbeit von P. Larin [138] wurden Parametrisierungen der Isospin-brechenden elektro-
magnetischen FormfaktorenGud

E undGud
M erstellt. Hierzu wurden Datensätze aus [139] mittels

eines graphischen Verfahrens extrahiert. Diese Datensatze wurden in der vorliegenden Ar-
beit benutzt, um die Formfaktoren mittels einer Kurvenanpassung zu parametrisieren. Als
Funktionen kommen Polynome vierten Grades zum Einsatz, so dass

Gud
E, M =

4∑
i=0

λudE, M
i ·Q2i. (229)

Die Kurvenanpassung wurde unter Verwendung der Methode der χ2-Minimierung ausgeführt.
Es ergeben sich folgende Parameter-Werte:

i λudE
i /(GeV/c)−2i ∆λudE

i /(GeV/c)−2i λudM
i /(GeV/c)−2i ∆λudM

i /(GeV/c)−2i

0 1,344 573 · 10−13 1,000 000 · 10−7 2,474 684 · 10−2 1,824 655 · 10−2

1 5,669 833 · 10−2 2,772 295 · 10−2 6,787 448 · 10−2 7,769 135 · 10−1

2 −2,465 694 · 10−1 6,866 436 · 10−1 −3,042 028 · 10−2 1,003 967 · 101

3 5,813 392 · 10−1 4,856 379 · 100 −4,367 643 · 10−1 4,767 653 · 101

4 −7,002 228 · 10−1 1,023 000 · 101 8,468 409 · 10−1 7,470 339 · 101

5.3 Resultate der Berechnung von ∆ sin2(θW)

In diesem Abschnitt werden die Resultate der Fehlerfortpflanzungsrechnungen diskutiert, de-
ren Ziel die Festlegung der Strahlenergie Ebeam, des zentralen Elektron-Streuwinkels θ̄f und
der Streuwinkelakzeptanz des Cherenkov-Detektors δθf ist. Zur Festlegung dieser drei Größen
wurde ∆sigŝ

2
Z in Abhängigkeit von {Ebeam, θ̄f, δθf} mithilfe des in Abschnitt 5.1 diskutierten

Algorithmus berechnet. Bei den Berechnungen wurden die in Abschnitt 5.2 vorgestellten
Eingabeparameter benutzt.

Zur Parametrisierung von ∆sigŝ
2
Z(Ebeam, θ̄f, δθf) wurden Ebeam, θ̄f und δθf innerhalb der fol-

genden Grenzen mit den angegebenen Schrittweiten variiert:
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Abbildung 59: Repräsentative Verteilung von (ŝ2
Z)′ für Ebeam = 155 MeV, θ̄f = 21◦ und

δθf = 20◦. In Blau dargestellt ist die mit dem Monte Carlo-Verfahren bestimmte Verteilung
der (ŝ2

Z)′-Werte. Im blau umrandeten Textfeld sind Erwartungswert und Standardabweichung
der Verteilung angegeben. An die Verteilung wurde eine Normalverteilung angepasst. Sie
ist in Rot gezeichnet. Die mit ROOT bestimmten Resultate der Kurvenanpassung sind im
rot umrandeten Textfeld wiedergegeben. Die Erwartungswerte und Standardabweichungen
stimmen im Rahmen ihrer Unsicherheiten überein.

Minimalwert Maximalwert Schrittweite

Ebeam 105 MeV 205 MeV 10 MeV
θ̄f 11◦ 60◦ 1◦

δθf 2◦ 24◦ 2◦

Diejenigen Konfigurationen, für welche θf ≤ 0◦ aufgrund der Wahl von θ̄f und δθf möglich
ist, wurden bei der Bestimmung von ∆sigŝ

2
Z nicht berücksichtigt, da eine physikalisch sinn-

volle Bestimmung von 〈APV
ep 〉sig in diesem Fall nicht möglich ist. Zur Berechnung eines jeden

Wertes von ∆sigŝ
2
Z wurde ein Ensemble aus 1200 zufallsverteilten Werten (ŝ2

Z)′ generiert. Die
Berechnungen wurden parallel auf 24 CPU-Kernen ausgeführt und dauerten ca. 7 Tage.

Abbildung 59 zeigt eine repräsentiative Verteilung von (ŝ2
Z)′-Werten für Ebeam = 155 MeV,

θ̄f = 21◦ und δθf = 20◦. Der Erwartungswert der berechneten Verteilung stimmt im Rah-
men seiner Unsicherheit mit dem zur Berechnung von 〈APV

ep 〉sig verwendeten Wert von ŝ2
Z =

0, 23116 überein.

Abbildung 60 zeigt den Verlauf von ∆sigŝ
2
Z in Abhängigkeit von θ̄f für Ebeam = 155 MeV

und δθf = 20◦. Bei kleinen Streuwinkeln θ̄f ≤ 20◦ wird ∆sigŝ
2
Z vom Fehlerbeitrag ∆sig, falseŝ

2
Z

der apparativen Asymmetrie Afalse und der statistischen Unsicherheit von 〈Araw〉sig dominiert.
Dass ∆sig, falseŝ

2
Z für kleiner werdendes θ̄f ansteigt, kann man verstehen, wenn man die partielle

Ableitung von dem in Gleichung (200) gegenben Ausdruck für ŝ2
Z nach Afalse betrachtet:

∂ŝ2
Z

∂Afalse
∼ 1

〈BPV
ep 〉sig

∼ 1

〈A0〉sig
∼ 1

〈Q2〉sig
. (230)
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Abbildung 60: Verlauf von ∆sigŝ
2
Z in Abhängigkeit von θ̄f für Ebeam = 155 MeV und δθf = 20◦.

Eingezeichnet ist der Verlauf der Gesamtunsicherheit ∆sigŝ
2
Z in Schwarz sowie die Verläufe

ausgewählter, signifikanter Beiträge zu ∆sigŝ
2
Z.

Demnach erwartet man für den Beitrag von Afalse zu ∆sigŝ
2
Z:

∆sig, falseŝ
2
Z ≈

∥∥∥∥ ∂ŝ2
Z

∂Afalse
·∆Afalse

∥∥∥∥ ∼ ∆Afalse

〈Q2〉sig
. (231)

Da Q2 mit kleiner werdendem θf abnimmt und ∆Afalse im Rahmen der Berechnungen kon-
stant gewählt wurde, entspricht es der Erwartung, dass ∆sig, falseŝ

2
Z für kleiner werdendes θ̄f

zunimmt. Für den Beitrag der statistischen Unsicherheit von 〈Araw〉sig zu ∆sigŝ
2
Z erwartet

man in Analogie zu Gleichung (231) unter Verwendung von Gleichung (210):

∆sig, statŝ
2
Z ∼

1

〈Q2〉sig ·
√

2N
. (232)

Da die Anzahl 2N der im Experiment innerhalb der Messdauer T nachzuweisenden elasti-
schen Elektron-Proton-Streuereignisse durch Integration der Rosenbluth-Formel (51) über
das Streuwinkel-Intervall δθf gegeben ist, steigt ∆sig, statŝ

2
Z mit kleiner werdendem θ̄f langsa-

mer an als ∆sig, falseŝ
2
Z. Die in Abbildung 60 gezeigten Beiträge der Nukleon-Formfaktoren zu

∆sigŝ
2
Z sind bei kleinen Werten von θ̄f erwatungsgemäß unterdrückt, da die Formfaktoren bei

kleinem Q2 nur geringe Beiträge zu APV
ep leisten, wie man anhand von Abbildung 7 erken-

nen kann. Die Fehlerbeiträge der Formfaktoren wachsen mit steigendem θ̄f an, was ebenfalls
der Erwartung entspricht, da die Beiträge der Formfaktoren zu APV

ep mit wachsendem Q2

zunehmen, wie man ebenfalls in Abbildung 7 erkennen kann. Die Verläufe der dominanten
Beiträge zu ∆sigŝ

2
Z münden in der Ausbildung eines Minimums im Verlauf von ∆sigŝ

2
Z bei

θ̄f ≈ 21◦ mit min(∆sigŝ
2
Z) ≈ 5,8 · 10−4, wie man in Abbildung 60 sehen kann.

In Abbildung 61 sind Verläufe von ∆sigŝ
2
Z in Abhängigkeit von θ̄f für verschiedene Werte von

δθf bei festgehaltener Strahlenergie Ebeam = 155 MeV dargestellt. Die Wahl von δθf beein-
flusst die Anzahl der in der vorgegebenen Messzeit nachweisbaren Streuereignisse und somit
den Beitrag der statistischen Unsicherheit von 〈Araw〉sig zu ∆sigŝ

2
Z auf maßgebliche Weise.

Man entnimmt der Abbildung, dass der Minimalwert min(∆sigŝ
2
Z) im Verlauf von ∆sigŝ

2
Z bis

zu einem Wert von δθf = 20◦ kleiner wird und anschließend wieder ansteigt. Dieses Verhalten
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Abbildung 61: Links: Verläufe von ∆sigŝ
2
Z in Abhängigkeit von θ̄f für Ebeam = 155 MeV und
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Abbildung 62: Verlauf von ∆sigŝ
2
Z und Einzelbeiträgen hierzu in Abhängigkeit von Ebeam für

θ̄f = 21◦ und δθf = 20◦.

erklärt sich wie folgt: Beginnend bei δθf = 2◦ bewirkt eine Vergrößerung von δθf zunächst
im Wesentlichen eine Verkleinerung der statistischen Unsicherheit von 〈Araw〉sig und somit
eine Verringerung von ∆sigŝ

2
Z, da die Beiträge der Formfaktor-Unsicherheiten bei kleinen

Streuwinkeln gering sind. Für größere Werte von δθf tragen vermehrt größere Streuwinkel
zu 〈APV

ep 〉sig bei. Dem entsprechend tragen die Formfaktor-Unsicherheiten verstärkt zu ∆sigŝ
2
Z

bei, was zur Ausbildung eines Minimums im Verlauf von min(∆sigŝ
2
Z) in Abhängigkeit von

δθf führt.

Abbildung 62 zeigt den Verlauf von ∆sigŝ
2
Z in Abhängigkeit von Ebeam für θ̄f = 21◦ und

δθf = 20◦. Da der Wert von 〈APV
ep 〉sig bei niedrigen Viererimpulsüberträgen durch die Wahl

von Q2 festgelegt ist, und Q2 sowohl mit θf als auch mit Ebeam betragsmäßig anwächst, wie
man anhand von Gleichung (35) sehen kann, sind die relativen Verläufe der in den Abbil-
dungen 60 und 62 gezeigten Kurven ähnlich.

Abbildung 63 zeigt ∆sigŝ
2
Z in Abhängigkeit von Ebeam und θ̄f für δθf = 20◦. Man kann der

Abbildung entnehmen, dass die kleinsten mit den in Abschnitt 5.2 angeführten Parametern
erreichbaren Werte von ∆sigŝ

2
Z im Bereich min(∆ŝZ) ∼ 6 · 10−4 liegen. Demnach kann die
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Abbildung 63: Verlauf von ∆sigŝ
2
Z in Abhängigkeit von Ebeam und θ̄f für δθf = 20◦.

im Rahmen des P2-Experiments anvisierte Unsicherheit von ∆sigŝ
2
Z = 3,6 · 10−4 mit den in

Abschnitt 5.2 vorgestellten Eingangsgrößen nicht erreicht werden.

∆sigŝ
2
Z muss reduziert werden, um das P2-Experiment erfolgreich durchführen zu können.

Dies kann erreicht werden, indem man dominante Beiträge zu ∆sigŝ
2
Z reduziert. Es gilt re-

duzierbare Beiträge zu identifizieren und eine Auswahl zu treffen. Abbildung 64 illustriert,
auf welche Weise sich Reduktionen der dominanten Beiträge auf die Position des Minimums
im Verlauf von ∆sigŝ

2
Z in Abhängigkeit von θ̄f auswirken. Man könnte etwa eine Reduzierung

der statistischen Unsicherheit von 〈Araw〉sig durch eine Erhöhung des Strahlstroms oder eine
Verlängerung der Messdauer anstreben. Gleichzeitig könnte man die Anforderungen an die
Strahleigenschaften - insbesondere beim Helizitätswechsel - verschärfen, was in einer Re-
duzierung des Beitrags von Afalse münden würde. Eine Reduzierung dieser beiden Beiträge
zu ∆sigŝ

2
Z würde zu einer Verkleinerung von min(∆sigŝ

2
Z) bei gleichzeitiger Verschiebung des

Minimums hin zu kleineren θ̄f-Werten führen, wie in Abbildung 64 angedeutet. Gelingt hin-
gegen eine Reduzierung der dominanten Formfaktor-Beiträge zu ∆sigŝ

2
Z, welche von Gs

E, Gs
M

sowie Gp, Z
A stammen, so kann min(∆sigŝ

2
Z) ebenfalls reduziert werden, wobei man eine Ver-

schiebung von min(∆sigŝ
2
Z) hin zu größeren Werten von θ̄f erwartet.

Die Asymmetriemessung ist unter größeren Streuwinkeln θf einfacher zu realisieren: Man
kann Abbildung 7 entnehmen, dass der Betrag der paritätsverletzenden Asymmetrie für
θf = 35◦ mit

∣∣APV
ep

∣∣ ≈ 70 ppb etwa um einen Faktor 3, 5 größer ist als für θf = 20◦, wo∣∣APV
ep

∣∣ ≈ 20 ppb ist. Darüber hinaus gewinnen die im Target unter größeren Winkeln ge-
streuten Elektronen mit wachsender z-Koordinate schneller Abstand von der Strahlachse,
was die Separation der nachzuweisenden Elektronen von geladenen Untergrundteilchen im
Magnetfeld vereinfacht und für mehr Platz zum Aufbau geeigneter Abschirmungen der De-
tektoren gegen Bremsstrahlung aus dem Target sorgt. Auch sind die erwarteten Streuraten
bei größeren θf-Werten kleiner, da der durch Gleichung (51) gegebene Wirkungsquerschnitt
der elastischen Elektron-Proton-Streuung stetig mit zunehmendem θf abnimmt. Dies redu-
ziert die erwartete Strahlenbelastung der Detektoren.

Die P2-Kollaboration hat sich daher entschieden, im Rahmen des P2-Experiments eine
Formfaktor-Messung unter Rückwärts-Streuwinkeln auszuführen, um dominante Beiträge
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Abbildung 64: Zur Veranschaulichung der Effekte von Reduktionen der dominanten Beiträge
zu ∆sigŝ

2
Z auf das Minimum im Verlauf von ∆sigŝ

2
Z in Abhängigkeit vom zentralen Elektron-

Streuwinkel θ̄f. Mögliche Verschiebungen sind durch die Pfeile angedeutet. Eine Reduktion
der statistischen Unsicherheit und des Beitrags der apparativen Asymmetrie führt zu ei-
ner Reduzierung von min(∆sigŝ

2
Z) bei gleichzeitiger Verschiebung hin zu kleineren zentralen

Streuwinkeln, was durch die roten und orangefarbenen Pfeile angedeutet wird. Eine globa-
le Reduktion der dominanten Nukleon-Formfaktor-Beiträge führt zu einer Reduktion von
min(∆sigŝ

2
Z) bei gleichzeitiger Verschiebung des Minimums hin zu größeren Werten von θ̄f,

was durch die grünen und magentafarbenen Pfeile angedeutet ist.

der Nukleon-Formfaktoren zu ∆sigŝ
2
Z zu reduzieren. Im Folgenden wird dargelegt, auf wel-

che Weise eine derartige Messung durchgeführt werden kann und welche Reduktionen der
Formfaktoren erwartet werden.

5.3.1 Reduzierung der Formfaktor-Beiträge zu ∆ sin2(θW)

Die P2-Kollaboration geht davon aus, dass die Unsicherheit der in Abschnitt 5.2.5 beschriebe-
nen Parametrisierung von Gs

E im zur Durchführung des Experiments relevanten Q2-Intervall
um einen Faktor vier reduziert werden kann. Mithilfe der Gittereichtheorie durchgeführte
Berechnungen von Gs

E legen nahe, dass eine solche Reduktion erreichbar ist [140, 141]. Die
P2-Kollaboration rechnet ferner mit einer Reduzierung der Unsicherheiten von Gs

M und Gp, Z
A

im relevanten Q2-Intervall um jeweils einen Faktor vier nach Abschluss der Analysen der von
der A4-Kollaboration durchgeführten Messungen bei Q2 = 0,1 (GeV/c)2.

Um eine weitere Reduktion der Formfaktor-Unsicherheiten zu erreichen, plant die P2-Kollaboration
eine Messung von 〈Araw〉sig unter Rückwärts-Streuwinkeln θf > 90◦. Eine solche Messung ist

sensitiv auf Gs
M und Gp, Z

A . Es wurden zwei Varianten zur präzisen Bestimmung der Form-
faktoren studiert [142], welche hier kurz beschrieben werden sollen. Die erste Variante be-
steht in einer zur Asymmetriemessung unter Vorwärtswinkeln parallelen Formfaktormes-
sung. Die zweite Option besteht in einer dezidierten Asymmetriemessung zur Bestimmung
der Formfaktoren unter Rückwärtswinkeln. Die Durchführbarkeit der ersten Variante hängt
vom verfügbaren Platz in der Experimentierhalle sowie der Verfügbarkeit geeigneter Detek-
toren und Elektronik ab. Zur Realisierung der zweiten Variante würden ca. 2000 Stunden
zusätzliche Messzeit benötigt werden. Im Folgenden werden beide Optionen kurz diskutiert.
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A4-Experiment P2-Experiment

Integrierte Luminosität 1,5 · 105 fb−1 8,7 · 107 fb−1

Statistische Unsicherheit ∆stat〈Araw〉sig 0,60 ppm 0,03 ppm
Apparative Asymmetrie ∆false〈Araw〉sig 0,25 ppm < 0,01 ppm
Polarimetrie ∆P〈Araw〉sig 0,41 ppm 0,04 ppm

Gesamt ∆〈Araw〉sig 0,80 ppm 0,05 ppm

Tabelle 7: Vergleich der Beiträge zur Unsicherheit der unter Rückwärtswinkeln gemessenen
Asymmetrie 〈Araw〉sig im A4-Experiment und der im P2-Experiment erwarteten Beiträge für
den Fall einer zur Messung von QW(p) parallelen Bestimmung der Formfaktoren. Es wurde
eine Strahlenergie von Ebeam = 200 MeV sowie eine Messdauer von T = 104 h angenommen.
Die im Standardmodell erwartete Asymmetrie für die Rückwärtswinkel-Messung des P2-
Experiments ist 〈APV

ep 〉sig ≈ 7,5 ppm.

Eine zur Messung der schwachen Ladung des Protons parallele Formfaktor-Messung kann
über die gesamte Messdauer hinweg durchgeführt werden. Zur Messung kann ein Detektor
eingesetzt werden, welcher die Winkelintervalle 140◦ ≤ θf ≤ 150◦ und 0 ≤ φf ≤ 2π abdeckt.
Das vorgesehene negative Viererimpulsübertragsquadrat ist Q2 = 0,1 (GeV/c)2. Tabelle 7
zeigt einen Vergleich zwischen der im A4-Experiment erreichten Genauigkeit bei der Asym-
metriemessung unter Rückwärtswinkeln und der im P2-Experiment erwarteten Genauigkeit.
Die Asymmetrie könnte bei dieser Variante mit einer Präzision < 1 % bestimmt werden, wo-
bei der Hauptbeitrag zur Unsicherheit durch die Polarisationsmessung gegeben wäre. Dies
würde die Bestimmung der Linearkombination

F S + FA = 0, 398 · (Gs
M + 0, 442 ·Gp, Z

A )± 0, 011 (233)

erlauben, wobei der Hauptbeitrag der angegebenen Unsicherheit aus der Unkenntnis von FEM

bei kleinen Beträgen von Q2 stammt. Zur Extraktion der schwachen Ladung des Protons aus
der Bestimmung von APV

ep unter Vorwärts-Streuwinkeln benötigt man die Linearkombination

F S + FA = 0, 0040 · (Gs
M + 0, 691 ·Gp, Z

A ). (234)

Da die Q2-Werte der Vorwärts- und Rückwärtswinkel-Messungen sowie die entsprechenden
Linearkombinationen von F S und FA nicht exakt identisch sind, wurde die sich aus der
Extrapolation von (233) auf (234) ergebende Unsicherheit um 100 % erhöht. Man findet:

P2 ohne Formfaktormessung: ∆(F S + FA) = 0, 00076,

P2 mit Formfaktormessung: ∆(F S + FA) = 0, 00016.
(235)

Dies entspricht einer Reduktion der Formfaktor-Unsicherheiten von Gs
M und Gp, Z

A um den
Faktor Vier.

Die zweite Möglichkeit zur Reduzierung der Formfaktor-Unsicherheiten besteht in dedizier-
ten Messung von Gs

M und Gp,Z
A unter Rückwärtswinkeln. Hierzu sind unabhängige Messungen

mit einem `H2- und einem `D2-Target bei gleichem Q2 notwendig. Wie in [26] ausgeführt
wird, würden je 103 h lange Messungen bei einer Energie von Ebeam = 150 MeV eine separate
Bestimmung von Gs

M und Gp, Z
A bei Q2 = 0,06 (GeV/c)2 mit ∆Gs

M = 0, 05 und ∆Gp, Z
A = 0, 04

ermöglichen. Dies entspricht einer noch präziseren Bestimmung der Formfaktoren als im
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Reduktionsfaktor der ∆λi

Gs
E 4

Gs
M 12

Gp, Z
A 10

Tabelle 8: Reduktionsfaktoren der Formfaktorparametrisierungen, mit denen die in Abschnitt
5.3.2 vorgestellten Berechnungen von ∆sigŝ

2
Z durchgeführt wurden. Die Reduktionsfaktoren

wurden dabei mit den Unsicherheiten ∆λi der Formfaktor-Parameter multipliziert.

Fall der Bestimmung ihrer Linearkombination, da der Wert von Q2 besser mit dem der
Vorwärtswinkel-Messung übereinstimmt, und die zur Extraktion von QW(p) benötigte Li-
nearkombination F S + FA direkt mittels der experimentell bestimmten Formfaktor-Werte
berechnet werden kann. Eine derartige Messung würde zur bis dato präzisesten Bestimmung
von Gs

M und Gp, Z
A bei niedrigem Q2 führen, so dass auch bei dieser Variante von einer wei-

teren Reduktion der Unsicherheiten der beiden Formfaktoren um mindestens einen Faktor
Vier ausgegangen werden kann.

Zum Zeitpunkt der Anfertigung dieser Arbeit ist nicht entschieden, welche der beiden Varian-
ten zur Formfaktormessung realisiert werden wird. Im weiteren Verlauf wird angenommen,
dass die Standardabweichungen der Parametrisierungen von Gs

E, Gs
M und Gp, Z

A durch die
Berechnungen mittels Gittereichtheorie, der vom A4-Experiment durchgeführten Messungen
sowie der im Rahmen des P2-Experiments auszuführenden Formfaktor-Messungen um die in
Tabelle 8 aufgelisteten Faktoren reduziert werden können. Um die Reduzierungen der Un-
sicherheiten von Gs

E, Gs
M und Gp, Z

A bei der Berechnungen von ∆sigŝ
2
Z zu simulieren, werden

die Unsicherheiten ∆λi der in den Parametrisierungen Γ({λi}, Q2) der drei Formfaktoren
auftretenden Parameter mit den Reduktionsfaktoren multipliziert.

5.3.2 Resultate für ∆ sin2(θW) mit reduzierten Formfaktor-Beiträgen

Im Folgenden werden die Resultate der Berechnungen vorgestellt, welche mit den in Tabelle
8 angeführten Reduktionsfaktoren der Unsicherheiten der Parametrisierungen von Gs

E, Gs
M

und Gp, Z
A durchgeführt wurden.

Für die Berechnungen wurden Ebeam, θ̄f und δθf systematisch in den folgenden Grenzen
variiert, wobei die angegebenen Schrittweiten verwendet wurden:

Minimalwert Maximalwert Schrittweite

Ebeam 105 MeV 205 MeV 10 MeV
θ̄f 11◦ 60◦ 1◦

δθf 2◦ 28◦ 2◦

Zur Berechnung von ∆sigŝ
2
Z wurden nur diejenigen Kombinationen von θ̄f und δθf verwendet,

für welche der Fall θf < 0◦ nicht auftreten kann. Zur Bestimmung eines jeden ∆sigŝ
2
Z-Wertes

sowie eines jeden Beitrags zu ∆sigŝ
2
Z wurde jeweils ein Ensemble mit 1200 zufallsverteilten

ŝ2
Z-Werten generiert, welches zur Berechnung von Erwartungswert und Standardabweichung

verwendet wurde. Die Berechnungen wurden parallel auf 24 Prozessorkernen ausgeführt und
dauerten ca. sieben Tage.
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Abbildung 65: Verlauf von ∆sigŝ
2
Z in Abhängigkeit von θ̄f für Ebeam = 155 MeV und δθf = 20◦

mit reduzierten Unsicherheiten der Parametrisierungen von Gs
E, Gs

M und Gp, Z
A . Die Gesamt-

unsicherheit ∆sigŝ
2
Z ist in Schwarz gezeichnet. Ferner sind die Verläufe ausgewählter, signifi-

kanter Beiträge zur Gesamtunsicherheit von ŝ2
Z eingezeichnet.
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Abbildung 66: Links: Verlauf von ∆sigŝ
2
Z in Abhängigkeit von θ̄f für Ebeam = 155 MeV und

verschiedene Werte von δθf. Rechts: Abhängigkeit des Minimums min(∆sigŝ
2
Z) der im linken

Bild dargestellten Kurven von δθf. Man erkennt, dass min(∆sigŝ
2
Z) im betrachteten Intervall

von δθf mit zunehmender Akzeptanz stetig abnimmt.

Abbildung 65 zeigt den Verlauf von ∆sigŝ
2
Z in Abhängigkeit von θ̄f für Ebeam = 155 MeV

und δθf = 20◦. Man erkennt eine deutliche Verringerung der Fehlerbeiträge von Gs
E, Gs

M und
Gp, Z

A gegenüber dem in Abbildung 60 dargestellten Verlauf, welche durch die Reduktion der
Formfaktor-Unsicherheiten bedingt wird. Das Minimum im Verlauf von ∆sigŝ

2
Z ist gegenüber

dem in Abbildung 60 dargestellten Fall erwartungsgemäß reduziert und zu größeren Streu-
winkeln θ̄f ≈ 35◦ hin verschoben. Für 30◦ ≤ θ̄f ≤ 45◦ gilt ∆sigŝ

2
Z ≤ 3,6 · 10−4.

Abbildung 66 zeigt den Verlauf von ∆sigŝ
2
Z in Abhängigkeit von θ̄f für Ebeam = 155 MeV

und verschiedene Werte von δθf. Für die betrachteten Werte von δθf fällt min(∆sigŝ
2
Z) im

Unterschied zu dem in Abbildung 61 erkennbaren Verhalten stetig mit wachsendem δθf, da
die Formfaktoren nun auch bei größeren Akzeptanzen δθf ∼ 20◦ geringere Beiträge zu ∆sigŝ

2
Z

leisten.

Die P2-Kollaboration hat sich zur Konzipierung des Experiments auf den Wert δθf = 20◦
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Abbildung 67: Verlauf von ∆sigŝ
2
Z in Abhängigkeit von Ebeam für θf = 35◦ und δθf = 20◦ mit

reduzierten Unsicherheiten von Gs
E, Gs

M und Gp, Z
A .
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Abbildung 68: ∆sigŝ
2
Z in Abhängigkeit von Ebeam und θ̄f für δθf = 20◦. Die Farbcodierung

der ∆sigŝ
2
Z-Skala wurde identisch zu der in Abbildung 63 dargestellten Skala gewählt.

festgelegt, um Streuwinkel θf ≥ 45◦ bei der Asymmetriemessung zu meiden und somit von
der hadronischen Struktur des Protons stammende Beiträge zu ∆sigŝ

2
Z gering zu halten.

In Abbildung 67 ist der Verlauf von ∆sigŝ
2
Z in Abhängigkeit von Ebeam für θ̄f = 35◦ und

δθf = 20◦ dargestellt. Durch die Reduzierung der Formfaktor-Unsicherheiten wird ∆sigŝ
2
Z

über das dargestellte Energieintervall hinweg von der statistischen Unsicherheit von 〈Araw〉sig
dominiert. Das Minimum im Verlauf von ∆sigŝ

2
Z befindet sich bei Ebeam = 175 MeV und be-

trägt min(∆sigŝ
2
Z) ≈ 3,25 · 10−4.

Abbildung 68 zeigt die Abhängigkeit von ∆sigŝ
2
Z von Ebeam und θ̄f für δθf = 20◦. Beim

Vergleich von Abbildung 68 mit Abbildung 63 erkennt man, dass sich das Minimum von
∆sigŝ

2
Z(Ebeam, θ̄f, δθf = 20◦) im Fall reduzierter Formfaktorunsicherheiten erwartungsgemäß

zu größeren Werten von Ebeam und θ̄f verschoben ist. In dem schwarz umrandeten Gebiet
in Abbildung 68 gilt ∆sigŝ

2
Z ≤ 3,6 · 10−4, so dass die Streukinematik in diesem Wertebereich
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von Ebeam, θ̄f und δθf zur Durchführung der Asymmetriemessung geeignet erscheint.

5.4 Wahl der Streukinematik

MESA wird voraussichtlich eine maximale Strahlenergie vonEbeam = 155 MeV zur Durchführung
des P2-Experiments liefern können. Die P2-Kollaboration hat sich daher für die Wahl fol-
gender Parameter zur Durchführung des Experiments entschieden:

Strahlenergie Ebeam 155 MeV
Zentraler Elektron-Streuwinkel θ̄f 35◦

Akzeptanz im Elektron-Streuwinkel δθf 20◦

Die P2-Kollaboration plant eine Bestimmung der Formfaktoren Gs
M und Gp, Z

A durchzuführen,
um deren Beiträge zu ∆sigŝ

2
Z, wie in Abschnitt 5.3.1 beschrieben, zu reduzieren. In diesem

Fall entspricht die Wahl der Streukinematik dem Minimum des in Abbildung 65 dargestell-
ten Verlaufs von ∆sigŝ

2
Z.

Für diese Wahl von Ebeam, θ̄f und δθf wurde eine dezidierte Berechnung von ∆sigŝ
2
Z ausgeführt.

Die zur Berechnung notwendigen Eingangsgrößen wurden wie in Abschnitt 5.2 gewählt, die
Standardabweichungen der Formfaktor-Parametrisierungen wurden, wie in Abschnitt 5.3.1
beschrieben, reduziert. Zur Berechnung von ∆sigŝ

2
Z sowie jedes Beitrags zu ∆sigŝ

2
Z wurden

jeweils N = 100 voneinander unabhängige Ensembles {(∆sigŝ
2
Z)n}, n = 1, 2, . . . , N mit dem

in Abschnitt 5.1 beschriebenen Algorithmus generiert. Dabei wurde zur Berechnung jedes
Wertes (∆sigŝ

2
Z)n ein Ensemble aus M = 2400 voneinander unabhängigen, zufallsverteilten

Werten (ŝ2
Z)′nm generiert, wobei m = 1, 2, . . . , M . Die Berechnungen wurden parallel auf

24 Prozessorkernen durchgefrührt und dauerten ca. sieben Stunden.

Die Resultate sind in Tabelle 9 zusammengefasst. Für die Unsicherheit der Rohasymmetrie
〈Araw〉sig ergibt sich

〈Araw〉sig = (−44.410± 0, 632) ppb, (236)

was einer relativen Unsicherheit von

∆〈Araw〉sig
〈Araw〉sig

= 1,42 % (237)

entspricht. Man beachte, dass der für ∆〈Araw〉sig angegebene Wert keine Beiträge der Nukleon-
Formfaktoren und auch den von Quantenkorrekturen aus Boxgraphen herrührenden Beitrag
nicht berücksichtigt, da 〈Araw〉sig als eine im Experiment zu messende Größe aufzufassen ist.
Diese Beiträge wurden jedoch bei der Bestimmung der Unsicherheit von ŝ2

Z berücksichtigt.
Man findet

∆sigŝ
2
Z = (3, 20± 0, 05) · 10−4 (238)

für die Gesamtunsicherheit von ŝ2
Z, was einer relativen Unsicherheit von

∆sigŝ
2
Z

ŝ2
Z

= 0,14 % (239)

entspricht.
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Ebeam 155 MeV

θ̄f 35◦

δθf 20◦

〈Q2〉sig 6 · 10−3 (GeV/c)2

〈Araw〉sig −44,410 ppb

∆〈Araw〉sig (0, 632± 0, 010) ppb (1,75 %)

∆stat〈Araw〉sig (0, 583± 0, 009) ppb (1,31 %)

∆P〈Araw〉sig (0, 222± 0, 003) ppb (0,50 %)

∆false〈Araw〉sig (0, 100± 0, 002) ppb (0,23 %)

ŝ2
Z 0,231 160

∆sigŝ
2
Z (3, 20± 0, 05) · 10−4 (0,14 %)

∆sig, statŝ
2
Z (2, 58± 0, 04) · 10−4 (0,11 %)

∆sig, Pŝ
2
Z (0, 86± 0, 01) · 10−4 (0,04 %)

∆sig, falseŝ
2
Z (0, 49± 0, 01) · 10−4 (0,02 %)

∆sig, Ebeam
ŝ2

Z (0, 35± 0, 00) · 10−4 (0,02 %)

∆sig, �γZ
ŝ2

Z (0, 42± 0, 01) · 10−4 (0,02 %)

∆sig, FFŝ
2
Z (1, 38± 0, 02) · 10−4 (0,06 %)

Tabelle 9: Resultate der Fehlerfortpflanzungsrechnung für die zur Konzipierung des P2-
Experiments gewählten Werte von Ebeam, θ̄f und δθf. Der Erwartungswert des negativen
Viererimpulsübertragsquadrats 〈Q2〉sig wurde analog zu Gleichung (195) durch Mittelung
über die Targetlänge und die Detektorakzeptanz in θf bestimmt. Die in Prozent angegebenen
relativen Unsicherheiten beziehen sich auf die angegebenen Erwartungswerte. Die Beiträge
der Nukleon-Formfaktoren zu ∆sigŝ

2
Z sind in ∆sig, FFŝ

2
Z zusammengefasst.

Summiert man die Beiträge zu ∆sigŝ
2
Z aus Tabelle 9 quadratisch auf und zieht die Wurzel,

so findet man √∑
i

(∆sig,iŝ2
Z)2 = 3,14 · 10−4 (240)

und √∑
i

[∆(∆sig,iŝ2
Z)]2 = 0,05 · 10−4. (241)

Dieses Ergebnis ist im Rahmen seiner Unsicherheit mit dem in Gleichung (238) angegebenen
Wert vereinbar. Die Abweichung der beiden Werte für ∆sigŝ

2
Z ist statistischer Natur und

rührt daher, dass die Berechnungen der Beiträge zu ∆sigŝ
2
Z unabhängig von der Berechnung

der einzelnen Beiträge zu ∆sigŝ
2
Z durchgeführt wurden.

Zusammenfassend lässt sich an dieser Stelle festhalten, dass die Durchführung des P2-
Experiments mit der Zielvorgabe ∆sigŝ

2
Z ≤ 3,6 · 10−4 für die getroffene Wahl von Ebeam =

155 MeV, θ̄f = 35◦ und δθf = 20◦ bei Reduzierung der Formfaktor-Unsicherheiten möglich er-
scheint, da die Fehlerfortpflanzungsrechnungen einen Erwartungswert von ∆sigŝ

2
Z = 3,2 · 10−4
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für diese Konfiguration ergeben. Die in Tabelle 9 vorgestellten Resultate stellen keine vollständige
Vorhersage für die im P2-Experiment erwartete Präzision bei der Bestimmung der pa-
ritätsverletzenden Asymmetrie der elastischen Elektron-Proton-Streuung und des elektroschwa-
chen Mischungswinkels dar. So wurde etwa das Antwortverhalten des geplanten Cherenkov-
Detektors nicht berücksichtigt. Auch Untergrundprozesse, die zum Signal des Cherenkov-
Detektors beitragen können, wurden bei der Berechnung von 〈Araw〉sig nicht beachtet, und
es wurde von einer idealen Detektorakzeptanz der e-p-Streuereignisse im Target mit θf ∈
[25◦, 45◦] ausgegangen. Es wurden die in Abschnitt 2.3.3 vorgestellten QED-Korrekturen bei
der Berechnung von APV

ep vernachlässigt. Ferner wurden die in Abschnitt 4.3 diskutierten sy-
stematischen Effekte bei der Asymmetriemessung bei den Berechnungen nicht berücksichtigt.
Die Resultate der in diesem Kapitel diskutierten Fehlerfortpflanzungsrechnungen sollten so-
mit lediglich als Maß für die erreichbare Präzision des P2-Experiments bei der Bestimmung
des elektroschwachen Mischungswinkels angesehen werden. Der Zweck der in diesem Kapitel
vorgestellten Berechnungen lag in der Minimierung von ∆sigŝ

2
Z(Ebeam, θ̄f, δθf), um Ebeam, θ̄f

und δθf zur Konzipierung eines geeigneten Messaufbaus festlegen zu können.

Die nachfolgenden Kapitel sind der Konzipierung des Messaufbaus gewidmet. Im Rahmen
dieser Arbeit wurden umfassende und realitätsnahe Simulationen des P2-Experiments durch-
geführt, die eine Vorhersage für den im Experiment erwarteten Wert von ∆ŝ2

Z gestatten. Die
Resultate dieser Berechnungen werden am Ende von Kapitel 7 vorgestellt.
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6
”
Raytracing“-Simulationen zur Konzipierung des Mes-

saufbaus

Nachdem die Streukinematik zur Durchführung des P2-Experiments in Kapitel 5 festge-
legt worden ist, gilt es, ein grundlegendes Konzept für einen Messaufbau zu entwickeln.
In Abschnitt 4.2 wurden Anforderungen an einen geeigneten Messaufbau formuliert. Da-
bei wurde festgestellt, dass die Asymmetriemessung im P2-Experiment integrierend erfolgen
muss, und daher die nachzuweisenden Elektronen im Endzustand der elastischen Elektron-
Proton-Streuung mithilfe eines solenoidalen oder toroidalen Magnetfelds von Elektronen im
Endzustand des Møller-Streuprozesses separiert werden müssen. Ferner wurde ausgeführt,
dass die Bahnkurven der nachzuweisenden Elektronen im Magnetfeld so gekrümmt werden
müssen, dass der zur Asymmetriemessung vorgesehene Cherenkov-Detektor gegen Brems-
strahlung aus dem 600 mm langen `H2-Target abgeschirmt werden kann.

Als Hilfsmittel zur Konzipierung eines Messaufbaus, der die gestellten Anforderungen erfüllt,
wurde im Rahmen der vorliegenden Arbeit die sogenannte

”
Raytracing-Simulation“ ent-

wickelt. Dabei handelt es sich um eine Computersimulation, deren Hauptaufgabe in der
Berechnung und Visualisierung von Elektron-Bahnkurven in magnetischen Feldern liegt. Die
Idee dabei ist, das effiziente Studium unterschiedlicher Konfigurationen von Targetposition,
Magnetfeld sowie optionaler Detektor-Schilde zu ermöglichen, um ein grundlegendes Kon-
zept für den Messaufbau des P2-Experiments finden zu können.

Das Programm wurde als Geant4-Anwendung [143, 144] entwickelt, wobei ROOT [122] zur
Visualisierung der Bahnkurven Verwendung findet. Geant4 ermöglicht die realitätsnahe Si-
mulation der Passage von Teilchen durch Materie und elektromagnetische Felder und findet
breite Anwendungsmöglichkeiten in der Kern- und Teilchenphysik, der Luft- und Raum-
fahrttechnik sowie der medizinischen Physik. Die Raytracing-Simulation wurde ebenso wie
Geant4 und ROOT in der Programmiersprache C++ verfasst.

Im Folgenden wird zunächst die Raytracing-Simulation beschrieben, dabei wird auf das Lei-
stungsvermögen und die Limitierungen der Anwendung eingegangen. Im Anschluß werden
ausgewählte Resultate einer umfangreichen Studie vorgestellt, welche mithilfe der Raytracing-
Simulation im Rahmen des Konzeptionierungsprozesses des Messaufbaus durchgeführt wur-
de. Dabei werden zwei Konzepte für einen Messaufbau skizziert, und die beiden Konzepte
werden abschließend miteinander verglichen.

6.1 Beschreibung der Simulation

Der Fokus bei der Entwicklung der Raytracing-Simulation lag auf der Berechnung der Bahn-
kurven der im `H2-Target elastisch gestreuten Strahlelektronen in solenoidalen und toroida-
len Magnetfeldern. Hierzu ermöglicht die Anwendung die Berechnung von Magnetfeldkar-
ten bei vorgegebener elektrischer Stromdichteverteilung und gestattet so das Studium einer
Vielzahl von Messaufbau-Konzepten. Um dies auf effiziente Weise zu gewährleisten, ist die
Abstraktion der geometrischen Komponenten eines realen Messaufbaus notwendig. Ferner
wurden Idealisierungen bei der Simulation physikalischer Prozesse vorgenommen. Auf die
Eigenschaften und Limitierungen der Raytracing-Simulation wird im Folgenden eingegan-
gen.
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6.1.1 Vereinfachte Geometrie verschiedener Messaufbauten

In diesem Abschnitt wird erklärt, auf welche Weise die geometrische Definition von Mes-
saufbauten im Rahmen der Raytracing-Simulation erfolgt. Es wurde bewusst eine starke
Abstraktion der in einem realen Experiment vorkommenden Komponenten vorgenommen,
da der Zweck der Simulation in der grundlegenden Konfiguration von Targetposition, Ma-
gnetfeld und Abschirmung des Cherenkov-Detektors liegt.

In einer Geant4-Simulation sind sämtliche geometrischen Objekte in ein sogenanntes
”
Welt-

volumen“ einzubetten. Als Weltvolumen wird in der Raytracing-Simulation ein Kubus mit
Kantenlänge 10 m verwendet, was in etwa den Abmessungen der in Abbildung 34 darge-
stellten MESA-Halle 2 entspricht, in der das P2-Experiment durchgeführt werden wird. Das
Weltvolumen ist mit einem idealen Vakuum versehen. Dies gewährleistet die Berechnung von
Bahnkurven ohne Störung durch Interaktion der Teilchen mit Materie.

Es wird ein rechtshändiges, kartesisches Koordinatensystem verwendet, dessen Ursprung mit
dem geometrischen Schwerpunkt des Weltvolumens zusammenfällt. Die Achsen des Koor-
dinatensystems stehen senkrecht auf den Randflächen des Weltvolumens. Die Richtung der
z-Achse entspricht der Richtung des Elektronenstrahls. Der idealisierte Schwerpunkt eines
simulierten Magnetspektrometers liegt stets im Ursprung des Koordinatensystems, so dass
das Koordinatensystem der zugehörigen Magnetfeldkarte mit dem Koordinatensystem der
Geant4-Simulation identisch ist.

Als geometrische Objekte des Messaufbaus werden in der Simulation das Flüssigwasserstoff-
Target sowie optional Bleischilde modelliert. Das Target des P2-Experiments wird durch
einen Vollzylinder aus `H2 repräsentiert. Der Zylinder bestitzt eine Höhe von 600 mm, wel-
che parallel zur z-Achse verläuft, sowie einen Radius von 25 mm senkrecht zur Strahlachse.
Der geometrische Schwerpunkt des Targetzylinders liegt auf der z-Achse, die z-Koordinate
zTarget der Position des Target-Schwerpunkts kann vom Nutzer der Simulationsanwendung
frei gewählt bzw. im Rahmen mehrerer Simulationsläufe systematisch variiert werden, um
das Studium der Trajektorienverläufe für verschiedene Targetpositionen zu ermöglichen. Zur
Modellierung der Abschirmung des Cherenkov-Detektors gestattet die Raytracing-Simulation
die Definition einer vom Nutzer festzulegenden Anzahl von Hohlkegelstümpfen, deren Sym-
metrieachsen mit der Strahlachse zusammenfallen. Die Verwendung von Hohlkegelstümpfen
ermöglicht die Modellierung der sägezahnförmigen Oberflächenstruktur des Gamma-Schilds,
die in Abbildung 55 zu erkennen ist. Als Material für die Schilde wird in der Simulation
208
82 Pb verwendet.

Auf die geometrische Modellierung von Magnetspektrometern wurde verzichtet; Die Compu-
teranwendung ist darauf ausgelegt, eine Vielzahl von Magnetfeldkarten zu unterstützen, um
das Studium unterschiedlicher Spektrometer hinsichtlich ihrer Eignung zur Durchführung des
P2-Experiments zu ermöglichen. Das Programm gestattet jedoch die Veranschaulichung der
Abmessungen von Solenoid- und Toroid-Spektrometern im Rahmen der Visualisierung der
Elektron-Bahnkurven. Es wurde ebenfalls auf die Modellierung des zur Asymmetriemessung
angedachten Cherenkov-Detektors verzichtet, da die Simulation dazu gedacht ist, geeignete
Detektorpositionen ausfindig zu machen. Jedoch kann eine mögliche Detektorposition in der
visuellen Ausgabe des Programms zum Zweck der Veranschaulichung dargestellt werden.
Abbildung 69 zeigt Beispiele für geometrische Konfigurationen in der Raytracing-Simulation
bestehend aus Target, Magnetspektrometer, Cherenkov-Detektor und Abschirmung des De-
tektors.
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Target
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Abbildung 69: Beispiele für geometrische Konfigurationen, die mit der Raytracing-Simulation
untersucht werden können. Die Bilder zeigen Projektionen auf die x-z-Ebene des in der Simu-
lation verwendeten Koordinatensystems. Im linken Bild ist eine Konfiguration aus Targetvo-
lumen, Solenoid-Spektrometer, Detektor- und Bleiabschirmung dargestellt. Das rechte Bild
zeigt eine entsprechende Konfiguration mit einem Toroid-Spektrometer. Zwar werden die
Spektrometer und Detektoren in der Simulation nicht als geometrische Objekte modelliert,
sie können in der graphischen Ausgabe des Programms dennoch zur besseren Veranschauli-
chung dargestellt werden.

6.1.2 Simulation elastischer Streuprozesse im Target

Es wurden zwei Ereignisgeneratoren zur Simulation der elastischen Elektron-Proton- und
Elektron-Elektron-Streuung im `H2-Target entwickelt. Unter einem Ereignisgenerator ver-
steht man in diesem Zusammenhang einen Algorithmus, der zur Simulation eines physika-
lischen Prozesses dient. In der Simulation werden Elektronen im Endzustand des jeweiligen
Streuprozesses an fest vorgegebenen Punkten innerhalb des Targetvolumens von den Er-
eignisgeneratoren erzeugt. Die Berechnung der Endzustände erfolgt unter Vernachlässigung
von Strahlungskorrekturen. In diesem Fall liegt die Streukinematik fest, wenn die Energie
Ei des Elektrons im Anfangszustand des Prozesses und der Polarwinkel θf des Elektrons im
Endzustand relativ zur Impulsrichtung des Elektrons im Anfangszustand bekannt ist.

Die Ereignisgeneratoren präparieren die Endzustände der Elektronen an drei fest vorgege-
benen Punkten im Target, die somit als Ausgangspunkte der Trajektorien fungieren. Als
Ausgangspunkte der Elektron-Bahnkurven, die im Folgenden auch als

”
Primärvertices“ be-

zeichnet werden, dienen ein Punkt am Anfang, in der Mitte und am Ende des Targets, wobei
alle drei Punkte auf der Strahlachse liegen. Die Wahl der Primärvertices ist in Abbildung 70
veranschaulicht. Durch diese Wahl der Primärvertices wird die Ausdehnung des `H2-Targets
entlang der z-Achse in der Simulation berücksichtigt. Dabei werden Positions- und Winkel-
ablagen des Elektronenstrahls durch die Wechselwirkung mit dem Target vernachlässigt, um
statistische Fluktuationen der Anfangszustands-Variablen der Streuprozesse zu vermeiden.

An jedem der drei Ausgangspunkte im Target wird ein Bündel von Elektron-Trajektorien
für jeden der beiden Streuprozesse generiert. Der Azimutwinkel φf der Elektronen im End-
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Abbildung 70: Zur Veranschaulichung der Funktionsweise der Ereignisgeneratoren. Darge-
stellt ist das zylinderförmige Targetvolumen in Blau, die z-Achse des Koordinatensystems
sowie die drei Primärvertices in Gelb, an denen sämtliche Trajektorien in der Simulation
ihren Anfang nehmen. An jedem der drei Primärvertices wird für jeden der beiden Streu-
prozesse ein Trajektorienbündel in das Streuwinkelintervall δθf generiert, welches durch die
roten Linien angedeutet ist. Es wird ein konstanter Energieverlust dE/dz der Strahlelek-
tronen im Target angenommen. Die Ausdrücke für die Energien Ei der Elektronen in den
Anfangszuständen der zu simulierenden Streuprozesse an den drei Primärvertices sind in der
Abbildung angeführt.

zustand des jeweiligen Prozesses wird dabei vom Nutzer der Anwendung zu Beginn eines
Simulationslaufs auf einen konstanten Wert festgelegt. Für die Polarwinkel der Bahnkurven
eines Trajektorien-Bündels werden diskrete, äquidistante Werte innerhalb eines Intervalls
δθf = [θmin

f , θmax
f ] gewählt. θmin

f , θmax
f sowie die Polarwinkeldifferenz ∆θf zwischen zwei simu-

lierten Bahnkurven eines Bündels werden vom Anwender definiert. Für den Polarwinkel der
i-ten Bahnkurve eines Bündels gilt somit:

(θf)i = θmin
f + (i− 1) ·∆θf, (242)

wo i = 1, 2, . . . , N und N ≡ (θmax
f − θmin

f )/∆θf + 1. Für die beiden Streuprozesse können die
Polarwinkelintervalle und Polarwinkeldifferenzen unterschiedlich gewählt werden, sie sind
jedoch an den drei Primärvertices für einen Streuprozess stets gleich groß. Abbildung 70
veranschaulicht die Erzeugung von Trajektorien-Bündeln an den Ausgangspunkten im Tar-
getvolumen.

Die Energie Ef im Endzustand des jeweiligen Streuprozesses wird der Energie Ei im An-
fangszustand sowie dem Streuwinkel θf gemäß gewählt, wobei der mittlere Energieverlust
der Strahlelektronen im Target berücksichtigt wird. Um Energieverluste der Strahlelektro-
nen durch Kollisionen und die Erzeugung von Bremsstrahlung zu simulieren, wird Ei in
Abhängigkeit von der Strahlenergie Ebeam und der Eindringtiefe l der Strahlelektronen ins
Target wie folgt berechnet:

Ei = Ebeam − l ·
dE

dz
, (243)

125



wo dE/dz ≈ 0,4 MeV/cm für den mittleren Energieverlust von Elektronen in `H2 für
Strahlenergien Ebeam ∼ 155 MeV gesetzt wurde, und l ∈ {0, L/2, L} mit der Targetlänge
L = 600 mm ist. Im Fall der elastischen Elektron-Proton-Streuung wird die Energie Ef des
Elektrons im Endzustand mittels Gleichung 34 berechnet. Im Fall des Møller-Streuprozesses
gilt

Ef = mec
2 · Ei +mec

2 + (Ei −mec
2) · cos2(θf)

Ei +mec2 − (Ei −mec2) · cos2(θf)
. (244)

Der Energieverlust der Elektronen in Flüssigwasserstoff nach der Streuung wird in der
Raytracing-Simulation nicht berücksichtigt, um statistische Fluktuationen der Elektron-
Impulse bei der Berechnung der Bahnkurven in `H2 zu vermeiden.

6.1.3 Berechnung von Magnetfeldkarten

Im Rahmen der Entwicklung der Raytracing-Simulation wurde ein Algorithmus implemen-
tiert, der die Berechnung von Magnetfeldkarten für gegebene solenoidale oder toroidale
elektrische Stromdichteverteilungen ermöglicht. Die Berechnung der Feldkarten erfolgt un-
abhängig von der Simulation der Elektron-Bahnkurven. Die Feldkarten werden gespeichert
und während der Berechnung der Bahnkurven abgefragt.

Als Grundlage zur Berechnung des magnetischen Feldes ~B(~x) am Ort ~x innerhalb des Welt-
volumens dient die integrale Form des Biot-Savart’schen Gesetzes für einen vom elektrischen
Strom I durchlossenen Leiter der Länge L, welcher sich im Vakuum befindet:

~B(~x) =
µ0

4π
· I ·

L∫
0

d~x′ × ~x− ~x′

‖~x− ~x′‖3 , (245)

wobei µ0 = 4π · 10−7 N/A2 die magnetische Feldkonstante ist.

Eine linienförmige solenoidale oder toroidale Stromdichteverteilung kann mittles einer einzi-
gen, reellen Variable λ ∈ [λmin, λmax] parametrisiert werden, so dass

d~x′ =

(
∂~x′

∂λ

)
dλ (246)

gilt. Damit ergibt sich für die n-te Komponente des Magnetfeldes Bn(~x) aus Gleichung (245)
folgender Ausdruck:

Bn(~x) =
µ0

4π
· I ·

3∑
l,m=1

 λmax∫
λmin

dλ

[
εlmn

(
∂x′l
∂λ

)
xm − x′m
‖~x− ~x′‖3

] , (247)

wobei εlmn der vollständig antisymmetrische Tensor in drei Dimensionen ist. Die zur Bestim-
mung von Bn(~x) notwendige Integration wird numerisch unter Verwendung der zusammen-
gesetzten Sehnentrapezformel (209) ausgeführt. Gleichung (247) stellt in mehrfacher Hin-
sicht eine Idealisierung dar. Retardierungseffekte werden nicht berücksichtigt, was eine gute
Näherung darstellt, da die Ausdehnung des Raumbereichs, für den die Feldkarte berechnet
wird, die Größenordnung O(10 m) besitzt. Ferner werden die Stromdichten der Feldspulen als
linienförmig angenommen. Da das Feld zur Simulation des P2-Experiments in hinreichend
großem Abstand von den Stromdichteverteilungen benötigt wird, stellt dies eine hinreichend

126



Spulenlänge L 22,5 km

Spulenlänge in z-Richtung Lz 3300 mm

Spulenradius R 1200 mm

Spulenstrom I 725 A

rmin rmax ∆r

0 mm 2000 mm 10 mm

zmin zmax ∆z

0 mm 5000 mm 10 mm

Tabelle 10: Zur Berechnung der solenoidalen Feldkarte verwendete Parameter. Die Parameter
wurden den Spezifikationen des FOPI-Solenoiden [114] entsprechend gewählt.

gute Näherung dar. Darüber hinaus werden Magnetisierungseffekte der Materialien in realen
Messaufbauten vernachlässigt. Somit wird etwa der Effekt eines Eisenjochs zur Verstärkung
eines Magnetfelds und zur Reduktion von Randfeldern bei den Berechnungen der Feldkarten
nicht berücksichtigt.

Im Folgenden werden die verwendeten Parametrisierungen der elektrischen Stromdichten
sowie ausgewählte Feldkarten, die mithilfe des Algorithmus berechnet wurden, vorgestellt.

6.1.3.1 Solenoidales Magnetfeld Die Ortskurve der elektrischen Stromdichte eines
Solenoiden kann durch eine Spirale beschrieben werden, wie sie in Abbildung 71 dargestellt
ist. Für den Ortsvektor ~x′ einer Spirale mit n Windungen, Radius R sowie der Ausdehnung
Lz und der Verschiebung z0 entlang der z-Achse gilt:

~x′(λ) =

 R · cos(λ)
R · sin(λ)

Lz · λ/(2πn) + z0

 , (248)

wobei λ ∈ [0, 2πn] ist. Entsprechend folgt für die Ableitung von x′ nach λ:(
∂~x′

∂λ

)
(λ) =

−R · sin(λ)
R · cos(λ)
Lz/(2πn)

 (249)

Abbildung 71: Zur Veranschaulichung der Parametrisierung einer solenoidalen Stromdich-
teverteilung mittels einer Spirale. In der Darstellung gilt für die Verschiebung der Spirale
entlang der z-Achse z0 = 0, so dass einer der Endpunkte der Spirale in der x-y-Ebene liegt.
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Abbildung 72: Resultate der Feldkartenberechnung für die in Tabelle 10 gegebenen Parame-
ter. Die Parameter wurden so gewählt, dass sie den Spezifikationen des FOPI-Solenoiden ent-
sprechen. Es sind die Komponenten des Magnetfelds in Abhängigkeit von der z-Koordinate
und dem Abstand r von der Strahlachse dargestellt. Oben links ist die Komponente Bz des
Feldes in Strahlrichtung, oben rechts die zur Strahlachse senkrechte Radialkomponente Br

und unten die Azimutalkomponente Bφ dargestellt.

Bei der Berechnung der Feldkarte wird im Folgenden Rotationssymmetrie des Feldes um die
z-Achse angenommen. Dies stellte eine gute Näherung dar, da die Anzahl der Windungen pro
Wegstück entlang der Strahlachse sowie die Ausdehnung der Spirale entlang der z-Achse für
alle betrachteten Stromdichten hinreichend groß ist. Es genügt in diesem Fall, das Magnetfeld
in Abhängigkeit vom Abstand r von der z-Achse und der z-Koordinate zu berechnen. Als r-
z-Ebene wird o. B. d. A. die x-z-Ebene gewählt. Die r-z-Ebene wird mit einem rechteckigen
Punktgitter überdeckt, und das Magnetfeld wird an den Gitterpunkten mittels Gleichung
(247) berechnet. rmin und rmax geben dabei Anfang und Ende des räumlichen Bereichs, in
dem die Feldberechnungen ausgeführt werden, in radialer Richtung an. ∆r ist der Abstand
zwischen zwei Gitterpunkten in r-Richtung. Die Segmentierung entlang der z-Achse wird in
Analogie hierzu durch zmin, zmax und ∆z festgelegt. Das Magnetfeld wird an Gitterpunkten
mit den Koordinaten ri = rmin + ∆r · (i + 0, 5) und zj = zmin + ∆z · (j + 0, 5) bestimmt,
wobei i, j ∈ N0. Das Magnetfeld wird in den Zellen des Raumgitters als konstant betrachtet.
z0 wird so gewählt, dass der geometrische Schwerpunkt der Spule mit dem Koordinatenur-
sprung zusammenfällt. Es genügt in diesem Fall, die Berechnungen nur für positive z-Werte
durchzuführen, da dann Br(z, r) = −Br(−z, r) und Bz(z, r) = Bz(−z, r) gilt.

Im Folgenden wird das Ergebnis einer Feldkartenberechnung vorgestellt. Für diese wurden die
in Tabelle 10 angegebenen Parameter verwendet. Die Werte wurden an die Spezifikationen
des im FOPI-Experiment [114] verwendeten Solenoiden angepasst, um dessen Verwendbar-
keit im Rahmen des P2-Experiments studieren zu können. Die Berechnung der Magnetfeld-
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karte wurde auf 24 Prozessorkernen parallel ausgeführt, die Zeitdauer zu deren Ausführung
betrug ca. 48 Stunden. Abbildung 72 zeigt die Resultate der Berechnungen. Wie aufgrund der
Spezifikationen des FOPI-Magneten erwartet, ergibt sich im zentralen Bereich der Spule ein
nahezu homogenes Magnetfeld der Stärke Bz ≈ 0,6 T. Die Feldstärke nimmt zu den Rändern
der Spule hin rasch ab, so dass das Feld außerhalb des für die Berechnungen gewählten
Raumbereiches in guter Näherung mit ~B = ~0 angenähert werden kann. Br ist im Innenbe-
reich der spiralförmigen Stromdichte erwartungsgemäß klein im Vergleich zur z-Komponente
des Magnetfeldes und wächst in den Randbereichen der Spirale mit zunehmendem Radius
betragsmäßig an. Die azimutale Komponente Bφ des Feldes ist im Vergleich zu den anderen
Feldkomponenten vernachlässigbar klein, was ebenfalls der Erwartung für das Magnetfeld
eines Solenoiden entspricht.

6.1.3.2 Toroidales Magnetfeld Zur Modellierung eines toroidalen Magnetfelds in der
Raytracing-Simulation wird die in Abbildung 73 veranschaulichte Stromdichteverteilung ver-
wendet. Die Stromdichteverteilung kann mittels einer einzigen Variablen λ ∈ R parametri-
siert werden. Für den Ortsvektor ~x′i,j(λ) der i-ten Rennbahnlinie in der j-ten Spule gilt:

~x′i,j(λ) = D(φj)~ki(λ), (250)

wo i = 1, 2, . . . , n und j = 1, 2, . . . , N . N = 8 bezeichnet die Anzahl der Spulen, n = 13 ist
die Anzahl der rennbahnförmigen Stromdichten pro Spule. In Gleichung 250 ist

D(φj) =

cosφj − sinφj 0
sinφj cosφj 0

0 0 1

 (251)

die Matrixdarstellung einer aktiven Drehung um den Winkel φj = π/8 + (j− 1) ·π/4 um die

z-Achse und ~ki(λ) die Ortskurve einer rennbahnförmigen Linie. Für ~ki(λ) gilt

k1
i (λ) =


r0 − ri, 0 ≤ λ < L

r0 + ri · sin
(
λ−L
ri
− π

2

)
, L ≤ λ < L+ π · ri

r0 + ri, L+ π · ri ≤ λ < 2L+ π · ri
r0 + ri · sin

(
λ−2L
ri
− π

2

)
, 2L+ π · ri ≤ λ < 2(L+ π · ri)

, (252)

k2
i (λ) = 0, (253)

und

k3
i (λ) =


z0 − L/2 + λ, 0 ≤ λ < L

z0 + L/2 + ri · cos((λ− L)/ri − π/2), L ≤ λ < L+ π · ri
z0 + 1.5 · L− λ+ πri, L+ π · ri ≤ λ < 2L+ π · ri
z0 − L/2 + ri · cos(λ−2L

ri
− π

2
), 2L+ π · ri ≤ λ < 2(L+ π · ri)

, (254)

wo λ ∈ [0, 2(L+ πri)]. In den Beziehungen (252) bis (254) ist z0 der Abstand zwischen
den räumlichen Schwerpunkten des Flüssigwasserstoff-Targets und der gesamten elektrischen
Stromdichte, r0 der Abstand des Mittelpunktes der Rennbahnlinien von der z-Achse, ri der
Krümmungsradius der halbkreisförmigen Segmente der i-ten Rennbahnlinie und L die Länge
der zur z-Achse parallelen Segmente der Rennbahnlinien. Die soeben genannten Parameter
sind in Abbildung 73 veranschaulicht. Die Komponenten des Tangentialvektors der Parame-
trisierung erhält man durch Ableiten von (252), (253) und (254) nach λ:
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Abbildung 73: Vereinfachte Darstellung der elektrischen Stromdichteverteilung, die zur Mo-
dellierung der Feldkarte eines Toroiden verwendet wurde. Es wurden acht Spulen modelliert,
welche konzentrisch um die Strahlachse (z-Achse) herum angeordnet sind. Auf der linken
Seite sind vier dieser Spulen in verschiedenen Farben dargestellt. Zwei Spulen schließen je-
weils einen Winkel von 45◦ in azimutaler Richtung ein. Jede der acht Stromdichten setzt
sich aus 13 rennbahnförmigen Linien zusammen. Auf der rechten Seite ist eine Spule, die aus
drei Rennbahnlinien besteht, zur Veranschaulichung dargestellt. Die i-te Rennbahnlinie wird
durch den Abstand z0 vom Targetmittelpunkt, den Abstand r0 des geometrischen Schwer-
punkts der Spule von der Strahlachse, die Länge L der ungekrümmten Streckenabschnitte
sowie den Krümmungsradius ri der halbkreisförmigen Kurven parametrisiert.

∂k1
i

∂λ
(λ) =


0, 0 ≤ λ < L

cos((λ− L)/ri − π/2), L ≤ λ < L+ π · ri
0, L+ π · ri ≤ λ < 2L+ π · ri
cos((λ− 2L)/ri − π/2), 2L+ π · ri ≤ λ < 2(L+ π · ri)

, (255)

∂k2
i

∂λ
(λ) = 0 (256)

und

∂k3
i

∂λ
(λ) =


1, 0 ≤ λ < L

− sin((λ− L)/ri − π/2), L ≤ λ < L+ π · ri
−1, L+ π · ri ≤ λ < 2L+ π · ri
− sin((λ− 2L)/ri − π/2), 2L+ π · ri ≤ λ < 2(L+ π · ri)

. (257)

Bei der Berechnung des Magnetfelds nach Biot-Savart muss man sukzessive über die Pa-
rametrisierungen der einzelnen Rennbahnlinien, die durch Gleichung (250) gegeben sind,
summieren.

Zur Berechnung der Feldkarte wird der Ortsraum in kubische Volumina mit den Kan-
tenlängen ∆x, ∆y und ∆z segmentiert. Das Magnetfeld wird jeweils an den geometri-
schen Schwerpunkten der kubischen Zellen berechnet. Zur numerischen Berechnung von ~B
gemäß (247) wird die zusammengesetzte Sehnentrapezformel (209) benutzt. Die Berechnun-
gen können aufgrund von Rotations- und Spiegelsymmetrie eines toroidalen Magnetfeldes
auf denjenigen Raumbereich beschränkt werden, in dem x, y, z ≥ 0 gilt.
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Spulenstrom I 17,3 kA
Spulenlänge L 2,2 m
Radiale Verschiebung r0 1 m
Verschiebung entlang Strahlachse z0 0 m
Anzahl Spulen N 8
Anzahl Rennbahnlinien pro Spule n 13
Min. Spulenradius r1 0,235 m
Max. Spulenradius r13 0,75 m

xmin, ymin, zmin 0 m
xmax, ymax, zmax 3 m
∆x,∆y,∆z 0,1 m

Tabelle 11: Zur Berechnung der toroidalen Feldkarte verwendete Parameter. Diese wur-
den den Spezifikationen des QTOR [79] entsprechend gewählt. Die Werte für ri wurden
so gewählt, dass die radialen Abstände der Rennbahnlinien einer Spule identisch sind, daher
werden nur die Werte von r1 und r13 angegeben.
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Abbildung 74: Resultate der Feldkartenberechnungen für eine toroidale Stromdichtevertei-
lung. Es wurden die in Tabelle 11 angeführten Parameter für die Rechnungen verwendet,
welche an die Spezifikationen des QTOR angepasst wurden. Oben links ist die azimutale
Komponente Bφ des Feldes an der Stelle φf = 0◦ in Abhängigkeit von x und z aufgetragen.
Oben rechts ist Bφ an der Stelle z = z0 = 0 m in Abhängigkeit von x und y gezeigt. Die
untere Abbildung zeigt die zur Strahlrichtung parallele Komponente Bz des Feldes an der
Stelle φf = 0◦ in Abhängigkeit von x und z.
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Im Folgenden werden die Resultate einer Feldkartenberechnung vorgestellt. Tabelle 11 listet
die zur Berechnung gewählten Parameter auf. Sie wurden den Spezifikationen des QTOR
entsprechend gewählt, der im QWeak-Experiment [79] zum Einsatz kam. Die Berechnung
der Feldkarte wurde parallel auf 24 Prozessorkernen über einen Zeitraum von ca. 24 Stunden
hinweg ausgeführt. Die Resulate der Berechnungen sind in Abbildung 74 dargestellt. Das
Magnetfeld wird erwartungsgemäß von der azimutalen Komponente Bφ dominiert. Diese
erreicht einen Maximalwert von Bmax

φ ≈ 0,4 T im Bereich zwischen den Spulen. Das Magnet-
feld eines Toroiden ist nicht azimutalsymmetrisch, wie man am Verlauf von Bφ an der Stelle
z = z0 = 0 m in Abhängigkeit von x und y in Abbildung 74 oben rechts erkennen kann. In
der Nähe der Spulen nimmt die Feldstärke zu, was zu den lokalen Maxima in Bφ führt. Die
z-Komponente des Magnetfelds ist gegenüber der azimutalen Komponente vernachlässigbar
klein, wie es für ein toroidales Feld zu erwarten ist. Ein Vergleich der in Abbildung 74 gezeig-
ten Feldkarte mit den von der QWeak-Kollaboration ausgeführten Magnetfeld-Berechnungen
(s. S. 34ff in [79]) ergibt eine gute qualitative Übereinstimmung der beiden Magnetfeldbe-
rechnungen.

6.1.4 Berechnung von Bahnkurven im Magnetfeld

Magnetfeldkarten wie die in Abschnitt 6.1.3 vorgestellten können von der Raytracing-Simulation
verwendet werden, um die Bahnkurven der von den Ereignisgeneratoren erzeugten Elektro-
nen im Endzustand der elastischen Elektron-Proton- und Elektron-Elektron-Streuung zu
berechnen. In diesem Abschnitt wird zunächst erklärt, auf welche Weise die Feldkarten aus-
gewertet werden. Im Anschluß wird erläutert, wie die Bahnkurven der Teilchen von der
Geant4-Anwendung berechnet werden.

6.1.4.1 Evaluation solenoidaler Magnetfeldkarten Die solenoidalen Magnetfeldkar-
ten wurden unter der Annahme azimutaler Symmetrie berechnet. Somit liegt das Magnetfeld
als Funktion des Abstands r von der z-Achse und der z-Koordinate selbst vor:

~B(r, z) = Br(r, z) · ~er +Bφ(r, z) · ~eφ +Bz(r, z) · ~ez, (258)

wo ~er, ~eφ und ~ez die Einheitsvektoren in radialer, azimutaler und z-Richtung sind. Bei vor-
gegebenem Ort ~x zur Evaluation des Magnetfeldes werden zunächst der Radius

r =

√√√√ 3∑
i=1

x2
i , (259)

und der Azimutwinkel
φ = arctan(

x2

x1

) (260)

bestimmt.

Befindet sich ~x innerhalb der räumlichen Grenzen, in welchen die Magnetfeldkarte definiert
ist, so wird der Feldvektor ~B(r, z) aus der Feldkarte ausgelesen und durch eine aktive Drehung

um die z-Achse mit dem Winkel φ auf den gesuchten Vektor ~B(~x) abgebildet:

~B(~x) = λB ·

cos(φ) − sin(φ)
sin(φ) cos(φ)

0 0 1

Br

Bφ

Bz

 (261)
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Dabei ist λB ∈ R eine konstante, welche die globale Skalierung der Magnetfeldstärke in der
Simulation gestattet. Der Wert von λB wird vor der Berechnung der Bahnkurven vom Nutzer
der Anwendung festgelegt und während eines Simulationslaufs konstant gehalten. Auf diese
Weise lassen sich mit der Raytracing-Simulation verschiedene Stromstärken in den Feldspu-
len der Spektrometer simulieren.

Befindet sich der Ort ~x außerhalb der räumlichen Grenzen, in welchen die Feldkarte definiert
ist, so wird ~B(~x) = ~0 gewählt, was eine gute Näherung ist, da die im Rahmen dieser Arbeit
untersuchten Felder zu den Rändern der betrachteten Raumbereiche hin schnell abfallen.

6.1.4.2 Evaluation toroidaler Magnetfeldkarten Die toroidale Feldkarte wurden aus
Symmetriegründen lediglich im Raumbereich xi ≤ 0 mm, i = 1, 2 bestimmt. Ist das Magnet-
feld am Ort ~x innerhalb des Weltvolumens auszuwerten, so wird ~x zunächst durch eine
aktive Drehung mit dem Winkel −φ um die z-Achse in den Raumbereich gedreht, in dem
die Feldkarte berechnet wurde. Der Rotationswinkel φ wird dabei wie folgt bestimmt:

φ =


0, x ≥ 0 mm, y ≥ 0 mm
π
2
, x < 0 mm, y ≥ 0 mm

π, x ≤ 0 mm, y < 0 mm
3
2
π, x > 0 mm, y < 0 mm

(262)

Bei der aktiven Drehung wird ~x auf den Ortsvektor ~x′ abgebildet:

~x′ =

cos(−φ) − sin(−φ) 0
sin(−φ) cos(−φ) 0

0 0 1

x1

x2

x3

 (263)

Anschließend wird die Feldkarte an der Stelle ~x′ evaluiert und der gefundene Feldvektor
~B′(~x′) durch eine aktive Drehung um die z-Achse mit dem Winkel φ auf den gesuchten

Feldvektor ~B(~x) abgebildet:

~B(~x) = λB ·

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

B′1(~x′)

B′2(~x′)

B′3(~x′)

 (264)

In (264) ist λB ∈ R wie im Fall einer solenoidalen Feldkarte ein Skalierungsfaktor zur globalen
Variation der Magnetfeldstärke, welcher zu Beginn eines Simulationslaufs auf einen konstan-
ten Wert festgelegt wird. Durch die Verwendung eines globalen Skalierungsfaktors der Ma-
gnetfeldstärke wird die näherungsweise Simulation unterschiedlicher elektrischer Stromstärken
in den Feldspulen ermöglicht.

Falls der Feldkarte nach der ersten Drehung um −φ kein Feldvektor entnommen werden
kann, weil der rotierte Ortsvektor nicht in dem Raumbereich liegt, in welchem die Karte
definiert ist, so wird dem Magnetfeld der Nullvektor ~B(~x) = ~0 zugewiesen. Dies ist eine gute
Näherung, da das Magnetfeld zu den Rändern des Raumbereichs, in dem es berechnet wurde
(vgl. Abbildung 74), schnell abfällt und nur noch eine geringe relative Stärke besitzt.

6.1.4.3 Numerische Integration der Bewegungsgleichungen Geant4 ermöglicht
die Berechnung von Bahnkurven geladener Teilchen in elektromagnetischen Feldern. Dies
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Abbildung 75: Zur Veranschaulichung der räumlichen Propagation geladener Teilchen in
einem Magnetfeld ~B in der Raytracing-Simulation. Das Teilchen befindet sich zu Beginn des
Propagationsschritts im Zustand A mit dem Impuls ~p und wird in den Zustand E überführt.
Die Bewegungsgleichungen werden numerisch mittels eines Runge-Kutta-Verfahrens gelöst,
dabei wird die wahre Bahnkurve durch Sehnen approximiert.

geschieht im Allgemeinen durch numerische Integration der Bewegungsgleichungen mittels
eines Runge-Kutta-Verfahrens [145, 146]. Dabei wird die wahre, gekrümmte Bahnkurve mit-
hilfe von Sehnen angenähert. Abbildung 75 veranschaulicht die Idee.

Da zur Simulation der Trajektorien außschließlich zeitunabhängige und in den Ortskoor-
dinaten langsam veränderliche Magnetfelder verwendet werden, wird in der Raytracing-
Simulation ein implizites Euler-Verfahren [147] zur numerischen Lösung der Bewegungs-
gleichungen verwendet. Hierbei wird der Umstand ausgenutzt, dass die Bahnkurve eines
geladenen Teilchens in der Umgebung des Ortes ~x, in welcher das Magnetfeld konstant ist,
die Form einer Helix besitzt. Die wahre Bahnkurve wird somit durch helixförmige Sehnen
angenähert. Dieses Verfahren zeichnet sich durch eine hohe Effizienz bei der numerischen
Bestimmung der Trajektorien aus.

Am Ende jedes Propagationsschritts wird die Position des simulierten Teilchens zusammen
mit einer dem Teilchen zugewiesenen Identifikationsnummer abgefragt und gespeichert. Auf
diese Weise können die berechneten Bahnkurven einzelner Teilchen im Anschluß an einen
Simulationslauf rekonstruiert und graphisch dargestellt werden.

Geant4 gestattet die Festlegung der minimalen und maximalen Länge eines Propagations-
schritts in elektromagnetischen Feldern. In der Raytracing-Simulation wird die Länge ` eines
Propagationsschritts auf das Intervall ` ∈ [10 mm, 100 mm] begrenzt. Diese Wahl verhindert
lange Rechenzeiten, indem zu kleine Schrittweiten vermieden werden, und gewährleistet
gleichzeitig eine hinreichend gute Ortsauflösung der Bahnkurven im Magnetfeld, indem
Schrittlängen von mehr als 100 mm verhindert werden.

In der Raytracing-Simulation endet die Berechnung einer Bahnkurve, falls das Elektron
den Rand des Weltvolumens erreicht oder auf eines der vom Anwender definierten Ab-
schirmungsvolumina trifft. Es wird keine physikalische Wechselwirkung mit dem Abschir-
mungsmaterial simuliert, die Elektronen werden, wie in Abbildung 76 dargestellt, an den
Oberflächen der Volumina gestoppt, und die Berechnung der Bahnkurven endet. Auf die
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Abbildung 76: Zur Veranschaulichung der Interaktion der Elektronen mit den Abschirmungs-
volumina: Erreicht ein Elektron von Punkt A kommend die Grenzfläche zwischen Welt- und
einem Abschirmungsvolumen am Punkt B, so wird das Elektron an Punkt B gestoppt und
die Berechnung der Bahnkurve endet.

Simulation weiterer physikalischer Prozesse, welche etwa die Bildung elektromagnetischer
Schauer in Blei bedingen, wurde im Rahmen der Raytracing-Simulation bewusst verzich-
tet, da diese Geant4-Anwendung das Studium der Elektron-Bahnkurven für verschiedene
Messaufbau-Konfigurationen ermöglichen soll, und die Simulation weiterer Prozesse aufgrund
einer möglichen Vielzahl zusätzlicher Bahnkurven zu einer unübersichtlichen graphischen
Ausgabe führen würde.

6.2 Untersuchungen zur Konzipierung des Messaufbaus

In diesem Abschnitt wird die Entwicklung grundlegender Konzepte für den Messaufbau
des P2-Experiments unter Verwendung der Raytracing-Simulation skizziert. Es wurden sy-
stematische Studien durchgeführt, in denen verschiedene Messaufbau-Konfigurationen hin-
sichtlich ihrer Eignung zur Durchführung des Experiments untersucht wurden. Unter einer
Messaufbau-Konfiguration ist die Kombination aus

• Magnetfeld;

• Targetposition;

• Abschirmung;

zu verstehen. Die Raytracing-Simulation wurde entwickelt, um das effiziente Studium unter-
schiedlicher Messaufbau-Konfiguration zu ermöglichen. Es werden im Folgenden Konfigura-
tionen mit einem solenoidalen und einem toroidalen Magnetfeld vorgestellt.

Im weiteren Verlauf dieses Kapitels werden die Resultate der Raytracing-Simulation anhand
folgender Anforderungen beurteilt, die der Messaufbau erfüllen muss, um die erfolgreiche
Durchführung des P2-Experiments zu gewährleisten:

1. Die Trajektorien der im Experiment nachzuweisenden, im Target elastisch unter Win-
keln θf ∈ [25◦, 45◦] an Protonen gestreuten Elektronen müssen durch ein solenoida-
les oder toroidales Magnetfeld räumlich so fokussiert werden, dass sie mittels eines
Cherenkov-Detektors nachgewiesen werden können.

2. Die Trajektorien der nachzuweisenden Elektronen müssen durch das Magnetfeld von
denen der Elektronen im Endzustand des Møller-Streuprozesses separiert werden.
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3. Es soll eine hinreichende räumliche Separation der unter Winkeln θf ∈ [25◦, 45◦] an
Protonen gestreuten Elektronen von den unter anderen Winkeln elastisch an Protonen
gestreuten Elektronen bestehen.

4. Die Bahnkurven der nachzuweisenden Elektronen müssen im Magnetfeld so gekrümmt
werden, dass eine Abschirmung des Cherenkov-Detektors gegen Bremsstrahlung aus
dem Target möglich ist.

5. Die Platzvorgaben für den Messaufbau des P2-Experiments innerhalb der MESA-
Forschungseinrichtung müssen respektiert werden. Der Messaufbau muss in MESA-
Halle 2 untergebracht werden können, dabei soll in der Halle ausreichend Platz für die
Strahlführung und Instrumentierung von MESA verbleiben. Ferner soll der Strahlfänger
des A4-Experiments für das P2-Experiment wiederverwendet werden.

Die ersten vier Punkte sollen eine möglichst untergrundfreie, integrierende Messung der pa-
ritätsverletzenden Asymmetrie der elastischen Elektron-Proton-Streuung mit der in Kapitel
5 festgelegten Streukinematik ermöglichen. Es gilt, die Position des Targets relativ zum si-
mulierten Magnetspektrometer sowie die Magnetfeldstärke so zu wählen, dass die Punkte
1 bis 4 erfüllt werden. Punkt Nr. 5 beschränkt dabei die maximal zulässigen Abmessungen
des Messaufbaus. Die Höhe der Strahlführung zur Durchführung des A4-Experiments be-
trug 1950 mm, die Höhe der Strahlführung von MESA wird voraussichtlich mit diesem Wert
vergleichbar sein.

6.2.1 Konzept für einen Messaufbau mit solenoidalem Magnetfeld

Die P2-Kollaboration plant den Einsatz eines Solenoiden, dessen Abmessungen und Eigen-
schaften demjenigen Magneten entsprechen, welcher im FOPI-Experiment [114] eingesetzt
wurde. Die in Abbildung 72 gezeigte Magnetfeldkarte, die unter Anwendung des in Gleichung
(247) gegebenen Biot-Savart’schen Gesetzes bestimmt wurde, ist im Rahmen erster Untersu-
chungen zur Nutzbarkeit eines entsprechenden Solenoiden eingesetzt worden. Die Resultate
dieser Voruntersuchungen werden im weiteren Verlauf nicht diskutiert; die P2-Kollaboration
verfügt über die in Abbildung 50 gezeigte Feldkarte des FOPI-Solenoiden, welche von der
FOPI-Kollaboration mit freundlicher Genehmigung zur Verfügung gestellt wurde. Im Fol-
genden wird dargestellt, auf welche Weise das grundlegende Konzept für einen Messaufbau
unter Verwendung der Feldkarte des FOPI-Solenoiden mithilfe der Raytracing-Simulation
erstellt wurde.

Es wurden die Bahnkurven der im Target elastisch gestreuten Elektronen im Magnetfeld si-
muliert, wobei die z-Koordinate des geometrischen Targetschwerpunkts zTarget und der Faktor
λB, der in Gleichung (261) eingeführt wurde, zur globalen Skalierung der Feldkarten-Werte
systematisch variiert wurden. Die Targetposition wurde im Intervall zTarget ∈[zmin

Target, z
max
Target]

mit der Schrittweite ∆zTarget variiert. Der Skalierungsfaktor der Magnetfeldstärke wurde im
Intervall λB ∈ [λmin

B , λmax
B ] mit der Schrittweite ∆λB variiert. Von jedem der drei in Abbildung

70 dargestellten Primärvertices im Targetvolumen ausgehend wurden Elektronen im Endzu-
stand der elastischen Elektron-Proton-Streuung sowie der Møller-Streuung generiert. Dabei
wurden die Streuwinkel in Intervallen θf ∈ [θmin

f , θmax
f ] mit Winkeldifferenzen ∆θf gewählt.

Für beide Streuprozesse wurde φf = 0◦ gesetzt. Zur besseren Veranschaulichung der Situati-
on im Experiment werden in der Visualisierung der Trajektorien an der z-Achse gespiegelte
Projektionen der Bahnkurven hinzugefügt. In Tabelle 12 sind die Werte der zur Simulation
der Bahnkurven verwendeten Parameter zusammengefasst. In der Summe wurden 465 ver-
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Strahlenergie:
Ebeam 155 MeV

Targetposition:
zmin

Target zmin
Target ∆zTarget

−3000 mm 0 mm 100 mm

Magnetfeldstärke:
λmin

B λmax
B ∆λB

0,1 1,5 0,1

Streuwinkel, e-p-Streuung:
θmin

f θmax
f ∆θf

1◦ 179◦ 2◦

Streuwinkel, Møller-Streuung:
θmin

f θmax
f ∆θf

0◦ 90◦ 2◦

Tabelle 12: Parameter-Werte, die für die systematische Studie unterschiedlicher Messaufbau-
Konfigurationen mit einem Solenoid-Spektrometer verwendet wurden.

schiedene Konfigurationen aus Targetposition und Magnetfeldstärke simuliert.

Die Verläufe der Trajektorien sind für ähnliche Werte von (zTarget, λB) im Allgemeinen
ähnlich. Daher wird die Diskussion der Resultate der Simulationsläufe auf diejenigen Be-
schränkt, welche jeweils für eine Teilmenge der simulierten Konfigurationen repräsentativ
sind.

Es werden zunächst Resultate für unterschiedliche Targetpositionen bei festgehaltener Ma-
gnetfeldstärke betrachtet. Abbildung 77 zeigt Resulate der Raytracing-Simulation für λB =
1, 0, was Bmax

z ≈ 0,6 T im zentralen Raumbereich des Spektrometers entspricht.

Teil (a) der Abbildung wurde für zTarget = −3000 mm erstellt. Das Target befindet sich in
diesem Fall zu weit von dem Solenoiden entfernt, so dass die nachzuweisenden Elektronen
nicht hinreichend stark im Magnetfeld abgelenkt werden. Für den Krümmungsradius rc eines
Elektrons in einem homogenen Magnetfeld ~B gilt

rc =
pe

e ·B, (265)

wobei im Falle stark relativistischer Elektronen für den Impuls pe ≈ Ef/c gilt. Der Krümmungsradius
der Bahnkurve ist somit näherungsweise proportional zur Energie Ef der Elektronen nach
der Streuung im Target und antiproportional zur Stärke des Magnetfelds. Im Inneren des
Solenoiden gilt in grober Näherung ~B ≈ Bz~ez, so dass vornehmlich die zur Strahlrichtung
senkrechte Komponente des Impulses im Magnetfeld rotiert. Dies führt dazu, dass sich Elek-
tronen entlang helixähnlicher Bahnkurven bewegen. Da bei Streuwinkeln θf > 5◦ die Energien
im Endzustand der Møller-Streuung viel niedriger sind als im Fall der elastischen Elektron-
Proton-Streuung, sind die Helix-Radien für die Møller-gestreuten Elektronen viel kleiner als
für die elastisch an Protonen gestreuten Elektronen. Daher bleiben die Møller-Elektronen
im Raumbereich mit ausreichend großem Magnetfeld in der Nähe der Strahlachse, was zu
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Abbildung 77: Resultate der Raytracing-Simulation für λB = 1, 0 und verschiedene Werte
von zTarget. Es ist die Projektion der Elektron-Bahnkurven auf die x-z-Ebene dargestellt. Die
Skalen der Koordinatenachsen wurden isometrisch gewählt, so dass die Abbildungen das Mes-
sen von Winkeln erlauben. Das `H2-Target ist in Blau gezeichnet, der Solenoid ist durch das
rote Rechteck angedeutet. Die Bahnkurven der Elektronen aus elastischer Elektron-Proton-
Streuung mit Streuwinkeln θf ∈ [25◦, 45◦] sind magentafarben gezeichnet. Diese Elektronen
sind im Experiment nachzuweisen. Schwarz dargestellt sind die Bahnkurven von Elektronen
aus elastischer Elektron-Proton-Streuung mit anderen Streuwinkeln. Die Trajektorien der
Elektronen im Endzustand des Møller-Streuprozesses sind orange eingefärbt. Die Diskussion
der gezeigten Resultate findet sich im Text.
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einer räumlichen Separation der Elektronen aus den beiden Streuprozessen führt. In Teil
(a) von Abbildung 77 erkennt man ferner, dass die z-Komponente des Impulses einiger der
Møller-Elektronen durch die Radialkomponente des Magnetfelds so beeinflusst wird, dass die
Elektronen sich entgegengesetzt zur Strahlrichtung bewegen. Im demjenigen Raumbereich,
in dem |z| > 3000 mm ist, bewegen sich die Elektronen auf geradlinigen Bahnen, da für

diesen Bereich keine Feldkarte vorliegt und daher ~B = ~0 gesetzt wurde.

In Teil (b) von Abbildung 77 gilt zTarget = −1100 mm. Hier werden mit einer Ausnahme alle
Trajektorien der im Experiment nachzuweisenden Elektronen im Magnetfeld so stark abge-
lenkt, dass sie die Feldspulen des Solenoiden nicht durchqueren. Für zTarget ≥ −1000 mm
werden dann sämtliche Bahnkurven der elastisch an Protonen unter Winkeln θf ∈ [25◦, 45◦]
so stark abgelenkt, dass sie die Feldspulen nicht treffen, wie man in Teil (c) von Abbildung 77
erkennen kann. Insbesondere verlaufen die Trajektorien der im Experiment nachzuweisenden
Elektronen für z ≥ 1500 mm großteils nahezu parallel zur Strahlachse und sind auf ein Inter-
vall mit r ∈ [450 mm, 950 mm] in radialer Richtung gebündelt. Es besteht in diesem Raumbe-
reich eine gute Separation der nachzuweisenden Elektronen von den Møller-Elektronen. Die
dargestellten Projektionen der Bahnkurven der nachzuweisenden Elektronen werden im Ma-
gnetfeld hireichend stark gekrümmt, so dass die Konzipierung einer Abschirmung möglich ist.

Für zTarget ≥ −700 mm und λB = 1, 0 entfernen sich die nachzuweisenden Elektronen im
Randfeld des Solenoiden wieder von der Strahlachse, wie man in Teil (d) von Abbildung 77
erkennen kann. Zwar verbessert sich die räumliche Separation zwischen den nachzuweisen-
den Elektronen und den Untergrundteilchen gegenüber der in Teil (c) dargestellten Situation,
jedoch werden die projizierten Bahnkurven der nachzuweisenden Elektronen weniger stark
durch das Magnetfeld gekrümmt, so dass die Konzipierung einer Abschirmung für zu große
Werte von zTarget nicht mehr möglich ist.

Im Folgenden werden Resultate für unterschiedliche Skalierungsfaktoren der Magnetfeldstärke
betrachtet, wobei die Targetposition bei zTarget = −700 mm festgehalten wird. Abbildung 78
zeigt die Projektionen der Bahnkurven.

In Teil (a) der Abbildung beträgt λB = 0, 5. Dies entspricht einer maximalen Feldstärke
von Bmax

z ≈ 0,3 T im Zentrum des Solenoiden. Es besteht eine gute räumliche Separati-
on zwischen den elastisch an Protonen gestreuten Elektronen und denen aus dem Møller-
Streuprozess. Diese Konfiguration ist zur Konzipierung eines Messaufbaus nicht geeignet,
da die im Experiment nachzuweisenden Elektronen nicht hinreichend stark im Magnetfeld
abgelenkt werden, um einen Detektor so platzieren und abzuschirmen zu können, dass die
Sichtlinie zwischen Detektor und Target durch die Abschirmung unterbrochen ist.

Teil (b) von Abbildung 78 zeigt die Trajektorien-Verläufe für λB = 0, 9, was Bmax
z ≈ 0,54 T

entspricht. Von den simulierten nachzuweisenden Elektronen durchqueren lediglich diejeni-
gen unter θf = 45◦ im Target gestreuten den Bereich der Feldspulen des Solenoiden, die
anderen nachzuweisenden Elektronen werden hinreichend stark im Magnetfeld abgelenkt.

Abbildung 78 (c) zeigt Simulationsergebnisse für zTarget = −700 mm und λB = 1, 1 bzw.
Bmax
z ≈ 0,66 T. Für diese Wahl der Feldstärke nähert sich das magentafarben gezeichnete

Trajektorien-Bündel der nachzuweisenden Elektronen nach dem Passieren des Solenoiden
wieder der Strahlachse an.

139



 z/mm
4000− 3000− 2000− 1000− 0 1000 2000 3000

 x
/m

m

4000−

3000−

2000−

1000−

0

1000

2000

3000

4000

Solenoid

 = 0.5Bλ = -700 mm, 
Target

 = 155 MeV, zbeamE

 [25 deg, 45 deg]∈ θe-p-Streuung, 

 [25 deg , 45 deg]∉ θe-p-Streuung, 

 [1 deg , 90 deg]∈ θe-e-Streuung, 

Target

(a)

 z/mm
4000− 3000− 2000− 1000− 0 1000 2000 3000

 x
/m

m
4000−

3000−

2000−

1000−

0

1000

2000

3000

4000

Solenoid

 = 0.9Bλ = -700 mm, 
Target

 = 155 MeV, zbeamE

 [25 deg, 45 deg]∈ θe-p-Streuung, 

 [25 deg , 45 deg]∉ θe-p-Streuung, 

 [1 deg , 90 deg]∈ θe-e-Streuung, 

Target

(b)

 z/mm
4000− 3000− 2000− 1000− 0 1000 2000 3000

 x
/m

m

4000−

3000−

2000−

1000−

0

1000

2000

3000

4000

Solenoid

 = 1.1Bλ = -700 mm, 
Target

 = 155 MeV, zbeamE

 [25 deg, 45 deg]∈ θe-p-Streuung, 

 [25 deg , 45 deg]∉ θe-p-Streuung, 

 [1 deg , 90 deg]∈ θe-e-Streuung, 

Target

(c)

 z/mm
4000− 3000− 2000− 1000− 0 1000 2000 3000

 x
/m

m

4000−

3000−

2000−

1000−

0

1000

2000

3000

4000

Solenoid

 = 1.5Bλ = -700 mm, 
Target

 = 155 MeV, zbeamE

 [25 deg, 45 deg]∈ θe-p-Streuung, 

 [25 deg , 45 deg]∉ θe-p-Streuung, 

 [1 deg , 90 deg]∈ θe-e-Streuung, 

Target

(d)

Abbildung 78: Resultate der Raytracing-Simulation für zTarget = −700 mm und verschiedene
Werte von λB. Gezeigt sind die Projektionen der simulierten Trajektorien auf die x-z-Ebene.
Die Skalen der x- und z-Achse wurden isometrisch gewählt. Das `H2-Target ist blau darge-
stellt, der zur Teilchenpropagation verfügbare Innenraum des FOPI-Solenoiden ist durch das
rote Rechteck angedeutet. Die im Experiment nachzuweisenden Elektronen im Endzustand
der elastischen Elektron-Proton-Streuung sind magentafarben dargestellt, die Bahnkurven
von Elektronen, welche unter Streuwinkeln θf /∈ [25◦, 45◦] an Protonen gestreut wurden,
sind schwarz gezeichnet. Die orangefarbenen Trajektorien ergeben sich für Elektronen im
Endzustand des Møller-Streuprozesses. Die Diskussion der Resultate findet sich im Text.

Teil (d) der Abbildung zeigt Resultate der Simulation für λB = 1, 5, was Bmax
z ≈ 0,9 T ent-

spricht. In diesem Fall werden die Bahnkurven im Magnetfeld so stark abgelenkt, dass keine
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Abbildung 79: Konzept für den Messaufbau unter Verwendung eines FOPI-ähnlichen
Solenoid-Spektrometers. Dargestellt sind die Projektionen der Bahnkurven auf die x-z-
Ebene. Die Skalen der Achsen sind isometrisch. Das `H2-Target ist in Blau dargestellt, der
zur Teilchenpropagation verfügbare Innenraum des Solenoiden wird durch das rote Rechteck
angezeigt. Die Bahnkurven der im Experiment nachzuweisenden Elektronen mit Streuwin-
keln θf ∈ [25◦, 45◦] sind in Magenta gezeichnet, die Trajektorien von Elektronen aus ela-
stischer Elektron-Proton-Streuung mit anderen Streuwinkeln sind schwarz dargestellt. Die
Bahnkurven von Elektronen aus dem Møller-Streuprozess sind in Orange gehalten. Die nach-
zuweisenden Elektronen werden in einem Cherenkov-Ringdetektor aus hochreinem Quarz-
glas nachgewiesen, dessen aktive Volumina in Grün dargestellt sind. Zur Konvertierung des
Cherenkov-Lichts kommen Photomultiplier zum Einsatz, die in Blau gezeichnet sind. Die
Photomultiplier werden von einem Bleischild gegen Strahlung geschützt. Ein weiterer, mas-
siver Bleischild schirmt den Detektor gegen Bremsstrahlung aus dem Target ab, indem er die
Sichtlinien zwischen Target und Detektor unterbricht. Die Bleiabschirmungen sind in Grau
gezeichnet.

von ihnen den Bereich der Feldspulen kreuzt. Die nachzuweisenden Elektronen entfernen
sich innerhalb des Solenoiden nur ca. 600 mm weit von der Strahlachse und führen einen
vollständigen Umlauf im Azimutwinkel φ aus, bevor sie sich im Randfeld des Solenoiden von
der Strahlachse entfernen. Eine derartige Konfiguration bietet aufgrund des geringen ma-
ximalen Abstands, den die nachzuweisenden Elektronen von der Strahlachse erreichen, nur
wenig Platz, um einen Detektor sowie eine geeignete Abschirmung zu platzieren. Ferner ist es
für die Asymmetriemessung von Nachteil, wenn man einen Detektor unter kleinen Winkeln
relativ zum Target platziert, da man in diesem Fall mit mehr Bremsstrahlungs-Photonen
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aus dem Target rechnen muss, die sich in Richtung Detektor bewegen.

Zur Konzipierung eines Messaufbaus erscheint die Konfiguration (zTarget = −700 mm, λB =
1, 0) geeignet, was der in Abbildung 77 (c) dargestellten Situation entspricht. Auf dieser Kon-
figuration basierend wurde das Konzept des Messaufbaus des P2-Experiments erstellt, das
in Abschnitt 4.7 beschrieben wurde. Abbildung 79 zeigt den Verlauf der Trajektorien zusam-
men mit der vorgesehenen Detektorposition sowie der Abschirmung. Die nachzuweisenden
Elektronen werden in dieser Konfiguration durch das Magnetfeld größtenteils so fokussiert,
dass ein vergleichsweise kompakter Detektor zu deren Nachweis eingesetzt werden kann. Le-
diglich unter Streuwinkeln θf ∼ 45◦ am Anfang des Targets gestreute Elektron-Bahnkurven
enden in der Abschirmung. Es besteht eine weitgehende Separation der nachzuweisenden
Elektronen von Elektronen aus elastischer Elektron-Proton-Streuung mit anderen Streuwin-
keln. Eine vollständige Separation in Q2 ist aufgrund der großen Akzeptanz in θf von 20◦

und der großen Targetlänge von L = 600 mm nicht realisierbar. Es besteht eine sehr gute
räumliche Separation zwischen den im Target elastisch an Protonen gestreuten Elektronen
und den Møller-Elektronen. Ferner werden die nachzuweisenden Elektronen im Magnetfeld so
abgelenkt, dass die in Abschnitt 4.7.5 beschriebenen Schilde zum Abschirmen des Cherenkov-
Detektors gegen Bremsstrahlung aus dem Target eingesetzt werden können. Durch die Wahl
λB = 1, 0 wird dabei der volle Abstand zwischen Strahlachse und Solenoid zur Propagation
der nachzuweisenden Elektronen und Unterbringung des Photonen-Schilds ausgenutzt.

6.2.2 Konzept für einen Messaufbau mit toroidalem Magnetfeld

Neben der Konfiguration eines Messaufbaus mit Solenoid-Spektrometer wurde im Zuge die-
ser Arbeit die Tauglichkeit eines QTOR-ähnlichen Toroid-Spektrometers zur Durchführung
des P2-Experiments untersucht. Hierzu wurde nach einer geeigneten Konfiguration aus Tar-
getposition zTarget und Skalierungsfaktor der Magnetfeldkarte λB unter Verwendung der in
Abschnitt 6.1.3.2 vorgestellte Feldkarte gesucht. In Tabelle 13 sind die Parameter zusammen-
gefasst, welche für diese Studie gewählt wurden. Da die Magnetfeldkarte eines Toroiden nicht
azimutalsymmetrisch ist, genügt es nicht, nur einen konstanten Wert von φf zu betrachten.
Daher wurden die Parameter zTarget und λB für jeden der drei in Tabelle 13 angegebenen Azi-
mutwinkel systematisch variiert, was zu insgesamt 3255 Simulationsläufen führte. Die Wahl
des Azimutwinkels φf = 0◦ entspricht der x-z-Ebene, welche die Symmetrieebene zwischen
den Spulen bei ±22,5◦ ist, vgl. Abbildung 73. Da geringe Änderungen der Konfiguration
nur zu geringen Änderungen der Verläufe der Bahnkurven führen, kann die Diskussion der
Resultate auf repräsentative Konfiguration von zTarget und λB reduziert werden.

Zunächst werden die Resultate von Bahnkurven-Berechnungen mit gleichem Feldkarten-
Skalierungsfaktor für verschiedene Targetpositionen betrachtet. In Abbildung 80 sind Bahn-
kurven der im Experiment nachzuweisenden Elektronen aus elastischer Elektron-Proton-
Streuung mit Streuwinkeln θf ∈ [25◦, 45◦] für λB = 1, 0 und φf = 0◦ sowie verschiedene Werte
der Targetposition zTarget dargestellt. Abbildung 80 veranschaulicht, dass es für λB = 1, 0
aufgrund der großen geforderten Akzeptanz im Polarwinkel von δθf = 20◦ unabhängig von
der Targetposition nicht möglich ist, einen Detektor so zu platzieren, dass die Sichtlinien
zwischen Target und Detektor abgeschirmt werden können, ohne zumindest einen Teil der
Akzeptanz in θf zu opfern. Die Krümmung der Bahnkurven der nachzuweisenden Elektronen
im Magnetfeld reicht bei λB = 1, 0 nicht aus. Die günstigste der in Abbildung 80 dargestellten
Konfigurationen ist in Teil (b) gezeigt; hier werden die Bahnkurven nahezu hinreichend im
Magnetfeld gekrümmt. Daher werden im Folgenden Konfigurationen mit zTarget = −2000 mm
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Strahlenergie:
Ebeam 155 MeV

Targetposition:
zmin

Target zmin
Target ∆zTarget

−3000 mm 0 mm 100 mm

Magnetfeldstärke:
λmin

B λmax
B ∆λB

0,1 1,5 0,1

Streuwinkel, e-p-Streuung:
θmin

f θmax
f ∆θf

1◦ 179◦ 2◦

φmin
f φmax

f ∆φf

−22,5◦ 22,5◦ 7,5◦

Streuwinkel, Møller-Streuung:
θmin

f θmax
f ∆θf

0◦ 90◦ 2◦

φmin
f φmax

f ∆φf

−22,5◦ 22,5◦ 7,5◦

Tabelle 13: Parameter-Werte, die für die systematische Studie unterschiedlicher Targetposi-
tionen und Magnetfeldstärken mit einem QTOR-ähnlichen Toroid-Spektrometer verwendet
wurden.

und λB > 1 betrachtet.

Abbildung 81 zeigt Resultate der Raytracing-Simulation für Ebeam = 155 MeV, zTarget =
−2000 mm, φf = 0◦ und verschiedene Werte von λB > 1, 00. Man kann der Abbildung ent-
nehmen, dass die Elektron-Bahnkurven für Werte λB ≥ 1, 50 hinreichend stark gekrümmt
werden, so dass eine Platzierung des Cherenkov-Detektors ohne Sichtverbindung zum Target
bei geeigneter Modellierung der Abschirmung möglich ist. Die Konfiguration mit λB = 1, 50
entspricht einer maximalen azimutalen Feldkomponente von Bmax

φ ≈ 0,6 T und wird im wei-
teren Verlauf der Diskussion näher betrachtet.

Abbildung 82 zeigt die Konfiguration (zTarget = −2000 mm, λB = 1, 5) (s. auch Teil (b) in
Abbildung 81) für verschiedene Werte von φf. In Teil (a) der Abbildung ist die Situation für
φf = 0◦ dargestellt. Die Elektronen werden dabei genau zwischen zwei benachbarte Spulen des
Toroiden gestreut, vgl. Abbildung 73. Die Verläufe der in Magenta gezeichneten Bahnkurven
der nachzuweisenden Elektronen sind mit den in Abbildung 81 (b) dargestellten Verläufen
identisch. Man erkennt, dass einige der schwarz dargestellten Bahnkurven von elastisch an
Protonen gestreuten Elektronen mit θf /∈ [25◦, 45◦] die magentafarbenen Bahnkurven der
nachzuweisenden Elektronen kreuzen, da sie im Magnetfeld eine andere Krümmung erfah-
ren. Die Verläufe der Bahnkurven der Møller-Elektronen in Teil (a) der Abbildung (und in
den übrigen Teilen) sind stark vom Streuwinkel θf abhängig: Elektronen mit kleinen Streu-
winkeln θf passieren den Raumbereich zwischen den dargestellten Spulen und werden im Feld
nur leicht abgelenkt. Die Projektionen der Bahnkurven von Møller-Elektronen mit größeren
Streuwinkeln bewegen sich teils entlang bzw. im Bereich des rot dargestellten Spulenpro-

143



 z/mm
4000− 3000− 2000− 1000− 0 1000 2000 3000

 x
/m

m

4000−

3000−

2000−

1000−

0

1000

2000

3000

4000

Toroid

 = 0.0 degφ = 1.0, Bλ = -3000 mm, 
Target

 = 155 MeV, zbeamE

Target

(a)

 z/mm
4000− 3000− 2000− 1000− 0 1000 2000 3000

 x
/m

m
4000−

3000−

2000−

1000−

0

1000

2000

3000

4000

Toroid

 = 0.0 degφ = 1.0, Bλ = -2000 mm, 
Target

 = 155 MeV, zbeamE

Target

(b)

 z/mm
4000− 3000− 2000− 1000− 0 1000 2000 3000

 x
/m

m

4000−

3000−

2000−

1000−

0

1000

2000

3000

4000

Toroid

 = 0.0 degφ = 1.0, Bλ = -1000 mm, 
Target

 = 155 MeV, zbeamE

Target

(c)

 z/mm
4000− 3000− 2000− 1000− 0 1000 2000 3000

 x
/m

m

4000−

3000−

2000−

1000−

0

1000

2000

3000

4000

Toroid

 = 0.0 degφ = 1.0, 
B

λ = 0 mm, 
Target

 = 155 MeV, zbeamE

Target

(d)

Abbildung 80: Bahnkurven der im Experiment nachzuweisenden Elektronen mit Streuwin-
keln θf ∈ [25◦, 45◦] für λB = 1, 0, was einem maximalen Feld in azimutaler Richtung von
Bφ ≈ 0,4 T entspricht, sowie φf = 0◦. In Teil (a) ist zTarget = −3000 mm, in (b) ist
zTarget = −2000 mm, in (c) gilt zTarget = −1000 mm, und für die in Teil (d) dargestellten
Resultate der Simulation wurde zTarget = 0 mm gewählt. Die Achsen des Koordinatensystems
sind isometrisch dargestellt, was das Messen von Winkeln im Bild erlaubt. In den Bildern
sind Sichtlinien in Grün eingezeichnet, um die Diskussion der Resultate zu unterstützen.
Alle Sichtlinien beginnen auf der strahlabwärts gelegenen Seite des Target-Volumens auf der
Strahlachse.

fils, wobei der Bewegung entlang des Spulenprofils eine zusätzliche Rotationsbewegung im
Magnetfeld überlagert ist, so dass die projizierten Bahnkurven an Nutationsbewegungen
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Abbildung 81: Bahnkurven der im Experiment nachzuweisenden Elektronen (magentafarben)
für Ebeam = 155 MeV, zTarget = −2000 mm und φf = 0◦ für unterschiedliche Skalierungsfak-
toren λB > 1 der in Abbildung 74 dargestellten Magnetfeldkarte. In (a) ist λB = 1, 25, in (b)
wurde λB = 1, 50 gewählt, in (c) gilt λB = 1, 75, und in Teil (d) ist λB = 2, 00. In jeder der
vier Abbildungen sind Sichtlinien in Grün zur Unterstützung der Diskussion eingezeichnet,
die sich im Text befindet.

von Kreiseln erinnern. Møller-Elektronen mit Streuwinkeln θf ∼ 90◦ werden im Magnetfeld
so stark abgelenkt, dass sie das Weltvolumen entgegen der Strahlrichtung verlassen. Den
Abbildungen 82 (a), (b), (c) und (d) entnimmt man, dass die Verläufe der Bahnkurven er-
wartungsgemäß mit φf variieren, da das toroidale Magnetfeld keine kontinuierliche azimutale
Symmetrie aufweist. Das Magnetfeld sorgt insbesondere nicht für eine gute räumliche Se-
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Abbildung 82: Resultate der Raytracing-Simulation mit toroidalem Magnetfeld für Ebeam =
155 MeV, zTarget = −2000 mm und λB = 1, 50 für verschiedene Werte von φf. In allen vier
Abbildungen sind die Bahnkurven der nachzuweisenden Elektronen magentafarben darge-
stellt. Die Trajektorien von Elektronen aus elastischer Elektron-Proton-Streuung mit anderen
Streuwinkeln sind schwarz gezeichnet. Orangefarbene Bahnkurven gehören zu Elektronen im
Endzustand des Møller-Streuprozesses. In (a) ist φf = 0◦, in (b) gilt φf = −7,5◦, in Teil (c)
ist φf = −15◦, und in (d) ist φf = −22,5◦.

paration der nachzuweisenden Elektronen und der Elektronen aus dem Møller-Streuprozess,
wie man an Teil (b), (c) und (d) der Abbildung ersieht.

Es bedarf Schilden, um den Raumbereich, in den die magentafarbenen Trajektorien der
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Abbildung 83: Mit der Raytracing-Simulation erstelltes Konzept für einen Messaufbau mit
einem QTOR-ähnlichen Toroid-Spektrometer. Es gilt Ebeam = 155 MeV, zTarget = −2000 mm
und λB = 1, 50. Dargestellt sind die Projektionen der Bahnkurven auf die x-z-Achse. Die
Achsenskalen sind isometrisch. Die simulierten Bahnkurven der im Experiment nachzuwei-
senden Elektronen sind magentafarben gezeichnet. Es handelt sich um Elektronen, die im
Target elastisch unter Laborsteuwinkeln θf ∈ [25◦, 45◦] an Protonen gestreut wurden. Schwarz
dargestellt sind Bahnkurven von Elektronen aus elastischer Elektron-Proton-Streuung mit
anderen Streuwinkeln. Orange gezeichnet sind Elektronen aus elastischer Elektron-Elektron-
Streuung. Eine mögliche Position des Cherenkov-Ringdetektors ist durch die grünen Recht-
ecke angedeutet. Zylinderförmige Bleischilde zur Abschirmung des Detektors sind in Grau
eingezeichnet. Die Schilde sind mit Nummern versehen, welche denen in Tabelle 14 entspre-
chen. Dort sind die Positionen der dargestellten Komponenten dokumentiert.

nachzuweisenden Elektronen gekrümmt werden, sowohl gegen Bremsstrahlung aus dem Tar-
get und Møller-Elektronen abzuschirmen. Abbildung 83 zeigt ein entsprechendes Konzept
für einen Messaufbau mit Bleischilden und eingezeichneter Detektorposition für (zTarget =
−2000 mm, λB = 1, 5). Das Konzept sieht vor, den Cherenkov-Ringdetektor im Abstand von
3000 mm von der Strahlachse im Intervall z ∈ [−2250 mm,−900 mm] zu platzieren. Der De-
tektor wird von einer in alle Richtungen 100 mm dicken Bleiabschirmung ummantelt, um
ihn gegen Untergrund abzuschirmen. Zu nennen sind hierbei Møller-Elektronen, die unter
kleinen Winkeln im Target gestreut werden und vom Magnetfeld in Richtung Detektor ge-
lenkt werden, sowie Untergrundteilchen aus nachgeordneten Prozessen, wie etwa der Bildung
elektromagnetischer Schauer in den anderen Bleischilden. Um den Detektor gegen Elektro-
nen aus elastischer Elektron-Proton-Streuung mit Streuwinkeln θf /∈ [25◦, 45◦] abzuschirmen,
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Targetposition: zTarget = −2000 mm

Skalierungsfaktor Magnetfeld: λB = 1, 5

Position des Cherenkov-Ringdetektors:
rmin/mm rmax/mm zmin/mm zmax/mm

2900 3000 -2250 -900

Konfiguration der Bleischilde:
Nr. rmin/mm rmax/mm zmin/mm zmax/mm
1 1450 1550 -3000 -1340
2 1200 1300 -3000 -1400
3 1900 2000 -700 1100
4 1000 2300 1100 1200
5 2850 3050 -850 -750
6 3050 3150 -2400 -750
7 2750 2850 -950 -750
8 2850 3050 -2400 -2300
9 2750 2850 -2400 -2100

Tabelle 14: Zusammenstellung von Detektorposition und den Positionen der Bleischilde, die
in Abbildung 83 dargestellt sind.

wird das Target mit zwei Bleizylindern umgeben. Die Schilde sind in radialer Richtung je
100 mm dick, was 17,8 Stahlungslängen in 208

82 Pb entspricht. In beiden Zylindern müssen Aus-
sparungen für die Feldspulen des Toroiden vorgesehen werden - die Positionen überlappen in
Abbildung 83. Strahlabwärts sind zwei weitere Schilde vorgesehen, deren Stärke je 100 mm
beträgt. Die Schilde ummanteln die Feldspulen des Toroiden. Ihr Zweck ist es, den Detektor
gegen Møller-Elektronen abzuschirmen, die im Target unter kleinen Winkeln gestreut wur-
den und im Magnetfeld in Richtung des Detektors abgelenkt werden. Tabelle 14 fasst die
Positionen der in Abbildung 83 dargestellten Komponenten zusammen.

6.2.3 Vergleich der Messaufbau-Konzepte

Mithilfe der Raytracing-Simulation wurden zwei grundlegende Konzepte für den Messauf-
bau des P2-Experiments erstellt, deren wesentliches Unterscheidungsmerkmal der verwen-
dete Magnetspektrometer-Typ ist. Das Konzept mit einem FOPI-ähnlichen Solenoiden ist
in Abbildung 79 dargestellt. Ihm gegenüber steht ein Konzept mit einem QTOR-ähnlichen
Toroiden als Magnetspektrometer, welches in Abbildung 83 gezeigt ist. Zum Abschluß dieses
Kapitels wird ein Vergleich zwischen den beiden Konzepten angestellt.

Zunächst sei festgestellt, dass es mit beiden Spektrometer-Typen möglich ist, die im Ex-
periment nachzuweisenden, im Target elastisch unter Winkeln θf ∈ [25◦, 45◦] an Protonen
gestreuten Elektronen auf einen relativ kleinen Raumbereich zu fokussieren, so dass die
Sichtlinie zwischen Target und möglicher Detektorposition durch eine Abschirmung unter-
brochen werden kann. Dieser Punkt ist wichtig, um den Untergrundbeitrag von aus dem
Target stammender Bremsstrahlung bei der Asymmetriemessung zu minimieren. Zu beach-
ten ist, dass dies mit einem FOPI-ähnlichen Solenoiden bei nomineller Feldstärke (λB = 1, 0,
Bmax

z = 0,6 T) erreicht werden kann, wogegen bei einem QTOR-ähnlichen Toroiden die
1,5-fache nominelle Feldstärke (λB = 1, 5, Bmax

φ = 0,6 T) des QTOR zum Erreichen dieses
Ziels notwendig ist, was erhöhten Stromverbrauch des Magneten bedingt und nach erhöhter
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Kühlleistung für die Spulen verlangt.

Ein weiterer wesentlicher Grund für den Einsatz eines Magnetspektrometers liegt in der
Notwendigkeit begründet, dass Elektronen im Endzustand des Møller-Streuprozesses von
den im Experiment nachzuweisenden Elektronen räumlich separiert werden müssen, um eine
integrierende Messung der paritätsverletzenden Asymmetrie zu ermöglichen. Die Resultate
der Raytracing-Simulation lassen darauf schließen, dass mit einem Solenoiden eine sehr gute
räumliche Separation zwischen diesen Elektronen erreicht werden kann. Beim Toroiden kann
hiervon nicht ohne Weiteres ausgegangen werden, da Møller-Elektronen mit kleinen Streu-
winkeln im Magnetfeld in Richtung des Detektors abgelenkt werden (s. z.B. Abbildung 82
(b) und (c)), was den Einsatz zusätzlicher Schilde notwendig macht.

Ein toroidales Magnetfeld besitzt entlang der Strahlachse nur eine verschwindend kleine
z-Komponente. Daher ist bei Verwendung eines Toroiden nicht mit einer signifikanten Pola-
risation des `H2-Targets im Magnetfeld zu rechnen. Bei Verwendung eines FOPI-ähnlichen
Solenoiden muss das Target jedoch in das ca. 0,6 T starke, parallel zur Strahlachse ausge-
richtete Feld eingebracht werden. Die hieraus resultierende Polarisation des Targets führt
zu einem zusätzlichen, jedoch kleinen Asymmetriebeitrag, der in Abschnitt 4.3.2 diskutiert
wurde.

Das Messaufbau-Konzept mit Solenoid ist vergleichsweise kompakt und kann in MESA-
Halle 2 untergebracht werden. Insbesondere gestattet sie die Wiederverwendung des A4-
Strahlfängers, da der Durchmesser des FOPI-Solenoiden 3350 mm beträgt, und die Höhe
der Strahlführung im A4-Experiment bei 1950 mm lag. Auch der Messaufbau mit QTOR-
ähnlichem Toroiden könnte in Halle 2 untergebracht werden. Senkrecht zur Strahlachse be-
sitzt die Konfiguration jedoch eine Ausdehnung von ca. 6 m. Eine Wiederverwendung des
A4-Strahlfängers ist somit bei dieser Konfiguration nicht möglich, und die Höhe der MESA-
Strahlführung müsste angepasst werden.

Der größte Vorteil bei der Verwendung eines Solenoiden gegenüber einem Toroiden liegt
darin, dass ein Solenoid die Verwendung des vollen Azimutwinkels zum Nachweis der ela-
stisch gestreuten Elektronen erlaubt. Die P2-Kollaboration geht davon aus, dass man bei
Verwendung eines Toroiden ca. 50 % des Azimutwinkels zur Datennahme einbüßt, da die
Feldspulen einem Teil der gestreuten Elektronen den Weg zum Detektor versperren. Dies
bedeutet, dass man mit einem Solenoiden die zum Erreichen der statistischen Genauigkeit
notwendigen Streuereignisse etwa in der Hälfte der Zeitdauer nachweisen kann, die man mit
einem Toroiden benötigen würde.

Die P2-Kollaboration hat sich für das in Abbildung 79 dargestellte Messaufbau-Konzept mit
einem FOPI-ähnlichen Solenoiden zur Durchführung des Experiments entschieden. Die Limi-
tierungen der Raytracing-Simulation bei der Simulation physikalischer Prozesse ermöglichen
keine Verifizierung der Eignung dieser Konfiguration zur Durchführung des P2-Experiments.
Um die Durchführbarkeit des P2-Experiments unter Beweis zu stellen, wurde im Zuge dieser
Arbeit eine umfassende und realistische Simulation des Experiments erstellt. Das nachfol-
gende Kapitel widmet sich einer Beschreibung dieser Simulation und der Diskussion ihrer
Resultate.
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7 Monte Carlo-Simulation der physikalischen Prozesse

im P2-Experiment

In Kapitel 6 wurde ein grundlegendes Konzept für einen Messaufbau zur Durchführung
des P2-Experiments mit einem Solenoid-Spektrometer entworfen. Das Konzept ist in Abbil-
dung 79 veranschaulicht. Die in der Abbildung dargestellten Bahnkurven von im `H2-Target
elastisch gestreuten Elektronen wurden mithilfe der Raytracing-Simulation unter idealisier-
ten Bedingungen berechnet. Das Messaufbau-Konzept ist hinsichtlich seiner Tauglichkeit
zur Durchführung des P2-Experiments zu studieren. Zu diesem Zweck wurde im Rahmen
der vorliegenden Arbeit eine Computeranwendung entwickelt, welche eine Simulation der
physikalischen Prozesse im Experiment ermöglicht. Dieses Kapitel ist der Beschreibung der
Simulation sowie der Diskussion der mit ihr gewonnenen Resultate gewidmet.

Die Simulation wurde als Geant4-Anwendung [143, 144] unter Linux in der Programmier-
sprache C++ implementiert, CADMesh [148] wird als CAD-Schnittstelle zur geometrischen
Beschreibung des Messaufbaus verwendet, und ROOT [122] wird unterstützend zur Auswer-
tung und Visualisierung der Simulationsergebnisse eingesetzt. Der Zweck der Simulation ist
es, den geplanten Messaufbau realitätsnah abzubilden und die physikalischen Prozesse auf
realistische und effiziente Weise zu simulieren. Geant4 stellt ein geeignetes und etabliertes
Werkzeug zum Erreichen dieser Ziele dar. Die Simulation des P2-Experiments erfordert den
Einsatz hoher Rechenleistung, weshalb die Computeranwendung darauf ausgelegt ist, eine
hohe Anzahl an Prozessorkernen zur parallelen Simulation physikalischer Prozesse sowie der
Auswertung der Simulationsergebnisse einzusetzen.

Im Folgenden wird zunächst erklärt, auf welche Weise die Geometrie des Messaufbaus in
der Simulation definiert wird. Anschließend wird der eigens für diese Simulationsanwendung
entwickelte Ergeignisgenerator zur Simulation der elastischen Elektron-Proton-Streuung in
einem langen `H2-Target vorgestellt. Es werden Vorhersagen für die Leistung getroffen,
die der Elektronenstrahl im Target deponiert, und es werden geeignete Positionen für den
Cherenkov-Ringdetektor und die Bleischilde bestimmt. Die Simulation des Cherenkov-Detektors
unter Berücksichtigung des Antwortverhaltens stellt einen weiteren zentralen Aspekt dar; auf
Grundlage der Resultate der Detektorsimulation wird eine Vorhersage der im Experiment
erwarteten Asymmetrie getroffen. Hierauf aufbauend wird die erwartete Präzision bei der
Bestimmung des elektroschwachen Mischungswinkels bestimmt.

7.1 Geometrische Beschreibung des Messaufbaus

Der Zweck der Simulation liegt darin, eine realistische Simulation der physikalischen Pro-
zesse im P2-Experiment zu ermöglichen. Hierzu ist es notwendig, den geplanten Messaufbau
möglichst realitätsnah in der Simulation abzubilden. Daher wurde in der Simulation des P2-
Experiments eine Softwareschnittstelle implementiert, die es ermöglicht, mithilfe von CAD-
Anwendungen definierte geometrische Objekte zu importieren. CAD steht für

”
Computer-

Aided Design“, entsprechende Programme besitzen ein breites Anwendungsspektrum in den
Ingenieurswissenschaften und ermöglichen die effiziente Modellierung komplexer geometri-
scher Körper. Im Folgenden wird zunächst erläutert, auf welche Weise mittels CAD definierte
geometrische Objekte in der Simulation abgebildet werden. Im Anschluß wird das in der Si-
mulation verwendete Modell des geplanten Messaufbaus vorgestellt.

In jeder Geant4-Simulation muss ein
”
Weltvolumen“ mit einem Koordinatensystem defi-
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niert werden, in das sämtliche geometrischen Objekte eingebettet werden. Wie im Fall der
Raytracing-Anwendung wird ein Kubus mit Kantenlänge 10 m als Weltvolumen verwen-
det. Als Füllmaterial des Würfels wurde Luft mit der homogenen Dichte 1,205 · 10−3 g/cm3

gewählt, was der Standarddichte auf Meereshöhe entspricht. Das Weltvolumen repräsentiert
die in Abbildung 34 dargestellte Experimentierhalle

”
MESA-Halle 2“, in der das P2-Experiment

durchgeführt werden wird.

Es wird ein rechtshändiges, kartesisches Koordinatensystem verwendet, dessen z-Achse mit
der Strahlachse von MESA zusammenfällt. Die Strahlrichtung entspricht der positiven z-
Richtung. Die Koordinatenachsen stehen senkrecht auf den Randflächen des Weltvolumens,
und der geometrische Schwerpunkt des Weltvolumens liegt im Ursprung des Koordinatensy-
stems. Das Koordinatensystem ist mit dem Koordinatensystem, das den Magnetfeldkarten
zugrunde liegt, identisch. Der idealisierte Massenschwerpunkt des Magnetspektrometers liegt
somit im Ursprung des Koordinatensystems der Geant4-Simulation.

Die Definition der Komponenten des Messaufbaus erfolgt unter Verwendung von CADMesh
[148]. CADMesh ist eine Software-Schnittstelle, welche das Importieren von im Stereolithographie-
Dateiformat vorliegenden Beschreibungen geometrischer Körper in Geant4-Anwendungen
ermöglicht. Das Stereolithographie-Format (.stl) gestattet die Beschreibung der Oberflächen
dreidimensionaler geometrischer Objekte. Die Oberflächen werden dabei durch ein aus Drei-
ecken bestehendes Netz definiert, wobei die Lage eines Dreiecks im Raum durch die Flächennormale
sowie die Koordinaten der Eckpunkte festgelegt wird. Nahezu alle gebräuchlichen CAD-
Anwendungen sind in der Lage, die Oberflächen geometrischer Objekte unter Anwendung
eines Tessellierungsverfahrens in das STL-Dateiformat zu exportieren. Dabei kann die Güte
der Approximation einer glatten, gekrümmten Oberfläche mithilfe einer einzelnen, positiven
reellen Zahl dmax festgelegt werden, wobei dmax der maximale Abstand zwischen der zu ap-
proximierenden Fläche und dem Dreiecks-Netz ist. Man sollte dmax nicht zu klein wählen,
da der Rechenaufwand bei der Simulation von Bahnkurven linear mit der Anzahl unge-
krümmter Oberflächen skaliert, welche das simulierte Teilchen umgeben. Zur Modellierung
des Messaufbaus in der Simulation wurde dmax = 0,1 mm gewählt. Dieser Wert gewährleistet
eine hinreichende Präzision bei der Abbildung des Messaufbaus und ermöglicht eine zeitlich
effiziente Simulation des Experiments.

Abbildung 84 zeigt Beispiele geometrischer Objekte, welche mittels CAD-Anwendungen er-
stellt worden sind und zu Demonstrationszwecken mittels CADMesh in die Simulation des
P2-Experiments importiert wurden. Jedem mittels CADMesh importierten Objekt kann in
der Simulation genau ein beliebiges Material mit homogener Massendichte zugewiesen wer-
den. Objekte, die aus verschiedenen Materialien bestehen, müssen somit der Materialvertei-
lung entsprechend segmentiert, konvertiert und importiert werden.

Die implementierte CAD-Schnittstelle vereinfacht den Designprozess des Messaufbaus in er-
heblichem Maße; Planung und Entwicklung der Komponenten des Messaufbaus können mit
CAD-Anwendungen ausgeführt und die Resultate direkt in die Geant4-Simulation übertragen
werden, um deren Eignung mit Blick auf die Messung der paritätsverletzenden Asymmetrie
zu evaluieren. Der größte Vorteil liegt dabei darin, dass komplexe geometrische Körper mit
vergleichsweise geringem Zeitaufwand realitätsgetreu modelliert und in der Simulation ver-
wendet werden können. Ohne eine CAD-Schnittstelle muss eine Anordnung geometrischer
Objekte in Geant4 aus einer Menge vordefinierter, einfacher Körper zusammengesetzt wer-
den, was im Falle komplexer Geometrie zeitaufwändig und fehleranfällig ist, da diese Ob-
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Abbildung 84: Geometrische Objekte, die zu Demonstrationszwecken mittels CADMesh in
die Geant4-Simulation des P2-Experiments importiert wurden: Links sind jeweils die CAD-
Modelle der Objekte dargestellt, rechts sind die mit CADMesh in die Simulation importier-
ten Objekte unter Verwendung der visuellen Ausgabe der Simulationsanwendung dargestellt.
Das erste Beispiel zeigt einen Würfel und dient der Veranschaulichung des Tessellierungsver-
fahrens: Man erkennt im Bild oben rechts die Dreiecksfächen, aus denen die Oberfläche des
Würfels in der Geant4-Simulation zusammengesetzt ist. Im zweiten Beispiel wurde das im
Internet frei erhältliche Modell [149] eines berühmten Fahrzeugs in die Geant4-Simulation
importiert und frontal mit Photonen (grün), Elektronen (rot) sowie Positronen (blau) be-
schossen. Das zweite Beispiel demonstriert, dass auch komplexe Geometrien mithilfe von
CADMesh auf einfache Weise in die Geant4-Simulation importiert werden können.

jekte auf abstrakte Weise im Quelltext der Computeranwendung definiert werden müssen.
Ein weiterer Vorteil der CAD-Schnittstelle ist, dass Translationen und Rotationen geome-
trischer Körper direkt in einer CAD-Anwendung definiert werden können und beim Impor-
tieren in die Simulation mit CADMesh berücksichtigt werden. CAD-Anwendungen bieten
die Möglichkeit, die korrekte Definition und Positionierung geometrischer Objekte zu veri-
fizieren. Die Implementierung derartiger Kontrollmechanismen in Geant4-Anwendungen ist
aufwändig.

Abbildung 85 zeigt das geometrische Modell des geplanten Messaufbaus, das zur Simula-
tion des P2-Experiments verwendet wurde. Die Targetzelle wurde den in Abschnitt 4.7.1
angeführten Spezifikationen entsprechend modelliert. Sie besteht aus einer Aluminium-Hülle
mit Strahleintritts- und Austrittsfenster. Im Inneren der Hülle befindet sich ein `H2-Volumen.
Da sich das Target gegenwärtig in der Entwicklung befindet, wurde auf die Modellierung der
übrigen Komponenten des Targets vorläufig verzichtet. Das Eisenjoch des FOPI-Solenoiden
wurde mithilfe technischer Zeichnungen des FOPI-Solenoiden, welche der P2-Kollaboration
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Abbildung 85: In der Geant4-Simulation des P2-Experiments modellierter Messaufbau. Die
Komponenten des Messaufbau-Modells wurden mittels einer CAD-Anwendung erstellt und
mithilfe von CADMesh in die Geant4-Anwendung importiert. Die dargestellte Geometrie
und das Bild wurden in Zusammenarbeit mit J. M. Cardena und D. Rodriguez Pineiro
(P2-Kollaboration) entwickelt. Die in der Simulation verwendeten Materialien sind in den
Beschriftungen aufgeführt.

freundlicherweise von der FOPI-Kollaboration zur Verfügung gestellt wurden, modelliert. Da
die Feldspule des FOPI-Solenoiden aufgrund eines technischen Defekts im P2-Experiment
nicht eingesetzt werden kann, wurde sie in der Simulation nicht detailliert abgebildet; es wur-
de vorläufig ein aus Kupfer bestehender Hohlzylinder als Modell der Feldspule verwendet.
Die aktiven Volumina des Cherenkov-Ringdetektors werden in der Simulation durch einen
aus SiO2 bestehenden Hohlzylinder repräsentiert, dessen kreisförmige Randflächen senkrecht
zur Strahlachse stehen. Die Photomultiplier (PMTs) des Cherenkov-Detektors wurden zum
Zweck der Veranschaulichung ihrer Positionen als dünne Oberflächen aus Glas modelliert.

7.2 Simulation von Streuereignissen im Target

Einer der Hauptaspekte der Geant4-Anwendung ist die realistische Simulation der Wechsel-
wirkung des Elektronenstrahls mit dem 600 mm langen Flüssigwasserstoff-Target. Aufgrund
der vergleichsweise niedrigen Strahlenergie von Ebeam = 155 MeV können Energie- und Rich-
tungsänderungen der Strahlelektronen durch Kollisionen und die Erzeugung von Bremsstrah-
lung hierbei nicht vernachlässigt werden. Geant4 ist ein hervorragendes Werkzeug, um diese
Prozesse zu simulieren; Geant4 stellt unter anderem Methoden zur Simulation der Møller-
und Bhabha-Streuung, der Erzeugung von Bremsstrahlung, der Vielfach-Coulombstreuung,
der Elektron-Positron-Paarbildung und -Annihilation sowie der Compton-Streuung bereit.

Die Simulation dieser Prozesse erfolgt in Geant4 mittels der Monte Carlo-Methode: Die
räumliche Propagation von Teilchen erfolgt in diskreten Schritten von endlicher Länge,
die im folgenden als

”
Propagationsschritte“ bezeichnet werden. Zu Beginn jedes Propagati-
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onsschritts werden die Wirkungsquerschnitte der physikalischen Prozesse, die im Zuge des
Propagationsschritts auftreten können, mithilfe der kinematischen Variablen der Teilchen
numerisch berechnet. Die differentiellen Wirkungsquerschnitte werden als Wahrscheinlich-
keitsdichtefunktionen der kinematischen Variablen aufgefasst, von denen die Endzustände
der simulierten Prozesse abgetastet werden können. Die Wahrscheinlichkeiten, mit denen
physikalische Prozesse in Geant4 simuliert werden, entsprechen demnach den Wahrschein-
lichkeiten für das Auftreten dieser Prozesse in der Natur.

Der Prozess der elastischen Elektron-Proton-Streuung unter großen Winkeln θf ∼ 35◦ wurde
in der verwendeten Geant4-Version 4.10.1 nicht implementiert. Der Grund hierfür ist, dass
die Wahrscheinlichkeit für ein derartiges Ereignis vergleichsweise klein ist, so dass dieser
Prozess einen vernachlässigbaren Beitrag zur Simulation der Propagation von Elektronen
durch Materie leistet. Für die Wahrscheinlichkeit Wep, dass ein Strahlelektron der Anfangs-
zustandsenergie Ei im 600 mm langen `H2-Target unter dem Winkel θf ∈ [25◦, 45◦] gestreut
wird, gilt

Wep = 2π · ρp ·
L∫

0

dz

45◦∫
25◦

dθf

{
sin(θf) ·

(
dσep

dΩ

)
(Ei(z), θf)

}
= 6,81 · 10−4. (266)

Dabei ist ρp = 4,23 · 1022 cm−3 die Protonendichte in `H2 und dσep/dΩ die Rosenbluth-
Formel, die durch Gleichung (51) gegeben ist. Bei der Berechnung von Wep wurde Ebeam =
155 MeV als Strahlenergie gewählt, und es wurde die in Abschnitt 5.2.4 vorgestellte Para-
metrisierung des Energieverlusts der Strahlelektronen im Target bei der Integration über die
Ausdehnung des Targets entlang der Strahlachse berücksichtigt. Im Rahmen eines typischen
Simulationslaufs werden O(107) e-p-Streuereignisse simuliert, um akkurate und präzise Vor-
hersagen für die Observablen des P2-Experiments treffen zu können. Selbst wenn die elasti-
sche Elektron-Proton-Streuung unter Winkeln θf ∼ 35◦ in Geant4 als Prozess implementiert
wäre, wäre eine Simulation dieses Prozesses mit seiner wahren Auftrittswahrscheinlichkeit
demnach nicht zeitlich effizient, da man im Mittel W−1

ep ≈ 1,5 · 103 Strahlelektronen simu-
lieren müsste, um ein einzelnes e-p-Streuereignis im Target beobachten zu können, bei dem
das Elektron in den Detektor gestreut würde.

Um eine effiziente Simulation der elastischen Elektron-Proton-Streuung im Target zu ermöglichen,
wurde im Rahmen dieser Arbeit ein Ereignisgenerator entwickelt, dessen Funktionsweise im
Folgenden beschrieben wird.

7.2.1 Ereignisgenerator zur Simulation der elastischen e-p-Streuung

Zunächst werden Strahlelektronen simuliert auf das `H2-Target geschossen. Die Strahlelek-
tronen werden im Target verfolgt, wobei die maximale Länge lmax eines räumlichen Pro-
pagationsschritts in `H2 auf lmax = 1 mm beschränkt wird. Die für Energieverluste und
Richtungsänderungen der Strahlelektronen verantwortlichen Prozesse werden von Geant4 be-
rechnet. Während der Propagation der Strahlelektronen durch das Target werden an zufällig
ausgewählten Positionen entlang deren Bahnkurven Anfangszustände zur Simulation der ela-
stischen Elektron-Proton-Streuung abgetastet, ohne die Simulation der übrigen Prozesse zu
beeinträchtigen. Das Prinzip ist in Abbildung 86 veranschaulicht. Ein Anfangszustand der
elastischen Elektron-Proton-Streuung wird festgelegt durch:

• Die Position des Vertex innerhalb des `H2-Volumens;
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Abbildung 86: Zur Veranschaulichung des Prinzips zur Berechnung eines Ensembles von
Anfangszuständen der elastischen Elektron-Proton-Streuung im Targetvolumen. Die Strah-
lelektronen treten von links kommend in das `H2-Volumen ein. In Geant4 vollführen alle
simulierten Teilchen Propagationsschritte endlicher Länge, in deren Rahmen physikalische
Prozesse mit Monte Carlo-Methoden simuliert werden. Anfangszustände der elastischen e-
p-Streuung werden an zufällig ausgewählten Positionen entlang der Bahnkurven der Strah-
lelektronen abgetastet, ohne dabei die Simulation der übrigen physikalischen Prozesse zu
beeinflussen. Erreicht ein Teilchen die Oberfläche des `H2-Volumens von dessen Innenraum
kommend, so wird der Zustand des Teilchens abgetastet und die Simulation der Bahnkurve
gestoppt.

• Die Anfangszustands-Energie Ei des Strahlelektrons;

• Den Impulsvektor des Strahlelektrons.

Als Wahrscheinlichkeit für die Abtastung eines Anfangszustands dient das Verhältnis l/lref,
wo l ≤ lmax die Länge des aktuellen Propagationsschritts des Strahlelektrons ist, und lref ≥
lmax eine konstante Referenzlänge ist, durch deren Wert die mittlere Anzahl von Abtastun-
gen eines Anfangszustands pro simuliertem Strahlelektron festgelegt wird.

Mit dieser Methode ist es möglich, mehrere Anfangszustände der elastischen e-p-Streuung
pro simuliertem Strahlelektron zu generieren. Diese Vorgehensweise ist zulässig, da die Strah-
lelektronen ähnliche Prozesse beim Durchqueren des Targets erfahren. Somit kann jede si-
mulierte Bahnkurve eines Strahlelektrons durch das Target als Mittel eines Ensembles von
ähnlichen Bahnkurven aufgefasst werden, und von dieser mittleren Bahnkurve können meh-
rere Anfangszustände abgetastet werden. Hierbei ist zu beachten, dass die Anzahl der si-
mulierten Bahnkurven hinreichend groß sein muss, damit unwahrscheinliche Verläufe von
Bahnkurven in `H2 in der Simulation nicht übermäßig stark gewichtet werden.

Abbildung 87 zeigt Projektionen der Verteilung von Anfangszuständen der elastischen Elektron-
Proton-Streuung im Targetvolumen. Man erkennt im oberen Teil der Abbildung, dass sich
das Strahlprofil mit wachsender Eindringtiefe der Elektronen ins Target aufgrund von Kol-
lisionen und der Erzeugung von Bremsstrahlung verbreitert. Man erkennt ferner, dass die
Verteilung der Interaktionspunkte entlang des hemisphärischen Profils des Strahlaustritts-
fensters im Bereich um z = −400 mm endet. Im mittleren Teil der Abbildung sieht man,
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Abbildung 87: Oben: Projektion der Vertex-Positionen auf die x-z-Ebene. Das `H2-Volumen
erstreckt sich von z = −1000 mm bis z = −400 mm. Der Elektronenstrahl tritt im Bild von
links kommend an der Stelle x = 0 mm in das Target ein. Mitte: Anzahl der Interaktions-
punkte in Abhängigkeit von der z-Koordinate. Unten: Häufigkeitsverteilung des Winkels θi

der Strahlelektronen an den Interaktionspunkten.

dass die Anzahl der mit konstanter Wahrscheinlichkeitsdichte generierten Interaktionspunk-
te als Funktion der z-Koordinate innerhalb des Targets näherungsweise konstant ist. Dies
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Abbildung 88: Verteilungen der kinetischen Energien Ekin
i der Strahlelektronen im Anfangs-

zustand der elastischen Elektron-Proton-Streuung an den zufallsverteilt generierten e-p-
Interaktionspunkten. Oben dargestellt ist die Häufigkeitsverteilung von Ekin

i in Abhängigkeit
von der z-Koordinate im 600 mm langen Targetvolumen für Ebeam = 155 MeV. Unten sind
Fasern der links gezeigten Verteilung für drei Intervalle am Anfang, in der Mitte und am En-
de des Targets in Strahlrichtung dargestellt. Man erkennt, dass die Häufigkeitsverteilungen
erwartungsgemäß die charakteristische Form einer Landauverteilung besitzen, welche für
minimal ionisierende Teilchen in dünnen Materialschichten typisch ist.

entspricht bei der verwendeten Methode zur Abtastung der Anfangszustände der Erwartung.
Für den mittleren Polarwinkel der Strahlelektronen im Anfangszustand des Streuprozesses
gilt 〈θi〉 ≈ 0,77◦, in seltenen Fällen treten jedoch große Winkelablagen θi ≥ 5◦ auf, wie man
im unteren Teil von Abbildung 87 erkennen kann.

Abbildung 88 zeigt die Verteilung der kinetischen Energie Ekin
i der Strahlelektronen im

Anfangszustand der elastischen Elektron-Proton-Streuung an den generierten Interaktions-
punkten. Man kann der Abbildung entnehmen, dass die Häufigkeitsverteilung von Ekin

i für
konstante z-Werte die charakteristische Form einer Landauverteilung aufweisen, was der Er-
wartung für den Energieverlust von Elektronen durch Stoßionisation entspricht.
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Während der Propagation der Strahlelektronen durch das Targetvolumen werden Kollisions-
prozesse und die Erzeugung von Bremsstrahlung mit den Geant4 eigenen Methoden simuliert.
Geant4 generiert dabei Sekundärteilchen wie etwa Møller-Elektronen oder Bremsstrahlungs-
Photonen, die ebenfalls Propagationsschritte ausführen und dabei im Targetvolumen verfolgt
werden. Erreicht ein Strahlelektron oder ein Sekundärteilchen den Rand des `H2-Volumens
von der Innenseite kommend, wird der Zustand des Teilchens, wie in Abbildung 86 darge-
stellt, abgefragt und die Propagation des Teilchens gestoppt, um Rechenzeit zu sparen. Dies
führt zu einem Ensemble von Teilchenzuständen, die aus Untergrundprozessen im Target
stammen und deren Ortsvektoren auf die Oberfläche des `H2-Volumens zeigen. Ein solcher
Zustand ist definiert durch:

• Den Teilchentyp;

• Den Ort des Teilchens auf der Oberfläche des `H2-Volumens;

• Den Viererimpuls des Teilchens.

Sind die beiden Zustands-Ensembles für eine gegebene Targetgeometrie berechnet, so wer-
den sie gespeichert und können anschließend beliebig oft zur Erzeugung von Endzuständen
wiederverwendet werden.

Zur Erzeugung von Endzuständen der elastischen Elektron-Proton-Streuung wurde ein End-
zustandsgenerator entwickelt. Dieser erzeugt in der Simulation für jeden Anfangszustand
genau ein Elektron und ein Proton im Endzustand des Streuprozesses. Dabei wird davon
ausgegangen, dass das Proton im Anfangszustand im Laborsystem in Ruhe ist. Strah-
lungskorrekturen zur elastischen Elektron-Proton-Streuung werden vernachlässigt, so dass
die Streukinematik festliegt, wenn etwa die Elektron-Anfangszustandsenergie Ei und die
Elektron-Streuwinkel θf und φf relativ zur Impulsrichtung des Elektrons im Anfangszustand
bekannt sind. Zur Erzeugung des Endzustands werden die beiden Elektron-Streuwinkel als
gleichverteilte Zufallsvariablen aufgefasst, und es werden Zufallswerte aus vom Anwender
vorgegenbenen Intervallen δθf = [θmin

f , θmax
f ] und δφf = [φmin

f , φmax
f ] bestimmt. Zur Berech-

nung der Energie Ef des Elektrons im Endzustand der elastischen e-p-Streuung wird der in
Gleichung (34) gegebene Ausdruck verwendet. Da die Viererimpulse des Elektrons ki und
des im Laborsystem ruhenden Protons pi im Anfangszustand bekannt sind, kann der Viere-
rimpuls pf des Protons im Endzustand mithilfe der Viererimpulserhaltung zu

pf = ki + pi − kf, (267)

bestimmt werden. Man beachte, dass θf und φf im Folgenden stets relativ zur Impulsrichtung
des Elektrons im Anfangszustand der elastischen e-p-Streuung definiert sind und nicht mehr
wie in den vorangegangen Kapiteln relativ zur Strahlachse gemessen werden.

Die Zustände der Untergrundteilchen und Strahlelektronen, die, wie in Abbildung 86 veran-
schaulicht, im Rahmen der Simulation der Strahl-Target-Interaktion an der Oberfläche des
`H2-Volumens abgefragt wurden, werden zur Simulation der Bahnkurven im Magnetfeld und
der Detektorantwort unverändert rekonstruiert.

Um eine Vorhersage der im realen Experiment erwarteten Ereigniszahlen treffen zu können,
ist es notwendig, den simulierten Ereignissen Gewichtungsfaktoren zuzuweisen. Dabei sind
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unterschiedliche Gewichtungsfaktoren für simulierte e-p-Streuereignisse und Untergrunder-
eignisse zu wählen. Im realen Experiment erwartet man für die elastische Elektron-Proton-
Streuung die dreifach differentielle Streuereignishäufigkeitsdichte

d3Nexp

dl · dθf · dφf

≡ Ibeam

e
· ρp · sin(θf) ·

dσep

dΩ
(Ei, θf) · T (268)

pro Weglängenelement dl entlang der Trajektorien der Strahlelektronen im Target, Polar-
winkelelement dθf und Azimutwinkelelement dφf. Dabei bezeichnet Ibeam den Strahlstrom,
ρp die Protonendichte im Target, T die Messdauer, und dσep/dΩ die Rosenbluth-Formel, die
durch Gleichung (51) gegeben ist. In der Geant4-Simulation hingegen gilt für die Streuereig-
nishäufigkeitsdichte

d3Nsim

dl · dθf · dφf

≡ N0

lref · δθf · δφf

, (269)

wo N0 die Anzahl der simulierten Strahlelektronen bezeichnet, lref die Referenzlänge zur
Abtastung von Anfangszuständen im Target ist, und die Streuwinkelintervalle durch δθf

sowie δφf gegeben sind. Aus dem Vergleich der Gleichungen (268) und (269) erhält man die
Formel für den Gewichungsfaktor ωep, der einem simulierten e-p-Streuereignis zuzuweisen ist,
um die Anzahl der simulierten e-p-Streuereignisse auf die im realen Experiment erwartete
Anzahl an Streuereignissen zu skalieren:

ωep(Ei, θf) ≡
dNexp

dNsim

=
lref · Ibeam · ρp

e ·N0

· sin(θf) ·
dσep

dΩ
(Ei, θf) · δθf · δφf · T. (270)

Man beachte, dass dieser Gewichtungsfaktor dem simulierten Streuereignis in seiner Ge-
samtheit und somit ebenfalls sämtlichen im weiteren Verlauf der Simulation des Ereignisses
von Geant4 generierten Sekundärteilchen zugewiesen werden muss, um eine korrekte Vor-
hersage zu erhalten. Den Ereignissen, zu deren Beginn die Zustände der Untergrundteilchen
und Strahlelektronen auf der Oberfläche des Targetvolumens rekonstruiert werden, wird der
konstante Gewichtungsfaktor

ωbg ≡
Ibeam · T
e ·N0

(271)

zugewiesen, der die Gesamtzahl der simulierten Ereignisse ebenfalls auf die im realen Expe-
riment erwartete Gesamtzahl an Ereignissen skaliert.

7.2.2 Test des Ereignisgenerators

Um zu verifizieren, dass der Ereignisgenerator zur Simulation der elastischen Elektron-
Proton-Streuung korrekte Vorhersagen liefert, wurde ein Test des Algorithmus unter idea-
lisierten Bedingungen durchgeführt. Hierzu wurden bei der Simulation der Strahl-Target-
Interaktion sämtliche Geant4 eigenen Methoden zur Simulation physikalischer Prozesse de-
aktiviert, so dass die Strahlelektronen mit der Energie Ebeam = 155 MeV im Target keinen
Energieverlust und keine Richtungsänderung erfuhren und alle Anfangszustände der ela-
stischen e-p-Streuung innerhalb des `H2-Volumens auf der Strahlachse lagen. Anschließend
wurden Endzustände der elastischen e-p-Streuung mit dem Endzustandsgenerator erzeugt.
Als Streuwinkelintervalle wurden dabei δθf = [5◦, 175◦] und δφf = [−180◦, 180◦[ gewählt.
Ferner wurde ein Strahlstrom von Ibeam = 150µA zur Berechnung des in Gleichung (270)
gegebenen Gewichtungsfaktors ωep(Ei, θf) angenommen.

Die sich aus der Geant4-Simulation ergebende Vorhersage für die Verteilung der Elektron-
Streurate RG4 in Abhängigkeit vom Laborstreuwinkel θf ist in Abbildung 89 dargestellt. Zum
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Vergleich wurde die Rate RXS durch numerische Integration der Rosenbluth-Formel (51) für
die selben Werte von Ebeam, Ibeam, δθf und δφf bestimmt. Hierbei wurde ebenfalls der Ener-
gieverlust der Strahlelektronen im Target vernachlässigt. Man entnimmt der Abbildung, dass
die beiden Ratenverteilungen im Rahmen der statistischen Unsicherheit der Berechnungen
sehr gut übereinstimmen.

Auf der linken Seite von Abbildung 90 ist die Projektion der mit Geant4 simulierten Ra-
tenverteilung RG4 auf den Azimutwinkel φf der gestreuten Elektronen dargestellt. Die Ra-
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Abbildung 89: Vergleich zweier Berechnungen der Elektron-Proton-Streurate in Abhängigkeit
vom Streuwinkel θf des Elektrons. RG4 ist die Ratenverteilung, die mittels des in der Geant4-
Simulation implementierten Ereignisgenerators berechnet wurde. RXS wurde unabhängig von
RG4 durch numerische Integration der Rosenbluth-Formel bestimmt. Im linken Bild sind bei-
de Ratenverteilungen in Abhängigkeit von θf dargestellt, die Kurven der beiden Verteilungen
überlappen. Rechts ist die relative Abweichung zwischen den beiden Raten in Abhängigkeit
von θf gezeigt. Die relativen Abweichungen streuen statistisch um den Wert 0, was ein Indiz
für die korrekte Funktionsweise des in der Geant4-Simulation implementierten Ereignisge-
nerators ist.
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Abbildung 90: Links ist die Ratenverteilung RG4 als Funktion des Azimutwinkels φf in Blau
dargestellt. An die Verteilung wurde die rot gezeichnete lineare Funktion f(φf) = p1 ·φf + p0
angepasst, die Werte der Fitparameter sind in der Abbildung aufgeführt. Die Ratenvertei-
lung weist im Rahmen der statistischen Fluktuationen einen konstanten Verlauf auf. Im
rechten Bild ist die Energie Ef der Elektronen im Endzustand des Streuprozesses als Funk-
tion von θf aufgetragen. In Orange dargestellt sind die Energien der simulierten Elektronen,
die schwarz gestrichelte Kurve ist durch Gleichung (34) gegeben. Man erkennt eine gute
Übereinstimmung der beiden Verläufe.
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tenverteilung ist in Abhängigkeit von φf erwartungsgemäß im Rahmen ihrer statistischen
Schwankungen mit einer Konstanten vereinbar. Auf der rechten Seite von Abbildung 90 ist
die simulierte Verteilung der Energie Ef der Elektronen im Endzustand des Streuprozesses
zusammen mit dem durch Gleichung (34) gegebenen Verlauf von Ef als Funktion von θf

aufgetragen. Die Verläufe der beiden Verteilungen von Ef überlappen. Man kann folgern,
dass die Geant4-Simulation die durch Gleichung (34) gegebene Verteilung der Energie der
Elektronen im Endzustand des Streuprozesses gut reproduziert.

Zusammenfassend kann man feststellen, dass der Ereignisgenerator zur Simulation der ela-
stischen Elektron-Proton-Streuung im `H2-Target erwartungsgemäße Vorhersagen liefert.

7.2.3 Energiedeposition im Target

Im Rahmen eines Plausibilitätstests wurde mithilfe der Geant4-Simulation die im `H2-
Volumen deponierte Energie berechnet. Hierzu wurde am Ende jedes Propagationsschritts
eines jeden Primär- und Sekundärteilchens im `H2-Volumen die im Rahmen des Propagati-
onsschritts im Medium deponierte Gesamtenergie abgefragt und aufsummiert. Die deponier-
te Gesamtenergie wurde am Ende des simulierten Ereignisses mit dessen Gewichtungsfaktor
multipliziert. Bei der Berechnung der deponierten Energie wurden nur diejenigen Kollisions-
und Strahlungsverluste berücksichtigt, die in der Simulation nicht zur Erzeugung eines Se-
kundärteilchens führten; durch die von Geant4 bereitgestellten Methoden zur Simulation
physikalischer Prozesse werden Sekundärteilchen nur dann explizit generiert, wenn deren
Energie ausreicht, um eine vor Simulationsbeginn festgelegte Minimaldistanz im aktuellen
Medium zurückzulegen. Zur Berechnung der im `H2-Volumen deponierten Energie wurde
diese Distanz auf 1 mm festgelegt.

Abbildung 91 zeigt die mithilfe der Simulation bestimmte Verteilung der im `H2-Volumen
deponierten Energie Edep. Im Mittel wird eine Energie von 〈Edep〉 = 17,01 MeV pro simu-
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Abbildung 91: Simulierte Häufigkeitsverteilung der im `H2-Volumen deponierten Energie für
eine Strahlenergie Ebeam = 155 MeV. Die Verteilung der deponierten Energie besitzt die Form
einer Landauverteilung, welche für den Energieverlust von Elektronen in dünnen Material-
schichten charakteristisch ist. Im Mittel wird eine Energie von 17,01 MeV pro simuliertem
Strahlelektron im Target deponiert.
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liertem Strahlelektron im `H2-Target deponiert. Bei einem Strahlstrom von Ibeam = 150µA
entspricht dies einer im `H2-Volumen deponierten Leistung von

PTarget =
Ibeam

e
· 〈Edep〉 = 2,55 kW. (272)

In [26] wird die im `H2-Volumen deponierte Leistung mit 3,1 kW beziffert. Der mit der
Geant4-Simulation bestimmte Wert liegt somit in derselben Größenordnung wie der von der
Arbeitsgruppe um S. Covrig bestimmte Wert. Die P2-Kollaboration sieht eine Kühlleistung
von 4 kW für das Flüssigwasserstoff-Target vor, um den Wärmeeintrag in die übrigen Kom-
ponenten des Targets ebenfalls kompensieren zu können.

7.3 Bahnkurven im Magnetfeld

Die Geant4-Simulation des P2-Experiments ist in der Lage, die selben Magnetfeldkarten
wie die Raytracing-Simulation zu verwenden. Die Evaluation solenoidaler und toroidaler
Magnetfeldkarten sowie die Propagation geladener Teilchen im Feld erfolgt mit den selben
Algorithmen, die in der Raytracing-Simulation implementiert wurden. Eine Beschreibung
findet sich in Abschnitt 6.1.4 dieser Arbeit.

Im Unterschied zur Raytracing-Simulation werden die Teilchen nicht gestoppt, wenn sie auf
die Abschirmung des Detektors oder ein anderes Medium treffen. Die Simulation der Bahn-
kurven endet erst, wenn alle Teilchen, die innerhalb eines simulierten Ereignisses generiert
wurden, den Rand des Weltvolumens erreicht haben oder in einem Medium gestoppt wurden.

Alle im Rahmen der vorliegenden Arbeit erstellten Simulationsresultate wurden unter Ver-
wendung der Magnetfeldkarte des FOPI-Solenoiden erstellt, die in Abbildung 72 dargestellt
ist. Für den globalen Skalierungsfaktor der Magnetfeldkarte λB wurde der in Abbildung 79
dargestellten, zu untersuchenden Messaufbau-Konfiguration entsprechend stets λB = 1, 0
gesetzt.

Abbildung 92 zeigt beispielhaft die simulierten Bahnkurven von 10 im `H2-Target elastisch an
Protonen gestreuen Elektronen. Zur Erzeugung der gezeigten Trajektorien wurde Ebeam =
155 MeV, θf ∈ [25◦, 45◦] und φf ∈ [0◦, 360◦[ gewählt. Man erkennt, dass sich diejenigen
Elektronen, die im Target keine großen Energieverluste erleiden, auf spiralförmigen Bahnen
bewegen, deren Durchmesser größer ist als der Radius des Gamma-Schilds, so dass sie in den
Spurdetektoren und dem Cherenkov-Ringdetektor nachgewiesen werden können. Im Bild
zu erkennen ist auch ein Ereignis, bei dem das Elektron nach der Streuung am Proton im
Targetmaterial einen großen Energieverlust durch Abstrahlung eines Photons erfahren hat.
Der Durchmesser der spiralförmigen Bahnkurve dieses Elektrons ist kleiner als der Radius
des Gamma-Schilds.

7.4 Energiedeposition im Solenoiden

Die P2-Kollaboration plant den Einsatz eines neuen Kryostaten und einer neuen supraleiten-
den Feldspule in Verbindung mit dem Eisenjoch des FOPI-Solenoiden. Aufgrund der hohen
geplanten Luminosität des P2-Experiments wird eine ausreichende Kühlung der Feldspule
notwendig sein, um den strahlungsbedingten Wärmeeintrag in deren supraleitende Kom-
ponenten zu kompensieren. Gängige supraleitende Feldspulen großer Magnete bestehen aus
Nb-Ti-Legierungen in einer Matrix aus Kupfer oder Aluminium. Da zum Zeitpunkt der
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Abbildung 92: Visualisierung von 10 simulierten Elektron-Proton-Streuereignissen im `H2-
Target mit Ebeam = 155 MeV, θf ∈ [25◦, 45◦] und φf ∈ [0◦, 360◦[. Das Bild wurde mithilfe der
visuellen Ausgabe der Geant4-Simulation erstellt. Bei der Simulation dieser Streuereignisse
wurde der gesamte in Abbildung 85 gezeigte Messaufbau berücksichtigt, zur Verbesserung der
Übersichtlichkeit wurden jedoch nur die dargestellten Komponenten des Aufbaus visualisiert.
Die rot gezeichneten Elektron-Bahnkurven bewegen sich entlang spiralförmiger Bahnkurven
im Magnetfeld des Solenoiden. Die Elektronen passieren den Gamma-Schild und erreichen
die Spurdetektoren und den Cherenkov-Detektor. Im Bild erkennbar sind auch die grün
gezeichneten Trajektorien von Bremsstrahlungs-Photonen, die im Zuge der Wechselwikung
der Elektronen mit den Materialien des Messaufbaus erzeugt wurden. Man erkennt ferner,
dass eins der simulierten Elektronen im Target einen großen Energieverlust erfahren hat und
sich entlang einer Bahnkurve bewegt, deren Durchmesser kleiner ist als der Innendurchmesser
des Gamma-Schilds.

Anfertigung dieser Arbeit kein Modell des Kryostaten oder der Spule existiert, wurde die
Feldspule, wie in Abbildung 85 dargestellt, durch einen aus Kupfer bestehenden Hohlzylin-
der modelliert.

Im Folgenden wird vorgestellt, wie die Energiedepostion in der Feldspule des Solenoiden
durch aus dem Target stammende Teilchen mithilfe einer Bleiabschirmung reduziert werden
kann. Zu diesem Zweck wurde mittels der Simulation der Energieeintrag in der Feldspule des
Solenoiden auf analoge Weise zum Energieeintrag im Target berechnet, s. Abschnitt 7.2.3
für Details. Es werden Resultate von Simulationsläufen mit und ohne Bleiabschirmung des
Solenoiden vorgestellt.
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Abbildung 93: Verteilungen der pro Volumeneinheit V in der Feldspule deponierten Leistung
P in Abhängigkeit vom Radius r und der Koordinate z. Links ist die Verteilung gezeigt, die
sich ohne die in radialer Richtung 5 mm dicke Bleiabschirmung der Feldspule ergibt. Rechts
ist die Verteilung gezeigt, die sich mit der Bleiabschirmung der Feldspule ergibt, die in
Abbildung 85 dargestellt ist. Die Skalen und die Farbcodierungen der beiden Abbildungen
wurden identisch gewählt, um den Vergleich der beiden Verteilungen zu vereinfachen.

In Abbildung 93 ist die mit der Simulation bestimmte Verteilung der pro Volumeneinheit V
im Kupferzylinder deponierten Leistung P in Abhängigkeit vom Radius r ≡

√
x2 + y2 sowie

der z-Koordinate für zwei Fälle aufgetragen. Im linken Teil der Abbildung ist die Verteilung
dargestellt, die sich ohne den in radialer Richtung 5 mm dicken Bleischild ergibt, der zur
Abschirmung der Feldspule und des Kryostaten angedacht ist. Die deponierte Gesamtleistung
beträgt in diesem Fall

Edep
ges (ohne Schild) = 5,29 W. (273)

Im rechten Teil von Abbildung 93 ist die simulierte Verteilung der im Kupferzylinder depo-
nierten Leistung dargestellt, die sich mit dem Bleischild ergibt. In diesem Fall beträgt die
gesamte in dem Kupferzylinder deponierte Leistung

Edep
ges (mit Schild) = 1,87 W. (274)

Durch den Einsatz des Bleischilds wird die gesamte deponierte Leistung somit um den Faktor

Edep
ges (ohne Schild)

Edep
ges (mit Schild)

= 2,83 (275)

reduziert.

Die Berechnung der in der Feldspule und dem Kryostaten deponierten Leistung sollte mit
einem realistischeren Modell des geplanten Spektrometers wiederholt werden, um eine hin-
reichende Kühlleistung für die Feldspule vorsehen zu können.

7.5 Reduktion des Untergrunds aus niederenergetischer Gamma-
strahlung

Da im P2-Experiment eine integrierende Messung der paritätsverletzenden Asymmetrie der
elastischen Elektron-Proton-Streuung vorgesehen ist, muss der Cherenkov-Detektor gegen
aus dem Target stammende Gammastrahlung abgeschirmt werden. Zu diesem Zweck wurde
der Gamma-Schild entworfen, der in Abschnitt 4.7.5 vorgestellt wurde.
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Abbildung 94: Simulierte Anordnung bestehend aus Target, FOPI-Solenoid und zwei Nach-
weisebenen. Als Material für das Weltvolumen wurde in diesem Simulationslauf ein idea-
les Vakuum verwendet, um dem Umstand Rechnung zu tragen, dass das Target sich in
einer Streukammer befinden wird. Das CAD-Modell des FOPI-Solenoiden wurde mittels
CADMesh importiert. Es wurde ein in Strahlrichtung 600 mm langes, zylinderförmiges `H2-
Volumen mit einem Radius von 25 mm senkrecht zur Strahlrichtung als Target modelliert,
dessen geometrischer Schwerpunkt sich bei z = −700 mm befindet. Die Nachweisebenen
besitzen die Form von Kreisflächen, deren Radien senkrecht auf der Strahlachse stehen.
Sie werden im Bild durch die lilafarbenen Linien dargestellt. Ihr Zweck besteht darin, die
Zustände der sie passierenden Teilchen abzufragen, um die Berechnung von Ratenverteilun-
gen zu ermöglichen. Die erste Nachweisebene befindet sich im Inneren des Solenoiden an der
Stelle z = 970 mm, was dem Anfang des Gamma-Schilds entspricht, und besitzt einen Radius
von 1200 mm. Die zweite Nachweisebene befindet sich an der für den Cherenkov-Detektor
vorgesehenen Position von z = 3000 mm und besitzt einen Radius von r = 3000 mm. Im
Bild ist der Verlauf der Bahnkurve eines Elektrons (rot) sowie der Verlauf der Bahnkurve
eines Photons (grün) zur Veranschaulichung dargestellt. Die Zustände der Teilchen werden
an den gelb markierten Schnittpunkten der Bahnkurven mit den Nachweisebenen abgefragt,
ohne dass die Bahnkurven beeinträchtigt werden.

Im Folgenden werden die Resultate einer Reihe von Simulationsläufen betrachtet, deren
Zweck in der Veranschaulichung der Wirkungsweise des Gamma-Schilds liegt. Alle gezeigten
Resultate wurden für eine Strahlenergie von Ebeam = 155 MeV sowie einen Strahlstrom von
Ibeam = 150µA berechnet. Als Streuwinkelintervalle zur Simulation der elastischen Elektron-
Proton-Streuung im Target wurden θf ∈ [5◦, 175◦] sowie φf ∈ [0◦, 360◦[ gewählt. Bei der Be-
rechnung der nachfolgend vorgestellten Resultate wurden nur elektromagnetische Prozesse
simuliert, da der Zweck des Gamma-Schilds in der Abschirmung von aus dem Target her-
vortretender Bremsstrahlung liegt.

Zu Beginn wurde die in Abbildung 94 dargestellte Anordnung aus `H2-Target, FOPI-Solenoid
sowie zwei Nachweisebenen zur Berechnung von Ratenverteilungen simuliert. In der Simu-
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lation wurden zwei senkrecht zur Strahlachse stehende Nachweisebenen verwendet, um die
Zustände der sie passierenden Teilchen abzufragen, ohne dabei die Bahnkurven der Teilchen
zu beeinträchtigen. Die abgefragte Information umfasst für alle Teilchen:

• Den Teilchentyp;

• Den Auftreffort auf der Nachweisebene;

• Die kinetischen Energie des Teilchens am Auftreffort;

• Die Impulsrichtung des Teilchens am Auftreffort.

Findet der Treffer der Nachweisebene im Rahmen der Simulation eines elastischen Elektron-
Proton-Streuereignisses im Target statt, so wird zusätzlich die folgende Information über das
Streuereignis abgefragt, um etwa den Gewichtungsfaktor ωep(Ei, θf) gemäß Gleichung (270)
berechnen zu können:

• Position des Streuvertex im Target;

• Energie Ei des Elektrons im Anfangszustand der elastischen e-p-Streuung;

• Elektron-Streuwinkel θf und φf relativ zur Impulsrichtung des Elektrons im Anfangs-
zustand des Streuprozesses.

Abbildung 95 zeigt die simulierten Ratenverteilungen in den in Abbildung 94 dargestellten
Nachweisebenen in Abhängigkeit vom Abstand r von der Strahlachse. Man erkennt, dass die
gezeigten Ratenverteilungen von Photonen dominiert werden, die aus Bremsstrahlungspro-
zessen im Target stammen. Um die Durchführbarkeit des P2-Experiments sicherzustellen,
müssen die Beiträge dieser Photonen durch eine geeignete Abschirmung reduziert werden.

Die Ratenverteilung der Untergrundelektronen umfasst sowohl Strahlelektronen, als auch
Elektronen im Endzustand des Møller-Streuprozesses. Die Mehrzahl der Untergrund-Elektronen
trifft, wie aufgrund der Raytracing-Simulation erwartet, die Nachweisebenen bei kleinen Ra-
dien r ≤ 200 mm. Da aufgrund der großen Targetlänge und der niedrigen Strahlenergie einige
Strahlelektronen beim Passieren des Targets große Impulsrichtungsänderungen erfahren, wie
in Abbildung 87 gezeigt ist, ersteckt sich die Ratenverteilung der Untergrundelektronen auch
zu größeren Radien im Bereich der vorgesehenen Detektorposition von r ≥ 450 mm. Ferner
können - etwa durch aus dem Target stammende Bremsstrahlung - Sekundärelektronen im
Solenoiden ausgelöst werden, so dass die Ratenverteilung dieser Teilchen für r ≥ 600 mm
wieder ansteigt.

Die Ratenverteilung der Sekundär-Elektronen aus der Simulation elastischer e-p-Streuung im
Target erstreckt sich ebenfalls zu größeren Radien r ≥ 450 mm. Dies kann dadurch erklärt
werden, dass mit größeren Werten von θi oder θf elastisch an Protonen gestreute Elektro-
nen vor dem Verlassen des Targets elastisch an den Hüllenelektronen des Flüssigwasserstoffs
streuen. Durch unter Winkeln θf > 45◦ im Target elastisch an Protonen gestreute Elektronen
werden im Solenoiden Sekundärelektronen ausgelöst, welche den leichten Wiederanstieg der
Ratenverteilung bei r ≥ 600 mm an der Stelle z = 970 mm bedingt.

Der Prozess der Elektron-Positron-Paarbildung liefert einen geringen Beitrag zur Raten-
verteilung, diesem Prozess entstammen die Positronen, welche die Nachweisebenen erreicht
haben.
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Abbildung 95: Ratenverteilungen in den Nachweisebenen bei z = 970 mm (oben) und
z = 3000 mm (unten) als Funktionen des Abstands r von der Strahlachse. Die Raten
wurden jeweils auf die Ringflächen, welche zur Breite der Histogrammbalken in radialer
Richtung korrespondieren, normiert. In den Legenden rechts wird zwischen Teilchen unter-
schieden, welche die Nachweisebene im Rahmen der Simulation eines elastischen Elektron-
Proton-Streuereignisses im Target erreicht haben, und solchen, welche die Nachweisebene
im Rahmen der Rekonstruktion eines Untergrundereignisses im Target passiert haben. Bei
den Teilchen, welche die Nachweisebene als Folge einer e-p-Streuung im Target getroffen
haben, wird zusätzlich zwischen

”
Primärteilchen“ und

”
Sekundärteilchen“ unterschieden;

Primärteilchen sind Teilchen im Endzustand der e-p-Streuung, welche vom Endzustandsge-
nerator im Target erzeugt wurden, so dass es sich entweder um ein Elektron oder um ein
Proton handelt. Als

”
sekundär“ gekennzeichnete Teilchen gingen im Rahmen der Simulation

eines e-p-Streuereignisses aus der Interaktion der Primärteilchen mit den Materialien des
Messaufbaus hervor. Die Diskussion der Verteilungen findet sich im Text.

Abbildung 95 entnimmt man, dass die Rate der im Experiment nachzuweisenden Elektro-
nen aus elastischer e-p-Streuung mit Streuwinkeln θf ∈ [25◦, 45◦] an der Stelle z = 970 mm
ab einem Radius von r = 530 mm stark ansteigt. Dieser Wert stellt somit einen geeigneten
Außenradius für den Gamma-Schild dar. Dies ist mit der Vorhersage konsistent, die mit der
Raytracing-Simulation für den Verlauf der Bahnkurven getroffen wurde, wie man anhand
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Abbildung 96: Oben ist die simulierte Messaufbau-Konfiguration mit vereinfachtem Mo-
dell des Gamma-Schilds gezeigt. Der Gamma-Schild besteht aus zwei Hohlzylindern aus
Pb. Der erste Hohlzylinder ersteckt sich in den Intervallen r ∈ [280 mm, 530 mm] und
z ∈ [970 mm, 1070 mm]. Für den zweiten Hohlzylinder gilt r ∈ [430 mm, 530 mm] und
z ∈ [1070 mm, 3000 mm]. Es wird eine Nachweisebene zur Berechnung der Ratenverteilung
an der Stelle z = 3000 mm verwendet, was der für den Cherenkov-Detektor vorgesehnen
Position entlang der Strahlachse entspricht. Die simulierte Ratenverteilung in der Nachwei-
sebene ist im unteren Bild gezeigt. Ihre Darstellung erfolgt analog zu der in Abbildung 95
gezeigten Ratenverteilung. Die Diskussion der Ratenverteilung findet sich im Text.

von Abbildung 79 erkennen kann.

Dass die Verteilung der Primärelektronen aus elastischer e-p-Streuung mit θf ∈ [25◦, 45◦]
in Abbildung 95 für z = 970 mm und r < 530 mm von Null verschieden ist, liegt darin
begründet, dass die Elektronen im Target vor bzw. nach der Streuung am Proton mit ge-
ringer Wahrscheinlichkeit größere Energieverluste erleiden können, etwa durch Abstrahlung
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Abbildung 97: Oben: Simulierte Messaufbau-Konfiguration bestehend aus `H2-Target, FOPI-
Solenoid, Gamma-Schild mit sägezahnförmiger Oberflächenstruktur und Nachweisebene zur
Berechnung der Ratenverteilung an der Stelle z = 3000 mm. Unten: Ratenverteilung in der
Nachweisebene. Die Darstellung der Ratenverteilung ist mit der in Abbildung 95 identisch.
Die Diskussion der Ratenverteilung findet sich im Text.

eines Gamma-Quants, und sich infolge dessen nach elastischer Streuung am Proton auf he-
lixförmigen Bahnkurven mit kleineren Radien bewegen.

An der Stelle z = 3000 mm werden die im Experiment nachzuweisenden Elektronen in
Übereinstimmung mit der Vorhersage der Raytracing-Simulation auf ein Intervall 450 mm ≤
r ≤ 900 mm fokussiert.

Um die Auswirkungen einer massiven Bleiabschirmung auf den Verlauf der in Abbildung 95
dargestellten Ratenverteilung zu studieren, wurde im nächsten Schritt eine Anordnung be-
stehend aus Target, Solenoid, Nachweisebene sowie eines vereinfachten Modells des Gamma-

169



r/mm
300 400 500 600 700 800 900 1000 1100 1200

,e
p

γ
/R

s ,e
p

γ
R

2−10

1−10

1

Abbildung 98: Verhältnis der Raten der Sekundär-Photonen aus elastischer Elektron-Proton-
Streuung im Target für die in den Abbildungen 97 und 96 dargestellten Geometrien des
Gamma-Schilds in Abhängigkeit vom Radius r des Auftrefforts der Photonen auf der Nach-
weisebene. Rs

γ,ep bezeichnet die Photonen-Rate für den Fall der sägezahnförmigen Ober-
flächenstruktur des Gamma-Schilds und Rγ,ep ist die Photonen-Rate, die sich für eine zylin-
drische Außenfläche des Schildes ergibt. Die blau gestrichelten Linien markieren die radialen
Grenzen des SiO2-Rings des geplanten Cherenkov-Ringdetektors.

Schilds untersucht. Abbildung 96 veranschaulicht die geometrische Konfiguration und zeigt
das Resultat der Ratenberechnung in der Nachweisebene an der Stelle z = 3000 mm. Beim
Vergleich von Abbildung 96 mit Abbildung 95 erkennt man deutlich den Einfluss der Ab-
schirmung auf die Ratenverteilung: Die Photonen-Raten brechen im Bereich um r = 500 mm
drastisch ein, was der Erwartung entspricht, da der Außenradius des simulierten Schilds
530 mm beträgt, und man somit in diesem Bereich die größte Abschirmungswirkung erwar-
tet.

Die im Experiment nachzuweisenden Elektronen werden auf einen ringförmigen Bereich mit
r ∈ [450 mm, 900 mm] fokussiert. Im Intervall 450 mm ≤ r ≤ 1100 mm werden die Raten der
aus Untergrundprozessen im Target stammenden Teilchen durch den Schild reduziert.

Die Gesamtrate wird trotz des Schilds von aus Bremsstrahlungsprozessen im Target stam-
menden Photonen dominiert, die Verteilung der Photonen-Rate wird jedoch durch den Schild
um etwa zwei Größenordnungen reduziert. Auch die Rate der Sekundär-Photonen aus ela-
stischer e-p-Streuung im Target wird durch den Schild reduziert, da Photonen, die nach der
elastischen e-p-Streuung im Target erzeugt werden, durch den Schild absorbiert werden.

Abschließend wird eine Konfiguration betrachtet, in welcher der Gamma-Schild zum Teil aus
Hohlkegelstümpfen zusammengesetzt ist und dadurch die azimutalsymmetrische, sägezahnförmige
Oberflächenstruktur erhält, die in Abbildung 55 zu erkennen ist. In Abbildung 97 ist die si-
mulierte Konfiguration aus Target, Solenoid, Gamma-Schild und einer Nachweisebene an
der Stelle z = 3000 mm dargestellt. Die Abbildung zeigt auch die simulierte Ratenverteilung
in der Nachweisebene. Untersucht man die Unterschiede der in den Abbildungen 97 und
96 dargestellten Ratenverteilungen, so kann man die Wirkung der sägezahnförmigen Ober-
flächenstruktur des Gamma-Schilds auf die Ratenverteilung erkennen. Die Oberflächenstruktur
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Abbildung 99: Zur Veranschaulichung des Prinzips der Untergrundreduktion durch die Ober-
flächenstruktur des Gamma-Schilds. Dargestellt ist die Bildung eines elektromagnetischen
Schauers im Gamma-Schild infolge eines Treffers durch ein Elektron, das im Target elastisch
an einem Proton gestreut wurde. Die Form der Oberfläche bietet eine zusätzliche Abschir-
mung gegen Teilchen, die sich im Rahmen der Schauerbildung in der Nähe der Oberfläche
des Schilds in Richtung der Nachweisebene ausbreiten. Im Bild führt das linke, den Schild
treffende Elektron zu einem elektromagnetischen Schauer im Schild. In dem organge einge-
rahmten Bereich wird ein im Zuge der Schauerbildung entstandenes Photon durch die Form
des Schilds am Erreichen der Nachweisebene gehindert. Der Anstieg des in Abbildung 98 dar-
gestellten Ratenverhältnisses bei r ∼ 500 mm ist auf Ereignisse zurückzuführen, bei denen
Bremsstrahlung in der Nähe der Oberfläche des Schilds erzeugt wird und die Nachweisebene
in diesem Bereich trifft.

reduziert die Rate der Sekundär-Photonen, welche aus elastischer e-p-Streuung im Target
resultiert, im Intervall r ∈ [450 mm, 1100 mm].

Man erkennt dies, wenn man das Verhältnis der in den Abbildungen 97 und 96 gezeig-
ten Raten der Sekundär-Photonen aus elastischer e-p-Streuung miteinander vergleicht: Sei
Rs
γ,ep die simulierte Nachweisrate der Sekundär-Photonen aus elastischer Elektron-Proton-

Streuung im Target, die sich für die in Abbilung 97 dargestellte Form des Gamma-Schilds
mit sägezahnförmiger Oberfläche ergibt. Sei ferner Rγ,ep die simulierte Nachweisrate der Se-
kundär-Photonen aus elastischer e-p-Streuung, die sich für die in Abbilung 96 dargestellte
zylinderförmige Außenfläche des Gamma-Schilds ergibt. In Abbildung 98 ist das Verhältnis
von Rs

γ,ep und Rγ,ep in Abhängigkeit vom Radius r des Auftrefforts der Photonen auf der
Nachweisebene dargestellt. Man sieht, dass die Rate der Sekundär-Photonen aus elastischer
e-p-Streuung in unmittelbarer Nähe zum Gamma-Schild (r ∼ 450 mm) durch die Ober-
flächenstruktur stark reduziert wird. Dieser Effekt kann wie folgt erklärt werden: In Ab-
bildung 79 ist erkennbar, dass der Schild von im Target elastisch an Protonen gestreuten
Elektronen getroffen wird, für deren Streuwinkel θf > 45◦ gilt. Die in der Projektion auf
die x-z-Ebene sägezahnartige Form der Oberfläche des Gamma-Schilds sorgt dafür, dass der
Bereich der Nachweisebene mit r ≈ 450 mm besser gegen Teilchen abgeschirmt ist, welche
aus der Bildung elektromagnetischer Schauer infolge von Treffern des Schilds hervorgehen.
Das zugrunde liegende Prinzip ist in Abbildung 99 veranschaulicht.
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Da das Magnetfeld unabhängig von der Form der Oberfläche des Gamma-Schilds dafür sorgt,
dass geladene Schauerteilchen mit niedriger Energie den Schild nicht verlassen, wirkt sich
die Oberflächenform vor allem auf die Ratenverteilung der Sekundär-Photonen aus elasti-
scher Elektron-Proton-Streuung im Target aus. Aus der Integration der in Abbildung 98
dargestellten Verteilung von Rs

γ,ep/Rγ,ep über das vom SiO2-Ring des Cherenkov-Detektors
abgedeckte Intervall, wo r ∈ [450 mm, 1100 mm], folgt:

1100 mm∫
450 mm

dr
[
Rs
γ,ep(r)/Rγ,ep(r)

]
1100 mm− 450 mm

≈ 0,88. (276)

Die Rate der die Nachweisebene erreichenden Sekundär-Photonen aus elastischer e-p-Streuung
im Target wird durch die Verwendung der in Abbildung 97 gezeigten Form des Gamma-
Schilds somit um 12 % gegenüber der Rate, die sich für die in Abbildung 96 dargestellte
Form des Schildes ergibt, reduziert.

7.6 Trefferverteilung auf dem Cherenkov-Detektor

Im vorigen Abschnitt wurden die Auswirkungen des Gamma-Schilds auf die Treffervertei-
lung, die man an der für den Cherenkov-Detektor vorgesehenen Stelle erwartet, diskutiert.
Bei der Berechnung der dort vorgestellten Simulationsergebnisse wurden lediglich elektroma-
gnetische Prozesse berücksichtigt, und es wurde ein stark idealisiertes geometrisches Modell
des Messaufbaus verwendet, um den Effekt der Abschirmung auf die Ratenverteilung her-
auszustellen.

In diesem Abschnitt wird die Trefferverteilung, die man im Experiment an der Oberfläche
des Cherenkov-Detektors erwartet, diskutiert. Zur Bestimmung dieser Verteilung wurde eine
Simulation des P2-Experiments unter Verwendung der in Abbildung 85 gezeigten Geome-
trie durchgeführt. Ferner wurden im Rahmen dieser Simulation die im Standardumfang von
Geant4 simulierbaren elektromagnetischen und hadronischen Prozesse berücksichtigt. Eine
vollständige Übersicht der mit Geant4 simulierbaren elektromagnetischen und hadronischen
Prozesse ist in [150] gegeben.

Das Prinzip zur Berechnung der Ratenverteilung der den Detektor treffenden Teilchen ist
identisch mit dem Prinzip zur Bestimmung der Ratenverteilung in den Nachweisebenen,
welches in Abschnitt 7.5 vorgestellt wurde: In der Simulation werden alle Teilchen während
der Propagation durch den Messaufbau verfolgt. Erreicht ein Teilchen die Oberfläche des
in Abbildung 85 dargestellten SiO2-Rings, so wird Information über den Zustand des Teil-
chens sowie das simulierte Streuereignis abgefragt. Dabei wird für alle Teilchen folgende
Information gespeichert:

• Der Teilchentyp;

• Der Ortsvektor des Auftreffpunkts auf dem SiO2-Ring;

• Die Gesamtenergie des Teilchens am Auftreffpunkt;

• Die Impulsrichtung des Teilchens am Auftreffpunkt.

Erfolgt der Detektortreffer im Rahmen der Simulation eines elastischen Elektron-Proton-
Streuereignisses im Target, so wird zusätzlich Information über den Anfangs- und Endzu-
stand der e-p-Streuung abgefragt. Dies umfasst:
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Messaufbau-Modell:
Geometrisches Modell s. Abbildung 85
Magnetfeldkarte FOPI, s. Abbildung 72

MESA-Elektronenstrahl:
Strahlenergie Ebeam 155 MeV
Strahlstrom Ibeam 150µA
Strahlpolarisation P 85 %
Messdauer T 104 h
Anzahl simulierter Strahlelektronen N0 2,4 · 107

Ereignisgenerator elastische e-p-Streuung:
Referenzlänge lref 5 m
Min. Elektron-Polarwinkel θmin

f 5◦

Max. Elektron-Polarwinkel θmax
f 175◦

Min. Elektron-Azimutwinkel φmin
f 0◦

Max. Elektron-Azimutwinkel φmax
f 360◦

Tabelle 15: Zur Simulation des P2-Experiments verwendete Eingangsgrößen.

• Die Energie Ei des Elektrons im Anfangszustand der Streuung;

• Den Elektron-Streuwinkel θf im Endzustand des Streuprozesses.

Mithilfe dieser Information kann der Gewichtungsfaktor ωep(Ei, θf) des simulierten Streuer-
eignisses nach Gleichung (270) berechnet werden. Zur Vorhersage der im Experiment auf der
Detektoroberfläche erwarteten Trefferraten wird jeder Detektortreffer in der Simulation mit
dem Gewichtungsfaktor des simulierten Ereignisses gewichtet, in dessen Rahmen der Treffer
stattgefunden hat.

Die Werte der Eingangsgrößen zur Simulation des P2-Experiments, für welche die nachfol-
gend präsentierten Resultate berechnet wurden, sind in Tabelle 15 zusammengefasst. Die
Simulation wurde auf 24 Prozessorkernen parallel ausgeführt und dauerte ca. 72 Stunden.
Die im P2-Experiment erwartete Ratenverteilung der Teilchen, welche den SiO2-Ring des
Cherenkov-Detektors an der Stelle z = 3000 mm treffen, ist in Abbildung 100 in Abhängigkeit
vom Radius r des Auftrefforts aufgetragen. Tabelle 16 listet die Trefferraten, die zu den in
Abbildung 100 gezeigten Verteilungen korrespondieren, für die einzelnen Teilchentypen auf.

Der drastische Einbruch der Gesamtrate bei r = 900 mm, der in Abbildung 100 zu erkennen
ist, rührt von der Abschirmung der Photomultiplier, die man in Abbildung 85 sehen kann,
her. Der Teil des SiO2-Rings mit 900 mm ≤ r ≤ 1100 mm fungiert als Lichtleiter und wird
daher ebenso wie die Photomultiplier durch einen 100 mm dicken Bleischild gegen Strahlung
abgeschirmt.

Beim Vergleich von Abbildung 100 mit Abbildung 97 stellt man fest, dass die Photonenra-
ten und die Raten der Sekundär- und Untergrundelektronen in Abbildung 100 systematisch
erhöht sind. Ferner erreichen die Protonen aus elastischer e-p-Streuung im Target den De-
tektor nicht mehr, und es gibt Beiträge zur Ratenverteilung, die von Neutronen aus inelasti-
schen Streuprozessen an Atomkernen stammen. Der Grund für diese Unterschiede liegt in der
realistischeren Modellierung des Messaufbaus bei der Berechnung der in diesem Abschnitt
vorgestellten Resultate sowie der Berücksichtigung hadronischer Prozesse bei der Simulation

173



 r/mm
500 600 700 800 900 1000 1100

)
-2

*m
m

-1
 T

re
ffe

rr
at

e/
(s

1

10

210

310

410

510

610

710 Gesamtrate

Elastische Elektron-Proton-Streuung:

 [25 deg, 45 deg]∈ θPrimaer-Elektronen, 

 [25 deg, 45 deg]∉ θPrimaer-Elektronen, 

Sekundaer-Elektronen

Sekundaer-Photonen

Sekundaer-Positronen

Primaer-Protonen

Sekundaer-Protonen

Sekundaer-Neutronen

Untergrund-Rekonstruktion:

Elektronen

Photonen

Positronen

Protonen

Neutronen

Abbildung 100: Simulierte Trefferverteilung des SiO2-Rings an der Stelle z = 3000 mm in
Abhängigkeit vom Abstand r des Auftrefforts der Teilchen von der Strahlachse. Die Raten
wurden auf die Ringflächen, welche zur Breite der Histogrammbalken in radialer Richtung
korrespondieren, normiert. In der Legende wird zwischen Teilchen, welche den Detektor im
Rahmen der Simulation einer elastischen Elektron-Proton-Streuung im Target getroffen ha-
ben, und Teilchen, die den Detektor im Rahmen der Simulation eines Untergrundereignisses
im Target erreicht haben, unterschieden. Bei den Teilchen, welche den SiO2-Ring im Rahmen
der Simulation eines e-p-Streuereignisses im Target getroffen haben, wird zwischen

”
Primär-“

und
”
Sekundärteilchen“ unterschieden. Primärteilchen sind Teilchen, die vom Ereignisgene-

rator im Endzustand der elastischen e-p-Streuung generiert wurden, es handelt sich somit
entweder um Elektronen oder Protonen. Sekundärteilchen wurden bei der Simulation physi-
kalischer Wechselwirkungen von Primär- oder Sekundärteilchen generiert.

der physikalischen Wechselwirkungen. Die Streukammer aus Aluminium, das Kevlar-Fenster,
das He-Gas in der He-Kammer, die Spurdetektoren, der aus Aluminium bestehende Rand
der He-Kammer und das Luftvolumen zwischen He-Kammer und Cherenkov-Detektor stel-
len zusätzliche Medien dar, in denen die Protonen gestoppt und Neutronen, Bremsstrahlung
sowie geladene Sekundärteilchen freigesetzt werden können.

Man erkennt in Abbildung 100, dass die im Experiment nachzuweisenden Primärelektronen
aus elastischer Elektron-Proton-Streuung mit Streuwinkeln θf ∈ [25◦, 45◦] durch das Ma-
gnetfeld auf einen ringförmigen Bereich mit Radien r ∈ [450 mm, 900 mm] fokussiert werden.
Abbildung 101 zeigt die Trefferverteilung der im Experiment nachzuweisenden Elektronen
in Abhängigkeit von ihrer kinetischen Energie und des Radius ihres Auftrefforts. Für den
Erwartungswert 〈r〉 des Radius des Auftrefforts der im Experiment nachzuweisenden Elek-
tronen auf der Oberfläche des SiO2-Rings ergibt sich

〈r〉 ≈ 698 mm. (277)

Der Erwartungswert 〈Ekin〉 der kinetischen Energie der im Experiment nachzuweisenden
Elektronen am Auftreffort auf der Oberfläche des SiO2-Rings beträgt

〈Ekin〉 ≈ 115 MeV. (278)

Die Trefferverteilungen der übrigen in Abbildung 100 angeführten Teilchentypen sind in An-
hang B in Abhängigkeit von der kinetischen Energie der Teilchen am Auftreffort auf der
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Teilchentyp Trefferrate SiO2-Ring/s−1

Elastische Elektron-Proton-Streuung:
Primär-Elektronen, θf ∈ [25◦, 45◦] 7,10 · 1010 (4,6 %)
Primär-Elektronen, θf /∈ [25◦, 45◦] 3,21 · 1010 (2,1 %)
Sekundär-Elektronen 1,33 · 1010 (0,9 %)
Sekundär-Photonen 2,12 · 1011 (13,9 %)
Sekundär-Positronen 1,47 · 109 (0,1 %)
Sekundär-Protonen 5,11 · 105 (0,0 %)
Sekundär-Neutronen 5,41 · 109 (0,4 %)

Untergrund-Prozesse:
Elektronen 4,05 · 1010 (2,6 %)
Photonen 1,14 · 1012 (74,5 %)
Positronen 1,40 · 109 (0,1 %)
Neutronen 8,31 · 109 (0,5 %)

Gesamt 1,53 · 1012

Tabelle 16: Im P2-Experiment erwartete Trefferraten des SiO2-Rings des Cherenkov-
Detektors an der Stelle z = 3000 mm. Die Gesamtrate ist nach den Teilchentypen aufge-
schlüsselt, zwischen denen in der Simulation unterschieden wird. Es werden nur diejenigen
Teilchentypen aufgelistet, deren Trefferrate von 0 verschieden ist. In runden Klammern wer-
den die prozentualen Anteile an der Gesamtrate angegeben.

Detektoroberfläche und des Radius des Auftrefforts dargestellt.

Da das Antwortverhalten des Cherenkov-Detektors, wie im nachfolgenden Abschnitt aus-
geführt werden wird, von der Einfallsrichtung der den SiO2-Ring treffenden Elektronen
abhängt, ist die Kenntnis der Verteilung der Auftreffwinkel der im Experiment nachzuweisen-
den Elektronen auf der Oberfläche des SiO2-Rings notwendig, um die räumliche Ausrichtung
der Detektormodule optimieren zu können. Da der Messaufbau des P2-Experiments azimu-
talsymmetrisch ist, kann die Einfallsrichtung der den SiO2-Ring treffenden Teilchen mithilfe
zweier Winkel α und β parametrisiert werden. Im Folgenden werden diese Winkel definiert,
wobei die linke Seite von Abbildung 102 der Veranschaulichung dient: Für einen Detektor-
treffer am Ort ~x im globalen Koordinatensystem der Geant4-Simulation, das in Abschnitt
7.1 definiert ist, sei ~r die Projektion von ~x auf die x-y-Ebene. Der Vektor ~r zeigt somit, wie
in Abbildung 102 veranschaulicht, von der Strahlachse zum Auftreffort des Teilchens auf der
Detektoroberfläche. Für jeden Vektor ~r wird ein rechtshändiges, kartesisches Koordinaten-
system mit den in Abbildung 102 dargestellten Achsen x′, y′ und z′ so definiert, dass die
z′-Achse parallel zur Strahlachse ist und die x′-Achse in Richtung von ~r zeigt. Der Ursprung
dieses Koordinatensystems habe den Abstand d zum Auftreffort des Teilchens auf dem SiO2-
Ring. Der Impulsvektor des Teilchens am Auftreffort sei ~p. Die durch den Auftreffort des
Teilchens auf der Detektoroberfläche und ~p definierte Gerade schneide die x′-y′-Ebene am
Punkt P = (Px′ , Py′ , Pz′)

T. Die Auftreffwinkel α und β des Teilchens auf der Oberfläche des
SiO2-Volumens werden wie folgt definiert:

α ≡ arctan

(
Px’

d

)
, (279)

β ≡ arctan

(
Py’

d

)
. (280)
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Abbildung 101: Ratenverteilung der Primärelektronen aus elastischer Elektron-Proton-
Streuung mit Streuwinkeln θf ∈ [25◦, 45◦] in Abhängigkeit von der kinetischen Energie Ekin

der Elektronen am Auftreffort auf dem Detektor und des Abstands r des Auftrefforts von
der Strahlachse. Die Raten wurden auf die ringförmigen Flächen normiert, die zur Breite der
Histogrammbalken in radialer Richtung korrespondieren.

Die sich aus der Simulation ergebende Ratenverteilung der im Experiment nachzuweisenden,
elastisch unter Winkeln θf ∈ [25◦, 45◦] an Protonen gestreuten Elektronen ist auf der rechten
Seite von Abbildung 102 in Abhängigkeit von α und β dargestellt. Aus dieser Verteilung
ergeben sich die folgenden Erwartungswerte 〈α〉 und 〈β〉 der beiden Auftreffwinkel:

〈α〉 = 2,32◦, (281)

〈β〉 = −0,66◦. (282)

Für die Standardabweichungen ∆α und ∆β, die man aus den Projektionen der in Abbildung
102 dargestellten Verteilung auf die α- bzw. β-Achse errechnet, ergibt sich:

∆α = 4,84◦, (283)

∆β = 3,52◦. (284)

In Abbildung 103 ist die Anzahl N target
ep von elastischen Elektron-Proton-Streuereignissen im

Target, die innerhalb der Hälfte der Messdauer T/2 = 5 · 103 h zur Trefferverteilung auf dem
Cherenkov-Detektor beitragen, in Abhängigkeit von der Energie Ei der Elektronen im An-
fangszustand des Streuprozesses sowie des Elektron-Streuwinkels θf aufgetragen. Es wurde
bei der Berechnung von N target

ep nur die Hälfte der Messdauer berücksichtigt, da dies die Zeit-
dauer ist, für die idealerweise jeder der beiden Helizitätszustände der Strahlelektronen im
Experiment vorliegt. Man beachte, dass die Verteilung von N target

ep auch diejenigen Streuer-
eignisse im Target einschließt, in deren Folge der Detektor lediglich von Sekundärteilchen
getroffen wurde.
Es gibt ein Maximum von N target

ep (Ei, θf) im Bereich mit Ei ∈ [135 MeV, 155 MeV] und θf ∈
[20◦, 45◦]. Die Beiträge der Streuereignisse mit θf ∈ [20◦, 25◦] in diesem Bereich bedingen
den in Abbildung 100 magentafarben gezeichneten Beitrag zur Trefferverteilung des SiO2-
Rings durch Primär-Elektronen mit θf /∈ [25◦, 45◦] maßgeblich. Es ist aufgrund der großen
Targetlänge von 600 mm sowie der hohen geforderten Detektorakzeptanz in θf von δθf = 20◦

nicht möglich, den Cherenkov-Detektor gegen diese Elektronen abzuschirmen, ohne einen
Teil der Bahnkurven der im Experiment nachzuweisenden Elektronen zu stören.
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Abbildung 102: Verteilung der Auftreffwinkel der im P2-Experiment nachzuweisenden Elek-
tronen aus elastischer e-p-Streuung mit Streuwinkeln θf ∈ [25◦, 45◦]. Die linke Abbildung
dient zur Veranschaulichung der Auftreffwinkel α und β der Teilchen auf der Oberfläche
des SiO2-Rings. Die Definition der beiden Winkel findet sich im Text. Auf der rechten Seite
ist die Ratenverteilung der im Target elastisch an Protonen unter Winkeln θf ∈ [25◦, 45◦]
gestreuten Elektronen in Abhängigkeit von α und β dargestellt.

Im Bereich mit θf ≈ 5◦ und Ei ∈ [130 MeV, 155 MeV] gibt es ein zweites Maximum von
N target

ep (Ei, θf). Es wird hauptsächlich von Detektortreffern durch Sekundärteilchen mit ver-
gleichsweise niedrigen Energien Ekin ∼ 10 MeV bedingt, die den Detektor infolge von Tref-
fern des Gamma-Schilds durch Primär-Elektronen mit Streuwinkeln θf ∈ [6◦, 10◦] erreicht
haben. Der vergleichsweise hohe Wert von N target

ep in diesem Bereich ist auf den Umstand
zurückzuführen, dass die durch Gleichung (51) gegebene Rosenbluth-Formel mit kleiner wer-
dendem θf stark ansteigt.
Die Ausläufer von N target

ep (Ei, θf) zu großen Streuwinkeln θf > 45◦ für 120 MeV ≤ Ei ≤
155 MeV werden ebenfalls durch Detektortreffer von Sekundärteilchen bedingt, die infolge
von Treffern der Streukammer, der Bleiabschirmung des Solenoiden sowie des Eisenjochs des
Magneten durch Primär-Elektronen und Sekundär-Photonen aus elastischer e-p-Streuung im
Target freigesetzt wurden.
Die Beiträge zu N target

ep im Bereich θf ∈ [60◦, 85◦] und Ei ∈ [90 MeV, 120 MeV] sind auf direkte
Treffer des SiO2-Rings durch Primär-Elektronen aus dem Target sowie Sekundärteilchen, die
infolge von Treffern des Gamma-Schilds durch Primär-Elektronen entstanden sind, zurückzuführen.
Abbildung 104 zeigt ein Beispiel für den Verlauf der Bahnkurven dieser Primär-Elektronen,
das mithilfe der in Kapitel 6 vorgestellten Raytracing-Simulation erstellt wurde. Es ist bei
dem vorgesehenen Messaufbau aufgrund der großen Ausdehnung des `H2-Targets entlang der
Strahlachse nicht möglich, den Detektor gegen diese Elektronen abzuschirmen, ohne einen
erheblichen Teil der Bahnkurven der im Experiment nachzuweisenden Elektronen mit Streu-
winkeln 25◦ ≤ θf ≤ 45◦ ebenfalls abzuschirmen.

Für die Gesamtzahl der simulierten elastischen Elektron-Proton-Streuereignisse im Target,
die einen Beitrag zu N target

ep (Ei, θf) innerhalb der Zeit T/2 leisten, gilt:

Ebeam∫
0

dEi

175◦∫
5◦

dθf

[
N target

ep (Ei, θf)
]
≈ 2,77 · 1018. (285)

Man beachte, dass die Gesamtzahl der Teilchen, die den Detektor innerhalb von T/2 infolge
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Abbildung 103: Im P2-Experiment erwartete Anzahl N target
ep von elastischen Elektron-Proton-

Streuereignissen im Target, die innerhalb der Hälfte der Messdauer T/2 = 5 · 103 h zur
Trefferverteilung des Cherenkov-Detektors beitragen, in Abhängigkeit von der Energie Ei

der Elektronen im Anfangszustand des Streuprozesses sowie des Elektron-Streuwinkels θf.

elastischer e-p-Streuung im Target treffen, 6,04 · 1018 beträgt, wie man aus den in Tabelle
16 gegebenen Raten folgern kann. Dieser Wert ist um den Faktor 2, 2 größer als der in Glei-
chung (285) gegebene Wert. Dieser Umstand ist darauf zurückzuführen, dass die im Target
gestreuten Elektronen mit den Materialien des Messaufbaus wechselwirken und somit die
Erzeugung von Sekundärteilchen bedingen, die ebenfalls den Detektor treffen.

Für die im Experiment erwartete Gesamtzahl der Untergrundteilchen N target
bg , die innerhalb

der Zeitdauer T/2 aus dem Target hervortreten, ergibt sich:

N target
bg ≈ 2,04 · 1019. (286)

Infolge dieser Ereignisse erwartet man 2,14 · 1019 Detektortreffer innerhalb einer Zeitspanne
von T/2, wie man mittels der in Tabelle 16 angegebenen Raten berechnen kann. Dieser Wert
ist mit N target

bg vergleichbar. Die aus dem Target hervortetenden Teilchen interagieren zwar
auch mit den Materialien des Messaufbaus und setzen dabei Sekundärteilchen frei. Viele der
Untergrundteilchen aus dem Target werden durch die Abschirmung jedoch am Erreichen des
Detektors gehindert.
Die in Abbildung 100 gezeigte Gesamtrate der den Detektor treffenden Teilchen wird vom
Beitrag der Photonen aus Untergrundprozessen über das Intervall r ∈ [450 mm, 900 mm]
hinweg dominiert. Den zweitgrößten Beitrag in diesem Radiusintervall stellen Sekundär-
Photonen aus elastischen Elektron-Proton-Streuereignissen im Target, und erst der dritt-
größte Beitrag zur Gesamtrate stammt von den im Experiment nachzuweisenden Elektronen,
wie man Tabelle 16 entnehmen kann. Unter diesen Umständen ist eine integrierende Messung
der paritätsverletzenden Asymmetrie der elastischen Elektron-Proton-Streuung nur dann er-
folgreich durchführbar, wenn der hierzu eingesetzte Detektor nicht sensitiv auf Treffer des
aktiven Mediums durch Photonen ist.
Die P2-Kollaboration hat sich daher zum Einsatz eines Cherenkov-Detektors zur Asym-
metriemessung entschieden. Man erkennt anhand von Abbildung 105, dass die meisten der
den Detektor treffenden Photonen Energien besitzen, die kleiner sind als die Cherenkov-
Schwellenenergie Eth = 0,71 MeV für Elektronen in SiO2, die durch Gleichung (188) gegeben
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Abbildung 104: Projektionen von mit der Raytracing-Simulation berechneten Bahnkurven
im Target elastisch an Protonen gestreuter Elektronen mit θf ∈ [60◦, 80◦]. Als Strahlenergie
wurde für diese Simulation Ebeam = 114 MeV gewählt. Das Target ist in Blau, der Solenoid
in Rot, die Abschirmung in Grau und der SiO2-Ring des Cherenkov-Detektors in Grün
dargestellt. Man erkennt, dass einige der gestreuten Elektronen den Cherenkov-Detektor
treffen und somit direkt zu N target

ep beitragen. Weitere Beiträge zu N target
ep sind durch die

Erzeugung von Sekundärteilchen infolge von Treffern der Abschirmung möglich.

ist. Es ist diesen Photonen nicht möglich zur Bildung von Cherenkov-Licht im Detektor beizu-
tragen. In Abwesenheit von Lumineszenz können Photonen mit Energien > Eth nur indirekt
zum Signal eines Cherenkov-Detektors beitragen, indem sie mit dem Cherenkov-Medium
interagieren und dabei geladene Teilchen freisetzen, deren Energie oberhalb der Schwel-
lenenergie zur Erzeugung von Cherenkov-Licht liegt. Daher sind Cherenkov-Detektoren im
Allgemeinen nicht sensitiv auf Treffer durch Photonen. Man erwartet daher eine drasti-
sche Reduktion des von Photonen stammenden relativen Beitrags zum Ausgangssignal des
Cherenkov-Detektors gegenüber dem relativen Anteil dieser Teilchen an der Trefferrate auf
der Detektoroberfläche.
Man kann Abbildung 105 ebenfalls entnehmen, dass die meisten Elektronen aus Untergrund-
prozessen sowie Sekundär-Elektronen aus elastischer Elektron-Proton-Streuung im Target
vergleichsweise niedrige kinetische Energien Ekin ≤ 10 MeV besitzen.

Man kann folgern, dass zur Vorhersage der im Experiment zu messenden Asymmetrie die
Kenntnis des Antwortverhaltens des Cherenkov-Detektors von großer Bedeutung ist. Im
nachfolgenden Abschnitt wird dargestellt, auf welche Weise das Antwortverhalten in der
Simulation berücksichtigt wird, und es werden entsprechende Resultate diskutiert.
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Abbildung 105: Ratenverteilungen von Photonen und Elektronen aus Sekundär- und Un-
tergrundprozessen, die den SiO2-Ring des Cherenkov-Detektors an der Stelle z = 3000 mm
treffen, in Abhängigkeit von der kinetischen Energie Ekin der Teilchen. Oben links ist die
Verteilung für Photonen gezeigt, die im Rahmen der Simulation elastischer Elektron-Proton-
Streuereignisse im Target den Detektor erreicht haben. Unten links ist die Ratenverteilung
für Photonen aus Untergrundprozessen im Target gezeigt, die den Cherenkov-Detektor ge-
troffen haben. Man erkennt, dass die meisten der Photonen kinetische Energien aufweisen,
die kleiner sind als die Schwellenenergie Eth = 0,71 MeV für Elektronen zur Erzeugung von
Cherenkov-Licht in SiO2. Rechts oben ist die Ratenverteilungen für Sekundärelektronen ge-
zeigt, die im Rahmen der Simulation elastischer e-p-Streuung im Target den Detektor erreicht
haben. Unten rechts ist die Ratenverteilung der Elektronen dargestellt, die den SiO2-Ring
infolge von Untergrundprozessen im Target getroffen haben.

7.7 Verteilung des Photoelektronen-Stroms im Cherenkov-Detektor

Das Prinzip zum Teilchennachweis mit dem Cherenkov-Ringdetektor ist in Abschnitt 4.7.3
beschrieben: Geladene Teilchen, die sich mit einer Geschwindigkeit durch die SiO2-Volumina
des Cherenkov-Detektors bewegen, die größer ist als die Lichtgeschwindigkeit in SiO2, führen
zur Bildung von Cherenkov-Licht. Die Cherenkov-Photonen lösen an den Kathoden der Pho-
tomultiplier durch den Photoeffekt Elektronen aus, die im weiteren Verlauf als

”
Photoelektro-

nen“ bezeichnet werden. Der Strom dieser Elektronen wird im Folgenden als
”
Photoelektronen-

Strom“ bezeichnet. Der Photoelektronen-Strom wird mithilfe eines Dynodenstrangs verstärkt,
so dass an der Anode des Photomultipliers ein messbares elektrisches Signal abgegriffen wer-
den kann.

Die Geant4-Simulation des P2-Experiments gestattet es, eine Vorhersage für den Photoelektronen-
Strom zu treffen, den man während der Asymmetriemessung im Experiment an den Katho-
den der Photomultiplier erwartet. Im Folgenden wird zunächst das Prinzip vorgestellt, nach
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dem die Vorhersage für die Verteilung des Photoelektronen-Stroms getroffen wird. Im An-
schluß werden entsprechende Simulationsergebnisse vorgestellt und diskutiert. Mithilfe der
Verteilung des Photoelektronen-Stroms kann man die Erwartungswerte des negativen Viere-
rimpulsübertragsquadrats Q2 und der paritätsverletzenden Asymmetrie APV

ep der elastischen
Elektron-Proton-Streuung vorhersagen.

7.7.1 Methode zur Bestimmung der Verteilung des Photoelektronen-Stroms

Die Simulation der Erzeugung und Ausbreitung von Cherenkov-Photonen in den SiO2-
Volumina des Detektors ist im Rahmen einer umfassenden Simulation des P2-Experiments
aus Effizienzgründen nicht sinnvoll: Es müsste infolge jedes Detektortreffers durch ein gela-
denes Teilchen, dessen Energie oberhalb der Cherenkov-Schwellenenergie liegt, eine Vielzahl
von Cherenkov-Photonen durch die SiO2-Volumina des Detektors verfolgt werden. Ferner
müsste man für jedes Cherenkov-Photon, das einen der Photomultiplier erreicht, den Photo-
effekt im Kathodenmaterial simulieren, um die Anzahl der dort ausgelösten Photoelektronen
bestimmen zu können. Bei einem typischen Simulationslauf mit ∼ 107 simulierten Strahl-
elektronen pro Prozessorkern läge die hierfür benötigte Laufzeit des Programms im Bereich
mehrerer Jahre.

Zur Bestimmung des Photoelektronen-Stroms wird daher eine Parametrisierung der Photoelektronen-
Ausbeute benutzt, die im Rahmen der Dissertation von K. Imai [151] angefertigt wurde. Die
Parametrisierung gestattet die Bestimmung von Erwartungswert und Standardabweichung
der Anzahl infolge eines Detektortreffers ausgelösten Photoelektronen in Abhängigkeit vom
Zustand des den Detektor treffenden Teilchens. Der Zustand des Teilchens wird festgelegt
durch:

• Den Teilchentyp;

• Die kinetischen Energie Ekin des Teilchens am Auftreffort;

• Die Impulsrichtung des Teilchens am Auftreffort, die durch die in Abschnitt 7.6 defi-
nierten Winkel α und β parametrisiert wird.

Die Parametrisierung gestattet gegenwärtig eine Bestimmung der Photoelektronen-Ausbeute
für Elektronen und Photonen. Detektortreffer durch Positronen werden in Folge dessen wie
Treffer durch Elektronen behandelt. Für andere Teilchentypen, die von der Parametrisie-
rung nicht eingeschlossen werden, wird eine konstante Photoelektronen-Ausbeute von 0 an-
genommen, um eine korrekte Normierung bei der Berechnung des Photoelektronen-Stroms
gewährleisten zu können.

Die Parametrisierung der Detektorantwort wurde mithilfe einer zu diesem Zweck entwickel-
ten Geant4-Simulation erstellt. Im Folgenden wird das Prinzip dieser Simulation kurz be-
schrieben. Es wurde ein Detektormodul bestehend aus SiO2-Volumen, Licht reflektierender
Mantelung sowie einem Photomultiplier modelliert, wie es in Abbildung 52 auf der rechten
Seite zu sehen ist. Zur Berechnung der Photoelektronen-Ausbeute wurde das Modul mit ein-
zelnen Elektronen oder Photonen so beschossen, dass die Teilchen unabhängig von der Wahl
ihrer Impulsrichtung den geometrischen Schwerpunkt der Oberfläche des SiO2-Volumens
durchquerten, wie in Abbildung 102 auf der linken Seite dargestellt.
Für jede Konfiguration bestehend aus Teilchentyp, -energie und -impulsrichtung wurde eine
hohe Anzahl von Detektortreffern simuliert. Für jeden Detektortreffer wurde die Erzeu-
gung und Ausbreitung von Cherenkov-Licht im Medium sowie Untergrundprozesse, wie der
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Abbildung 106: Verteilungen der Erwartungswerte der Photoelektronen-Ausbeuten für den
Detektor treffende Elektronen und Photonen. Links ist der Erwartungswert der Ausbeute
für Elektronen mit Energien E ∈ [80 MeV, 130 MeV] in Abhängigkeit von den Einfallswin-
keln α und β dargestellt. Man erkennt ein lokales Maximum der Photoelektronen-Ausbeute
bei (α = 0◦, β = 0◦), welches durch Totalreflexion der Cherenkov-Photonen an den Grenz-
flächen des SiO2-Volumens bei der gewählten Detektorgeometrie bedingt wird. Die lokalen
Maxima bei α = −60◦ erklären sich aus dem Umstand, dass die Elektronen in diesem Fall
einen langen Weg im Cherenkov-Medium zurücklegen und die Photokathode des Multipliers
in geringem Abstand passieren. Auf der rechten Seite ist die Verteilung des Erwartungs-
werts der Photoelektronen-Ausbeute für Photonen mit Energien E ∈ [1,5 MeV, 2,5 MeV] in
Abhängigkeit von α und β gezeigt.

Møller-Streuprozess, die Compton-Streuung, Innere Konversion, Paarbildung sowie die Er-
zeugung von Bremsstrahlung mit den von Geant4 bereitgestellten Methoden simuliert. Bei
der Simulation der Ausbreitung des Cherenkov-Lichts im aktiven Volumen wurden Refle-
xion, Absorption und Transmission der Photonen an den Grenzflächen des Detektormo-
duls berücksichtigt. Die Simulation des Photomultipliers wurde auf die Berechnung der
Photoelektronen-Ausbeute an der Photokathode durch den Photoeffekt beschränkt. Dabei
wurde der von der Wellenlänge der Photonen abhängige Mittelwert der Quanteneffizienz des
Kathodenmaterials berücksichtigt. Aus der Häufigkeitsverteilung der ausgelösten Photoelek-
tronen wurden Erwartungswert und Standardabweichung bestimmt. Die Simulation gestattet
es, den Typ, die kinetische Energie Ekin und die Auftreffwinkel α und β des den Detektor
treffenden Teilchens systematisch zu variieren. Auf diese Weise konnten Parametrisierungen
des Erwartungswerts und der Standardabweichung der Anzahl ausgelöster Photoelektronen
in Abhängigkeit von diesen Variablen erstellt werden.

Abbildung 106 zeigt einen Auszug aus der Parametrisierung der Photoelektronen-Ausbeute.
Die vollständige Parametrisierung, die im Rahmen der vorliegenden Arbeit verwendet wurde,
ist in Anhang C dargestellt. Die in Abbildung 106 dargestellte Photoelektronen-Ausbeute für
niederenergetische Photonen ist sehr viel geringer als die ebenfalls gezeigte Photoelektronen-
Ausbeute für die im Experiment nachzuweisenden Elektronen. Dies entspricht der Erwar-
tung, da Photonen, wie in Abschnitt 7.6 ausgeführt, nur indirekt zur Produktion von Cherenkov-
Licht im Medium beitragen können.

Die Detektormodul-Simulation reproduziert die Ergebnisse von Prototypen-Tests, welche
die P2-Kollaboration im Zeitraum von 2013 bis 2017 am Teilchenbeschleuniger MAMI in
Mainz durchgeführt hat. Bei diesen Experimenten wurden verschiedene Modul-Geometrien,
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Abbildung 107: Vergleich von Messergebnissen der an MAMI durchgeführten Prototypen-
Tests mit Resultaten der Detektormodul-Simulation. Die Abbildung und die Tabelle wurden
[26] entnommen, die Abbildung wurde von K. Imai (P2-Kollaboration) erstellt. Im Experi-
ment wurden zwei gleichartige, aber unterschiedliche Detektormodul-Prototypen mit Strahl-
elektronen beschossen und die Ausbeute an Photoelektronen an der Kathode der Photomul-
tiplier bestimmt. Die experimentellen Bedingungen sowie die Konfiguration der Detektor-
module in Experiment und Simulation sind in der Tabelle aufgeführt. In der Abbildung ist
die Anzahl der ausgelösten Photoelektronen pro Wegstück der Strahlelektronen in SiO2 in
Abhängigkeit vom Einfallswinkel α der Elektronen dargestellt. Es sind Ergebnisse zweier un-
abhängiger Messreihen gezeigt, die durch die roten und grünen Punkte repräsentiert werden.
Die blaue Linie gibt den Erwartungswert der mit der Detektormodul-Simulation berechneten
Anzahl an Photoelektronen pro Weglänge an, das blau gepunktete Band repräsentiert die
Standardabweichung der Anzahl ausgelöster Photoelektronen.

Cherenkov-Medien, reflektierende Mantelungen sowie Photomultiplier hinsichtlich ihrer Eig-
nung für das P2-Experiment studiert, indem die Photoelektronen-Ausbeute bestimmt wurde.
Eine Diskussion der Resultate dieser Studien wird in [151] gegeben werden. Abbildung 107
zeigt die Resultate zweier Messreihen im Vergleich mit den Ergebnissen der Detektormodul-
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Simulation, mit der die Parametrisierung der Photoelektronen-Ausbeute erstellt wurde.
Man erkennt, dass die Vorhersage der Detektormodul-Simulation für die Ausbeute an Pho-
toelektronen mit den gezeigten Resultaten der an MAMI durchgeführten Testmessungen
vereinbar ist. Im Rahmen der Testmessungen wurde festgestellt, dass die Photoelektronen-
Ausbeute in guter Näherung vom Auftreffort der Elektronen auf der Oberfläche der Detektor-
module unabhängig ist. Aus diesem Grund wurde der Auftreffort der Teilchen auf dem SiO2-
Volumen beim Erstellen der Parametrisierung der Detektorantwort nicht berücksichtigt.
Aufgrund der Übereinstimmung der Resultate der Testmessungen und der Simulationser-
gebnisse kann davon ausgegangen werden, dass die Parametrisierung der Photoelektronen-
Ausbeute eine realistische Vorhersage des Photoelektronen-Stroms mit der Simulation des
P2-Experiments ermöglicht.

Aus der in Abbildung 100 dargestellten Trefferverteilung des SiO2-Rings des Cherenkov-
Detektors kann man unter Einbeziehung der Parametrisierung der Photoelektronen-Ausbeute
die Verteilung des Photoelektronen-Stroms Iph an den Kathoden der Photomultiplier des De-
tektors vorhersagen. Hierzu wird für jeden Treffer des SiO2-Rings der Erwartungswert der
Anzahl ausgelöster Photoelektronen bestimmt und mit dem Gewichtungsfaktor des simulier-
ten Ereignisses multipliziert.

7.7.2 Erwartete Verteilung des Photoelektronen-Stroms

Die im P2-Experiment erwartete Verteilung der Photoelektronen-Rate in Abhängigkeit vom
Radius r des Auftrefforts der Teilchen auf dem SiO2-Ring an der Stelle z = 3000 mm ist in
Abbildung 108 dargestellt. Sie wurde mit der in Abschnitt 7.7.1 vorgestellten Methode aus
der in Abbildung 100 dargestellten Trefferverteilung des SiO2-Rings errechnet.
Der Hauptbeitrag zur Photoelektronen-Rate stammt von Detektortreffern durch Elektro-
nen, die im Target elastisch an Protonen gestreut wurden. Die in Abbildung 108 gezeigte
Photoelektronen-Rate für Treffer durch die im Experiment nachzuweisenden Elektronen liegt
um etwa zwei Größenordnungen höher als die radiale Verteilung der Trefferrate dieser Elek-
tronen, welche in Abbildung 100 gezeigt ist. Dies entspricht der Erwartung: Aus der in
Abschnitt 7.6 diskutierten Trefferverteilung des Cherenkov-Detektors folgt, wie in Gleichung
(278) angegeben, dass der Erwartungswert der kinetischen Energie für die im Experiment
nachzuweisenden Elektronen 〈Ekin〉 = 115 MeV beträgt. Ferner betragen die Erwartungswer-
te der in Abbildung 102 dargestellten Verteilung der Auftreffwinkel α und β der im Expe-
riment nachzuweisenden Elektronen gemäß Gleichung (282) 〈α〉 = 2,32◦ und 〈β〉 = −0,66◦.
Richtet man die Detektormodule, wie in Abbildung 53 dargestellt, senkrecht zur Strahlachse
aus, so entspricht die mittlere Photoelektronen-Ausbeute für ein im Experiment nachzuwei-
sendes Elektron etwa 120, was dem lokalen Maximum im Zentrum der in Abbildung 106 auf
der linken Seite gezeigten Verteilung entspricht.
Der Vorteil einer derartigen Wahl der Ausrichtung der Detektormodule liegt in der niedri-
gen relativen Schwankungsbreite der mittleren Photoelektronen-Ausbeute von ca. 14 %, wie
man anhand der in Anhang C dargestellten Parametrisierung der Photoelektronen-Ausbeute
erkennen kann.
Im Hinblick auf apparative Asymmetriebeiträge kann es jedoch nachteilig sein, ein scharfes,
lokales Maximum der Photoelektronen-Ausbeute zu wählen, da kleine helizitätskorrelierte
Schwankungen der Winkel α und β zu starken helizitätskorrelierten Schwankungen der
Photoelektronen-Ausbeute führen können. Im Falle starker helizitätskorrelierter Schwankun-
gen der Strahllage könnte die Wahl des Plateaus der Photoelektronen-Ausbeute bei α ≈ 20◦

und β ≈ 0◦ in Abbildung 107 von Vorteil sein, da sich die Photoelektronen-Ausbeute hier nur
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Abbildung 108: Simulierte Verteilung der erwarteten Photoelektronen-Rate in Abhängigkeit
vom Radius r der den Detektor treffenden Teilchen. Die Raten sind auf die Ringflächen in
der x-y-Ebene, welche zu den Breiten der Histogrammbalken in radialer Richtung korre-
spondieren, normiert. Die gezeigte Verteilung wurde aus der in Abbildung 100 dargestell-
ten Trefferverteilung des Cherenkov-Detektors unter Verwendung der Parametrisierung der
Photoelektronen-Ausbeute errechnet.

unwesentlich mit den Winkeln ändert und somit falsche Asymmetriebeiträge aus Änderungen
der Auftreffwinkel minimiert werden können.
Die P2-Kollaboration hat noch nicht festgelegt, wie die einzelnen Module des Cherenkov-
Ringdetektors relativ zur Strahlachse ausgerichtet sein werden. Im Rahmen dieser Arbeit
wurde daher angenommen, dass der SiO2-Ring, wie in Abbildung 85 dargestellt, senkrecht
zur Strahlachse ausgerichtet sein wird.

Abbildung 109 zeigt im oberen Teil die Verteilung der innerhalb von T/2 = 5 · 103 h erwar-
teten Anzahl Ψep der Photoelektronen, die im Detektor infolge elastischer Elektron-Proton-
Streuung im Target ausgelöst werden, in Abhängigkeit von der Energie Ei der Elektronen
im Anfangszustand der elastischen e-p-Streuung und des Elektron-Streuwinkels θf. Die Ver-
teilung Ψep(Ei, θf) geht aus der in Abbildung 103 gezeigten Verteilung von N target

ep (Ei, θf)
durch die Berücksichtigung des Erwartungswerts der Photoelektronen-Ausbeute für jeden
einzelnen Detektortreffer hervor. Im unteren Teil von Abbildung 109 ist die Verteilung der
mittleren Anzahl Ψep(Ei, θf) ≡ Ψep(Ei, θf)/N

target
ep (Ei, θf) im Cherenkov-Detektor ausgelöster

Photoelektronen pro elastischem Elektron-Proton-Streuereignis im Target dargestellt.
Die Verteilungen Ψep(Ei, θf) und Ψep(Ei, θf) besitzen ausgeprägte Maxima im Bereich θf ∈
[20◦, 45◦] und Ei ∈ [135 MeV, 155 MeV]. Die Maxima werden durch die in Abbildung 108 lila-
und magentafarben gezeichneten Beiträge der im Experiment nachzuweisenden Primärelektronen
mit θf ∈ [25◦, 45◦] und der Primärelektronen mit θf /∈ [25◦, 45◦] hervorgerufen.
Beim Vergleich der in Abbildung 103 dargestellten Verteilung von N target

ep (Ei, θf) mit den

in Abbildung 109 dargestellten Verteilungen von Ψep(Ei, θf) und Ψep(Ei, θf) fällt auf, dass
die hohen Beiträge zu N target

ep im kinematischen Bereich mit Ei ∈ [130 MeV, 155 MeV] und
θf ∈ [5◦, 20◦] durch die Einbeziehung der Detektorantwort stark unterdrückt werden, da
es kaum Beiträge zu Ψep(Ei, θf) und Ψep(Ei, θf) in diesem Bereich gibt. Dies ist darauf
zurückzuführen, dass die meisten Detektortreffer, die Beiträge zu N target

ep in diesem kinema-
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Abbildung 109: Oben: Innerhalb der halben Messdauer T/2 = 5 · 103 h erwartete An-
zahl Ψep im Detektor infolge elastischer Elektron-Proton-Streuung im Target ausgelöster
Photoelektronen in Abhängigkeit von der Anfangszustands-Energie Ei und dem Streu-
winkel θf der im Target gestreuten Elektronen. Unten: Verlauf der mittleren Anzahl
Ψep(Ei, θf) ≡ Ψep(Ei, θf)/N

target
ep (Ei, θf) im Cherenkov-Detektor pro elastischem Elektron-

Proton-Streuereignis im Target ausgelöster Photoelektronen in Abhängigkeit von Ei und
θf.

tischen Bereich nach sich ziehen, durch niederenergetische Sekundärteilchen stattfinden, die
lediglich zu einer geringen Anzahl ausgelöster Photoelektronen führen. Man erkennt anhand
der Verteilung von Ψep(Ei, θf) im Bereich mit Ei ∈ [100 MeV, 120 MeV] und θf ∈ [60◦, 80◦]
deutlich das lokale Maximum, das durch direkte Detektortreffer von im Target elastisch an
Protonen gestreuten Elektronen verursacht wird. Abbildung 104 zeigt exemplarisch Bahn-
kurven von Elektronen aus entsprechenden Streuereignissen.

Für die Gesamtzahl Ψtot
ep der durch elastische Elektron-Proton-Streuung innerhalb der Hälfte

der Messdauer T/2 = 5 · 103 h im Cherenkov-Detektor ausgelösten Photoelektronen findet
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Teilchentyp Iph/µA 〈APV
ep 〉exp/ppb

Elastische Elektron-Proton-Streuung:
Primär-Elektronen, θf ∈ [25◦, 45◦] 0,98 (59,4 %) −22,92 (70,4 %)
Primär-Elektronen, θf /∈ [25◦, 45◦] 0,55 (33,3 %) −7,41 (22,8 %)
Sekundär-Elektronen 0,06 (3,6 %) −1,36 (4,2 %)
Sekundär-Photonen 0,03 (1,8 %) −0,60 (1,8 %)
Sekundär-Positronen 0,01 (0,6 %) −0,27 (0,8 %)

Untergrund-Prozesse:
Elektronen 5,6 · 10−4 (0,03 %) 0 (0,0 %)
Photonen 4,8 · 10−3 (0,29 %) 0 (0,0 %)

Gesamt 1,65 −32,57

Tabelle 17: Beiträge zum Erwartungswert des Photoelektronen-Stroms und der pa-
ritätsverletzenden Asymmetrie der elastischen Elektron-Proton-Streuung 〈APV

ep 〉exp.

man:

Ψtot
ep ≡

Ebeam∫
0

dEi

175◦∫
5◦

dθf [Ψep(Ei, θf)] = 1,84 · 1020. (287)

Analog zur Definition von Ψtot
ep wird Ψtot

bg als die Anzahl an Photoelektronen definiert, die
durch Untergrundereignisse im Target ausgelöst wurden. Die Simulation ergibt, dass

Ψtot
bg = 6,03 · 1017. (288)

Tabelle 17 listet die Anteile der Teilchentypen, zwischen denen in der Simulation unterschie-
den wird, am erwarteten Photoelektronen-Strom auf. Durch den Einsatz des Cherenkov-
Detektors werden die Beiträge von Untergrundprozessen zum im P2-Experiment erwarteten
Photoelektronen-Strom stark unterdrückt.

7.7.3 Erwarteter Impulsübertrag

Mithilfe der in Abbildung 109 dargestellten Verteilung Ψep(Ei, θf) der im Cherenkov-Detektor
ausgelösten Anzahl an Photoelektronen kann man den Erwartungswert 〈Q2〉exp des negativen
Viererimpulsübertragsquadrats für das P2-Experiment berechnen. Es gilt:

〈Q2〉exp ≡

155 MeV∫
mec2

dEi

180◦∫
0◦

dθf

{
Ψep(Ei, θf) ·Q2(Ei, θf)

}
155 MeV∫
mec2

dEi

180◦∫
0◦

dθf

{
Ψep(Ei, θf)

} . (289)

Hierin ist Q2 durch Gleichung (35) gegeben, und Ψep(Ei, θf) dient als Gewichtungsfunkti-
on bei der Integration über die Energie Ei der Elektronen im Anfangszustand der elasti-
schen Elektron-Proton-Streuung im Target und den Elektron-Streuwinkel θf. Die Bezeich-
nung

”
exp“ in 〈Q2〉exp deutet an, dass es sich um den im Experiment erwarteten Wert handelt,

da 〈Q2〉exp unter Berücksichtigung aller e-p-Streuereignisse im Target, die in der Simulation
zum Detektorsignal beitragen, bestimmt wird, indem Ψep(Ei, θf) als Gewichtungsfunktion
Verwendung findet.
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Abbildung 110: Verteilung der Photoelektronen-Rate im Cherenkov-Detektor in
Abhängigkeit von Q2 und dem Radius r des Auftrefforts der Teilchen auf dem SiO2-Ring
des Detektors. Die Photoelektronen-Rate wurde auf die zur Breite der Histogrammbalken in
r-Richtung korrespondierenden Ringflächen normiert.

Die numerische Auswertung von Gleichung (289) unter Verwendung der Sehnentrapezformel,
die durch Gleichung (209) gegeben ist, ergibt:

〈Q2〉exp = 4,82 · 10−3 (GeV/c)2. (290)

Dieser Wert ist gegenüber dem Wert von 〈Q2〉sig = 6 · 10−3 (GeV/c)2 aus Tabelle 9, den man
analog zu Gleichung (195) berechnet, indem man lediglich Elektronen aus elastischer e-p-
Streuung im Target mit Streuwinkeln θf ∈ [25◦, 45◦] betrachtet, um ca. 20 % reduziert. Die
Gründe für diese Reduktion liegen in der realistischen Behandung der Energieverluste der
Strahlelektronen im Target bei der Berechnung von 〈Q2〉exp sowie der Beimischung von e-p-
Streuereignissen mit Streuwinkeln θf /∈ [25◦, 45◦] bei der Auswertung von Gleichung (289).
Abbildung 110 zeigt die Photoelektronen-Rate im Cherenkov-Detektor in Abhängigkeit von
Q2 und dem Radius r des Auftrefforts der Teilchen auf dem SiO2-Ring des Detektors.

7.7.4 Erwartungswert der paritätsverletzenden Asymmetrie

Analog zur Berechnung des Erwartungswerts von Q2 nach Gleichung (289) kann der im P2-
Experiment erwartete Wert der paritätsverletzenden Asymmetrie 〈APV

ep 〉exp der elastischen
Elektron-Proton-Streuung berechnet werden. Es gilt:

〈APV
ep 〉exp ≡

155 MeV∫
mec2

dEi

180◦∫
0◦

dθf

{
Ψep(Ei, θf) · APV

ep (Ei, θf)
}

155 MeV∫
mec2

dEi

180◦∫
0◦

dθf

{
Ψep(Ei, θf)

}
+ Ψtot

bg

. (291)

Hierin istAPV
ep der durch Gleichung (70) gegebene Ausdruck für die paritätsverletzende Asym-

metrie der elastischen Elektron-Proton-Streuung. Ψep(Ei, θf) ist die Anzahl der Photoelek-
tronen, die infolge elastischer Elektron-Proton-Streuung im Target mit den kinematischen
Variablen {Ei, θf} im Cherenkov-Detektor über die Hälfte der Messdauer T/2 = 5 · 103 h hin-
weg ausgelöst werden. Analog hierzu ist Ψtot

bg die Gesamtzahl an Photoelektronen, die über
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die Hälfte der Messdauer hinweg durch Untergrundereignisse im Target in den Photomulti-
pliern des Cherenkov-Detektors ausgelöst werden. Die Bezeichnung

”
exp“ in 〈APV

ep 〉exp deutet
an, dass es sich um den im Experiment erwarteten Wert der Asymmetrie handelt, der unter
Berücksichtigung aller Elektron-Proton-Streuereignisse im Target, die in der Simulation zum
Detektorsignal beitragen, sowie der Beiträge von elektromagnetischen Untergrundprozessen
im Target zum Detektorsignal bestimmt wird, indem Ψep(Ei, θf) und Ψtot

bg als Gewichtungs-
funktionen bei der Berechnung benutzt werden. Man beachte, dass die Polarisation P = 85 %
des Elektronenstrahls in Gleichung (291) nicht berücksichtigt wird.

Die numerische Auswertung von Gleichung (291) unter Verwendung der durch Gleichung
(209) gegebenen Sehnentrapezformel ergibt

〈APV
ep 〉exp = −32,57 ppb. (292)

In Tabelle 17 sind die Beiträge der in der Simulation unterschiedenen Teilchentypen zu
〈APV

ep 〉exp angeführt. Zur Berechnung dieser Asymmetriebeiträge wurde im Zähler von Glei-
chung (291) jeweils nur der Beitrag des betrachteten Teilchentyps zu Ψep(Ei, θf) berücksichtigt,
im Nenner wurde stets die in Abbildung 109 dargestellte Verteilung eingesetzt, so dass die
Asymmetriebeiträge aufsummiert den Erwartungswert von 〈APV

ep 〉exp ergeben.

Der Betrag von 〈APV
ep 〉exp = −32,57 ppb ist gegenüber dem Betrag von 〈APV

ep 〉sig = −55,25 ppb,
der sich aus Gleichung (195) ergibt, indem man lediglich den Signalprozess der elastischen
Elektron-Proton-Streuung mit Ei = 155 MeV und θf ∈ [25◦, 45◦] berücksichtigt, um 41 %
reduziert. Der Wert von 〈APV

ep 〉sig kann direkt aus dem in Tabelle 9 gegebenen Wert von

〈Araw〉sig = P · 〈APV
ep 〉sig = −44,41 ppb (293)

mit P = 85 % errechnet werden.
Mithilfe der in Tabelle 17 angegebenen Werte für die Photoelektronen-Ströme und Asym-
metriebeiträge bestimmt man den Erwartungswert der Asymmetrie 〈APV

ep 〉signal e-
exp der im Ex-

periment nachzuweisenden Elektronen mit Streuwinkeln θf ∈ [25◦, 45◦] zu

〈APV
ep 〉signal e-

exp ≡ −22,92 ppb · 1,65µA

0,98µA
= −38,25 ppb. (294)

〈APV
ep 〉signal e-

exp ist gegenüber 〈APV
ep 〉sig betragsmäßig um 31 % reduziert. Diese Reduktion ist

darauf zurückzuführen, dass bei der Berechnung von 〈APV
ep 〉exp im Rahmen der Geant4-

Simulation der Energieverlust der Strahlelektronen im Target sowie durch den Messauf-
bau bedingte Verluste in der Akzeptanz des Cherenkov-Detektors auf realistische Weise
berücksichtigt werden. Die verbleibende Reduktion von ca. 10 % von 〈APV

ep 〉exp gegenüber
〈APV

ep 〉sig ist größtenteils auf die Beimischung von e-p-Streuereignissen im Target mit θf /∈
[25◦, 45◦] zurückzuführen. Ein geringer Beitrag∼ 1 % zur Reduktion wird durch die

”
Ausdünnung“

von 〈APV
ep 〉exp aufgrund elektromagnetischer Untergrundprozesse im Target bedingt.

7.8 Erwartete Unsicherheit bei der Bestimmung des Weinberg-
winkels

Mithilfe der in Abschnitt 7.7 vorgestellten erwarteten Verteilung des Photoelektronen-Stroms
im Cherenkov-Detektor kann eine Vorhersage für die im P2-Experiment erwartete Unsicher-
heit bei der Messung der Asymmetrie und der Bestimmung des elektroschwachen Mischungs-
winkels getroffen werden. Im Folgenden wird davon ausgegangen, dass die im Experiment
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zu messende Rohasymmetrie 〈Araw〉exp, die sämtliche systematischen Effekte einschließt, in
hinreichend guter Näherung durch den Ausdruck

〈Araw〉exp = P ·
[
(1− f) · {〈APV

ep 〉exp + 〈AH2〉}+ f · 〈APV
eAl〉
]

+ Afalse (295)

gegeben ist. In Gleichung (295) ist P der Grad der longitudinalen Strahlpolarisation. Der
Ausdruck für 〈Araw〉exp berücksichtigt den Asymmetriebeitrag, der sich durch die paritätsverletzende
Streuung der Strahlelektronen an den Aluminium-Fenstern der Targetzelle ergibt. Der Faktor
f charakterisiert das Ratenverhältnis zwischen elastischer Elektron-Proton- und Elektron-
Aluminium-Streuung im Target, und der Erwartungswert der paritätsverletzenden Asym-
metrie der Elektron-Aluminium-Streuung ist durch 〈APV

eAl〉 gegeben. Eine Diskussion dieses
Beitrags zu 〈Araw〉exp findet sich in Abschnitt 4.3.1. Gleichung (295) berücksichtigt ferner
den Asymmetriebeitrag 〈AH2〉, der sich aus der Polarisation des `H2-Targets im Magnet-
feld des Solenoiden ergibt, gemäß der in Abschnitt 4.3.2 gegebenen Diskussion. Die Beiträge
zu 〈Araw〉exp, die sich aus helizitätskorrelierten Schwankungen der Strahl- und Targeteigen-
schaften ergeben, sind in in Afalse zusammengefasst. In Gleichung (295) ist 〈APV

ep 〉exp der
durch Gleichung (291) gegebene Erwartungswert der paritätsverletzenden Asymmetrie der
elastischen Elektron-Proton-Streuung. Der Asymmetriebeitrag, der sich aus einer Fehlstel-
lung der Spins der Strahlelektronen ergibt, ist der Diskussion in Abschnitt 4.3.3 gemäß
vernachlässigbar und wurde in Gleichung (295) nicht berücksichtigt.

Ausgehend von Gleichung (295) wurden Fehlerfortpflanzungsrechnungen zur Bestimmung
der im P2-Experiment erwarteten Unsicherheiten ∆〈Araw〉exp und ∆ŝ2

Z der Rohasymme-

trie und des Sinus-Quadrats des elektroschwachen Mischungswinkels ŝ2
Z = sin2(θ̂W)(µ =

mZc) durchgeführt. Da eine analytische Bestimmung der zur Berechnung von 〈Araw〉exp aus-
zuführenden Integrale nicht möglich ist, wurden die Fehlerfortpflanzungsrechnungen analog
zu dem in Abschnitt 5.1 vorgestellten Verfahren ausgeführt. Das Verfahren wird im Folgen-
den vorgestellt.

7.8.1 Methode zur Berechnung der erwarteten Unsicherheit

Die Berechnung der erwarteten Unsicherheit der im Experiment zu messenden Asymmetrie
und des Sinus-Quadrats des elektroschwachen Mischungswinkels erfolgt im Rahmen einer
Fehlerfortpflanzungsrechnung unter Anwendung der Monte Carlo-Methode. Der hierzu ver-
wendete Algorithmus basiert auf dem in Abschnitt 5.1 beschriebenen Verfahren, es wird im
Folgenden kurz rekapituliert.

Das Verfahren gestattet die Bestimmung der Unsicherheit ∆χ einer Größe

χ ≡ Γ({λl}), (296)

die durch eine reelle, stetige Funktion Γ gegeben ist, welche wiederum von einem Satz re-
eller Parameter {λl}, mit l ∈ N, abhängt. Jeder der Parameter wird als normalverteilte
Zufallsvariable mit Erwartungswert λl und Standardabweichung ∆λl aufgefasst. Es werden
N ∈ N voneinander unabhängige Zufallsverteilungen von χ vom Umfang M ∈ N bestimmt.
Hierzu werden N · M voneinander unabhängige Zufallswerte χ′mn von χ bestimmt, wobei
m = 1, 2, . . . , M und n = 1, 2, . . . , N . Die Werte χ′mn werden berechnet, indem Varia-
tionen (δλl)mn der Parameter λl gemäß den ihnen zugewiesenen Wahrscheinlichkeitsdichten
bestimmt werden, so dass

χ′mn ≡ Γ({λl + (δλl)mn}). (297)
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Aus der Menge zufallsverteilter Werte {χ′mn} kann man N Erwartungswerte {χn} und Stan-
dardabweichungen {∆χn} bestimmen. Für den n-ten Erwartungswert gilt:

χn ≡
1

M

M∑
m=1

χ′mn. (298)

Die n-te Standardabweichung ist:

∆χn ≡

√√√√ 1

M − 1

M∑
m=1

[χ′mn − χn]2. (299)

Für den Erwartungswert ∆χ der N Standardabweichungen gilt

∆χ ≡ 1

N

N∑
n=1

∆χn, (300)

und die Standardabweichung ∆(∆χ) ist

∆(∆χ) ≡

√√√√ 1

N − 1

N∑
n=1

[∆χ−∆χn]2. (301)

Die Bestimmung der Beiträge einzelner Parameter λk zu ∆χ erfolgt, indem bei der Be-
rechnung der χ′mn gemäß Gleichung (297) lediglich λk variiert wird, während alle übrigen
Parameter λl mit l 6= k auf ihren Erwartungswerten festgehalten werden.
Zur Berechnung der im Experiment erwarteten Unsicherheit der Rohasymmetrie wird 〈Araw〉exp

mit χ identifiziert und die rechte Seite von Gleichung (295) mit der Funktion Γ({λl}).

Da die statistische Unsicherheit der paritätsverletzenden Asymmetrie der elastischen Elektron-
Proton-Streuung von der Anzahl der experimentell nachgewiesenen Elektron-Proton-Streuereignisse
im Target abhängt, ist es von Vorteil, die nach Gleichung (291) zur Berechnung von 〈APV

ep 〉exp

notwendigen Gewichte Ψep(Ei, θf) und Ψtot
bg wie folgt zu faktorisieren:

Ψep(Ei, θf) ≡ N target
ep (Ei, θf) ·Ψep(Ei, θf),

Ψtot
bg ≡ N target

bg ·Ψbg. (302)

Hierin ist N target
ep (Ei, θf) die Anzahl elastischer Elektron-Proton-Streuereignisse im Target mit

durch Ei und θf festgelegter Kinematik, die innerhalb der Hälfte der Messdauer zu einem Si-
gnal im Cherenkov-Detektor geführt haben, und Ψep(Ei, θf) ist die mittlere Photoelektronen-
Ausbeute für die N target

ep (Ei, θf) Streuereignisse. Es gilt:

Ψep(Ei, θf) ≡
1

N target
ep (Ei, θf)

·
Ndetektor

ep (Ei,θf)∑
j=1

(nPE)j, (303)

wobei die Summe über die Ndetektor
ep (Ei, θf) Treffer des Detektors durch Teilchen läuft, die im

Rahmen der N target
ep (Ei, θf) Streuereignisse stattgefunden haben, und (nPE)j den Erwartungs-

wert der Photoelektronen-Ausbeute für den j-ten Detektortreffer bezeichnet. Man beachte,
dass N target

ep und Ndetektor
ep nicht notwendigerweise gleich sein müssen, da es infolge eines

Streuereignisses im Target zu mehreren Treffern des Detektors kommen kann, z. B. wenn ein
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im Target gestreutes Elektron auf dem Weg zum Detektor Bremsstrahlung erzeugt, die den
Detektor ebenfalls trifft. In Analogie zu Gleichung (303) ist

Ψbg ≡
1

N target
bg

·
Ndetektor

bg∑
j=1

(nPE)j, (304)

wo N target
bg die Anzahl an Untergrundteilchen bezeichnet, die innerhalb der Zeitdauer T/2

aus dem `H2-Target hervortreten, und Ndetektor
bg die korrespondierende Anzahl der Detektor-

treffer durch Teilchen aus Untergrundprozessen im Target darstellt. Die Zerlegung von Ψep

und Ψtot
bg gemäß Gleichung (302) gestattet die Bestimmung eines Beitrags zur Unsicherheit

von 〈APV
ep 〉exp, der von statistischen Schwankungen der Streuereignishäufigkeiten im Target

herrührt, sowie eines Beitrags, der von statistischen Fluktuationen der Photoelektronen-
Ausbeute im Cherenkov-Detektor stammt.

Um eine Unsicherheit für 〈APV
ep 〉exp berechnen zu können, müssen die Unsicherheiten von

Ψep(Ei, θf), Ψtot
bg und APV

ep (Ei, θf) bestimmt werden. Für die Unsicherheiten von Ψep(Ei, θf)
und Ψtot

bg ergibt sich im Rahmen einer Fehlerfortpflanzung nach Gauß:

∆Ψep(Ei, θf) =

√
N target

ep (Ei, θf) ·
(
N target

ep (Ei, θf) ·∆Ψ
2

ep(Ei, θf) + Ψ
2

ep(Ei, θf)
)
,

∆Ψtot
bg =

√
N target

bg ·
(
N target

bg ·∆Ψ
2

bg + Ψ
2

bg

)
. (305)

In (305) wurde der Poission-Statistik folgend

∆N target
ep, bg ≡

√
N target

ep, bg (306)

gesetzt. Für die Unsicherheiten von Ψep(Ei, θf) und Ψbg gilt nach Gauß:

∆Ψk =
1

N target
k

√√√√√Ndetektor
k∑
j=1

(∆nPE)2
j +

1

N target
k

Ndetektor
k∑
j=1

〈nPE〉j

2

, (307)

wobei k ∈ {ep, bg} und (∆nPE)j die Standardabweichung der Photoelektronen-Ausbeute
infolge des j-ten Detektortreffers ist. Die statistische Unsicherheit ∆APV

ep (Ei, θf) der pa-
ritätsverletzenden Asymmetrie der elastischen Elektron-Proton-Streuung kann von der Be-
ziehung

APV
ep (Ei, θf) =

1

P
· (N target

ep )+(Ei, θf)− (N target
ep )−(Ei, θf)

(N target
ep )+(Ei, θf) + (N target

ep )−(Ei, θf)
, (308)

ausgehend hergeleitet werden. Hierin ist (N target
ep )±(Ei, θf) die Anzahl der elastischen e-p-

Streuereignisse von Strahlelektronen mit Helizität h = ±1, die innerhalb der Messdauer T
zu Treffern des Cherenkov-Detektors geführt haben. Man beachte, dass der Faktor P−1 auf
der rechten Seite von Gleichung (308) stehen muss, da APV

ep unabhängig von der Strahlpo-
larisation P definiert ist, die im Experiment erwartete Anzahl der Streuereignisse (N target

ep )±

jedoch von P abhängt. Fehlerfortpflanzung nach Gauß liefert

∆APV
ep (Ei, θf) =

1

P
·
√

(APV
ep (Ei, θf) ·∆P )2 +

1

2 ·N target
ep (Ei, θf)

(309)
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als statistische Unsicherheit fürAPV
ep (Ei, θf), wobei angenommen wurde, dass (N target

ep )±(Ei, θf) ≈
N target

ep (Ei, θf). Bei der Anwendung des Monte Carlo-Verfahrens zur Bestimmung von ∆〈Araw〉exp

muss jeder Wert von N target
ep (Ei, θf) und jeder Wert von Ψep(Ei, θf) mit einer der in Gleichung

(296) auftretenden Zufallsvariablen identifiziert werden. Da dies bei einer numerischen Rech-
nung nicht praktikabel ist, wurdenN target

ep und Ψep in Abhängigkeit von Ei und θf segmentiert,
wie in den Abbildungen 103 und 109 dargestellt. Die Segmentierung in Ei und θf wurde so
gewählt, dass eine Variation der Segmentierung keine Änderung der signifikanten Stellen bei
der Berechnung von 〈APV

ep 〉exp nach sich zog.

Aus der ermittelten Zufallsverteilung von 〈Araw〉exp lässt sich eine Verteilung für das Sinus-
Quadrat des elektroschwachen Mischungswinkels bestimmen. Hierzu stellt man Gleichung
(295) nach ŝ2

Z um. Man findet:

ŝ2
Z = 〈BPV

ep 〉−1
exp

[
P−1 · (〈Araw〉exp − Afalse)− f · 〈APV

eAl〉
1− f − 〈AH2〉 − 〈CPV

ep 〉exp

]
, (310)

wobei BPV
ep und CPV

ep durch die Gleichungen (198) und (199) gegeben sind, und die Erwar-
tungswerte 〈BPV

ep 〉exp und 〈CPV
ep 〉exp analog zum Erwartungswert 〈APV

ep 〉exp gemäß Gleichung
(291) berechnet werden. Zur Berechnung der Zufallsverteilungen von ŝ2

Z sind die zufallsver-
teilten Werte von 〈Araw〉exp in Gleichung (310) einzusetzen. Für die übrigen auf der rechten
Seite von Gleichung (310) auftretenden Parameter sind die Erwartungswerte einzusetzen, die
zur Berechnung der Zufallsverteilungen von 〈Araw〉exp gewählt wurden. Aus den so gewonne-
nen Verteilungen für ŝ2

Z kann man anschließend Erwartungswerte und Standardabweichungen
für ŝ2

Z bestimmen.

Das in diesem Abschnitt beschriebene Verfahren zur Vorhersage von ∆〈Araw〉exp und ∆ŝ2
Z

wurde in einem Computerprogramm unter Linux implementiert. Es wird der in ROOT [122]
enthaltene Pseudozufallszahlengenerator

”
TRandom3“ zur Variation der Parameter {λl} ver-

wendet, der auf dem Pseudozufallszahlengenerator
”
Mersenne Twister MT 19937“ mit einer

Periodenlänge von ca. 4,3 · 106001 [123] basiert.

Durch die Verwendung der in Abschnitt 7.7 vorgestellten Simulationsresultate zur Bestim-
mung von 〈APV

ep 〉exp wird eine realistische Bestimmung der im Experiment erwarteten Unsi-
cherheit bei der Bestimmung der Rohasymmetrie und des elektroschwachen Mischungswin-
kels ermöglicht. Der Algorithmus berücksichtigt

• ein realistisches geometrisches Modell des geplanten Messaufbaus;

• die Wechselwirkung des Elektronenstrahls mit dem 600 mm langen `H2-Target;

• die Bahnkurven der geladenen Teilchen im Magnetfeld des FOPI-Solenoiden;

• die Beiträge elastischer Elektron-Proton-Streuung im Target zum Signal des Cherenkov-
Detektors;

• die Beiträge von Untergrundprozessen im Target zum Signal des Cherenkov-Detektors;

• systematische Effekte bei der Bestimmung der Rohasymmetrie;

• elektroschwache Strahlungskorrekturen bei der Berechnung der paritätsverletzenden
Asymmetrie der elastischen Elektron-Proton-Streuung.

Im weiteren Verlauf werden die Eingangsgrößen, die zur Berechnung von ∆〈Araw〉exp und
∆ŝ2

Z nach dem in diesem Abschnitt vorgestellten Verfahren benötigt werden, vorgestellt.
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7.8.2 Eingangsgrößen zur Berechnung der erwarteten Unsicherheit

Zur Bestimmung von ∆〈Araw〉exp und ∆ŝ2
Z wird eine Zufallsverteilung von 〈Araw〉exp nach

dem in Abschnitt 7.8.1 vorgestellten Verfahren berechnet. Im Folgenden werden die Erwar-
tungswerte und Standardabweichungen der Eingangsgrößen, die zur Durchführung dieser
Berechnung notwendig sind, vorgestellt.

In Tabelle 18 sind diejenigen Eingangsgrößen aufgelistet, deren Erwartungswerte und Stan-
dardabweichungen im Rahmen der Fehlerfortpflanzungsrechnungen als konstant angenom-
men wurden.

Zur Berechnung von 〈APV
ep 〉exp nach Gleichung (291) werden die in Abschnitt 7.7.4 vorge-

stellten Resultate der Simulation des P2-Experiments verwendet. Die zur Erzeugung dieser
Resultate verwendete Konfiguration der Simulation ist in Tabelle 15 wiedergegeben. Der Ver-
lauf von N target

ep (Ei, θf ) ist in Abbildung 103 gezeigt, der Verlauf von Ψep(Ei, θf ) ist in Abbil-
dung 109 dargestellt. Die Verteilung der relativen Unsicherheiten ∆N target

ep /N target
ep (Ei, θf )

und ∆Ψep/Ψep(Ei, θf ) von N target
ep und Ψep sind in Abbildung 111 in Abhängigkeit von

der Energie Ei der Elektronen im Anfangszustand der elastischen e-p-Streuung sowie des
Elektron-Streuwinkels θf dargestellt. Die Unsicherheiten ∆N target

ep und ∆Ψep wurden nach
den Gleichungen (306) und (307) unter Verwendung der Simulationsergebnisse berechnet.
Dasselbe gilt für ∆N target

bg und ∆Ψbg, die Resultate sind in Tabelle 18 aufgeführt.

Zur Berechnung von APV
ep nach Gleichung (70) wurden die in Abschnitt 5.2.5 und Anhang

A vorgestellten Parametrisierungen der Nukleon-Formfaktoren verwendet. Wie in Abschnitt
5.3.1 diskutiert, wurde angenommen, dass die P2-Kollaboration eine Reduktion der Unsi-
cherheiten der Parametrisierungen von Gs

E, Gs
M und Gp, Z

A , wie in Tabelle 8 angegeben, durch
eine Formfaktormessung unter Rückwärtswinkeln erreichen wird.
Die in Abschnitt 2.3.2 diskutierten Quantenkorrekturen zu APV

ep aus Boxgraphen wurden
berücksichtigt. Dabei wurde der Diskussion in 2.3.2 folgend angenommen, dass die Gesamt-
unsicherheit der Boxgraph-Korrekturen im Wesentlichen durch die Unsicherheit gegeben ist,
mit welcher der Beitrag des γ-Z-Boxgraphen bestimmt werden kann. Der Wert dieser Unsi-
cherheit ist in Tabelle 18 angegeben.

λl ∆λl

P 85 % 0,425 %
f 0,010 0,0005
〈APV

eAl〉 400 ppb 6 ppb
〈AH2〉(T = 15 K) 0,086 ppb 0,01 ppb
Afalse 0 ppb 0,1 ppb
Re(�γZ) 0,001 06 0,000 19
N target

bg 2,04 · 1019 4,52 · 109

Ψbg 2,96 · 10−2 6,58 · 10−12

Tabelle 18: Zusammenstellung von Erwartungswerten und Standardabweichungen von Ein-
gangsgrößen, die zur Durchführung der Fehlerfortpflanzungsrechnungen gewählt wurden.
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Abbildung 111: Verteilung der relativen Unsicherheiten ∆N target
ep /N target

ep (Ei, θf ) und

∆Ψep/Ψep(Ei, θf ) in Abhängigkeit von der Energie Ei der Elektronen im Anfangszustand
der elastischen e-p-Streuung sowie des Elektron-Streuwinkels θf. Es wurde eine Zeitdauer
von T/2 = 5 · 103 h zur Bestimmung der statistischen Unsicherheiten angenommen, was
der angedachten Messdauer mit jedem der beiden Helizitätszustände der Strahlelektronen
entspricht. Oben ist die Verteilung von ∆N target

ep /N target
ep gezeigt, unten die Verteilung von

∆Ψep/Ψep.

7.8.3 Resultate für die erwartete Unsicherheit

Im Folgenden werden die Resultate der Fehlerfortpflanzungsrechnungen zur Bestimmung der
im P2-Experiment erwarteten Unsicherheiten von 〈Araw〉exp und ŝ2

Z vorgestellt und diskutiert.
Zur Bestimmung der erwarteten Unsicherheit ∆〈Araw〉exp von 〈Araw〉exp und jedes Beitrags zu
∆〈Araw〉exp wurden N = 10 voneinander unabhängige Werte (∆〈Araw〉exp)n bestimmt, wobei
n = 1, 2, . . . , N . Jeder der zehn Werte wurde aus einer Verteilung vonM = 24000 zufallsver-
teilten Werten (〈Araw〉′exp)mn mit m = 1, 2, . . . , M ermittelt. Aus jedem Wert (〈Araw〉′exp)mn
wurde gemäß der Beschreibung in Abschnitt 7.8.1 ein Wert (∆ŝ2

Z)′mn bestimmt, so dass auch
zur Bestimmung von ∆ŝ2

Z und jedes Beitrags zu ∆ŝ2
Z N = 10 voneinander unabhängige Werte

(∆ŝ2
Z)n vorlagen. Die Berechnungen wurden parallel auf 24 handelsüblichen Prozessorkernen
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Abbildung 112: Im Zuge der Bestimmung von ∆〈Araw〉exp und ∆ŝ2
Z berechnete

Häufigkeitsverteilung von 〈Araw〉′exp und (ŝ2
Z)′. Die Verteilung von (ŝ2

Z)′ wurde aus der Ver-
teilung von 〈Araw〉′exp mittels Gleichung (310), wie in Abschnitt 7.8.1 beschrieben, ermittelt.

ausgeführt und dauerten ca. 30 Stunden.

Abbildung 112 zeigt repräsentative, zueinander korrespondierende Häufigkeitsverteilungen
von 〈Araw〉′exp und (ŝ2

Z)′, die sich im Zuge der Berechnung der Gesamtunsicherheiten von
〈Araw〉exp und ŝ2

Z ergaben. Die aus den Fehlerfortpflanzungsrechnungen resultierenden Ver-
teilungen {(∆λi〈Araw〉exp)n} und {(∆λi ŝ

2
Z)n} sind in Anhang D aufgelistet. Tabelle 19 gibt

einen Überblick über die Resultate der Fehlerfortpflanzungsrechnungen.
Es ergibt sich ein Erwartungswert von

〈Araw〉exp = −24,024 ppb (311)

für die im Experiment zu messende Rohasymmetrie. Die erwartete Unsicherheit bei der
Messung von 〈Araw〉exp innerhalb einer Messdauer von T = 104 h beträgt

∆〈Araw〉exp = 0,558(2) ppb, (312)

wobei die Unsicherheit ∆(∆〈Araw〉exp), mit der die letzte Dezimalstelle bestimmt wurde,
in runden Klammern angegeben ist. Setzt man den Wert von 〈APV

ep 〉exp = −32,57 ppb aus
Gleichung (292) in Gleichung (295) ein, so erhält man 〈Araw〉exp = −23,94 ppb, was mit
dem in Gleichung (311) gegebenen Wert im Rahmen seiner Unsicherheit vereinbar ist. Bei
der Bestimmung von ∆〈Araw〉exp wurden die Beiträge der Unsicherheiten von Re(�γZ) und
der Nukleon-Formfaktoren nicht berücksichtigt, da 〈Araw〉exp als eine im Experiment durch
Messen zu bestimmende Größe aufzufassen ist, und die Unsicherheiten der Formfaktoren
und Quantenkorrekturen erst bei der Extraktion von ∆ŝ2

Z aus den Messdaten berücksitigt
werden müssen. Daher wird zwischen ∆〈Araw〉exp und der in Abbildung 112 angegebenen
Größe ∆tot〈Araw〉exp unterschieden, wobei zur Bestimmung von ∆tot〈Araw〉exp die Beiträge
aller explizit und implizit in Gleichung (295) auftretender Parameter berücksichtigt wor-
den sind. ∆〈Araw〉exp wird vom statistischen Fehlerbeitrag dominiert, wie man Tabelle 19
entnehmen kann. Der statistische Fehlerbeitrag wiederum wird stark von den statistischen
Schwankungen der Streuereignishäufigkeiten im Target dominiert, der von statistischen Fluk-
tuationen des Photoelektronen-Stroms an den Kathoden der Photomultiplier stammende
Beitrag zur statistischen Unsicherheit von 〈Araw〉exp für eine Messzeit von 104 h ist von der
Größenordnung O(10−12 ppb) und somit vernachlässigbar klein. Die relative Unsicherheit bei
der Bestimmung der Rohasymmetrie ist

∆〈Araw〉exp

〈Araw〉exp

= 2,32 %. (313)
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Neg. Viererimpulsübertragsquadrat:

〈Q2〉exp 4,82 · 10−3 (GeV/c)2

Rohasymmetrie:

〈Araw〉exp −24,024 ppb

∆〈Araw〉exp 0,558(2) ppb [2,32 %]

Beiträge zu ∆〈Araw〉exp:

Statistik 0,500(2) ppb [2,08 %]

e-Al-Streuung in Targetfenstern 0,191(1) ppb [0,80 %]

Strahlpolarisation 0,120(0) ppb [0,50 %]

Apparative Asymmetrie 0,100(0) ppb [0,42 %]

Targetpolarisation im Magnetfeld 0,008(0) ppb [0,03 %]

Elektroschwacher Mischungswinkel:

ŝ2
Z 0,231 160 0

∆ŝ2
Z 3,661(16) · 10−4 [0,16 %]

Beiträge zu ∆ŝ2Z:

Statistik 3,103(9) · 10−4 [0,13 %]

e-Al-Streuung in Targetfenstern 1,185(5) · 10−4 [0,05 %]

Strahlpolarisation 0,746(2) · 10−4 [0,03 %]

Apparative Asymmetrie 0,621(2) · 10−4 [0,03 %]

Targetpolarisation im Magnetfeld 0,052(0) · 10−4 [0,00 %]

Re(�γZ) 0,432(2) · 10−4 [0,02 %]

Nukleon-Formfaktoren gesamt 1,106(4) · 10−4 [0,05 %]

Gp,γ
E 0,004(0) · 10−4 [0,00 %]

Gp,γ
M 0,002(0) · 10−4 [0,00 %]

Gn,γ
E 0,050(0) · 10−4 [0,00 %]

Gn,γ
M 0,006(0) · 10−4 [0,00 %]

Gs
E 0,755(3) · 10−4 [0,03 %]

Gs
M 0,554(2) · 10−4 [0,02 %]

Gp, Z
A 0,423(2) · 10−4 [0,02 %]

Gud
E 0,344(1) · 10−4 [0,01 %]

Gud
M 0,214(1) · 10−4 [0,01 %]

Tabelle 19: Resultate der Fehlerfortpflanzungsrechnungen zur Bestimmung der im P2-
Experiment erwarteten Unsicherheiten von 〈APV

ep 〉exp und ŝ2
Z. Die Resultate wurden für eine

Messdauer von T = 104 h berechnet, es wurden die in Abschnitt 7.8.2 vorgestellten Ein-
gangsgrößen zur Berechnung der dargestellten Unsicherheiten verwendet. Die Unsicherheiten
∆(∆λi〈Araw〉exp) bzw. ∆(∆λi ŝ

2
Z) der absoluten Fehlerbeiträge sind in runden Klammern ange-

geben. Die relativen Unsicherheiten der Fehlerbeiträge sind in eckigen Klammern angegeben
und beziehen sich auf den jeweiligen Erwartungswert.
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Zur erwarteten Unsicherheit bei der Messung der Rohasymmetrie korrespondiert die Unsi-
cherheit

∆ŝ2
Z = 3,661(16) · 10−4, (314)

die man bei der Extraktion von ŝ2
Z erwartet. Auch hier ist der Wert von ∆(∆ŝ2

Z) in runden
Klammern angegeben. Der Wert von ∆ŝ2

Z berücksichtigt die Unsicherheiten sämtlicher in
Gleichung (295) explizit und implizit auftretender Parameter und korrespondiert somit zum
in Anhang D gegebenen Wert für ∆tot〈Araw〉exp = 0,590(3) ppb. Für die erwartete relative
Unsicherheit bei der Bestimmung von ŝ2

Z innerhalb von T = 104 h findet man

∆ŝ2
Z

ŝ2
Z

=
3,661 · 10−4

0,231 160 0
= 0,16 %. (315)

Die schwache Ladung des Protons ergibt sich gemäß Gleichung (71) zu

Q1-loop
W (p) = (ρnc + ∆e)

(
1− 4 · κ · ŝ2

Z + ∆′e
)

= 4,460 57 · 10−2. (316)

Für die erwartete Unsicherheit bei der Bestimmung von Q1-loop
W (p) findet man

∆Q1-loop
W (p) =

∣∣∣∣∣∂Q1-loop
W (p)

∂ŝ2
Z

·∆ŝ2
Z

∣∣∣∣∣ = 1,5101 · 10−3, (317)

so dass sich
∆Q1-loop

W (p)

Q1-loop
W (p)

= 3,39 % (318)

für die relative Unsicherheit von Q1-loop
W (p) bei einer Messdauer von T = 104 h ergibt.

7.8.4 Variation der Messdauer

Da die statstische Unsicherheit von 〈APV
ep 〉exp den dominanten Beitrag zu ∆ŝ2

Z leistet, kann
eine Verringerung von ∆ŝ2

Z durch eine Verlängerung der Messdauer T erreicht werden. Ab-
bildung 113 zeigt den Verlauf der relativen Unsicherheit ∆ŝ2

Z/ŝ
2
Z von ŝ2

Z in Abhängigkeit von
der Messdauer.

 T/kh
10 11 12 13 14 15
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%

2 Zs/
2 Zs∆ (
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Abbildung 113: Verlauf der relativen Unsicherheit ∆ŝ2
Z/ŝ

2
Z in Abhängigkeit von der Messzeit

T . Die lilafarbenen Vierecke markieren die Erwartungswerte ∆ŝ2
Z, die vertikalen Fehlerbalken

entsprechen den Unsicherheiten ∆(∆ŝ2
Z).
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Man kann der Abbildung entnehmen, dass für sich Messdauern T ≥ 11 · 103 h relative Unsi-
cherheiten ≤ 0,15 % für ŝ2

Z ergeben.

7.8.5 Abschätzung des Effekts von QED-Korrekturen auf die erwartete Unsi-
cherheit

Die in diesem Kapitel vorgestellten Resultate wurden unter Vernachlässigung von QED-
Korrekturen zur paritätsverletzenden Elektron-Proton-Streuung berechnet. In Abschnitt 2.3.3
wird ausgeführt, dass die Emission reeller Photonen im Rahmen der elastischen Elektron-
Proton-Streuung zu einer Reduktion von Q2 führt, und dass die Streukinematik in diesem
Fall nicht mehr eindeutig durch die Angabe von Ei und θf festgelegt ist.

Um den Effekt der QED-Korrekturen auf die im P2-Experiment geplante Asymmetriemes-
sung im Vorfeld der Messung genau quantifizieren zu können, bedarf es eines Ereignisge-
nerators zur Simulation der elastischen Elektron-Proton-Streuung im `H2-Target, der die
Erzeugung reeller Photonen im Endzustand des Prozesses berücksichtigt. Der Prototyp ei-
nes solchen Ereignisgenerators wurde von R. D. Bucoveanu und H. Spiesberger entwickelt
und in Zusammenarbeit in der Geant4-Simulation des P2-Experiments implementiert. Zum
Zeitpunkt der Anfertigung der vorliegenden Arbeit befindet sich dieser Ereignisgenerator
noch in der Erprobungs- und Optimierungsphase, so dass auf die Präsentation von mit die-
sem Ereignisgenerator erstellten Resultaten verzichtet wird.
Daher werden die Effekte der Erzeugung reeller Photonen im Endzustand der elastischen
e-p-Streuung auf die im P2-Experiment geplante Asymmetriemessung im Folgenden mithilfe
des in Abschnitt 7.2 vorgestellten Ereignisgenerators abgeschätzt, welcher die Simulation des
Streuprozesses auf dem Baumgraphen-Niveau gestattet.

Zur Abschätzung des Effekts ist zunächst die maximale im P2-Experiment zu erwartende
Verschiebung von Q2 aufgrund der Erzeugung von Bremsstrahlung im Endzustand der ela-
stischen e-p-Streuung zu bestimmen. Hierzu ist eine Abschätzung der minimalen Elektron-
Endzustandsenergie Emin

f , für welche die gestreuten Elektronen ein Signal im Cherenkov-
Detektor auslösen, vonnöten. Emin

f kann mithilfe der Resultate der Simulation des P2-
Experiments abgeschätzt werden; Abbildung 114 zeigt die simulierte Photoelektronen-Rate
im Cherenkov-Detektor, die von elastischen e-p-Streuereignissen im Target herrührt, in
Abhängigkeit von der Endzustandsenergie Ef der im Target elastisch an Protonen gestreuten
Elektronen. Man kann anhand der Verteilung erkennen, dass die Wahl Emin

f = 45 MeV zur
Abschätzung der Verschiebung in Q2 geeignet ist.
Nach den in Abbildung 12 gezeigten Resultaten für die prozentuale Verschiebung von Q2

in Abhängigkeit vom Elektron-Streuwinkel θf und Emin
f kann die maximal zu erwartende

betragsmäßige Verschiebung δQ2 von Q2 mit δQ2/Q2 = 5 % abgeschätzt werden.

Um die Auswirkungen einer solchen Verschiebung von Q2 auf den Erwartungswert der Roha-
symmetrie und die erwartete Unsicherheit bei der Bestimmung von ŝ2

Z abzuschätzen, wurde
die Endzustands-Energie Ef jedes im `H2-Target simuliert an einem Proton gestreuten Elek-
trons um 5 % reduziert. Eine Reduktion von Ef um 5 % entspricht einer Reduktion von Q2

um 5 %, da Q2, wie in Gleichung (35) angegeben, linear von Ef abhängt. Auf die Simulation
eines reellen Photons im Endzustand der elastischen Elektron-Proton-Streuung wurde ver-
zichtet, da die Sichtlinie zwischen Target und Cherenkov-Detektor durch den Gamma-Schild
abgeschirmt wird, und somit kein signifikanter Beitrag dieser Photonen zum Detektorsignal
zu erwarten ist.
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Abbildung 114: Photoelektronen-Rate im Cherenkov-Detektor infolge elastischer Elektron-
Proton-Streuung im Target in Abhängigkeit von der Endzustands-Energie Ef der im Target
elastisch an Protonen gestreuten Elektronen.

Da der Radius der helixförmigen Bahnkurve relativistischer Elektronen im solenoidalen Ma-
gnetfeld nach Gleichung (265) in guter Näherung linear von Ef abhängt, wurde die Stärke
des simulierten Magnetfelds ebenfalls global um 5 % reduziert, so dass die im Target elastisch
an Protonen gestreuten Elektronen keine starken Änderungen der Bahnkurven aufgrund der
Reduktion von Ef erfuhren und den Cherenkov-Detektor erreichen konnten. Die resultierende
Ratenverteilung der in den Photomultipliern des Cherenkov-Detektors ausgelösten Photo-
elektronen in Abhängigkeit vom Radius r des Auftrefforts der Teilchen auf dem SiO2-Ring
des Detektors ist in Abbildung 115 dargestellt. Beim Vergleich dieser Verteilung mit der
in Abbildung 108 gezeigten Verteilung der Photoelektronen-Rate, die ohne Reduktion von
Ef und der Magnetfeldstärke berechnet wurde, lässt sich kein signifikanter Unterschied im
Verlauf der Verteilungen feststellen. Man kann also folgern, dass die Reduktion der Magnet-
feldstärke die Reduktion in Ef näherungsweise ausgleicht, was den Verlauf der Bahnkurven
der Elektronen angeht.

Für den Erwartungswert des Photoelektronen-Stroms im Cherenkov-Detektor ergibt sich:

Iph

∣∣∣∣
δQ2

Q2 =5 %

= 1,48µA. (319)

Dies entspricht einer Reduktion von ca. 10 % gegenüber dem in Tabelle 17 gegebenen Wert
von Iph = 1,65µA. Für den Erwartungswert der paritätsverletzenden Asymmetrie der ela-
stischen Elektron-Proton-Streuung findet man:

〈APV
ep 〉exp

∣∣∣∣
δQ2

Q2 =5 %

= −30,84 ppb. (320)

Dieser Wert ist gegenüber dem in Tabelle 17 gegebenen Wert von 〈APV
ep 〉exp = −32,57 ppb

betragsmäßig um 5,3 % reduziert. Dies entspricht der Erwartung, da man für kleine Q2 Wer-
te aufgrund von Gleichung (61) im Wesentlichen eine lineare Abhängigkeit von APV

ep von Q2

erwartet.
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Abbildung 115: Simulierte Ratenverteilung der in den Photomultipliern des Cherenkov-
Detektors ausgelösten Photoelektronen in Abhängigkeit vom Radius r des Auftrefforts der
Teilchen auf dem SiO2-Ring des Detektors. Die Rate wurde auf die Ringflächen, die zu
den Breiten der Histogrammbalken in radialer Richtung korrespondieren, normiert. In der
zugehörigen Simulation wurden die Endzustandsenergien Ef der im Target elastisch an Pro-
tonen gestreuten Elektronen ebenso wie die Stärke des Magnetfelds um 5 % reduziert.

Auf Grundlage der Simulationsergebnisse wurde eine Fehlerfortpflanzungsrechnung mit dem
in Abschnitt 7.8.1 beschriebenen Verfahren durchgeführt. Um die Vergleichbarkeit mit den in
Tabelle 19 angeführten Resultaten sicherzustellen, wurde die Fehlerfortpflanzungsrechnung
unter identischen Bedingungen wie die in Abschnitt 7.8.3 beschriebene Rechnung durch-
geführt.
Für die im Experiment zu messenden Rohasymmetrie ergibt sich ein Erwartungswert von

〈Araw〉exp

∣∣∣∣
δQ2

Q2 =5 %

= −22,583 ppb. (321)

Für die Unsicherheit der Rohasymmetrie findet man

∆〈Araw〉exp

∣∣∣∣
δQ2

Q2 =5 %

= 0,579(2) ppb, (322)

so dass für die realtive Unsicherheit der Rohasymmetrie

∆〈Araw〉exp

〈Araw〉exp

∣∣∣∣
δQ2

Q2 =5 %

= 2,56 % (323)

gilt. Zur bestimmten Unsicherheit der Rohasymmetrie korrespondiert eine Unsicherheit bei
der Extraktion des elektroschwachen Mischungswinkels von

∆ŝ2
Z

∣∣∣∣
δQ2

Q2 =5 %

= 3,950(15) · 10−4. (324)

Dies entspricht einer relativen Unsicherheit von

∆ŝ2
Z

ŝ2
Z

∣∣∣∣
δQ2

Q2 =5 %

=
3,950 · 10−4

0,231 160 0
= 0,17 %. (325)
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Abbildung 116: Verlauf von
∆ŝ2Z
ŝ2Z

∣∣∣∣
δQ2

Q2 =5 %

in Abhängigkeit von der Messdauer T .

Hieraus ergibt sich eine relative Unsicherheit von

∆Q1-loop
W (p)

Q1-loop
W (p)

∣∣∣∣
δQ2

Q2 =5 %

= 3,65 % (326)

für Q1-loop
W (p).

∆ŝ2
Z

∣∣∣∣
δQ2

Q2 =5 %

ist gegenüber ∆ŝ2
Z um 7,3 % reduziert. Da ∆ŝ2

Z

∣∣∣∣
δQ2

Q2 =5 %

ebenso wie ∆ŝ2
Z durch

den Beitrag der statistischen Unsicherheit von der paritätsverletzenden Asymmetrie der ela-
stischen Elektron-Proton-Streuung dominiert wird, kann auch hier eine Reduktion der re-
lativen Unsicherheit in der Bestimmung des elektroschwachen Mischungswinkels durch eine
Verlängerung der Messdauer T erreicht werden, wie man anhand von Abbildung 116 erken-
nen kann. Der Erwartungswert für die relative Unsicherheit des Sinus-Quadrats des elek-
troschwachen Mischungswinkels erreicht ab einer Messdauer von T ≥ 1,3 · 104 h Werte von
näherungsweise 0,15 %.
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8 Zusammenfassung und Ausblick

Mit diesem Kapitel schließt die erste Dissertation, die zum P2-Experiment angefertigt wurde.
Das Ziel der P2-Kollaboration ist es, eine hochpräzise Bestimmung der schwachen Ladung
QW(p) des Protons und des Sinus-Quadrats des elektroschwachen Mischungswinkels sin2(θW)
durch eine Präzisionsmessung der paritätsverletzenden Asymmetrie APV

ep der elastischen
Elektron-Proton-Streuung bei kleinen Viererimpulsüberträgen innerhalb einer Messdauer
von T = 104 h am neuen Elektronenbeschleuniger MESA in Mainz durchzuführen.

Im Verlauf dieser Arbeit wurde die Kinematik der elastischen Elektron-Proton-Streuung
zur Durchführung des Experiments im Rahmen von Fehlerfortpflanzungsrechnungen festge-
legt. Das P2-Experiment wird voraussichtlich bei einer Strahlenergie von Ebeam = 155 MeV
durchgeführt werden, wobei elastisch an Protonen unter Winkeln 25◦ ≤ θf ≤ 45◦ gestreute
Elektronen zur Asymmetriemessung nachgewiesen werden.
Nach der Festlegung der Streukinematik wurde ein grundlegendes Konzept für den Messauf-
bau des P2-Experiments entwickelt, indem die Bahnkurven von elastisch im Target gestreu-
ten Elektronen in verschiedenen Magnetfeldern simuliert wurden: Bei der Messung wird ein
großer Solenoid zum Einsatz kommen, der die im Target gestreuten Elektronen auf einen
Cherenkov-Detektor fokussieren wird und die Signalteilchen von Elektronen im Endzustand
des Møller-Streuprozesses separieren wird. Eine massiver Bleischild wird die Sichtlinie zwi-
schen `H2-Target und Cherenkov-Detektor verdecken und den Beitrag von aus dem Target
hervortretender Bremsstrahlung zum Detektorsignal minimieren.
Um die Durchführbarkeit des P2-Experiments unter Beweis zu stellen, wurde das Experiment
schließlich mittels einer eigens zu diesem Zweck entwickelten Computeranwendung unter
Verwendung der Monte Carlo-Methode simuliert. Die Simulationsanwendung erlaubt unter
anderem die Berechnung des Erwartungswerts des negativen Viererimpulsübertragsquadrats

〈Q2〉exp = 4,82 · 10−3 (GeV/c)2. (327)

der elastischen Elektron-Proton-Streuung sowie des Erwartungswerts

〈APV
ep 〉exp = −32,57 ppb (328)

der paritätsverletzenden Asymmetrie, wobei QED-Korrekturen zum Streuprozess bei den
Berechnungen vernachlässigt wurden.
Auf Grundlage der Simulationsergebnisse wurden Fehlerfortpflanzungsrechnungen unter Be-
achtung statistischer und systematischer Unsicherheiten bei der Asymmetriebestimmung
ausgeführt, um die im Experiment erwartete Unsicherheit bei der Bestimmung der schwachen
Ladung des Protons und des elektroschwachen Mischungswinkels vorherzusagen. Es ergaben
sich

∆Q1-loop
W (p)

Q1-loop
W (p)

= 3,39 % (329)

und
∆ŝ2

Z

ŝ2
Z

= 0,16 %, (330)

wobei auch hier die Effekte von QED-Korrekturen zur elastischen Elektron-Proton-Streuung
vernachlässigt wurden.
Es wurde eine Obergrenze für die Reduktion der im P2-Experiment erreichbaren Präzision
bei der Bestimmung von QW(p) und ŝ2

Z abgeschätzt, welche sich aus der Berücksichtigung
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von QED-Effekten zum Prozess der elastischen e-p-Streuung ergibt: Es ist zu erwarten, dass
im P2-Experiment eine relative Unsicherheit

3,39 % ≤ ∆Q1-loop
W (p)

Q1-loop
W (p)

< 3,65 % (331)

bei der Extraktion der schwachen Ladung der Protons und eine relative Unsicherheit von

0,16 % ≤ ∆ŝ2
Z

ŝ2
Z

< 0,17 % (332)

bei der Bestimmung von ŝ2
Z innerhalb einer Messdauer von T = 104 h erreicht werden kann.

Nach dem durch Gleichung (98) gegebenen Ausdruck

Λ

gneu

≈ 1√√
2GF|∆QW(p)|

(333)

für die Energieskala Λ einer möglichen neuen Kontaktwechselwirkung mit Kopplungskon-
stante gneu korrespondiert die im P2-Experiment erwartete Unsicherheit für QW(p) zu einer
Sensitivität auf Verhältnisse von Λ und gneu im Energiebereich

Λ

gneu

∣∣∣∣
P2

≈ 6 TeV. (334)

Verwendet man die Konvention gneu = 2π, welche für Modelle üblich ist, in denen die im
Standardmodell punktförmigen Fermionen aus elementaren Teilchen bestehen, welche durch
eine neue, nicht perturbativ berechenbare Wechselwirkung gebunden sind, so folgt, dass

Λ

∣∣∣∣
P2

≈ 38 TeV. (335)

Die bislang weltweit präziseste Bestimmung von QW(p) wurde im Rahmen des QWeak-
Experiments durchgeführt und ergab [81]:

QW(p) = 0, 0719± 0, 0045, (336)

was zu einer relativen Unsicherheit von

∆QW(p)

QW(p)

∣∣∣∣
QWeak

≈ 6,3 % (337)

sowie einem Verhältnis von
Λ

gneu

∣∣∣∣
QWeak

≈ 3,7 TeV (338)

korrespondiert, wenn man das Resultat des QWeak-Experiments in Gleichung (98) einsetzt.
Die für das P2-Experiment bestimmte Sensitivität bezüglich hypothetischer neuer Kontakt-
wechselwirkungen ist somit um 62 % höher als die im QWeak-Experiment erreichte Sensi-
tivität, und das P2-Experiment wird bei erfolgreicher Durchführung die weltweit präziseste
Bestimmung der schwachen Ladung des Protons ermöglichen.

Zusammenfassend lässt sich feststellen, dass eine hochpräzise Messung der paritätsverletzenden
Asymmetrie der elastischen Elektron-Proton-Streuung mit dem vorgestellten Messaufbau
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möglich ist. Der Entwicklungsprozess der Experimentieranordnung ist nicht abgeschlossen,
und die in dieser Arbeit vorgestellten Simulationsanwendungen sollten erweitert werden,
um eine genauere Vorhersage der im Experiment erwarteten Präzision bei der Messung der
Asymmetrie treffen zu können.
Es ist vor allem auf die Notwendigkeit zur Berücksichtigung von QED-Korrekturen bei der
Simulation der elastischen Elektron-Proton-Streuung im Flüssigwasserstoff-Target hinzuwei-
sen. Zwar wurden die Effekte der Erzeugung von Bremsstrahlung im Rahmen der Streuung in
der vorliegenden Arbeit konservativ abgeschätzt, die Implementierung eines Ereignisgenera-
tors, der die QED-Korrekturen berücksichtigt, wird jedoch eine weitergehende Optimierung
des Messaufbaus und eine Präzisierung der Vorhersage der im Experiment erwarteten Ge-
nauigkeit bei der Bestimmung von sin2(θf) ermöglichen.
Es sei ferner darauf hingewiesen, dass die radiale Ausdehnung des SiO2-Rings des Cherenkov-
Detektors weiter optimiert werden kann. Dies sollte geschehen, wenn das Magnetfeld des
Solenoiden, der im P2-Experiment zum Einsatz kommen wird, genau bekannt ist, da erst
dann eine abschließende Vorhersage der Bahnkurven im Magnetfeld möglich ist. Im Rahmen
der Vorstudien, deren Resultate in dieser Arbeit präsentiert werden, wurde die Feldkarte
des FOPI-Solenoiden verwendet. Da die Feldspule des FOPI-Solenoiden im P2-Experiment
nicht wiederverwendet werden kann, werden voraussichtlich eine neue Feldspule und ein
neuer Kryostat zum Einsatz kommen.
Die neue Feldspule und der neue Kryostat des Solenoiden sollten in der Simulation des
P2-Experiments modelliert werden. Es ist voraussichtlich notwendig, den Kryostaten gegen
Strahlung aus dem Target abzuschirmen, um eine ausreichende Kühlung der Feldspulen bei
nominellem Strahlstrom während des Experimentierbetriebs sicherzustellen. Eine korrekte
Konzipierung der zur Abschirmung des Solenoiden notwendigen Schilde kann nur mit einem
hinreichend genauen geometrischen Modell des Kryostaten und der Feldspule durchgeführt
werden.
Im Rahmen dieser Arbeit wurde die Genauigkeit, mit der apparative Beiträge zur im Expe-
riment zu messenden Asymmetrie innerhalb der Messdauer von T = 104 h bestimmt werden
können, mit ∆Afalse = 0,1 ppb abgeschätzt. Diese Abschätzung basiert auf Erfahungswerten,
welche die A4-Kollaboration bei der Druchführung des A4-Experiments an MAMI gewonnen
hat. Es ist notwendig, die Größe der falschen Asymmetriebeiträge, die sich für den Messauf-
bau des P2-Experiments ergeben, abzuschätzen. Die Simulation des P2-Experiments kann
hier womöglich wertvolle Beiträge leisten, da sie die Berechnung der Elektron-Bahnkurven
im Magnetfeld des Solenoiden gestattet und somit die Berechnung von mit Änderungen der
Strahleigenschaften korrelierten Änderungen des Erwartungswerts der paritätsverletzenden
Asymmetrie ermöglicht.
Es ist ein Konzept zur Messung der Nukleon-Formfaktoren Gp, Z

A und Gs
M unter Rückwärts-

Streuwinkeln zu erstellen und in das Messaufbau-Konzept zur Asymmetriemessung unter
Vorwärtswinkeln zu integrieren. Die Simulation des P2-Experiments kann zur Konzipierung
und Verifikation der Durchführbarkeit der Formfaktor-Messung eingesetzt werden.
Zur Überwachung der Strahl- und Target-Eigenschaften bei der Asymmetriemessung werden
Luminositätsmonitore zum Einsatz kommen. Dabei handelt es sich um Detektoren, welche
eine Überwachung des aus dem Target hervortretenden Teilchenflusses ermöglichen. Die De-
tektoren sollten möglichst den gesamten Azimutwinkel abdecken, wobei eine Segmentierung
im Azimut zur Minimierung systematischer Fehler bei der relativen Luminositätsmessung
von Vorteil ist. Die Luminositätsmonitore sollten unabhängig vom Cherenkov-Detektor ope-
rieren, und es sollten nicht die Elektronen aus elastischer Elektron-Proton-Streuung zur
Luminositätsüberwachung nachgewiesen werden, da die relative Bestimmung der Lumino-
sität mithilfe des asymmetriebehafteten Signalprozesses eine Normierung der Signale des
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Cherenkov-Detektors auf die Signale der Luminositätsmonitore erschwert. Die Simulation des
P2-Experiments kann eingesetzt werden, um geeignete Position für Luminositätsmonitore zu
finden und die Durchführbarkeit der Luminositätsmessung zu sichern.
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A Parametrisierungen der Nukleon-Formfaktoren

Im Folgenden werden Details zu den in Abschnitt 5.2.5 beschriebenen Parametrisierungen
der Nukleon-Formfaktoren gegeben, welche bei den Fehlerfortpflanzungsrechnungen zur Be-
stimmung von ∆ŝ2

Z zum Einsatz kommen. In Kapitel 5 wird angenommen, dass dass je-
der der zur Bestimmung von APV benötigten Nukleon-Formfaktoren durch eine Funktion
Γ({λl}, Q2) parametrisiert werden kann, die stetig ist und von einem Satz reeller Parameter
{λl} sowie dem negativen Viererimpulsübertragsquadrat Q2 abhängt. Im Rahmen der vor-
liegenden Arbeit wurden entsprechende Parametrisierungen erstellt. Diese basieren zum Teil
auf Kurvenanpassungen an Formfaktor-Daten. Die Kurvenanpassungen wurden mithilfe von
ROOT [122] ausgeführt. Zur Optimierung der reellen Kurvenparameter {λl} wurde dabei
die Methode der χ2-Minimierung verwendet. Der Fokus beim Erstellen der Parametrisierun-
gen lag nicht auf der akkuraten Anpassung von Kurven an gegebene Datensätze, sondern
auf einer hinreichend guten Abbildung der Unsicherheiten der Formfaktor-Daten bei kleinen
Viererimpulsüberträgen Q2 ∼ 5 · 10−3 (GeV/c)2, welche zur Berechnung von ∆ŝ2

Z beitragen.

In den folgenden Unterabschnitten werden die zur Kurvenanpassung verwendeten Daten, die
an diese Daten angepasste Kurve sowie der Verlauf der sich hieraus ergebenden Parametrisie-
rung Γ({λl}, Q2) für jeden Formfaktor vorgestellt. Erwartungswert 〈Γ〉 und Standardabwei-
chung ∆Γ einer jeden Parametrisierung wurden dabei mit dem selben Monte Carlo-Verfahren
bestimmt, welches zur Berechnung von 〈ŝ2

Z〉 und ∆ŝ2
Z verwendet wurde. Dabei wurde der glei-

che Quellcode benutzt. Auf diese Weise wurde sichergestellt, dass die Formfaktoren mithilfe
des in Abschnitt 5.1 diskutierten Algorithmus korrekt berechnet werden. Das verwendete
Verfahren zur Bestimmung von 〈Γ〉 und ∆Γ wird im Folgenden kurz erläutert.

Für festgehaltenes Q2 kann ein zufallsverteilter Wert Γ′i des zu berechnenden Formfaktors
bestimmt werden, indem die Parameter λl unabhängig voneinander gemäß den ihnen zuge-
wiesenen Normalverteilungen variiert und Zufallswerte {λ′l} berechnet werden:

Γ′i = Γi({λ′l}, Q2). (339)

Durch die Berechnung von N voneinander unabhängigen Werten von Γ′i erhält man eine
Verteilung von Γ′i-Werten mit dem Erwartungswert

〈Γi〉(Q2) =
1

N

N∑
i=1

Γ′i (340)

und der Standardabweichung

∆Γi(Q
2) =

√√√√ 1

N − 1

N∑
i=1

[〈Γ〉(Q2)− Γ′i(Q
2)]2. (341)

Zur Variation der λl wurde der von ROOT bereitgestellte Pseudozufallszahlengenerator

”
TRandom3“ benutzt, welcher auf dem Pseudozufallszahlengenerator

”
Mersenne Twister

MT 19937“ [123] basiert. Dieser Generator verfügt über eine Periodenlänge von 219937− 1 ≈
4,3 · 106001 und kann in bis zu 623 Dimensionen gleichverteilte Zufallszahlen generieren.

In sämtlichen der in diesem Abschnitt dargestellten Abbildungen wurde N = 104 zur Be-
stimmung von 〈Γi〉(Q2) und ∆Γ(Q2) für jeden Q2-Wert gewählt.
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A.1 Elektromagnetische Formfaktoren des Protons

In Abschnitt K 2.2.3 von [127] finden sich die Daten, welche zur Kurvenanpassung für die
elektromagnetischen Formfaktoren des Protons benutzt wurden. Es handelt sich um aus dem
von Bernauer et al. entwickelten Dipol x Polynomial - Modell resultierende Werte für Gp,γ

E

und Gp,γ
M im Intervall 5 · 10−4 (GeV/c)2 ≤ Q2 ≤ 5 · 10−4 (GeV/c)2. An diese Daten wurden

die Funktionen

Gp,γ
E (Q2) = Gstd

dipole(Q
2) ·Gpoly

E (Q2),

Gp,γ
M (Q2) = (µP/µN) ·Gstd

dipole(Q
2) ·Gpoly

M (Q2) (342)

angepasst, wo

Gstd
dipole(Q

2) =

(
1 +

Q2

0,71 (GeV/c)2

)−2

(343)

und

Gpoly
E,M(Q2) = 1 +

8∑
i=1

(
λpE,M
i ·Q2i

)
(344)

mit dem magnetischen Moment des Protons µP = 2, 792847356 ·µN und dem Kernmagneton
µN = (e~)/(2mp).

Für Gp,γ
E liefert die Kurvenanpassung unter Einbeziehung des gesamten verfügbaren Q2-

Intervalls die nachfolgend aufgelisteten Parameterwerte:

i λpE
i /(GeV/c)−2i ∆λpE

i /(GeV/c)−2i

1 −4,701 987 · 10−1 1,133 586 · 10−2

2 4,342 292 · 100 6,849 265 · 10−2

3 −2,068 202 · 101 1,718 847 · 10−1

4 4,406 141 · 101 3,152 484 · 10−1

5 −2,474 794 · 101 5,080 538 · 10−1

6 −5,087 120 · 101 7,708 359 · 10−1

7 8,101 379 · 101 1,055 087 · 100

8 −3,302 248 · 101 1,047 902 · 100

χ2 ndf χ2/ndf

5,32 · 10−1 37 1,44 · 10−2

Hierin ist ndf die Anzahl der Freiheitsgrade bei der Kurvenanpassung. Die Parameter-
Werte werden mit der numerischen Präzision angegeben, mit der sie im Rahmen der Kur-
venanpassung bestimmt worden sind, um die Reproduzierbarkeit der Parametrisierung zu
gewährleisten. Abbildung 117 zeigt die aus [127] stammenden Daten zusammen mit der an
diese angepassten Kurve sowie der sich ergebenden Parametrisierung für Gp,γ

E .
Die Schwankungen in 〈Γ〉(Q2) und ∆Γ(Q2) sind statistischer Natur und werden durch das
Monte Carlo-Verfahren, das zur Berechnung dieser Größen verwendet wurde, bedingt. Abbil-
dung 118 zeigt den Verlauf der Parametrisierung von Gp,γ

E bei niedrigen Q2-Werten, welche
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Abbildung 117: Zur Parametrisierung von Gp,γ
E als Funktion von Q2: Der Datensatz aus [?]

wird durch die schwarz dargestellten Punkte und deren Fehlerbalken repräsentiert. Die an
diese Daten angepasste Kurve ist in Rot gezeichnet. Die Erwartungswerte 〈Γ〉 der sich aus
der Kurvenanpassung ergebenden Parametrisierung Γ(Q2) sind in Magenta eingezeichnet,
sie kommen erwartungsgemäß mit der angepassten Kurve zur Deckung. Der Verlauf der
Standardabweichung ∆Γ(Q2) ist durch das lilafarbene Band dargestellt.
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Abbildung 118: Verlauf der Formfaktor-Daten (schwarz) zusammen mit der an diese an-
gepassten Kurve (rot) und der sich ergebenden Parametrisierung Γ(Q2) (lila) für niedrige
Werte von Q2.

zur Vorhersage der erreichbaren Unsicherheit bei der Bestimmung des elektroschwachen Mi-
schungswinkels im P2-Experiment von Relevanz sind.

Für den magnetischen Formfaktor des Protons Gp,γ
M führt die Kurvenanpassung an die in

[127] gegebenen Daten zu folgenden λl-Werten:
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Abbildung 119: Zur Parametrisierung von Gp,γ
M : Die [127] entnommenen Daten sind schwarz

dargestellt. Die an diese Daten angepasste Kurve ist rot gezeichnet. Die Erwartungswerte
〈Γ〉 der sich aus der Kurvenanpassung ergebenden Parametrisierung sind magentafarben
markiert. Die Unsicherheit ∆Γ ist durch das in Lila dargestellte Band gekennzeichnet.

i λpM
i /(GeV/c)−2i ∆λpM

i /(GeV/c)−2i

1 2,445 791 · 10−1 1,285 954 · 10−2

2 −4,387 620 · 100 4,832 165 · 10−2

3 2,244 408 · 101 8,019 477 · 10−2

4 −4,477 354 · 101 1,120 105 · 10−1

5 2,507 312 · 101 1,455 939 · 10−1

6 3,475 912 · 101 1,827 526 · 10−1

7 −5,305 466 · 101 2,105 056 · 10−1

8 1,976 824 · 101 1,874 455 · 10−1

χ2 ndf χ2/ndf

1,13 · 100 38 2,97 · 10−2

Abbildung 119 zeigt den aus dieser Wahl der Parameter resultierenden Verlauf von Gp,γ
M zu-

sammen mit den zur Kurvenanpassung verwendeten Daten. Abbildung 120 zeigt den Verlauf
der Parametrisierung für kleine Q2-Werte, welche im P2-Experiment von Interesse sind.

A.2 Elektromagnetische Formfaktoren des Neutrons

Die Parametrisierung von Gn,γ
E und Gn,γ

M erfolgt wie in [128].

Gn,γ
E wird nach Galster [129] parametrisiert:

Gn,γ
E (Q2) =

λnE
1 τ

1 + λnE
2 τ
·Gstd

dipole(Q
2). (345)

Die Anpassung von (345) an die in [128] gegebenen Daten im Intervall 10−3 (GeV/c)2 ≤
Q2 ≤ 3,1 (GeV/c)2 führt zu den folgenden Kurvenparametern:
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Abbildung 120: Verlauf der Parametrisierung Γ von Gp,γ
M zusammen mit den Daten aus [127]

sowie der an diese angepassten Kurve für kleine Werte von Q2.
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Abbildung 121: Zur Parametrisierung von Gn,γ
E : In Schwarz sind die Datenpunkte aus [128]

dargestellt, an welche die in Rot gezeichnete Kurve unter Verwendung von Gleichung (345)
angepasst wurde. Die Erwartungswerte der sich hieraus ergebenden Parametrisierung 〈Γ〉
sind in Magenta, die Standardabweichungen ∆Γ in Lila dargestellt.

i λnE
i ∆λnE

i

1 1,770 221 · 100 1,454 643 · 10−2

2 3,425 350 · 100 2,075 773 · 10−1

χ2 ndf χ2/ndf

3,20 · 10−2 188 1,70 · 10−4

Abbildung 121 zeigt den Verlauf der sich aus diesen Parametern ergebenden Parametrisierung
gemeinsam mit den [128] entnommenen Daten.
Abbildung 122 zeigt einen Ausschnitt aus Abbildung 121 für kleine Viererimpulsüberträge,
wie sie im P2-Experiment auftreten werden.

Gn,γ
M wird analog zu der in [128] gewählten Vorgehensweise mithilfe eines Polynoms 9. Grades
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Abbildung 122: Verlauf der Parametrisierung Γ von Gn,γ
E zusammen mit den [128] entnomme-

nen Daten (schwarz) sowie den an diese Daten angepasste Kurve (rot) für niedrige Q2-Werte.
Die Erwartungswerte 〈Γ〉 sind in Magenta, die Standardabweichungen ∆Γ in Lila gezeichnet.

parametrisiert:

Gn,γ
M (Q2) =

9∑
i=0

λnM
i Q2i. (346)

Die Kurvenanpassung mittels ROOT an die in [128] aufgelisteten Werte mündet in folgenden
Parameter-Werten:

i λnM
i /(GeV/c)−2i ∆λnM

i /(GeV/c)−2i

0 −1,916 029 · 100 4,589 687 · 10−4

1 7,092 145 · 100 3,229 584 · 10−2

2 −3,329 785 · 101 1,602 581 · 10−1

3 1,574 668 · 102 4,007 755 · 10−1

4 −4,144 474 · 102 9,176 047 · 10−1

5 1,627 159 · 102 2,025 616 · 100

6 1,152 293 · 103 4,366 665 · 100

7 −2,117 386 · 102 9,120 974 · 100

8 −4,908 379 · 103 1,819 254 · 101

9 5,114 440 · 103 3,374 769 · 101

χ2 ndf χ2/ndf

2,51 · 101 130 1,93 · 10−1

Abbildung 123 zeigt die zur Kurvenanpassung benutzten Daten aus [128] zusammen mit der
angepassten Kurve und der sich ergebenden Parametrisierung von Gn,γ

M .
Abbildung 124 zeigt den Verlauf der Parametrisierung von Gn,γ

M für kleine Werte von Q2.
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Abbildung 123: Q2-Abhängigkeit der Parametrisierung von Gn,γ
M : In Schwarz sind die Da-

tenpunkte aus [128] dargestellt. Der Verlauf der an die Daten angepassten Kurve ist
in Rot gezeigt. Die Erwartungswerte 〈Γ〉 der sich ergebenden Parametrisierung sind in
Magenta, die Standardabweichungen ∆Γ der Parametrisierung Γ in Lila eingezeichnet. Für
Q2 ≤ 0,1 (GeV/c)2 ist die Dichte der Datenpunkte größer, als für höhere Q2-Werte.
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Abbildung 124: Verlauf der in Abbildung 123 dargestellten Parametrisierung von Gn,γ
M für

kleine Q2-Werte, welche im P2-Experiment von Relevanz sind.

A.3 Strangeness-Formfaktoren

Die Parametrisierung von Gs
E erfolgt nach Galster [129], so dass

Gs
E(Q2) =

λsE
1 τ

1 + λsE
2 τ
·Gstd

dipole(Q
2). (347)

Die Anpassung von (347) an die in [129] aufgeführten Werte im Intervall 0,1 (GeV/c)2 ≤
Q2 ≤ 0,63 (GeV/c)2 liefert:
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Abbildung 125: Zur Parametrisierung von Gs
E: In Schwarz dargestellt sind die Messdaten,

welche von verschiedenen Kollaborationen veröffentlicht worden sind. An diese wurde die in
Rot gezeichnete Kurve angepasst. Die Erwartungswerte der hieraus resultierenden Parame-
trisierung 〈Γ〉 sind in Magenta, die Standardabweichungen ∆Γ der Parametrisierung in Lila
gezeichnet. Weiter Diskussion im Text.
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Abbildung 126: Verlauf der Parametrisierung von Gs
E(Q2) für kleine Werte von Q2. In dem

für das P2-Experiment relevanten Q2-Intervall existieren bislang keine Messdaten.

i λsE
i ∆λsE

i

1 3,231 461 · 10−1 8,871 228 · 10−1

2 4,704 640 · 100 3,000 726 · 101

χ2 ndf χ2/ndf

1,61 · 100 5 3,21 · 10−1

Abbildung 125 zeigt die Daten aus [129] zusammen mit der an die Daten angepassten Kurve
und der resultierenden Parametrisierung Γ von Gs

E(Q2).
Der rapide Anstieg von ∆Γ(Q2) für Q2 ≥ 0,05 (GeV/c)2 resultiert aus dem Umstand, dass
λ2 in (347) im Nenner steht und die Kurvenanpassung einen vergleichsweise großen Wert für
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Abbildung 127: Zur Parametrisierung von Gs
M: Die zur Kurvenanpassung verwendeten Da-

ten aus [135] sind in Schwarz gezeichnet. Die an diese Daten angepasste Kurve ist rot dar-
gestellt. Die Erwartungswerte 〈Γ〉 der Parametrisierung Γ sind durch die in Magenta ge-
zeichneten Punkte dargestellt, die Standardabweichung ∆Γ wird durch das lilafarbene Band
repräsentiert.

∆λ2 ergibt. Von Interesse für die Vorhersage des im P2-Experiment erreichbaren Wertes von
∆ŝ2

Z ist die Prametrisierung von Gs
E(Q2) für Q2 ≤ 0,05 (GeV/c)2. Abbildung 126 zeigt den

Verlauf der Parametrisierung für dieses Q2-Intervall.

Für die Q2-Abhängigkeit von Gs
M gilt nach [135]:

Gs
M = λsM

0 + λsM
1 ·Q2. (348)

Für die Unsicherheit von Gs
M wird in [135] folgender Ausdruck angegeben:

∆Gs
M(Q2) =

√
0, 34 + 47, 8 ·Q4/(GeV/c)4. (349)

Eine Kurvenanpassung an die in [135] gegebenen Daten im Intervall 0,01 (GeV/c)2 ≤ Q2 ≤
0,63 (GeV/c)2 führt zu folgenden Werten für λ0 und λ1:

i λsM
i /(GeV/c)−2i ∆λsM

i /(GeV/c)−2i

0 4,411 866 · 10−2 1,393 027 · 10−1

1 9,312 301 · 10−1 1,016 812 · 100

χ2 ndf χ2/ndf

7,92 · 10−4 61 1,30 · 10−5

Abbildung 127 zeigt die zur Kurvenanpassung verwendeten Daten zusammen mit dem Ver-
lauf der aus den obigen Parameterwerten resultierenden Parametrisierung Γ in Abhängigkeit
von Q2.
Da Korrelation zwischen den Parametern in (348) bei der Berechnung von ∆Γ vernachlässigt
werden, überschätzt die erstellte Parametrisierung die Unsicherheit in Gs

M für größere Q2-
Werte systematisch. Die Parametrisierung reproduziert jedoch die Unsicherheit der Daten
aus [135] für Q2-Werte, die im P2-Experiment von Relevanz sind. Abbildung 128 zeigt den
Verlauf bei entsprechenden Q2-Werten.
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Abbildung 128: Ausschnitt aus Abbildung 127. Gezeigt ist der Verlauf der Parametrisierung
von Gs

M für niedrige Werte von Q2, wie sie im P2-Experiment erwartet werden.

A.4 Axialer Formfaktor des Protons

Für den axialen Formfaktor des Protons Gp, Z
A wurde im Rahmen dieser Arbeit keine Para-

metrisierung erstellt. Eine zur Durchführung der Fehlerfortpflanzungsrechnungen geeignete
Parametrisierung wurde von Musolf et al. [13] erstellt und wird zur Berechnung von ∆ŝ2

Z

übernommen. Es ist

Gp, Z
A (Q2) = λpA

0 ·
(

1 +
Q2

(λpA
1 )2

)−2

, (350)

wobei

i λpA
i /(GeV/c)i ∆λpA

i /(GeV/c)i

0 -1,136 0,411

1 1,032 0,036

Abbildung 129 zeigt den Verlauf der Parametrisierung als Funktion von Q2 und zum Ver-
gleich die mit dem zur Fehlerfortpflanzungsrechnung verwendeten Monte Carlo-Verfahren
berechneten Werte der selben Parametrisierung des axialen Formfaktors. Die Werte stim-
men erwartungsgemäß über den gesamten betrachteten Q2-Bereich hinweg überein.

A.5 Isospin-brechende elektromagnetische Fromfaktoren

Zur Parametrisierung der Formfaktoren Gud
E und Gud

M werden die von P. Larin [138] mittels
eines graphischen Verfahrens aus [139] extrahierten Daten verwendet. Die Formfaktoren
werden mithilfe von Polynomen vierten Grades parametrisiert, so dass

Gud
E, M =

4∑
i=0

λudE, M
i ·Q2i. (351)

Die Kurvenanpassung von (351) an die in [138] für Gud
E aufgelisteten Daten im Intervall

Q2 ∈ [0 (GeV/c)2, 0,275 (GeV/c)2] mündet in folgenden Kurvenparameter:
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Abbildung 129: Verlauf der Parametrisierung von Gp, Z
A als Funktion von Q2. Man erkennt

eine gute Übereinstimmung im Rahmen der statistischen Schwankungen zwischen den mit-
tels Gleichung (350) analytisch bestimmten Werten (schwarz) und der Parametrisierung Γ,
welche mit dem Monte Carlo-Verfahren berechnet wurde.

i λudE
i /(GeV/c)−2i ∆λudE

i /(GeV/c)−2i

0 1,344 573 · 10−13 1,000 000 · 10−7

1 5,669 833 · 10−2 2,772 295 · 10−2

2 −2,465 694 · 10−1 6,866 436 · 10−1

3 5,813 392 · 10−1 4,856 379 · 100

4 −7,002 228 · 10−1 1,023 000 · 101

χ2 ndf χ2/ndf

1,83 · 10−3 8 2,29 · 10−4

In Abbildung 130 sind die zur Kurvenanpassung verwendeten Daten gemeinsam mit der sich
ergebenden Parametrisierung für Gud

E gezeigt.
Der Anstieg von ∆Γ mit wachsendem Q2 ist primär auf den Wert von ∆λ4 zurückzuführen.
Abbildung 131 zeigt den Verlauf der Parmetrisierung Γ für im P2-Experiment relevante Q2-
Werte.

Für die Variablen {λM
i } der Parametrisierung von Gud

M ergibt die Anpassung von (351) an die
in [138] aufgeführten Werte im Intervall 0 (GeV/c)2 ≤ Q2 ≤ 0,3 (GeV/c)2 folgende Werte:
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Abbildung 130: Zur Parametrisierung von Gud
E : Die [138] entnommenen Daten sind als

schwarze Linien dargestellt, die an diese Daten angepasste Kurve ist rot gezeichnet. Die
magentafarbenen Punkte markieren die Erwartungswerte 〈Γ〉 der sich ergebeneden Parame-
trisierung, der Verlauf der Standardabweichung ∆Γ ist durch das lila Band dargestellt.
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Abbildung 131: Verlauf der Parametrisierung von Gud
E für kleine Q2-Werte.

i λudM
i /(GeV/c)−2i ∆λudM

i /(GeV/c)−2i

0 2,474 684 · 10−2 1,824 655 · 10−2

1 6,787 448 · 10−2 7,769 135 · 10−1

2 −3,042 028 · 10−2 1,003 967 · 101

3 −4,367 643 · 10−1 4,767 653 · 101

4 8,468 409 · 10−1 7,470 339 · 101

χ2 ndf χ2/ndf

1,93 · 10−4 8 2,41 · 10−5

Abbildung 132 zeigt den Verlauf der sich aus der Kurvenanpassung ergebenden Parametri-
sierung von Gud

M zusammen mit den Daten aus [138].
Abbildung 133 zeigt den Verlauf der Parmetrisierung von Gud

M für kleine Q2-Werte.
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Abbildung 132: Zur Parametrisierung von Gud
M : Die [138] entnommenen Werte und deren Un-

sicherheiten sind durch die schwarzen Linien dargestellt. An diese wurde die rot gezeichnete
Kurve angepasst. Ferner sind die Erwartungswerte der Parametrisierung 〈Γ〉 sowie deren
Unsicherheiten ∆Γ in Magenta bzw. Lila gezeigt.
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Abbildung 133: Verlauf der Parametrisierung von Gud
M für kleine Q2-Werte. Die Erwartungs-

werte 〈Γ〉 sind in Magenta, der Verlauf der Standardabweichung ∆Γ ist durch das lilafarbene
Band gekennzeichnet.
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B Ratenverteilungen auf dem Cherenkov-Detektor

Im Folgenden werden, ergänzend zur Diskussion in Abschnitt 7.6, die mit der Geant4-
Simulation des P2-Experiments bestimmten Ratenverteilungen auf der Oberfläche des Cherenkov-
Ringdetektors vorgestellt. Die Verteilungen entsprechen den in Abbildung 100 gezeigten Ra-
tenverteilungen. Für jeden Teilchentyp wird die im P2-Experiment erwartete Verteilung der
Trefferrate in Abhängigkeit von der kinetischen Energie Ekin der Teilchen und dem Radius
r des Auftrefforts auf dem SiO2-Ring des Detektors in einem Histogramm dargestellt. Die
dargestellten Raten wurden auf die Flächen der Ringe normiert, die zu den Breiten der Hi-
stogrammbalken in radialer Richtung korrespondieren.

Im Folgenden werden zunächst die Verteilungen der Teilchen gezeigt, welche den Detektor im
Rahmen der Simulation elastischer e-p-Streuung im `H2-Target getroffen haben. Anschlie-
ßend werden die Ratenverteilungen für diejenigen Teilchen dargestellt, die den Detektor im
Rahmen der Simulation von Untergrundprozessen im Target passiert haben.

B.1 Raten aus elastischer e-p-Streuung im Target
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Sekundaer-Photonen
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Man erkennt, dass die Energieverteilungen der Primärelektronen aus elastischer e-p-Streuung
schwerpunktmäßig im Bereich der Strahlenergie liegen. Die Energien der Sekundärelektronen,
die größtenteil dem Møller-Streuprozess entstammen, sind erwartungsgemäß um ein Vielfa-
ches niedriger und liegen im Bereich einiger MeV. Gleiches gilt für sekundäre Photonen, da
es sich überwiegend um Bremsstrahlung handelt, deren Wirkungsquerschnitt mit steigender
Photon-Energie abnimmt. Die Positronen entstammen dem Prozess der Elektron-Positron-
Paarbildung, so dass es angesichts der Energieverteilung der Photonen nicht verwundert,
dass auch ihre Energien im Bereich einiger weniger MeV verteilt sind. Für all diese Teilchen-
typen ist in den Verteilungen deutlich die Wirkung der Abschirmung der Photomultiplier
erkennbar, die sich in der Simulation im Intervall r ∈ [900 mm, 1100 mm] erstreckt. Ledig-
lich für Neutronen ergibt sich erwartungsgemäß eine nahezu flache Verteilung in radialer
Richtung. Sie entstammen photonuklearen Reaktionen und inelastischen Streuprozessen an
Atomkernen.

B.2 Raten aus Untergrundprozessen im Target
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Für die Detektortreffer in Folge von Untergrundereignissen im Target ergeben sich qualitativ
ähnliche Verteilungen wie für die Sekundärteilchen aus elastischer e-p-Streuung im Target.
Dies verwundert nicht, da die selben physikalischen Prozesse zur Entstehung dieser Teilchen
führen.
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C Parametrisierung des Antwortverhaltens des Cherenkov-

Detektors

An dieser Stelle wird die Parametrisierung der Photoelektronen-Ausbeute vorgestellt, die im
Rahmen der Simulation des Cherenkov-Ringdetektors verwendet wurde. Die Parametrisie-
rung wurde im Rahmen der Dissertation von K. Imai [151] mittels einer Geant4-Simulation
eines Detektormoduls erstellt. In dieser Simulation wurden Elektronen und Photonen mit
unterschiedlichen Energien und Impulsrichtungen auf ein Detektormodul geschossen und
die Erwartungswerte und Standardabweichungen der Ausbeute an Photoelektronen an der
Photokathode des Photomultipliers bestimmt. Eine kurze Beschreibung der Detektormodul-
Simulation findet sich in Abschnitt 7.7.1 der vorliegenden Arbeit.

Im Folgenden werden die Resultate dieser Simulation in Form von Verteilungen dargestellt.
Auf der linken Seite wird jeweils der Erwartungswert der Photoelektron-Ausbeute für ein
Energieintervall des den Detektor treffenden Teilchens als Funktion der Einfallswinkel α
und β angegeben. Die beiden Winkel sind, wie in Abbildung 102 dargestellt, definiert. Auf
der rechten Seite wird jeweils die Verteilung der Standardabweichung der Photoelektron-
Ausbeute für dasselbe Energieintervall gezeigt. Das Energieintervall bezeichnet denjenigen
Energiebereich, für welchen die dargestellten Verteilungen zur Bestimmung der Anzahl der
Photoelektronen in der Geant4-Simulation des P2-Experiments verwendet werden. In der
Detektor-Simulation wurde jeweils der Mittelwert des angegebenen Energieintervalls zur Be-
rechnung der dargestellten Verteilung verwendet.

C.1 Photoelektronen-Ausbeute für Elektronen

Zunächst werden die Resultate der Detektormodul-Simulation dargestellt, die sich beim si-
mulierten Beschuss des Detektors mit Elektronen der Energie E unter den Winkeln α und
β ergeben:
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Man erkennt eine kontinuierliche Veränderung der Verteilungen bis zu einer Energie von
E ≈ 12 MeV. Für Energien > 12 MeV hängen Erwartungswert und Standardabweichung der
Photoelektronen-Ausbeute nur noch unwesentlich von E ab. Der Grund hierfür ist, dass bei
höheren Energien v/c ≈ 1 gilt und sich der Winkel, unter dem das Cherenkov-Licht rela-
tiv zur Impulsrichtung des Elektrons emittiert wird, nicht mehr steigender Teilchen-Energie
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ändert.

Um eine korrekte Normierung der Resultate der Geant4-Simulation des P2-Experiments
gewährleisten zu können, wird für Elektronen, deren Energie oder Einfallswinkel nicht von
dem hier vorgestellten Datensatz erfasst wird, eine Photoelektronen-Ausbeute von Null an-
genommen.

C.2 Photoelektronen-Ausbeute für Photonen

Für Photonen wurde eine analoge Berechnung der Photoelektronen-Ausbeute durchgeführt.
Da Photonen keine elektrische Ladung besitzen, können sie nur indirekt nach vorhergegange-
ner Compton-Streuung, Innerer Konversion oder Paarbildung zur Erzeugung von Cherenkov-
Licht im Cherenkov-Medium beitragen. Die Photoelektronen-Ausbeute ist daher für Photo-
nen systematisch kleiner als für Elektronen.
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D Resultate der Fehlerfortpflanzungsrechnungen zur

Bestimmung der im Experiment erwarteten Unsi-

cherheit des Weinbergwinkels

Im Folgenden werden die Verteilungen von ∆〈Araw〉exp und ∆ŝ2
Z vorgestellt, die sich im

Zuge der in Abschnitt 7.8 vorgestellten Berechnungen der im P2-Experiment erwarteten
Unsicherheiten bei der Messung der Asymmetrie und der Extraktion des elektroschwachen
Mischungswinkels ergaben.

Man beachte, dass der Wert ∆tot〈Araw〉exp = 0,590(3) ppb nicht dem in Tabelle 19 ange-
gebenen Wert von ∆〈Araw〉exp = 0,558(2) ppb entspricht. ∆〈Araw〉exp schließt lediglich die
experimentellen Beiträge zur Gesamtunsicherheit ein, so dass die Beiträge von Re(�γZ) und
der Nukleon-Formfaktoren ausgenommen sind. ∆tot〈Araw〉exp schließt die Beiträge aller Pa-
rameter zur Unsicherheit der Rohasymmetrie und somit auch den Beitrag von Re(�γZ) und
die Beiträge der Nukleon-Formfaktoren mit ein.

Zur Bestimmung jedes Beitrags zu ∆tot〈Araw〉exp bzw. ∆ŝ2
Z wurden N = 10 voneinander

unabhängige Zufallsverteilungen für 〈Araw〉exp bzw. ŝ2
Z vom Umfang M = 2,4 · 104 bestimmt.

Für jede der N Zufallsverteilungen wurden die Standardabweichungen (∆λl〈Araw〉exp)n bzw.
(∆λl ŝ

2
Z)n bestimmt, wobei n = 1, 2, . . . , N . Diese Standardabweichungen sowie deren

Mittelwerte werden in den nachfolgenden Tabellen aufgelistet. Die Standardabweichung der
N Standardabweichungen ist jeweils in runden Klammern angegeben.

Gesamtunsicherheit

n (∆tot〈Araw〉exp)n/ppb (∆ŝ2
Z)n

1 5,879 084 · 10−1 3,649 627 · 10−4

2 5,857 614 · 10−1 3,636 299 · 10−4

3 5,873 619 · 10−1 3,646 238 · 10−4

4 5,892 142 · 10−1 3,657 734 · 10−4

5 5,884 882 · 10−1 3,653 226 · 10−4

6 5,929 342 · 10−1 3,680 824 · 10−4

7 5,920 418 · 10−1 3,675 281 · 10−4

8 5,920 801 · 10−1 3,675 522 · 10−4

9 5,927 891 · 10−1 3,679 924 · 10−4

10 5,884 670 · 10−1 3,653 097 · 10−4

∆tot〈Araw〉exp/ppb ∆ŝ2
Z

0,590(3) 3,661(16) · 10−4
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Statistik

n (∆stat〈Araw〉exp)n/ppb (∆statŝ
2
Z)n

1 5,029 758 · 10−1 3,122 383 · 10−4

2 4,993 427 · 10−1 3,099 826 · 10−4

3 4,993 304 · 10−1 3,099 752 · 10−4

4 4,983 750 · 10−1 3,093 817 · 10−4

5 4,994 280 · 10−1 3,100 355 · 10−4

6 4,974 240 · 10−1 3,087 912 · 10−4

7 5,006 918 · 10−1 3,108 201 · 10−4

8 5,004 236 · 10−1 3,106 538 · 10−4

9 5,001 096 · 10−1 3,104 587 · 10−4

10 5,006 512 · 10−1 3,107 947 · 10−4

∆stat〈Araw〉exp/ppb ∆statŝ
2
Z

0,500(2) 3,103(9) · 10−4

Ausdünnungsfaktor f, e-Al-Streuung

n (∆f〈Araw〉exp)n/ppb (∆fŝ
2
Z)n

1 1,843 824 · 10−1 1,144 612 · 10−4

2 1,843 837 · 10−1 1,144 618 · 10−4

3 1,849 904 · 10−1 1,148 388 · 10−4

4 1,850 281 · 10−1 1,148 621 · 10−4

5 1,831 362 · 10−1 1,136 875 · 10−4

6 1,835 822 · 10−1 1,139 644 · 10−4

7 1,845 296 · 10−1 1,145 524 · 10−4

8 1,830 202 · 10−1 1,136 153 · 10−4

9 1,833 362 · 10−1 1,138 119 · 10−4

10 1,832 961 · 10−1 1,137 867 · 10−4

∆f〈Araw〉exp/ppb ∆fŝ
2
Z

0,184(1) 1,142(5) · 10−4
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〈APV
eAl〉

n (∆AeAl
〈Araw〉exp)n/ppb (∆AeAl

ŝ2
Z)n

1 5,139 806 · 10−2 3,190 733 · 10−5

2 5,067 111 · 10−2 3,145 570 · 10−5

3 5,114 846 · 10−2 3,175 212 · 10−5

4 5,109 574 · 10−2 3,171 946 · 10−5

5 5,115 112 · 10−2 3,175 337 · 10−5

6 5,115 897 · 10−2 3,175 855 · 10−5

7 5,118 948 · 10−2 3,177 749 · 10−5

8 5,110 712 · 10−2 3,172 649 · 10−5

9 5,097 491 · 10−2 3,164 408 · 10−5

10 5,119 921 · 10−2 3,178 357 · 10−5

∆AeAl
〈Araw〉exp/ppb ∆AeAl

ŝ2
Z

0,005(0) 0,317(1) · 10−4

Strahlpolarisation

n (∆P 〈Araw〉exp)n/ppb (∆P ŝ
2
Z)n

1 1,202 361 · 10−1 7,464 025 · 10−5

2 1,203 263 · 10−1 7,469 619 · 10−5

3 1,195 111 · 10−1 7,419 034 · 10−5

4 1,203 004 · 10−1 7,468 005 · 10−5

5 1,206 808 · 10−1 7,491 632 · 10−5

6 1,196 354 · 10−1 7,426 740 · 10−5

7 1,198 291 · 10−1 7,438 757 · 10−5

8 1,204 877 · 10−1 7,479 633 · 10−5

9 1,200 935 · 10−1 7,455 180 · 10−5

10 1,201 357 · 10−1 7,457 800 · 10−5

∆P 〈Araw〉exp/ppb ∆P ŝ
2
Z

0,120(0) 0,746(2) · 10−4
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Apparative Asymmetrie

n (∆false〈Araw〉exp)n/ppb (∆falseŝ
2
Z)n

1 9,988 506 · 10−2 6,200 653 · 10−5

2 9,960 514 · 10−2 6,183 328 · 10−5

3 1,005 180 · 10−1 6,239 972 · 10−5

4 1,003 774 · 10−1 6,231 231 · 10−5

5 1,002 159 · 10−1 6,221 195 · 10−5

6 1,001 344 · 10−1 6,216 140 · 10−5

7 1,001 369 · 10−1 6,216 296 · 10−5

8 9,974 536 · 10−2 6,192 032 · 10−5

9 1,001 163 · 10−1 6,215 038 · 10−5

10 9,952 099 · 10−2 6,178 053 · 10−5

∆false〈Araw〉exp/ppb ∆falseŝ
2
Z

0,100(0) 0,621(2) · 10−4

Targetpolarisation im Magnetfeld

n (∆t.p.〈Araw〉exp)n/ppb (∆t.p.ŝ
2
Z)n

1 8,435 980 · 10−3 5,237 190 · 10−6

2 8,397 940 · 10−3 5,213 744 · 10−6

3 8,445 271 · 10−3 5,242 908 · 10−6

4 8,484 290 · 10−3 5,267 218 · 10−6

5 8,395 439 · 10−3 5,211 883 · 10−6

6 8,418 769 · 10−3 5,226 125 · 10−6

7 8,522 850 · 10−3 5,291 081 · 10−6

8 8,380 572 · 10−3 5,202 372 · 10−6

9 8,415 842 · 10−3 5,224 430 · 10−6

10 8,436 260 · 10−3 5,237 016 · 10−6

∆t.p.〈Araw〉exp/ppb ∆t.p.ŝ
2
Z

0,008(0) 0,052(0) · 10−4
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Re(�γZ)

n (∆�γZ〈Araw〉exp)n/ppb (∆�γZŝ
2
Z)n

1 6,953 591 · 10−2 4,316 643 · 10−5

2 6,941 603 · 10−2 4,309 231 · 10−5

3 7,009 411 · 10−2 4,351 304 · 10−5

4 6,966 534 · 10−2 4,324 673 · 10−5

5 6,962 299 · 10−2 4,322 051 · 10−5

6 6,887 983 · 10−2 4,275 921 · 10−5

7 6,988 925 · 10−2 4,338 581 · 10−5

8 6,977 859 · 10−2 4,331 743 · 10−5

9 6,991 678 · 10−2 4,340 298 · 10−5

10 6,949 668 · 10−2 4,314 240 · 10−5

∆�γZ〈Araw〉exp/ppb ∆�γZŝ
2
Z

0,070(0) 0,432(2) · 10−4

Gp,γ
E

n (∆GpE〈Araw〉exp)n/ppb (∆GpEŝ
2
Z)n

1 6,266 169 · 10−4 3,900 139 · 10−7

2 6,246 224 · 10−4 3,887 347 · 10−7

3 6,338 225 · 10−4 3,942 757 · 10−7

4 6,259 094 · 10−4 3,897 882 · 10−7

5 6,276 215 · 10−4 3,908 851 · 10−7

6 6,266 650 · 10−4 3,897 057 · 10−7

7 6,260 508 · 10−4 3,894 312 · 10−7

8 6,249 127 · 10−4 3,891 514 · 10−7

9 6,321 138 · 10−4 3,936 816 · 10−7

10 6,330 783 · 10−4 3,941 122 · 10−7

∆GpE〈Araw〉exp/ppb ∆GpEŝ
2
Z

0,001(0) 0,004(0) · 10−4
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Gp,γ
M

n (∆GpM〈Araw〉exp)n/ppb (∆GpMŝ
2
Z)n

1 3,955 277 · 10−4 2,472 651 · 10−7

2 3,951 018 · 10−4 2,467 932 · 10−7

3 4,020 671 · 10−4 2,507 652 · 10−7

4 3,997 967 · 10−4 2,498 377 · 10−7

5 3,983 220 · 10−4 2,490 860 · 10−7

6 3,962 163 · 10−4 2,474 797 · 10−7

7 3,961 776 · 10−4 2,476 480 · 10−7

8 3,973 387 · 10−4 2,484 569 · 10−7

9 3,954 740 · 10−4 2,473 302 · 10−7

10 3,948 994 · 10−4 2,466 445 · 10−7

∆GpM〈Araw〉exp/ppb ∆GpMŝ
2
Z

0,000(0) 0,002(0) · 10−4

Gn,γ
E

n (∆GnE〈Araw〉exp)n/ppb (∆GnEŝ
2
Z)n

1 7,972 170 · 10−3 4,948 991 · 10−6

2 8,044 505 · 10−3 4,994 091 · 10−6

3 8,000 962 · 10−3 4,967 067 · 10−6

4 8,028 431 · 10−3 4,983 686 · 10−6

5 7,938 341 · 10−3 4,927 645 · 10−6

6 8,006 919 · 10−3 4,970 486 · 10−6

7 7,993 256 · 10−3 4,962 060 · 10−6

8 8,030 806 · 10−3 4,985 571 · 10−6

9 8,016 901 · 10−3 4,976 855 · 10−6

10 8,049 656 · 10−3 4,997 367 · 10−6

∆GnE〈Araw〉exp/ppb ∆GnEŝ
2
Z

0,008(0) 0,050(0) · 10−4
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Gn,γ
M

n (∆GnM〈Araw〉exp)n/ppb (∆GnMŝ
2
Z)n

1 9,098 287 · 10−4 5,651 464 · 10−7

2 9,159 846 · 10−4 5,693 264 · 10−7

3 9,176 423 · 10−4 5,704 292 · 10−7

4 9,163 126 · 10−4 5,695 659 · 10−7

5 9,220 732 · 10−4 5,728 241 · 10−7

6 9,152 243 · 10−4 5,687 336 · 10−7

7 9,142 080 · 10−4 5,683 379 · 10−7

8 9,117 862 · 10−4 5,665 373 · 10−7

9 9,194 225 · 10−4 5,714 726 · 10−7

10 9,199 050 · 10−4 5,717 080 · 10−7

∆GnM〈Araw〉exp/ppb ∆GnMŝ
2
Z

0,001(0) 0,006(0) · 10−4

Gs
E

n (∆GsE〈Araw〉exp)n/ppb (∆GsEŝ
2
Z)n

1 1,219 378 · 10−1 7,569 680 · 10−5

2 1,216 062 · 10−1 7,549 089 · 10−5

3 1,220 618 · 10−1 7,577 343 · 10−5

4 1,215 586 · 10−1 7,546 119 · 10−5

5 1,218 098 · 10−1 7,561 719 · 10−5

6 1,217 920 · 10−1 7,560 662 · 10−5

7 1,205 975 · 10−1 7,486 469 · 10−5

8 1,216 272 · 10−1 7,550 382 · 10−5

9 1,218 842 · 10−1 7,566 337 · 10−5

10 1,209 099 · 10−1 7,505 852 · 10−5

∆GsE〈Araw〉exp/ppb ∆GsEŝ
2
Z

0,122(0) 0,755(3) · 10−4
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Gs
M

n (∆GsM〈Araw〉exp)n/ppb (∆GsMŝ
2
Z)n

1 8,963 092 · 10−2 5,564 118 · 10−5

2 8,940 413 · 10−2 5,550 024 · 10−5

3 8,930 063 · 10−2 5,543 603 · 10−5

4 8,886 699 · 10−2 5,516 677 · 10−5

5 8,931 191 · 10−2 5,544 326 · 10−5

6 8,931 871 · 10−2 5,544 703 · 10−5

7 8,858 726 · 10−2 5,499 348 · 10−5

8 8,903 188 · 10−2 5,526 933 · 10−5

9 8,941 695 · 10−2 5,550 848 · 10−5

10 8,951 927 · 10−2 5,557 204 · 10−5

∆GsM〈Araw〉exp/ppb ∆GsMŝ
2
Z

0,089(0) 0,554(2) · 10−4

Gp, Z
A

n (∆GpA〈Araw〉exp)n/ppb (∆GpAŝ
2
Z)n

1 6,814 760 · 10−2 4,230 470 · 10−5

2 6,872 486 · 10−2 4,266 331 · 10−5

3 6,805 557 · 10−2 4,224 763 · 10−5

4 6,769 618 · 10−2 4,202 466 · 10−5

5 6,823 880 · 10−2 4,236 141 · 10−5

6 6,816 845 · 10−2 4,231 805 · 10−5

7 6,805 702 · 10−2 4,224 848 · 10−5

8 6,855 728 · 10−2 4,255 880 · 10−5

9 6,793 042 · 10−2 4,216 973 · 10−5

10 6,846 247 · 10−2 4,249 994 · 10−5

∆GpA〈Araw〉exp/ppb ∆GpAŝ
2
Z

0,068(0) 0,423(2) · 10−4
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Gud
E

n (∆GudE〈Araw〉exp)n/ppb (∆GudEŝ
2
Z)n

1 5,539 385 · 10−2 3,438 739 · 10−5

2 5,520 120 · 10−2 3,426 801 · 10−5

3 5,543 474 · 10−2 3,441 310 · 10−5

4 5,557 360 · 10−2 3,449 937 · 10−5

5 5,582 091 · 10−2 3,465 282 · 10−5

6 5,537 304 · 10−2 3,437 464 · 10−5

7 5,545 070 · 10−2 3,442 240 · 10−5

8 5,533 374 · 10−2 3,435 042 · 10−5

9 5,529 242 · 10−2 3,432 442 · 10−5

10 5,590 383 · 10−2 3,470 424 · 10−5

∆GudE〈Araw〉exp/ppb ∆GudEŝ
2
Z

0,055(0) 0,344(1) · 10−4

Gud
M

n (∆GudM〈Araw〉exp)n/ppb (∆GudMŝ
2
Z)n

1 3,445 429 · 10−2 2,138 830 · 10−5

2 3,461 112 · 10−2 2,148 589 · 10−5

3 3,456 888 · 10−2 2,145 992 · 10−5

4 3,454 900 · 10−2 2,144 759 · 10−5

5 3,455 963 · 10−2 2,145 377 · 10−5

6 3,455 466 · 10−2 2,145 072 · 10−5

7 3,467 218 · 10−2 2,152 379 · 10−5

8 3,449 153 · 10−2 2,141 172 · 10−5

9 3,443 959 · 10−2 2,137 980 · 10−5

10 3,439 538 · 10−2 2,135 201 · 10−5

∆GudM〈Araw〉exp/ppb ∆GudMŝ
2
Z

0,035(0) 0,214(1) · 10−4
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Symmetrie unter Helizitätswechsel. Shaker-Verlag, 2007.

[99] V. Tioukine and K. Aulenbacher. Operation of the MAMI accelerator with a Wien
filter based spin rotation system . Nucl. Instrum. Meth, A 568:537–542, 2006.

[100] J. Grames et al. Two Wien filter spin flipper. In Proceedings of 2011 Particle Accele-
rator Conference, New York, NY, USA, pages 862–865, (2011).

[101] B. Ledroit. Aufbau und Test des MESA-Choppers. Master’s thesis, Johannes Guten-
berg - Universität Mainz, 2016.

[102] V. Bechthold. Eine Deflektor-Kavität für den MESA-Beschleuniger. Diplomarbeit,
Johannes-Gutenberg - Universität Mainz, 2013.

251



[103] P. Heil. Longitudinale Emittanzanpassung durch Geschwindigkeitsmodulation im In-
jektionssystem an MESA. Masterarbeit, Johannes-Gutenberg - Universität Mainz,
2015.

[104] R. Heine and K. Aulenbacher. Injector LINAC for the MESA facility. In Proceedings
of IPAC2013, Shanghai, China, (2013).

[105] R. Heine, K. Aulenbacher, et al. Further investigations on the MESA injector. In
Proceedings of IPAC2015, Richmond, VA, USA, (2015).

[106] H. Euteneuer et al. The Injector Linac for the Mainz Microton. In Proceedings of
EPAC88, Rome, Italy, page 550, (1988).

[107] F. Schlander, K. Aulenbacher, et al. 1.3 GHz SRF cryomodules for the Mainz Energy-
recovering Superconducting Accelerator MESA. In Proceedings of IPAC2015, Rich-
mond, VA, USA, 2015.

[108] A. Gellrich and J. Kessler. Precision measurement of the Sherman asymmetry function
for electron scattering from gold. Phys. Rev. A, 43 Nr. 1, 1991.

[109] S. Meyer, T. Fischer, W. Blaschke, and J. Kessler. Calibration of a Mott electron
polarimeter: Comparison of different methods. Rev. Sci. Instrum., 64:952, 1993.

[110] V. Tioukine, K. Aulenbacher, and E. Riehn. A Mott polarimeter operating at MeV
electron beam energies. Review of Scientific Instruments, 82:033303, 2011.

[111] E. Chudakov and V. Luppov. Møller polarimetry with atomic hydrogen targets. IEEE
Trans. Nucl. Sci., 51:1533–1540, 2004.

[112] E. Chudakov and V. Luppov. Møller polarimetry with atomic hydrogen targets. Eu-
ropean Physical Journal A, 24:123–126, 02 2005.

[113] S. D. Covrig et al. The cryogenic target for the G0 experiment at Jefferson lab. Nuclear
Instruments and Methods in Physics Research A, 551:218–235, 2005.

[114] J. Ritman for the FOPI Collaboration. The FOPI detector at SIS/GSI. Nucl. Phys.
Proc. Suppl., 44:708–715, 1995.

[115] J. Cohen-Tanugi, M. Convery, B. Ratcliff, X. Sarazin, J. Schwiening, and J. Va’vra.
Optical properties of the DIRC fused silica Cherenkov radiator. Nucl. Instrum. Meth.
A, 515:680–700, 2003.

[116] M. Hoek, E. D. Bennet, D. Brandford, et al. Radiation hardness study on fused silica.
Nucl. Instrum. Meth. A, 595:190–193, 2008.

[117] I. Peric. A novel monolithic pixelated particle detector implemented in high-voltage
CMOS technology. Nucl. Instrum. Meth., A582:876–885, 2007.

[118] I. Peric and C. Takacs. Large monolithic particle pixel-detector in high-voltage CMOS
technology. Nucl. Instrum. Meth., A624(2):504 – 508, 2010.

[119] I. Peric, C. Kreidl, and P. Fischer. Particle pixel detectors in high-voltage CMOS
technology–New achievements. Nucl. Instrum. Meth., A650:158–162, 2010.

252



[120] I. Peric. Active pixel sensors in high-voltage CMOS technologies for ATLAS. JINST,
7:C08002, 2012.

[121] I. Peric et al. High-voltage pixel detectors in commercial CMOS technologies for
ATLAS, CLIC and Mu3e experiments. Nucl. Instrum. Meth., A731:131–136, 2013.

[122] Rene Brun and Fons Rademakers. Root — an object oriented data analysis framework.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 389(1):81 – 86, 1997. New Computing
Techniques in Physics Research V.

[123] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-diminsionally equidistri-
buted uniform pseudorandom number generator. ACM Transactions on Modeling and
Computer Simulation, 8:3–30, 1998.

[124] W. R. Leo. Techniques for Nuclear and Particle Physics Experiments: A How to
Approach. Berlin, Germany: Springer, 368 p, 1987.

[125] H. Davies, H. A. Bethe, and L. Maximon. Theory of Bremsstrahlung and Pair Pro-
duction. II. Integral Cross Section for Pair Production. Phys. Rev. X, 93:788–795,
1954.

[126] https://physics.nist.gov/PhysRefData/Star/Text/method.html.

[127] J. C. Bernauer. Measurement of the elastic electron-proton cross section and separation
of the electric and magnetic form factor in the Q2 range from 0.004 to 1(GeV/c)2. PhD
thesis, JGU Mainz, 2010.

[128] Marouan Abdelbaste El Yakoubi. Contribution of the strange quark to the nucleon
electromagnetic structure : The results of the A4 experiment at Q2 = 0.23 (GeV/c)2.
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