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Abstract The muon tagging is an essential tool to dis-
tinguish between gamma and hadron-induced showers in
wide field-of-view gamma-ray observatories. In this work,
it is shown that an efficient muon tagging (and counting)
can be achieved using a water Cherenkov detector with a
reduced water volume and 4 PMTs, provided that the PMT
signal spatial and time patterns are interpreted by an analy-
sis based on machine learning (ML). The developed analysis
has been tested for different shower and array configurations.
The output of the ML analysis, the probability of having a
muon in the WCD station, has been used to notably dis-
criminate between gamma and hadron induced showers with
S/

√
B ∼ 4 for shower with energies E0 ∼ 1 TeV. Finally,

for proton-induced showers, an estimator of the number of
muons was built by means of the sum of the probabilities
of having a muon in the stations. Resolutions about 20%
and a negligible bias are obtained for vertical showers with
Nμ > 10.

1 Introduction

The study of gamma-rays is crucial to investigate our sur-
rounding Universe. Their neutral nature allows them to cover
long distances along the Universe without being deflected
by magnetic fields. Thus, the detection of gamma-rays can
be used to track emitting astrophysical sources. In particu-
lar, gamma-rays ranging from ∼ 100 GeV and few hundred
TeV, known as very high-energy (VHE) gamma-rays, are
very interesting to investigate some of the most extreme non-
thermal events taking place in the Universe. Active Galac-
tic Nuclei (AGNs) – supermassive blackholes in the cen-
ter of galaxies, powered by infalling matter – and gamma
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ray bursts (GRBs) –intense and fast shots of gamma radia-
tion – are examples of interesting target sources, both multi-
messenger astrophysical counterparts of VHE neutrinos and
gravitational wave events [1–3]. Furthermore, not only is
gamma-rays detection important for identifying astrophys-
ical emitting sources, but it could also be essential to prove
the existence of new physics at fundamental scales beyond
the standard model of particle physics [4] and to provide
answers to some fundamental open questions in physics, for
instance, the nature of dark matter [5].

The direct detection of gamma-rays is only possible using
satellite-borne instruments [6]. Nevertheless, above a few
hundreds of GeV, the gamma-ray flux becomes too small
and only ground-based experiments can indirectly detect this
kind of radiation. Indirect detection techniques take advan-
tage of the secondary shower of particles, known as exten-
sive air showers (EAS), produced by the interaction of the
gamma-ray with the Earth’s atmosphere to infer their direc-
tion and energy [7]. However, even though indirect meth-
ods are very effective at the VHE energy region, a signif-
icant drawback is that one has to deal with an enormous
hadronic background produced by the cosmic-rays contin-
uously reaching the Earth [8]. At the sub-TeV region, the
rejection of cosmic-rays can be done by exploring the pat-
terns of the secondary particles reaching the ground [9,10].
At the TeV energy range, muons begin to appear in signifi-
cant quantities in hadronic showers. Therefore, the detection
of muons provides an important tool to efficiently separate
between gamma and hadronic extensive air showers [11,12].

This work aims to demonstrate that a dedicated design of
the water Cherenkov detector (WCD) combined with state-
of-the-art machine learning techniques can be used to identify
muons and with it provide an effective gamma/hadron dis-
crimination. Such a detector can have a reduced water height
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while maintaining a high physics performance, making it
suitable for large experiments placed at extreme altitudes
(around 5 km a.s.l.).

Hence, for the present study, we propose the use of an
EAS wide field-of-view array composed of water Cherenkov
detectors (Sect. 2). The signals time traces recorded by
the WCDs will be analysed to distinguish between muons
and electromagnetic shower secondary particles (electrons,
positrons and photons) by means of a convolutional neural
network (Sect. 4). Afterwards, the information about muons
found by the algorithm was used to carry out a gamma/hadron
discrimination (Sect. 5) and estimate the number of muons
in hadronically induced showers (Sect. 6). Finally, a discus-
sion on the performance for inclined shower events and a
sparser detector array is presented in Sect. 7, followed by the
conclusions.

2 WCD configuration

Several approaches to identify muons in ground-based wide
field-of-view gamma-ray experiments have been tried or sug-
gested over time. One of the most successful approaches
comes from the HAWC experiment [13]. The HAWC tanks
contain a large volume of water and black walls. This can be
used to attenuate the electromagnetic particles whilst muons
traverse the whole detector giving a large signal and an
unmistakable signature. Although highly successful on the
TeV energy range, this detector has a limited performance in
the sub-TeV energies, and its massive amount of water does
not make it a good candidate to place it at a higher altitude
(one of the most effective ways to lower the energy thresh-
old).

Another option would be to use dedicated muon detectors,
buried or shielded, as it is being done in LHAASO [14] or
simply below the water tank, as proposed in the MARTA1

project [15]. These hybrid experiments have many advan-
tages as the shower components can be scrutinised by inde-
pendent detectors. However, it also dramatically increases the
cost of the project. Note that VHE gamma-ray experiments
such as LHAASO or the future Southern Wide-field Gamma-
ray Observatory (SWGO) [16,17], need to cover huge areas
up to 1 km2 and muons are relatively scarce for ∼ TeV show-
ers.

In this work, we aim to explore another via that uses a
single-layered WCD with 4 PMTs (see Fig. 1). The ratio-
nale behind this concept is that muons will cross the whole
detector, and as such, the direct Cherenkov light, produced
along with its traversal, will reach only a portion of the WCD
floor. Contrary, photons and electrons give origin to elec-

1 Although MARTA was primarily planned to be used in the study of
Ultra-High Energy Cosmic Rays.

Fig. 1 Single-layered WCD design. A dark circular area with a radius
of 1.5 m was drawn around each 8-inch PMT (represented as black cir-
cles). Taking into account the height of this WCD, the direct Cherenkov
light of a vertical muon that crosses the WCD through one of these areas
should be detected by its correspondent PMT (it could be detected by
two PMTs in the case that a muon crosses the station through the inter-
section of two dark areas)

tromagnetic showers inside the station, creating a broader
Cherenkov light pool. Moreover, muons travel mostly alone
while electromagnetic particles arrive in bulks, further sup-
porting this signal asymmetry view.

The station was designed such that the signal asymme-
try caused by a vertical muon is maximal while ensuring a
complete signal coverage (signal uniformity). The area of the
stations is a parameter that should be optimised, taking into
account the array’s physics performance and the station cost.
On the one hand, the higher the segmentation, the higher the
shower ground pattern detail (and consequent improvement
of the physics analyses). On the other hand, the bigger the
station, the lower the cost (fewer materials and photo-sensors
per area). In this work, we have considered cylindrical tanks
with a base diameter of 4 m as a reasonable compromise (for
reference, the LHAASO-WCD has an area of 25 m2).

For stations with a base diameter of 4 m, the water height
and the distance of the PMTs to the tank centre, rPMT, will
depend on the number of PMTs considered. For 3, 4 and 5
PMTs, we would get an optimal distance of the PMTs to the
centre of the tank of 2 m, 1.5 m and 1.25 m, respectively
and a corresponding water height of 2.3 m, 1.7 m and 1.25
m. The parameter rPMT is chosen by placing the PMTs at a
position such that together they can always collect the light
produced by a vertical entering muon in any position of the
tank while minimising the overlap between PMTs (see Fig. 1
of the paper).

The water height is obtained, noting that we now aim for a
Cherenkov light pool of a radius ropt and the Cherenkov angle
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Fig. 2 Single-layered WCD crossed by a single relativistic muon. The
WCD drawing is surrounded by the correspondent PMT signal time
traces

of a relativistic muon in water is roughly ∼ 41◦. The higher
the number of PMTs, the lower the needed water height. The
exact number of PMTs and thus of the station dimensions will
depend on the optimisation of several parameters, which is
out of the scope of the paper. They will depend on the cost
of PMTs and the cost (availability) of water at very high
altitude.

In this work, we aim to show that the tagging of muons
through the signal time trace asymmetry is a viable option.
For that, we have considered four PMTs the corresponding
stated above dimensions. Given the arguments before, the
paper results should be valid for a slightly lower/higher num-
ber of PMTs, provided that the dimensions of the WCD scale
accordingly.

The walls of this WCD should be white diffusive to max-
imise the signal collection. By construction, the WCD should
have a good light collection uniformity independently of the
muon’s entry point. Both features are essential to effectively
lower the energy threshold.

The shower geometry reconstruction is done through the
arrival time of the shower front. To reach adequate angular
resolutions, the shower plane should be measured with time
resolutions of the order of a few nanoseconds [13,18]. With
the proposed design, such can easily be achieved by exploit-
ing the first peak in the PMT signal time trace, associated
with the direct Cherenkov light production (see for instance,
the signal time trace of PMT 3 in Fig. 2). The directly light
peak appears typically within the first 10 ns to the signal
starting time trace, T0, and has a width of 2–3 ns.

In summary, in this work, we shall exploit a water
Cherenkov detector with the following characteristics:

– Tank diameter 4 m.
– Tank height 1.7 m.
– PMT distance to the WCD centre of 1.5 m.
– White diffusive walls.
– Four photomultipliers with 8 inches of diameter.

As qualitatively argued before, the proposed WCD station
can trigger and reconstruct the shower energy and geometry.
However, to make it appropriate for the study of gamma-rays,
we need to be able to use it to identify/count EAS muons.
Such will be the focus of the following sections.

3 Simulation and analysis strategy

3.1 Simulations

The extensive air showers used in this work were simu-
lated with CORSIKA (version 7.5600) [19] and the detector
response using the Geant4 toolkit (with version 4.10.05.p01)
[20–22].

To train and assess the machine learning algorithms’
performance, it was used proton-induced shower simula-
tions with energies E0 ∈ [4; 6] TeV. This energy range was
selected to ensure a high number of stations with only muons
and no electromagnetic contamination nor any other particles
crossing the WCD. Moreover, it was shown to be desirable for
the training not to have more than one muon in the WCD. The
showers were generated following a E−1

0 spectra, an azimuth
angle uniformly distributed, and a zenith angle θ0 ∈ [5◦; 15◦]
(vertical events) and θ0 ∈ [25◦; 35◦] (inclined events).

The experiment observation level was set at 5200 m above
the sea level.2 In the energy range used for this study (∼
1 TeV), the number of muons at lower altitudes would be
essentially the same, and only the electromagnetic shower
component would be attenuated (effectively increasing the
energy threshold). Thus, the method to tag/count muons in
the WCD proposed in this work is expected to work with
similar performance regardless of the experiment’s altitude
(provided that it is above something like 4000 m a.s.l.).

Two array configurations of WCDs are compared to inves-
tigate the impact of the WCDs distribution at ground in the
results for inclined showers. Their parameters were chosen
for being one of the possibilities for SWGO. The array matri-
ces cover an area of roughly 80,000 m2 and have the follow-
ing characteristics:

2 This altitude corresponds to the altitude of the ALMA site, Chile, one
of the sites being currently considered for SWGO.
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Fig. 3 Signal at the ground of gamma and proton induced EAS used
in Sect. 5. The area below the selected events was filled in red for
gammas and grey for protons. The statistical data showed in this figure
corresponds only to the selected events

– a dense array which is composed of 5720 WCDs nearly
touching each other (fill factor of ∼ 80%);

– a sparse array with 1906 WCDs with a minimum separa-
tion of ≈ 12 m. This array was built by removing stations
such that no WCD has a neighbour station closer than its
own diameter.

In Sects. 5 and 6, the identification of muons is used to
perform the gamma/hadron discrimination and to estimate
the number of muons in hadronic showers. A particular set
of simulations was derived in order to enable a sensible
comparison between gamma and hadron events. Gamma-
induced showers were generated with energies between E0 ∈
[1; 1.6] TeV, while proton-induced showers were simulated
for energies between ∼ 600 GeV and 6 TeV. The zenith
angles for both are comprised between 5◦ and 15◦. After-
wards, a cut on the total measured WCD signal at the ground
is applied to emulate a typical energy reconstruction (see Fig.
3):

ST ∈[〈
ST,γ

〉−σST,γ
; 〈
ST,γ

〉 + σST,γ

] = [0.4; 1.8] · 105 p.e.

where ST is the total signal at ground using all the WCDs,〈
ST,γ

〉
and σST,γ

are the average and standard deviation
respectively of the distribution for ST in gamma-ray events.
Since the events were generated with a E−1

0 spectra, the dis-
tributions were weighted before applying the cut on the signal
and during the entire experimentation in Sect. 5. The weights
E−1

0,γ and E−2
0,p were applied to ensure a realistic power law

spectrum of energies (expected to be ∼ E−2
0,γ and ∼ E−3

0,p).
To sum up, in Tables 1 and 2 we describe the data sets used

to train and assess the artificial neural networks. It should
be noted that some considerations were taken into account
before building these data sets. To avoid events where the
muon partially crossed the station, only stations with more
than 300 photoelectrons (p.e.) were used during the experi-

Table 1 Number of stations with single muons (S.M. stations) and
without muons (E.M. stations) of the training data sets. Data sets created
using vertical (θ0 ∈ [5◦; 15◦]) and inclined (θ0 ∈ [25◦; 35◦]) showers
with primary energy E0 ∈ [4; 6] TeV and the dense array. A validation
data set was created using a 20% of the stations from the original 2 000
vertical EAS

θ0 ∈ [5◦; 15◦] θ0 ∈ [25◦; 35◦]

Training Validation Training

EAS 2000 (80%) 2000 (20%) 655

S.M. stations 13,795 3449 5472

E.M. stations 272,006 68,001 85,130

Instances 285,801 71,450 90,602

Muonic prop. 4.83% 4.83% 6.04%

mentation (train and test of the machine learning algorithms).
Only single muons3 (as well as stations without muons) were
considered during the training process in order to provide
representative muon samples to the algorithm. All kind of
stations with muons are considered for the test sets. A sec-
ond training data set was built to train again the neural net-
work with inclined events (using the same configuration of
the algorithm that was optimised for vertical events).

3.2 Analysis strategy

The objective function defined for this problem is the proba-
bility, P(i)

μ ∈ [0, 1], that a muon has passed through the WCD
(i) whose signal is being analysed. In such a way, the method
is intended to be able to tag contaminated events where not
only muons have crossed through the station.

To carry out this identification of stations with muons
we propose the use of variables based solely on the WCD
signal [23]. With the following variables we aim to explore
both temporal (patterns in the signal time traces) and spatial
(asymmetry in the PMTs’ integrals) features:

– Normalised signal time trace of each PMT.
– Integral of each PMTs signal time trace.
– Cherenkov light measured in the WCD (sum of the four

PMTs’ signal trace integrals).
– Normalised integral of each PMTs signal time trace.

The normalisation was done using the total Cherenkov
light measured by the four PMTs during the time window
considered for the variable that is going be normalised. Note
that the normalised signal traces contain the first 30 nanosec-
onds to explore features from both direct the Cherenkov light
and the reflections, while the rest of variables considered only
the direct Cherenkov light (first 10 nanoseconds).

3 WCD with only one muon crossing it and nothing else.
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Table 2 Description of the test data sets

Primary Array E0 (TeV) θ0 (◦) EAS Stations with all muons Stations without muons

Proton Dense [4; 6] [5; 15] 1693 57,283 289,411

Proton Dense [4; 6] [25; 35] 281 7601 34,738

Proton Sparse [4; 6] [25; 35] 936 8452 40,933

Proton Dense [0.6; 6] [5; 15] 6967 107,579 379,421

Gamma Dense [1; 1.6] 10 2846 263 174,103

3.3 Convolutional neural networks: design, training and
optimisation

Convolutional neural networks (CNNs) have become a stan-
dard in many machine learning applications. CNNs are feed-
forward artificial neural networks which combine two main
blocks of hidden layers: convolutional layers and fully-
connected layers. By using these layers, the CNN is able
to fuse the processes of extracting features from data and
perform a classification or regression. In this work we use
a 1-dimensional convolutional neuronal network to extract
complex features from the signals traces of the PMTs and
combine it with the spatial features (integrals). With it, we
define a regression problem to provide the probability P(i)

μ .
The configuration of the algorithm was optimised evalu-

ating possible values with the validation data set for verti-
cal showers. One input channel of data was established for
each PMT signal trace. Three convolutional layers were set to
study the signal time traces. ReLU activation function is used
and the number of filters in these layers was 20, 15 and 10.
The size of the filters was established by taking into consid-
eration the mean signal traces of the stations muons, which
reveals that the first pulse of direct Cherenkov light usually
appears within the first 2 nanoseconds. Therefore, small fil-
ters of size 2 are introduced, including a stride equal to two
in the first filter to emphasise the first maximum of signal.
Afterwards, three dense layers are introduced to perform the
regression using the previous signal features and the spatial
variables. These layers are composed of 30, 15 and 10 neu-
rons respectively. A final output layer with a single neuron
was used to compute the final probability. Sigmoid activation
function was used for the three dense layers and final neu-
ron. Adam learning algorithm was used during the training
stage, which is a stochastic gradient-based method broadly
applied in many deep learning applications. The adjustment
of its parameters was done following those recommended in
[24], that is: (β1, β2) = (0.9, 0.999) and ε = 10−7. Finally,
the model was trained during 200 epochs with a batch size of
512 and a learning rate of 10−3. Python 3.7 and Keras were
used as the framework of the entire study.

Note that the stations with muons constitute roughly a 5%
of the total (see Table 1). Therefore, the class ratio must be

balanced before training [25]. A random oversampling tech-
nique was applied to the training set, creating new samples
of stations with muons by randomly repeating those avail-
able in the data set. Finally, the class ratio was adjusted to
Nμ/Ne.m. = 0.5. The class ratio was not completely bal-
anced in order to avoid false positives.

4 Discrimination of muons in the WCD

To assess the performance of the method, the probability
P(i)

μ will be measured in stations with and without muons.
Since the algorithm was trained using only Single Muons, the
stations with muons will be distributed in different subclasses
to study the impact of the electromagnetic contamination in
the probability.

The simulation only provided the amount of signal pro-
duced in the WCD (ST ), but not the two components (Se.m.

and Sμ) separately as it does with the energy. Therefore, a
relation between the signal produced in events with Single
Muons and its energy was calibrated. This allowed us to esti-
mate the signal produced by the muon by means of its energy.
Afterwards, the proportion of electromagnetic induced signal
se.m. ∈ [0; 1] was computed using the equation (1).

se.m. = ST − Sμ

ST
= Se.m.

ST
(1)

In Fig. 4 it is shown the normalised inverse cumula-
tive function for the probability P(i)

μ measured in stations
from proton induced events with E0 ∈ [4, 6] TeV and
θ0 ∈ [5◦; 15◦]. Most events with muons and low electromag-
netic contamination were correctly identified, where roughly
a 70% have a probability P(i)

μ ≥ 0.5. For higher electro-

magnetic contamination we get lower P(i)
μ values. Approxi-

mately a 40% and a 20% of the events with se.m. ∈ [0.1; 0.2]
and se.m. ∈ [0.2; 0.5] respectively were identified with
P(i)

μ ≥ 0.5. Almost no probability is attributed to those events
where most of the signal was not originated by the muon.
This low probability may be justified given that these events
involve a high electromagnetic signal, which added to the one
caused by the muon, can cause a lower asymmetry among
the PMTs signals. Taking into account all possible stations
with muons, around a 50% of the stations had P(i)

μ ≥ 0.5.
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Fig. 4 Impact of electromagnetic contamination using the normalised
inverse cumulative function for the probability P(i)

μ . Stations from
proton-induced events with E0 ∈ [4, 6] TeV and θ0 ∈ [5◦; 15◦]

This result proves that the algorithm was able to learn the
main characteristics of the muonic signal from the Single
Muons events, so that the neural network is able to identify
most single muons events and some contaminated events that
share some of their features with single muons. Finally, less
than a 10% of the stations without muons had a probability
P(i)

μ > 0.

5 Gamma/hadron discrimination strategies

In this section, we propose a gamma/hadron discrimination
strategy which relies on the use of solely the information
extracted in the previous sections at the WCD station level,
P(i)

μ . This information should be combined at the shower
event. A simple and intuitive observable was created for this
purpose in equation (2).

Pμ =
NS∑

i=1

P(i)
μ (2)

As seen before, P(i)
μ is the probability, derived by the ML

method, that the WCD station i th was crossed by a muon,
and NS is the total number of WCD stations with more than
300 p.e. in the shower event.

The observable established in Eq. (2) is tested for proton
and gamma induced showers in Fig. 5. As expected, larger
values are found when evaluating those events which have
muons, i.e., proton initiated air showers. Moreover, it can be
seen that by adequately choosing a cut on Pμ, the gamma-
induced showers can be efficiently separated from the ones
generated by protons. It should be noted that there could be
proton events of energy E0 ∼ 0.6 TeV with few or without
muons, leading to low probabilities Pμ.

Fig. 5 Distribution of the probability Pμ after evaluating all the sta-
tions of the array for gamma and proton induced showers with energies
E0 ∈ [1; 1.6] TeV and E0 ∈ [0.6; 6] TeV respectively

Fig. 6 Evaluation of the S/
√
B achieved using selected stations as a

function of the selection efficiency S for gamma-rays

A proxy to a gamma-ray experiment flux sensitivity can
be obtained evaluating S/

√
B, where S and B are the selec-

tion efficiency for gamma-rays and the background (protons
induced events), respectively.

In Fig. 6 it is shown the S/
√
B of the simulated instru-

ment using this method. The motivation for sampling only
stations far away from the shower core arises from shower
physics considerations. On the one hand, muons can be pro-
duced in hadronically developing showers with high trans-
verse momentum, and consequently falling far away from the
shower core. On the other, the bulk electromagnetic shower
component is much higher near the shower core. A cut on
the probability P(i)

μ was also tried without much difference
on the results. A S/

√
B of roughly 4 was found when fixing

the selection efficiency for gammas to S = 0.6. The obtained
value is similar to the one quoted in other experiments such

123



Eur. Phys. J. C           (2021) 81:542 Page 7 of 9   542 

Fig. 7 Calibration of the relationship between Nμ = ∑NS
i=0 N (i)

μ and

Pμ = ∑NS
i=0 P(i)

μ using proton induced air showers

as LATTES4 [18] and HAWC [13], but using a significantly
smaller WCD than HAWC.

6 Muon counting in proton-induced events

In the previous section, a gamma/hadron separation was pur-
sued. For that, it was enough identifying a certain quantity of
the muons that reached stations. Nevertheless, muon count-
ing capabilities when analysing hadronic induced EAS are
of great interest.

To prove that the discrimination achieved in Sects. 4 and
5 comes from the fact that we are measuring muons and not
any other shower feature, we decided to plot the correlation
between Pμ and the number of muons crossing through the
WCDs stations Nμ (this time we include events whose signal
is lower than 300 p.e.) for each proton shower event. The
result is shown in Fig. 7 and it can be seen that there is a linear
relationship between both variables. It should be noted that
the ML method was not trained to count muons but instead to
simply find them. However, for proton showers with energies
E0 ∼ 1 TeV the number of WCD stations with more than
one muon is negligible, and as such, Pμ is in this conditions
a good proxy for Nμ.

It is then possible to calibrate it and estimate the number
of muons by measuring the probability of having muons in
all the stations. As such, the average probability Pμ assigned
by the method to showers with the same number of muons
Nμ is computed (see Fig. 7). Due to the scarce number of
events with Nμ ≥ 40, an unique weighted mean value is
considered taking into account all of them. We must take
into account that, since we need to identify all the muons, no
cuts on the distance to the shower core or on the probability
Pμ are applied during this analysis.

4 Simulation study in similar conditions.

Fig. 8 Resolution and bias of the calibration between Nμ and Pμ

Finally, in Eq. (3) it is described the calibration of the
estimated number of muons N̂μ as a function of the amount
of probability Pμ measured. The intercept of the calibration
could be understood as the average probability from the sta-
tions without muons. In fact, this value ∼ 3 is similar to the
mean probability Pμ found in gamma-ray induced events of
similar signal at the ground (see Fig. 5) where the presence
of muons is very scarce

N̂μ = 1.67 · Pμ − 3.22. (3)

In Fig. 8 it is shown both the resolution and the bias of
the calibration proposed in Eq. (3). For events with Nμ > 10
resolutions of about a 20% and a bias of just a few % were
found. The resolution of the method for events with Nμ ≥ 20
can be adjusted to a function 1.06/

√
Nμ + 0.02. Therefore,

the intrinsic resolution of the method is estimated to be just
a 2%. In view of these results, it can be seen that the sam-
ples with few muons are dominated by the electromagnetic
noise, then larger fluctuations are found. As a consequence,
as we increase the number of stations with muons, the electro-
magnetic contribution becomes a small portion of the overall
probability Pμ, which leads to more precise measurements.

7 Performance to inclined events and sparse arrays

The proposed method has proven to be effective when iden-
tifying muons under the same circumstances used during the
training stage: E0 ∼ 4 TeV and θ0 ∼ 10◦. However, the pos-
sible degradation of the method performance in other scenar-
ios must be discussed. An important factor is the inclination
of the events and its impact in the results depending on the
array configuration (dense or sparse).

To assess the impact of the shower zenith angle θ0 in the
muon tagging, proton-induced events with θ0 ∈ [25◦; 35◦]

123



  542 Page 8 of 9 Eur. Phys. J. C           (2021) 81:542 

Fig. 9 Normalised inverse cumulative function of the probability P(i)
μ

of stations from proton-induced events with θ0 ∈ [5◦; 15◦] (dense array)
and θ0 ∈ [25◦; 35◦] (dense and sparse array)

were tested. Using the algorithm optimised for vertical show-
ers it was found that roughly a 25% of All Muons had a prob-
ability P(i)

μ ≥ 0.5. The result for stations without muons was
similar to the one achieved using vertical showers. In view
of this result, a CNN with the same configuration used for
vertical showers was trained again using only inclined events
(see Table 1 for more details).

In Fig. 9 it is summarised all the tests done to vertical
and inclined events in dense or sparse array. The normalised
inverse cumulative function of the probability P(i)

μ is shown
for different combinations: inclined showers (using the algo-
rithm that was trained for these showers P(i)

μ,incl.) and vertical
showers (using the algorithm previously trained with verti-
cal showers P(i)

μ,vert.). The newly trained algorithm had a very
similar performance for both arrays. Therefore, one can con-
clude that the performance of the muon tagging for these
WCDs is not affected by the distance of the neighbour sta-
tions.

The proportion of each station class with probability
P(i)

μ ≥ 0.5 was: ∼ 70% of slightly contaminated muons;
∼ 55% of all muons; and ∼ 10% of the stations with-
out muons. In comparison with the vertical events, a slight
improvement was found when identifying All Muons whilst
the performance with the stations without muons worsened.

The above results prove that it is possible to perform muon
tagging using this WCD whether the shower event is vertical
or inclined. Moreover, it also shows that the proposed WCD

and method to tag muons can be applied whether the stations
are close to each other or scattered in the field, making it
a potential candidate to compact arrays, targeting the lower
energies, and sparse arrays which try to reach the highest
possible energies.

For the latter to be possible, it is our feeling that more work
is necessary. Although we have not studied the higher ener-
gies (above 100 TeV), the electromagnetic contamination is
expected to be higher, which might undermine the ability of
tagging muons. As shown in Fig. 4, high electromagnetic
contamination reduces the ability to tag muons. The elec-
tromagnetic component at high energies could still be dealt
with by choosing WCD stations far away from the shower
core position or removing it with statistical methods. Fur-
thermore, the study of the higher energies would also require
the use of a bigger detector array, which could be done by
adding a sparse array surrounding the current compact array
used in this paper. Therefore, such a study is out of the scope
of the current work.

Finally, while the present work clearly demonstrates the
possibility to tag/count muons with a relatively small WCD
through the exploration of the PMT asymmetry, its exact
dimensions and number of PMTs should be obtained, bal-
ancing the physics performance (obtained through an end-
to-end simulation) and its cost which shall depend on non-
trivial factor such as site altitude, water availability, type of
PMTs, among others.

8 Conclusions

In this work, we have shown that a WCD with a water volume
of 12 m2 × 1.7 m and 4 PMTs can be used to efficiently tag
muons. For that, a machine learning-based analysis, which
processes the PMT acquired signals, has been developed. The
analysis has been developed using WCD events solely from
proton-induced showers with E0 ∼ 4 TeV and zenith angles
of θ0 ∼ 10◦ for nearly vertical showers and θ0 ∼ 30◦ for
inclined showers.

In this paper, we show that the identification of the muon in
the station, given as a probability, P(i)

μ ∈ [0; 1], depends on
the amount of electromagnetic contamination in the station,
with nearly no dependence on the configuration of the WCD
array (dense vs sparse). The proposed method was effective
for both vertical and inclined induced events, where roughly
the 70% of stations with slightly contaminated muons and
the 50% of all stations with muons had P(i)

μ > 0.5. For
inclined events, just 10% of the stations without muons had
P(i)

μ > 0.5, while for vertical events the same happens for

P(i)
μ > 0.

Using a simple gamma/hadron discrimination observable
created from P(i)

μ it has been shown that it is possible to dis-
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tinguish between gamma and proton-induced showers with a
S/

√
B ∼ 4 for shower energies of E0 ∼ 1 TeV and θ0 ∼ 10◦.

Moreover, it has been shown that a calibration between Pμ

and Nμ can be built, leading to a negligible bias for Nμ > 10
and resolutions of ∼ 20%.
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