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Abstract: We have developed a quantum field theory of spinors based on the algebra of canonical
anticommutation relations (CAR algebra) of Grassmann densities in the momentum space. We have
proven the existence of two spinor vacua. Operators C and T transform the normal vacuum into
an alternative one, which leads to the breaking of the C and T symmetries. The CPT is the real
structure operator; it preserves the normal vacuum. We have proven that, in the theory of the Dirac
Sea, the formula for the charge conjugation operator must contain an additional generalized Dirac
conjugation operator.
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1. Introduction

The quantum mechanical time inversion operator was proposed by Kramers [1] and
Wigner [2]. The operator of charge conjugation was proposed by Kramers [3] in the
framework of the theory of “holes” in the Dirac Sea of electrons with negative energy.
It was an antiunitary operator that preserved the form of the Dirac equation. Later, the
method of deriving symmetry transformation formulas based on preserving the Dirac
equation was used by many authors to derive formulas not only for the operator of charge
conjugation C but also for the P and T operators of space and time inversion [4–6]. We
also use this approach. Paper [3] served as the basis for the development of the theory of
discrete symmetries. However, such a definition of the charge conjugation led to the fact
that the charge conjugation operator was later regarded as antiunitary by Schwinger [7],
Pauli [8], Bell [9], Grawert, Lüders and Rollnik [5], Bjorken and Drell [6,10], Berestetskii [11],
Weinberg [12], and others. Whereas, in some publications considered classical, it was
declared that the operator of charge conjugation of spinors is unitary, in the formulas it
acted as antiunitary [5,6,10,12–14]. Below, we prove that, in the framework of the theory
of “holes” in the Dirac Sea, the procedure of replacing “holes” in the Dirac Sea with
antiparticles should be considered as an antiunitary operator. Therefore, a correctly defined
operator of the charge conjugation in the theory of “holes” is unitary.

The foundations of the relativistic covariant formulation of the quantum mechanics
(relativistic quantum field theory—RQFT) for fermions were laid down by Julian Schwinger.
He proposed a Lorentz covariant interpretation of the spatial inversion (operator P), the
time inversion (operator T), and the charge conjugation (operator C) [7,15]. He also
showed that in RQFT the time inversion operator must be antiunitary [7,15], whereas both
Schwinger [7,15] and Bell [9] considered the time inversion operator as the operator that
also changes the charge to the opposite one. Moreover, Schwinger proposed another time
inversion operator that was unitary [15]. It contained transposition and changed the ket
vectors to the bra vectors. All this further introduced additional confusion on the issue of
operators of the charge conjugation and the time inversion.

The idea of the CPT transformation was first implicitly formulated by Schwinger [15]
and Lüders [16]. Schwinger showed that, for P-invariant theories, the correct statistics
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for particles with half-integer spin follows from the requirement of simultaneous time
inversion and charge conjugation [15]. Lüders showed that, in an arbitrary P-invariant
theory in which the anticommutation rules are satisfied for particles with half-integer spin,
the CT symmetry holds [16]. Additionally, they formulated a modern algebraic approach to
the description of antiparticles. In this approach, field operators of spinors and antispinors
participate equally, and there is no use of the concept of the Dirac Sea.

The first explicit formulation of the existence of the CPT symmetry belongs to Pauli [8].
However, at that time, this symmetry had not yet received its modern name. Pauli referred
to the CPT transformation as “strong reflection”. Similar to Kramers, he considered the
negative frequency parts of the electron wave function within the framework of the concept
of “holes” in the Dirac Sea consisting of electrons with negative mass as positive frequency
parts of the positron wave function. This interpretation and the corresponding formulas
for charge conjugation have become standard [6,10,17].

The idea of the CPT symmetry (also called TCP, CTP, PCT, etc.) was formulated as a
theorem by Lüders [4] following the suggestion of Pauli. This theorem states that “Local
quantum field theory, invariant with respect to the Lorentz transformations and including
the usual causal commutativity or anticommutativity of the field operators, is always
invariant under the product of the T, C and P transformations” [5]. Moreover, all processes
in the CPT coupled world occur with the same probabilities, and the Lagrangian of the
system is a Hermitian operator that is invariant with respect to the CPT transformation.
In particular, following the extension of Landau’s idea of combined symmetry [18], if
there exists a field operator Ψ corresponding to a fermion particle, then it corresponds to
the CPT transformed field operator CPTΨ of an antiparticle that actually exists in nature
and has equal mass and opposite charges of all existing types [5]. The fact that the CPT
operator commutes with the Hamiltonian implies the equality of masses of particles and
antiparticles [12]. This transformation connects the S-matrix of an arbitrary process with
the S-matrix of the inverse process (time inversion), in which the sign of the spin projections
is opposite and the particles are replaced with antiparticles [12,19].

The proofs of the CPT theorem have been considered by Pauli [8], Lüders [4], Gravert,
Lüders and Rolnik [5], Jost [20,21], Streater and Wightman [22], Epstein [19], Bjorken and
Drell [6,10], Wess [23], Weinberg [12], Greenberg [24], Peskin and Schroeder [14], and
others. Within the framework of the axiomatic field theory, Jost succeeded in carrying
out the mathematically rigorous proof of the CPT theorem based on the properties of
the Wightman functions in the complex Lorentz group [20,21,24]. It was considered a
single transformation and not a product of separate transformations C, P, and T. This
proof significantly reduced the number of uncertainties in the issues of the C, P, and
T transformations.

Initially, the CPT theorem was a purely academic subject since the P, T, and C symme-
tries were considered to be satisfied independently. However, after the discovery of the
violation of the P symmetry, interest in the CPT symmetry noticeably increased [5]. The
CP symmetry was proposed in 1957 by Landau as a true symmetry between matter and
antimatter [18]. The discovery in 1964 of the CP symmetry breaking in the decay processes
of neutral K-mesons [25] led to the fact that, at present, the CPT symmetry, along with local
Lorentz covariance, are considered to be the fundamental principles of the quantum field
theory [24]. The real Lorentz group can be taken as the group O(1,3) with four independent
connected components. Only one of them (proper orthochronous) contains the identity
and is, therefore, a group. For the complex Lorentz group, there are only two independent
connected components. P and T are the transformations of the Lorentz group that do not
lie in a connected neighborhood of the identity operator. The CPT transformation is a
transformation of the complex Lorentz group that lies in a connected neighborhood of the
identity [24]. The CPT conservation and Lorentz symmetry together present the group
O(1, 3,
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on neutrino oscillations is one of the most important directions in the modern physics of
quantum fields [26,27]. The possibility of the CPT symmetry breaking and the connection
of such breaking with the CP and the T symmetry breaking and possible local Lorentz
covariance breaking are also actively discussed and investigated [28,29].

In the area of discrete spinor symmetries, erroneous interpretations are somehow
related to the concept of the Dirac sea, including the description of the spinor vacuum.
In particular, all authors who studied the P, T, and C transformations assumed that the
vacuum is invariant with respect to these transformations. As we show below, this is not
always the case. In the axiomatic field theory [20,24], it was also assumed that the vacuum
is invariant with respect to the CPT transformation. However, as we prove below, the
vacuum is actually invariant with respect to the CPT transformation, and on this point of
view, Jost’s proof is correct. It does not consider separately the T and C transformations.
However, considering separately the time inversion T and the charge conjugation C requires
taking into account the replacement of the vacuum by an alternative one.

The meaning of the unitary time inversion operator proposed by Schwinger [15] has
not yet been clarified. This operator is considered in more detail by Matthews [13]. There
is still no justification of why it is necessary to use a different time inversion operator in the
CPT theorem.

In view of the above, the study of the algebraic foundations of the C, P, T, and CPT
symmetries and the properties of the spinor vacuum with respect to these transformations
seems to be an important problem.

In this paper, we consider the C, P, T, and CPT transformations for spinors using a
purely algebraic approach within the framework of the theory of superalgebraic repre-
sentation of spinors. It combines the theory of the CAR algebras and the theory of Krein
spaces, a rapidly developing part of the theory of Clifford algebras. The correct formula for
the charge conjugation operator in the theory of “holes” in the Dirac Sea is derived. We
explain below the difference between the time reflection and time inversion operators and
why this Schwinger operator cannot be the time inversion operator. We also show that the
existence of the exact C and T symmetries is impossible for spinors. This violation occurs
due to the fact that the C and T transformations replace the spinor vacuum of the Universe
with an alternative vacuum.

2. Superalgebraic Spinors

Initially, in the quantum field theory, spinors were considered mainly in the framework
of the Dirac matrix theory of spinors. The modern theory of spinors is usually formulated
within the framework of the Clifford algebra formalism [30–39]. Such spinors are called
algebraic. They are elements of the minimal left ideal formed by multiplying all elements of
the Clifford algebra by a primitive Hermitian idempotent. Nevertheless, algebraic spinors
are still rarely used in the quantum field theory. Additionally, in these theories, the creation
and annihilation operators of spinors are optional external algebraic constructions that are
in no way connected with the algebraic spinors themselves.

Additional problems in the theory of the algebraic spinors are related to the the-
ory of spinor bundles. In the general case, automorphisms of the Clifford algebra do
not preserve its spinor spaces [31]. In the odd-dimensional cases, the group of automor-
phisms of the Clifford algebra is not the group of automorphisms of the spinor bundle.
In the even-dimensional case, all automorphisms of the Clifford algebra are inner and
preserve the space of spinors. Only the even-dimensional spaces are physically mean-
ingful, where spinors can exist in the curved spacetime. Therefore, we consider only the
even-dimensional spaces with dimension n = 2m, where m is integer.

M. Pavšic, in the paper [38], laid the foundations for the theory of superalgebraic
spinors, which combined the theory of the algebraic spinors and the algebraic quantum
field theory. He tried to build a vacuum state vector of the operators of creation and
annihilation of spinors. In this approach, the basis Clifford spacetime vectors (algebraic
analogs of Dirac matrices) consist of the creation and the annihilation operators of spinors.
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However, he did not take into account that two different Clifford algebras should exist
in the theory of the second quantization of fermions. In the first of them, as considered
in [38], Clifford basis vectors with a positive signature are the sums of the creation and
annihilation operators of a fermion with a given momentum, while vectors with a negative
signature are the differences between them

ei+(p) = bi(p) + bi(p),
ei−(p) = bi(p)− bi(p).

(1)

We called this algebra the big Clifford algebra and the algebra of the algebraic analogs
of the Dirac gamma matrices the small Clifford algebra [40].

The theory of superalgebraic spinors [40–44] develops the approach proposed in [38].
In it, spinors, basis vectors of the small Clifford algebra, and the vacuum state vector
consist of Grassmann variables and their derivatives. In this case, the second quantization
expansion for the spinor field operator is obtained from purely algebraic relations.

The theory of algebraic spinors is not based on the canonical anticommutation relations
(CAR), although the modern formulation of the algebraic quantum field theory is based on
them. In the theory of superalgebraic spinors, we used the CAR as the basis for deriving the
formulas for the generalized Dirac conjugation [42]. However, the CAR were considered
not as the basis of the theory but only as one of its elements. In this paper, we consider the
CAR algebra as the basis for deriving all transformations in the theory of spinors.

The superalgebraic representation of spinors [40–44] can be described as a represen-
tation of the CAR algebra. This approach allows us to solve a number of problems in the
algebraic quantum field theory. Instead of considering abstract CAR algebras [45], it turns
out to be possible, without loss of generality, to construct concrete algebraic representations
of these algebras.

In the superalgebraic representation of the 4-spinors, the basis spinors are Grassmann
densities θa(p) in the momentum space and their derivatives ∂

∂θa(p) , a = 1, 2, 3, 4. They are
used to construct anticommuting gamma operators γ̂µ = [γµ, •], µ = 0, 1, 2, 3, 5, which are
algebraic analogs of the Dirac matrices γ

µ
D [40,41], where

γ̂0 =
∫

d3 p [ ∂
∂θ1(p) θ1(p) + ∂

∂θ2(p) θ2(p) + ∂
∂θ3(p) θ3(p) + ∂

∂θ4(p) θ4(p), •],
γ̂1 =

∫
d3 p [ ∂

∂θ1(p)
∂

∂θ4(p) − θ4(p)θ1(p) + ∂
∂θ2(p)

∂
∂θ3(p) − θ3(p)θ2(p) , •],

γ̂2 = i
∫

d3 p [− ∂
∂θ1(p)

∂
∂θ4(p) − θ4(p)θ1(p) + ∂

∂θ2(p)
∂

∂θ3(p) + θ3(p)θ2(p) , •],
γ̂3 =

∫
d3 p [ ∂

∂θ1(p)
∂

∂θ3(p) − θ3(p)θ1(p)− ∂
∂θ2(p)

∂
∂θ4(p) + θ4(p)θ2(p) , •],

γ̂5 =
∫

d3 p [ ∂
∂θ1(p)

∂
∂θ3(p) + θ3(p)θ1(p) + ∂

∂θ2(p)
∂

∂θ4(p) + θ4(p)θ2(p) , •].

(2)

Operator
Â = [A, •] (3)

denotes commutator
ÂΨ = [A, •]Ψ = [A, Ψ] = AΨ−ΨA. (4)

An arbitrary spinor Ψ is a linear combination of the basis spinors

Ψ =
∫

d3 p
(

ψα(p)
∂

∂θα(p)
+ ψτ(p)θτ(p)

)
, (5)

where ψa(p) are complex coefficients, α = 1, 2; τ = 3, 4.
The normalization condition

|Ψ|2 =
∫

d3 p (|ψα(p)|2 + |ψτ(p)|2) = 1. (6)
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Canonical anticommutation relations (CAR){
∂

∂θα(p)
, θβ(p′)

}
= δ

β
α δ(p− p′), (7)

{
∂

∂θα(p)
,

∂

∂θβ(p′)

}
=
{

θα(p), θβ(p′)
}
= 0, (8)

define the CAR algebra of Grassmann densities.
The rule (9) of the Hermitian conjugation follows immediately from (4)

(ÂΨ)
+
= (AΨ−ΨA)+ = −A+Ψ+ + Ψ+A+ = −(A+ )̂Ψ+. (9)

It was shown in [41] that if Â is gamma operator, then

(A+ )̂ = Â+. (10)

the generalized Dirac conjugation is given by the formula [40,42]

Ψ = (γ̂0Ψ)
+
= (•)+γ̂0Ψ, (11)

where (•)+ means that the symbol •must be replaced by the element that the Hermitian
conjugation operator acts on.

Formulas (2) for gamma operators were obtained by specifying the conjugation of
a spinor by Formula (11). However, the most general form of the generalized Dirac
conjugation, which ensures the Lorentz covariance of the transformation of conjugate
spinors, is given by the formula

Ψ = (MΨ)+, (12)

where M is an operator that is constructed of gamma operators [42]. Moreover, for a space
with signature (p, q)

M = η+ + η−,

η+ = Mi1 ...ip+γ̂i1
+ . . . γ̂

ip
+,

η− = Mi1 ...iq−γ̂i1
− . . . γ̂

iq
−,

(13)

where there is no summation over indices, Mi1 ...ip+ and Mi1 ...ip− are numerical coefficients,

γ̂i1
+ . . . γ̂

ip
+ is the product of gamma operators with positive signature, and γ̂i1

− . . . γ̂
iq
− is the

product of gamma operators with negative signature [42].
It was proven in the theory of Krein spaces [46,47] that the condition M = η+ must be

satisfied for a four-dimensional spacetime with signature (1, −1, −1, −1) for an invariant
form f of the spinor space, which provides the convolution of the spinors Ψ1 and Ψ2

f = (MΨ1, Ψ2). (14)

Therefore, we refine the result of [42] and obtain M = γ̂0.
Infinitesimal transformations of basis spinors and their conjugate spinors, preserving

relations (7) and (8) of the CAR-algebra, in the case of a four-dimensional spacetime, lead
to the transformations of the field operators Ψ

Ψ′ = (1 + iγ̂adωa +
1
4

γ̂abdωab)Ψ, (15)

where a, b = 0, 1, 2, 3, 4, 6, 7, transformation parameters dωa and dωab = −dωba are real,
and γ̂ab = γ̂aγ̂b = −γ̂bγ̂a = [γab, •], a 6= b [42]. In (15), in the case of conjugation (11), two
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additional gamma operators γ̂6 and γ̂7 with negative signature appear in comparison with
the Dirac theory [42]

γ̂6 = i
∫

d3 p [ ∂
∂θ1(p)

∂
∂θ2(p) + θ2(p)θ1(p)− ∂

∂θ3(p)
∂

∂θ4(p) − θ4(p)θ3(p) , •],
γ̂7 =

∫
d3 p [ ∂

∂θ1(p)
∂

∂θ2(p) − θ2(p)θ1(p) + ∂
∂θ3(p)

∂
∂θ4(p) − θ4(p)θ3(p) , •]. (16)

Operators γ̂a, a = 0, 1, 2, 3, 6, 7 form a basis in the space of Clifford vectors of the
algebra, which we call the small Clifford algebra [40].

Operators γ̂5 and γ̂4 = iγ̂5 are expressed via the product of other gamma operators in
accordance with Formula (17)

γ̂0γ̂1γ̂2γ̂3γ̂6γ̂7 = iγ̂4 = −γ̂5. (17)

Lorentz boost operator

Λ = exp(γ̂0k ϕk) = exp(γ̂0γ̂ϕ), k = 1, 2, 3, (18)

changes the 4-vector γ̂0m to the 4-vector

γ̂µ pµ = γ̂0 p0 + γ̂ p = exp(γ̂0γ̂ ϕ) γ̂0 exp(−γ̂0γ̂ ϕ)m = exp(2γ̂0γ̂ ϕ) γ̂0m, (19)

which corresponds to the spatial momentum p. In (19), ϕ is the Lorentz boost angle, and γ̂
is the spatial direction vector to which the vector γ̂0 is rotated.

Lorentz boost exp(γ̂0k ϕk) changes the operators of annihilation bα(0) = ∂
∂θα(0) and

creation bα(0) = θα(0) of a spinor with the momentum 0 to the operators of annihilation
bα(p) and creation bα(p) of a spinor with the momentum p [41].

bα(p) = exp(γ̂0k ϕk)
∂

∂θα(0) |0→p = (cosh ϕ(p) + γ̂0γ̂sinhϕ(p)) ∂
∂θα(p) ,

bα(p) = exp(γ̂0k ϕk) θα(0)|0→p = (cosh ϕ(p) + γ̂0γ̂sinhϕ(p)) θα(p).
(20)

Hereinafter, we consider active Lorentz transformations. Note that with passive
Lorentz transformations, only the frame of reference changes. Therefore, in the new
frame of reference, the components of the vectors and spinors change, but these quantities
themselves remain unchanged. However, with active Lorentz transformations, the direction
of the vectors changes, and the spinors and tensors change accordingly. In this case, we
can assume that the frame of reference rotates together with vectors, spinors, and tensors.
In the rotated frame of reference, the components of vectors, spinors and tensors have
the same values as in the original one. However, in the original frame of reference, the
components of vectors, spinors, and tensors change in the same way as in the case of
passive Lorentz transformations. The momentum values in (22) are indicated in the initial
frame of reference. Therefore, for all the quantities depending on momentum, the value 0
corresponding to the rest frame must be replaced by p after rotation.

The creation b1(p), b2(p) and the annihilation b1(p), b2(p) operators of spinors and
the creation b3(p), b4(p) and annihilation b3(p), b4(p) operators of antispinors are con-
structed of the generators of the large Clifford algebra using the Lorentz transformations in
the small Clifford algebra. They also satisfy the canonical anticommutation relations{

bl(p), bk(p′)
}
= δl

kδ(p− p′),

{bk(p), bl(p′)} =
{

bk(p), bl(p′)
}
= 0.

(21)

The Lorentz covariance of the theory is directly related to the fulfillment of these
relations. It should be noted that, in quantum mechanics, the creation and annihilation
operators are usually considered as Hermitian conjugated. However, in the algebra of
second quantization, Hermitian conjugation is not covariant with respect to the Lorentz
transformations. In the theory we are considering, the bilinear form Ψ1Ψ2 of the Dirac
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theory of spinors corresponds to the bilinear form
{

Ψ1, Ψ2
}

[42]. It gives the Lorentz scalar.
Therefore, in it, only the anticommutator of the spinor and the Dirac conjugated spinor,
which gives the Lorentz scalar, and not the anticommutator of the spinor and the Hermitian
conjugated spinor, can be Lorentz-covariant.

Operator
Q̂ = iγ̂6γ̂7 (22)

is a generator of rotations in the plane of the axes γ̂6, γ̂7. Wherein

Q̂Ψ = Ψ,
Q̂ Ψ = −Ψ.

(23)

Operator Q̂ displaces the average electric charge of the spinor multiplet from the zero
level and, therefore, is the spinor hypercharge operator. In the considered case of four
independent Grassmann variables, it is the operator of the electric charge [43,44].

Transformations (15) preserve the CAR-algebra relations. In this case, rotations in
the planes specified by the vectors γ̂µ, µ = 0, 1, 2, 3 and γ̂6,γ̂7, γ̂4 are prohibited, since
otherwise, spacetime would have dimensions greater than four, and we are considering the
case of a four-dimensional space. Therefore, in the expansion (15), the terms corresponding
to such rotations must be equal to zero. Rotations in planes specified by the vectors γ̂6, γ̂7

and γ̂4 generate internal degrees of freedom of spinors [43,44].

3. Spinor Vacuum as an Alternative to the Dirac Sea

The action of the annihilation operator b1(p) on the vacuum state vector ΨV should
give zero. The only nonzero element in the algebra, multiplying by which b1(p) gives
zero, is b1(p)ΨV1, where ΨV1 is arbitrary factor. It means that ΨV = b1(p)ΨV1. In the
theory of algebraic spinors, the spaces of spinors arise when the elements of the algebra
are multiplied by the Hermitian idempotent. Therefore, it is necessary to construct ΨV
in the form of a Hermitian idempotent. According to formulas (21), this is possible only
if ΨV = b1(p)b1(p)ΨV2, where ΨV2 is a factor commuting with b1(p)b1(p). Similarly,
we obtain

ΨV(p) = b1(p) b1(p) b2(p) b2(p) b3(p) b3(p) b4(p) b4(p),
ΨV = ΨV(p)ΨV3,

(24)

where ΨV3 is some factor.
We considered the annihilation operators bi(p) for an arbitrary momentum p. There-

fore, ΨV must contain factors ΨV(p) of all momentum values. For a continuous momentum
spectrum, this is difficult. Therefore, we discretizede the momentum space in accordance
with [40,41] and considerd a quasi-continuous momentum spectrum. We divided the
momentum space into a grid of cells of physically infinitesimal volumes ∆3 pi, and assigned
a discrete momentum value to each cell. Basis spinors are generators of the CAR algebra
generated by the discretization of the anticommutation relations (7), (8) and (21). In this
case, Dirac delta function δ(p− p′) must be replaced by a discrete approximation, and
canonical anticommutation relations of the annihilation and creation operators become{

bk(pi), bl(pj)
}
= δl

k
1

∆3 pi
δi

j, (25)

{
bk(pi), bl(pj)

}
=
{

bk(pi), bl(pj)
}
= 0. (26)

Further, throughout the formulas, to increase the readability of the formulas, continu-
ous values are used. However, they denote discrete quasi-continuous values.

The vacuum state vector [40]

ΨV = ∏
i

ΨV(pi). (27)
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is given via the factors ΨV(pi) local in the momentum space

ΨV(pi) = (∆3 pi)
4

b1(pi)b1(pi)b2(pi)b2(pi)b3(pi)b3(pi)b4(pi)b4(pi). (28)

It is important that bl(pi) and bl(pi) do not commute and do not anticommute.
Therefore, the order of the factors bl(pi) and bl(pi) in (28) cannot be changed. Factors
b<k>(pi)b<k>(pi) commute with bl(pi) and bl(pi) for all k 6= l (hereinafter there is no
summation over the indices in angle brackets). Therefore, taking into account (25)–(26),
we obtain

b1(pi)ΨV = b1(pi)ΨV(pi) . . . = 0, (29)

Ψ1(pi) = b1(pi)ΨV = b1(pi)ΨV(pi) . . . = (∆3 pi)
4 b1(pi)b1(pi)b1(pi)b2(pi) . . .

= (∆3 pi)
4
( δ1

1
1

∆3 pi
δi

i − b1(pi)b1(pi) ) b1(pi)b2(pi) . . . = (∆3 pi)
3b1(pi)b2(pi) . . . 6= 0.

(30)

∆3 pib1(pi) Ψ1(pi) = ∆3 pi( δ1
1

1
∆3 pi

δi
i − b1(pi) b1(pi))ΨV = ΨV. (31)

The annihilation operator b1(pi) nullifies the vacuum, and the creation operator b1(pi)
creates a one-particle state with momentum pi when it acts on the vacuum. Similar formulas
are valid for operators bk(pi) and bk(pi) with all possible values of k and pi.

For p = 0 the expression of a factor ΨV(pi) is

ΨV(0) = (∆3 p|p=0)
4 ∂

∂θ1(0)
θ1(0)

∂

∂θ2(0)
θ2(0)

∂

∂θ3(0)
θ3(0)

∂

∂θ4(0)
θ4(0). (32)

ΨV(pi) we obtain from ΨV(0) by the Lorentz boost (18) of each of the factors in (32).
It follows from (25) and (20) that

(b<l>(pi)b<l>(pi))
+

= (γ̂0 exp(γ̂0k ϕk)
∂

∂θ<l>(0)
)(exp(γ̂0j ϕj)

∂
∂θ<l>(0)

)
+

= (exp(γ̂−0k ϕk)γ̂
0 ∂

∂θ<l>(0)
)(exp(−γ̂0j ϕj)θ

<l>(0))

= (exp(γ̂−0k ϕk)
∂

∂θ<l>(0)
)(exp(−γ̂0j ϕj)θ

<l>(0))|p=0→p=−pi

= b<l>(−pi)b<l>(−pi).

(33)

There are both factors b<l>(pi)b<l>(pi) and factors b<l>(−pi)b<l>(−pi) in ΨV. By
virtue of (25) and (26), they commute with all other factors. Therefore,

Ψ+
V = ΨV. (34)

Also, taking into account (25) and (26), it is easy to prove that

(ΨV )2 = ΨV. (35)

Thus, the vacuum operator ΨV is a Hermitian idempotent, and superalgebraic spinors,
according to the theory of algebraic spinors, are algebraic spinors.

We have a countable infinite number of nonequivalent vacua. It suffices to change in
the formula (27) in ΨV(pi) the order of bα(pi) and bα(pi) in an arbitrary number of factors
bα(pi)bα(pi) to obtain a new vacuum. Such vacuum state vectors Ψ′V are algebraically
completely equivalent if we consider the changed order bα(pi) as creation operators and
the corresponding operators bα(pi) as annihilation operators. In full accordance with [45],
we have an infinite number of different vacuum state vectors, only for one of which the
operator of the number of particles makes sense for a given set of creation and annihilation
operators. However, specifying these vacuum state vectors in an explicit form allowed
us to discover the meaningfulness of all of them if we did not fix in advance whether the
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generators of CAR algebras are creation operators or annihilation operators. Vacua differ
only in the role of these generators.

The Hilbert space, scalar product, and generalized Dirac conjugation (11) define
the Hermitian form and the indefinite inner product of spinors on the Hilbert space,
corresponding to the theory of Clifford algebras and spinors [46–48]. Such spaces are called
Krein spaces [46,47].

Vacuum (27) is an algebraic realization of the concept of the Dirac Sea, free from the
drawbacks of the idea of the presence of a “sea” of spinors with negative energy. The
eigenvalues of the energy-momentum, spin operators, and electrical charge are equal to
zero for vacuum (27). Therefore, there are no problems of infinite values of the Dirac Sea.

4. R-Operators, Alternative Vacuum and Reversal Operator

We consider active linear transformations of Clifford vectors

V′ = AXA−1, (36)

in this case, the spinor transforms as

Ψ′ = AΨ. (37)

The action of the operator (15) of infinitesimal transformations 1 + dĜ = 1 + [dG, •]
on the field operator Ψ1Ψ2 . . . Ψk of the k-particle state is given by the formula

(1 + dĜ)Ψ1Ψ2 . . . Ψk = 1 + [dG, Ψ1]Ψ2 . . . Ψk + Ψ1[dG, Ψ2] . . . Ψk + . . .
= (edĜΨ1)(edĜΨ2) . . . (edĜΨk),

(38)

where the parentheses limit the scope of the operators edĜ. It generalizes the result of [41]
to spaces of arbitrary even dimension.

Integration of (38) gives the result of the action of eĜ on the Ψ1Ψ2 . . . Ψk

eĜΨ1Ψ2 . . . Ψk = (eĜΨ1)(eĜΨ2) . . . (eĜΨk). (39)

Operator RĜ = eĜ simultaneously transforms all factors in (39). We will call such
operators R-operators.

Consider the effect of the boost on the vacuum state vector (27). To do this, first
consider action of the boost

Λ1 = exp(γ̂0jαj) (40)

on the factor b<l>(pi)b<l>(pi) in (28). Taking into account (20), we obtain

b<l>(pi)b<l>(pi) = (exp(γ̂0k ϕk)
∂

∂θ<l>(0)
)(exp(γ̂0m ϕm)θ

<l>(0)). (41)

The Lorentz transformation is an R-operator. According to (39), operator Λ1 acts on
each spinor factor in b<l>(pi)b<l>(pi). From (39)–(41) it follows

Λ1 b<l>(pi)b<l>(pi) = (Λ 1b<l>(pi))(Λ1b<l>(pi))

= (exp(γ̂0jαj) exp(γ̂0k ϕk)
∂

∂θ<l>(0)
)(exp(γ̂0jαj) exp(γ̂0m ϕm)θ<l>(0))

= (exp(γ̂0kλk)
∂

∂θ<l>(0)
)(exp(γ̂0mλm)θ<l>(0)) = b<l>(ps)b<l>(ps),

(42)

where λj are the real parameters (angles) of the resulting boost, and ps is the spatial
momentum corresponding to this boost. Thus, the Lorentz transformation transforms
the factor (28), corresponding to the momentum pi, into the factor corresponding to the
momentum ps. In (27), this factor is replaced by a factor that previously corresponded
to a different momentum, and this applies to all factors in (27). Factors corresponding to
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different momentums commute. Therefore, their product does not change as a result of the
Lorentz transformation, and vacuum (27) does not change.

Consider unitary infinitesimal operator

edĜ = 1 + γ̂05dω, (43)

where dω is an infinitesimal real parameter. With respect to the action of edĜ, spinor Ψ and
conjugated spinor Ψ transform as

Ψ′ = (1 + γ̂05dω)Ψ,
Ψ′ = (1− γ̂05dω)Ψ.

(44)

The results of integration of transformations (44) for the final angle ϕ = π
2 are

Ψ′ = γ̂05Ψ = Rγ̂05 Ψ,
Ψ′ = −γ̂05Ψ = R−γ̂05 Ψ.

(45)

We obtain from (45)

γ̂0′ = Rγ̂05 γ̂0(Rγ̂05)
−1 = R−γ̂05 γ̂0(R−γ̂05)

−1 = −γ̂0,
γ̂5′ = Rγ̂05 γ̂5(Rγ̂05)

−1 = R−γ̂05 γ̂5(R−γ̂05)
−1 = −γ̂5,

γ̂a ′ = Rγ̂05 γ̂a(Rγ̂05)
−1 = R−γ̂05 γ̂a(R−γ̂05)

−1 = γ̂a, a = 1, 2, 3, 6, 7.
(46)

Thus, operator RRacah = γ̂05 for single-particle states and

RRacah = Rγ̂05 (47)

in the common case is a time reflection operator.
We will call this operator Racah time reflection operator. Time reflection operator

γ0
Dγ5

D was proposed by G. Racah in 1937 [49].
Let us consider the action of the operator R±γ̂05 on the vacuum state vector (32).

R±γ̂05 ΨV(0) = ΨaltV(0),

ΨaltV(0) = (∆3 p|p=0)
4

θ1(0) ∂
∂θ1(0) θ2(0) ∂

∂θ2(0) θ3(0) ∂
∂θ3(0) θ4(0) ∂

∂θ4(0) .
(48)

Similarly,
R±γ̂05 ΨV(pi) = ΨaltV(pi),
R±γ̂05 ΨV = ΨaltV,

(49)

ΨaltV = ∏
i

ΨaltV(pi). (50)

where ΨaltV is an alternative vacuum. In ΨaltV the order of factors (creation and annihilation
operators) in each ΨV(pi) is reversed

ΨaltV(pi) = (∆3 pi)
4

b1(pi)b1(pi)b2(pi)b2(pi)b3(pi)b3(pi)b4(pi)b4(pi). (51)

This vacuum is invariant with respect to the Lorentz transformations and can be
regarded as physical. However, in accordance with (50) and (51), in the Universe with
vacuum (50), the role of creation and annihilation operators changes: operators bk(pi) are
not creation operators, as for the Universe with vacuum (27), but annihilation operators.
Additionally, operators bk(pi) are not the annihilation operators, but the creation operators.

Thus, operator R±γ̂05 leads to the replacement of vacuum by an alternative one, which
is not equivalent to the vacuum ΨV.
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Consider the action of Rγ̂a , a = 1, 2, 3, 4, 6, 7 on ΨV. Let us take the action of Rγ̂7 first
as an example. Since γ̂7 commutes with the Lorentz transformation operator (40), acting
on the factors b<l>(pi)b<l>(pi) included in ΨV(pi) in (28), we obtain

Rγ̂7(b1(pi)b1(pi)) = (γ̂7b1(pi))(γ̂
7b1(pi))

=
(

γ̂7 exp(γ̂0k ϕk)
∂

∂θ1(0)

) (
γ̂7 exp(γ̂0j ϕj)θ

1(0)
)

=
(

exp(γ̂0k ϕk)γ̂
7 ∂

∂θ1(0)

) (
exp(γ̂0j ϕj)γ̂

7θ1(0)
)

=
(
− exp(γ̂0k ϕk)θ

2(0)
) (
− exp(γ̂0j ϕj)

∂
∂θ2(0)

)
= b2(pi)b2(pi).

(52)

Similarly,
Rγ̂7(b2(pi)b2(pi)) = b1(pi)b1(pi),
Rγ̂7(b3(pi)b3(pi)) = b4(pi)b4(pi),
Rγ̂7(b4(pi)b4(pi)) = b3(pi)b3(pi).

(53)

Thus,
Rγ̂7 ΨV(pi) = ΨaltV(pi),
Rγ̂7 ΨV = ΨaltV.

(54)

We obtain the results for Rγ̂6 and Riγ̂5 in exactly the same way.
There is some difference from the previous cases for operators Rγ̂k , k = 1, 2, 3, since

they do not commute with the Lorentz transformation.

Rγ̂1(b1(pi)b1(pi)) = (γ̂1b1(pi))(γ̂
1b1(pi))

=
(

exp(−γ̂01 ϕ1 + γ̂02 ϕ2 + γ̂03 ϕ3)γ̂
1 ∂

∂θ1(0)

)(
exp(−γ̂01 ϕ1 + γ̂02 ϕ2 + γ̂03 ϕ3)γ̂

1θ1(0)
)

=
(
− exp(γ̂0j ϕj

′)θ4(0)
)(
− exp(γ̂0l ϕl

′) ∂
∂θ4(0)

)
= b4(pi

′)b4(pi
′),

(55)

where ϕj
′ and pi

′ correspond to the momentum for which the axis γ̂1 component has
changed its sign. We obtain similar formulas for all factors b<k>(pi)b<k>(pi) in (28).
Therefore,

Rγ̂1 ΨV(pi) = ΨaltV(pi
′). (56)

That is, operator Rγ̂7 simply swaps the commuting factors in (50). Therefore,

Rγ̂1 ΨV = ΨaltV. (57)

The proof is completely similar for Rγ̂2 and Rγ̂3 . Thus, operators Rγ̂1 , Rγ̂2 , Rγ̂3 , Rγ̂6 ,
Rγ̂7 , Riγ̂5 transform the vacuum ΨV into ΨaltV. In the same way, it is proven that they
transform ΨaltV into ΨV .

Recall that all operators must preserve CAR. Therefore, only operators Riγ̂0 and Riγ̂5

make sense, not Rγ̂0 and Rγ̂5 . Additionally, since iγ̂0iγ̂5 = −γ̂0γ̂5 = −γ̂05, operator Rγ̂0

makes sense.
It is easy to check that ΨaltV is invariant with respect to the Lorentz transformations,

Hermitian conjugation, spatial reflection, operator Riγ̂0 action, and other transformations
that leave the vacuum ΨV invariant.

Consider the transposition operator (•)T . It changes the order of all factors ∂
∂θa(p) ,

θb(p′) and converts ∂
∂θa(p) to θa(p) and θb(p′) to ∂

∂θb(p′) . It is easy to prove [40,41] that

(•)Tγ̂aΨ = −γ̂aΨT , a = 0, 2, 6, 5,
(•)Tγ̂bΨ = γ̂bΨT , b = 1, 3, 7.

(58)
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Hence,

(•)Tγ̂a
(
(•)T

)−1
ΨT = −γ̂aΨT , a = 0, 2, 6, 5,

(•)Tγ̂b
(
(•)T

)−1
ΨT = γ̂bΨT , b = 1, 3, 7.

(59)

Equation (59) mean that the transposition operator (•)T reflects axes γ̂0, γ̂2, and γ̂6,
as well as

, and does not change other basis vectors of the Clifford algebra. By multiplying the
CAR-preserving operator (•)T by the CAR-preserving reflection operator γ̂26, we obtain
the CAR-preserving vacuum-preserving time reflection operator

RSchwinger = −(•)Tγ̂26 = −γ̂26(•)T . (60)

Formula (60) is valid only for the single-particle case. If there is a product of single-
particle operators, it must be replaced by

RSchwinger = R−γ̂26(•)T = (•)T R−γ̂26 . (61)

As we will show below, operator RSchwinger is directly related to the unitary time
inversion operator proposed by Schwinger [15].

When acting on single-particle field operators, action of the RRacah operator (48) coin-
cides with the action of RSchwinger (61). They both are unitary and preserve CAR. However,
operator RRacah changes the vacuum to an alternative one, but RSchwinger preserves usual
vacuum state. Their difference is that, when acting on the product of field operators, RRacah
does not change their order, but RSchwinger reverses the order of the factors. Therefore,

R = R−1RRacahRSchwinger = Rγ̂05 Rγ̂26(•)T (62)

is reversal operator of the spinor field operators. Operator R preserves CAR and does
not change gamma operators or single-particle spinors. It commutes with all elements
of the small Clifford algebra. However it reverses order of spinors in multi-particle field
operators. In particular,

RΨV = ΨaltV,
RΨaltV = ΨV.

(63)

If there is any operator that transforms the vacuum into an alternative one, multiplying
it by R will give an operator that coincides with it when acting on the field operator of the
single-particle state of the spinor, but preserves the vacuum.

5. Spatial Inversion P

Consider the case when dĜ = iγ̂0dω0. In this case, operator eĜ is equal to

eiγ̂0ω0 = cos ω0 + iγ̂0 sin ω0, (64)

where ω0 is a real constant. Let us choose ω0 = π
2 . Then, we obtain operator Riγ̂0 , which

acts on the single-particle state in the same way as the commutator iγ̂0 = [iγ0, •]

Riγ̂0 Ψ = i[γ0, Ψ]. (65)

Therefore, for single-particle states, Riγ̂0 and iγ̂0 cannot be distinguished. However,
when acting on the product of the field operators, Riγ̂0 acts on each of the factors:

Riγ̂0 Ψ1Ψ2 . . . Ψk = i[γ0, Ψ1] i[γ0, Ψ2] . . . i[γ0, Ψk] = (Riγ̂0 Ψ1)(Riγ̂0 Ψ2) . . . (Riγ̂0 Ψk). (66)
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Operator Riγ̂0 is unitary. It transforms Clifford vectors as

γ̂0′ = γ̂0,
γ̂k ′ = −γ̂k, k = 1, 2, 3, 6, 7, 4,

(67)

where, here and below, we mark the transformed values with dashes.
Thus, operator Riγ̂0 reflects all the basis vectors except γ̂0, including γ̂6 and γ̂7. Simi-

larly, the reflection operator of spatial Clifford vectors Riγ̂0 Rγ̂67 = Rγ̂0Q̂ reflects only spatial
basis vectors γ̂1,γ̂2, γ̂3 and, of course, also reflects pseudovector γ̂4. Operators Riγ̂0 and
Rγ̂0Q̂ are similar but not equivalent. They are uniquely determined up to the sign. Factors
other than ±1 are forbidden by CAR algebra relations.

We introduce symmetry operator P of the spatial inversion in complete analogy with
the scheme described by Bjorken and Drell [6], taking into account that the Dirac equation
in superalgebraic form has the form [50]

γ̂µ(i∂µ − qAµ)Ψ(t, x) = mΨ(t, x), (68)

where t = x0 is the time, Aµ is the vector potential, q = ±g is the value of the spinor charge,
and g is the interaction constant.

This equation can also be written as

γ̂µ(i∂µ − gQ̂Aµ)Ψ(t, x) = mΨ(t, x). (69)

Eigenvalues of operator Q̂ are +1 for the spinor and −1 for the antispinor. Both (68)
and (69) have the same solutions.

Hereinafter, in accordance with the established tradition, we call the discrete symmetry
operators P and T the inversions, not the reflections. They are more complex than the
reflection operators.

With respect to the action of operator Rγ̂0Q̂, Equation (69) becomes

(γ̂0(i∂0 − gQ̂A0)− γ̂k(i∂k − gQ̂Ak) )Ψ
′(t, x) = mΨ′(t, x). (70)

In order for Equation (70) to take the form (68), it is necessary to carry out transforma-
tion R−xk that changes the sign of the spatial coordinates xk, their derivatives and the sign
of the spatial part of the vector potential

, and does not change the zeros components of the quantities:

x0′ = R−xx0 = x0, xk ′ = R−xxk = −xk,
∂0
′ = R−x∂0 = ∂0, ∂k

′ = R−x∂k = −∂k,
A0
′ = R−x A0 = A0, Ak

′ = R−x Ak = −Ak.
(71)

Then the symmetry operators

P1 = R−xk Riγ̂0 , (72)

P = R−xk Riγ̂0 Rγ̂67 = R−xk Rγ̂0Q̂ (73)

transform Equation (71) into the required form (74)

γ̂µ(i∂µ
′ − gQ̂Aµ

′)Ψ(t′, x′) = mΨ(t′, x′). (74)

Operator R−xk changes the sign of the spatial part not only for coordinates xk → −xk

and vector potential Ak → −Ak but in general for all vector quantities.
The same result can be obtained in a more convenient way, in fact, proposed by

Lüders [4]. This is done in the following way. The Dirac equation (69) can be rewritten as

i∂0Ψ(t, x) = ĤΨ(t, x), (75)
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Ĥ = γ̂0m + gQ̂A0 − γ̂0γ̂k(i∂k − gQ̂Ak), (76)

where Ĥ is the Hamiltonian.
Any symmetry operator must commute with the Hamiltonian. Operator Rγ̂0Q̂ com-

mutes with the first two terms in Hamiltonian (76), but anticommutes with the third term.
For commutativity with it, the operator needs to add factor R−xk that changes the sign of
∂k and Ak.

Already, Pauli noted that the transformation of the spinor components causes a change
in the components of vectors and other tensor quantities [8]. This fact is easy to understand
by considering the so-called bilinear covariants (covariant bilinear forms) [6,11,14]. In
accordance with [50], traditional Dirac theory expressions for bilinear forms should be
replaced by anticommutators that are similar to them in the superalgebraic representation
of spinors (that is, in the algebra of second quantization).

The action of operator Rγ̂0Q̂ leads to transformations of the spinors

Ψ′ = γ̂0Q̂Ψ = γ̂0Ψ,
Ψ′ = (γ̂0γ̂0Q̂Ψ)

+
= Ψ+,

(77)

which, in turn, lead to the following rules for the transformations of scalars, 4-vectors,
and tensors{

Ψ′, Ψ′
}
=
{

Ψ+, γ̂0Ψ
}
= (Ψ, γ̂0Ψ) = (γ̂0Ψ, Ψ) =

{
Ψ, Ψ

}
,{

Ψ′, γ̂0Ψ′
}
=
{

Ψ+, γ̂0γ̂0Ψ
}
= (γ̂0Ψ, γ̂0Ψ) =

{
Ψ, γ̂0Ψ

}
,{

Ψ′, γ̂kΨ′
}
=
{

Ψ+, γ̂kγ̂0Ψ
}
= (Ψ, γ̂kγ̂0Ψ) = −(γ̂0Ψ, γ̂kΨ) = −

{
Ψ, γ̂kΨ

}
,{

Ψ′, γ̂kγ̂lΨ′
}
=
{

Ψ+, γ̂kγ̂l γ̂0Ψ
}
= (γ̂0Ψ, γ̂kγ̂lΨ) =

{
Ψ, γ̂kγ̂lΨ

}
,{

Ψ′, γ̂0γ̂kΨ′
}
=
{

Ψ+, γ̂0γ̂kγ̂0Ψ
}
= −(γ̂0Ψ, γ̂0γ̂kΨ) = −

{
Ψ, γ̂0γ̂kΨ

}
.

(78)

Consequently, in the case of spatial reflection, the scalar components, the spatial
tensor components, and the zeros components of the vectors do not change. Additionally,
the spatial components of the vectors and the mixed (with index 0k) components of the
second-order tensors change sign. Since transformation (77) does not affect charges, it refers
to the components of all quantities of the corresponding form, both to vector quantities
(coordinates xµ, vector potential Aµ of the electric field) and to mixed tensor, to which the
momentum Pµ belongs (it is a component of the energy-momentum tensor T0µ).

Thus, we obtain the usual formulas [6,14] for the transformation of components of
tensors of different ranks with respect to spatial inversion. We started our consideration
with active transformations of Clifford vectors; however, the symmetry requirements led
to the fact that, simultaneously with the basis Clifford vectors, it is necessary to change the
components of the vectors. In this case, an arbitrary vector γ̂µVµ is converted into the vector
γ̂µ ′Vµ

′ = γ̂µVµ. Therefore, the spatial inversion P is reduced to changing the coordinate
system. That is, it is an improper Lorentz transformation and is a passive transformation,
such as the physically observed proper Lorentz transformations associated with the motion
of the reference frame.

Consider the action of the spatial reflection P on the vacuum. From (73) and (27)–(28),
it follows

PΨV = R−xk Rγ̂0Q̂∏
i

ΨV(pi) = ∏
i

Rγ̂0Q̂ΨV(pi). (79)
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Consider action of Rγ̂0Q̂ on factors b<l>(pi)b<l>(pi) in ΨV(pi). From (25)–(28), we
obtain that

Rγ̂0Q̂(b<l>(pi)b<l>(pi)) = (γ̂0Q̂b<l>(pi))(γ̂
0Q̂b<l>(pi))

= −(γ̂0b<l>(pi))(γ̂
0b<l>(pi))

= −
(

γ̂0 exp(γ̂0k ϕk)
∂

∂θ<l>(0)

)(
γ̂0
(

γ̂0 exp(γ̂0j ϕj)
∂

∂θ<l>(0)

)+)
=
(

exp(−γ̂0k ϕk)
∂

∂θ<l>(0)

)((
γ̂0 exp(−γ̂0j ϕj)

∂
∂θ<l>(0)

)+)
= b<l>(−pi)b<l>(−pi).

(80)

Therefore,
Rγ̂0Q̂ΨV(pi) = ΨV(−pi). (81)

Since (27) contains both factors ΨV(pi) and ΨV(−pi), they change places with respect
to the action of the operator P. However, all factors ΨV(pi) for different pi commute since
they include an even number of spinor factors. Consequently,

PΨV = ΨV . (82)

That is, with respect to the action of the operator of spatial inversion P, the vacuum
remains invariant.

6. Time Inversion T

Operator T of the time inversion is antiunitary [5,6,12,14,17]. The derivation of the
formula for it is carried out in exactly the same way as for P (73).

Since T is antiunitary, it must include the factor (•)∗. Therefore, as a result of the
action of operator T on both sides of (75), we obtain

− i(T∂0)TΨ(t, x) = TĤΨ(t, x). (83)

The parentheses, as before, limit the scope of the operator T. In this case,

(T∂0) = T∂0T−1. (84)

It follows from the time inversion requirement

t′ = x′0 = (Tx0) = −x0. (85)

that operator T must have factor R−x0 that changes the sign of component t = x0 corre-
sponding to the time. In this case, the relation

∂′0 = (T∂0) = −∂0 (86)

should be fulfilled. Therefore,

i∂′0TΨ(t, x) = TĤΨ(t, x). (87)

It follows from (87) that, for the equation of motion of the spinor (75) to be invariant
with respect to this transformation, operator T must commute with the Hamiltonian (76).
Therefore, for a nonzero mass m, operator T must commute with γ̂0. Since the basis
space vectors γ̂1, γ̂2, γ̂3 must have the same commutation properties with T, they can
be contained in T only as γ̂2(•)∗ or γ̂1γ̂3(•)∗. Both of these variants preserve CAR. In
addition to these factors, T may contain CAR-preserving factors iγ̂0 and iγ̂5. We do not
yet consider operators γ̂6 and γ̂7. Time inversion should lead to a change in the direction
of the spin to the opposite. Since complex conjugation in the chosen representation of the
gamma operators does not change the spin of the basis spinors (they are real), the spin
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projection operators skl = i
4 (γ̂

kγ̂l − γ̂l γ̂k); k, l = 1, 2, 3 must change their sign. Operators
iγ̂0 and iγ̂5 both commute with skl and cannot influence the sign change. Operators
γ̂2(•)∗ and γ̂1γ̂3(•)∗ anticommute with skl and can be part of operator T. But factors iγ̂0

and γ̂2(•)∗ change the chirality so they can only be together in the form R−x0 Riγ̂0γ̂2(•)∗.
Therefore, only three variants of operator T are possible: R−x0 Rγ̂1γ̂3(•)∗, R−x0 Riγ̂0γ̂2iγ̂5(•)∗,
and R−x0 Riγ̂0γ̂2(•)∗. However, the first and the second variants are equivalent to the
symmetry operator RiQ̂, and we may not consider the second variant. Therefore, only
variants R−x0 Rγ̂1γ̂3(•)∗ and R−x0 Riγ̂0γ̂2(•)∗ remain. However, operator R−x0 Riγ̂0γ̂2(•)∗

anticommutes with γ̂0 and, therefore, does not fit.
With respect to the action of operator R−x0 Rγ̂1γ̂3(•)∗, Equation (68) becomes

γ̂µ(i∂µ
′ − Q̂Aµ

′)Ψ′(−t, x) = mΨ′(−t, x), (88)

where
x0′ = −x0, xk ′ = xk,
∂0
′ = −∂0, ∂k

′ = ∂k,
A0
′ == A0, Ak

′ = −Ak.
(89)

The formulas for x′µ and A′µ are derived from the requirement that operator T
commutes with the Hamiltonian. Thus, the symmetry operator

T1 = R−x0 Rγ̂1γ̂3(•)∗ (90)

transforms Equation (68) into the required form (91)

γ̂µ(i∂µ
′ − Q̂Aµ

′)Ψ(t′, x′) = mΨ(t′, x′). (91)

The result (90) in the single-particle form corresponds to [5,6,14,17].
However, operator T must “rewind the film”. That is, it changes the direction of

motion and spin of the spinor without changing the chirality, but it should not change the
spinor to the conjugated one or the spinor annihilation operator to the antispinor creation
operator. Therefore, for example, T should replace the basis spinor ∂

∂θ1(p) by ∂
∂θ2(−p) .

Operator T1 in (90) provides this. It follows from the properties of gamma operators (2),
(16) and the requirement to preserve CAR that, while preserving vacuum, formula (90) is
unambiguous up to the sign in front of γ̂1γ̂3. However, when “rewinding the film”, the
annihilation operator must become the creation one, and vice versa. Therefore, T1 is not
suitable as a time inversion operator, and for this operator, it is necessary to multiply it by
the reversal operator (62). As the result, we obtain

T = RT1 = RR−x0 Rγ̂1γ̂3(•)∗ = R−x0 Rγ̂7(•)+. (92)

Consider the result of the action of operator T on the vacuum. Taking into account
(34), we obtain

TΨV = R−x0 Rγ̂7(•)+ΨV = Rγ̂7 ΨV
+ = Rγ̂7 ΨV . (93)

It follows from (93) and (54) that

TΨV = ΨaltV. (94)

Thus, operator T changes the vacuum to an alternative one and cannot be the operator
of the exact symmetry of the system and the operator of the symmetry of the vacuum.

Operators RRacah (48) and RSchwinger (61) are unitary. They commute with i∂0 and,
for a nonzero mass m, anticommute with the first term in Hamiltonian (76). Therefore,
they cannot preserve the invariance of the equation of motion (75) and cannot be the
symmetry operators.
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Let us set operators

TRacah = R−x0 RRacah = R−x0 Rγ̂05 ,
TSchwinger = R−x0 RSchwinger = R−x0 Rγ̂26(•)T .

(95)

They commute with Hamiltonian (76) under the conditions

x0′ = −x0, xk ′ = xk,
∂0
′ = −∂0, ∂k

′ = ∂k,
A0
′ = −A0, Ak

′ = Ak.
(96)

Hence, these are unitary time inversion operators. Consider how the operator TRacah
transforms scalars{

Ψ′, Ψ′
}
= (γ̂0γ̂0γ̂5Ψ, γ̂0γ̂5Ψ) = (γ̂0γ̂5Ψ, γ̂5Ψ) = (γ̂5γ̂0γ̂5Ψ, Ψ) = −

{
Ψ, Ψ

}
. (97)

Thus, TRacah does not preserve 4-scalar values. In particular, it violates relations
(21) of the CAR algebra of creation and annihilation operators. After all, the form (14),
where M = η+ = γ̂0, can be invariant only for the Lorentz transformations of the four-
dimensional spacetime. However, operator TRacah corresponds to rotation in the five-
dimensional spacetime with the signature (1, 1, −1, −1, −1). It should retain the form (14)
invariant in the case M = η+ = γ̂0γ̂5.

For operator TSchwinger we obtain exactly the same result since, for single-particle
states, it coincides with TRacah and differs in the order of the factors for multi-particle states.

7. Charge Conjugation C

CPT operator must be antiunitary [5,20,22]. Operator P is unitary; T is antiunitary.
Therefore, charge conjugation operator C must be unitary. Using similar reasoning as for P
and T, we obtain that preserving vacuum ΨV charge conjugation operator is

C1 = R−qRiγ̂56 . (98)

There must be antiparticles in the Universe that can be obtained from particles using
CPT transformation. In this case, the vacuum after the action of the CPT operator should
be ΨV and not ΨaltV. If we replace operator P by operator RP, Berestetskii theorem [11]
is violated, which states that the internal spatial parity of a system of a fermion and an
antifermion is −1. For example,

P
∂

∂θ1(0)
∂

∂θ3(0)
=

(
γ̂0Q̂

∂

∂θ1(0)

)(
γ̂0Q̂

∂

∂θ3(0)

)
= − ∂

∂θ1(0)
∂

∂θ3(0)
, (99)

RP
∂

∂θ1(0)
∂

∂θ3(0)
= − ∂

∂θ3(0)
∂

∂θ1(0)
=

∂

∂θ1(0)
∂

∂θ3(0)
. (100)

Thus, in the case of operator P, the result corresponds to the Berestetskii theorem, but
in the case of RP, we obtain the contradiction.

Therefore, it is the charge conjugation operator C, and not the spatial reflection
operator P, that should replace the vacuum with an alternative one. Hence,

C = RC1 = RR−qRiγ̂56 = R−qR−iγ̂02(•)T . (101)

Consider the action of operator C on basis spinors bα(p)e−ipµxµ
and bτ(p)eipµxµ

, ob-
tained from spinors bα(0)e−imx0|p=0 and bτ(0)eimx0|p=0 using boost eγ̂0γ̂ϕ. Since γ̂02(•)T

commutes with eγ̂0γ̂ϕ, we obtain
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Cb1(p)e−ipµxµ
= −iγ̂02(•)Teγ̂0γ̂ϕ ∂

∂θ1(0) e−ipµxµ
= −eγ̂0γ̂ϕiγ̂02(•)T ∂

∂θ1(0) e−ipµxµ
= b4(p)e−ipµxµ

,

Cb2(p)e−ipµxµ
= −iγ̂02(•)Teγ̂0γ̂ϕ ∂

∂θ2(0) e−ipµxµ
= −eγ̂0γ̂ϕiγ̂02(•)T ∂

∂θ2(0) e−ipµxµ
= −b3(p)e−ipµxµ

,

Cb3(p)eipµxµ
= −iγ̂02(•)Teγ̂0γ̂ϕθ3(0)eipµxµ

= −eγ̂0γ̂ϕiγ̂02(•)Tθ3(0)eipµxµ
= b2(p)eipµxµ

,
Cb4(p)eipµxµ

= −iγ̂02(•)Teγ̂0γ̂ϕθ4(p)eipµxµ
= −eγ̂0γ̂ϕiγ̂02(•)Tθ4(0)eipµxµ

= −b1(p)eipµxµ
.

(102)

It can be seen from (102) that operator C does not change the momentum and the
spin of the field operators but changes basis spinors to basis antispinors. In this case,
the positive-frequency terms remain positive-frequency, and the negative-frequency ones
remain negative-frequency.

Consider how the operator of charge conjugation [5,6,17]

Choles = −R−qiγ̂2(•)∗ (103)

acts in the theory of “holes”. Since iγ̂2(•)∗ commutes with eγ̂0γ̂ϕ, we obtain
Cholesb1(p)e−ipµxµ

= −iγ̂2(•)∗eγ̂0γ̂ϕ ∂
∂θ1(0) e−ipµxµ

= −eγ̂0γ̂ϕiγ̂2(•)∗ ∂
∂θ1(0) e−ipµxµ

= −b4(p)eipµxµ
,

Cholesb2(p)e−ipµxµ
= −iγ̂2(•)∗eγ̂0γ̂ϕ ∂

∂θ2(0) e−ipµxµ
= −eγ̂0γ̂ϕiγ̂2(•)∗ ∂

∂θ2(0) e−ipµxµ
= b3(p)eipµxµ

,

Cholesb3(p)eipµxµ
= −iγ̂2(•)∗eγ̂0γ̂ϕθ3(0)eipµxµ

= −eγ̂0γ̂ϕiγ̂2(•)∗θ3(0)eipµxµ
= b2(p)e−ipµxµ

,
Cholesb4(p)eipµxµ

= −iγ̂2(•)∗eγ̂0γ̂ϕθ4(p)eipµxµ
= −eγ̂0γ̂ϕiγ̂2(•)∗θ4(0)eipµxµ

= −b1(p)e−ipµxµ
.

(104)

Note that operators bj(p)eipµxµ
correspond to momentum−p, not p, since i∂kbj(p)eipµxµ

=

−pkbj(p)eipµxµ
. As a result of the action of operator Choles, the positive-frequency terms of

the spinor field transform into negative-frequency terms of the same spinor but with the
opposite momentum and spin. If we consider these terms as the “holes” in the Dirac Sea,
they correspond to the positive-frequency terms of the antispinor. With such replacement, the
results (104) fully agree with the results (102) obtained without using the concept of the Dirac
Sea. In this case, operator Choles of charge conjugation in the theory of “holes”, as already
mentioned, is antiunitary. However, if we assume that the replacement of the “holes” in the
Dirac Sea by antiparticles is operator Rsea, we obtain

C = RseaCholes, (105)

where Rsea is the antiunitary operator, which changes the momentum and the projection
of the spin of the spinor to the opposite ones and also changes the creation operator to the
annihilation operator and the annihilation operator to the creation operator. Comparison of
(105) to (102) and (104) implies that Rsea is simply the generalized Dirac conjugation operator

Rsea = (•)+γ̂0, (106)

And, therefore,
C = (•)+γ̂0Choles. (107)

Thus, if the concept of charge conjugation in the theory of “holes” is formulated
correctly, the operator of charge conjugation turns out to be unitary. That should be the
case based on the antiunitary nature of the CPT transformation.

Let us now consider the action of operator of charge conjugation C on the field op-
erators of the spinor–antispinor system using the example of positronium at the ground
state [11,12]. Orthopositronium has the spin J = 1 and the charge parity of −1. Parapositro-
nium has the spin J = 0 and the charge parity of +1. If the projections of the spins J3 and J′3
are directed along the z axis, the wave functions ψpara(p, p′, J3, J′3) and ψorto(p, p′, J3, J′3)
satisfy the relations

ψorto(p, p′, J3, J′3) = ψorto(p′, p, J3, J′3) = ψorto(p, p′, J′3, J3),
ψpara(p, p′, J3, J′3) = ψpara(p′, p, J3, J′3) = −ψpara(p, p′, J′3, J3).

(108)
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For the orthopositronium with the spin projection +1 in the nonrelativistic case, where
the negative-frequency components are negligible, we obtain

Ψorto,+1 =
s

d3 p d3 p′ ψorto(p, p′, 1
2 , 1

2 )(
∂

∂θ1(p)
∂

∂θ4(p′) +
∂

∂θ1(p′)
∂

∂θ4(p) ),

CΨorto,+1 =
s

d3 p d3 p′ ψorto(p, p′, 1
2 , 1

2 )(−
∂

∂θ1(p′)
∂

∂θ4(p) −
∂

∂θ1(p)
∂

∂θ4(p′) )

= −Ψorto,+1.

(109)

For orthopositronium with a spin projection of –1, everything turns out exactly the
same way. For the orthopositronium with spin projection 0, we obtain

Ψorto,0 =
s

d3 p d3 p′ ψorto(p, p′, 1
2 ,− 1

2 )(
∂

∂θ1(p)
∂

∂θ3(p′) +
∂

∂θ1(p′)
∂

∂θ3(p)
+ ∂

∂θ4(p)
∂

∂θ2(p′) +
∂

∂θ4(p′)
∂

∂θ2(p) ),

CΨorto,0 = −Ψorto,0.

(110)

Similarly, for the parapositronium (spin 0, projection of spin 0), we obtain

Ψpara =
s

d3 p d3 p′ ψpara(p, p′, 1
2 ,− 1

2 )(
∂

∂θ1(p)
∂

∂θ3(p′) +
∂

∂θ1(p′)
∂

∂θ3(p)
− ∂

∂θ4(p)
∂

∂θ2(p′) −
∂

∂θ4(p′)
∂

∂θ2(p) ),

CΨpara = Ψpara.

(111)

Thus, for the orthopositronium, the charge parity is −1, and for the parapositronium,
it is +1. This corresponds to the known facts [11,12]. If we use the operator C1 instead of C,
the sign is opposite to the required one.

8. The CPT Operator

Using Formulas (101), (73), and (92), we obtain expression for operator Θ = CPT

Θ = R−qR−xµ Rγ̂26(•)∗ = R−qR−xµ J+, (112)

J+ = Rγ̂26(•)∗, (113)

where J+ is the operator of the real structure (“charge conjugation”) in the theory of Krein
spaces [46,47].

Note that Bizi, Brouder, and Besnard [46,47] understood charge conjugation as antiu-
nitary CPT conjugation. However, at the same time, when considering the requirement
of commutation of the operator of a real structure with the Dirac operator D = iγµ∂µ,
they did not take into account that the CPT conjugation changes sign of the ∂µ operator.
Therefore, instead of the operator J−, as indicated in [46,47], it is necessary to use the
operator Θ. Moreover, in the operator Θ it is necessary to use the operator J+, and not J−,
as an operator transforming the basis spinors. As shown by Pauli [8] and Jost [21], the CPT
operator is the operator of the real structure of spinors.

The resulting operator Θ corresponds to vacuum ΨV of our Universe and can be
realized in it. The same applies to operators P and CT.

Operator (112) Θ differs in form from its usual form in RQFT since it does not explic-
itly contain Hermitian conjugation. Let us change Formula (112) so that the Hermitian
conjugation operator is explicitly present in it. It follows from (62) that

R2 = 1. (114)

Therefore, formula (112) can be rewritten as

Θ = RR−qR−xµ Rγ̂05γ̂26(•)T Rγ̂26(•)∗ = RR−qR−xµ R−γ̂5(•)+Rγ̂0 . (115)

That is
Θ = RR−qR−xµ R−γ̂5(•). (116)
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where (•) = (•)+Rγ̂0 is the generalized Dirac conjugation operator.
Formula (116) is unambiguous up to a phase factor ±1.

9. Discussion

We have constructed a consistent algebraic theory of the second quantization of
spinors based on the theory of superalgebraic spinors. In this theory, the main role is
played by the CAR algebra of Grassmann densities and their derivatives.

Formulas (73), (92) and (103), (105)–(107) establish a connection between the formulas
for the concept of “holes” in the Dirac Sea and the algebraic theory of spinors. The concept
of the Dirac Sea made it possible to obtain formulas that correctly describe the properties of
antiparticles and made a very large contribution to the development of the quantum field
theory. However, the vacuum in it has not only an infinite charge and infinite negative mass
but also infinite densities of these quantities. As a result of that, their fluctuations should
lead to infinite forces acting on the spinors. There are no such problems in the theory of
superalgebraic spinors. In this theory, the vacuum has zero eigenvalues of the operators of
observable physical quantities. Charge conjugation in the theory of “holes” in the Dirac Sea
contains the operation of transformation from a “hole” to an antiparticle. This operation
must be matched with an antiunitary operator. Therefore, in the correct formulation,
the antiunitary operator of charge conjugation in the theory of the Dirac Sea must be
supplemented with an antiunitary factor Rsea, which is the operator of the generalized
Dirac conjugation. The resulting operator (107) of the charge conjugation is unitary and
coincides with the operator of charge conjugation of the theory of superalgebraic spinors.

The proposed approach made it possible to construct an explicit algebraic form (27) of
the spinor vacuum ΨV. This is one of an infinite number of possible vacua, which differ
only in the role of the creation and annihilation operators for each of the possible values of
the momentum. In all publications devoted to the C, P, and T transformations of spinors, it
was assumed that the vacuum is invariant under these transformations. We have proven
that Lorentz transformations, as well as operators P, CT and CPT, leave the vacuum ΨV
invariant. However, operators C and T transform vacuum ΨV into an alternative one Ψalt
and, therefore, cannot be realized in our Universe. Corresponding symmetries must be
violated by processes associated with the difference in the action of operators C and C1,
as well as T and T1, on states of physical systems. This difference, due to the properties
of the reverse operator (62), does not manifest itself for single-particle states. Therefore,
interaction with vacuum ΨV is slightly different from interaction with alternative vacuum
Ψalt. Consequently, the symmetry breaking should be small for the cases when the spinor
can be regarded as an isolated particle.

The presence of vacua differing in the action of the creation and annihilation operators
on them is similar to what happens in curved spacetime, where the vacuum is not invariant
under the Lorentz transformations. In this case, each frame of reference corresponds to its
own vacuum [51]. Moreover, in such frames of reference, each moment of time corresponds
to its own vacuum [52]. However, in our case, we have only two spinor vacua, ΨV and
ΨaltV. This is the case only for small Clifford algebra. In large Clifford algebra, there are
operators that can transform different vacua into each other. Perhaps such transformations
correspond to curved spacetime. This issue requires further research.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Kramers, H.A. Théorie générale de la rotation paramagnétique dans les cristaux. Proc. Kon. Neer. Akad. Wet. 1930, 33, 959–972.
2. Wigner, E. Über die Operation der Zeitumkehr in der Quantenmechanik. In Nachrichten von der Gesellschaft der Wissenschaften zu

Göttingen; Mathematisch-Physikalische Klasse; Weidmannsche Buchhandlung: Berlin, Germany, 1932; pp. 546–559.
3. Kramers, H.A. The use of charge-conjugated wave-functions in the hole-theory of the electron. Proc. Kon. Neer. Akad. Wet. 1937,

40, 814–823.
4. Lüders, G. Proof of the TCP theorem. Ann. Phys. 1957, 2, 1–15. [CrossRef]

http://doi.org/10.1016/0003-4916(57)90032-5


Universe 2021, 7, 124 21 of 22

5. Grawert, G.; Lüders, G.; Rollnik, H. The TCP theorem and its applications. Fortschr. Phys. 1959, 7, 291–328. [CrossRef]
6. Bjorken, J.D.; Drell, S.D. Relativistic Quantum Mechanics; Mcgraw-Hill: New York, NY, USA, 1964.
7. Schwinger, J. The Theory of Quantized Fields. II. Phys. Rev. 1953, 91, 713–728. [CrossRef]
8. Pauli, W. Exclusion principle, Lorentz group and reflection of space-time and charge. In Niels Bohr and the Development of Physics:

Essays Dedicated to Niels Bohr on the Occasion of His Seventieth Birthday; Pergamon Press: London, UK, 1955; pp. 30–51.
9. Bell, J.S. Time reversal in field theory. Proc. R. Soc. A 1955, 231, 479–495.
10. Bjorken, J.D.; Drell, S.D. Relativistic Quantum Fields; Mcgraw-Hill: New York, NY, USA, 1965.
11. Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics: Volume 4; Butterworth-Heinemann: Oxford, UK, 1982.
12. Weinberg, S. The Quantum Theory of Fields, Volume 1: Foundations; Cambridge University Press: Cambridge, UK, 1995. [CrossRef]
13. Matthews, P.T. The Relativistic Quantum Theory of Elementary Particle Interactions. Lectures Given by P. T. Matthews. Notes Compiled by

F. Fujii, No. NYO-2097; Rochester University: Rochester, NY, USA, 1957.
14. Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Addison-Wesley Publishing Company: Boston, MA, USA,

1995. [CrossRef]
15. Schwinger, J. The Theory of Quantized Fields. I. Phys. Rev. 1951, 82, 914–927. [CrossRef]
16. Lüders, G. On the equivalence of invariance under time reversal and under particle-antiparticle conjugation for relativistic field

theories. Dan. Mat. Fys. Medd. 1954, 28, 1–17.
17. Schwabl, F. Advanced Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2008. [CrossRef]
18. Landau, L. On the conservation laws for weak interactions. Nucl. Phys. 1957, 3, 127–131. [CrossRef]
19. Epstein, H. CTP Invariance of the S-Matrix in a Theory of Local Observables. J. Math. Phys. 1967, 8, 750–767. [CrossRef]
20. Jost, R. Eine Bemerkung zum CTP-theorem. Helv. Phys. Acta 1957, 30, 409–416.
21. Jost, R. Das Pauli-prinzip und die Lorentz-gruppe. In Theoretical Physics in the Twentieth Century. A Memorial Volume to Wolfgang

Pauli; Fierz, M., Weisskopf, V.F., Eds.; Interscience Publishers: Cambridge, UK; New York, NY, USA, 1960; pp. 107–136.
22. Streater, R.F.; Wightman, A.S. PCT. Spin and Statistics, and All That; WA Benjamin: New York, NY, USA, 1964. [CrossRef]
23. Wess, J. The CPT-theorem and its significance for fundamental physics. Hyperfine Interact. 1989, 44, 3–8. [CrossRef]
24. Greenberg, O.W. Why is CPT Fundamental? Found. Phys. 2006, 36, 1535–1553. [CrossRef]
25. Christenson, J.H.; Cronin, J.W.; Fitch, V.L.; Turlay, R. Evidence for the 2π Decay of the K0

2 Meson. Phys. Rev. Lett. 1964, 13,
138–140. [CrossRef]

26. Bernabéu, J.; Segarra, A. Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino
oscillations. JHEP 2018, 2018, 63. [CrossRef]

27. Petcov, S.T.; Zhou, Y.-L. On neutrino mixing in matter and CP and T violation effects in neutrino oscillations. Phys. Lett. B 2018,
785, 95–104. [CrossRef]

28. Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11–31. [CrossRef]
29. Karan, A. Dealing with T and CPT violations in mixing as well as direct and indirect CP violations for neutral mesons decaying

to two vectors. Eur. Phys. J. C 2020, 80, 782. [CrossRef]
30. Lounesto, P. Clifford Algebras and Spinors; Cambridge University Press: Cambridge, UK, 2001. [CrossRef]
31. Lawson, H.; Michelsohn, M.-L. Spin Geometry; Princeton University Press: Princeton, NJ, USA, 1990. [CrossRef]
32. Borštnik, N.M. Spin connection as a superpartner of a vielbein. Phys. Lett. B 1992, 292, 25–29. [CrossRef]
33. Mankoš-Borštnik, N. Spinor and vector representations in four-dimensional Grassmann space. J. Math. Phys. 1993, 34,

3731–3745. [CrossRef]
34. Borštnik, N.M.; Nielsen, H.B.F. Understanding the second quantization of fermions in Clifford and in Grassmann space. New

way of second quantization of fermions—Part I. Bled Workshops Phys. 2019, 20, 109–119.
35. Borštnik, N.M.; Nielsen, H.B.F. Understanding the second quantization of fermions in Clifford and in Grassmann space. New

way of second quantization of fermions—Part II. Bled Workshops Phys. 2019, 20, 120–134.
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