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ABSTRACT: The Seidov limit is a bound on the maximum latent heat that a presumed
first-order phase transition of neutron-star matter can have before its excess energy density,
not compensated by additional pressure, results in gravitational collapse. Because latent heat
forces an apparent nonanalytic behaviour in plots correlating physical quantities (kinks in
two-dimensional, ridges in three-dimensional ones), it can be constrained by data. As the
onset of collapse depends on the intensity of gravity, testing for sudden derivative changes
and, if they are large, breaching the Seidov limit would reward with two successive discoveries:
such a phase transition (which could stem from hadron matter but also from a gravitational
phase transition), and a modification of General Relativity (thus breaking the matter/gravity
degeneracy). We illustrate the point with f(R) = R + aR? metric gravity.
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1 Introduction

General Relativity (GR), proposed by A. Einstein in 1915, remains the widely accepted
theory of gravity and has undergone extensive testing in the weak field regime. Numerous
astrophysical observations, including solar system tests, binary pulsars, and gravitational-
wave phenomena [1, 2], have consistently supported the predictions of GR. Nevertheless,
in the strong field regime, GR may exhibit limitations or fail to accurately describe certain
phenomena. Therefore, it is wise to continue testing GR against relatively straightforward
alternative theories in these new regimes.

Neutron stars (NS) are among the most compact, non-collapsed objects observable,
making them excellent laboratories for testing various theories of gravity [3-5]. In particular,
their high density allows us to test the large stress-energy tensor regime. Studying NS in
the context of modified gravity theories can help constrain the parameters of these theories.
Observations from X-ray emissions, binary radio systems, and gravitational waves provide
constraints on the mass and radius of these astrophysical objects. Table 1 presents some
observational masses and angular frequencies from [6-8]. Radii are not yet so directly
extracted, but NICER has determined, for example, that the radius of J0740+6620 is about
12.57 5% km.



Name Qrad -ms™1) | M(Mg)
J0337+1715 2.299 1.4401(15)
J0348+0432 0.161 2.01(4)
J0509-+380 0.082 1.34(8)
J0453+1559 0.137 1.559(5)
J0740+6620 2.177 2.07(7)
J1012+5307 1.195 1.72(16)

Table 1. Angular velocity and mass of a few well-measured pulsars [6-8].

NS masses typically range from 1 to 2 M, with radii spanning 10 to 13 km. The
primary challenge in studying NS lies in the uncertainty of the Equation of State (EoS) that
accurately describes the matter within them. This uncertainty complicates efforts to constrain
the parameters of gravitational theories. To describe NS within the framework of modified
gravity, it is essential to employ EoS that are independent of astrophysical observations and
are instead constrained solely by microscopic physics [9, 10].

The most popular modified gravity theories nowadays are f(R) and scalar-tensor theories.
f(R) gravity is a natural generalization of GR in which the Ricci scalar R in the action
is replaced by a more general function of it. By construction, these theories introduce
dimensionful parameters which must be constrained by observations. f(R) theories are a
particular case of scalar-tensor theories, which include both a tensor field and a scalar field
to mediate the gravitational interaction [11, 19]. Scalar-tensor theories become important
in inflationary cosmology [20].

The aim of this project is to establish the Seidov limit for the latent heat in a phase
transition as an additional diagnostic which may establish the need for corrections to General
Relativity. For this we study static neutron stars within alternative theories of gravity. As
an illustrative example we adopt R2-gravity, with an additional parameter « in which

f(R)=R+aR?, (1.1)

but we point out that the static Tolman-Oppenheimer-Volkoff (TOV) equations which we will
present are more general and valid in a broader family of theories which can be characterized
by presenting a change of the intensity of gravity and a geometric shift of the Einstein tensor
as can be seen in eq. (2.1). We study both the static (computing the typical mass-radius
diagrams for different families of stars and analyzing the maximum latent heat that a star
can support before collapsing) and the rotating star [21, 22] (computing the moment of
inertia and other observables) for different EoS and values of the parameter a of the theory
in eq. (1.1). As a check, we compare the results in the a — 0 limit of General Relativity
with our previous work [23], finding excellent agreement. In what follows, we will consider
only positive values of the parameter . In the case of its negative branch, the gravitational
mass receives large contributions from supposedly empty space outside the star. This makes
the negative branch difficult to interpret [5]. No stable configurations are found for certain
specific EoS [24]. Conversely, for a > 0, a match with the asymptotically Schwarzschild
solution is feasible. For more discussion of f(R) models in NS physics, see [25].



The article is concerned with static, equilibrated neutron stars, in which the phase
transition has already taken place. The latent heat is then manifest as some nonderivability
in the thermodynamic equilibrium quantities which may leave an effect. Cataclysmic effects
should happen upon the core-collapse supernova process giving birth to the neutron star, and
have long dissipated by the time our treatment to a cold star applies.

We believe that our work establishes a) the measurability of latent heat through non-
analyticities (sudden derivative changes) in physical plots and b) the possibility to employ
the Seidov limit to push beyond GR, just as breaking the largest-mass ceiling would [26].
This can happen because gravity’s attraction (which ultimately causes collapse) can be
weakened in modified theories [27].

The article is organized as follows. In section 2 we recall a family of modified gravity
theories characterized by a scalar weakening/strengthening factor and a geometric shift. A
subclass of that family (subsection 2.1) is that of f(R) theories, in particular R-squared
gravity, and their equivalence (subsection 2.2) to particular scalar-tensor theories in the
FEinstein frame.

In section 3 we then discuss the TOV equations of hydrostatic equilibrium for f(R)
modified gravity, including boundary conditions and initial conditions for the radial integration,
which require a bit more care than in GR. In section 4 we then turn to the matter content of
the neutron star. The EoS uncertainty band which we employ is discussed in subsection 4.1.
Subsection 4.2 is then dedicated to defining the latent heat for a phase transition in a given
EoS to an exotic phase of hadron matter.

Section 5 is then dedicated to repeating Seidov’s reasoning for the maximum latent heat
that a star can support before collapse (which is a bound to the maximum latent heat which
could be measured in a static neutron star, even if hadron physics would allow for larger
ones), and importantly, we extend the calculation to R + aR? gravity. Section 6 is dedicated
to the Buchdahl-Bondi limit in the mass-radius diagram for f(R) theory, another known
result which might be of some use in the attempt to distinguish matter from gravity effects
in neutron stars. Then, in section 7 we discuss the slowly rotating star approximation,
just to show that ridges/kinks in physical properties due to phase transitions are by no
means reduced to the mass-radius diagram.

Although the original Seidov limit (which we reobtained also for f(R) gravity) was
formulated in the small-core approximation, we turn to numerical computations to make it
more generally applicable. The field equations obtained earlier in subsection 3.1 are then
numerically solved, in section 8, to illustrate the points made, explaining how the numerical
algorithm is designed.

Finally, section 9, recapitulates the discussion and concluding remarks as well as ongoing
investigations are mentioned.

2 A simple class of modified gravity theories

There is a quite generic family of modified gravity theories whose field equations can be
written as [28]

() (G = Wiw) = 6T}, (2.1)



where G, = R, — %ng, is the Einstein tensor, 7}, the stress-energy one (k = 87 as we
work in geometrized units G = ¢ = 1) and o(x) is the coupling to the gravitational field (due
to other fields or gravitational curvature invariants, generically denoted by x), which acts as
a gravitational weakening/strengthening parameter. W, is a symmetric tensor that may
include additional terms depending on the theory considered and it shifts the geometrical
contribution of the theory away from GR. Notice that we recover the general relativistic
field equations taking o(x) = 1 and Wy, = 0.

We consider, as the 0'" order approximation to matter, the energy-momentum tensor of
a perfect fluid, T}, = (p + p)uyty + pguw, where u,, is the 4-velocity (which satisfies u? = —1)
of an observer moving with the fluid.

In these theories of modified gravity it is generally not the canonical energy-momentum
tensor 1}, which is conserved. Instead, consistency with the Bianchi identity requires the
conservation of a rescaled, shifted tensor Tﬁ,fjf = ﬁTw + %WW.

One salient and well-known class of theories which can be framed as in eq. (2.1) is that
of f(R) metric gravity, and we now turn to it.

2.1 f(R) theories

These theories can be cast in the form of eq. (2.1) with ¢ = f/(R) and an adequate W,,,,
as apparent in eq. (2.3) below. They are built modifying the Einstein-Hilbert action of
general relativity [11, 29], replacing the scalar curvature R with a function of the same that
introduces additional parameters in the theory. There exist different formalisms for f(R)
theories, such as the metric formalism or the Palatini one, in which the metric tensor g
and the connection I' are independent variables [9] (to see a general review of metric and
Palatini theories in application to stellar objects, see [25]). Here, we focus on the metric
one. The action is given by

5= i / &2/ "GF (R) + S31(gus X), (2.2)

where Sjs is the action of the matter fields y. A theory formulated over a stable vacuum
2

must obey % > 0 and % > 0 [11]. Varying the action with respect to the metric tensor

we obtain the known field equations

1f (R)guw — ViV — g0 f/(R) = KT (2.3)

P (R R —

For the linear f(R) = R we recover the Einstein field equations of general relativity.

2.2 Equivalence to scalar-tensor theories

f(R) theories are equivalent to Brans-Dicke scalar-tensor theories (with vanishing Brans-Dicke
coupling constant wpp = 0) and a non-zero potential of the scalar field:

1
= /d4x\/jg(g0R —U(9)) + St (G ) (2.4)
with the scalar field defined as ¢ = f/(¢), its potential being

Ulp) = v() f' () = f((e)), (2.5)



and where the argument x of S); includes any other matter fields Note that ' denotes here
derivative with respect to a new field ¢) and one imposes f”(1) # 0 to get R = ).

In particular, we can work with a quadratic f(R) theory with the functional form
f(R) = R+ aR? [20], where a > 0, to obtain nominally stable solutions [11]. From the
definitions of ¢ and U(yp) we then get

L1 (2.6)

U(@):E

The field equations and the equation of the motion of ¢ can be obtained by varying the
action (2.4) with respect to g,, and ¢ respectively [30], leading to

K 1 1
Guw=-"Tw——9.,U()+—(V,V,o—g,00), 2.7
w o W 2% wU () @( © W ©) (2.7)
d
30p +2U(p) — <pdg = kT. (2.8)

In order to simplify the further studies, one can rewrite the above equations in the so-
called Einstein frame (EF). They are related to the Jordan frame ones through a conformal

20
transformation,! with the conformal factor defined as D?(¢) = ¢ = e V3, that rescales the
EF metric

9w = D*()guv, (2.9)
where we have redefined the scalar field as

V3

¢ = 7log<p. (2.10)

We will denote geometric quantities in the FEinstein frame by a raised asterisk *. From
eq. (2.4) the action is then

1
§= o [ d'av=g (R = 20" Vi0Vio- V(@) + Su(@ g0, (211)
where the potential takes the form

V(g) = — (1 . e‘fﬁ¢)2 _ (2.12)

" 4a
Before computing the field equations it is convenient to check what happens to the physical
magnitudes, such as the pressure and energy density, whenever a conformal transformation is
performed [31]. Notice that p and p are the physical energy density and pressure, the ones
which enter the equation of state due to microscopic physics. To the energy momentum tensor
which they produce we apply the conformal transformation (2.9), Tj;, = D2T,,. Raising
both indices we get T** = D~STH and its trace is conformally transformed to T* = D~*T.
From the definition of the energy-momentum tensor for a perfect fluid immediately follows

Notice that the conformal transformation might be singular in some particular cases. We discuss this
problem in the further part of the paper.



that p* = D~*p and p* = D~*p. Lastly, the 4-velocity of the comoving observer with the

fluid is transformed as u:; = Du, and u* = D Ltuk.

Keeping this in mind, the field equations are now (see e.g. [11]):

* * * 1 * * *
G,ul/ = RTul(/M) + 28M¢8V¢ - gyyap¢8p¢ - iguyv(¢) = HT;U(/M) + 2T;u(/¢)7 (213)
1dv K
%) — —— = T 2.14
°= 3 d¢ 23 (2.14)

where [J* = V7 V™.

In section 3.1, we are going to solve the static star computing the field equations in the
Einstein frame. Thus, it is convenient to compute the divergence of the energy-momentum
tensor therein. From the Bianchi identities, using (2.14) and taking into account that the
connection is symmetric, we arrive at

1
Vo ITH =———=T"V;é. 2.15
nrv \/g 1/(;5 ( )

3 Static stars in modified gravity

3.1 Generalized TOV equations for f(R)

We may now address neutron stars in this theory following many earlier studies, e.g. [25] for
a review. We initially formulate the problem in the Finstein frame in which the equations
take a form closest to that of the general relativistic TOV system, starting again from the
static and spherically symmetric metric

ds? = = at? + 22 dr? 4 r2(dh? + sin® 0d¢?), (3.1)

but now for ds2. (Once the field equations (2.13) and (2.14) are obtained, the conformal
transformation is inverted, returning the components of the metric to the Jordan frame.)
The components Gy and Gj, together with the divergence of T, immediately yield the
modified-gravity TOV equations for f(R), formulated as a scalar-tensor theory,

1d —2A 8 o2, L
S (=) = Fipt e+ SV (9), (3.2)
9
2 _gydv (6 B 1) _ 8m —on e 1
¢ dr + r2 - D4p+ e e - 2V(¢)’ (33)

ar

1 gy dV
1€ i (3.5)

Equation (2.14) is explicitly written as
dv d\ 2 K
1 / 22 my—4
+ | = D3 p) +
¢ [ }cb W (3p—p)

ar dar v

Notice that p and p are the physical energy density and pressure in the Jordan frame
respectively, related by the equation of state (EoS). Thus, the system of differential equa-
tions (3.2)—(3.5) together with a given EoS, completely determine the problem of the static

star in this modified theory of gravity. However, before we move to the numerical analysis, let
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Figure 1. Dilatation factor (1 + 2a.R) inside a neutron star. Left: for an extremely soft EoS (ExS
given below in figure 2) with central pressure p. = 1000 MeV /fm? and o = 25km?. The transformation
between the Einstein and the Jordan frames is singular when the solid line touches the dotted line
at zero. Right: same but for the stiffest EoS ExR, in this case with modified-gravity parameter
a = 50km?.

us discuss a possible singular behaviour of the above equations, caused by the conformal factor
D when its values vanishes. This characteristic arises from the fact that gravity modifications
often introduce new matter-dependent contributions to the hydrostatic equilibrium equation
through the modified Klein-Gordon equation (3.5), which links the dynamics of the scalar
field with ordinary matter sources — here, by the value of the trace of the energy-momentum
tensor. Additionally, it is important to note that the critical value of the parameter a at
which this happens varies with the energy density and pressure, depending on their profiles.
Therefore, careful consideration must be given when selecting a specific value for «, taking
into account the equation of state and the scalar-tensor model in question. In the following
analysis, we continue focusing on a quadratic model, specifically f(R) = R + aR?, so that
D? = f = 1+ 2aR.

Figure 1 presents our numerical computation of that dilatation factor (basically, the
Ricci scalar) in the interior of two stars characterized by extremely soft (smallest pressure
at given density) and extremely hard (largest pressure at each density) equations of state
(see subsection 4.1), respectively. As seen in the figure, the factor D? vanishes at some point
inside each of the stars, meaning that the joint theory defined by G = 1, the given « and the
respective EoS in that graph is inconsistent with that central pressure.

For example, adopting the stiffest EoS ExR, and a central p, = 4000MeV /fm3, the
“critical” value (for which D? becomes negative at some point inside the star) is found to
be around o = 20km?. For lower central pressure, the minimum value of o at which D?
crosses zero rises. Conversely, for softer EoS, it diminishes.

However, this does not necessarily mean that every value of « is excluded, but that
the stars which can be supported depend on the «. For every EoS and every «, there
always are stars in which D? # 0 everywhere. If « is increased, the size of the allowed
p. decreases, but that is all.

It then becomes an observational question: is the slate of physically allowed configurations
for each (a, EoS) combination sufficient to explain the statistics of observed neutron stars?



3.2 Initial and boundary conditions for the radial integration

The initial conditions and boundary conditions that we will impose are the following, naturally
arising in the Einstein frame. Pressure in the center of the star is a given value p(0) = p.
Integrating the system for different central pressures will produce a family of solutions. The
radius R of the star will be determined by the condition p(R) = 0. The star’s physical
radius will then be

R, = RD™'(¢(R)). (3.6)

The condition A(0) = 0 guarantees regularity of the metric and on the other hand, %(O) =0
that of the scalar field. We will also impose our spacetime to be asymptotically flat so that
rlggo V(¢) = 0 and then Tlgn ¢ = 0. Moreover Tll)m v(r) = 0. These guarantee asymptotic
flatness in both FEinstein and Jordan frames.

Note that in the presence of matter, the frames are not equivalent due to the coupling
term with matter that appears in the Finstein frame. Similar to the radius (3.6), the values
of other physical quantities, such as pressure p and density p, which are related to each other
by microphysical descriptions, are taken in the Jordan frame. It is common practice to use
equations in the Einstein frame because they are simpler compared to those in the Jordan
frame (and also because most stellar codes are developed for GR). However, the physical
quantities are considered in terms of the Jordan frame values. Note that in equation (3.2)
and subsequent ones, there is a function D associated with the physical fields. For example,
pE = p/D* represents the “Einstein frame density” (see the relations between frames in [31]).

Due to the form of the conformal factor and to the fact that the scalar field exponentially
decreases at infinity, we find that the masses of the star in both Finstein and Jordan frames
coincide. In order to obtain their common value we only need to compare the exterior metric
towards infinity with that given by the Schwarzschild metric, so that

-1
) (1 — 2Af) . (3.7)

This is possible and simple for a > 0 as the scalar field dies away with r without oscillation.
Note that in metric f(R) gravity, multiple exterior solutions exist, one of which is the
Schwarzschild-de Sitter solution, as briefly discussed in [25]. This indicates that the usual
Birkhoff theorem does not apply; for its generalized version, see [12]. This can, in principle,
create challenges when matching interior and exterior solutions (see [13, 14]), although a
specific procedure for this model of gravity has been adapted to address these issues in [15, 16].
On the other hand, in the case of not decaying scalar field outside the star (the so-called
“gravisphere” [17]) which can arise to a problem of the well defined mass of the star but at
the same time also providing testing tools. Moreover, for the general class of the scalar-tensor
theories, one introduces the screening mechanism (see e.g. [18].

This results in the total mass of the star, numerically extracted from the solution to
eq. (3.4),

M = lim g (1-e20). (3.8)

=00



= EoS Interm
3 EoS TrF
10° F — Eos ExR
—— EoS ExS
= EoS TrF 2
10%F — EoSTrF 3
EoS TrF 4
= EoSTrF 5

p (MeV/fm?3)

10t
100 L
-1 L n "
10 102 103 104
o (MeV/fm?3)

Figure 2. Equations of state in logarithmic scale. Pressure (p) as a function of the energy density
(p) in MeV /fm3. The green line is the stiffest EoS in the low-density neutron star region, while the
red line represents the softest allowed EoS there.

The directly observable physical magnitudes of the static star are its mass and radius
given by equations (3.6) and (3.8). The system of differential equations (3.2)—(3.5), together
with EoS, completely determines the problem.

We now turn to the actual energy-matter content of the star and a brief discussion about
the latent heat which characterises first-order phase transitions thereof.

4 Matter-energy and phase transitions

4.1 Equations of State

In this section we present the equations of state employed to solve the field equations. The
EoS relate the thermodynamic variables that describe the state of matter under certain
physical conditions. Added to the set of equations (3.2)—(3.5); this completes the modified
TOV system. Assuming that the fluid that constitutes the neutron star is a barotropic one,
the equation of state takes the form p = p(p). Since the thermodynamically exact EoS is
never exactly known, uncertainty bands based on hadron input are standard.

The EoS used here are shown in figure 2: the most rigid (red) and the softest (green)
and some typical intermediate case.

This EoS band, provided by our research group [10], is valid for cold hadronic matter. It
is obtained from Chiral Perturbation Theory for low densities and perturbative Quantum
Chromodynamics for high densities. Intermediate densities are obtained interpolating between
both branches. Furthermore, this family of EoS is not constrained by any astrophysical
observable so it can be used in extensions of general relativity, such as in scalar-tensor or
f(R) theories here.

All the EoS of the family satisfy the stability and causality conditions given by % >0

and Z—z < 1, respectively. Additionally to these conditions, the family of EoS also satisfies
thermodynamic consistency p = [n(u)du for a causal n(u) [32].



In general, a stiff EoS has a large slope in the pressure-energy density diagram that can
even saturate causality (c2 < 1). The most rigid EoS employed in this work is dubbed EoS
ExR (an acronym for Extremely Rigid) and the softest is EoS ExS (likewise abbreviating
Extremely Soft). Upon increasing the stellar mass, a larger slope in the EoS will lead to an
increase in the radius, a smaller slope to a decreased one. In this work we analyze these
extreme cases and some intermediate ones in section 3.1.

Of interest for our main thrust is that some of the EoS in figure 2 present first order
phase transitions (horizontal straight lines) given by

dp/dp = 0. (4.1)

In the following results we identify some of the nonanalyticities in NS observables that
these phase transitions induce.?

4.2 Latent heat

We now turn to an equation of state with a first order phase transition at p; from p; to
p2 > p1. First, we consider a relativistic star described by the TOV equations (3.2)—(3.4).
If the central pressure exceeds py, then we obtain a star with a core in a new phase. If it
is lower than p; then we have a phase-homogeneous star.

The intensity of a first order phase transition is quantified by the latent heat, which
can be defined by [33]

L=p22"P2 (4.2)

P1P2

This is a natural and practical definition of latent heat in the context of a neutron star. It is
close to the naive dL = dE/(nM) from which it differs by the binding (or antibinding) energy
per nucleon, B/A, with the difference quantified in our earlier work [10], whose first section
details the derivation. But it is more practical because it is entirely written in terms of
energy densities and pressures which directly appear in the stress-energy-momentum tensor,
without requiring further theory.

Seidov’s study within GR, employing the small-core limit [34] predicts a critical value
such that for larger L the star is unstable: if the phase transition is long enough, gravitational
collapse occurs. He found the strongest phase transition allowed in GR (for a small core)
to have an energy-density jump

1 3p1>
—p = — 4 - 4.3
P2 — pP1 = p1 <2 + 2 1 (4.3)

which our group has formulated as a latent heat in earlier work [33].
In the context of modified gravity we can integrate the TOV-like system for all the
equations of state and obtain an approximate limit for the maximum latent heat allowed.

2Remember that nonanalyticity is necessary for any nonzero function with zero derivative on a finite segment.

,10,



5 Seidov limit in R2-gravity

We now study the generalization of Seidov’s limit for the particular R + aR? theory in the
Einstein frame. To do so, we first rewrite the TOV system of differential equations. It is
convenient to adopt the Schwarzschild notation

(1 _ Qm) 1, (5.1)

r

and so, the TOV system is written as

d 2

—dT = 4rr?pD~ + %(T —2m)¢”* + TZV(@, (5.2)
d + Ar 1Y g, 72

d;: - _rp— an P D4r p+ (r—2m) (g B \/§> ¢2 N CLV(Q&)] ’ (5:3)

The equation of motion of the scalar field can be rewritten in the following way:

7 r2 4m 8w 4 ;o r Ar 1dv
¢ 2 —2m) [—73+D4(p—p)—V(¢)+ﬂ]¢ = — {\/517‘*(3p_p)+4d¢}
(5.4)

In what follows, we suppose that the central pressure of the star p. and the pressure
p1, at which the phase transition takes place, satisfy p. — p1 = 9, where 0 < p1. At p =py
there is a discrete change in the energy density between phase 1 and phase 2 from p; to
p2 = qp1 > p1- If a star’s central pressure p. is greater than p;, then the star presents a
nucleus in the new phase 2, whilst if p. is lower than p; the star is homogeneous in phase
1. Following Seidov, we call p4(r) the homogeneous-star solution with p, slightly greater
than p; and p_(r) that with p. = p1. We can then relate both solutions by introducing
a perturbation function II(r) as follows,

p+(r) = p—(r) +1I(r). (5.5)
In a small neighbourhood near the center of the star, p_(r) takes the form
p-(r) =p1 —6i(r). (5.6)

We can expand ¢(r) in power series as r — 0, ¢(r) = ¢ + ¢lr + %%7“2 + ... The initial
conditions are satisfied iff ¢/, = 0. Thus, we can approximate the scalar field near the origin
by its central Value ¢ ~ ¢.. The next order in the power series can be obtained from (5.4),
yielding 5 ¢C = 3fD4 (3p1 — p1) + o % , where D, = D(¢¢).

Notlce that, as r — 0, the Schwarzschild—like mass function approaches 0,

m(r) ~ / dr (D“T p1+ V(¢c)> [34;;4/)1 + V(¢c) rd < rl. (5.7)
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It is straightforward to compute d1(r) by direct substitution of (5.5) into (5.2) yielding

2

1(7) = 5o )31+ )i = V(6 + i) 63

The initial conditions for p (r) at the outer edge of the phase-2 nucleus, r = r,,, are

47 1
P+(Tn) = P1, m('rn) = @p2 + EV(%) T?L' (5'9)
Moreover, since r, is small,
dp+ 47 1
W( n) _3D§ (3p1 + p2)(p1 + p1)rn + EV(%)(M + p1)7n, (5.10)
and
27T 2 ]. 2
6(rn) ~ g (301 + p2)(pr + p2)rsy — 5V (9e) (1 + p2)r (5.11)

Substituting (5.3) in (5.2), and neglecting terms proportional to IT and H@, an equation
analogous to the general relativistic one is left [34]. Therefore, for small r, the pressure
difference II(r) takes the form

B

II(r) = A+ - (5.12)
Replacing (5.3) in (5.9),
B
A=5 —2, (5.13)
T'n
B dé dpy
% =~ . dr |, (5.14)

By carrying out standard algebraic manipulations after solving the system and normalizing
all quantities by the density on the lower end of the phase transition, p;, one finds
A 1401301+ 3—-2¢— K(a)/p

4 _ , 5.15
0 g+o1 301+q—K(a)/p1 ( )

4
where o1 = %, q= Z—f and K(«a) = QZ‘; V(¢). Notice that we recover Seidov’s limit in GR,

eq. (4.3), after taking the limit K — 0 in eq. (5.15),

A 1 3 3—-2
4 _ifadnto- g (5.16)
dlgr  qto1 301+q

Since % = ?%, as in [34], there exists a critical value gcjt above which the derivative

becomes negative and therefore the star is unstable and collapses. In GR this happens at

3
¢ > Goric = 5(1+01), (5.17)

which is the well-known analytical Seidov limit.
After several computer runs we can state that the central value of the dimensionless
scalar field ¢, ~ 1072 < 1. The central scalar field is obtained through a shooting method
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with a bisection process, which computes ¢. for a given a. The algorithm works as follows:
we first make an initial guess for ¢. and check whether the boundary conditions are satisfied.
If they are not, the bisection method refines the guess until hitting an appropriate value
of ¢.. By applying this procedure to different configurations, we conclude that the central
value of the dimensionless scalar field is ¢. ~ 1072 < 1. Therefore, we can expand K («)
in modified gravity as

K(a) ~ -2

~ . 5.18
24ro ( )

Keeping in mind that p; ~ 1072 km? and considering o ~ 10 km?, we arrive at

T = 0: < 1. (5.19)
24mapy
Then, we can write (5.15) as
A 1+ 01 1 3(1 — q)
= 301 +3—-2q+ ———x 5.20
0 q+o01301+4¢ ! ? 301 +¢q ( )

Finally, qui; in R2-gravity is given by the following quadratic equation

3(1—q)
3 3—2 —x =0. 5.21
o1+ Q+301+q1’ ( )

It is easy to compute the critical value of ¢ that satisfies eq. (5.21)

3 1
Gt = S [1—o1 -2+ ﬁ\/za + 18071 + 2702 + 22 + 6oy + 322 . (5.22)

Taking  — 0 we obtain two solutions, the general relativistic and an unphysical one.
The positive solution takes an R2-gravity correction given by the positive term in (5.22). We
discard the negative solution since it does not return Seidov’s limit in GR and ¢ must be
positive by definition. Finally, we can write (5.22) in a better looking way by expanding
it around x = 0 yielding

3 3 1 4
w==-(1 — |—-z—4 2
qcrit 2( +01)+42(1+30_1) 333 o1+ x
X
:q§§—§+0($2)
R
= ¢S8 + ¢l 1al. (5.23)

Comparing with eq. (5.19) we see that for positive o parameter the Seidov limit becomes
larger in f(R) theory. This feature in the small-core approximation persists, in numerical
computations, for arbitrary sizes of the phase-2 nucleus. Thus, finding a star which exceeds
the Seidov limit in GR + allowed EoS band immediately takes one to modified gravity.
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6 Buchdahl-Bondi limit in R2-gravity

This limit is a maximum compactness which can be achieved in a neutron star: in General
Relativity (for a static, spherically-symmetric star: rotation could induce an EoS dependence),
R > % x 2M, nontrivially more stringent than the Schwarzschild limit R > Rs; = 2M. It was
extended in [35] to f(R) gravity, in which this Buchdahl-Bondi limit becomes

f.r(Ro) f.r(Ro)
0 (H f,R<o>)

(1422209’

2M < R, (6.1)

where Ry = R(0) is the Ricci scalar at the star’s center. This means that the limit ceases
to be universal, as the dependence on Ry introduces not only the parameter « defining the
theory of gravity, but also the equation of state of the matter content even in the static
spherical-symmetric case. Since

2
R= —26_% {—7‘21//2 + 2N — 2 —or)  2r N 4 P — 1} (6.2)
r
in a spherically symmetric and static spacetime with ds? = —e2("dt2 + 2\ qr2 4 12 (d6? +

sin? 0d¢?), it follows from (6.1) (f(R) = R + aR?) that

4(1+2aRy)(1
M < 2+ 20R0)(1 +aRo) oo (6.3)

9 (1 + %O&Ro)2

Notice that the general relativistic Buchdahl-Bondi limit is what remains of (6.3) upon
taking o = 0. Furthermore, in the opposite a — oo limit in eq. (6.3), in which R? is
very dominant,

1
M < 5RS, (6.4)
we curiously recover the Schwarzschild limit. Returning to theories around the GR case, if
we take o < 1, we pick up an order a! correction,
4 1
M<g (1 + 3aR0) R.. (6.5)

Recalling that A(0) = 0, the last two terms of eq. (6.2) drop out, leaving

Ry = {—r2y/2 + 2N — 2 — 2 + 27‘)\/} (6.6)

2
T72 r=0
Evaluating it we can calculate (6.3) which we shall plot below.

Here we can see again that, because v/(0), N'(0) and v”(0) depend on the matter content
through the field equations, the Buchdahl-Bondi bound depends on the central pressure and
should now be taken with an uncertainty band associated to the uncertainty in the EoS.

As discussed in subsection 3.1 (see figure 1), there are values of a that make the coefficient
of Rs in eq. (6.3) negative or divergent. This makes no sense and thus o must be carefully
chosen. The numerical computation will be presented later in section 8.
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7 Stars in slow rotation to first order

In this section we turn to a quick review of the theory for a slowly rotating star. Slow rotation
is defined by the changes in pressure or energy density due to rotation to be small corrections.
This implies that particles at the surface of the star move only with non relativistic rotation
velocities, i.e. QR < 1, where € is the angular velocity of the surface of the star as seen by
an observer at infinity. We will call L(r,#) the angular velocity experienced by an observer
in free fall towards the star, due to the dragging of the fluid. Then, we define w = — L
as the relative angular velocity.

Following Hartle & Thorne [36, 37], the most general stationary axisymmetric metric
takes the form

ds? = —H?dt* + Q*dr® + r* K*(d#?* + sin® 0(d¢ — Ldt)?), (7.1)

where H, (), K and L are functions of r and . The metric of this spacetime behaves in
the same way under reversal in the direction of rotation as under a reversal in the direction
of time. Due to this, an expansion of H, () and K can only contain even powers of ()
whilst an expansion of L can only contain odd powers of the angular velocity. Here we
only consider terms to first order in € so that L(r,0) = w(r,0) + O(Q3) and the metric
for the rotating star may be rewritten as

ds? = —e¥dt? + ePdr? + r2(d6? + sin? 0d¢?) — 2wdtde, (7.2)

where w(r, ) is linear in . In order to find the angular velocity we need to compute
the field equation

R*y =8 T™,. (7.3)

The 4-velocity of the rotating fluid is given by u* = (ut, 0,0, Qu'). The normalization
of u gives, up to first order in Q, u! = e™”. The RH side of eq. (7.3) is easily computed
from the perfect fluid’s energy-momentum tensor. It is also straightforward to compute
the LH side using the identity [36]

(_g*)_1/2R*t¢ _ 85 [(_g*)—l/Qg*tozF;;i} ) (74)

After some manipulations one finds the following equation for w(r, 6),

ﬁ&n [e_”_’\r‘larw} +

" X Op {Sing Gagw} = 167D *(p+p)w. (7.5)

r2sin3 6

We can now expand in Legendre polynomials so that

w(r,0) = iwl(r)ddple, (7.6)
P cos
and substituting back into eq. (7.5), arrive at
ev A o adm ] 2-1(1+1) _
TTaT |:€ >\7'4dr:| + Twl = 167D 4(p+p)wl (77)
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The asymptotic exterior solution takes the form w — ar~'=2 + bri~!

. Taking into
account that o — Q) — i—j{, with J the total angular momentum of the star, we can conclude

that [ = 1 and therefore w; vanish V[ > 2. Thus, w; = w(r) and the equation for w is

v—A
€ d [ _,» 4dw(r)] _ -4
. [e e 167D (p+ p)w(r), (7.8)
with boundary conditions lim, _,,, @ = 2 and d%fno) = 0. The first condition recovers the

angular velocity as seen by the observer at infinity whilst the second condition guarantees
the regularity at the center of the star.
An observationally accesible quantity is the moment of inertia of the star, defined by

J
I=—. 7.9
Q (7.9)
Outside the star the term e*”*)‘r‘l‘fi—f in eq. (7.8) is constant and has to match the interior
solution at r = R. From this fact, an integral equation for the angular momentum of

the star follows,
R
—V—A,,A dﬂ

R
o 167r/ drD™4(p + p)rte) Vw = kJ. (7.10)
0

0

The constant k is fixed by the Newtonian limit:

8 R 4
INewt = 39/0 dr(p+p)r®. (7.11)

In the Newtonian limit p < p, ¢(r) = 0 (and the conformal factor is D = 1), there
is no dragging (w = 0) and v(r) = A(r), so that & = 6. Finally, we have obtained an

equation for the moment of inertia

I= 8% /OR drD~*(p + p)rie vt <w((27“)) . (7.12)

This can be evaluated in modified gravity once the metric functions v, A have been
determined with the help of the modified Einstein’s equations, as we will do in the following
section 8.

8 Numerical computation

Let us now turn to a sketch of the numerical procedure and gather a few examples of the
various physics points discussed. The key points are presented in figure 7 and figure 11. The
latter illustrates the correlation between the latent heat of any first-order phase transition
and the discontinuity in a typical observable-to observable function, in this case moment of
inertia as a function of mass; the latter, that the maximum latent heat is larger for modified
gravity and depends on its parameter «. The Gravity Probe B experiment [38] provides that
|a] <5 x 10%cm? therefore the obtained constraints on the parameter are consistent with
the ones used further in the paper. Since we are exploring values of a in the range of 1-100
km?, and the curvature scale is approximately (1/10 km)?, our chosen values are slightly on
the higher end compared to the constraints obtained from GW170817 in [39].
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Initial conditions:
A, Ve, Pey Pe ¢C7 QSIC

Runge-Kutta to
solve eq. (3.2)—(3.5) J

l

Are BC’s
satisfied?

no Bisection to
find the new ¢,

ODE’s system

Save data in a
file: e.g. (M, Rs)

Figure 3. Flowchart of the algorithm implemented in FORTRAN.

[ Solve the }

8.1 Construction of the static star

Since the EoS employed are computerized, we need to develop a numerical algorithm. We
use a fourth order Runge-Kutta algorithm to address the differential TOV-like equations.

3 is shown in figure 3.

The basic flowchart of the program

A complication that arises is that we have boundary conditions, as we impose that the
scalar field vanishes at infinity. Therefore, the Runge-Kutta algorithm is combined with
a shooting method (that employs a bisection) ensuring the boundary conditions. Notice
that the v(r) function does not appear explicitly in any of the equations (3.2)-(3.5) (only
its derivative). Thus, we can solve the system for a given v(0) = v, and then obtain the
appropriate function by subtracting from it a constant function equal to the value which v
takes at infinity v(r) — v(r) —v(o0) (and that continues to satisfy the differential equations).

The energy density p(r;) is obtained from the given pressure p(r;), through linear
interpolation, allowing for integration on both sides of the phase transition. We also discuss
the continuity of the solution in [23] in the general-relativistic case, which could be extended
to the present work.

Additional problems when numerically solving the system arise because, as stated in [11],
the set of differential equations is stiff, with increasing stiffness as « decreases. A poor

3A sample of the code developed to compute the mass-radius diagrams can be found at https://github.com
/hyliano53/Modified- Gravity-NS.git.
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Figure 4. NS structure obtained computing the solution of the field equations for the EoS “Interm”
shown in figure 2. The profile is that of a star with 100 MeV /fm? central pressure. In the left panel
(metric function A(r)) and the middle one (pressure profile p(r)) we can barely see a dependence in «.
However, in the right panel, the scalar field profile ¢(r) is clearly larger for the larger a values.
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Figure 5. Mass-radius diagrams for different EoS from figure 2 and several values of a. Left panel:
EoS ExR. Mid panel: EoS Interm (whitout phase transition). Right panel: EoS ExS.

guess for the initial condition of the scalar field during the shooting method makes ¢(r),
and consequently the other functions, eventually diverge. For small values of « it is much
more difficult to obtain the desired ¢, due to the precision of the computer (so recovering
the GR results from a — 0 took quite some effort).

In order to optimize the running time the solution adopted consisted in setting a
reasonably small interval around r = 0 on which ¢ takes the desired ¢, value and is constant.
Likewise, we truncate the scalar field to 0 by hand at a distance at which the scalar field has
decreased enough. The sensitivity of other quantities to these two grid cutoffs is examined
to ensure independence thereof.

We plot the A(r) function, the pressure profile and the scalar field in figure 4. As we
can see, A reaches its maximum in the interior of the star. On the other hand, the pressure
decreases monotonically until it vanishes at the edge of the star. In the last plot we can
see again that the results are consistent with the boundary conditions, since the scalar field
exponentially decreases outside the star, vanishing at large r.

The conclusion from the figure is that the structure of the matter in the NS itself is
not very dependent on «, as the metric function A and the pressure have profiles similar
to those in GR. The scalar field however is of course very much a-dependent, and hence
the total mass and other overall properties of the possible stars within the modified gravity
theory is different from GR.

This can be seen in figure 5 where we plot the typical mass-radius diagram for different
EoS and several values of the parameter of the theory. Notice that it is a common behaviour
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Figure 6. Buchdahl-Bondi limit (the diagonal black line on the top left corner of each panel). From
top to bottom and left to right, the values of the f(R) parameter are « = 0 (General Relativity),
a=10km? a =102 km? and a = 10® km?. A scatter of M (R) lines for various (typical as well as
extreme) EoS, in colour online, have been added for illustration.

that the mass of the star grows with the a parameter for higher central pressures while it
decreases with « for lower central pressures (so the curves corresponding to different values
of a cross). Furthermore, note that the limit of GR is recovered in the limit « — 0 whilst
the largest difference with GR is found for the greatest value of «.

8.1.1 The Buchdahl-Bondi limit

In figure 6 we have added plots obtained computing the Buchdahl limit for different values
of the parameter « of the theory. We have also used different EoS, including the extreme
ones within the nEoS uncertainty band, to compute an upper and a lower limit (due to
the dependence in Ry which makes it sensitive to the difference in the metric components
derivatives for quite different central pressures).

For a = 0 (top-left panel in figure 6 as well as for a very large (bottom panels) there is
no (or hardly) a difference between the two extremes of the Buchdahl-Bondi lines, so that the
spread due to Ry disappears. Of course, for large a both lines converge to the Schwarzschild
limit Ry = 2M so the most interesting cases happen for intermediate « (top right panel).

8.2 Nonanalyticities and latent heat

Observing the various mass-radius diagrams displayed, we observe kinks (derivative disconti-
nuities) which are due to the non-differentiability introduced by the phase transitions. For
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instance, we can see a kink near (14.6km, 3.5 M) in the EoS ExR GR diagram (and the
analogous shifted kinks for o # 0 curves).

These jumps in the derivative of the M (R) function persist in modified gravity. For
values of the parameter « greater than 102 km? the mass-radius diagram does not significantly
change anymore and thus the mass can hardly reach the typical 2 Mg for the EoS in the
mid and right panel of figure 5. The combination of such high a with typical EoS, short
of the stiffest ones, can thus be excluded.

We now come to one of the key results of this article. By calculating all physically
realizable stars with the different EoS as in [40], we obtain the maximum possible latent
heat (the equivalent of the Seidov limit but in modified gravity).

We show in figure 7 the dependence of this maximum latent heat (numerically computed)
with the parameter a defining the modified gravity theory.

The maximum latent heats are reached for the stiffest EoS, in our band this is EoS ExR.

We see in figure 7 that this maximum latent heat supported by the star increases with a.

This means that measuring a Seidov limit above the GR value in [33] would by necessity
entail a violation of GR. The values of @ manifestly accessible to this method would be those
in 0 < @ < 5km?. For a above that, the star mass exceeds 2.4 solar masses and it is unclear
that we would be able to measure such an extended phase transition, at least not in static
stars. Fastly rotating stars and mergers might allow a higher « reach.

Finally, above a > 50km?, gravitational collapse ceases to be the tightest constraint
imposed on L, since the allowed band of EoS in microscopic hadron physics limits L (even
for smaller neutron star masses). Thus, unless our understanding of the maximum latent
heat from hadron physics is flawed, larger values of the parameter o do not produce singular
behaviours for any of the EoS in the band.

Only if nuclear physics would allow a greater uncertainty band than that of figure 2,
could one eventually construct EoS with more extended phase transitions and could then
search for a gravitational Seidov-like L.y limit also for o > 50km?.

The conclusion is that latent heat is constrained by hadron physics for a > 50 and by
gravitational collapse for o < 50 km?, with the range below 5 accessible to static star studies,
and that between 5 and 50 requiring higher pressures and thus more dynamical information.

Almost all of the points shown lie above the gray band, which marks the EoS with the
exact phase transition that leads to a 2.4Ms maximum mass. Thus, the f(R) Seidov limit
is not reachable. Therefore, if the one in GR is broken, only a lower bound on « could be
extracted, which would still provide valuable information.

8.3 Slowly rotating star

Here we finally turn to the nonanalyticity of the moment of inertia which can be exposed
in observations of both angular frequency and angular momentum (for example, with a
third generation gravitational wave detector [41, 42]) and its dependence on the intensity
of the modification of gravity.

In figure 8 we show the total angular momentum of a family of stars as a function of
their mass for different angular velocities. Notice the kink around 0.65 My due to the first
order phase transition present in this particular example EoS TrF (orange line in figure 2).
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Figure 7. Approximate maximum latent heat allowed within the EoS band of figure 2. 1) The points
below the grey band (any with o < 5km?) have a directly measurable Seidov limit which would be
derived from gravitational collapse in f(R) theory. 2) The latent heat of those with o between 5 and
50 km? will likely not be reachable because the star mass needed to produce the kink in a mass-radius
diagram would be above 2.4Mg. 3) Lyax above 0.58 is then forbidden by microscopic understanding
of EoS uncertainty independently of the theory of gravity, so we stop plotting there.
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Figure 8. Angular momentum of a family of stars (the one with EoS TrF) in R + aR? theory with
a =10 km?. Each curve has a different angular velocity as indicated (colour online).

In figure 9 we then display the moment of inertia of the same family of stars as a function
of their mass. Again, we can see a clear non-analyticity due to the phase transition present
in EoS TrF. According to our previous results [23], the angular momentum of the star
increases with the angular velocity and the same happens for the moment of inertia. In
figure 10 we show the adimensional angular momentum Y, defined as x = J/M?, accessible
for example through gravitational radiation in binary mergers [1, 2]. We can also see a
clear ridge due to the phase transition.

We aim to extract the intensity of these kinks from experimental data and correlate
them, through theoretical models, with the latent heat of neutron star matter. To be
precise, we have calculated the discontinuity in the derivative of the moment of inertia
with respect to mass.
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Figure 9. Moment of inertia of a family of stars (EoS TrF) all rotating with the same angular
velocity 2 = 1 ms~!. Different o values as shown in the legend (colour online).

Figure 10. Adimensional angular momentum x as a function of the mass M and the angular velocity
of the star Q for EoS TrF 3. Left panel: result in GR. Right panel: result in R?—gravity with
a =10 km?. (The two plots look similar, but notice the different dimensionless spin y scale. The
ridge is also displaced at a different stellar mass.).

This discontinuity is defined as the difference in j—]\‘g across the two sides of the kink.

Figure 2 illustrates this calculation, where we employed similar EoS with phase transitions at
intermediate pressures (EoS TrF 2-5), enabling a comparison of f—ﬂl/j between them.

To clarify what can be extracted from observations, we have computed the jump in the
derivative A% at £0.1My around the kink’s position in figure 11. This approach is also
inspired by Lindblom’s analysis of the mass-radius diagram [43], which shows that taking the
derivative arbitrarily close to the phase transition point is ineffective. The M (R) curve has a
technically continuous derivative in the cases he examined, and only over a finite interval
does the drastic change in the direction of the M (R) tangent become evident.

From the plot, we observe that ‘Aj—ﬂl/l‘ decreases with increasing «, while it grows with
the latent heat L, indicating that a stronger phase transition amplifies the slope difference
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Figure 11. A;—AI/[ as a function of the latent heat. Similar EoS from figure 2 employed due to the
strong dependence of I(M) with the EoS, leading to very different shapes for distinct EoS.

after the kink. This behavior clearly reflects how the phase transition intensity influences
the moment of inertia’s derivative.

Additionally, if one were to compute the field equations up to second order in angular
velocity (which is beyond the current scope for f(R) theories), it would be possible to obtain
the mass and radius corrections. These corrections could be used to calculate the ellipticity,
providing insight into the star’s deformation due to rotation [23, 36, 37].

9 Conclusions

In this work we have studied neutron star properties in modified gravity, following by now
standard procedures. First, we have reviewed a general formalism in order to write the
Tolman-Oppenheimer-Volkoff equations for a quite general family of theories. Then we have
studied f(R) theories and their equivalence to scalar-tensor theories, computing a complicated
TOV-like system of differential equations that must be solved numerically. In particular,
we studied R2-gravity following [11, 19]. Next, we presented the set of equations of state
used along this work. The EoS employed have interesting properties due to the first order
phase transitions and the fact that they are not constrained by any astrophysical observable,
making them useful for our study in modified gravity [9, 10].

We have solved the static star and computed the mass-radius diagram for several families
of stars with different EoS within the allowed band thereof. We reiterate that there are
points of non analyticity (or ridges in multidimensional plots) due to any first order phase
transitions, and observed how they change with the deviation from GR, that is, for a few
values of the parameter «.

Finally, we have studied the slowly rotating star, which is a good approximation for most
known pulsars. We computed the angular velocity equation in modified gravity in the same
way as H&T did in general relativity [36, 37]. We calculated some physical observables, such
as the moment of inertia, which could be measured by future experiments. We studied how
the angular momentum of the family of stars changes with the angular velocity and showed
that the first order phase transitions present in the EoS leaves a clear kink in the J(M) and
I(M) diagrams. We also showed a ridge in the x (M, Q) diagram due to the non-analyticity
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in the EoS. We concluded that exercise by studying how the moment of inertia changes with
the parameter of the theory. Again, future observations could constrain the free parameter
« of the theory comparing with these numerical calculations.

This would in principle allow experimental measurements to eventually observe how
the theory drifts away from GR. To do it with these method, the observable-to-observable
diagrams will have to be populated with multiple well-measured stars; this identification of
a phase transition and eventual modification of GR in population studies is distinct from
direct detection of a frequency-peak shift in one or few events which has also been suggested
as a strong tell-tale signal [44] of exotic phenomena in neutron stars.

A difficulty to carry out that program is that any derivative jump found could also be
caused by a gravitational phase transition. As has been reported [52] in the literature, this
phenomenon arises when a dynamical threshold, for example a certain energy density or a
certain value of the curvature scalar, is reached. Then, a field might switch on from zero to a
finite value, causing a point of nonderivability in star properties. This causes an ambiguity
with phase transitions in the ordinary neutron matter of the star. An observation exceeding
the Seidov limit helps to lift the degeneracy by necessarily pointing to modified gravity as
no matter content can break it in General Relativity.

To overcome the difficulty, we have computed the maximum latent heat as a function
of the parameter of the theory following the idea of Seidov in GR [34].

In the future, a combination of observations which populate observable-to-observable
diagrams could identify a sudden derivative change (for example, in a diagram involving the
stellar mass, we propose to use a £0.1M; interval as a reasonable criterion), which would
correlate with a latent heat and test the Seidov limit. Its breach would lift the matter/gravity
degeneracy and guarantee that we are witnessing a modified gravity phenomenon, be it
because of a gravitational phase transition, be it because of a matter phase transition which
should not be observable in GR.

We have also studied the Buchdahl-Bondi limit in f(R) modified gravity following earlier
authors, note that the limit becomes blurred into a band, acquiring a dependence on the
EoS, and find it, for the time being, less promising than the Seidov limit for modified
gravity searches.

Although we have limited ourselves to cold stars, an extension to finite temperature is
straightforward and our results should be easy to map, as the finite temperature neutron
star EoS has been well discussed in the literature [10, 45, 46].

A promising future additional research direction to lift the gravity /matter degeneracy and
investigate whether a microscopic phase transition can be distinguished from a gravitational
one proceeds by the search for twin stars. Most EoS models are predominantly hadronic,
but should there be an unconfined-quark core [47, 48], or other exotic matter, which may
exist at the center of neutron stars, this could give rise to higher-density compact stars
or “hybrid stars” [49]. Such phase transitions can cause the discontinuities which we have
been discussing. Focusing on the mass-radius relationship, this can lead to the formation
of a second branch of solutions, with the same mass but smaller radius than neutron stars
from the original branch, known as “twin stars” — two neutron stars with equal mass but
different radii [50].
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In general relativity, twin stars fall into four categories based on the relationship between
the maximum masses of neutron stars [51]. However, modified gravity introduces a fifth
category (denoted as Ia in the literature) that does not exist in general relativity [40].
This addition creates ambiguity, so we should be cautious in claiming that future radius
measurements from the NICER mission could confirm the existence of strong phase transitions
in dense neutron star matter by identifying twin stars. Our group is researching this observable
to try to lift the matter/gravity degeneracy also here.

Acknowledgments

We thank Eva L. Oter for providing her EoS set and for discussions.

Work supported by grant PID2022-137003NB-100 and PID2022-138607NB-100 of the
Spanish MCIN/AEI /10.13039/501100011033/ and PRX23/00225 (estancias en el extranjero);
EU’s ERDF A way of making Europe and 824093 (STRONG2020); and Univ. Complutense
de Madrid under research group 910309 and IPARCOS- UCM/2023 graduate assistance
program. AW acknowledges financial support from MICINN (Spain) Ayuda Juan de la Cierva
— incorporacion 2020 N°. 1JC2020-044751-1.

References

[1] LIGO ScieNTIFIC and VIRGO collaborations, Population Properties of Compact Objects from
the Second LIGO-Virgo Gravitational-Wave Transient Catalog, Astrophys. J. Lett. 913 (2021) L7
[arXiv:2010.14533] [INSPIRE].

[2] LIGO ScIeENTIFIC and VIRGO collaborations, Properties of the binary neutron star merger
GW170817, Phys. Rev. X 9 (2019) 011001 [arXiv:1805.11579] [INSPIRE].

[3] S.H. Hendi, G.H. Bordbar, B. Eslam Panah and S. Panahiyan, Neutron stars structure in the
context of massive gravity, JCAP 07 (2017) 004 [arXiv:1701.01039] [INSPIRE].

[4] S.H. Hendi, G.H. Bordbar, B. Eslam Panah and M. Najafi, Dilatonic Equation of Hydrostatic
Equilibrium and Neutron Star Structure, Astrophys. Space Sci. 358 (2015) 30
[arXiv:1503.01011] [INSPIRE].

[5] M. Aparicio Resco, A. de la Cruz-Dombriz, F.J. Llanes Estrada and V. Zapatero Castrillo, On
neutron stars in f(R) theories: Small radii, large masses and large energy emitted in a merger,
Phys. Dark Undv. 13 (2016) 147 [arXiv:1602.03880] [INSPIRE].

[6] F. Ozel and P. Freire, Masses, Radii, and the Equation of State of Neutron Stars, Ann. Rev.
Astron. Astrophys. 54 (2016) 401 [arXiv:1603.02698| [INSPIRE].

[7] J. Antoniadis et al., The millisecond pulsar mass distribution: Fvidence for bimodality and
constraints on the mazimum neutron star mass, arXiv:1605.01665 [INSPIRE].

[8] T. Salmi et al., The Radius of the High-mass Pulsar PSR J0740+6620 with 3.6 yr of NICER
Data, Astrophys. J. 974 (2024) 294 [arXiv:2406.14466] [INSPIRE].

[9] E. Lope-Oter and A. Wojnar, Constraining Palatini gravity with GR-independent equations of
state for neutron stars, JCAP 02 (2024) 017 [arXiv:2306.00870] [INSPIRE].

[10] E. Lope-Oter and F.J. Llanes-Estrada, Unbiased interpolated neutron-star EoS at finite T for
modified gravity studies, Eur. Phys. J. A 58 (2022) 9 [arXiv:2108.04027] InSPIRE].

,25,


https://doi.org/10.3847/2041-8213/abe949
https://doi.org/10.48550/arXiv.2010.14533
https://inspirehep.net/literature/1826636
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.48550/arXiv.1805.11579
https://inspirehep.net/literature/1675316
https://doi.org/10.1088/1475-7516/2017/07/004
https://doi.org/10.48550/arXiv.1701.01039
https://inspirehep.net/literature/1507767
https://doi.org/10.1007/s10509-015-2429-x
https://doi.org/10.48550/arXiv.1503.01011
https://inspirehep.net/literature/1347127
https://doi.org/10.1016/j.dark.2016.07.001
https://doi.org/10.48550/arXiv.1602.03880
https://inspirehep.net/literature/1421144
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.48550/arXiv.1603.02698
https://inspirehep.net/literature/1426801
https://doi.org/10.48550/arXiv.1605.01665
https://inspirehep.net/literature/1455864
https://doi.org/10.3847/1538-4357/ad5f1f
https://doi.org/10.48550/arXiv.2406.14466
https://inspirehep.net/literature/2800506
https://doi.org/10.1088/1475-7516/2024/02/017
https://doi.org/10.48550/arXiv.2306.00870
https://inspirehep.net/literature/2664551
https://doi.org/10.1140/epja/s10050-021-00656-9
https://doi.org/10.48550/arXiv.2108.04027
https://inspirehep.net/literature/1901858

[11]

[12]

S.S. Yazadjiev, D.D. Doneva, K.D. Kokkotas and K.V. Staykov, Non-perturbative and
self-consistent models of neutron stars in R-squared gravity, JCAP 06 (2014) 003
[arXiv:1402.4469] [INSPIRE].

A .M. Nzioki, S. Carloni, R. Goswami and P.K.S. Dunsby, A new framework for studying
spherically symmetric static solutions in f(R) gravity, Phys. Rev. D 81 (2010) 084028
[arXiv:0908.3333] [INSPIRE].

T. Multamaki and 1. Vilja, Static spherically symmetric perfect fluid solutions in f(R) theories of
gravity, Phys. Rev. D 76 (2007) 064021 [astro-ph/0612775] [INSPIRE].

K. Henttunen, T. Multamaki and I. Vilja, Stellar configurations in f(R) theories of gravity, Phys.
Rev. D 77 (2008) 024040 [arXiv:0705.2683] [INSPIRE].

JM.M. Senovilla, Junction conditions for F(R)-gravity and their consequences, Phys. Rev. D 88
(2013) 064015 [arXiv:1303.1408] [INSPIRE].

A. Casado-Turrién, A. de la Cruz-Dombriz and A. Dobado, Physical nonviability of a wide class
of f(R) models and their constant-curvature solutions, Phys. Rev. D 108 (2023) 064006
[arXiv:2303.02103] [NSPIRE].

A.V. Astashenok, S.D. Odintsov and A. de la Cruz-Dombriz, The realistic models of relativistic
stars in f(R) = R+ aR? gravity, Class. Quant. Grav. 34 (2017) 205008 [arXiv:1704.08311]
[[NSPIRE].

B. Jain and J. Khoury, Cosmological Tests of Gravity, Annals Phys. 325 (2010) 1479
[arXiv:1004.3294] [INSPIRE].

K.V. Staykov, D.D. Doneva and S.S. Yazadjiev, Moment-of-inertia-compactness universal
relations in scalar-tensor theories and R? gravity, Phys. Rev. D 93 (2016) 084010
[arXiv:1602.00504] [INSPIRE].

A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett.
B 91 (1980) 99 [INSPIRE].

K.V. Staykov, D.D. Doneva, S.S. Yazadjiev and K.D. Kokkotas, Slowly rotating neutron and
strange stars in R? gravity, JCAP 10 (2014) 006 [arXiv:1407.2180] [INSPIRE].

D.D. Doneva and S.S. Yazadjiev, Rapidly rotating neutron stars with a massive scalar field —
structure and universal relations, JCAP 11 (2016) 019 [arXiv:1607.03299] [INSPIRE].

P.N. Moreno, F.J. Llanes-Estrada and E. Lope-Oter, Ridges in rotating neutron-star properties
due to first order phase transitions, Annals Phys. 459 (2023) 169487 [arXiv:2307.15366]
[INSPIRE].

A.V. Astashenok, A.S. Baigashov and S.A. Lapin, Neutron stars in frames of R?-gravity and
gravitational waves, Int. J. Geom. Meth. Mod. Phys. 16 (2018) 1950004 [arXiv:1812.10439]
[INSPIRE].

G.J. Olmo, D. Rubiera-Garcia and A. Wojnar, Stellar structure models in modified theories of
gravity: Lessons and challenges, Phys. Rept. 876 (2020) 1 [arXiv:1912.05202] InSPIRE].

A.V. Astashenok, S. Capozziello, S.D. Odintsov and V.K. Oikonomou, Causal limit of neutron
star mazimum mass in f(R) gravity in view of GW190814, Phys. Lett. B 816 (2021) 136222
[arXiv:2103.04144] [INSPIRE].

F.D. Albareti, J.A.R. Cembranos, A. de la Cruz-Dombriz and A. Dobado, On the non-attractive
character of gravity in f(R) theories, JCAP 07 (2013) 009 [arXiv:1212.4781] INSPIRE].

— 26 —


https://doi.org/10.1088/1475-7516/2014/06/003
https://doi.org/10.48550/arXiv.1402.4469
https://inspirehep.net/literature/1281672
https://doi.org/10.1103/PhysRevD.81.084028
https://doi.org/10.48550/arXiv.0908.3333
https://inspirehep.net/literature/829347
https://doi.org/10.1103/PhysRevD.76.064021
https://doi.org/10.48550/arXiv.astro-ph/0612775
https://inspirehep.net/literature/735762
https://doi.org/10.1103/PhysRevD.77.024040
https://doi.org/10.1103/PhysRevD.77.024040
https://doi.org/10.48550/arXiv.0705.2683
https://inspirehep.net/literature/750896
https://doi.org/10.1103/PhysRevD.88.064015
https://doi.org/10.1103/PhysRevD.88.064015
https://doi.org/10.48550/arXiv.1303.1408
https://inspirehep.net/literature/1222671
https://doi.org/10.1103/PhysRevD.108.064006
https://doi.org/10.48550/arXiv.2303.02103
https://inspirehep.net/literature/2638413
https://doi.org/10.1088/1361-6382/aa8971
https://doi.org/10.48550/arXiv.1704.08311
https://inspirehep.net/literature/1597084
https://doi.org/10.1016/j.aop.2010.04.002
https://doi.org/10.48550/arXiv.1004.3294
https://inspirehep.net/literature/852349
https://doi.org/10.1103/PhysRevD.93.084010
https://doi.org/10.48550/arXiv.1602.00504
https://inspirehep.net/literature/1418787
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://inspirehep.net/literature/157549
https://doi.org/10.1088/1475-7516/2014/10/006
https://doi.org/10.48550/arXiv.1407.2180
https://inspirehep.net/literature/1305264
https://doi.org/10.1088/1475-7516/2016/11/019
https://doi.org/10.48550/arXiv.1607.03299
https://inspirehep.net/literature/1475247
https://doi.org/10.1016/j.aop.2023.169487
https://doi.org/10.48550/arXiv.2307.15366
https://inspirehep.net/literature/2683166
https://doi.org/10.1142/S021988781950004X
https://doi.org/10.48550/arXiv.1812.10439
https://inspirehep.net/literature/1711312
https://doi.org/10.1016/j.physrep.2020.07.001
https://doi.org/10.48550/arXiv.1912.05202
https://inspirehep.net/literature/1770185
https://doi.org/10.1016/j.physletb.2021.136222
https://doi.org/10.48550/arXiv.2103.04144
https://inspirehep.net/literature/1850562
https://doi.org/10.1088/1475-7516/2013/07/009
https://doi.org/10.48550/arXiv.1212.4781
https://inspirehep.net/literature/1208091

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[37]

[38]

[39]

[40]

[41]

A. Wojnar and H. Velten, Fquilibrium and stability of relativistic stars in extended theories of
gravity, Eur. Phys. J. C 76 (2016) 697 [arXiv:1604.04257] [INSPIRE].

S. Bhattacharyya, On the equivalence between theories and FEinstein gravity, Class. Quant. Grav.
40 (2023) 215013 [arXiv:2212.04225] [INSPIRE].

T.P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451
[arXiv:0805.1726] INSPIRE].

M.P. Dabrowski, J. Garecki and D.B. Blaschke, Conformal transformations and conformal
invariance in gravitation, Annalen Phys. 18 (2009) 13 [arXiv:0806.2683] [INSPIRE].

0. Komoltsev and A. Kurkela, How Perturbative QCD Constrains the Equation of State at
Neutron-Star Densities, Phys. Rev. Lett. 128 (2022) 202701 [arXiv:2111.05350] [INSPIRE].

E. Lope-Oter and F.J. Llanes-Estrada, Mazimum latent heat of neutron star matter
independently of General Relativity, Phys. Rev. C' 105 (2022) 1052801 [arXiv:2103.10799]
[INSPIRE].

Z. Seidov, The Stability of a Star with a Phase Change in General Relativity Theory, Sov.
Astron. 15 (1971) 347.

R. Goswami, S.D. Maharaj and A.M. Nzioki, Buchdahl-Bondi limit in modified gravity: Packing
extra effective mass in relativistic compact stars, Phys. Rev. D 92 (2015) 064002
[arXiv:1506.04043] [INSPIRE].

J.B. Hartle, Slowly rotating relativistic stars. 1. Equations of structure, Astrophys. J. 150 (1967)
1005 [INSPIRE].

J.B. Hartle and K.S. Thorne, Slowly Rotating Relativistic Stars. II. Models for Neutron Stars
and Supermassive Stars, Astrophys. J. 153 (1968) 807 [INSPIRE].

J. Naf and P. Jetzer, On the 1/c Expansion of f(R) Gravity, Phys. Rev. D 81 (2010) 104003
[arXiv:1004.2014] INSPIRE].

S. Jana and S. Mohanty, Constraints on f(R) theories of gravity from GW170817, Phys. Rev. D
99 (2019) 044056 [arXiv:1807.04060] [INSPIRE].

E. Lope-Oter and A. Wojnar, Twin Stars in General Relativity and Extended Theories of
Gravity, arXiv:2402.03914 [INSPIRE].

1. Gupta, Inferring Small Neutron Star Spins with Neutron Star-Black Hole Mergers, Astrophys.
J. 970 (2024) 12 [arXiv:2402.07075] [INSPIRE].

ET collaboration, Science Case for the Einstein Telescope, JCAP 03 (2020) 050
[arXiv:1912.02622] [INSPIRE].

L. Lindblom, Phase transitions and the mass radius curves of relativistic stars, Phys. Rev. D 58
(1998) 024008 [gr-qc/9802072] [INSPIRE].

A. Bauswein et al., Identifying a first-order phase transition in neutron star mergers through
gravitational waves, Phys. Rev. Lett. 122 (2019) 061102 [arXiv:1809.01116] [InSPIRE].

T.R. Routray et al., Equation of state of hot neutron star matter using finite range simple
effective interaction, J. Phys. G 51 (2024) 085203 [arXiv:2404.05910] InSPIRE].

H. Kochankovski, A. Ramos and L. Tolos, Hyperonic equation of state at finite temperature for
neutron stars, EPJ Web Conf. 271 (2022) 09005 [arXiv:2209.09739] [InSPIRE].

J.D. Anand, P. Bhattacharjee and S.N. Biswas, QUARK MATTER CORE IN NEUTRON
STAR, J. Phys. A 13 (1980) 3105 INSPIRE].

— 27 —


https://doi.org/10.1140/epjc/s10052-016-4549-z
https://doi.org/10.48550/arXiv.1604.04257
https://inspirehep.net/literature/1446971
https://doi.org/10.1088/1361-6382/acfcff
https://doi.org/10.1088/1361-6382/acfcff
https://doi.org/10.48550/arXiv.2212.04225
https://inspirehep.net/literature/2612621
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.48550/arXiv.0805.1726
https://inspirehep.net/literature/785578
https://doi.org/10.1002/andp.200810331
https://doi.org/10.48550/arXiv.0806.2683
https://inspirehep.net/literature/788443
https://doi.org/10.1103/PhysRevLett.128.202701
https://doi.org/10.48550/arXiv.2111.05350
https://inspirehep.net/literature/1965206
https://doi.org/10.1103/PhysRevC.105.L052801
https://doi.org/10.48550/arXiv.2103.10799
https://inspirehep.net/literature/1852605
https://doi.org/10.1103/PhysRevD.92.064002
https://doi.org/10.48550/arXiv.1506.04043
https://inspirehep.net/literature/1375975
https://doi.org/10.1086/149400
https://doi.org/10.1086/149400
https://inspirehep.net/literature/51434
https://doi.org/10.1086/149707
https://inspirehep.net/literature/53982
https://doi.org/10.1103/PhysRevD.81.104003
https://doi.org/10.48550/arXiv.1004.2014
https://inspirehep.net/literature/851464
https://doi.org/10.1103/PhysRevD.99.044056
https://doi.org/10.1103/PhysRevD.99.044056
https://doi.org/10.48550/arXiv.1807.04060
https://inspirehep.net/literature/1681766
https://doi.org/10.48550/arXiv.2402.03914
https://inspirehep.net/literature/2755964
https://doi.org/10.3847/1538-4357/ad49a0
https://doi.org/10.3847/1538-4357/ad49a0
https://doi.org/10.48550/arXiv.2402.07075
https://inspirehep.net/literature/2757570
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.48550/arXiv.1912.02622
https://inspirehep.net/literature/1768678
https://doi.org/10.1103/PhysRevD.58.024008
https://doi.org/10.1103/PhysRevD.58.024008
https://doi.org/10.48550/arXiv.gr-qc/9802072
https://inspirehep.net/literature/467641
https://doi.org/10.1103/PhysRevLett.122.061102
https://doi.org/10.48550/arXiv.1809.01116
https://inspirehep.net/literature/1692557
https://doi.org/10.1088/1361-6471/ad57d7
https://doi.org/10.48550/arXiv.2404.05910
https://inspirehep.net/literature/2775413
https://doi.org/10.1051/epjconf/202227109005
https://doi.org/10.48550/arXiv.2209.09739
https://inspirehep.net/literature/2154208
https://doi.org/10.1088/0305-4470/13/9/036
https://inspirehep.net/literature/158916

[48]

[49]

[50]

[51]

S. Thakur, V. Thakur, R. Kumar and S.K. Dhiman, Structural properties of rotating hybrid
compact stars with color-flavor-locked quark matter core and their tidal deformability, Fur. Phys.

J. A 58 (2022) 93 [INSPIRE].

A. Rosenhauer et al., Neutron stars, hybrid stars and the equation of state, Nucl. Phys. A 540
(1992) 630 [INSPIRE].

A. Bhattacharyya, S.K. Ghosh, M. Hanauske and S. Raha, Rotating twin stars and signature of
quark-hadron phase transition, Phys. Rev. C' 71 (2005) 048801 [astro-ph/0406509] [INSPIRE].

M.G. Alford et al., Constraining and applying a generic high-density equation of state, Phys. Reuv.
D 92 (2015) 083002 [arXiv:1501.07902] [NSPIRE].

D.D. Doneva, C.J. Kriiger, K.V. Staykov and P.Y. Yordanov, Neutron stars in Gauss-Bonnet
gravity: Nonlinear scalarization and gravitational phase transitions, Phys. Rev. D 108 (2023)
044054 [arXiv:2306.16988] [INSPIRE].

— 28 —


https://doi.org/10.1140/epja/s10050-022-00744-4
https://doi.org/10.1140/epja/s10050-022-00744-4
https://inspirehep.net/literature/2085493
https://doi.org/10.1016/0375-9474(92)90177-L
https://doi.org/10.1016/0375-9474(92)90177-L
https://inspirehep.net/literature/339648
https://doi.org/10.48550/arXiv.astro-ph/0406509
https://inspirehep.net/literature/652938
https://doi.org/10.1103/PhysRevD.92.083002
https://doi.org/10.1103/PhysRevD.92.083002
https://doi.org/10.48550/arXiv.1501.07902
https://inspirehep.net/literature/1342253
https://doi.org/10.1103/PhysRevD.108.044054
https://doi.org/10.1103/PhysRevD.108.044054
https://doi.org/10.48550/arXiv.2306.16988
https://inspirehep.net/literature/2672957

	Introduction
	A simple class of modified gravity theories
	f(R) theories
	Equivalence to scalar-tensor theories

	Static stars in modified gravity
	Generalized TOV equations for f(R)
	Initial and boundary conditions for the radial integration

	Matter-energy and phase transitions
	Equations of State
	Latent heat

	Seidov limit in R**(2)-gravity
	Buchdahl-Bondi limit in R**(2)-gravity
	Stars in slow rotation to first order
	Numerical computation
	Construction of the static star
	Nonanalyticities and latent heat
	Slowly rotating star

	Conclusions

