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Abstract. We report a search for electron antineutrinos at KamLAND with an 8.3-30.8 MeV
energy range via the inverse beta decay. In 6.72 kton-yr of KamLAND data, we found 18 neutrino
candidates and no significant excess over estimated backgrounds. From data interpretation,
with the assumption of some supernova relic neutrino spectrum predictions, we give upper flux
limits of 60-110cm~2s7! (90% CL) in the analysis range and present a model-independent
flux. These upper limits are the most stringent for 8-13 MeV region. We also improve on the
upper probability limit of ®B solar neutrinos converting into antineutrinos via the Resonant
Spin Flavor Precession with the neutrino magnetic moment. Besides, we could set limits on the
annihilation cross-section for light dark matter pairs to neutrino pairs.

1. Introduction

A core-collapse supernova explosion is the most dynamical neutrino emission process. In
1987, water-cherenkov and liquid-scintillator detectors observed supernova neutrinos from the
Large Magellanic Cloud [1, 2, 3, 4, 5]. Diffused neutrinos from all the past supernovae is
expected (supernova relic neutrino). Typically supernova relic neutrinos have order tens of MeV
energy [6, 7, 8, 9]. There are a large number of reactor neutrinos and atmospheric neutrinos at
that energy region as backgrounds; therefore, an energy range of 8-30 MeV is the golden region
for searching supernova relic neutrinos for liquid-scintillator detectors.

Not only them but there are also other astrophysical neutrinos in that region. Solar
8B neutrinos can be converted into electron antineutrinos via the combined processes of the
Mikheyev-Smirnov-Wolfenstein effect and Resonant Spin Flavor Precession scenario [10]. MeV-
scale dark-matter self-annihilation process might produce neutrino pairs [11].
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2. Neutrino event search

We focused on electron antineutrinos (7.’s) via the inverse-beta decay reaction (v, +p — et +n)
from 6.72 kton-yr of KamLAND data. The KamLAND detector locates at 1 km underground at
Kamioka, Japan, and consists of a 3.2-kton water-cherenkov outer detector and a 1-kton liquid-
scintillator inner detector. We used a 5.5 m radius spherical fiducial volume from the center of
the KamLAND. Details of the KamLAND detector are described in [12]. An inner-balloon region
is vetoed during the KamLAND-Zen periods, which is installed at the center of the KamLAND
for neutrinoless double-beta decay search [13, 14]. The veto region is a 2.5-m-radius spherical
volume centered in the detector and a 2.5-m-radius vertical cylindrical volume in the upper half
of the detector.

Inverse-beta decay events are selected by the delayed-coincidence selection; the prompt signal
is the scintillation photons from positron and annihilation gamma-rays, and the delayed signal is
2.2MeV (4.9MeV) gamma-ray from the thermalized neutron capture on a proton (carbon-12).
Selection criteria for prompt energy (E,), delayed energy (E;), spatial correlation (AR), and
timing difference (AT) are 7.5 < E, < 30.0MeV, 1.8 < E; < 2.6 or 44 < E; < 5.6MeV,
AR <160cm, and 0.5 < AT < 1000 us, respectively. This corresponds to 8.3-30.8 MeV of
neutrino energies. We found 18 final candidates with selecting single neutron-capture gamma-ray
as the delayed event. Possible backgrounds are reactor 7., accidental coincidence, muon-induced
spallation products, fast neutrons, atmospheric-neutrino charged-current (CC) interaction, and
atmospheric-neutrino neutral-current (NC) interaction. The atmospheric NC interaction is the
most challenging background in this energy region. We took into account the atmospheric-
neutrino spectrum at Kamioka [15], the neutron binding energies in carbon for the P-shell
(18.7MeV) and the S-shell (41.7MeV) configurations, the corresponding shell populations,
and de-excitation models [16]. From this numerical calculation, we estimated the number of
atmospheric NC backgrounds to be 20.6+5.9 events. However, from the NEUT [17] simulation-
based estimation, its number is 16.5J_ri:é events. In order to avoid depending on the estimation
model, we treated the number of atmospheric NC backgrounds as a free parameter in the fitting
of the data interpretation. Neutrino candidate profiles and details of background estimation are
discussed in [18].

3. Data interpretation

We fitted the obtained data and estimated backgrounds searching for supernova relic neutrinos,
assuming the Nakazato model [8, 9] with normal mass ordering as the energy spectrum shape.
Figure 1 shows the fit result in the two free parameter space between the number of supernova
relic neutrino signals and the number of atmospheric NC backgrounds. The best fit parameter
represents 0-event neutrino signals and 7.5-event atmospheric NC backgrounds which is 20 (10)
consistent with the numerical (simulation) estimation. Energy spectra and radial distributions
as the best fit results are shown in Figure 2. We tested this fitting with some theoretical
predictions, but all cases showed 0 neutrino signal as the best fit result. Therefore, we provided
upper flux limits with 90% confidence level (CL) on the Kaplinghat+00 [6], Horiuchi4+06 [7],
Nakazato+15(max NH), and Nakazato+15(min, IH) models [8, 9], as to be 74.5, 61.6, 108, and
105cm~2s7!, respectively. We also gave the model-independent upper flux limits on electron
antineutrinos (Figure 3). Our result shows the most stringent upper flux limits in the neutrino
energy range of 8-13 MeV.

In addition, we also tested the solar ®B neutrino conversion process and provided the most
stringent upper limits on the conversion probability as P,, 5, < 3.5 x 1075 (90% CL). Dark-
matter self-annihilation cross section is also constrained as (oav) < (1—11) x 10724 cm™3s~!
(90% CL) below 14 MeV of dark-matter mass region. Details of the above analyses and results
are summarized in [18].
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Figure 1. Fit result between two free parameter spaces: number of supernova relic neutrino
signals and number of atmospheric-neutrino NC backgrounds. The black dot represents the best
fit point of the two free parameters as 0 and 7.5 events, respectively. The red, orange, green,
and blue lines are confidence intervals. The horizontal gray band is the expected number of
atmospheric neutrino NC backgrounds from the numerical calculation, and the purple band is

from the NEUT simulation.
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Figure 2. Best fit result and 90% CL upper limit of supernova relic neutrinos in energy
spectrum(a) and radial distribution(b). Filled stacked spectra are the best fit backgrounds, and
red dashed line corresponds to the upper limit with 90% CL.
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Figure 3. Upper limits on model-independent electron-antineutrino flux. Blue dots are this
work. Other color dots show the results from Borexino [19], Super-K LILIII [20], Super-K
IV [21], and Super-K IV [22]. Figure is reproduced from [18].

4. Summary

We searched for astrophysical electron antineutrinos at KamLAND with 6.72 kton-yr exposure.
No significant signals are found over our background model. We set flux upper limits on some
supernova relic neutrinos and model-independent neutrinos.
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