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Abstract

Unveiling the fundamental production mechanism of light nuclei using coalescence and
femtoscopy

by Maximilian Mahlein

Light (anti)nuclei are of significant interest in nuclear and astroparticle physics, with
implications ranging from fundamental hadron-hadron interactions to indirect Dark Matter
searches. In the context of Dark Matter, a precise understanding of their formation mecha-
nism is crucial for interpreting results from experiments such as GAPS and AMS-02. This
thesis aims to definitively determine how light nuclei are formed.

Historically, two principal models—the Statistical Hadronization Model and the Coa-
lescence Model—have been tested by comparing their nuclear yield predictions with ex-
perimental data. However, the diversity of their implementations has prevented a clear
consensus. Here, a model-independent approach is introduced through femtoscopy, which
investigates nuclear formation by analyzing momentum correlations between pions and
deuterons. The detection of a distinct ∆ resonance decay signature indicates that deuterons,
and by extension all light nuclei, are produced via final state interactions occurring during
or after the decay of short-lived resonances. Simple causality arguments thereby rule out
thermal production mechanisms.

Building on these insights, a sophisticated coalescence model based on the Wigner Func-
tion Formalism is developed. When tested using the EPOS 3 event generator, the model
successfully reproduces the deuteron spectra measured by the ALICE collaboration with-
out introducing free parameters—provided that experimental inputs such as multiplicity,
momentum distributions, emission source sizes, and nuclear wave functions are used. This
model is further encapsulated within a custom Monte Carlo generator, ToMCCA, which ex-
tends predictions across the full energy and multiplicity range explored at the LHC with
significantly improved statistical precision. Moreover, the coalescence approach is extended
to A=3 (hyper)nuclei, including 3He, 3H, and 3

ΛH, marking the first event-by-event predic-
tions that utilize realistic nuclear wave functions.

Overall, this work establishes a robust baseline for nuclear flux predictions by substan-
tially reducing model uncertainties, thereby providing a solid foundation for future searches
for new physics.
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Zusammenfassung
Leichte (Anti-)Kerne sind von großem Interesse für die Kern- und Astroteilchenphysik, mit
Implikationen, die von fundamentalen Hadron-Hadron-Wechselwirkungen bis hin zu in-
direkten Dunkle-Materie-Suchen reichen. Im Kontext der Dunklen Materie ist ein präzises
Verständnis ihres Bildungsmechanismus entscheidend für die Interpretation von Ergebnis-
sen experimenteller Projekte wie GAPS und AMS-02. Diese Dissertation verfolgt das Ziel,
die Entstehung leichter Kerne eindeutig zu klären.

Historisch wurden zwei Modelle – das Statistische Hadronisierungsmodell und das
Koaleszenzmodell – getestet, indem ihre Vorhersagen für Kernproduktionsraten mit ex-
perimentellen Daten verglichen wurden. Die Vielfalt ihrer Implementierungen hat jedoch
eine eindeutige Schlussfolgerung verhindert. In dieser Arbeit wird daher ein modellunab-
hängiger Ansatz über die Femtoskopie eingeführt, der die Kernbildung durch die Analyse
von Impulskorrelationen zwischen Pionen und Deuteronen untersucht. Der Nachweis eines
charakteristischen ∆-Resonanzzerfalls belegt, dass Deuteronen – und damit auch alle an-
deren leichten Kerne – durch Endzustandswechselwirkungen gebildet werden, die während
oder nach dem Zerfall kurzlebiger Resonanzen auftreten. Einfache Kausalitätsüberlegungen
schließen damit thermische Produktionsmechanismen aus.

Aufbauend auf diesen Erkenntnissen wird ein verfeinertes Koaleszenzmodell entwick-
elt, das auf dem Wigner-Funktionsformalismus basiert. Getestet mit dem EPOS 3-
Ereignisgenerator reproduziert das Modell erfolgreich die von der ALICE-Kollaboration
gemessenen Deuteronspektren, ohne freie Parameter einzuführen – vorausgesetzt, ex-
perimentelle Eingangsgrößen wie Multiplizitäten, Impulsverteilungen, Emissionsquellen-
größen und Kernwellenfunktionen werden verwendet. Dieses Modell wird in den
maßgeschneiderten Monte-Carlo-Generator ToMCCA integriert, der die Vorhersagen über
den gesamten Energie- und Multiplizitätsbereich des LHC mit deutlich verbesserter statis-
tischer Präzision erweitert. Darüber hinaus wird der Koaleszenzansatz auf A=3 (Hyper-
)Kerne, einschließlich 3He, 3H und 3

ΛH, ausgedehnt und liefert damit erstmals ereignisweise
Vorhersagen unter Verwendung realistischer Kernwellenfunktionen.

Insgesamt etabliert diese Arbeit eine belastbare Grundlage für die Vorhersage von Kern-
flüssen, indem Modellunsicherheiten erheblich reduziert werden. Dadurch wird eine solide
Basis für zukünftige Suchen nach neuer Physik geschaffen.
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Chapter 1

Introduction

1.1 The goal of this work

The world around us, from the stars in the sky to the sheet of paper you are reading right
now, is built upon structures governed by the fundamental forces of nature. At its basic
level, matter consists of molecules that are held together by the electromagnetic force be-
tween electrons and atomic nuclei. These atomic nuclei themselves are made up of nucle-
ons, protons and neutrons, which are constructed from the interaction between quarks, held
together by the strong force, a force much stronger than any other force we have discovered.
Indeed, at distances of 1 fm, the size of a proton, the strong force is about 100 times stronger
than the electromagnetic force1 and 1038 times stronger than the gravitational force2. Over
the past century, fundamental theories that describe these forces have been developed and
applied with astonishing accuracy. Many would consider general relativity, which describes
the gravitational force as the warping of space-time, to be the "crown jewel" of physics, but
in nuclear and particle physics, quantum electrodynamics (QED), which describes the elec-
tromagnetic interaction and quantum chromodynamics (QCD), which describes the strong
force, reign supreme. It were those quantum field theories (QFTs) that allowed physicists to
construct the Standard Model of particle physics, which has withstood every test given to it,
even to this day. While the Standard Model accurately describes all fundamental particles,
once these fundamental particles are combined into composite particles, entirely new and
unexpected phenomena arise. As such, the study of hadrons, objects made out of quarks
and gluons, is still a highly active field of research, especially the study of the interactions
between them. A tool specialized for the study of interactions is the femtoscopy method.
It can directly measure the effect of the interaction potential between two or more hadrons
by investigating momentum correlations. Another approach is to study bound states of
hadrons, such as nuclei, to constrain the interaction specifically between nucleons3 and even
hyperons4. This work aims to explore the formation of light (anti)nuclei5 in high-energy
collisions. Chapter 2 will introduce the commonly used nuclear production models, one of
which will be discussed in more detail in Ch. 3. The femtoscopic method will be introduced
in Sec. 2.2. Two different approaches will be used to understand nuclear production. The
first approach will be the study of the femtoscopic correlation between pions6 and nuclei,

1The ratio between the strong coupling constant and the electromagnetic constant at this range is αS/α ≈
1/(1/137)

2The ratio between the gravitational force and coulomb force of a proton is FG/FC = G
ke

m2
p

e2 ≈ 8.1 · 10−37 and
it is independent of the distance.

3Nucleons are objects made up of three quarks, either uud (Proton) or udd (Neutron).
4Hyperons are hadrons made up of three quarks, at least one of which has to be an s quark.
5In high-energy nucleonic reactions such as pp collisions at the LHC, the formation mechanism is assumed

to be the same for matter and antimatter. Thus, in the following, the (anti) prefix will be dropped.
6Pions are hadrons with quark contents ud (π+), du (π−) and uu−dd√

2
(π0).
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specifically deuterons in Ch. 4. Studying their momentum correlations reveals the dynami-
cal evolution of nuclear formation and the special role of the pion in the formation process.
The second approach discusses the modeling of nuclear formation via nucleon coalescence
in Ch. 6 and Ch.7. The results from both studies agree with each other and leave only one
conclusion: Nuclei are produced via the coalescence of nucleons due to final state interac-
tions at a later time than all other hadrons.

1.2 The strong interaction

Nuclei are bound by the residual strong interaction, which arises as a manifestation of the
fundamental strong interaction in multi-hadron systems. In order to understand the resid-
ual interaction, it is first necessary to examine the fundamental strong interaction at the level
of quarks and gluons.

1.2.1 The fundamental strong force

In classical and quantum electrodynamics (QED), the electric charge is the quantity that
determines the interaction strength between particles. More charges lead to stronger forces,
and uncharged particles do not participate in the interaction at all. This concept can be
extended to other interactions, and as such, in QCD, the strong interaction, the color charge
plays the role of the electric charge. Quarks can be either red, blue, or green, while antiquarks
can be antired, antiblue, or antigreen. This is conceptually different from electrodynamics, as
QED only has one kind of charge that can be positive or negative, while QCD has three.
The fundamental process of QCD is the gluon emission with accompanied color change
(indicated in parentheses) with the corresponding Feynman diagram below (left diagram)

q(b) → q(r) + g(b, r). (1.1)

g(b, r)

q(b) q(r)

g(g, r)

g(b, r) g(b, g)

g(b, g) g(b, g)

g(b, r) g(b, r)

This equation shows that gluons carry two color charges, one positive and one negative, al-
lowing them to interact with each other (middle and right diagram). In contrast, the photon
in QED is neutral and cannot self-interact. This self-interaction in QCD leads to the run-
ning of the coupling, where the strong coupling constant αS is not fixed but varies with the
momentum transfer Q2. A useful analogy comes from QED: in a dielectric medium, such as
water (H2O), a charged particle’s electric field is screened by surrounding dipoles. The effect
becomes weaker the further away the polarized molecules are. In QED, this effect is weak
because the photon itself is not a dielectric medium, though it can create positron-electron
pairs that contribute to screening. This causes the coupling constant to increase for large Q2.
This correlation results from the fact that a large Q2 corresponds to a short distance, and the
screening is diminished. In QCD, gluons can also couple to qq pairs (right diagram below),
which causes the same kind of screening effect. However, unlike in QED, gluons also couple
to other gluons, and gluon loops have to be included (left diagram). These gluon loops act
as a source of new charge and amplify the charge effect, thus causing anti-screening.
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FIGURE 1.1: The strong (αS) and electromagnetic (αEM) coupling constants as
a function of the momentum transfer Q2. Below a certain threshold, quarks
are bound by the strong interaction (confinement), while above this threshold,
they are free (asymptotic freedom).
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This latter effect turns out to be much stronger than the screening effect, and the strong
coupling constant αS decreases at high Q2 (asymptotic freedom) and increases at low Q2

(confinement), see Fig. 1.1. A first-order perturbation calculation yields

αS(Q2) =
12π

(11Nc − 2nf) ln(Q2/Λ2
QCD)

, (1.2)

where nf = 6 is the number of flavors and Nc = 3 the number of colors in the Standard
Model. Q2 is the momentum transfer and ΛQCD ≈ 250 MeV/c is a free parameter, the
so-called QCD scale. This free parameter was fitted to existing measurements, most impor-
tantly the strength of the coupling at Q2 = M2

Z measured in decays of Z-bosons [30]. Since
momentum transfer is inversely related to distance, quarks within a proton behave almost
as free particles, but isolating a single quark requires an enormous amount of energy. This
enormous energy barrier enforces quark confinement, ensuring that only color-neutral com-
binations - such as mesons and baryons - can exist as observable particles. Indeed, removing
one quark requires enough energy to create a quark-antiquark pair as well as a new gluon.
Figure 1.2 shows this gluon fragmentation, as the qq pair moves apart, a new qq pair is cre-
ated at the breaking point. At very large energies, αS becomes small, and the quarks and
gluons are asymptotically free. This state of matter is called a quark-gluon plasma (QGP),
and it is defined as a state in which quarks are no longer bound into hadrons. The study
of the QGP is still an ongoing endeavor that has many implications for the early universe,
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FIGURE 1.2: Creation of a qq pair as a result of two quarks moving away from
each other. The large coupling at large distances causes the creation of two
new quarks to be energetically favorable.

where such a state is predicted to have existed in the first 10−6s as well as for high-energy
particle collisions. The first indication of a QGP was found by the CERN SPS WA97 exper-
iment at CERN in the year 2000 [31, 32] in Pb–Pb collisions at a center-of-mass energy of√

s = 17.3 GeV and later confirmed in 2005 by the STAR, PHOBOS, BRAHMS and PHENIX
experiments at the RHIC collider [33] in Au–Au collisions at

√
s = 200 GeV. Figure 1.3 shows

the phase diagram of QCD with the QGP indicated as the phase to the top. The high-energy
collisions at RHIC correspond to low baryon density and high temperature, while the CERN
Pb–Pb collisions represent higher densities and lower temperatures. In both cases, a QGP
can be created. Indeed, for larger baryon densities, the required temperature to form the
deconfined phase drops. It is known that the transition between QGP and the confined
hadronic matter is a smooth one at very low densities at a temperature of kBT ≈ 155 MeV
and a transition of the first order at higher densities with a lower transition temperature.
This indicates a critical point at the boundary between those two transitions. The exact loca-
tion in the phase diagram is not yet known, but the Beam Energy Scan II (BES-II) program
at RHIC has been conducted in an effort to determine it. The possibility of creating a QGP
at large densities instead of high temperatures makes these studies also interesting for the
understanding of neutron stars, as a QGP could be formed in their cores.

FIGURE 1.3: The QCD phase diagram. The lines are the trajectories traversed
by the QGP droplets in the phase diagram for various different collision ener-
gies. Taken from [1].
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1.2.2 The residual strong force

The strong interaction mediated by gluon exchange governs the structure of hadrons, such
as nucleons and hyperons. However, these objects are color-neutral due to confinement,
so they do not interact directly via QCD when viewed from afar (or very small Q2). Only
when interactions happen at a larger momentum scale, the QCD nature of baryons becomes
apparent. This causes many highly non-trivial effects to occur, which can either be solved
in an effective manner, such as chiral effective field theory, or numerically by using lattice
QCD. Often, the interaction between particles is described using an interaction potential.
For nucleons, an exemplary potential is shown in Fig. 1.4 (orange). It features a strong
repulsion at short range and an attraction at intermediate to large distances. Note that the
force is directly proportional to the first derivative of the potential

F(r) ∝ −dV
dr

, (1.3)

so a positive slope indicates attraction and a negative slope indicates repulsion. It would
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FIGURE 1.4: Sketches of the nuclear potential obtained from χEFT (orange)
and the Yukawa meson exchange model (blue).

be reasonable to mark the strong repulsion at small distances down to Pauli blocking since
quarks are fermions with s = 1/2. The two nucleons have the same types of quarks, but due
to the color charge and spin combinatorics, it is possible to arrange the quarks in 12 different
states, enough to not cause any blocking when looking at just two nucleons. The interaction
must, however, be understood as a partonic effect due to the small distance. The real reason
is the spin-spin coupling of quarks. The spin-spin potential between quarks i and j in the
ℓ = 0 state can be written as

Vss(i, j) ∝ αsσi · σj, (1.4)

where σi,j are the Pauli matrices for particle i and j, respectively. These describe the spin
structure of the particle, and the scalar product between them indicates that parallel spins
contribute positively (repulsively) and anti-parallel ones negatively (attractively). This has
no connection to Pauli blocking since this also occurs for particles in, e.g., different color
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states. This coupling only occurs for quarks with the same ℓ state. For this reason, it is
energetically favorable to excite two quarks into an ℓ = 1 state. This comes at a cost of
energy and thus creates a repulsive potential. Indeed, there is an 8/9 chance to find two
quarks in a p state in the limit of two nucleons at exactly the same position (r = 0). Going to
larger distances, the description using partonic degrees of freedom breaks down. While it
is possible to describe a covalent bond between nucleons [34], where a quark is exchanged,
similar to an electron in molecular bonds, due to the color charge, this effect is suppressed by
a factor of 1/3, and the resulting attraction is smaller than the measured one. This covalent
bond model predicts at r = 1 fm a potential strength of Vcov = −37 MeV, compared to the
VAV18 ≈ −55 MeV predicted by modern effective potentials such as Argonne v18 [35].

The intermediate and long-range attraction is better described by meson exchange mod-
els, as shown in the Feynman diagram below.

d

d

u

u

u

u

u
u

d

d

u

u

u

u

p

p

p

p

π0

Here, a virtual meson takes on the role of the mediating particles instead of a gluon. The
first example of such a model was developed by Hideki Yukawa [36] in which he proposed
the existence of the pion as an exchange particle of the strong force. A simplified version of
his derivation starts from the relativistic energy-momentum relation (with h̄ = c = 1)

E2 = p2 + m2. (1.5)

The Klein-Gordon equation can be obtained by quantizing this equation, i.e., replacing the
energy with the Hamiltonian (E → i ∂/∂t) and the momentum with the momentum operator
(p → −i∇) and multiplying both sides by iΨ(x, t)

∂2

∂t2 Ψ(x, t) = (∇2 − µ2)Ψ(x, t), (1.6)

where µ = mh̄
c is the inverse range of the potential. Considering the static field limit

( ∂2

∂t2 Ψ(x, t) → 0) and a spherically symmetric solution, one obtains

1
r2

d
dr

(
r2 dΨ(r)

dr

)
− µ2Ψ(r) = 0. (1.7)

A wave function that satisfies this equation is

Ψ(r) =
e−µr

r
(1.8)
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and a particularly simple ansatz for a potential that results from exchanging a particle is
V(r) = gΨ(r), where g is an arbitrary constant. Choosing g = −V0/µ results in the potential

V(r) = −V0
e−µr

µr
, (1.9)

which is the commonly known form of the Yukawa potential. This potential has the range
of 1/µ = h̄/mc, which is what one would expect from the Heisenberg uncertainty as the
range of a particle with mass m; for the pion with mπ ≈ 140 MeV/c2 one obtains a range
of 1.4 fm. This simplified derivation relies on the fact that the pion is a free particle, which,
considering the density of atomic nuclei, can at best be an approximation. The resulting
potential is shown in Fig. 1.4 (blue). It gives an adequate description of the long-range in-
teraction denoted with one pion exchange, with diminishing quality in the intermediate range
and a complete absence of the short-range repulsion. One important observation is the fact
that the range decreases with increasing meson mass. In the intermediate range, the ex-
change of heavier mesons becomes possible, such as the f0(500). This meson has a mass of
400− 800 MeV/c2 and decays into two pions. The exchange of these kinds of mesons can be
modeled via two pion exchange, replacing the f0 with two pions. In the short-range regime of
the interaction, the exchange of even heavier vector mesons becomes possible, such as the ρ
and the ω, with masses of 770 MeV/c2 and 782 MeV/c2, respectively. While these give a re-
pulsive interaction, their effective coupling constants would need to be drastically increased
in order to account for the strength of the central repulsion observed in experiments. Here,
the structure of the nucleons should play a role, as discussed above. An approach that is
successfully able to explain the entire range of the nuclear force is chiral effective field the-
ory (χEFT). In this theory, only nucleons and pions exist as fundamental point-like objects. It
describes the intermediate and long-range interaction via one- and two-pion exchange and
the central part via direct interaction between the (fundamental) nucleons, so-called contact
terms, and Pauli blocking. More information is given in Sec. 3.3.1.

1.3 Cosmic-ray antinuclei and implication for dark matter

Besides the study of fundamental nuclear interactions, nuclei, specifically their antimatter
counterpart, have become a subject of interest in the field of astrophysics. The tentative ob-
servation of objects with a similar mass to helium nuclei and a doubly negative charge by the
AMS-02 experiment has sparked a flurry of theoretical explanations for the origin of these
antinuclei. Indeed, a very popular explanation is the creation of antinuclei in dark matter
(DM) annihilation events. Dark matter is a form of matter that has only been observed due
to its gravitational influence on galaxies and gravitational lensing. It also plays a key part
in the current understanding of large structure formation in the early universe, where over-
densities of DM lead to much faster galaxy formation than would normally be possible if
only the visible matter was involved. DM thus allows our universe to form the intricate
structure we see today in just 13 billion years. However, no DM particle has been directly
observed, and its nature is still unknown. It can be assumed that the DM particle would
only interact via gravity and the weak force, which makes it a so-called weakly interact-
ing massive particle (WIMP). Under the WIMP assumption, DM particles could annihilate
into standard model particles. They would create matter and antimatter particles in equal
numbers, which is not true for the constituents of the rest of the galaxy, which is utterly
dominated by matter particles. Such a source of antimatter in our galaxy could explain the
measurements of antihelium by AMS-02, and even the definitive confirmation of one antinu-
cleus would be incompatible with our current understanding without the inclusion of DM.
Figure 1.5 shows the current state-of-the-art predictions in the case of antideuterons. The
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FIGURE 1.5: Deuteron flux predictions for the standard model background
using two different parameterizations of the production cross-section [2, 3].
Also shown are the predictions of dark matter induced antideuteron flux for
three different DM masses under the assumption that DM particles annihilate
into W+W−− boson pairs. Taken from [4].

background is described using two different parameterizations of the antideuteron produc-
tion cross-section [2, 3]. This background contribution comes from high-energy cosmic rays
(CRs) colliding with the interstellar medium (ISM) and creating antinuclei in the process.
Such processes are well understood from collider experiments on Earth. The DM-induced
signal is modeled under the assumption that the DM particles annihilate into W+W− boson
pairs, which subsequently decay into standard model particles. It is very clear from Fig. 1.5
that at low kinetic energy, the expected signal from DM annihilations is dominant. This can
be explained by the different kinematics of the production. In the background, high-energy
CRs collide with the ISM, which is at rest. This creates particles very strongly boosted in the
rest frame of the galaxy and results in an energy spectrum that is shifted to larger values.
Since we assume that DM is approximately at rest (cold dark matter), the annihilation prod-
ucts will be produced with a much lower average kinetic energy. Figure 1.5 also shows that
lower mass DM particles create a larger enhancement at low kinetic energies.

However, our current understanding of nuclear production is limited. The best predic-
tions of antinuclear production in the galaxy, even from Standard Model processes only, use
either simplified production models [2] or heavily simplified assumptions [3]. These simpli-
fications lead to uncertainties of +27

−42% and ±20%, respectively, for the background and +63
−70%

for the DM contribution from production alone. If not even the background is properly un-
derstood, any interpretation of the current data, especially its interpretation as new physics,
would not be possible. With the model developed in this work, a much higher precision of
the background predictions could be achieved so that any signal beyond these predictions
can be properly interpreted in future studies.

Another rather speculative avenue is the production of very heavy nuclei. Indeed, the
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current models of kilonova explosions cannot account for the production of heavy elements,
such as iron, that are observed in cosmic rays. If the nuclear production model can be arbi-
trarily extended to heavier masses, scenarios such as heavy element production in ultra-high
cosmic ray collision could be studied.
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Chapter 2

Theoretical considerations

2.1 Nuclei production models

The process by which nuclei are formed is still a topic of debate. It is surprising that these
objects, which are bound by about 1 MeV/nucleon, can survive in the intense environment
of a high-energy particle collision. In heavy ion collisions, temperatures can reach upwards
of 150 MeV, leading to nuclei being described as ’Snowballs in Hell’. The survival problem
and a detailed explanation of how they are formed can be addressed using three different
families of phenomenological models: The statistical hadronization model (SHM), the ki-
netic approach, and the coalescence approach.

2.1.1 Statistcial hadronization model

The statistical hadronization model has been successfully applied to a large range of col-
lision energies and systems to explain the abundances of all produced hadrons. The key
concept of the SHM is that particles are produced by a statistical process, filling all avail-
able phase space from an excited region. Due to its close link to thermodynamics, it is also
often referred to as thermal model. The final state conserves all quantum numbers of the
initial state. Depending on the exact implementation, this is either done globally, i.e., in a
grand canonical ensemble, or locally in a canonical ensemble. The grand canonical SHM is
applicable only in central heavy ion collisions, while the canonical SHM (CSM) is applicable
for all hadronic collisions, converging towards the grand canonical model for large event
multiplicities and system sizes. Both of these models assume that nuclei are produced as
compact colorless quark bags that only fully form once they have left the collision medium
and subsequent hadronic cloud.

Grand canonical statistical hadronization model

A grand canonical ensemble in thermodynamics describes a system that is in thermody-
namic equilibrium with a much larger reservoir. In the case of the SHM, the equilibrium is
in energy, charges such as baryon number, strangeness, and electric charge. Since measure-
ments, especially at the LHC and RHIC, are often performed in a finite rapidity window, the
probed volume is much smaller than the entire collision system, and such an approximation
is valid. This leads to a conservation of energy and charges only on average.
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Grand canonical statistical hadronization model yields

In this section, the yields of particles in the grand canonical statistical hadronization
model is calculated

⟨Ni⟩th = T
∂

∂µi
ln Zi =

VTgi

2π2

∞

∑
k=1

(±1)k+1

k
exp(µi/T)m2

i K2(kmi/T) (2.1)

The grand canonical partition function for each hadron species i can be described as

ln Zi =
Vgi

2π2

∫ ∞

0
±p2dp ln[1 ± exp(−(Ei − µi)/T)] (2.2)

with a + for fermions and a - for bosons. Further, gi = 2Ji + 1 describes the Spin degeneracy

factor, T is the temperature, and Ei =
√

p2 + m2
i is the total energy. µi are the chemical

potentials and ensure the conservation of baryon number, isospin, and strangeness. It is
defined as

µi = µBBi + µI3 I3,i + µsSi. (2.3)

For measurements at mid-rapidity and LHC energies, the average baryon number,
strangeness, and Isospin are 0. Finally, the total partition function of the system is given
by the product of all particles:

Z = ∏
i

Zi → ln Z = ∑
i

ln Zi. (2.4)

Ref. [37] showed that doing a Taylor expansion of the natural logarithm and performing the
momentum integral the partition function for a species i can be described as

ln Zi =
VTgi

2π2

∞

∑
k=1

(±1)k+1

k2 exp (µi/T)m2
i K2(kmi/T) (2.5)

Where K2 is the second modified Bessel function. From this partition function, the average
number of particles from purely thermal production, ⟨Ni⟩th, can be obtained with

⟨Ni⟩th = T
∂

∂µi
ln Zi =

VTgi

2π2

∞

∑
k=1

(±1)k+1

k
exp(µi/T)m2

i K2(kmi/T) (2.6)

In addition to this direct production one also needs to take into account the contribution of
heavier particles of species j feeding into particle species i

⟨Ni⟩ = ⟨Ni⟩th + ∑
j

Γj→i⟨Nj⟩th, (2.7)

where Γj→i is the branching ratio of species j decaying into particle species i.
This definition of particle yields, however, only holds in a gas of non-interacting hadrons
and resonances, a so-called hadron resonance gas (HRG). This condition is only satisfied in
a system with low density, where repulsive or attractive interactions can be neglected. To
account for a repulsive interaction eigenvolume corrections of the van der Waals type can be
implemented additionally [38]. Eq. 2.1 outlines the dependency of the particle yield on 5 cru-
cial parameters: Temperature T, Volume V, and the three chemical potentials (µB, µS, µQ).
Only two out of these five are constrained from the initial state of heavy ion collisions, µQ
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is fixed by the isospin asymmetry of the initial state and µS = 0 due to the vanishing net-
strangeness of nuclei. µB is generally not constrained by the initial conditions, and only for
mid-rapidity measurements at LHC energies can µB ≃ 0 be fixed [39]. Finally, the depen-
dence on the volume can be canceled by considering ratios of particle yields, which even-
tually only depend on the chemical freeze-out temperature of the system. The SHM can be
used to predict the yields of hadrons going from pions to light nuclei. It is, in principle,
surprising to see light nuclei in heavy ion collisions since the chemical freeze-out temper-
ature is much higher than the binding energy of nuclei, which is of the order of MeV/nu-
cleon. However, the thermal model is blind to the internal structure of hadrons and the
hadron yields are the result of their distribution in phase space. A possible explanation on
how light nuclei can survive the high temperatures of heavy ion collisions was developed
in Ref. [5]: The expansion of the system after chemical freeze-out has to conserve entropy
density, and it is the entropy conservation, and not the difference between the binding en-
ergy and temperature of the system, which governs the production yield in this case [5].
Figure 2.1 shows the thermal model fits to all light-flavoured hadrons measured in cen-
tral (0-10%) Pb–Pb collisions at

√
sNN = 2.76 TeV, including A = 4 (anti)nuclei and A = 3

(anti)hypernuclei, where one nucleon is replaced with a hyperon. For 3He and 4He the pre-
dictions of the yields, computed with the parameters obtained from the fit, are reported. The
fits are performed with three different implementations of the thermal model: THERMUS
2.3 [40], GSI-Heidelberg [41], and SHARE 3 [42]. The models differ in the list of resonances
included. Further, in SHARE, hadrons are assumed to be point-like, while THERMUS and
GSI-Heidelberg take the hadron volume into account. For all models, the fit to the hadron
yields gives a chemical freeze-out temperature Tchem ≈ 156 MeV, which interestingly coin-
cides with the transition temperature obtained by Lattice QCD of 145 ≤ T ≤ 163 MeV [43].
The measured yields of 4He and 4He agree within the uncertainties with a temperature be-
tween 137 MeV and 177 MeV, depending on the model. This means that light nuclei, from
(anti)deuterons to (anti)4He, are produced in statistical equilibrium at the same temperature
as the other hadrons. Finally, from the fit of the particle abundances at lower energies, the

FIGURE 2.1: Grand canonical statistical hadronization model fits to all light-
flavored hadrons measured in central Pb–Pb collisions at

√
sNN = 2.76 TeV.

Taken from [5]

authors of Ref. [5] predicted the energy dependence of the yields of (anti)(hyper)nuclei, even
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FIGURE 2.2: Prediction by the grand canonical SHM for Particle yields per
106 central Pb–Pb collisions as a function of the collision energy. Solid lines
indicate particles, dotted lines antiparticles. Taken from [5].

multi-strange ones and ones including Ξ-baryons, which can be seen in Fig. 2.2. It shows
an enhancement of nuclear production at lower energies

√
s < 10 GeV. This is because of

an increased baryochemical potential µB ≫ 0. Similarly, antinuclei are strongly suppressed
at such low energies. At LHC energies

√
s > 1 TeV, nuclei and antinuclei are produced in

equal amounts as µB approaches 0.

Canonical statistical hadronization model

In systems characterized by a small reaction volume, such as peripheral heavy-ion, p–A, or
pp collisions, the aforementioned reservoir becomes comparable in size to the probed re-
gion. As such, the grand-canonical ensemble is no longer applicable. Instead, the canonical
ensemble has to be utilized, which not only conserves all quantum numbers on average but
exactly [44], from one microscopic state to another. This results in a canonical suppression of
particles carrying conserved charges. In the canonical ensemble, the abelian charges baryon
number B, electric charge Q, and strangeness S are fixed to particular values and conserved
exactly across a correlation volume Vc.

Canonical statistical hadronization model yields

In this section, the particle yield in the canonical statistical hadronization model is
calculated

⟨Nth
j ⟩CE = C(Bj, Qj, Sj)⟨Nth

j ⟩GCE, (2.8)

C(Bj, Qj, Sj) =
Z(B − Bj, Q − Qj, S − Sj)

Z(B, Q, S)
, (2.9)
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The partition function can be written as follows:

Z(B, Q, S) =
∫ π

−π

dϕB

2π

∫ π

−π

dϕQ

2π

∫ π

−π

dϕS

2π
e−i(BϕB+QϕQ+SϕS) × exp

[
∑

j
∑
n

zn
j ei(BjϕB+QjϕQ+SjϕS)

]
(2.10)

where the sum j runs of all hadron species, the sum n takes into account quantum statistics
and the one-particle partition function zn

j is defined as

zn
j = (∓1)n−1Vc

∫
dmρj(m)dj

m2T
2π2n2 K2(nm/T). (2.11)

dj is the degeneracy factor of the particle species j and the mass distribution ρj takes into
account the finite width of resonances, which can be described by a Breit-Wigner function.
The correlation volume Vc is usually given in multiples of the total volume per rapidity unit
Vc = kdV/dy. Values of k usually range from 1 < k < 3. Following the method in Ref. [45],
the yield ⟨Nth

j ⟩CE of particle species j in the canonical ensemble can be expressed as

⟨Nth
j ⟩CE = C(Bj, Qj, Sj)⟨Nth

j ⟩GCE, (2.12)

where ⟨Nth
j ⟩GCE is the yield in the grand canonical ensemble Eq. 2.1 and C(Bj, Qj, Sj) is the

canonical suppression factor

C(Bj, Qj, Sj) =
Z(B − Bj, Q − Qj, S − Sj)

Z(B, Q, S)
, (2.13)

where Z is the canonical partition function Eq. 2.10. Similarly to Eq. 2.7, the total yield can
again be expressed by

⟨Nj⟩CE = ⟨Nth
j ⟩CE + ∑

i
Γi→j⟨Nth

i ⟩CE. (2.14)

In Ref. [6], the CSM calculations are implemented within the Thermal-FIST package. One of
the main features of this package is that the conserved charges are fixed to the initial values
Q = S = B = 0. This is well motivated as matter and antimatter are produced in equal
amounts at LHC energies. All particles in this implementation are considered to be point-
like. However, extensions include a finite volume exclusion, which has a minimal effect on
integrated yields [46]. In Fig. 2.3, the p/π, K/π, ϕ/π, Λ/π, Ξ/π and Ω/π ratios are shown
as a function of the charged pion yield, normalized by the predicted yield of the grand
canonical thermal model. The data for different collision systems and energies is taken from
ALICE, and it is compared to predictions by the CSM for various values of the correlation
volume Vc = dV/dy, 3dV/dy and 6dV/dy. The figure shows the struggle of the CSM to
explain all yield ratios with a unified explanation. Indeed, the model performs decently
for p/π with Vc = 6dV/dy. For the Λ-Baryon with strangeness S = 1, Vc = 6dV/dy
reproduces the data within 2 standard deviations, for the Ξ-baryon with S = 2, Vc = 3dV/dy
is preferred, and for the Ω-Baryon with S = 3, Vc = dV/dy is the best fitting option. All
tested options fail for the K/π ratio and for ϕ/π even the trend as a function of multiplicity
is inverted. This is because canonical suppression has no effect on ϕ production since it
is neutral. These issues can at least partially be remedied by introducing the strangeness

saturation factor γS. This factor modifies Eq. 2.11: zn
j → γ

|sj|
S zn

j , |sj| being the total number
of strange and antistrange quarks in particle species j. Since the deviations for ϕ/π are only
at small multiplicities the factor γS is a function of multiplicity and γS ≤ 1. Further, one
can introduce a freeze-out temperature, which varies as a function of multiplicity. When
fitting particle spectra with a Blast-Wave parameterization (Eq. 4.19) larger Tkin values are



16 Chapter 2. Theoretical considerations

FIGURE 2.3: the ratios of various hadron-to-pion yields versus the charged
pion yield. Comparison to predictions by the Vanilla CSM. Taken from [6]

observed in pp collisions (Tkin ≃ 170 MeV) compared to Pb–Pb collisions (Tkin ≃ 100 MeV).
This indicates an earlier decoupling in smaller systems. The results of this modified CSM
can be seen in Fig. 2.4. A much better agreement with the measured ratios can be achieved
using Vc = 3dV/dy.

2.1.2 Coalescence model

A contrary approach to nuclei formation is the coalescence model. It states that only
(anti)nucleons are produced in the collision. These nucleons can then bind together to
form a cluster if they are close in phase space. Butler and Pearson first proposed this
idea in 1963 [47] in order to explain the observations in p+A collisions at pbeam = 25 − 30
GeV/c. Their calculation is based on 3-to-2 scattering, differentiating 3 different processes:
p + n → d∗ → X + d, X + p + n → p∗ + n → d and p + X + n → p + n∗ → d, where
X denotes an interaction with the optical potential of the target nucleus A. The calculation
is based on the idea that a proton-neutron pair with small relative momenta traverses the
target nucleus A and, within this nucleus, feels an optical potential. The deuteron can be
formed by interacting and exchanging momentum with this potential, i.e., the surround-
ing nucleons absorb the recoil momentum. Indeed, the problem of momentum and energy
conservation is intricate in the coalescence approach. In principle, a 2 → 1 process, such
as p + n → d, can never be possible if the binding energy of the nucleus is non-zero. This
is because there is no possible combination of initial momenta for the p-n pair that would
allow the conservation of Energy and momentum at the same time. Usually, this can be
resolved by assuming a 3rd body, which can be another nucleon or, e.g., a pion. Another
ansatz to resolve this issue is by one of the nucleons being off their mass shell. This can
either be in the early stages of the collision, where the surroundings are hot and dense or
after scattering with yet another third particle. Similarly, also nucleons from the strong and
electromagnetic decays of resonances, such as ∆+ or N∗, resolve the issue in reactions such
as ∆0 + n → d + π−. A signature of such a process could be observed in momentum corre-
lation functions between d + π, where the ∆ resonance mass peak should be clearly visible.
In the model developed by Butler and Pearson the deuteron momentum distribution d3 Nd

dP3
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FIGURE 2.4: the ratios of various hadron-to-pion yields versus the charged
pion yield. Comparison to predictions by a modified CSM, including the
strangeness saturation factor γS and a freeze-out temperature depending on
the multiplicity. Taken from [6]

can be expressed in terms of the nucleon momentum distributions d3 Np

dP3 as

d3Nd

dp3 = B 1
p2

(
d3Np

dp3

)2

, (2.15)

With a momentum-independent prefactor B. This approach neglects relativistic effects
and isospin asymmetry and assumes a static optical potential. However, the latter cannot
be assumed in relativistic heavy ion collisions since the projectile and the target interact
so strongly and quickly. Similarly, in the same year as Butler and Pearson, Schwarzschild
and Zupančič [48] pointed out that, regardless of the production mechanism, the deuteron
momentum distributions should depend only on the nucleon momentum distributions and
a momentum-dependent coefficient B(p).

d3Nd

dp3 = B(p)

(
d3Np

dp3

)2

(2.16)

This coefficient and particularly its momentum dependence will depend on the exact pro-
duction mechanism. Kapusta [49] suggested a way to determine this coefficient. The main
assumption of their model is that if two nucleons are close in phase space with the correct
spin and isospin they are a deuteron. Thus, their argument is based on the probability of
finding two nucleons within a small sphere in phase space with radius p0. The probability
for a single nucleon can be expressed as

P =
1
M

4π

3
p0γ

d3nN

dp3 , (2.17)

where M is the mean nucleon multiplicity. The probability for exactly two nucleons is

PM(2) =
(

M
2

)
P2(1 − P)M−2. (2.18)
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Assuming that M ≫ 1 and P is small, the deuteron momentum density can be expressed as

γ
d3nd

dp3 =
3
4

4π

3
p3

0

(
γ

d3np

dp3

)(
γ

d3nn

dp3

)
. (2.19)

The free parameter p0 has to be taken from fits to experimental data and can, in princi-
ple, also be momentum, system, and beam energy dependent. While its value is not pre-
dicted by the model, it is assumed to be of the order of the Fermi momentum inside the
deuteron (pF ≈ 450 MeV/c). Indeed, later applications of this model give a p0 of ∼ 100− 300
MeV/c [50, 51] depending on the collision energy, but also the underlying nucleon momen-
tum distribution. One important observation is that the factor p0 used in this way has to
be inversely proportional to the volume of the system emitting the nucleons. This can be
shown when assuming statistical production. The momentum density for a species emitted
from a system with volume V, temperature T, chemical potential µi and spin Si is

d3ni

dp3
i
=

Si + 1
(2π)3 V

exp


√

p2 + m2
i − µi

T

± 1

−1

. (2.20)

Following the assumption in Eq. 2.16 the deuteron and nucleon densities have to be equal
times some prefactor:

3
(2π)3 V

[
exp

(√
(2p)2 + (2mN)2 − µd

T

)
− 1

]−1

= B 4
(2π)6 V2

exp


√

p2 + m2
p − µN

T

+ 1

−2

.

(2.21)
From dimensional analysis already B ∝ 1/V. Assuming T ≪ mp one obtains

γ
d3nd

dp3 =
3
4
(2π)3

V
8
γ

(
γ

d3np

dp3

)(
γ

d3nn

dp3

)
, (2.22)

or comparing with Eq. 2.19
4π

3
p3

0 =
8
γ

(2π)3

V
. (2.23)

This dependence poses a problem when comparing measurements for different energies
and systems and even impact parameters of the same energy and system. One way to re-
solve this issue is to introduce a hard cutoff in the distance of the nucleons coalescing into
a deuteron. So far, the finite size of the deuteron has not been taken into account. How-
ever, it seems reasonable to assume that two nucleons that are 10 fm removed from each
other should have a smaller probability of binding when compared to a pair that is only
1 fm apart. Using this method, a reasonable description of measurements can be achieved
for small (pp) and big (Au–Au) collision systems for energies between

√
s ∼ O(1) GeV to√

s ∼ O(10) TeV. The results for the d/p (and d/p) ratio of such a model, built on top of
the UrQMD event generator can be seen in Fig. 2.5 [7]. In this study, the UrQMD model was
used to obtain a two-particle phase space of protons and neutrons. Any given p-n pair is
bound into a deuteron if its relative momentum ∆p is less than p0 = 0.285 MeV/c and its
distance ∆r is less than r0 = 3.575 fm. These parameters are extracted in the rest frame of the
pair (PRF). The cutoff parameters were obtained from a fit to AGS and SPS energies [52].
The coefficient B(p) from Eq. 2.16 is often referred to as the coalescence parameter B2 in the
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FIGURE 2.5: d/p (and d/p) ratio for p+p (left) and Au–Au collisions (right)
from measurements and predictions by the UrQMD model. Adapted from [7].

case of deuterons, and more generally as BA for A-cluster. It can be experimentally deter-
mined using measurements of the nucleon and nuclei pT spectra as

BA =

(
1

2πpd
T

d2Nd

dydpd
T

)/(
1

2πpp
T

d2Np

dydpp
T

)A

. (2.24)

In the past, multiple efforts have been made to predict the coalescence parameter theoreti-
cally. Ref. [11], which builds on Ref. [53], models the momentum distribution of nucleons
using an expanding fireball. For this, the Cooper-Frye formula

E
d3Ni

d3P
=

2J + 1
(2π)3

∫
Σ f

P · d3σ(R) fi(R, P) (2.25)

is utilized. It describes the invariant yield of particle i, which decouples from a thermal-
ized fireball along a freeze-out surface Σ f (R) with momentum P and a normal four-vector
d3σµ(R). fi(R, P) is a local equilibrium distribution

fi(R, P)) =
[

exp
(

P · u(R)− µi(R)
T(R)

)
± 1
]−1

, (2.26)

with local temperature T(R), local chemical potential µi(R) and local flow velocity uµ(R).
For a cluster of mass A = Z + N one can assume that its yield is the overlap of A nucleons
at the same position R and momenta P/A

E
d3NA

d3P
=

2JA + 1
(2π)3

∫
Σ f

P · d3σ(R) f Z
p (R, P/A) f N

n (R, P/A). (2.27)

This equation only holds in a perfectly homogeneous, classical phase space. To combat this
a quantum mechanical correction factor ⟨Cd(P)⟩ is introduced

⟨Cd(P)⟩ =
∫

d3r
f Z
p (R, Pd/A) f N

n (R, Pd/A)

f A(RA, PA/A)
|φ(r)|2, (2.28)
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where φ(r) is the wave function of the target A-cluster. Under the assumption of a Gaussian
wave function, e.g. for the deuteron

φ(r) = (πd2)−3/4 exp
(
− r2

2r2
A

)
, (2.29)

for 3H and 3He

φ(r1, r2, r3) = (3π2d4)−3/4 exp
(
−ρ2 + λ2

2r2
A

)
, (2.30)

⟨CA⟩ can be generalized as

⟨CA⟩ = ∏
i=1,2,3

(
1 +

r2
A

4R2
i

)− 1
2 (A−1)

. (2.31)

Here rA is the size parameter of the nucleus, Ri is the i-th component of the size of the
emission source. The size parameter rA is related to the measured charge RMS radius of the
nucleus λmeas

A via

(λmeas
A )2 − λ2

p =
3
2

A − 1
A

r2
A
2

, (2.32)

where λp = 0.879 fm is the charge radius of the proton. Using this definition of ⟨CA⟩ in
Eqs. 2.24, 2.25 and 2.27 one obtains

BA =
2JA + 1

2A
√

AmA−1
T

 2π

R2 +
r2

A
4

 3
2 (A−1)

, (2.33)

where a homogeneous emission source (R1 = R2 = R3 = R) was assumed. Eq. 2.33 relates
the coalescence parameter to the size of the emission source. Experimentally determining
the size of the emission source can be challenging. For this reason, the source size is usually
related to charged particle multiplicity ⟨dNch/dη⟩ via

R = a⟨dNch/dη⟩1/3 + b. (2.34)

The rationale is that the particle multiplicity should depend on the overall emission volume.
Thus, the radius should depend on the cube root of the multiplicity. Ref. [11] determined
the parameters a=0.473 fm and b=0 fm constrained to central 0-10% Pb–Pb collisions. How-
ever, a fit to experimental pion and kaon HBT data [54–56] yields parameters a=0.339 fm,
b=0.128 fm. With this translation Eq. 2.33 can be compared to experimental data as a func-
tion of ⟨dNch/dη⟩, as shown in Fig. 2.6. The shaded band indicates the two different source
parameterizations. The previous formulation of coalescence included quantum mechanical
processes as a correction factor on top of a classical calculation. Ref. [53] and already much
earlier in similar form Ref. [49] proposed to do a fully quantum mechanical approach using
density matrices. In this formulation, the yield of a cluster with a given momentum PA is
given by the projection of the deuteron density matrix onto the A-nucleon density matrix at
freeze-out t f

dNA

d3PA
∝

1
2!

∫
d3x1 . . . d3xAd3x′1 . . . d3x′Aϕ∗(x1, . . . , xA)ϕ(x′1, . . . , x′A)×

⟨ψ†(x′A, t f ) . . . ψ†(x′1, t f )ψ(x1, t f ) . . . ψ(xA, t f )⟩. (2.35)

The cluster wave function ϕ is represented by a free momentum eigenstate ϕ(x1, . . . , xA) =
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FIGURE 2.6: The coalescence parameter B2(left) and B3(right) measured by
ALICE[8–10] compared to the prediction Eq. 2.33. The bands indicate the two
different source parameterizations.

exp(iPA · (x1 + . . . xA−1)/A)φA(ξ1, . . . , ξA−1) where φ is the internal wave function using
relative coordinates ξN . For the A-nucleon density matrix, we can assume a factorization
into each nucleon

⟨ψ†(x′A, t f ) . . . ψ†(x′1, t f )ψ(x1, t f ) . . . ψ(xA, t f )⟩ = ⟨ψ†(x′A, t f )ψ(xA, t f )⟩ . . . ψ†(x′1, t f )ψ(x1, t f )⟩.
(2.36)

These single-particle densities can be expressed by the single-particle Wigner functions f W
1

ψ†(x′N , t f )ψ(xN , t f )⟩ =
∫ d3k

(2π)3 eik·(xN−x′N) f W
1

(
k,

xN + x′N
2

; t f

)
. (2.37)

A different prescription of factorization will be discussed in Ch. 3. Further, the A-cluster
density matrix can be replaced with the cluster Wigner function D [57]

D(r1, . . . , rA−1; q1, . . . , qA−1) = (πh̄)−A
∫ ∞

−∞
d3ζ1 . . . d3ζA−1φ∗(r1 + ζ1, . . . , rA−1 + ζA−1)

φ(r1 − ζ1, . . . , rA−1 − ζA−1) e2i(q1·ζ1+···+qA−1·ζA−1)/h̄. (2.38)

With these replacements Eq. 2.35 reads for an A=2 cluster

dNd

d3Pd
=

Gd

(2π)3

∫
d3R

d3q
(2π)3 d3rD(r, q) f W

1

(
Pd

2
+ q, R +

r
2

; t f

)
f W
1

(
Pd

2
− q, R − r

2
; t f

)
.

(2.39)
Here, the coordinates xN+x′N

2 have been replaced by central coordinates R ± r
2 . Finally,

Ref. [12] argues that the ±q inside the f W
1 functions can be neglected to ∼ 10% accuracy

in Pb–Pb collisions. With this approximation, the q integration can be performed∫
d3qD(r, q) = (2π)3|φd(r)|2, (2.40)

where we can define

|φd(r)|2 =
∫ d3q

(2π)3 eik·rD(q), (2.41)
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FIGURE 2.7: Comparison between the measurements by the ALICE col-
laboration in pp collisions at

√
s=13 TeV, in the multiplicity class HM I

(⟨dNch/dη⟩ = 35.8 and theoretical predictions using Eq. 2.33(Bellini et al.)[11]
and Eq.2.43[12] for various different wave functions of the deuteron. The lat-
ter is taken from Ref. [9].

and finally

dNd

d3Pd
=

Gd

(2π)3

∫ d3q
(2π)3D(q)

∫
d3R d3r f W

1

(
Pd

2
, R +

r
2

; t f

)
f W
1

(
Pd

2
, R − r

2
; t f

)
. (2.42)

Using this formulation, a description of the coalescence parameter B2 can be found [12]

B2(p) ≈ 3
2m

∫
d3qD(q)CPRF

2 (p, q). (2.43)

CPRF
2 (p, q) is the two-nucleon momentum correlation function. The idea behind Eq. 2.43

is that the two-nucleon momentum distribution is projected on the deuteron final state in
momentum space, similarly to Eq. 2.42, but the spatial part is integrated out. Under the
assumption that the source distribution has a Gaussian shape and is homogeneous, i.e. R =
R∥ = R⊥, CPRF

2 (p, q) takes the form [9]

CPRF
2 (p, q) = e−R2q2

, (2.44)

where R is the source radius, p is the total momentum of the nucleon pair, and q is the rel-
ative momentum, defined in the pair rest frame. Ref. [14] has measured the source radius

as a function of the pair transverse mass mT =

√(
p⃗T,1+ p⃗T,2

2

)2
+
(m1+m2

2

)2. Using these mea-

sured radii, predictions of B2 can be made using Eq. 2.33 and Eq. 2.43. They can be found in
Fig. 2.7, compared to measurements by the ALICE collaboration [9]. The predictions using
Eq. 2.43 and a Gaussian wave function show a very good agreement with the data. This is
surprising, as the Gaussian is assumed to be a worse representation of the deuteron than
other wave functions used, especially the one obtained from χEFT. Further, the prediction
from Eq. 2.33 shows an inverted trend with transverse momentum. Eq. 2.43 can be obtained
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from Eq. 2.33 with the replacement m → mT and Ref. [53] has argued that this replacement
should hold in general and should be used at finite pT. This means Eq. 2.43 should only be
used at pT = 0. Further, neglecting the ±q terms in eq. 2.39 has an unquantified effect when
applied to small systems. All of these factors contribute to an inaccurate prediction of B2.

Kinetic approach

The kinetic approach is similar in spirit to the coalescence model. Nuclei are formed after
hadronization. However, the main difference lies in the microscopic implementation. In
the kinetic approach, nuclei are formed from multi-body scattering between nucleons and
mesons in the hadronic phase. These scatterings include the reactions Npn ↔ Nd, πpn ↔
πd, 3Heπ ↔ πnpp. One recent implementation was done in SMASH 2.0 for deuterons [13].
They implemented the process πd ↔ πpn in two different ways: with only 2 ↔ 2 reactions
and 3 ↔ 2 reactions. The former requires the process to happen in multiple steps. First,
the nucleons form a non-existent excited state of the deuteron pn ↔ d′. Then, the excited
deuteron would decay by interacting with a pion πd′ ↔ πd. Since now the 3-body process is
expressed in two 2-body processes, a geometric interaction criterion can be utilized, where a
reaction occurs when the transverse distance dT is smaller than the interaction distance dint
given by the cross-section σ:

dT < dint =

√
σ

π
. (2.45)

Reaction probability in the kinetic approach

In this section, the 2 → 3 and 3 → 2 reaction probabilities, which correspond to
deuteron formation and breakup, respectively, in the kinetic approach, are calculated.

P2→3 =
∆t

∆3x
vrel

1
S′

23!

∫
dΦ3

1
∏n

j=1 2Ej

∫
dΦm

1
∏n

j=1 gj
∑i,f |T2→3|2

2λ1/2(s, m2
1, m2

2)
(2.46)

P3→2 =
g1′g2′

g1g2g3

S32!
S′

32!
∆t

(∆3x)2
E1′E2′

2E1E2E3

Φ2(s)
Φ3(s)

vrel
1

S′
23!

∫
dΦ3

1
∏n

j=1 2Ej

∫
dΦm

1
∏n

j=1 gj
∑i,f |T2→3|2

2λ1/2(s, m2
1, m2

2)
,

(2.47)

This approach, however, has no general extension to 3-body interaction since there is no
straightforward generalization of dT to a 3-particle system. In order to alleviate the problem
of introducing the non-existent d’, a stochastic criterion was introduced. In the framework
of this criterion, a probability Pn→m can be calculated for a n → m reaction as the number
of reactions ∆Nrecations over the number of all possible particle combinations inside a sub-
volume ∆3x and time interval ∆t

Pn→m =
∆Nreactions

∏n
j=1 ∆Nj

. (2.48)

Using the Boltzmann equation to quantify the number of reactions in a phase space element
one obtains

Pn→m =
1

S′!
∆t

(∆3x)n−1
1

∏n
j=1 2Ej

∫
dΦm

1
∏n

j=1 gj
∑

initial,final
|Tn→m|2 (2.49)

where S’ is the number of identical particles in the final state, gj is the spin degeneracy factor
gj = 2sj + 1 and Tn→m is the scattering matrix element summed over initial and final states.
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dΦm is the m-particle phase space element

dΦm = (2π)4δ(4)

(
P −

m

∑
k=1

pk

)
m

∏
k=1

dΓk, (2.50)

where P is the total 4-momentum of the reaction and pk the four momenta of the final state
particles. For the phase space element dΓk they use

dΓ =
d3 p

(2π)32E
(2.51)

for stable particles and for resonances

dΓ =
d4 p
(2π)4

π√
s
A(

√
s) =

dM
2

1
EM

d3 p
(2π)3A(M), (2.52)

where M =
√

s =
√
(p0)2 − p2, E2

M = p2 + M2 and A(M) is the spectra function of the
state, normalized to one ∫ ∞

0
dMA(M) = 1. (2.53)

The limiting case of a stable particle would be an infinitely narrow resonance with A(M) =
2Mδ(M2 − m2). To simplify, one can assume that the scattering matrix element depends
only on the initial center-of-mass energy

√
s and not the available phase space. This allows

us to pull it out of the integral in Eq. 2.49, and we can obtain the integrated m-body phase
space

m = 1 : Φ1(M2) =
π

M
A(M) (2.54)

m = 2 : Φ2(M2; m2
1, m2

2) =
λ1/2(M2, m2

1, m2
2)

8πM2 (2.55)

m = 3 : Φ3(M2; m2
1, m2

2, m2
3) =

1
2π

∫ (M−m3)
2

(m1+m2)2
ds1Φ2(M2; s1, m2

3)Φ2(s1; m2
1, m2

2), (2.56)

where λ(M2; m2
1, m2

2) = (M2 − m2
1 − m2

2)
2 − 4m2

1m2
2 is the Källén function. Finally, we can

express the probabilities of deuteron formation and breakup P3→2 and P2→3

P2→3 =
∆t

∆3x
vrel

1
S′

23!

∫
dΦ3

1
∏n

j=1 2Ej

∫
dΦm

1
∏n

j=1 gj
∑initial,final |T2→3|2

2λ1/2(s, m2
1, m2

2)
(2.57)

P3→2 =
g1′g2′

g1g2g3

S32!
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(∆3x)2
E1′E2′

2E1E2E3

Φ2(s)
Φ3(s)

vrel
1

S′
23!

∫
dΦ3

1
∏n

j=1 2Ej

∫
dΦm

1
∏n
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2λ1/2(s, m2
1, m2

2)
,

(2.58)

where vrel =
λ1/2(s,m2

1,m2
2)

2E1E2
is the relative velocity. It is important to mention that the factor

S′
23 is the number of identical particles in the 2 → 3 reaction, and generally different than

S′
32 in the 3 → 2 reaction. Φ2(s) and Φ3(s) correspond to the 2- and 3-body phase spaces

corresponding to the final and initial states, respectively.
Figure 2.8 shows the results for this model for simulations of Au–Au collisions at√

s = 7.7 GeV. It shows the time evolution of the number of deuterons for four different
scenarios: The full lines represent the scenario, wherein an initial hydrodynamic evolution
of the system, deuterons will freeze out with other hadrons, akin to the thermal model. The
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FIGURE 2.8: Time evolution of the deuteron numbers for Au+Au collisions at√
s = 7.7 GeV using SMASH for 0-10%(left) and 30-40%(right) centrality. The

results are given for an initial state with and without deuterons from thermal
production ("with(out) d at particularization") and for deuterons produced in
2 ↔ 2 and 3 ↔ 2 reactions. Taken from [13].

dashed lines indicate the scenario where no deuterons, only nucleons, are produced at the
freeze-out. Further, the blue lines indicate the prediction using only 2 ↔ 2 reactions and
a geometric collision criterion, while the red lines indicate production via 3 ↔ 2 reactions
and the stochastic criterion. Interestingly, two scenarios are compatible with data for 0-
10% centrality, namely the thermal production and 2 ↔ 2 reactions as well as no thermal
production and 3 ↔ 2 reactions. Moving toward more peripheral collisions, all four predic-
tions show unique results, which indicates that high-precision data for peripheral collisions
could help differentiate the four scenarios. Generally, the kinetic approach seems to resolve
the aforementioned problem of "snowballs in hell", very lightly bound objects surviving the
high temperatures of the fireball. It resolves it by showing that the nuclei don’t necessarily
survive the fireball, but they get reformed from multi-body reactions.

2.2 Femtoscopy

In the context of coalescence, nuclei are produced by final state interactions. Traditionally,
the interactions between particles have been measured using scattering experiments. This
means that the target and the beam have to be made up of the particles one wants to study.
While this works well for (reasonably) long-lived and stable particles, it is technically chal-
lenging to produce a beam of very short-lived particles. Indeed, most particles that can be
produced in hadronic collisions are so short-lived that even when flying close to the speed
of light, they would only traverse several cm in their rest frame. Femtoscopy is an experi-
mental technique to access the interactions between particles without the need for a beam
made of exotic particles. It utilizes two-particle correlations in momentum space to access
the Final State Interaction (FSI).

2.2.1 The correlation function

A theoretical prediction of the resulting correlation function as a function of the relative
momentum in the pair’s rest frame (PRF) can be expressed via the Koonin-Pratt equation [58,
59]

C(k∗) =
∫

d3r∗ S(r∗)|ψ(r∗, k∗)|2. (2.59)
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Eq. 2.59 shows that the measured correlation function is the result of folding the two-particle
wave function ψ(r∗, k∗)1 with the source function S(r∗), which corresponds to the distribu-
tion of relative distances of the particles after freeze-out. The source function can be de-
termined using particles with known interaction, such as π±, and constraining the source
distribution with the measured correlation function. This approach works well in heavy ion
collisions, where source sizes are large. However, in small systems, such as pp collisions, the
lifetime of potential resonances feeding into pions is comparable to the size of the system.
This leads to different source sizes for different hadron pairs. The ALICE collaboration has
shown [14] that all hadron-hadron pairs are emitted with the same source size if strongly
decaying resonances are removed. This allows one to construct the expected source size for
any pair by adding all resonances decaying into them on top of the so-called core source
size. Experimentally, the correlation function is defined as the probability of finding a pair
with momenta p1 and p2, normalized to the uncorrelated sample

C(p1, p2) =
P(p1, p2)

P(p1)P(p2)
. (2.60)

In practice, these probabilities are determined using the same and mixed event distribu-
tions Ns(k∗) and Nm(k∗), normalized with a constant such that the function for large k∗

approaches unity

C(p1, p2) = C(k∗) = N Ns(k∗)
Nm(k∗)

k∗→∞−→ 1. (2.61)

The same event distribution is defined as the distribution of pairs in k∗ space, where the
pair was constructed from two particles in the same event. The mixed event is similarly
constructed, but the pair is from particles in different events. The latter removes trivial
phase space correlations from the former, and one is left with only genuine two-particle
correlations. These correlations can contain a large variety of contributions. Next to the
genuine FSI, effects of the Bose-Einstein or Fermi-Dirac statistics can be seen. Fig. 2.9 shows
the influence of these interactions on the correlation function, with the example of p–p pairs.
The strong interaction between protons is attractive. As such, the correlation function rises
towards lower values of k∗, here modeled using the Argonne v18 potential [35]. Since both
particles are positively charged, their coulomb interaction is repulsive, and the correlation
function is below unity, falling towards low k∗. Protons are fermions and, as such, adhere
to the Fermi-Dirac statistics. This means that their correlation function approaches 0.5 at
k∗ = 0. When added up, the solid line is obtained as the theoretical p–p correlation function.
In reality, more contributions have to be taken into account. For one, the protons could stem
from a decay of a Λ Baryon, which is denoted pΛ–p. This Λ would also interact with the
other proton before it decays. Such a contribution would be added by adding the p–Λ
correlation function weighted by the contribution of pΛ–p pairs to the genuine p–p pairs.
This weight is called the λp−Λ-parameter. Generally, these λ parameters can be obtained for
all kinds of feed-down contributions into protons using

λik = Pi fi · Pk fk, (2.62)

where Pj is the experimental purity of particle species j and fj the fraction of proton from
species j. Lastly, particles can be wrongly identified or be the result of material knock-out
of the detector. The latter is particularly important for p–p correlations. Also, for these,
a λ parameter can be obtained from Monte Carlo studies. Finally, once all contributions
are determined, a total correlation function can be calculated from the genuine correlation

1in this chapter the superscript ∗ denotes the quantity evaluated in the PRF.
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FIGURE 2.9: Theoretical correlation function for p–p pairs with a source size
of 1.25 fm. The effect of Strong and Coulomb interaction, as well as Quantum
statistics, is separated.

function and residual correlations

C(k∗) = λgenCgen(k∗) + ∑ λijCij(k∗). (2.63)

A special contribution to the residual correlations are unstable particles that decay into the
two particles whose correlation function is under investigation. For example, a ∆ resonance
decays into a proton and a pion. In the correlation function of proton-pion, a signature of
this decay will be visible, similarly to an invariant mass plot. Indeed, a direct connection
between the relative momentum k∗ and the invariant mass M can be made for a particle
pair A and B

M =
√

m2
A + k∗2 +

√
m2

B + k∗2. (2.64)

2.2.2 The particle emission source

With the correlation function modeling under control, we can extract the genuine correlation
function Cgen(k∗) and compare it with Eq. 2.59. The required theoretical ingredients are the
source size S(r∗) and the two-body wave function Ψ(r∗, k∗), which can be calculated by solv-
ing the Schrödinger equation with the interaction potential[60]. Traditionally, femtoscopy
was performed in Heavy Ion collisions with pions to determine the source size. However,
this paradigm has shifted over the years, and femtoscopy is used to access the final state
interactions between hadrons. In order to perform these investigations, the source needs to
be determined first. Investigations in Heavy Ion collisions have shown[61] that the size of
the source depends on the particle species investigated. This would induce a huge uncer-
tainty when studying exotic species as the source term would be unknown. ALICE[14] has
studied the source size in pp collisions for p–p and p–Λ pairs. These pairs are used since the
interaction is well-known from decades of scattering experiments. Thus, the wave function
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in Eq. 2.59 can be determined using tools like CATS[60], which solve the Schrödinger equa-
tion for a known interaction potential. Furthermore, the analysis was done as a function of
the transverse mass ⟨mT⟩. In Heavy Ion collisions, it has been shown that the source size
depends on ⟨mT⟩, where it was attributed to collective behavior due to hadronic flow. As
can be seen in Fig. 2.10 (left) the source size for p–p and p–Λ pairs is different. However,
around 65% of protons and Λ are produced by feed-down from resonances. Interestingly,
the resonances feeding into Λ are, on average, longer lived (cτ ∼4.69 fm) than the ones feed-
ing into protons (cτ ∼1.65 fm). Utilizing the Resonance Source Model (RSM)[14], the source
distribution is split up into a Gaussian core part of primordially produced hadrons and an
exponential tail produced by various resonances decaying. Subtracting the resonances leads
to the core source size in Fig. 2.10(right). As can be seen, it is equal for p–p and p–Λ pairs.
In fact, this measurement has been repeated for π–π and K+–p pairs, and the same scaling
of the source with mT can be observed[62]. Using this common hadron emission source, the

FIGURE 2.10: (left) Source radius r0 for p–p and p–Λ pairs as a function of
⟨mT⟩ assuming a purely Gaussian source. For p–Λ, the results for two dif-
ferent interaction potentials are shown. (right) Core source radius rcore as a
function of ⟨mT⟩ assuming a Gaussian core with an exponential tail produced
by decaying resonances. The size of the Gaussian core is shown only. Taken
from [14]

source for exotic pairs can be determined by adding the decays to these specific hadrons
onto the core source. The source size including resonances can also be used in coalescence
models, like Eq. 2.33 or Eq. 2.43.
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Chapter 3

Wigner function coalescence

As explained in Ch. 2.1.2 the formation of light nuclei can be explained by the coalescence
model, which states that nucleons can bind together if they are close in phase space after
freeze-out. What it means to be close in phase space depends on the exact implementation
of the model, of which several were given. Generally, it means that the particles are in the
correct spin and isospin configuration and are close in momentum and coordinate space.
The implementation used throughout this work, the so-called Wigner Function Formalism,
will be explained in this chapter in detail.

3.1 Wigner function formalism

Wigner function formalism probability

In this section, the coalescence probability in the Wigner function formalism is de-
rived

P(r0, q)
∫

d3rd3rd Hpn(r, rd; r0)D(r, q), (3.1)

Its starting point is very close to Eq. 2.35 from Ref. [53], but the derivation will very
closely follow Ref. [63]. The Deuteron (or generally nuclei yield) can be found by projecting
the deuteron density matrix ρd onto the two nucleon density matrix

d3N
dP3

d
= tr(ρdρpn). (3.2)

The nucleon density matrix can then be written as

ρpn = |ψnψp⟩⟨ψpψn|, (3.3)

with normalization
⟨ψnψp|ψpψn⟩ = NnNp, (3.4)

where Nn and Np are the average multiplicities of neutrons and protons respectively. This
neglects double counting, where one nucleon could, in principle, show up in multiple
deuterons. This effect, however, should be of the order of the 3He yield and thus less than a
1% effect. When evaluating the trace tr(ρdρpn) in its coordinate representation, one finds

d3N
dP3

d
= S

∫
d3x1d3x2d3x′1d3x′2ϕ∗

d(x1, x2)ϕd(x′1, x′2)
〈

ψ†
n(x

′
2)ψ

†
p(x

′
1)ψp(x1)ψn(x2)

〉
, (3.5)

where ψi(x) is the wave function of nucleon i. S is a statistical factor denoting the proba-
bility that the constituent nucleons are in the correct spin and isospin state. S =3/8 for the
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deuteron and S =1/12 for 3He, 3H and 3
ΛH [64]. The deuteron wave function ϕd(x1, x2) can

be factorized into a plane wave describing the CoM motion and an internal wave function
φd(r)

ϕd(x1, x2) = (2π)−3/2 exp(iPd · (x1 + x2)/2)φd(x1 − x2). (3.6)

Similarly to Ref. [53], the density matrices can be replaced by their respective Wigner func-
tions

〈
ψ†

n(x
′
2)ψ

†
p(x

′
1)ψp(x1)ψn(x2)

〉
=
∫ d3 pnd3 pp

(2π)6 Wpn

(
pn, pp, (x2 + x′2)/2, (x1 + x′1)/2

)
exp(ipn · (x2 − x′2)) exp(ipp · (x1 − x′1)) (3.7)

and for the deuteron

D(r, q) =
∫

d3ζ exp(−iq · ζ)φd(r + ζ/2)φ∗
d(r − ζ/2). (3.8)

Finally, the deuteron yield can be written as

d3N
dP3

d
=

S
(2π)6

∫
d3q d3r d3rdD(r, q)Wpn(Pd/2 + q, Pd/2 − q, r, rd), (3.9)

where r = rn − rp = (x2 + x′2)/2− (x1 + x′1)/2 and rd = rn + rp = (x2 + x′2)/2+ (x1 + x′1)/2.
The starting point for this derivation are single free nucleon momentum distributions. It
is important to note that, strictly speaking, there is no overlap between the density matrix
of two free nucleons and the one of two bound nucleons. This is because of energy and
momentum conservation. The deuteron is bound by 2.2 MeV per nucleon, so either the for-
mation happens via photon emission p + n → d + γ, or a third particle (usually a pion) is
required to take away excess momentum. One possibility would be that one of the nucle-
ons comes from the decay of a resonance such as ∆ or N∗, and during the decay, the pion
catalyzes the fusion reaction. This process will be studied further in Ch. 4. However, in the
work summarized in this chapter, the approximation that the binding energy is negligible is
made since it is much smaller than the typical mass scales involved of mN ∼ 938 MeV/c2.
Further, we will be utilizing event generators such as EPOS (Ch. 6) and ToMCCA (Ch. 7),
which do not provide quantum mechanical nucleon density matrices but a classical approx-
imation of one. In this approximation, the nucleon states are no longer orthogonal, and the
overlap no longer vanishes1. The two-nucleon Wigner function can further be disassembled
into a spatial and a momentum density

Wpn(Pd/2 + q, Pd/2 − q, r, rd) = Hpn(r, rd)Gpn(Pd/2 + q, Pd/2 − q). (3.10)

For the spatial part Hpn(r, rd) we can assume a Gaussian profile [14]

Hpn(r, rd) =
1

(2πr2
0)

3
exp

(
−

r2 + r2
d

4r2
0

)
. (3.11)

1The resulting phase space is a Gaussian smeared Wigner distribution, a so-called Husimi distribution [65].
A deeper discussion about various phase space distributions and their validity goes far beyond the scope of this
work.
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Finally, the spatial distribution can be folded with the deuteron Wigner density to obtain a
coalescence probability

P(r0, q)
∫

d3rd3rd Hpn(r, rd; r0)D(r, q), (3.12)

and subsequently, Eq. 3.9 assumes the final form

d3N
dP3

d
= S

∫
d3qP(r0, q)

Gpn(Pd/2 + q, Pd/2 − q)
(2π)6 . (3.13)

3.2 Extension to A>2 nuclei

The calculation of the spectra within the coalescence model can be trivially extended to A=3
(hyper)nuclei

dN
d3P

= S
∫

d3x1

∫
d3x2

∫
d3x3

∫
d3x′1

∫
d3x′2

∫
d3x′3 Ψ∗ (x′1, x′2, x′3

)
Ψ (x1, x2, x3)

× ⟨Ψ†
3(x1

′)Ψ†
2(x

′
2)Ψ

†
1(x

′
1)Ψ1(x1)Ψ2(x2)Ψ3(x3)⟩ , (3.14)

Where S accounts for spins and isospin configurations, Ψ (x1, x2, x3) is the bound state wave
function for A = 3 (hyper)nuclei with x1, x2, x3, p1, p2, and p3 being space-momentum
coordinates for three hadrons coalescing into the a cluster. The three-particle density matrix
is given as

⟨Ψ†
3(x

′
3)Ψ

†
2(x

′
2)Ψ

†
1(x

′
1)Ψ1(x1)Ψ2(x2)Ψ3(x3)⟩ =

1
(2π)9

∫
d3p1

∫
d3p2

∫
d3p3

× eip1·(x1−x′1)+ip2·(x2−x′2)+ip3·(x3−x′3) Wnpp

(
p1, p2, p3,

x1 + x′1
2

,
x2 + x′2

2
,

x3 + x′3
2

)
(3.15)

The exact form of the calculation depends on the choice of Jacobi coordinates and will be
given for each wave function below separately.

3.3 Wave functions

In Eq. 3.8, one can see that the internal wave function of the nucleus is an important in-
gredient for the Wigner Function Formalism, similarly to Eq. 2.43. Fig. 3.1 shows four dif-
ferent wave functions of the deuteron, which will be tested in this work and introduced in
Sec. 3.3.1. Further, for 3He, 3H and 3

ΛH wave functions will also be introduced in Sec. 3.3.2.

3.3.1 Deuteron wave functions

Four wave functions will be tested for the deuteron. Namely, the single Gaussian, the
Hulthén, the Argonne v18, and χEFT. All wave functions are normalized to

∫
d3r|φ(r)|2 = 1,

so any difference in the final deuteron yield is attributed to the difference in shape. For the
Argonne v18 and χEFT wave functions, contributions from s and d-waves are considered.
As such, they are normalized to

∫
d3r(|u(r)/r|2 + |w(r)/r|2) = 1, where u(r)/r and w(r)/r

are the s and d-wave functions respectively.
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0 1 2 3 4 5 6
r(fm)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200(r) Hulthén
Gaussian
Argonne v18 s-wave
Argonne v18 d-wave×4

EFT N4LO s-wave
EFT N4LO d-wave×4

FIGURE 3.1: Deuteron wave functions using different potential hypotheses,
namely Gaussian (purple), Hulthén (red), Argonne v18 s-wave and d-wave
(blue, solid and dashed) and χEFT N4LO s-wave and d-wave (orange, solid
and dashed).

Single Gaussian wave function

The single Gaussian is the simplest assumption for the shape of the deuteron wave function

φd(r) =
e−

r2

2d2

(πd2)3/4 , (3.16)

where d is the size parameter of the harmonic oscillator potential. d = 3.2 fm, such that
r2

rms =
∫

d3r(r/2)2|φ(r)|2 = 1.96 fm. The main purpose of this wave function is to simplify
calculations. Indeed, for the single Gaussian, one can directly write the Wigner function

D(r, q) = 8e−
d4q2+r2

d2 (3.17)

using the definition in Eq. 3.8, and the probability

P(r0, q) = 8
(

d2

d2 + 4r2
0

)3/2

e−q2d2
(3.18)

using Eq. 3.1.
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Hulthén wave function

The Hulthén wave function can be derived from the Hulthén potential, a Yukawa-type po-
tential [66]

Yukawa: V(r) = −V0
e−µr

µr
(3.19)

Hulthén: V(r) = −V0
e−µr

1 − e−µr , (3.20)

with the potential depth V0 and the effective range r0 = 1/µ. Their functional forms can be
seen in Fig. 3.2, The Hulthén potential has functionally the same properties as the Yukawa
potential, but the Schrödinger equation with a potential of this form is analytically solvable.
The solution is a wave function of the Hulthén type

0 1 2 3 4 5 6
r(fm)

-5

-4

-3

-2

-1

0

1

V(
r)

Hulthén
Yukawa

FIGURE 3.2: Functional form of the Hulthén and Yukawa potentials. Both po-
tentials are equal for large and small r, only deviating slightly at intermediate
distances. While the Schrödinger equation for a Yukawa potential can not be
solved exactly, the Hulthén form allows for such a solution, providing a wave
function practically equivalent to a Yukawa one. Such wave functions are of-
ten used in low energy pion exchange models of nuclear interaction.

φ(r) =

√
αβ(α + β)

2π(α − β)2
e−αr − e−βr

r
. (3.21)

This is a modern description of the Hulthén wave function introduced in Ref. [67]. The
parameter α is defined as α =

√
mpEB = 0.23 fm−1 and β = 1.61 fm−1. β is chosen such that

the deuteron radius rd = 1.98 fm is reproduced2. The Fourier transform ψ(k) of the wave

2In Tab. 3.3 one can see that this actually quite poorly reproduces the size of the deuteron with a value of
rd = 1.86 fm with a D-wave and 1.89 fm without. A better fit would be β = 1.3 f m−1 for only the S-wave and
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function is

ψ(k) =
√

α + β

π(α − β)

(
1

k2 + α2 − 1
k2 + β2

)
. (3.22)

For convenience, the Fourier transform will be used to calculate the Wigner function, which
in Fourier space is defined as

D(r, q) =
∫

d3ζd3k1d3k2ψ∗(k2)ψ(k1)e−i(q·ζ+k2·(r−ζ/2)+k2·(r−ζ/2)). (3.23)

Using the substitutions k2 = 2q + k1 and k1 = k + q, and performing the integration over ζ
and k2, one obtains the following expression for the Wigner function in Fourier space

D(r, q) =
∫

d3keir·kψ∗(q − k/2)ψ(q + k/2). (3.24)

This integral depends on the angle between r and k. To eliminate this dependence, the
average over this angle is performed using sin(θ) as a weight. The final Wigner function for
the Hulthén wave function is then

D(q, r) =
4(α + β)2

αβ(α − β)πqr

∫ ∞

0
dk

α2β2 sin(2kr)
α2 + β2 + 2(k2 + q2)

×

×
{

1
k2 + q2 + α2 ln

(
(k + q)2 + α2

(k − q)2 + α2

)
− 1

k2 + q2 + β2 ln
(
(k + q)2 + β2

(k − q)2 + β2

)}
, (3.25)

which leaves one integral unsolved. The final probability is thus calculated numerically on
a grid of r0 and q. For a Hulthén type wave function, a d-state wave has been constructed in
Ref. [27]

φD(r) = ηN
(1 − e−τr)5

r

(
e−αr +

e−αr

αr
+

e−αr

α2r2

)
, (3.26)

where η = 0.026 is the asymptotic D/S ratio, which is determined from the Reid68 poten-
tial [68]. Further, α = 0.23 fm−1 is equivalent to the s-wave case, and τ = 1.09 fm−1 is
determined from the quadrupole moment of the deuteron. In this work, for historical rea-
sons and comparability with previous works, the Hulthén wave function is assumed to be
s-wave only, except for the calculation of the quadrupole moment in Tab. 3.3.

Argonne v18 wave function

The Argonne v18 wave function is based on the phenomenological Argonne v18 potential,
which is constrained to Nucleon–Nucleon phase shift measurement [35]. The Argonne v18
potential is a highly accurate nucleon-nucleon interaction model. It includes a complete
treatment of both the strong and electromagnetic forces, with a focus on charge indepen-
dence breaking and charge asymmetry. The potential is constructed using the sum of an
electromagnetic (EM) part, a one-pion exchange (OPE) part, and an intermediate to short-
range phenomenological (R) part

V(NN) = VEM(NN) + VOPE(NN) + VR(NN). (3.27)

It is fitted to the Nijmegen [69] NN scattering dataset as well as low energy nn scattering
and deuteron properties and is able to reproduce it with a reduced χ2

n.d.f. = 1.09 [35]. The
Nijmegen NN scattering dataset contains 1787 pp and 2514 pn data points, in a range of

β = 1.20 f m−1 for s- and d-wave, both giving a rd ∼ 1.975 fm. However, this small difference of ∼ 5 % in size is
negligible for the deuteron yields.
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Tlab = 0 − 350 MeV. It incorporates 18 operators, 14 of which are charge-independent (CI),
three of which are charge-dependent (CD), and one which is explicitly charge-asymmetric
(CA). The CI part is an updated version of the Argonne v14 [70] potential. It is specifically
constructed in a way that makes it easy to incorporate it into 3-body interaction models.
The deuteron wave function calculated from the Argonne v18 potential has the general form
of a 3S1 and 3D1 mixed state

φ(r) =
1√
4πr

[
u(r) +

1√
8

w(r)S12(r̂)
]

χ1m, (3.28)

where S12(r̂) = 3σ1 · r σ2 · r − σ1 · σ2 is the spin tensor, σi are the Pauli matrices. χ1m is
a spinor, and u(r)/r and w(r)/r are the radial s and d-state wave functions, respectively.
One can define r1 to be the coordinate of the proton and r2 the coordinate of the neutron,
r = r1−r2

2 is the relative coordinate and R = r1+r2
2 is the absolute coordinate. The spin-

averaged probability density of the deuteron is

|φ(r)|2 =
1
3 ∑

m=0,±1
φ(r1)

† φ(r2) =
1

4πr1r2

(
u(r1)u(r2) + w(r1)w(r2)

1
2
(
3(r̂1 · r̂2)

2 − 1
))

.

(3.29)
In the case of Argonne v18 the s-state wave function is normalized to

∫
d3r u(r)2

4πr2 = 0.9424

and the d-state wave function to PD =
∫

d3r w(r)2

4πr2 = 0.0576. These factors are the weight
of the s and d-waves in the deuteron wave function, and they are mainly constrained from
measurements of the nuclear radius and the quadrupole moment. The wave function is only
available numerically and has no analytic form. In order to calculate the Wigner function,
an analytical approximation has been performed using the sum of two Cauchy functions
and one Gaussian

F(r) =
N1a

π(a2 + r2)
+

N2b
π(b2 + (r − c)2)

+ N3e−r2/ f . (3.30)

The parameter values for N1, N2, N3, a, b, c and f can be found in Tab. 3.1, for the s and d-
wave, respectively. This form has been chosen as the tail of the double Cauchy function
reproduces well the long-range tail of the wave function, and the Gaussian reproduces the

suppression at low r. The fit quality is determined using a reduced χ2 = 1
N ∑N

k=1
(Fj−φj)

2

φj
,

where φj is the value of the wave function at position rj and Fj is the functional value at the
same position, evaluated for all N points available up to r = 15 fm. The reduced χ2 for the
s-wave is χ2 ∼ 6.83 · 10−8 and for the d-wave χ2 ∼ 1.3 · 10−10.

Parameter u(r)/r w(r)/r
N1 0.81370516 -0.34242388
N2 4.49712863 1.0973295
N3 -0.68798139 -0.25201684
a -10.82747628 4.33930564
b 1.68243617 1.28156015
c -0.400957858 0.22952727
f 0.39633979 0.42620769

TABLE 3.1: Fit parameters for F(r) obtained for u(r)/r and w(r)/r in the range
0 < r < 15 fm.
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The resulting Wigner function has the form

D(r, q) =
1

8π

6

∑
i=1

Ti, (3.31)

where the terms Ti are defined as follows

T1 = (2π f )3/2N2
3 e−

f 2q2+4r2
2 f , (3.32)

T2 =
16a2N2

1
πqr

∫ ∞

0
dξ

sin(qξ)

4a2 + 4r2 + ξ2 ln
[

4a2 + (ξ + 2r)2

4a2 + (ξ − 2r)2

]
, (3.33)

T3 =
8aN1N3

qr

∫ ∞

0
dξ sin(qξ)e−

2a2+4r2+ξ2
2 f

[
Ei
(

4a2 + (ξ + 2r)2

4 f

)
− Ei

(
4a2 + (ξ − 2r)2

4 f

)]
(3.34)

T4 =
4bN2N3

q

∫ ∞

0
dξ
∫ 1

−1
dγ sin(qξ)ξ×

×
(

e−
4r2+4γrξ+ξ2

4r

b2 + c2 − c
√

4r2 − 4γrξ + ξ2 + r2 − γrξ + ξ2/4
+

+
e−

4r2−4γrξ+ξ2
4r

b2 + c2 − c
√

4r2 + 4γrξ + ξ2 + r2 + γrξ + ξ2/4

)
(3.35)

T5 =
4abN1N2

πq

∫ ∞

0
dξ
∫ 1

−1
dγ sin(qξ)ξ

[
(a2 + r2 + γrξ + ξ2/4)−1

b2 + (c − 1
2

√
4r(r − γξ) + ξ2)2

+

+
(a2 + r2 − γrξ + ξ2/4)−1

b2 + (c − 1
2

√
4r(r + γξ) + ξ2)2

]
(3.36)

T6 =
4N2

2 b2

πq

∫ ∞

0
dξ
∫ 1

−1
dγ sin(qξ)ξ

[
1

b2 + (c − 1
2

√
4r(r + γξ) + ξ2)2

×

× 1
b2 + (c − 1

2

√
4r(r − γξ) + ξ2)2

]
(3.37)

Here, Ei(x) is an exponential integral defined as Ei(x) =
∫ ∞

x dte−t/t.

χEFT wave function

Lastly, a wave function from Chiral Effective Field Theory (χEFT) was tested. The χEFT
framework is used to study low-energy QCD phenomena, such as atomic nuclei or hadrons.
In the low-energy regime, QCD becomes non-perturbative, i.e. the strong coupling constant
αs becomes large. This means that higher-order contributions no longer decrease in mag-
nitude fast enough for perturbative power counting. In χEFT, pions and nucleons are the
degrees of freedom. Importantly, pions, since they are a Goldstone Boson, are assumed in
the chiral limit to be massless (mπ → 0). In this framework, the effective Lagrangian can be
subdivided into

Leff = Lππ + LπN + LNN , (3.38)
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where Lππ deals with dynamics among pions, LπN describes the interaction between pi-
ons and nucleons, and LNN describes the two-nucleon contact interaction. For higher or-
ders, also, 3,4,. . . body interactions come into play. In Ref. [71], the chiral expansion was
performed up to 5th order (N4LO) [71] and dependent on the charge, i.e. pp, pn and nn
interactions use different potentials. Here, the construction is done consistently throughout
all orders in the sense that the same power counting scheme, as well as the same cutoff pro-
cedure, was applied in all orders. By construction, the χEFT approach is applicable only for
low momenta. Therefore, a cutoff momentum is required, ensuring the maximum momen-
tum transfer q does not exceed the chiral symmetry-breaking scale Λχ ∼ 1 GeV. The physical
observables should not depend strongly on this cutoff momentum, and typical variations
range from 500-900 MeV. Ref. [71] uses a cutoff of Λc=500 MeV. The deuteron wave function
can be determined from the resulting pn interaction potential3. As in the case of Argonne
v18, the wave function is composed of two components, u(r) and w(r), which correspond to
the radial s and d-state wave functions. Also here, only numerical values of the radial wave
functions are available, and an analytic expression was found using the function

Fχ(r) =
N0

(a2r2 − r2
0)

2b−1 + c2r2
0
+

3

∑
i=1

Niαi

π((r − βi)2 + α2
i )

. (3.39)

This function, similarly to the Argonne v18 wave function, uses Cauchy functions to describe
the large r tail, but this time also uses a Cauchy function to describe the depletion of the wave
function at low r (see Fig. 3.1) caused by the hard core of the interaction potential. Only the
second term is used for the d-wave function since it is sufficient to describe the numerical
values. The fit parameters can be found in Tab. 3.2. The fit quality is again determined using
a reduced χ2 minimization in the range 0 < r < 15 fm. For the s-wave χ2 = 3.31 · 10−8 and
for the d-wave χ2 = 3.23 · 10−3. The fit for the d-wave is of inferior quality compared to
Argonne v18 or the s-wave, however, due to the low d-state contribution (see Tab. 3.3) this
only introduces a negligible contribution. The resulting Wigner density for Fχ(r) has the
form

D(r, q) =
1

2π2q

∫ ∞

0
dξ
∫ 1

−1
dγ sin(qξ)ξ

3

∑
ν=0

κν(γ) (3.40)

3The final wave function was provided by Ruprecht Machleidt and was not determined as part of this work.
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where the κν are defined as

κ0 =
4bN2

0(
4r2

0 − a2 (ξ2 + 4r2 + 4γξr)
)2

+ 4bc2r2
0

1(
4r2

0 − a2 (ξ2 + 4r2 − 4γξr)
)2

+ 4bc2r2
0

, (3.41)

κ1 =
3

∑
i=1

4N2
i α2

i(
2βi −

√
ξ2 + 4r2 − 4γξr

)2
+ 4α2

i

1(
2βi −

√
ξ2 + 4r2 + 4γξr

)2
+ 4α2

i

, (3.42)

κ2 =
3

∑
i=1

3

∑
j=1

i ̸=j

8NiNjαiαj ×

×


 1(

2βi −
√

ξ2 + 4r2 − 4γξr
)2

+ 4α2
i

1(
2β j −

√
ξ2 + 4r2 + 4γξr

)2
+ 4α2

j

 +

+

 1(
2βi −

√
ξ2 + 4r2 + 4γξr

)2
+ 4α2

i

1(
2β j −

√
ξ2 + 4r2 − 4γξr

)2
+ 4α2

j


 ,

(3.43)

κ3 =
3

∑
i=1

4 πN0 Niαi ×

×


 1(

2βi −
√

ξ2 + 4r2 − 4γξr
)2

+ 4α2
i

4b(
4r2

0 − a2 (ξ2 + 4r2 + 4γξr)
)2

+ 4bc2r2
0

 +

+

 1(
2βi −

√
ξ2 + 4r2 + 4γξr

)2
+ 4α2

i

4b(
4r2

0 − a2 (ξ2 + 4r2 − 4γξr)
)2

+ 4bc2r2
0


 .

(3.44)

Fit parameters for u(r)/r for w(r)/r
N0 14.83063014 -
N1 0.3644193 90.06036202
N2 0.01876164 0.22901687
N3 0.58780443 90.167747
a 2.95678555 -
b 7.03082423 -
c 2.85271022 -
r0 2.65962623 -
α1 0.86804832 1.75803721
α2 -2.99220936 2.55621569
α3 2.51249685 -1.7664106
β1 1.81024872 2.07489033
β2 12.77230151 4.11299107
β3 2.95031591 2.0759802

TABLE 3.2: Fit parameters for F (r) obtained from the numeric values of
u(r)/r (2nd column ) and w(r)/r (3rd column) in the range 0 < r < 15 fm.
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Deuteron properties

With these different wave functions, it might be interesting to see how well they repro-
duce the basic properties of the deuteron. For this, one can calculate the charge radius rd,
quadrupole moment Qd, magnetic moment µd, and the d-state probability Pd. Their values
can be found in Tab. 3.3. For the quadrupole moment and the d-state probability, a d-state
wave function is required to get a reasonable result, while for the magnetic moment, one
only obtains a trivial result without a d-state. For this reason, the Hulthén wave function
properties are calculated using the d-state wave function even though it was not used in
the coalescence predictions. The Gaussian wave function does not have a d-State, and as
such, these values are either in parentheses (µd) if they are trivial or not given. The deuteron
charge radius can be calculated as

rd =
1
2

(∫ ∞

0
dr r2[u2(r) + w2(r)]

)1/2

. (3.45)

The Quadrupole moment Qd

Qd =
1
20

∫ ∞

0
dr r2w(r)[

√
8u(r)− w(r)], (3.46)

the D-state probability Pd

Pd =
∫ ∞

0
w2(r)dr (3.47)

and the magnetic moment µd

µd = µs −
3
2
(µs −

1
2
)Pd, (3.48)

with µs = µn + µp = (−1.913 + 2.792)µN. The constant µN = eh̄
2mp

= 3.1525 · 10−8eV T−1

is the nuclear magneton. If no d-wave is given, Pd = 0 and µd = µs equals the sum of the
magnetic moments of its constituents. All tested wave functions reasonably reproduce the

Wave function rd (fm) Qd (fm
2) µd(µN) PD(%)

Experiment 1.97537(85) [72] 0.2859(3) [72] 0.85744 [73] 7.6±4.6 [74]
Gaussian 1.9596 - (0.879) -
Hulthén 1.8578 0.3216 0.8392 7.00

Argonne v18 1.9362 0.2664 0.8463 5.76
χEFT 1.9286 0.2680 0.8556 4.11

Fit Argonne v18 1.9431 0.2676 0.8466 5.70
Fit χEFT 1.9436 0.2341 0.8556 4.12

TABLE 3.3: Calculated and experimental values for the matter radius rd,
Quadrupole Moment Qd, Magnetic Moment µd, d-State probability PD of the
deuteron. For the Hulthén wave function, PD was fixed to 7% according to
Ref. [27], and the s-Wave was normalized to 93%. The magnetic moment of
the Gaussian wave function is µp + µn = 0.879, because there is no d-wave.
Experimental uncertainties are negligible if not given explicitly.

deuteron radius, even though for the Hulthén wave function, a slightly better description
could be found using the parameters β = 1.20 fm−1 giving a radius of rd = 1.975 fm.
The Hulthén wave function also struggles to reproduce the quadrupole moment, while all
others are almost equivalently 7% too low. While for Argonne v18 both the numerical and the
approximated wave function perform equivalent for all other observables, the fitted χEFT
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wave function performs worse for the quadrupole moment. This can be traced back to the
comparatively poor fit of the d-state.

3.3.2 A=3 wave functions

The wave functions for A=3 nuclei are constructed in two different manners. 3He and 3H are
constructed using the Argonne v18 two-body potential and the Urbana IX (UIX) [75] 3-body
potential and utilizing the hyperspherical harmonics (HH) approach. The 3

ΛH wave function
is constructed using a Λ–d potential and a free, undisturbed deuteron wave function.

The hyperspherical harmonics method for A=3

Three-body coalescence probability in hyperspherical harmonics

In this section, the coalescence probability for A = 3 is determined using hyperspher-
ical harmonics

P(q1, q2, σ, cos(θ12)) =
3
√

3
64(2π)3σ6

∫
ρ5ρ′5dρdρ′dΩ2dΩ2ϕ3He(ρ, Ω2)ϕ

∗
3He(ρ

′Ω′
2)

exp
(
iQ · (ρ − ρ′)

)
exp

(
−ρ2 + ρ′2 + 2x1 · x′1 + 2x2 · x′2

16σ2

)
. (3.49)

The derivation given here is a specific implementation of the one given in Ref [76]: Con-
sidering a system of A=3 particles with equal masses m1 = m2 = m3 = mN and spatial
absolute coordinates r1, r2, r3, one can separate the center of mass (CM) motion and the rel-
ative motion of the particles. For this, a set of N=A-1=2 Jacobi-coordinates x1, x2 can be
introduced as well as a CM coordinate X

X =
3

∑
i=1

ri (3.50)

x2−j+1 =

√
2j

j + 1

(
rj+1 −

1
j

j

∑
i=1

rj

)
, (3.51)

where j=1,2, or specifically

J =

 −1 1 0
− 1√

3
− 1√

3
2√
3

1
3

1
3

1
3

 , (3.52)

x1
x2
R

 = J ·

r1
r2
r3

 , (3.53)

with the Jacobi determinant |J| = 2/
√

3. For momenta, one can use the conjugatesq1
q2
P

 = J−1 ·

p1
p2
p3

 . (3.54)

This choice has the benefit that the condition

p1 · r1 + p2 · r2 + p3 · r3 = q1 · x1 + q2 · x2 + P · R, (3.55)
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is fulfilled. From these Jacobi-coordinates, one can define the hyperspherical coordinate
system (ρ, Ω2) by

ρ =

√√√√ 2

∑
i=1

x2
i =

√√√√2
3

3

∑
j>i=1

(ri − rj)2 =

√√√√2
3

∑
i=1

(ri − X)2, (3.56)

Ω2 = {x̂1, x̂2, φ2}. (3.57)

x̂i = (θi, ϕi) are the angular part of the Jacobi-vectors, and the hyper angle φ2 is defined as

cos(φ2) =
x2√

x2
1 + x2

2

, (3.58)

ranging between 0 ≤ φ2 ≤ π/2. For the hypermomentum Q, we can define it similarly

Q =

√√√√ 2

∑
i=1

q2
i . (3.59)

This has again the nice property

Q · ρ = q1 · x1 + q2 · x2. (3.60)

Within the now-constructed framework of hyperspherical harmonics, the kinetic energy op-
erator can be written as

T = − h̄2

m

2

∑
i=1

∆xi =
h̄2

m

(
∂

∂ρ2 +
3N − 1

ρ

∂

∂ρ
− Λ2

2(Ω2

ρ2

)
. (3.61)

Λ2
2(Ω2) is the grand-angular momentum operator

Λ2
2(Ω2) =

∂2

∂φ2
2
+ [2(cot φ2 − tan φ2)]

∂

∂φ2
+

L2
2

cos2 φ2
+

L2
1

sin2 φ2
, (3.62)

defined via the angular momentum operator −L2
i associated with the i-th Jacobi-Vector. A

very important property of the grand-angular momentum operator are its eigenfunctions,
the so-called hyperspherical harmonics

YKLML
[K] (Ω2) = [[Yl1(x̂1)Yl2(x̂2]L2Yl2(x̂2)]LML

(2)PK1,l2
n2

(φ2). (3.63)

where L is the total orbital angular momentum and ML is its projection on the z-axis. The
Notation [K] stands for a collection of quantum numbers [K] = [l1, l2, L2, n2] and

K1 = (l1 + 2n1), (3.64)

is the grand-angular momentum. The function (2)PK1,J2
n2 is defined as

(2)PK1,J2
n2 (φ2) = N l2,ν2

n2
(cosφ2)

l2(sin φ2)
K1 Pν1,l2+1/2

n2
(cos 2φ2), (3.65)

where Pν1,l2+1/2
n2 (cos 2φ2) is a Jacobi polynomial

Pα,β
n (x) = (n + α)!(n + β)!

n

∑
s=0

1
s!(n + α − s)!(β + s)!(n − s)!

(
x − 1

2

)n−s ( x + 1
2

)s

. (3.66)
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If one considers the wave function in the isospin formalism, it must contain not only spatial
parts but also spin and isospin contributions. The spin function χSMS

[S] for total spin S and

projection MS and the isospin function ξTMT
[T] for total isospin T and projection MT can be

defined by coupling the individual spin functions χ1/2,±1/2 and isospin functions ξ1/2,±1/2
as

χSMS
[S] =

[
[χ1/2(1)χ1/2(2)]S1 χ1/2(3)

]
SMS

(3.67)

ξTMT
[T] =

[
[ξ1/2(1)ξ1/2(2)]T1 ξ1/2(3)

]
TMT

. (3.68)

Including these into the HH basis functions, one obtains

Y
KLSJ JzTMT
[KST] (ΩN) = [YKL

[K] (ΩN)χ
S
[S]]J Jz ξTMT

[T] , (3.69)

or specifically for an A=3 bound state

YK
[α]n2

(Ω2) =

[
[Yl1α

(x̂1)Yl2α
(x̂2)]Lα

[
[χ1/2(1)χ1/2(2)]Saα

χ1/2(3)
]

Sα

]
J Jz[

[ξ1/2(1)ξ1/2(2)]Taα ξ1/2(3)
]

Tα MT

(2)P l1α,l2α
n2

(φ2). (3.70)

The so-called channels α are defined by

[α] = [l1α, l2α, Lα, Saα, Sα, Taα, Tα]. (3.71)

With these definitions, one can finally write the 3-body wave function as

ϕ3He(ρ, Ω2) = ∑
α,n2

uαn2(ρ)
3

∑
p=1

YK
[α]n2

(Ω(p)
2 ). (3.72)

The hyperradial wave functions uαn2(ρ) can be obtained numerically for a given system by
solving the Schrödinger equation for a potential V = V2N +V3N. In the study presented here
Argonne v18 (2N) and Urbana IX (3N) are used and the resulting 3He and 3H properties can
be found in Tab. 3.4 and 3.5 respectively. They can then be expanded in terms of known
functions, such as Laguerre polynomials multiplied by an exponential term to ensure fast
convergence

uαn2(ρ) =
NL

∑
m=0

cαn2;mγ5

√
m!

(m + 4)!
L(4)

m (γρ) exp(−γρ/2), (3.73)

where L(4)
m (γρ) is the associated Laguerre polynomial. The non-linear parameter γ needs to

be variationally optimized and is usually between 2.5 − 4.5 fm−1 for local potential models
such as Argonne v18. The truncation limit NL can be set around 20-30 to achieve convergence
of the binding energy at the 1 keV level. In this study, γ = 3 and NL = 20 were chosen.
Under the transformation into hyperspherical harmonics Eq. 3.14 transforms into

dN3He

d3P
=

S3He

(2π)964π3σ6

∫
ρ5ρ′5d ρ dρ′dΩ2 dΩ′

2 q5dq dΩq ϕ3He(ρ, Ω2) ϕ∗
3He(ρ

′, Ω′
2) eiQ·(ρ−ρ′)

× e−
ρ2+ρ′2+2x1 ·x

′
1+2x2 ·x′2

16σ2 ×Gnpp

(
P3He

3
− 1

3

(
3q1 +

√
3q2

)
,

P3He

3
+

1
3

(
3q1 −

√
3q2

)
,

P3He

3
+

2q2√
3

)
.

(3.74)

An important observation is that the function Gnpp is necessarily normalized. This means
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that, while the transformation of the momenta introduces a factor |J|3 = (2/
√

3)3, this factor
needs to be absorbed so that

1
(2π)9

∫
d3 p1d3 p2d3 p3Gnpp(p1, p2, p3) = 1, (3.75)

1
(2π)9 |J|

3
∫

d3q1d3q2d3PGnpp(q1, q2, P) = 1. (3.76)

Finally, the coalescence probability is expressed as

P(q1, q2, σ, cos(θ12)) =
3
√

3
64(2π)3σ6

∫
ρ5ρ′5dρdρ′dΩ2dΩ2ϕ3He(ρ, Ω2)ϕ

∗
3He(ρ

′Ω′
2)e

iQ·(ρ−ρ′)

exp
(
−ρ2 + ρ′2 + 2x1 · x′1 + 2x2 · x′2

16σ2

)
. (3.77)

The dependence on cos(θ12) arises in the scalar products of xi · x′i. The factor
ϕ3He(ρ, Ω2)ϕ∗

3He(ρ
′Ω′

2)e
iQ·(ρ−ρ′) represents the Wigner function under the transformation

ρ → ξ + ζ/2, ρ′ → ξ − ζ/2.

Potential 3He EB (MeV) ⟨r2
C⟩ (fm) ⟨δr2

C⟩ (fm)
AV18 6.925 2.054 1.872

AV18+UIX 7.750 1.962 1.771
Experiment 7.718 1.96 1.77

TABLE 3.4: The total 3He binding energy EB, the charge radius ⟨r2
C⟩, and its

point charge radius ⟨δr2
C⟩ for 2-body (AV18) and 2+3-body (AV18+UIX) inter-

action potentials, compared to experimental values. The charge radius and
the point charge radius are related via ⟨δr2

C⟩ = ⟨r2
C⟩ − ⟨r2

p⟩ − N/Z⟨r2
n⟩, with

rp = 0.8783 fm, r2
n = −0.1149 fm2, N=1, Z=2. Taken from [28].

Potential 3H EB (MeV) ⟨r2
C⟩ (fm) ⟨δr2

C⟩ (fm)
AV18 7.624 1.809 1.653

AV18+UIX 8.479 1.745 1.582
Experiment 8.482 1.76 1.60

TABLE 3.5: The total 3H binding energy EB, the charge radius ⟨r2
C⟩, and its

point charge radius ⟨δr2
C⟩ for 2-body (AV18) and 2+3-body (AV18+UIX) inter-

action potentials, compared to experimental values. The charge radius and
the point charge radius are related via ⟨δr2

C⟩ = ⟨r2
C⟩ − ⟨r2

p⟩ − N/Z⟨r2
n⟩, with

rp = 0.8783 fm, r2
n = −0.1149 fm2, N=2, Z=1. Taken from [28].

Wave function for 3
ΛH

The wave function used in this work for 3
ΛH was developed in Ref. [29], and it is a simplified

version of a full 3-body wave function. The simplification arises from the fact that the 3
ΛH is

treated as an undisturbed deuteron surrounded by a halo Λ. This approach, while simple,
is well motivated by the fact that the Λ–d binding energy is only ∼ 100 keV. This means
that not only is the interaction very small, but also the distance is very large. This leaves the
deuteron core undisturbed. The basic idea of the Λ–d potential construction is as follows:

1. perform a separable fit to the Λ–N hard-core s-wave potential by the Nijmegen group
[69]
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2. average this potential over all spin configurations found in 3
ΛH

3. Sum the Λ–N potential for the constituents of the deuteron and average over the
deuteron wave function.

For the internal deuteron wave function, the Argonne v18 wave function was used, including
both s- and d-wave, while the Λ–d interaction is only in the s-wave channel.

In this section, the coalescence probability for 3
ΛH is calculated under the assumption

that it is a halo nucleus with an undisturbed deuteron at its center and a Λ in orbit
around it.

P(q1, q2, σ) =
S

(2π)3σ6
(2β2 + 1)3/2

(2β + 1)3

∫
d3r1d3r2DΛ(q1, r1)Dd(q2, r2)e

− r2
1(2β+1)2+4r2

2(2β2+1)

4σ2(2β+1)2 .

(3.78)

The coordinates used for this derivation are Jacobi coordinates in momentum space

K = ka + kb + kc, (3.79)
p = (mckb − mbkc)/(mb + mc), (3.80)
q = [(mb + mc)ka − ma(kb + kc)]/(ma + mb + mc). (3.81)

If the Λ is called particle a, then in the center of mass frame, one obtains

p =
1
2
(k2 − k3), (3.82)

q = kΛ. (3.83)

Note that the center of mass motion given here is not a proper Jacobi coordinate. In principle,
it should be

K =
maka + mbkb + mckc

ma + mb + mc
. (3.84)

In general, the used Jacobi coordinates can be expressed by the transformation matrices

J =
1

1
2 + β2

 0 1
2 β + β2 1

2 + β
1
2 + β2 − 1

4 β − 1
2 β 1

2 β + β2

− 1
2 − β2 − 1

4 β − 1
2 β 1

2 β + β2

 , (3.85)

J−1 =

 0 1
2 − 1

2
2β

2β+1 − 1
2β+1 − 1

2β+1
1

2β+1
β

2β+1
β

2β+1 ,

 (3.86)

where β = mN/mΛ = 0.842. The coordinate transformation is achieved viap
q
K

 = J−1 ·

ka
kb
kc

 , (3.87)

x1
x2
R

 = J ·

ra
rb
rc

 . (3.88)

While the derivation of the potential is performed in the center-of-mass frame, and thus the
CoM motion is set to 0, the Wigner function formalism for 3-body coalescence is defined in
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terms of lab frame coordinates. Thus, this change in coordinates is made, which does not
affect the wave function derived here but is critical for the coalescence formulation. The fit
to the Λ–N potential in momentum space is performed using a Gaussian potential form

VΛN(k′, k) = −λΛNg(k′)g(k) (3.89)

g(k) = exp[−(k/ΛΛN)
2]. (3.90)

The parameters λΛN and ΛΛN can be found in Tab. 3.6. Only the parameters obtained using
the Nijmegen hard-core potential are shown. While the parameter values for the soft-core
potential differ significantly after spin- and momentum averaging, the results become equiv-
alent. The majority of 3

ΛH is in a S = 1/2 state, with a small admixture of S = 3/2. The

Wave λΛN ΛΛN

ΛN–1S0 0.1238 0.1400
ΛN–3S1 0.1129 0.1402

Table 3.6: Potential parameters for the ΛN interaction for the singlet
and triplet states. Both potentials assume the hard-core Nijmegen po-
tential. Adapted from Ref. [29].

deuteron is in a spin triplet state with S = 1. This means the deuteron is 2/3 in·|ms| = 1
and 1/3 in |ms| = 0. If the deuteron is in an |ms| = 1 state, the Λ–N interaction is always
a singlet state (p↑n↑Λ↓), if the deuteron is in a |ms| = 0 state the Λ–N interaction is part
singlet part triplet (p↑n↓Λ↑). This results in a total chance of 75% for the Λ–N interaction to
be in a single state with J = 0 and 25% chance to be in a triplet state with J=1. The small
S = 3/2 part of 3

ΛH always results in a triplet state for the Λ–N interaction. For different
total angular momentum L, one can evaluate the spin-averaged λeff

L

λeff
0 = 3/4 λΛN

J=0 + 1/4 λΛN
J=1 = 0.1211 fm2 (3.91)

λeff
1 = λΛN

J=1 = 0.1129 fm2. (3.92)

For the Soft-Core potential λeff
0 = 0.1213 fm2, so both the soft and the hard-core potentials

yield the same result for 3
ΛH. Since the range ΛΛN is practically equivalent between both spin

configuration a value of ΛΛN = 1.401 fm−1 is adopted. In order to obtain the Λ–d potential
from the hyperon–nucleon potential, a momentum average over the deuteron wave function
is performed

⟨q′|VΛd|q⟩ =
∫

d3 p′d3 pΨ†
d(p

′)⟨p′q′|V2 + V3|pq⟩Ψd(p). (3.93)

Vi describes the potential between Λ and Ni. The resulting potential can be expressed simi-
larly to the hyperon–nucleon case

VΛd(q′, q) = −λΛdF(q′)F(q), (3.94)

F(q) = exp[−(q/ΛΛd)
2]. (3.95)

The parameter λΛd can be found to be approximately λΛd ≈ 0.22 regardless of the deuteron
wave function used and ΛΛd = 1.17 fm−1. Finally, from this potential, a wave function can
be obtained by solving the time-independent Schrödinger equation(

q2

2µ
+ VΛd

)
|ΨΛ⟩ = −BΛ|ΨΛ⟩ (3.96)
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where µ = 3.547 fm−1 is the reduced mass of the Λ–d system, q = kΛ and BΛ = 0.13 MeV is
the Λ separation energy. The solution using α =

√
2µBΛ = 0.068 fm−1 is

ΨΛ(q) = N(ΛΛd)
exp[−(q/ΛΛd)

2]

q2 + α2 . (3.97)

The normalization constant is

N(ΛΛd) =

{
π

4α

[
cerfe

(√
2α

ΛΛd

)(
1 +

4α2

Λ2
Λd

)
− 2α

ΛΛd

√
2/π

]}−1/2

, (3.98)

with cerfe(x) = exp(x2)(1 − erf(x)), N(ΛΛd = 1.17)2 = 0.103911.
Using this wave function for Λ, the total wave function can be expressed as

Ψ3
Λ H(q) = ΨΛ(q) ∑

(l,S)=(0, 1
2 )(2, 3

2 )

Ψ(l)
d (p)[Y l

10( p̂, q̂)⊗ χS
1 1

2
] 1

2 mj
[Λ(↑↓ − ↓↑)/

√
2]. (3.99)

This shows the coupling of the spin-1 deuteron to a spin- 1
2 Λ with a total spin of either 1

2 or
3
2 . The deuteron s-wave requires S= 1

2 , the d-wave S = 3
2 . The spinor is defined as

χSMS
1 1

2
= ∑

md,mΛ

⟨SMS|1md;
1
2

mΛ⟩χmd
1 χmΛ

1
2

, (3.100)

and it is coupled to a spherical harmonic with angular momentum l for the deuteron and 0
for the Λ

Y lm
l1l2( p̂, q̂) = ∑

m1,m2

⟨lm|l1m1; l2m2⟩Ym1
l1

( p̂)Ym2
l2

(q̂). (3.101)

With this total wave function, one can calculate the Wigner function as the product of the
deuteron and the Λ Wigner function

D(q1, q2, r1, r2) =
∫

d3ζ1d3ζ2ΨΛ(q1 +
ζ1

2
)Ψ∗

Λ(q1 −
ζ1

2
)Ψd(q2 +

ζ2

2
)Ψ∗

d(q2 −
ζ2

2
)ei(r1·ζ1+r2·ζ2)

= DΛ(q1, r2)Dd(q2, r2). (3.102)

The deuteron Wigner function is taken from Eq. 3.31 because the Wigner functions are equiv-
alent, whether they are calculated from the coordinate space or Fourier space wave func-
tions. The Λ Wigner function DΛ can be calculated as

DΛ(q1, r1) =
N(ΛΛd)

4π

∫ ∞

0
dk

4iπ(e2ikr1 − 1)
q1r1(k2 + 4(α2 + q2

1))
log
(

4α2 + (k − 2q1)
2

4α2 + (k + 2q1)2

)
e
−

k2+2ikΛ2
Λdr1+4q2

1
2Λ2

Λd .

(3.103)
As a cross-check, one can verify that DΛ(0, 0) = 8 as expected. Eventually, the coalescence
probability can be calculated using β = mN/mΛ as

P(q1, q2, σ) =
S

(2π)3σ6
(2β2 + 1)3/2

(2β + 1)3

∫
d3r1d3r2DΛ(q1, r1)Dd(q2, r2)e

− r2
1(2β+1)2+4r2

2(2β2+1)

4σ2(2β+1)2 .

(3.104)
An important note to be given here is that the source size σ is assumed to be equal for
nucleons and Λ-Baryons. This has been shown to be not true [14]. In the three-body coales-
cence approach described in Sec. 7.4, the source size for all three particles is assumed to be
independent of each other, and only one "effective" source size parameter takes its place.
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Chapter 4

π-d Femtoscopy

As mentioned above, one big problem of the coalescence model is the conservation of energy
and momentum. Indeed, processes such as p + n → d, or generally any 2 → 1 processes, are
kinematically forbidden due to the lower mass of the bound state compared to the single
nucleon states. As such, coalescence, as modeled in the Wigner function formalism, can
only be seen as an approximation. The induced error is small (only ≈ 2.2 MeV in the case
of the deuteron), but a physical explanation needs to be given of how exactly this problem
is resolved in nature. One solution is the addition of a third particle, usually a pion, which
can carry away the excess energy, and the process becomes a 3 → 2 process. In light of this
search, the scenario where one nucleon inside the deuteron comes from a resonance decay
becomes exceedingly interesting, as the pion from the decay would automatically be close in
phase space and could catalyze the fusion reaction this way. One way to study this process
is to search for residual correlations between the pion and the nucleon inside the deuteron.
This can be done by employing the femtoscopy technique, which can be used to study the
momentum correlation between the pion and the deuteron. Indeed, a resonance decay will
induce a visible correlation between the daughter particles at the value of k∗, which is related
to the invariant mass of the resonance as

mR =
√
(k∗)2 + m2

p +
√
(k∗)2 + m2

π ⇔ k∗ =

√√√√(m2
R + m2

π − m2
p

2mR

)2

− m2
π. (4.1)

By analyzing pion-deuteron momentum correlations in proton-proton collisions at
√

s =
13 TeV at the LHC with the ALICE detector, direct evidence will be provided that
(anti)deuterons are predominantly formed following the decay of short-lived resonances,
such as the ∆++,+,0,−(1232). This means that their production cannot happen at the same
time as all other hadrons, as assumed in statistical hadronization models, but has to hap-
pen later via final state interactions. A valid interpretation of the data is that the pion that
emerges from the resonance decay helps catalyze the reaction, which resolves the issues
with coalescence models hinted at earlier, where a 2 → 1 process would violate energy and
momentum conservation.

In this chapter, the measured pion-deuteron correlation data are briefly presented, serv-
ing as the foundation for the subsequent focus on model interpretations. These interpreta-
tions provide a comprehensive framework for understanding the data and converge on a
single, robust conclusion: (anti)deuterons are primarily produced following resonance de-
cays and maintain the residual nucleon–pion correlation induced by the ∆ decay throughout
the coalescence process.
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FIGURE 4.1: Measured π+–d (left) and π−–d (right) correlation functions fit-
ted with model calculations and the number of standard deviations in the
bottom panel. The model calculations include the Coulomb interaction (blue),
the residual correlation from a ∆–decay (brown) as well as trivial background
correlations (green). The product of all contributions constitutes the overall fit
(magenta)

4.1 Experimental data

The data presented here was collected for pp collisions at
√

s = 13 TeV with the ALICE
detector [77, 78] during the LHC Run2 (2015-2018). Only events that pass a software high-
multiplicity (HM) trigger were selected. The HM trigger requires the total signal amplitude
measured by the V0 detector to exceed a predefined threshold, which results in an average
charged particle multiplicity at mid rapidity of ⟨dNch/dη⟩|η|<0.5 ≈ 30. The V0 detector
consists of two plastic scintillator arrays placed on both sides of the interaction point at
pseudorapidities 2.8 < η < 5.1 and −3.7 < η < −1.7. Pseudorapidity is defined in terms
of the polar angle θ between the track and the beam axis or the absolute momentum p and
longitudinal momentum pz as

η = − ln
[

tan
(

θ

2

)]
= 0.5 ln

(
p + pz

p − pz

)
. (4.2)

The events remaining after triggering account for 0.17% of all pp collisions with at least
one particle in the range |η| < 1.0 (INEL>0). 109 events pass this selection. This triggering
is done, as deuteron production in each event is increased 5-fold compared to the untrig-
gered minimum bias data sample. For the particle identification and tracking, the Inner
Tracking System (ITS), Time Projection Chamber (TPC), and Time of Flight (ToF) detectors
of the ALICE were used. They cover the full azimuth as well as the pseudorapidity inter-
val |η| < 0.9. The detectors are surrounded by a 0.5T solenoid magnet, which causes the
tracks of charged particles to bend. The curvature of these bent tracks is used to measure
the particle momenta. The excellent tracking capabilities of the ALICE detector allow for
a transverse momentum (pT) resolution from 2% down to less than 1% for tracks with pT
< 1 GeV/c. Particle identification was performed using the particles’ specific energy loss
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(dE/dx) in the TPC detector as well as their velocity, measured by the ToF detector. The se-
lection criteria can be found in Tab. 4.1 and 4.2. Deuterons with p < 1.4 GeV/c are identified
using only the TPC, while TPC and ToF information are required for candidates with p >

1.4 GeV/c and a combined nσ,combined =
√

n2
σ,TPC + n2

σ,ToF limit is required. This way, the

resulting samples of π± and d/d have a purity of 99% and 100%, respectively. Figure 4.1
shows the measured π+–d ⊕ π−–d (left) and π−–d ⊕ π+–d correlation function (right).
The black markers indicate the measured correlation function, the black lines the statistical
uncertainties, and the gray boxes the systematic uncertainties. The latter were obtained by
repeating the analysis 44 times, using slight random variations of the selection criteria, also
found in Tab. 4.1 and 4.2. The data is fitted using a phenomenological model that can be
described via the relation

Cfit(k∗) = ϵ(k∗)⊗ B(k∗)[λgenCgen(k∗) + (1 − λgen)]. (4.3)

The λ-parameters have already been introduced in Ch. 2.2 and λgen = 0.816 for all charge
combinations of π±–d . The parameter ϵ(k∗) incorporates momentum resolution effects.
Details on this procedure can be found in [14]. The baseline B(k∗) = a+ bk∗2 + ck∗3 accounts
for the remaining correlations from the particle production process. Finally, Cgen(k∗) is the
genuine correlation function. It incorporates the genuine interaction as well as contributions
from the ∆ resonance, and it is modeled via

Cgen(k∗) = Cint(k∗)[F∆C∆(k∗) + (1 − F∆)]. (4.4)

The interaction correlation function Cint(k∗) contains the strong interaction and Coulomb.
Since the strong interaction between π±–d is very small [79], no strong interaction is in-
cluded in π+–d , and only the real part (ℜ( f0) = −0.037 fm) of the potential in π−–d . The
imaginary contribution is even smaller with ℑ( f0) = −0.008 fm [79]. F∆ is an effective pa-
rameter that describes the fraction of π±–d pairs that come from the decay of a ∆. C∆(k∗) is
modeled using a Sill-distribution [80] for the vacuum spectral shape of the delta, which is
further modified by a Boltzmann-like phase space factor

C∆(k∗) = PS(pT,∆, T)Sill(E; M∆, Γ∆). (4.5)

The Sill distribution is a Breit-Wigner type distribution with low mass threshold effects

Sill(M∆, Γ∆; s) =
1
π

√
s − sthr Γ

(s − M2)2 + (
√

s − sthr Γ)2 Θ(s − sthr). (4.6)

The threshold is set to sthr = m2
d + m2

π = 3.535 GeV2 and with the conversion Eq. 4.1 this
distribution in s can be transformed into a k∗ distribution, with k∗thr = 0. The function
Θ(x − x0) is a Heaviside step function, which forces the distribution to 0 below the thresh-
old. The mass is set to the sum of the nucleon and a modified ∆ mass of 1.215 GeV/c2,
M = mN + m∆,mod = 2.15 GeV/c2, and the width is a modified width of Γ = 95 MeV/c2.
The modifications of the mass and width of the ∆ come from the rescattering of its decay
products. Such a behavior has been observed previously by the STAR [81] collaboration in
the spectral shape of reconstructed mesons and, most recently, in ALICE measurements of
the p + π± correlation functions1, where the parameters for m∆,mod and Γ have been taken

1obtained from private communication
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FIGURE 4.2: The kinetic decoupling temperature extracted from π±–p and
π±–d as a function of the average pair transverse mass. The shift in the pro-
tonic systems stems from the Coulomb interaction between the proton and the
charged pion. In the deuteronic systems the presence of the neutron weakens
these effects.

from. This modification of the spectral shape can be modeled by introducing the aforemen-
tioned phase space factor

PS(pT,∆, T; s) ∝
√

s√
s + p2

T,∆

exp

−

√
s + p2

T,∆

T

 . (4.7)

This phase space factor depends on the pT of the ∆, which can be calculated from the
π±–d pair as

pT,∆ = p⃗T,d/2 + p⃗T,π (4.8)

In principle, this momentum should be smeared by the coalescence momentum, i.e. the mo-
mentum change of the constituent when it coalesces with another nucleon, but it was seen
that the effect was negligible. Lastly, the phase space factor also depends on the parame-
ter T, which is called the kinetic decoupling temperature. The interpretation is that at the
surface of the last scattering, this is the average temperature of the system. From the fits,
one obtains values of ≈ 20 MeV, which is very small in comparison to the typical freeze-
out temperature of ≈ 155 MeV obtained from the thermal model. While the parameters
for the modified mass and the modified width have been taken from the π±–p correlation
function, the temperature T has been left as a free parameter. Interestingly, the resulting
temperature lies between the values obtained from π+–p and π−–p correlations. They can
be seen in Fig. 4.2. In π–p, this can be understood as an earlier decoupling of the π+–p sys-
tem compared to the π−–p system due to their repulsive Coulomb interaction. The primary
interaction candidate for each π–p pair is the decay partner to re-form the initial ∆, and the
repulsive nature of their Coulomb interaction makes the regeneration and decay process less
likely. On the contrary, π−–p has an attractive interaction and thus interacts for longer. In
the case of the deuteron, the difference is less extreme. The π+–d system decouples from the
hadronic rescattering phase earlier than the π−–d system for the same reason as the π+–p
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due to the proton inside the deuteron. However, if the π+ comes from a ∆+ → π+ + n
decay, there is no enhanced or diminished re-interaction probability due to the Coulomb in-
teraction. Thus, the overall effect of rescattering on the π+–d system is less than that of only
the proton. For the π−–d system, the same logic holds, and the rescattering effect is not as
strongly enhanced as in the π−–p system. The factor F∆ in Eq. 4.4 represents the fraction of
π±–d pairs which are associated to a ∆ decay and it is estimated via the fit to the measured
correlation function to be of the order of 2%. Assuming that at most one deuteron is present
in each event, one can directly convert this into a fraction of the deuterons associated with
a resonance decay. This is done by counting the number of pairs and dividing it by the total
number of deuterons in the sample, and the number comes out to be ∼ (36 ± 4)%. When
accounting for the unseen decay into π0, this number rises to (54.4± 6)%, and extrapolating
for all resonances gives (80.5 ± 8.9)%. The calculation is performed by defining the ratios

f ′peak =
Number of extracted dπ pairs from the ∆ peak

number of measured deuterons
= (54.4 ± 6)% (4.9)

f ′∆ =
Number of d with at least one ∆
number of measured deuterons

(4.10)

The prime means that the value is not corrected for detection efficiency. Indeed, the detec-
tion efficiency for pions and deuterons is of the order of only 70%. In the end, we want
f∆ including efficiency corrections in order to compare to the simulation. f ′peak is what we
obtain uncorrected from the measurement. We use the following values obtained from the
statistical hadronization model: P∆ = (43.05 ± 0.65)%, PR = (64.5 ± 0.3)%, which are the
probabilities for any given proton to stem from a ∆ or from any resonance respectively. As-
suming Yd is the corrected yield of deuterons, ϵd is its detection efficiency and ϵπ the pion
detection efficiency we can write

f ′peak =
ϵdϵπ2P∆(1 − P∆)Yd + 2ϵdϵ2

πP2
∆Yd + 2ϵdϵπ(1 − ϵπ)P2

∆Yd

ϵdYd
= 2ϵπP∆ (4.11)

f ′∆ =
ϵdϵπ2P∆(1 − P∆)Yd + ϵdϵ2

πP2
∆Yd + 2ϵdϵπ(1 − ϵπ)P2

∆Yd

ϵdYd
= 2ϵπP∆

(
1 − ϵπP∆

2

)
(4.12)

f ′∆ = f ′peak

(
1 − ϵπP∆

2

)
(4.13)

The second summand in f ′peak considers the case where both nucleons come from a ∆ and
one actually detects both. Thus, this counts 2 d-π pairs, and we need to introduce a factor 2.
If ϵπ = 1:

fpeak =2P∆ (4.14)

f∆ =2P∆

(
1 − P∆

2

)
=

f ′peak

ϵπ

(
1 −

f ′peak

4ϵπ

)
(4.15)

Now we have a relation between the measured pair yields f ′peak and the desired fraction f∆

depending on the efficiency of π and the probability P∆. Substituting ϵπ = 0.7 and f ′peak =

(54± 6)% we get f∆ = (62.3± 6.9)%. With the help of the thermal model, we can extrapolate
to all resonances using simple combinatorics. Using f SHM

∆ = 1 − (1 − P∆)
2 = (67.6 ± 1)%,

f SHM
R = 1 − (1 − PR)

2 = (87.4 ± 0.4)% and the relation

f SHM
∆

f SHM
R

=
f∆

fR
, (4.16)
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we get fR = (80.5 ± 8.9)%.
The uncertainties indicated are only of a statistical nature, and the predictions of Ther-

malFIST for the expected fractions are taken to be without uncertainty. Realistically, these
predictions probably have an uncertainty of the order of 10% since the SHM, even in its
canonical form used here, is not perfectly applicable to pp collisions, and many tensions
are still present, specifically in proton and π predictions [6]. This shows that not only is
resonance-assisted fusion most likely a contributor to nuclear formation, but it is, in fact,
the main contribution. This leaves us with two scenarios: either all nuclei are produced
via some fusion process and the remaining (19 ± 9)% of nuclei are formed from other fu-
sion processes such as pp → d + π or pion catalysis from non-associated pions, or thermal
production of nuclei happens, but the vast majority are destroyed in the hot environment.
Considering that SHMs currently predict exactly the measured yield, over 80% would have
to be destroyed within a few fm/c.

Property Selection Criterion Variations
Filterbit 128 (TPC only) –

Pseudorapdity |η| < 0.8 0.76–0.84
Transverse momentum 0.8 < pT < 2.4 GeV/c (0.75–0.85) GeV/c

Number of TPC Clusters nTPC >80 70–90
Crossed TPC Pad Rows ncrossed >70 (out of 159) –
Findable TPC Clusters ncrossed/nfindable >0.83 –

Tracks with shared TPC Clusters rejected –
Distance of closest approach xy plane |DCAxy| < 0.1 cm –

Distance of closest approach z direction |DCAz| < 0.2 cm 0.15–0.25
Particle identification (TPC) nσ,d < 3 for p <1.4 GeV/c nσ,d < 2.5–3.5

nσ,e > 6 for p <1.4 GeV/c –
Particle identification (TOF+TPC) nσ,TPC, d < 3 and nσ,TPC, π > 3 nσ,d < 2.5–3.5

−3 < nσ,TOF, d < 5

TABLE 4.1: Summary of the default d (d̄) selection criteria.

Property Selection Criterion Variations
Filterbit 96 –

Pseudorapdity |η| < 0.8 0.7–0.9
Transverse momentum 0.14 < pT < 4.0 GeV/c (0.12–0.15) < pT

Number of TPC Clusters nTPC >80 70–90
Crossed TPC Pad Rows ncrossed >70 (out of 159) –

Distance of closest approach xy plane |DCAxy| < 0.3 cm –
Distance of closest approach z direction |DCAz| < 0.3 cm –

Particle identification nσ,TPC < 3, (p <0.5 GeV/c) nσ,d < 2.7–3.3
nσ,combined < 3, (p ≥0.5 GeV/c) –

TABLE 4.2: Summary of the default π± selection criteria.

4.2 Predictions using coalescence

Figure 4.3 shows the predictions of the π+–d correlation function obtained from several
models. The red model denoted ’EPOS’ shows the resulting correlation function when nu-
clei are formed from coalescence. For this, the EPOS 3.117 [82, 83] event generator is run
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FIGURE 4.3: Simulated π+–d correlation function using three different meth-
ods. The red line is a simulation using EPOS 3.117 with a coalescence af-
terburner presented in Ch. 6. The peak is generated by decaying ∆++/+ →
π++N and the nucleon subsequently coalescing with another nucleon. The or-
ange line shows the result obtained using the statistical hadronization model
ThermalFIST. Here, pions and deuterons are created simultaneously. Thus, no
feed-down from resonances is possible. The blue line shows the correlation
function from ThermalFIST after an additional hadronic afterburner SMASH.
a depletion around k∗=230 MeV/c can be seen from the deuteron breaking up.
All correlation functions are multiplied with the Coulomb correlation function
(black)

for pp collisions at
√

s = 13 TeV, and the output is analyzed by a coalescence afterburner.
Importantly, the resonance yields produced by EPOS are reweighted to correspond to the
yields predicted by the SHM. The afterburner uses the Wigner function formalism described
in Ch. 3 with the Argonne v18 wave function. In order to boost the precision of the result,
the coalescence probability was boosted by omitting the spin-isospin factor. Furthermore,
since no Coulomb interaction is present in EPOS and thus the result is charge-independent,
the π+–d and π−–d correlation functions were added. Both of these modifications do not
change the result within the uncertainty, but they improve the statistical significance of the
result. The correlation function is constructed in an equal manner to the measurement. All
deuterons and pions in the same event are recorded for the same event distribution, and a
buffer of the last 50 pions from previous events is kept. Every deuteron is then also com-
pared to this buffer to form the mixed event. The buffer size is very large compared to
measurements, where sizes usually range from 10-20 because the statistics of the simulation
are very limited, and this reduces the uncertainty for the final correlation function.

A counting exercise similar to the measured data can be performed in EPOS. After tun-
ing the resonance yields to the ones from ThermalFIST (see Ch. 6 and App. A for details),
the charged pion final states contain (46 ± 5)% contribution from ∆ decays, extrapolating
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to all ∆ final states gives (69 ± 7)%. Further extrapolating to all resonances, one obtains
(89.2± 1.6)%. This is compatible with the measurement within 2 standard deviations. How-
ever, similar to the estimation using the data, the resonance fractions were taken from Ther-
malFIST, which leaves a large uncertainty related to the actual yields unknown.

4.3 Predictions using thermal production

The other two predictions in Fig. 4.3 are obtained using the event generator for Thermal-
FIST [84]. It uses the yields from the canonical implementation of the SHM in ThermalFIST
to generate particle yields on an event-by-event basis. A Blast-Wave parameterization [85]
is used to randomly sample the momenta of the particles. Its parameters were obtained in
Ref. [86] by fitting pT spectra of π, K and protons with a Blast-Wave parameterization

d2N
dydpT

∣∣∣∣
y=0

=N
∫ R0

0
r dr I0

(
pT

sinh[tanh−1(⟨β⟩rn)]

Tkin

)
K1

(
mT

cosh[tanh−1(⟨β⟩rn)]

Tkin

)
(4.17)

I0(x) =
1

2π

∫ 2π

0
exp (x cos ϕ)dϕ (4.18)

K1(x) =
∫ ∞

0
cosh y exp(−x cosh y)dy. (4.19)

I0 and K1 are modified Bessel functions. In the Blast-Bave model, a thermalized medium
expands radially with a subsequent instantaneous freeze-out. Its main parameters are the
average expansion velocity ⟨β⟩, its kinetic freeze-out temperature Tkin, and the velocity pro-
file exponent n. The parameter R0 is the radial extension of the fireball, and it is constrained
by the thermal yields of the particles rather than their shape. Indeed, an important parame-
ter for the SHM yield predictions is the volume dV/dy of the system. From this, a radius can
be calculated. For further information on the canonical SHM, see Ch. 2.1.1. The parameters
used in this study can be found in Tab. 4.3. The Blast-wave model has been shown to work
well in reproducing the measured yields and pT spectra of pions, kaons, and protons in pp
collisions [86].

Parameter Value Unit Parameter Value Unit
⟨β⟩ 0.51 – Tc 0.165 GeV
Tkin 0.16 GeV µB 0 –

n 1.4 – γS 0.85 –
ηmax 1.5 – dV/dy 75 fm3

R0 1.8 fm Vc 3 –
Ref. [86] – Ref. [6] –

TABLE 4.3: Parameters used in the π+–d correlation function predictions for
thermal production. Parameters on the left side are used for the Blast-Wave
parameterization, and parameters on the right are used for the ThermalFIST
yields.

4.3.1 Direct production

For the orange line in Fig. 4.3, the output, after strong and electromagnetic decays, of the
ThermalFIST event generator is taken and directly analyzed. Equivalently to the experi-
mental method and the study with EPOS mentioned above, deuterons, which in this case are



4.3. Predictions using thermal production 55

directly produced, are combined with all π in the same event. A buffer of the last 50 pions of
previous events is taken for the mixed event. Only pairs within the experimental acceptance
are taken for a fair comparison. The resulting correlation function shows no correlated pairs
beyond a trivial baseline. The baseline is an enhancement towards low k∗, but critically, it is
a smooth evolution and not a peak-like structure. The origin of this baseline is not entirely
clear, but the event generator uses a freeze-out hypersurface obtained from hydrodynamic
simulations with MUSIC [87–89]. These hydrodynamic models, as well as the Blast-Wave
model, include radial flow, which could cause enhancement towards lower values of k∗. A
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FIGURE 4.4: π+–d correlation function obtained from ThermalFIST includ-
ing the dibaryon state d∗(2380). Two decay chains are tested, a 2-body de-
cay d∗(2380) → d + π+(red) and a 3-body decay d∗(2380) → d + π+ +
π−(purple). All branching ratios are set to 100% to see an extremal effect. The
Coulomb correlation function is shown in black. All shown correlation func-
tions are multiplied by the Coulomb one. The 3-body decay does not show a
peak-like structure. The 2-body decay shows a peak at a much larger k∗ than
observed. The feed-down effect at this level is not compatible with current
deuteron yield measurements.

further study is the influence of the tentative observation of a d∗(2380) dibaryon resonance
by the WASA-at-COSY collaboration [90]. This state has a mass of m = 2380 MeV/c2 and
a width of Γ = 70 MeV and is currently understood as a ∆–∆ bound state with JP = 3+.
This state can be implemented into ThermalFIST with these exact quantum numbers. Since
its decay channels and their branching ratios are not known, two extreme scenarios have
been tested: 100% decay into d∗(2380) → d + π+ + π− and d∗(2380) → d + π+. The latter
would indicate two states, one double positively charged and one neutrally charged since
the signal appears in π−–d and π+–d correlations. Notably, due to the similar mass and
high degeneracy of the state (J=3 means 7-fold degeneracy), its production yield is approx-
imately 15% of the deuteron yield. A 100% branching ratio into deuterons would cause the
predicted deuteron yield to be ≈ 15% higher than the measured ones. Nonetheless, the re-
sulting correlation functions can be seen in Fig. 4.4. The green line shows the 3-body decay,
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and the purple line shows the 2-body decay. Also shown in black is the Coulomb base-
line. All correlation functions shown are multiplied by the Coulomb one. The 3-body decay
shows a slight enhancement of around 2% at low k∗ but no peak-like structure. This is to
be expected from 3-body decay channels since they do not present a sharp line but a wide
distribution in their 2-body spectral shapes. The 2-body decay, on the other hand, shows a
peak-like structure. However, its peak position is at much larger k∗ of ∼ 450 MeV/c com-
pared to the 250 MeV/c expected and observed from ∆ decay. Furthermore, as previously
eluded to, if this decay channel would show any significant enhancement of the π±–d corre-
lation function, its contribution to the deuteron production would also be significant, which
would not be compatible with current measurements.

4.3.2 π–d interactions

FIGURE 4.5: Elastic and inelastic π±–d cross section. The cross sections are
charge-independent and show a strong enhancement around the ∆ mass for
elastic and inelastic processes. Taken from [15].

In order to exclude final state interactions as the cause of the bump structure observed in
the measurement, hadronic rescattering is also tested. For this, the output of ThermalFIST is
fed into the hadronic afterburner SMASH [91]. In this hadronic rescattering model, not only
elastic processes such as π + d ↔ π + d but also inelastic channels π + d ↔ π + p + n are
included. The stochastic criterion is used in this study in order to enable 3 ↔ 2 processes.
Importantly, in SMASH, all processes are reversible. This means that final state deuterons
could either be produced thermally or due to rescattering. However, the inclusion of such
processes is critical in order to study the effect of deuteron destruction on the correlation
function. Indeed, the π–d cross-section shown in Fig. 4.5 shows a very strong enhancement
around the ∆ mass for both, elastic and inelastic processes. However, the inelastic channel is
a factor ∼ 3 larger than the elastic one. This cross-section can be interpreted as the reaction
π± + d → (∆ − N) → π± + p + n or → π± + d. This dynamic resonance excitation is what
could cause an enhancement. However, as can be seen from the blue line in Fig. 4.3, quite
the opposite is true. A depletion around the ∆ mass arises. The reason for this is twofold:
on the one hand, pairs that undergo dynamic resonance excitation without destruction of
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the deuteron are already at a k∗ value corresponding to the ∆ mass. This means when they
decay back to a π±–d , their k∗ might get reshuffled slightly, but no pairs from outside the
resonance region will be added to this region. This means such a process cannot enhance the
correlation function. On the other hand, pairs that undergo dynamic resonance excitation
and actually do destroy the deuteron will do so, preferably at the resonance mass. Also, the
destructive process is the dominant one of the two. This shows that final state interaction
will never cause an enhancement of the correlation function.

4.4 Conclusive remarks

In this chapter, the measured π±–d correlation function measured in pp collisions at
√

s =
13 TeV with the ALICE detector was presented. They show an enhancement of the corre-
lation function, which is compatible with the decay of a ∆++,+,0,−-baryon into an N+π±

pair and a subsequent fusion of the nucleon with a second nucleon into a deuteron. This
reaction is furthermore catalyzed by the pion in order to conserve energy and momentum,
solving a longstanding issue with the coalescence model. It was found that 80.9 ± 8.9 of
deuterons are associated with the decay of a ∆. In order to further understand the mea-
surement, model calculations were performed. The first is a coalescence-based simulation
using the EPOS event generator. The EPOS resonance yields were reweighted in order to
reproduce the predictions by the thermal model. Then, the resulting proton and neutron
yields were analyzed using a coalescence afterburner (details in Ch. 6), which decides on a
pair-by-pair basis which pairs form a deuteron and which do not. The deuterons resulting
from this afterburner were used to determine the π±–d correlation function. This correlation
function shows an enhancement around the k∗ value attributed to the mass of the ∆ baryon
(see Eq. 4.1). This enhancement is the result of the residual correlation of one nucleon and
the pion being conserved in the nuclear formation process. The contribution of resonances
to the deuteron yield was estimated to be 89.2 ± 1.6% after the resonance yields were tuned
to the thermal model predictions, which is in agreement with the measured fraction. Fur-
ther simulations were performed using the SHM thermalFIST. Here, nuclei are not formed
via coalescence but alongside all other hadrons. No correlation between the pion and the
deuteron is observed since no ∆ decays contribute to the deuteron formation. In a second
step, the interaction between the pion and the deuteron was tested. Indeed, one could ex-
pect that pseudoelastic scatterings of the form π + (pn) → (∆n) → π + (pn) could lead to
a correlation between the pion and the deuteron. This hypothesis was tested by using the
SMASH hadronic afterburner, which simulates the rescattering of particles. Interestingly,
a depletion around the ∆ mass is observed. This is caused by deuteron destruction in the
rescattering phase. Indeed, the π–d cross-section measurements in Fig. 4.5 show that the
inelastic channel is approximately 4 times higher than the (pseudo)elastic one. This shows
that the measurement can only be explained by deuteron formation via meson-catalyzed
fusion.
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Chapter 5

Existing antinuclei measurements

In this chapter, an overview of antinuclei measurements in small systems will be given.
While ample measurements are available in heavy-ion collisions (primarily Au–Au and
Pb–Pb), measurements in small systems (pp and e+e−) are sparse, especially at low ener-
gies. These measurements are interesting for comparisons with model predictions (See, e.g.,
Fig. 7.9) and in order to gauge how the yields behave for different collision energies.

5.1 e+e− collisions

The measurement of antideuterons in e+e− is particularly interesting for the study of antin-
uclei from Dark Matter annihilations. Indeed, the expectation is that DM particles are point-
like, and their annihilation is qualitatively similar to annihilations of other fundamental
particles, such as electrons. While this data is not directly used in this work, it is still an im-
portant pillar in the understanding required for cosmic ray antinuclei research and is thus
given for completeness.

5.1.1 ARGUS 10 GeV

The ARGUS collaboration at DESY [92] reported the first observation of antideuteron pro-
duction in e+e− collisions at

√
s ≈ 10 GeV in 1985. The measurements were performed for

beam energies at the Υ(1S) (m = 9.46 GeV/c2), Υ(2S) (m = 10.02 GeV/c2), Υ(4S) (m = 10.58
GeV/c2) resonance energy as well as in the continuum from 9.4-10.6 GeV. Overall, six an-
tideuterons were found in ≈ 7 · 105 events, and factoring in the detection efficiency of 55%
one arrives at a total production rate of (1.6+1.2

−0.7) · 10−5 antideuterons per hadronic event. No
measurement of the matter counterpart was performed due to a high background from the
spallation of gas molecules, creating deuteron in the detector. The measurement was per-
formed for two regions of kinetic Energy 1.97 ≤ Ed ≤ 2.29 GeV and 2.29 ≤ Ed ≤ 2.6 GeV,
with a yield d2 N

dydpT
= (2.45+2.37

−1.35) · 10−5 and (1.85+1.85
−0.925) · 10−5 respectively. The measured

antideuteron and antiproton spectra are shown in Fig. 5.1. The data was converted into the
form d2N/dydp. A conversion to pT was not possible because only the total energy was
published. For this, the total energy Eh was converted into p using the mass. The rapidity
was obtained for each bin using the angular acceptance of θ ∈ (π/2 ± π/4) [93].

5.1.2 ALEPH 91.2 GeV

The ALEPH experiment at LEP [94] observed deuteron and antideuteron production in
hadronic Z decays, providing the first measurement of antideuteron production for e+e−

collisions at the Z-boson resonance (mZ = 91 GeV/c2). The measured anti-deuteron yield
per hadronic Z decay in the momentum range 0.62 < p < 1.03 GeV/c is (5.9 ± 1.8 ± 0.5) ·
10−6. The coalescence parameter B2, was determined to be (3.3 ± 1.0 ± 0.8) · 10−3 GeV2 in
this momentum range. These results confirm a suppression of antideuteron production in
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FIGURE 5.1: Measured antideuteron and antiproton spectra d2N/dydp as a
function of momentum p, measured in e+e− collisions at

√
s ≈ 10 GeV in the

case of ARGUS and
√

s = mZc2 = 91 GeV in the case of ALEPH.

e+e− collisions compared to proton-proton collisions, in which B2 is of the order of 10−2.
The measured deuteron and proton yield, converted to d2N/dydp, is shown in Fig. 5.1. The
antideuteron yield is well in line with the one obtained from ARGUS, while the antipro-
ton spectra show a very different spectral shape, and the overall yield is comparable to the
ARGUS result. The ARGUS spectra show a very similar shape to the ones obtained in min-
imum bias pp collisions, while the ALEPH results seem to resemble the spectra obtained in
jets more closely [51]. This is expected since hadronic production in e+e− collisions is driven
by qq jets. On the other hand, this makes the suppression of deuteron production surprising
since the nuclear production in jets for hadronic collisions increases the coalescence proba-
bility 10-fold [51].

5.2 pp collisions

The measurements of antideuterons in pp collisions, especially the huge catalog of mea-
surements provided by ALICE, are used as a benchmark for model predictions. While the
models described in Ch. 6 and Ch. 7 are tuned to the ALICE measurements, it is also im-
portant to see a comparison to the other measurements, specifically by IHEP in Serpukhov
and by the ISR at CERN. Indeed, these measurements provide anchor points at low collision
energies, which are much more interesting for antinuclear measurements in cosmic rays [4].

5.2.1 Serpukhov 11.5 GeV pp

In the 1980s, the Russian Institute for High Energy Physics (IHEP) at Serpukhov performed
multiple measurements on the production of (anti)protons[17], (anti)deuterons[16], and
even triton[16], using a proton beam with a momentum of 70 GeV/c, colliding with either
a hydrogen target (pp) or a heavy target (Be, Cu, Pb). (Anti)protons were measured in the
pT region from 0.48 to 2.21 GeV/c and (anti)deuterons from pT =0.46 to 3.89 GeV/c. The
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measurement results, as well as Levy-Tsallis fits using Eq. 6.2 are shown in Fig. 5.2. The fit
parameters are shown in Tab. 5.1. The data is converted from E d3σ

dp3 = σinel
1

∆ϕpT

d2 N
dydpT

to the

more commonly used d2 N
dydpT

. An inelastic pp cross-section of σinel = 30.766 mb was used,
taken from the PDG. The measurement was performed using two spectrometers placed
at 160mrad at approximately 90° in the collision center-of-mass frame. The actual accep-
tance of these spectrometers depends on the particle momentum and reaches its peak at pT
=2.21 GeV/c with an acceptance of 126 µsr. A conservative value of 63µsr was adopted for
the conversion since most particles fall below pT =2.21 GeV/c. Indeed, the mean ⟨pT ⟩ of
(anti)protons is 0.518 GeV/c and 0.639 GeV/c for (anti)deuterons. The rapidity acceptance
depends not only on the pT but also on the particle mass and their (mean) pT. For protons,
the rapidity range is y = −0.686 ± 0.053, and for deuterons, y = −1.060 ± 0.050. The pion
acceptance is y = −0.013± 0.055, which is what one would consider mid-rapidity. The pub-
lished (anti)protons are not corrected for the feed-down from weakly decaying resonances,
such as Λ-Baryons. Using the parameterization developed in [95]

Λ/p = c1 +
c2

1 + (c3/s)c4
, (5.1)

with the parameters c1 = 0.31, c2 = 0.30, c3 = (146 GeV)2, c4 = 0.9, one obtains a prompt
Λ/p ratio of 0.313. Using branching ratio arguments and production symmetries between
Σ and Λ Baryons[95], we can conclude that about 25.4% of (anti)protons come from weak
feed-down. This will be taken into account when calculating the B2 parameter (shown in
Fig. 7.9) since protons from weak decays are too far removed from other nucleons to undergo
coalescence.
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FIGURE 5.2: (Anti)deuteron measurement results by Serpukhov[16, 17] at√
s = 11.5 GeV. The fits shown are Levy-Tsallis fits (Eq. 6.2). The fit to the

antideuteron yields is constrained in shape to the deuteron spectrum. Only
the total yield is left as a free parameter.
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Species dN/dy n T m (GeV/c2,fixed)
Proton (3.48 ± 0.09) · 10−4 20.8 ± 2.2 0.128 ± 0.003 0.938272

Antiproton (2.013 ± 0.108) · 10−5 98.55 ± 98.14 0.136 ± 0.007 0.938272
Deuteron (4.842 ± 0.317) · 10−7 35.81 ± 9.77 0.117 ± 0.006 1.875

Antideuteron (1.811 ± 0.287) · 10−10 35.81(fixed) 0.117(fixed) 1.875

TABLE 5.1: Parameters obtained from Levy-Tsallis (Eq. 6.2) fits to the mea-
sured data by Serpukhov[16, 17]. For Antideuterons, the shape parameters
(T, n) are fixed to the Deuterons because only 2 data points are available, but
Eq. 6.2 has 3 free parameters. Since the shape parameters of (anti)protons are
in agreement with each other within their fit uncertainties, this is a reasonable
assumption.

5.2.2 CERN ISR 53 GeV pp

The CERN Intersecting Storage Rings (ISR), operational from 1971 to 1984, were the world’s
first hadron collider. Located at CERN, the ISR consisted of two counter-rotating proton
beams stored in intersecting rings, achieving center-of-mass energies up to 62 GeV. How-
ever, (anti)deuteron spectra were only measured for 53 GeV. In Fig. 5.3, the measured spec-
tra of (anti)deuterons and (anti)protons are shown. The (anti)deuteron spectra were mea-
sured by the British-Scandinavian-MIT (antideuteron) and CHLM (deuteron) collaborations
[22, 96], while the (anti)proton spectra were measured by the British-Scandinavian collab-
oration [21]. All spectra are fitted using a Levy-Tsallis function. Due to the low statistics
and limited pT-range, the (anti)deuteron spectra were fitted simultaneously by fixing the
shape parameters for both and allowing the normalization to vary. The deuterons were mea-
sured under a lab-frame angle of 25°-55°, corresponding to a rapidity range of 0.22<y<0.65.
The (anti)proton spectra are shown for different rapidity slices. Red and purple represent
(anti)protons at mid-rapidity (0<y<0.1), brown corresponds to protons at 0.3<y<0.5, and or-
ange to antiprotons at 0.5<y<0.7. The latter rapidity range was selected to allow comparison
with Serpukov data taken at y∼0.6; however, a slightly lower rapidity range was chosen due
to the scarcity of protons in this region. For a given rapidity range, antiprotons and protons
show consistent shape parameters, justifying the approach of fixing the shape parameters
for deuterons and antideuterons. For mid-rapidity protons, contamination at low pT —pos-
sibly from detector material being ejected—was observed, leading to the exclusion of the
lowest four data points. Tab. 5.2 summarizes the extracted Levy-Tsallis parameters.

Species Rapidity dN/dy n T m (fixed)
Proton 0-0.2 (6.42 ± 0.20) · 10−2 15.03 ± 0.99 0.156 ± 0.005 0.938272

Antiproton 0-0.2 (4.54 ± 0.11) · 10−2 16.75 ± 1.40 0.156 ± 0.005 0.938272
Proton 0.3-0.5 (7.31 ± 0.32) · 10−2 10.85 ± 1.86 0.137 ± 0.010 0.938272

Antiproton 0.5-0.7 (3.80 ± 0.11) · 10−2 11.26 ± 1.80 0.131 ± 0.001 0.938272
Deuteron 0.22<0.65 (8.64 ± 2.30) · 10−5 11.36 ± 83.21 0.103 ± 0.080 1.875

Antideuteron 0.22<0.65 (2.55 ± 0.80) · 10−5 11.36 ± 83.21 0.103 ± 0.080 1.875

TABLE 5.2: Levy-Tsallis parameters obtained from fitting the spectra mea-
sured at the ISR. Due to the low number of available data points, deuterons
and antideuterons were fitted simultaneously, only leaving the normalization
dN/dy free.
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FIGURE 5.3: Measurements of (anti)protons and (anti)deuterons by the
British-Scandinavian-MIT, CHLM and British-Scandinavian collaborations.
While the (anti)deuterons were measured at a rapidity of 0.22 < y < 0.65,
the (anti)protons were measured in multiple rapidity windows ranging from
|y| = 0 to |y| = 0.9. A small selection of those is shown here alongside Levy-
Tsallis fits. Because of the low number of datapoints, the (anti)deuterons were
fitted simultaneously, only leaving the overall normalization independent be-
tween the two species.

5.2.3 ALICE 5-13 TeV

The ALICE collaboration provides the most comprehensive catalog of (anti)nuclei measure-
ments in small collision systems. Measurements of (anti)deuterons have been conducted
at center-of-mass energies ranging from 5.02 to 13 TeV, with results categorized into up
to nine multiplicity classes for each collision energy. Additionally, for 13 TeV collisions, a
high-multiplicity triggered data set (0–0.1%) has been further subdivided into three separate
classes. Multiplicity classes are determined using the summed signal of charged particles,
referred to as the V0M amplitude, which is measured in the V0A (−3.7 < η < −1.7) and
V0C (2.8 < η < 5.1) plastic scintillator detectors. The V0M amplitude distribution is di-
vided into percentile bins of 10%, with events classified accordingly. Crucially, multiplicity
classification is performed using signals from outside the mid-rapidity region (|η| < 0.8)
to avoid biasing the data sample. This approach mitigates significant biases observed in
particle yield measurements; for example, studies of charged and neutral kaons[97] have
demonstrated that such biases can lead to a reduction of up to 20% in neutral kaon yields
for high-multiplicity events. The underlying cause is that charged kaons not only contribute
to the particle yield but also artificially increase the charged particle count when multiplic-
ity is determined at mid-rapidity. ALICE measures particles at mid-rapidity (|y|<0.5) using
multiple detectors to perform PID and momentum determination. For nuclei the most im-
portant ones are the Time Projection Chamber (TPC) and the Time of Flight (ToF). Both can
be used to perform PID and momentum determination, and they are used in combination
at high pT. However, at low pT, the efficiency of the ToF is extremely low, and only the
TPC is used. The ToF detector is the outermost detector system in the ALICE experiment,
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FIGURE 5.4: Averaged (anti)deuteron pT spectra (d+d)/2 measured by ALICE
at three different energies, 5 TeV (top right), 7 TeV (top left) and 13 TeV (bot-
tom left) at mid-rapidity (|y|<0.5). The spectra are measured differentially
in up to nine multiplicity classes as well as multiplicity integrated (minimum
bias, bottom right).

and low-momentum particles are often stopped before they reach it, especially large parti-
cles such as nuclei. This can cause large variations at low pT, which are especially visible
when compared to model predictions (See Fig. 7.10 for example). The resulting transverse
momentum (pT) spectra are shown in Fig. 5.4. The top-left panel presents the spectra for 7
TeV, measured across five multiplicity classes. The mean charged-particle multiplicities cor-
responding to these classes are listed in Tab. 5.3. The top right shows the results for 5.02 TeV
in nine classes. The bottom left panel shows 13 TeV in nine classes, and the 13 TeV with an
included high multiplicity (HM) trigger, further separated into 3 classes. The bottom right
panel shows the multiplicity integrated, so-called minimum bias (MB) spectra. All spectra
shown are the average of matter and antimatter (d+d)/2.



5.2. pp collisions 65

Energy I II III IV+V VI VII VIII IX X
5.02 TeV 18.5 14.5 11.9 9.7 7.8 6.3 5.2 3.9 2.4

7 TeV 17.47 (to I) 13.50 10.76 7.54 (to VI) 3.30 (to VIII) (to VIII)
13 TeV 26.02 20.02 16.17 12.91 10.02 7.95 6.32 4.50 2.55

13 TeV HM 35.8 32.2 30.1 – – – – – –

TABLE 5.3: Multiplicity classes used by ALICE for 5-13 TeV pp collisions. The
classes IV and V are always merged. For 7 TeV the classes I and II are merged,
as well as VI+VII and VIII+IX+X. 13 TeV with high multiplicity (HM) trigger
only has three classes. [8–10, 20]
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Chapter 6

Coalescence in EPOS

6.1 The EPOS event generator

In order to test the Coalescence model one needs an assumption on the momentum distri-
bution Gnp and the spatial distribution Hnp in Eq. 3.9. These can either be obtained analyt-
ically or from simulations. In this study, we employ the EPOS 3 event generator [82, 83].
EPOS stands for Energy conserving quantum mechanical approach, based on Partons, par-
ton ladders, strings, Off-shell remnants and Splitting of parton ladders. EPOS operates
with a Core-Corona approach to particle collisions. Immediately after the collisions, parti-
cles are created using strings, which themselves are created from parton-parton pomeron
exchanges. These strings have a non-zero momentum, and when splitting, they transfer a
fraction of that momentum onto the created fragments. Fragments that have low momen-
tum stay inside the core, while high-momentum fragments escape to the corona. Fragments
in the core get dissolved into a QGP which is evolved using hydrodynamics. During the
evolution, the temperature of the medium drops until it becomes cool enough to freeze out
(T ≃ 170 MeV) and hadronize using a Cooper-Frye[98] description. The hadrons are fur-
ther fed into the UrQMD [99, 100] model to handle decays of resonances and the hadronic
cascade, i.e. rescattering. Particles in the Corona are directly fed into UrQMD. Interestingly,
this prescription, using hydrodynamic evolution of the core is used regardless of the colli-
sion system and energy, even on pp collisions. Unlike many other event generators, EPOS
also assigns positions to particles. These positions can be accessed for each particle after
each stage of the collision, e.g. Core particles’ positions can be accessed before being fed
into UrQMD.

6.2 Tuning the event generator

Despite the use of QCD-inspired models, the production of particles in event generators is
not perfect. Indeed, they need to be tuned to one’s specific needs if one wants to inves-
tigate coalescence despite the shortcomings of the event generator. The main parameters
that influence coalescence are the nucleon momentum distributions, the source size, and the
charged particle multiplicity.

6.2.1 Charged particle multiplicity

The starting point of the correction of the event generator is the charged particle multiplicity.
Since the source has only been measured in high multiplicity (HM) (0-0.17%) pp collisions
at

√
s = 13 TeV, one has to also compare the coalescence predictions to high multiplicity

deuteron data measured in the same collision system and energy[9]. This way, a benchmark
can be set free of any biases by the event generator. In order to compare to HM measure-
ments, an HM trigger that mimics the experimental one needs to be implemented into the
event generator. This is done in two steps: First, in the settings of the simulation the impact
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FIGURE 6.1: dNch/dη vs V0M amplitude distribution in EPOS.

parameter b is set to 0. This ensures only head-on collisions, which reduces the number of
low multiplicity events and, thus, the loss factor when triggering for high multiplicity. The
effect on the mean multiplicity can be seen in Fig. 6.2. The second step is an HM trigger,
which mimics the ALICE V0 trigger system [9]. In this trigger events are selected based on
the number of charged particles (π+/−, K+/−, p, p, e+/−) at backward and forward rapid-
ity (−3.7 < η < −1.7 and 2.8 < η < 5.1, where η is the pseudorapidity relative to the
beam axis of the particle) which from now on will be referred to as the V0M region, after
the V0M detectors in ALICE. This method reduces auto-correlation biases when measuring
charged particles since a particle of interest would automatically also have a higher chance
to be in an HM event since it itself increases the multiplicity by one [101]. The distribution
of ⟨dNch/dη⟩|η|<0.5 vs V0M amplitude obtained from EPOS can be found in Fig. 6.1. Dif-
ferent minimal thresholds in V0M amplitude can be chosen with this distribution, and the
resulting mid-rapidity distribution can be obtained. The 0-0.01% multiplicity class in AL-
ICE has a mean multiplicity of ⟨dNch/dη⟩|η|<0.5 = 35.8, so a V0M threshold has been cho-
sen to give a mean mid-rapidity multiplicity as close to the experimental value as possible.
When triggering for at least 127 charged particles in the V0M region a mean multiplicity of
⟨dNch/dη⟩|η|<0.5 = 35.4 can be achieved. The resulting distribution compared to the mean
value can be found in Fig. 6.2.

6.2.2 The source size

To account for realistic particle emission and correlation, in our implementation of the
coalescence afterburner, we rely on the ALICE measurement of the nucleon emission
source [14], which has been performed in pp collisions at

√
s = 13 TeV with a high multi-

plicity trigger in the 0-0.17% multiplicity class. As mentioned above, this is the only existing
measurement differential in ⟨mT⟩ of the emission source in pp collisions available. While
the measurement utilizes the femtoscopy technique [14] in the event generator, we can di-
rectly use the space-time coordinates stored by the event generator. The extraction of the
distance has to be done at equal times. This is achieved by boosting into the rest frame of
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the pair (PRF) under investigation and propagating the particle with the smaller time co-
ordinate. Since in the Femtoscopy technique only pairs with a small relative momentum
k∗ ≲ 300 MeV/c contribute to the signal a similar cut has been applied to the pairs in the
event generator. Thus the propagation can be done non-relativistically because the particles
are moving slowly in their respective pair rest frame (PRF). Note that this equalization of
time is especially important for nucleons that come from strongly decaying resonances such
as ∆ and N∗, where the time differences can be multiple fm/c. Such a scenario is shown in
Fig. 6.3 where the distance between a proton and a neutron dnative

pn is determined. The pro-
ton stems from a ∆+ resonance, while the neutron is a primordial one. The neutron needs
to be propagated forward in time by the lifetime ∆t∆ of the ∆+. Otherwise, a very different
distance will be extracted. The strong effect of resonances motivates an investigation of the
resonance cocktail inside EPOS.

The resonance cocktail

In App. A an overview of all resonances which feed into protons and neutrons with a mass of
less than 2 GeV/c2 can be found. Alongside their ISAJET PID, PDG PID, their contribution
fraction to protons in EPOS and extracted from thermal FIST [84]. Based on the relative con-
tribution fractions, a correction factor for each resonance is obtained. The resulting nucleon
is reweighted by this correction factor when obtaining the source size, as well as momentum
distributions (Sec. 6.2.3). The product of the weights of the proton and the neutron is used to
reweight (anti)deuterons. Note that in the ISAJET convention, multiple states with similar
masses but very different quantum numbers and lifetimes have been merged, such as the
∆−(1620) with the ISAJET ID 2222 is a combination of the ∆−(1600) and the ∆−(1620) states
with lifetimes of cτ = 0.79 fm/c and cτ = 1.52 fm/c respectively. The lifetime of the EPOS
states is randomly picked from any merged states.

Scaling the Source

After the resonances are retuned the native source size can be determined. For each nucleon
their mother is determined by keeping track of all resonances created in the event and later
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matched to the final state nucleon. This can be easily done since EPOS keeps track of the
ID of the mother particle. Then one determines each proton-neutron pair, as well as their
antimatter counterparts, find their distance as described above, and stores it along the pair

average transverse mass ⟨mT⟩ =
√
(

pT,p+pT,n
2 )2 + m2

N, assuming mp = mn = mN. Then, for
each value of ⟨mT⟩, the distance distribution, where each entry is weighed by the product
of the previously determined resonance weights, is fitted using an effective Gaussian source
estimate

S(r; r0) =
4πr2

(4πr2
0)

3/2
exp

(
− r2

4r2
0

)
. (6.1)

Here r0 is the source size. It is important to note that the mean of this function is rµ =
4/

√
πr0. This means the source size can easily be determined using the mean of the func-

tion. In Fig. 6.4, the native source size rnative
0 is shown as a function of ⟨mT⟩ for EPOS. From

the comparison with the ALICE measurement rALICE
0 [14] (black points), it is clear that the

native source size predicted by EPOS (blue band) does not reproduce the observed ⟨mT⟩
dependence. Hence, an additional ⟨mT⟩-scaling S(⟨mT⟩) = rALICE

0 /rnative
0 is introduced and

the corrected proton-neutron distance is obtained as dscaled
pn = S(⟨mT⟩)dnative

pn . When apply-
ing the correction and re-determining the source size, the orange band in Fig. 6.4 is obtained,
which shows that the rescaling scheme is able to successfully correct the ⟨mT⟩ scaling behav-
ior of the source in EPOS. Previous works [63, 102] have either fixed the source size to one
value or used the measured size and sampled from it. The approach of this work has the
advantage that space-momentum correlations, which are created by the event generator, are
conserved. This means that pairs with a relatively small distance will still have a compara-
tively small distance and vice versa. The effect can be seen in Fig. 6.5. On the left figure, the
correlation between the relative momentum q and the distance r of nucleons after the source
scaling is shown. On the right side, the same is shown, but with a random sampling of the
distance according to the measurement. The region of interest for coalescence is marked
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while for EPOS, uncertainties are shown as a colored band.

with a red box covering q ∈ [0, 0.285] GeV/c and r ∈ [0, 3.5] fm, as motivated in Ref. [103]. It
is clear that conserving the q− r correlations leads to more p-n pairs in the region of interest.
The influence on the deuteron yields can be seen in Fig. 6.9.

6.2.3 Momentum distribution

Experimentally, the full 3D momentum distribution can be reconstructed by combining
three different measurements: the transverse momentum pT-distribution, the rapidity dis-
tribution, and the azimuthal angular distribution. The azimuthal distribution is assumed to
be flat and properly reproduced in event generators. The same holds for the rapidity dis-
tribution. The transverse momentum (pT) distribution can be obtained from measurements.
In this study, p + p data measured by the ALICE collaboration was chosen. They measure
nucleon spectra in pp collisions at

√
s = 13 TeV with a high multiplicity (HM) trigger [9]. In

Fig. 6.6 the measured spectra for the 0-0.01% multiplicity class are compared to the native
output of EPOS, triggered to the same mean multiplicity. It is obvious that EPOS cannot na-
tively reproduce the measured spectra. Thus, a correction scheme is employed to re-weight
each nucleon to reproduce the measured spectra. For this, the ALICE and EPOS spectra
were fitted using a Lévy-Tsallis function [104]

d2N
dydpT

=
dN
dy

pT

nT
(n − 1)(n − 2)
nT + m(n − 2)

1 +

√
p2

T + m2 − m

nT

−n

, (6.2)

where m is the mass of the particle of interest, pT its transverse momentum, dN/dy its
yield per unit of rapidity, and n, T are fit parameters. The resulting fit parameters can be
found in Tab. 6.1. Note that the mass m was left as a free parameter in the case of EPOS to
ensure a better fit quality. Also, the proton and neutron spectra from EPOS were fitted sep-
arately since EPOS does not provide perfect isospin symmetry, which is, however, assumed
in the coalescence model due to a lack of neutron measurements. Indeed the assumption
of isospin symmetry is consistently employed and assumed throughout the entirety of this
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Parameter ALICE EPOS Proton EPOS Neutron
dN/dy 2.1535 3.5104 3.6515

n 4.1477 3.9814 5.1614
T 0.3515 0.3248 0.3059
m 0.938272 -9.16·10−5 -0.0302

TABLE 6.1: Fit parameters for nucleon spectra used in the correction of EPOS.
While technically a physical parameter the mass was left free in the case of
EPOS to ensure a better fit.

work. The correction then works as follows: For each nucleon in the EPOS simulation the
pT is determined. Then a correction factor is calculated as the ratio between Eq. 6.2 with the
parameters for ALICE from Tab. 6.1 and Eq. 6.2 with the parameters for EPOS. The nucleon
is then weighted whenever it is counted with this correction factor. Deuterons are weighted
with the product of the weights of their constituents. After applying this correction scheme,
the reweighted nucleon spectra coincide with the measured ones, as shown in Fig. 6.6.

6.3 Angular correlations

As mentioned in the previous section, the relative momentum of two particles is driven by
the absolute momenta and the angle between them. The relative angle is usually expressed
in 2D ∆η − ∆φ correlations. Often only the 1D ∆φ correlation is studied since it is more
sensitive than the ∆η one. The correlation function C(∆φ) is defined as

C(∆φ) =
SE(∆φ)

ME(∆φ)
, (6.3)

where SE(∆φ) and ME(∆φ) are the normalized same and mixed event ∆φ distributions re-
spectively. The same event distribution is the distribution of relative angles ∆φ between pp
pairs in the same event, while the mixed event distribution pairs up protons from different
events. The mixed event distribution contains the trivial phase space contribution, while
the same event distribution additionally contains the particle interaction. In Fig. 6.7 the
measurement of the ∆φ correlation function C(∆φ) by the ALICE collaboration in pp colli-
sions at

√
s = 7 TeV is shown and compared to the same correlation obtained from EPOS
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3 in
√

s = 13 TeV pp collisions. However, no qualitative difference between 7 and 13 TeV
predictions is expected. It is clear that EPOS 3 cannot reproduce the measured angular cor-
relation. While there is a significant depletion in the measured correlation function around
φ = 0, the EPOS predictions show an increase in the correlation function in the same region.
Furthermore, the region around ∆φ = π shows a significant increase in the correlation,
while any correlation is absent in EPOS. This could be a sign of recoil jet quenching due to
the hydrodynamic phase in EPOS. In Ref. [18], this data is compared to even more models,
such as Pythia 6, Pythia 8, and PHOJET. All of these models fail to reproduce the depletion
at low ∆φ but qualitatively reproduce the peak at ∆φ = π. This hints at a fundamental issue
in the hadronization procedure in EPOS. Correcting such a fundamental issue is beyond the
scope of this work, and the angular correlations will not be corrected. A resolution to the
problem will be given in Ch. 7.

6.4 The coalescence afterburner in EPOS

Following the successful calibration of all components of the event generator influencing
nuclear formation via coalescence to experimental data, the coalescence afterburner is now
introduced. The first step involves determining whether each event qualifies as a high-
multiplicity event by counting the number of charged pions, kaons, and protons within
the V0M region. Subsequently, a list of all potential proton-neutron pairs at mid rapidity
(|y| < 0.8) is compiled, along with their corresponding mother particles, positions, and
four-momenta. The looser rapidity cut is to remove edge effects where a deuteron could be
created inside the acceptance from one nucleon slightly out of the |y| < 0.5 acceptance. In-
deed, the rapidity of the deuteron is the average of the nucleon rapidities yd = (yp + yn)/2.
For each pair, the spatial separation is calculated and rescaled, and the relative momentum
in the pair’s rest frame is determined. These rescaled distances and relative momenta are
then used to compute the coalescence probability, P(q, σ) (Eq. 3.1). Here, in order to pre-
serve space-momentum correlations and also, importantly, the correlations between q and
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r, not the actual source size is used but σ = r/(4/
√

π) as previously motivated. A random
number r ∈ [0, 1] is then drawn according to a uniform distribution, and if r < P , the pair
is accepted as a deuteron. Finally, the deuteron is added to a histogram, with the weights of
its constituents and the weights of the mother resonances.

6.5 Results and implication for future studies

The results of the coalescence afterburner are obtained using four different wave functions:
a single Gaussian, the Hulthén, Argonne v18 and N4LO χEFT. Details of the wave functions
can be found in Ch. 3.3. The expectation is that Argonne v18 and N4LO χEFT perform
the best since they are the most realistic description of the deuteron, reproducing modern
scattering data with χ2

NDF ∼ 1. The Gaussian is a very simplified ansatz, but its simplicity
allows for a fully analytic calculation of the Wigner function and its formation probability.
The Hulthén has been used in previous publications as an improved wave function and is
included for comparability. Figure 6.8 shows the pT spectra of deuterons obtained with this
model and is compared to measurements by ALICE [9]. The global χ2 per degree of freedom
for each wave function is shown in Tab. 6.2. It is clear that both Argonne v18 and χEFT are
able to reproduce the data within the uncertainties. On the other hand, both the Hulthén
and the Gaussian wave functions fail by 30% and 50%, respectively. All wave functions
show a similar trend with pT; only the overall yield varies. Not shown in the plot, but
included in the global χ2 calculation is a pT-independent systematic uncertainty of 6%. This
systematic has two major sources. The first part was obtained by varying the target source
size from the ALICE measurement by ±7%, based on the uncertainties reported in [14].
The resulting systematic uncertainty was obtained from the relative deviation in the final
spectra between the default source size and the varied one. The second source of systematic
uncertainty is related to the fraction of primordial nucleons. Indeed, not all nucleons stem
from resonance decays, but ∼ 35.4% of nucleons are directly produced in the collision. This
value is obtained using ThermalFIST [84]. In order to estimate the systematic uncertainty,
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the bands represents the statistical uncertainty of the predictions. A global
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the primordial fraction was varied by ±10%, and the amount stemming from resonances
changed accordingly. The final systematic uncertainty is the quadratic sum of both relative
deviations from the source and the primordial fraction.

In order to show the effect of the source modeling Fig. 6.9 shows the predictions for
three different scenarios. The default prediction with the source modeling is shown in blue,
as described above. In orange the prediction using the native source is shown. The scaled
and the native source size are comparable around ⟨mT⟩ =1.8 GeV/c2, which corresponds to
a deuteron-pT ∼ 3.1 GeV/c. This explains why the native and the scaled prediction almost
coincide for large pT. However, at low pT, where the discrepancy of the source is large,
the predictions deviate by ∼50%. Shown in red is the prediction using a distance sampled
from the measurement. This procedure destroys the correlations between q and r, as shown
in Fig. 6.5. As a result, the overall yield of deuterons is reduced by ∼ 8%, but the yield
for pT < 2 GeV/c is even reduced by 13%. This outcome directly results from the reduced
population in the phase space region relevant for coalescence caused by the breakdown
of the correlation between q and r. Using the spectra of protons and deuterons shown in
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Wave function Argonne v18 N4LO χEFT Hulthén Gaussian
χ2

n.d.f 1.063 0.613 21.351 57.900

TABLE 6.2: Global χ2
n.d.f of the deuteron predictions obtained with EPOS and

compared to ALICE measurements [9] for four different wave functions. The
calculation includes a global systematic uncertainty of 6%. All uncertainties
are assumed to be fully correlated.
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Figs. 6.6 and 6.8 it is possible to calculate the coalescence parameter B2 (See Ch. 3)

B2 =

(
1

2πpd
T

d2Nd

dydpd
T

)/(
1

2πpp
T

d2Np

dydpp
T

)2

. (6.4)

Here, the superscripts d and p indicate deuterons and protons, respectively. Importantly, it
is assumed that the transverse momentum of protons is half that of deuterons (pp

T = pd
T/2).

The comparison between the B2 obtained by ALICE [9] and by EPOS 3 are shown in Fig. 6.9.
The Argonne v18 and χEFT wave function achieve the best compatibility with the mea-
surement, while the Hulthén and Gaussian again fail to describe the data. The Gaussian
underestimates the data by 50-70% while the Hulthén overestimates B2 by 20-50%. This is a
significant improvement to previous studies [9] where the Gaussian showed the best agree-
ment with data (See Sec. 2.1.2, Fig. 2.7). The main difference between the work in Ref. [9]
and this work is that the difference in momentum between nucleons (⃗q = ( p⃗p − p⃗n)/2) is

neglected in the Wigner function of the p-n state ( f W
1 ( P⃗d

2 ± q⃗, R⃗ ± r⃗
2 ; t f ) → f W

1 ( P⃗d
2 , R⃗ ± r⃗

2 ; t f ).
The authors of [12] state that such approximation, motivated by ease of computation, is
valid to an accuracy of around 10% in Pb–Pb collisions while the accuracy in pp collisions is
not estimated and could potentially be much larger.

Utilizing a general-purpose event generator, this study demonstrates that the coales-
cence model can successfully reproduce experimental data when appropriate parameters,
such as the source size and wave function, are applied. The use of an event generator
proves advantageous for such exploratory research, as it provides many of the essential
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components needed to describe nuclear formation. These include the generation of nucle-
ons on an event-by-event basis and the incorporation of their correlations. Furthermore,
the event generator framework helps identify the critical elements required to accurately
describe deuteron formation. However, this approach is not without its limitations. Not all
relevant observables have been experimentally measured across different energies, multi-
plicities, and system sizes. In particular, the source size in small systems has only been mea-
sured mT-differentially in high-multiplicity proton-proton (HM pp) collisions at

√
s = 13

TeV. As illustrated in Fig. 6.9, the shape of the mT-scaling of r0 exerts a significant influence
on the resulting deuteron spectra. This emphasizes the necessity for further refinement of
tools to study nuclear formation across a broader range of energies and multiplicities. To
address these challenges, the ToMCCA model has been developed (see Ch.7).

6.6 Rapidity dependent coalescence
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FIGURE 6.10: Integrated yields of antiprotons (left) and antideuterons (right)
as a function of rapidity, compared with the corresponding predictions of
three models (see text for details). Statistical and systematic uncertainties are
represented by vertical bars and boxes, respectively. The statistical uncertain-
ties are smaller than the size of the markers in the reported scale and, hence,
not visible. In the insets of the figures, a zoom in the low-rapidity region is
displayed. The integrated yields estimated by models are normalized to the
measured ones.

While the previous results were obtained integrated over the mid-rapidity interval,
studying the rapidity differential yields is also of interest for astroparticle physics. Indeed,
since collisions between cosmic rays and the interstellar medium happen with a stationary
target, the forward rapidity region could have a potentially strong influence on deuteron
production. Previous measurements by the BRAHMS and STAR collaborations [105] have
already shown that the expected rapidity dependence of the coalescence parameter B2
should be small. Testing the coalescence model for this observation is thus critical if one
wants to apply it to astrophysics. In this study, the ALICE detector was taken to the lim-
its of its acceptance. Indeed, while typically, particle yields are determined in the rapidity
range |y| < 0.5, in which the pT acceptance is almost constant, the detector can, in princi-
ple, detect (anti)deuterons up to |y| = 0.7, with a limited acceptance in pT. The measured
antiproton and antideuteron yields are shown in Fig. 6.10 as the red circles. The measure-
ment was performed for minimum bias pp collisions at

√
s = 13 TeV. The squares denote

the systematic uncertainties, the statistical uncertainties are smaller than the symbols and
thus not shown. Also shown are the predictions of the yields for Pythia 8.3 with default
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FIGURE 6.11: Coalescence parameter B2 as a function of the transverse mo-
mentum per nucleon for different rapidity intervals (right) and as a function
of rapidity for different pT intervals (left). Data are compared to model predic-
tions from a Wigner function formalism coalescence model used as an after-
burner of EPOS 3 shown as colored lines. Statistical and systematic uncertain-
ties on the data points are represented by vertical bars and boxes, respectively.
The statistical uncertainties of the data points are smaller than the size of the
markers in the reported scale and, hence, not shown.

tune and Monash 2023 tune1 and for EPOS 3.117. All model predictions are normalized
to |y|<0.1. The deuteron yield predictions are obtained using a coalescence model in the
case of Pythia+Monash and EPOS 3, and using the Dal-Raklev [106] nuclear reaction model
akin to the kinetic approach discussed in Sec. 2.1.2. The Coalescence model used in Pythia
8.3 Monash is a simple spherical approximation model with ∆p < 142.5 MeV/c. In EPOS
3, the Wigner Function formalism was used, and for the source, a size of r0 = 1.18 fm was
used [107], with the same mT scaling as observed in HM collisions. The source size was also
taken to be independent of rapidity. Note that the absolute magnitude of the source is of
limited importance since the yields are scaled to the measurement. A very interesting trend
that can be observed in Fig. 6.10 is that EPOS consistently underproduces particles towards
large rapidities. This is very likely due to the initial condition setting in EPOS, where for
this production, the impact parameter was set to b = 0 fm, i.e., every pp collision simulated
is a direct head-on collision. This could cause a large shadowing in the forward region. Fig-
ure 6.11 Coalescence parameter B2 from the measurement compared to model predictions by
EPOS. The left panel shows B2 as a function of rapidity for different pT-intervals. The right
panel shows B2 as a function of pT per nucleon for different rapidity intervals. The data is
shown as colored markers, the boxes indicate the systematic uncertainties. The statistical
uncertainties are smaller than the marker and are thus not shown. The EPOS predictions are
shown as bands, and the colors indicate the pT- or |y|-interval. The different slices are scaled
for visibility. As can be clearly seen, the trend of B2 is flat as a function of rapidity in the
data and in the EPOS predictions. EPOS seems to overestimate B2, but since the results are
all scaled to the data, this is likely a slight inaccuracy in the applied scaling. The behavior
of B2 as a function of pT shows the enhancement towards larger pT, already seen in the HM
results in Fig. 6.9. EPOS captures this trend due to the mT-scaling behavior of the source
size. Overall, the coalescence model shows an excellent agreement with the data presented
here.

1The Pythia predictions were obtained by Ramona Lea.
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Chapter 7

The ToMCCA Event Generator

7.1 Goals of ToMCCA

The study described in Chapter 6 utilized the EPOS event generator to achieve a precision
of approximately 5%. This required the simulation of about 300 million events, consuming
on the order of 105–106 CPU hours. Extending such high-precision studies to cosmic ray
physics, which would necessitate computations across tens to hundreds of collision ener-
gies, could demand thousands of CPU years. While high-performance computing clusters
with up to 105 CPUs could potentially handle this workload, the resource requirements
would be immense. To address this computational challenge and enable such studies on
smaller infrastructures, such as local computer farms with 102–103 CPUs, the ToMCCA
model was developed. Its target is to produce upwards of 1 million events per CPU minute,
representing a speedup of approximately 105 compared to the EPOS study. ToMCCA, short
for Toy Monte Carlo Coalescence Afterburner, is a lightweight, high-performance tool de-
signed specifically for coalescence predictions. One promising application of ToMCCA is
in predicting antideuteron yields over the entire energy range of interest for cosmic rays (<
TeV). These predictions can then be integrated into cosmic ray propagation software such as
GALPROP [108], enabling estimates of antideuteron fluxes in cosmic rays [4]. This capability
opens new possibilities for exploring cosmic ray physics with unprecedented precision. A
key limitation of ToMCCA, however, lies in its dependence on experimental measurements
for input. In regions lacking data, extrapolation or interpolation is required, potentially in-
troducing biases. In contrast, models like EPOS are rooted in pQCD-based calculations, of-
fering greater robustness when extrapolating into unmeasured regions. That said, ToMCCA
provides tremendous speed advantages and offers flexibility—its parameterized inputs can
be easily adjusted as new data becomes available or improved extrapolation methods are de-
veloped. The power and utility of ToMCCA are demonstrated throughout this chapter. This
combination of speed, flexibility, and applicability to cosmic ray studies highlights its poten-
tial as a transformative tool for advancing our understanding of coalescence phenomena. In
a previous study [50], the authors used the event generator EPOS-LHC, a lightweight ver-
sion of EPOS, to generate 25 trillion proton-proton collisions utilizing 5000 CPU hours. Here,
statistical accuracies of a few percent were reached for the whole energy range. However,
this study was limited by the use of the spherical approximation as a coalescence model,
which introduced uncertainties upwards of 30% because of the uncertainty of the free pa-
rameter p0. In the case of ToMCCA, the Wigner Function formalism introduced in Ch. 3, is
used which has been shown to reproduce deuteron spectra without any free parameter (see
Ch. 6). In this chapter, first, the exact procedure with which ToMCCA generates nuclei spec-
tra predictions will be discussed (Sec. 7.2), including then the necessary parameterizations,
which are obtained in a data-driven method. In Sec. 7.3, the resulting deuteron spectra and
in Sec. 7.4, the extension and results for A=3 nuclei will be discussed.
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7.2 ToMCCA event loop

The event loop is the most characteristic difference between ToMCCA and a full-fledged
Monte-Carlo event generator. It relies purely on parameterizations and only generates com-
ponents that are strictly necessary for coalescence predictions. These components are the
yields of nucleons, their full 3-dimensional momentum distributions, also relative to each
other, the charged particle multiplicity, and the source size. First, the number of protons
and neutrons in the event is determined. Then, for the first proton, its three-dimensional
momentum is sampled and subsequently for all neutrons relative to this proton. Lastly, the
source size for each pair is determined and the coalescence condition (Eq. 3.1) is evaluated.
If any pair gets accepted, both nucleons are removed from the candidates, and a deuteron
is counted with its 4-momentum, the sum of both nucleons’ 4-momenta. Then, for the next
proton, its full kinematics is determined, and subsequently, for all remaining neutrons, a
new three-dimensional momentum is assigned, again relative to the now-checked proton.

Importantly, two different approaches to ToMCCA will be discussed: a very simple
tune called De f ault, which only contains the bare minimum parameterizations, and the
Advanced one, which contains more intricate mechanisms, more advanced parameteriza-
tions and more input from general-purpose event generators.

7.2.1 Charged particle multiplicity

The starting point of every ToMCCA event is the charged particle multiplicity of the event.
This number is usually given as the pseudorapidity density ⟨dNch/dη⟩, in collider experi-
ments, usually at mid-rapidity |η| < 0.5. However, in ALICE, particle spectra are usually
measured as rapidity densities dN/dpTdy with |y| < 0.5. In order to transform between
the two, a scaling constant α is introduced such that α⟨dNch/dη⟩|η|<0.5 = ⟨dNch/dy⟩|y|<0.5.
Using the EPOS event generator, a value of α = 1.192 is found.
For a given ⟨dNch/dη⟩, the distribution can be shaped in several different ways. The sim-
plest approach would be to let all events have Nch =⟨dNch/dη⟩. However, coalescence is a
non-linear process, which means it is sensitive to higher orders of the multiplicity distribu-
tion. Indeed, an event with Nch = 20 would contribute 4 times as many deuteron candidates
as an event with Nch = 10 charged particles. A simple solution would be to use a Poissonian

P(N; λ) =
λN exp(−λ)

N!
, (7.1)

which has a mean and a variance of λ. However, this produces rather narrow distribu-
tions, especially for higher multiplicities. A better description can be found using an Erlang
distribution [109]

f (N; k, λ) =
λkNk−1 exp(−λN)

(k − 1)!
, (7.2)

which has a mean of k/λ and variance k/λ2. While this function is technically only defined
for k ∈ N+, it can be extended to k ∈ R≥1 without introducing any poles by generalizing
the factorial to the Γ function using Γ(x) = (x − 1)!. The rate parameter λ is well defined for
λ > 0. This function can be interpreted as the sum of k independent, exponential emitters
with rate λ and mean 1/λ. In our case, k is not an integer, so this direct physical interpre-
tation no longer holds, but k is rising as a function of Nch, so the general trend is still valid.
The two parameters k and λ were obtained depending on Nch from EPOS 3. Similarly to
Sec. 6.2.1, multiplicities were obtained by triggering in the far forward and backward rapid-
ity regions (−3.7 < η < −1.7 and 2.8 < η < 5.1) and obtaining the resulting multiplicity
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FIGURE 7.1: (left) Selected EPOS mid-rapidity (|η| < 0.5) charged particle
multiplicity distributions (colored markers) obtained by triggering in the for-
ward/backward region (−3.7 < η < 1 − 7 and 2.8η < 5.1). The solid
lines represent the results of the Erlang function parameterization included
in ToMCCA. The dashed lines represent a Poissoninan distribution with a
mean λ = ⟨dNch/dη⟩|η|<0.5. The ⟨dNch/dη⟩|η|<0.5 for all cases is indicated
by the color. (right) Ratio of the deuteron yield obtained from using different
multiplicity distributions compared to the Default Erlang function parame-
terization. The purple line shows the ratio using a Poissonian, as indicated
on the left. The blue (red) curve shows the effect of doubling (halving) the
k parameter in the parameterization. To counteract the change in the result-
ing ⟨dNch/dη⟩|η|<0.5, the λ parameter was halved (doubled) accordingly. The
red curve is only defined for ⟨dNch/dη⟩|η|<0.5 > 4, since for smaller values of
multiplicity the k parameter would be < 1, and would thus lead to undefined
behavior.

distribution at mid-rapidity. This was done in slices of 10% as well as for 0-1%. The result-
ing distributions are insensitive to the width of the triggering percentile. These distributions
were then fitted using Erlang distributions. Figure 7.1 (left) shows selected EPOS distribu-
tions with their respective Erlang fits alongside the corresponding Poissonian distribution.

The Erlang distributions show an excellent agreement with the simulations, while the
Poissonian description becomes worse for larger multiplicities, underestimating the width
of the distribution. The behavior of the parameters k and λ as a function can be described
by power laws of the form a Nb

ch. Since ⟨dNch/dη⟩|η|<0.5 = k/λ, only one needs to be pa-
rameterized, and the parameters can be found in Tab. 7.1. Both are shown for complete-
ness and as a cross-check k/λ = 1.067⟨dNch/dη⟩0.98

|η|<0.5, which is very close to the desired
k/λ = ⟨dNch/dη⟩|η|<0.5. The functional shapes of the parameterization as well as the values
obtained from EPOS are shown in Fig. 7.2. Clearly visible is the boundary condition k > 1 as
long as ⟨dNch/dη⟩|η|<0.5 ≥ 1. For the subsequent results λ = k/⟨dNch/dη⟩|η|<0.5 is chosen.

parameter a b
k 0.77544 0.74669
λ 0.72653 -0.23343

TABLE 7.1: Parameters used in the power law description of the k and λ pa-
rameter as a function of ⟨dNch/dη⟩|η|<0.5.

Figure 7.1(right) shows the effect of different multiplicity distribution shapes on the
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FIGURE 7.2: Change of the obtained shape parameter k (left) and rate pa-
rameter λ (right) as a function of ⟨dNch/dη⟩|η|<0.5. Both are fitted using
a power law function, with the parameters shown in the legend. Since
⟨dNch/dη⟩|η|<0.5 =k/λ, only the parameterization of k is used in ToMCCA,
and λ is derived from the value of k.

deuteron yield as a function of ⟨dNch/dη⟩|η|<0.5 compared to the default description us-
ing an Erlang distribution. The purple line shows the yield ratio when using a Poisson
distribution. For small multiplicities (⟨dNch/dη⟩|η|<0.5 <10), the limited width of the Pois-
sonian reduces the yield by up to 15%. In intermediate multiplicity events, the effect is
minimal. The blue and the red lines show the effect of doubling or halving the k parameter,
respectively. In order to conserve the correct multiplicity, λ is changed accordingly. Increas-
ing(reducing) λ(and thus reducing(increasing) k) has the effect of widening(narrowing) the
distribution. The effect is very pronounced at lower multiplicities, while for larger multi-
plicities, they roughly reproduce the same yield as the default configuration. The red line
starts only at ⟨dNch/dη⟩|η|<0.5 =4 instead of 2, since for smaller multiplicities, the value for
k<1 and thus the Erlang distribution is no longer well defined. Overall, the effect is that
wider distributions lead to larger yields, and the effect is much more pronounced at low
multiplicities. The most extreme effect is observed when compared to minimum bias (MB)
data.

7.2.2 Particle production mechanism

Once the number of charged particles Nch in an event is determined, the chemical composi-
tion of the event needs to be found. While the exact composition, including particles such
as pions and Kaons, is not important, the number of (anti)protons and (anti)neutrons and
their relation to each other is. Note that, as of now, antimatter is not implemented in ToM-
CCA since, at the LHC, one measures an equal amount of matter and antimatter. Currently,
there are four different methods implemented in order to determine the number of nucle-
ons in each event from Nch, Uncorrelated Emission (UE), String Fragmentation (SF), Quark
Recombination (QR), and Tuned Emission (TE). All predictions in Sec. 7.3 and beyond are
obtained using TE unless denoted otherwise.
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Uncorrelated emission

UE is the most simplistic approach to particle production. In this method, for every charged
particle created, there is a probability for it to be a proton given by

pprot = (dNp/dy)/⟨dNch/dy⟩|y|<0.5, (7.3)

where dNp/dy is the production yield of protons and ⟨dNch/dy⟩|y|<0.5 is the average num-
ber of charged particles created at mid-rapidity (|y| < 0.5). The yield of protons is anchored
to measured spectra and will be discussed in Sec. 7.2.3. Thus, a simple loop over all charged
particles in the event is performed, and for each, this probability is evaluated, and the num-
ber of successful protons is counted. A mirroring technique is utilized for neutrons, where
Nch neutral particles are created, and with an equal probability, the number of neutrons
is determined. As of now, ToMCCA assumes perfect isospin symmetry, as no evidence of
its breaking has been observed at the LHC. Adding in an isospin-breaking term would be
trivial in this production method

pneut = pprot(1 + ∆IS) (7.4)

where ∆IS is the isospin enhancement factor defined in ref. [95] as

∆IS =
Nneut

Nprot
− 1. (7.5)

At lower energies than then LHC, evidence of isospin breaking has been found by
NA49 [110] by comparing pp with pn scattering data with a value of ∆IS = 0.13 ± 0.10
when assuming fully correlated systematic uncertainties and ∆IS = 0.37 ± 0.06 when fully
uncorrelated [95]. At the LHC, the best measurements of the p/p ratio performed by ALICE
gave a value of ∆IS < 0.06 [95]. The Uncorrelated Emission method produces no correlation
between the number of protons and neutrons in the event, i.e., they fluctuate fully indepen-
dently. This can be quantified by measuring the Pearson correlation coefficient ρpn discussed
in Sec. 7.2.2,

String fragmentation

The second method implemented in ToMCCA is called String Fragmentation. It mimics
the much more complex hadronization methods used in general-purpose event generators
such as Pythia or EPOS. While in those models, multiple strings are created, which have
their own intrinsic momenta, which get inherited by the particles created from the string,
in ToMCCA, only one string is created, and it is used for the sole purpose of providing a
number of nucleons. This string starts out with either a u or d quark on one end and its anti-
matter counterpart at the other end. The number of fragmentation points equals the number
of charged particles Nch in the event. At each fragmentation point, a quark-antiquark (q–q)
or diquark-antidiquark (uu–uu,ud–ud,dd–dd) is placed, and ordered such that each fragment
is a color neutral particle, either in qq or qqq(qqq) configuration. In order to avoid tetraquark
configurations at the fragmentation point directly after a diquark, no other diquark pair can
be created. After each fragment has been created, all Baryonic fragmentation points are as-
signed their respective nucleon. The combination uuu(ddd) corresponding to the ∆++(∆0)
resonance is assigned to be a proton(neutron) since it decays exclusively into the assigned
nucleon. Mesons that would be created at the other fragmentation points are ignored for
simplicity. Figure 7.3 shows an example of a string with an initial d–d configuration frag-
menting into 6 particles. In this method, the total nucleon yields are driven by the prob-
ability of creating a diquark at a fragmentation point. For a very long string with many
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FIGURE 7.3: An example of a string with an initial d–d configuration frag-
menting into 6 particles. Pions are indicated for clarity but are ignored in
ToMCCA.

fragmentation points, the diquark probability pdiquark approaches ≈ 2 · pprot as introduced
above. The factor 2 arises from the fact that protons and neutrons are being created along-
side each other and not only charged particles. Due to the fact that edges cannot be diquarks
and blocking of neighboring fragmentation points, this probability needs to be modified as
a function of the charged particle multiplicity

pdiquark(dNp/dy = pprot,modified(dNp/dy) = pprot(dNp/dy) · (A + B(⟨dNch/dη⟩|η|<0.5)
C).
(7.6)

The parameters A, B, and C can be found in Tab. 7.2 and as expected, A = 2.13957998 ≈ 2.
With this model, a potential isospin asymmetry can be introduced by giving dd-dd diquark
pairs an increased probability. However, such an inclusion is not straightforward and would
have to be again parameterized as a function of multiplicity. This model also quite naturally
includes antimatter, but ∆IS has no effect on the p/p ratio even though ∆IS > 0 should lead
to p/p>1.

Quark recombination

The Quark Recombination model is loosely based on a Quark-Gluon-Plasma (QGP), and it
is modeled by a sea of u and d quarks, which get recombined at random into Mesons and
Baryons. The total number of each species is Nd = Nu = dNch/dy. First, a u and a d quark
are combined randomly, and then, with probability pprot,modified given by Eq. 7.6, a third
quark is added from the pool to create a Baryon. The parameters can be found in Tab. 7.2
under Quark Recombination. This is repeated until no quarks are left. This model does not
include antiquarks, but adding them could trivially add antimatter to the model. Also, by
modifying the initial u/d ratio an isospin asymmetry can be introduced, which can also be
extended to antimatter via u/d=d/u.

Parameter String Fragmentation Quark Recombination
A 2.13957998 0.87627309
B -3.8557517 1.01566945
C -2.0928103 -0.54537776

TABLE 7.2: Fit parameters of Eq. 7.6 for the modification of the diquark prob-
ability (String Fragmentation) and quark adding probability (Quark Recombi-
nation) as a function of mean charged particle multiplicity ⟨dNch/dη⟩|η|<0.5.

Tuned emission

While the Uncorrelated Emission provides no correlation between protons and neutrons,
String Fragmentation and Quark Recombination lead to a strong but fixed anticorrelation
that is also constant as a function of multiplicity. In order to provide more flexibility to
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tune this anticorrelation, the Tuned Emission method is developed, which functions simi-
larly to the Uncorrelated Emission but includes a suppression parameter aS, which modifies
the neutron probability depending on the number of protons in the event. It is defined as
follows

pneut,tuned = (aS(dNp/dy − Np) + 1)pprot. (7.7)

It assigns a degree of suppression depending on the expected number of protons dNp/dy
compared to the number of existing protons Np. The value of as is a free parameter and,
as of now, is not constrainable to data. At this point, it is chosen such that ρpn is roughly
in the middle of Uncorrelated Emission and String Fragmentation (see Tab. 7.3) that is also
constant as a function of multiplicity. This is achieved by defining aS = 1.508(dNch/dy)−1

where dNch/dy is the number of charged particles in a given event. A better parameteriza-
tion can be found once the measurement of ρpd [39] is extended to pp collisions. The effect of
this suppression is significant at low multiplicities where the difference in deuteron yields
between Uncorrelated Emission and String Fragmentation for the same source size is about
200% for ⟨dNch/dη⟩|η|<0.5 ∼ 3, but only ∼ 10% for ⟨dNch/dη⟩|η|<0.5 ∼ 30.

The ρpn coefficient

The main difference between all production mechanisms is that they give a different degree
of anticorrelation between protons and neutrons. This can be quantified by measuring the
Pearson correlation coefficient ρpn between the proton and neutron numbers

ρpn =
⟨(np − ⟨np⟩)(nn − ⟨nn⟩)⟩√

κ2pκ2n
, (7.8)

where κ2a = ⟨(na − ⟨na⟩)2⟩ is the second-order cumulant and ⟨na⟩ is the mean of the multi-
plicity distribution of particle species a. The value of ρpn can be between 1 and -1. ρpn = 1
means, in our case, that for each proton added, also a neutron gets added, while ρpn = −1
means that each proton added removes one neutron. There are no measurements of this
quantity at LHC energies due to the difficulty of measuring neutrons, but measurements of
ρpd [19] in Pb–Pb collisions show a slightly negative value. This is expected due to Baryon
number conservation since adding one Baryon requires the addition of an antibaryon, but
also, the Coalescence mechanism indicates a negative correlation between protons and
deuterons since forming a deuteron removes a proton. So, it is difficult to disentangle which
process is the driving factor for the measured negative values. Ref. [39] showed that the
canonical SHM can explain the data but not the coalescence models. However, the tested
coalescence models did not include any anticorrelation between Np and Nn. Instead, the two
tested scenarios had ρpn = 0 and > 0. Figure 7.4 shows ρpd using the ToMCCA model with
various degrees of anticorrelation and equal source size. The results are compared to mea-

Unc. Em. String Fragm. Quark Rec. Tuned Em.
ρpn 0 -0.052 -0.058 -0.024

TABLE 7.3: The Pearson correlation coefficient ρpn for protons and neutrons
obtained from the four different particle production mechanisms. They range
from no correlation (ρpn=0) for Uncorrelated Emission to slight anticorrelation
(ρpn = −0.058) for Quark Recombination.

surements [39] performed in Pb–Pb collisions at
√

sNN = 5.02 TeV. From the tested scenarios,
it seems that Tuned Emission is the best description of the data. However, a different tuning
of the source could lead to comparable results from the other mechanisms. Further, the data
is obtained in Pb–Pb collisions instead of pp collisions, which makes a direct comparison not
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FIGURE 7.4: Pearson correlation coefficient ρpd for protons and deuterons
as a function of the cubic root of the charged-particle multiplicity
⟨dNch/dη⟩|η|<0.5, predicted by ToMCCA with the three different particle pro-
duction mechanisms. The results are compared to the ALICE measurement in
Pb–Pb collisions [19].

feasible. The values of ρpn obtained by utilizing the different methods are shown in Tab. 7.3.
They range from ρpn = 0 for Uncorrelated Emission to slight anticorrelation ρpn = −0.058
in the case of Quark Recombination. It should be noted that for String Fragmentation and
Quark Recombination, the deuteron spectra at low multiplicity cannot be reproduced since
even when setting the source size to σ = 0 fm, the total yield is still underestimated. From
this, one can conclude that these methods provide a too strong suppression and that the real
value of ρpn should lie between 0 and -0.052.

7.2.3 Kinematics

Once the number of nucleons is calculated, their kinematics have to be determined. The
three-dimensional momenta are calculated from pT distributions and angular correlations.

Nucleon momentum distributions

In ToMCCA, the nucleon distributions are described using Levy-Tsallis functions (Eq.6.2),
as they have been shown to reproduce measured spectra over a wide range of energies
(see Ch. 5). However, even at a fixed energy, the shape of the spectra changes with the
multiplicity of the event. For this reason, the spectral shape needs to be parameterized as
a function of ⟨dNch/dη⟩|η|<0.5. In ToMCCA, this was achieved by fitting the proton spectra
measured by ALICE in pp collisions at

√
s = 5 TeV and 13 TeV with a High Multiplicity

trigger. This way, the multiplicity region from ⟨dNch/dη⟩|η|<0.5 =2.4 – 35.8 is covered. The
spectra have been fitted with a Levy-Tsallis function, and the evolution of the parameters
dN/dy, n and C with the event multiplicity is shown in Fig. 7.5. Their evolution with the
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multiplicity is parameterized using a power law function

f (⟨dNch/dη⟩|η|<0.5) = A + B(⟨dNch/dη⟩|η|<0.5)
C. (7.9)

The parameters are shown in Tab. 7.4. Due to the high correlation between the parameters
n and C, the former was fixed to this functional form. As expected, the absolute yield

dN/dy n C CQR
mod CSF

mod

A – 7.323 – 0.9953433 0.9947258
B 0.05199 2.086 0.11693 -0.7380489 -4.341114
C 1.00246 -1 0.36305 -2.0069334 -4.555843

TABLE 7.4: Values of the parameterization of the Levy-Tsallis fits to the proton
pT spectra and the modification for Quark Recombination and String Frag-
mentation.
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FIGURE 7.5: Levy-Tsallis fit parameters to ALICE proton pT spectra at
√

s = 5
TeV and 13 TeV as a function of ⟨dNch/dη⟩|η|<0.5. Due to the high correlation
between n and C, the former was fixed to the shown functional form.

parameter dN/dy behaves linearly with ⟨dNch/dη⟩|η|<0.5, with an exponent of 1.00246 ≈
1. Furthermore, depending on the particle production model, the C parameter needs to
be modified to counteract edge effects, similar to the nucleon probability. For this, C gets
modified as

Cmod(⟨dNch/dη⟩|η|<0.5) = C(⟨dNch/dη⟩|η|<0.5) · (A + B(⟨dNch/dη⟩|η|<0.5)
C). (7.10)

The parameters can also be found in Tab. 7.4. Since in the modification term A ≈ 1 and
C < 0, this correction only applies to low multiplicity events, with the modification being
less than 3% for ⟨dNch/dη⟩|η|<0.5 = 6 for both production models. In addition to pT, the
rapidity y is drawn from a flat distribution y ∈ [−0.5, 0.5]. This is well motivated by the
rapidity distributions of nucleons and nuclei at the LHC (Fig. 6.10). The resulting proton
spectra are shown in Fig. 7.6.

Angular correlations

From the pT and y, one can reconstruct a full three-dimensional momentum if one assumes
a random azimuthal angle φ. While this works for single particles, in this work, we are
interested in two-particle correlations. Thus, instead of drawing a random azimuthal angle,
one needs to determine a relative angle between particles. This can be done by utilizing the



88 Chapter 7. The ToMCCA Event Generator

0

1

2

3

d2 N
/(d

yd
p T

)(G
eV

/c
)

1
1e-1

Nch=18.5

Nch=2.4

pp, 
√

s  = 5.02 TeV
ToMCCA Advanced
ToMCCA Default
ALICE EPJC 82, 289 (2022)

0

1

2

3

4
1e-1

Nch=21.3

Nch=2.26

pp, 
√

s  = 7 TeV
ToMCCA Advanced
ToMCCA Default
ALICE PLB 794, 50 (2019)

0.5 1.0 1.5 2.0 2.5
pT(GeV/c)

0

2

4

6

8

d2 N
/(d

yd
p T

)(G
eV

/c
)

1

1e-1

Nch=35.8

Nch=2.55

pp, 
√

s  = 13 TeV
ToMCCA Advanced
ToMCCA Default
ALICE EPJC 80, 889 (2020),
JHEP 2022, 106 (2022)

0.5 1.0 1.5 2.0 2.5
pT(GeV/c)

0.0

0.5

1.0

1.5

1e-1

√
s  = 5 TeV

√
s  = 7 TeV

√
s  = 13 TeV

pp, Min. Bias
ToMCCA Advanced
ToMCCA Default
ALICE EPJC 80, 693 (2020),
ALICE EPJC 75, 226 (2015),
ALICE EPJC 82, 289 (2022)

FIGURE 7.6: Proton spectra measured by ALICE in pp collisions at
√

s = 5,
7, and 13 TeV together with the comparison to ToMCCA obtained after the
parameterization. The fit was performed to 5 TeV and 13 TeV HM, while 7
TeV, 13 TeV, and the Minimum Bias spectra were used as a cross-check. The
Default tune is mostly hidden since the two ToMCCA tunes produce almost
exactly the same output.

angular correlation, which experimentally is defined as [111]

C(∆φ) =
S(∆φ)

B(∆φ)
, (7.11)

where S(∆φ) is the same event ∆φ distribution, i.e. the angular distribution of the azimuthal
angle between two particles in the same event. Conversely, B(∆φ) is the ∆φ distribution
of pairs from different events. The latter removes trivial correlations from the same event
distribution and reduces it to the genuine correlation. Since, in most cases, the correlation
function is more interesting than the same or mixed event distribution, only C(∆φ) is usually
published. However, in ToMCCA, one needs the true ∆φ distribution between two particles
in the same event, which means S(∆φ) needs to be recovered. This is done by inverting
Eq. 7.11 to S(∆φ) = C(∆φ) · B(∆φ), taking C(∆φ) and obtaining B(∆φ) from an event
generator. While generally, event generators cannot reproduce the ∆φ distribution for two
particles (See Fig. 6.7), the mixed event distribution only contains trivial correlations from
kinematics, collision geometry, and energy conservation, which should be well reproduced
by event generators. For ToMCCA, B(∆φ) is obtained from EPOS 3 and is assumed to be
independent of event multiplicity. C(∆φ) has been measured by ALICE [111] as a function of
event multiplicity for pp ⊕ pp pairs. This is the first point where the Default and Advanced
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Tune differ: Default uses only an average value of the angular correlations, taken from the
20-40% multiplicity, while the Advanced Tune has a full parameterization of the angular
correlations as a function of multiplicity. The effect of this is small and only changes the final
deuteron spectra within a few percent. The same event distribution can then be obtained
from the following function

S(∆φ) = (N0(⟨dNch/dη⟩|η|<0.5) sin(∆φ − π/2) + c(⟨dNch/dη⟩|η|<0.5))︸ ︷︷ ︸
C(∆φ,⟨dNch/dη⟩|η|<0.5)

×

× (N1|∆φ|+ B)(N2e−∆φ2/A2
)︸ ︷︷ ︸

B(∆φ)

.
(7.12)

In the Advanced tune, N0(⟨dNch/dη⟩|η|<0.5) and c(⟨dNch/dη⟩|η|<0.5) are further parameter-
ized as power laws (Eq. 7.9), and their parameters are shown in Tab. 7.5. In the Default tune
N0 = 0.16633 and c = 1.

Parameter B(∆φ) N(⟨dNch/dη⟩|η|<0.5) c(⟨dNch/dη⟩|η|<0.5)

A 0.85747601 0 0.80951051
B 5.7197689 0.40613 0.12854252
C – -0.37254 0.11140016
N1 -0.89304215 – –
N2 0.26041062 – –

TABLE 7.5: Parameters used to obtain the angular correlations as a function
of ⟨dNch/dη⟩|η|<0.5. The Default tune uses N0 = 0.16633 and c = 1.

7.2.4 Source size

The last key ingredient for coalescence is the source size σ, which is a measure of the distance
between particles and has been introduced in 2.2.2. In ToMCCA, the source is assumed to
be a Gaussian function

S(r, σ) =
4πr2

(4πσ2)3/2 e−
r2

4σ2 . (7.13)

In principle, the Wigner function coalescence formalism requires not the distance but the
source size as an input. However, in order to mimic event-by-event fluctuations of the
source size, in the Default tune an actual distance is drawn from this Gaussian distribution.
It is then related back to the source size via the relation

rµ = σ · 4√
π

. (7.14)

rµ is the mean of the Gaussian source distribution, and instead of σ, ToMCCA uses σ′ =
r

4/
√

π
in order to calculate its coalescence probability. In the advanced tune, the EPOS event

generator is used to get a more realistic phase space distribution and have an actual corre-
lation between the relative momenta and their distance (See Fig. 6.5). For this, the phase
space of p–p pairs in EPOS was extracted as a function of q,r,⟨mT⟩, and ⟨dNch/dη⟩|η|<0.5.
This uses the same EPOS simulation as used in Ch. 6, i.e. pp collisions at

√
s = 13 TeV and

the impact parameter between the protons set to b = 0. From this distribution, ToMCCA
can then draw a distance distribution, which depends on the multiplicity of the event, the
average pair ⟨mT⟩, and their relative momentum q. From this distribution, the source size
σ is then extracted using Eq. 7.14. This source size is then used to calculate the coalescence



90 Chapter 7. The ToMCCA Event Generator

0 10 20 30 40 50
dNch/d | | < 0.5

0.8

1.0

1.2

1.4

1.6

1.8

2.0
B 

Pa
ra

m
et

er ToMCCA Advanced
ToMCCA Default

0 10 20 30 40 50
dNch/d | | < 0.5

0.0

0.5

1.0

1.5

C
 P

ar
am

et
er Fit to 

√
s=5 TeV

Fit to 
√

s=13 TeV HM

FIGURE 7.7: Fit results and parameterization of the parameters B and C for the
mT scaling of the source size σ. The fill points are the result of fitting to the pp√

s = 5 TeV data and the empty circles to the 13 TeV high multiplicity data. The
red line shows the fit used by the advanced tune, including the EPOS phase
space correlations, and the blue one shows the parameterization used in the
Default tune, using the uncorrelated ToMCCA phase space. The B parameter
is fitted using a Root-3-Sigmoid function (Eq. 7.15), the C parameter is fitted
using a sigmoid function (Eq. 7.16). The best fit parameter for the ALICE
measurement in high multiplicity collisions is shown in black [14].

probability (Eq. 3.1). Since the source size in pp collisions has only been measured at
√

s
= 13 TeV in High-Multiplicity collisions with ⟨dNch/dη⟩|η|<0.5 ∼ 30, and it is expected that
the source size depends on the multiplicity of the event [11] and not the collision energy.
The mean multiplicity of a minimum bias event at

√
s = 13 TeV is ⟨dNch/dη⟩|η|<0.5 ∼ 7,

so a description of the source for arbitrary multiplicities is required to accurately describe
nuclei yields. For this purpose, the coalescence model is reverted, leaving the source size
as a free parameter and fitting measured deuteron momentum distributions. For this, the
deuteron spectra measured by ALICE in pp collisions at

√
s = 5 TeV [8] and 13 TeV with a

high multiplicity trigger [9] have been fitted using Levy-Tsallis functions. This is done to
reduce statistical fluctuations as well as to allow for a finer-grained source size fit through
interpolation. The other measurements at

√
s = 13 TeV [10] as well as at 7 TeV [20] are left as

a cross-check (see Sec. 7.3). The fit is performed by producing spectra for a fixed multiplic-
ity class with varying source size, independently of ⟨mT⟩. Afterward, for each momentum
bin extracted from the Levy-Tsallis fit, a χ2

n.d.f is calculated per source size and minimized.
This then gives a σ–⟨mT⟩ relation for each multiplicity, which further gets fitted using a
power law (Eq. 7.9, with A=0). The behavior of the two parameters B and C as a function of
⟨dNch/dη⟩|η|<0.5 is shown in Fig. 7.7. The results for both tunes are quite similar, and they
are parameterized using the same function. For the B parameter, a Root-3-Sigmoid function
is used (Eq. 7.15). This function describes a smooth transition from a 0-degree polynomial to
a function ∝ x1/3. The latter is a phenomenological observation that in heavy ion collisions,
the source size as a function of the particle multiplicity scales σ ∝ (Nch)

1/3. This relation
can be easily understood in the picture of statistical hadronization. Here, the overall yield
of particles is directly proportional to the volume of the system, i.e. V ∝ Nch ⇔ r ∝ N1/3

ch ,
see Eq. 2.1. The 0-degree polynomial behavior is purely phenomenological as well, but it
can be understood as a minimum size of the source, regardless of the multiplicity. Interest-
ingly, this size is similar to the size of the proton rp ≈ 0.85 fm [112]. This could indicate that
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this minimum size is driven by the geometric extension of the nucleon. The C parameter is
described using a sigmoid function (Eq. 7.16). This functional shape is chosen because the
slope of the mT scaling appears to stay approximately constant for ⟨dNch/dη⟩|η|<0.5 < 15 and
seems to also stagnate in heavy-ion collisions [113].

F(x) =
Ax1/3

1 + e−B(x−M)
− C

1 + e−B(x−M)
+ D. (7.15)

F(x) =
A

B + eDx−C + M. (7.16)

The resulting σ–⟨mT⟩ scaling behavior is shown in Fig. 7.8 for various ⟨dNch/dη⟩|η|<0.5,

Default B(Nch) C(Nch) B(Nch) C(Nch) Advanced
A 0.5978 -0.8524 0.6930 0.6152 A
B 0.5898 0.8382 0.2134 0.4560 B
C 1.264 4.2530 1.6483 -2.7995 C
D 0.7814 4.4352 0.9234 -2.9428 D
M 10.8889 0.9902 15.4682 0.1525 M

TABLE 7.6: Parameters used in the description of the B and C parameter,
which describe the overall size and slope of the source scaling, respectively.
The parameter B is described using a Root-3-Sigmoid function (Eq. 7.15),
which describes the transition from a minimal source size to the expected N1/3

ch
behavior at high multiplicities. C is parameterized using a sigmoid function
(Eq. 7.16).

from 4.0 to 40.0. While the overall size is very similar between the two tunes, the Default
tune is much steeper overall. The source size scaling obtained in this way should not be
seen as a prediction. It compensates for all shortcomings that still exist in the model, and
considering that ToMCCA is a simplified model, they have potentially significant influence.
A very good cross-check is that the advanced tune reproduces the measured ⟨mT⟩-scaling.
Further cross-checks will be to test the model with A = 3 nuclei (Sec. 7.4) because many
effects will have a different impact on A = 3 nuclei compared to deuterons with only 2
nucleons. The main implication of the ⟨mT⟩ scaling of the source size is that the underlying
phase space that is being used influences the obtained scaling, and the EPOS phase space
does not reproduce this specific effect. The model uncertainties are estimated by repeating
the fitting procedure using a parameterization of the lower and upper bounds of the dN/dy
parameter in the Levy-Tsallis fits obtained from the proton and deuteron spectra fits. The
uncertainties of dN/dy were obtained from the covariance matrix output of the fits.1. The
obtained global uncertainties are 3.5% from the protons and 4.4% from the deuterons, which,
added in quadrature, gives δB(⟨dNch/dη⟩|η|<0.5) = 5.7%. The C parameter is unaffected
since it governs only the shape of the spectrum, not the yield. Varying the B parameter by
5.7% changes the deuteron yield on average by ≈ 4.6%. These uncertainties are not further
propagated and are only estimated to evaluate the robustness of the model, and to verify
that no unreasonably large uncertainties emerge from the method used to obtain the source
sizes.
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FIGURE 7.8: Scaling of the baryon-emitting source size as a function of ⟨mT⟩,
for various ⟨dNch/dη⟩|η|<0.5, from 4.0 to 40.0. The predictions from ToMCCA
for the Default tune and the Advanced tune are shown in dashed and solid
lines, respectively. The ALICE measurement [14] is well reproduced by the
Advanced tune.

7.3 Results for deuteron production

This section will present the deuteron results obtained from ToMCCA utilizing all the pa-
rameterizations introduced above. The deuteron coalescence is done via the Wigner func-
tion formalism introduced in Ch. 3 using the Argonne v18 wave function. Since all parame-
ters are now available as a function of the event multiplicity, predictions of deuteron yields
and pT distributions can be made for arbitrary ⟨dNch/dη⟩|η|<0.5. In Fig. 7.9, the global trend
of deuteron yields as a function of multiplicity is shown. Figure 7.9 (left) shows the d/p ra-
tio as a function of ⟨dNch/dη⟩|η|<0.5 obtained from ALICE measurements [8–10, 20] as well
as ISR [21, 22] and Serpukhov [16], which were obtained in Ch. 5. For the latter two, the re-
sults are split into d/p and d/p. While the ISR measurements are at least compatible within
their large uncertainties, the Serpukhov d/p results have very small uncertainties and are
9σ away from the model predictions. The antimatter ratio is even further removed. The
ToMCCA predictions for the Default and Advanced tunes are shown as the red and purple
curves, respectively. The width of the curves indicates the statistical uncertainty. Further, in
the Advanced tune for large multiplicities ⟨dNch/dη⟩|η|<0.5 > 35, the uncertainty increases
drastically because the underlying EPOS phase space does not reach such high multiplici-
ties. For some combinations of dNchm ⟨mT⟩ and k∗, there are no pairs found in the EPOS
events analyzed, and as such, no source size could be estimated. The band is proportional to
the fraction of p–n pairs for which no source size could be estimated. This fraction is ∼ 1%

1The fit results and the covariance matrix are obtained using the python package
scipy.optimize.curve_fit (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html)
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FIGURE 7.9: (left) d/p ratio as a function of ⟨dNch/dη⟩|η|<0.5 measured by
ALICE [8, 9, 20] in pp collisions with

√
s = 5 − 13 TeV shown in markers.

The boxes indicate systematic uncertainties, and the bars are statistical ones.
Matter and antimatter measurements are added. The measurements by Ser-
pukhov [16] and ISR [21, 22] obtained from Ch. 5 are also shown, separated
into d/p and d/p, because at these energies matter and antimatter are pro-
duced at different rates. The Serpukhov measurement for antimatter is not
shown since it is out of scale (1.206 ± 0.201) · 10−5). The red and purple lines
show the predictions by ToMCCA with the Default and Advanced tunes, re-
spectively. The width of the band indicates the statistical uncertainties. The
increase in uncertainty of the Advanced tune for ⟨dNch/dη⟩|η|<0.5 > 35 comes
from limited statistics in the EPOS phase space used as input. (right) B2 pa-
rameter as a function of ⟨dNch/dη⟩|η|<0.5 for pT/A ≈ 0.75 GeV/c measured
by ALICE [8–10, 20] in pp collisions with

√
s = 5 − 13 TeV shown in markers.

Boxes indicate systematic, bars statistical uncertainties. The measurement by
ISR [21, 22] in pp collisions at

√
s = 51 GeV are shown, separated into mat-

ter B2 and antimatter (B2). The Serpukhov points for B2 are out of the frame
((8.72± 1.38) · 10−4) and are thus not shown. The measurement for the matter
particles is in good agreement with the ISR and ALICE measurements. The
red and purple lines show the predictions of ToMCCA, and the increase in
uncertainty in the Advanced tune comes from uncertainty in the underlying
phase space from EPOS.

at ⟨dNch/dη⟩|η|<0.5 = 35 and reaches 35% at ⟨dNch/dη⟩|η|<0.5 = 60. In the case of the Default
tune, the phase space can be arbitrarily extended in ⟨dNch/dη⟩|η|<0.5. Overall, both meth-
ods manage to reproduce the measured ratios equally well, with the Default tune reaching
a χ2

n.d.f. = 0.75 and the Advanced tune a χ2
n.d.f. = 0.53. Interestingly, both follow an existing

prediction [25], which uses Gaussian wave functions and an analytical coalescence model
to predict the ratio from pp to Pb–Pb collisions. However, at high multiplicity pp collisions
(⟨dNch/dη⟩|η|<0.5 ≥ 30), the data and ToMCCA seem to flatten out, while the analytical
prediction seamlessly transitions to the results obtained from p–Pb and Pb–Pb collisions.
Unfortunately, the uncertainties on the measurement in this region are large, and they are
compatible with both predictions. Future measurements with higher statistics could allow
for measurements beyond ⟨dNch/dη⟩|η|<0.5 = 35, which already make up only 0.01% of all
collisions at

√
s = 13 TeV.

On the right side of Fig. 7.9, the measurements of the B2 parameter (Eq. 2.24) as a function
of ⟨dNch/dη⟩|η|<0.5 by the ALICE collaboration in pp collisions at

√
s = 5 − 13 TeV are

shown as the round markers. The boxes indicate the systematic, and the bars the statistical
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uncertainties. The ISR results are also shown, separated into matter (B2) and antimatter (B2).
The Serpukhov results are out of the frame and thus not shown. All results are taken at pT/A
= 0.75 GeV/c. The ToMCCA results are shown as red and purple bands. The width of the
band indicates the statistical uncertainty. The increase in uncertainty for the Advanced tune
is due to the underlying phase space used, as described above. Overall, both predictions
are in excellent agreement with the data with a χ2

n.d.f. = 0.71(χ2
n.d.f. = 0.45) for the Default

(Advanced) tune.
Figure 7.10 (left) shows the pT spectra d2 N

dydpT
of (d+d)/2 predicted by ToMCCA in com-

parison with the measurements by ALICE in several multiplicity classes ranging from
⟨dNch/dη⟩|η|<0.5 = 2.4 to ⟨dNch/dη⟩|η|<0.5 = 35.8 and for three different collision ener-
gies

√
s = 5 − 13 TeV. The ToMCCA predictions are shown as lines, dashed for the Default

tune and full for the Advanced tune. The right side of Fig. 7.10 shows the B2(pT/A) param-
eter measured for the same event classes. For most multiplicities and energies, the ToMCCA
predictions are in good agreement with the data, reproducing it within 1σ for almost all data
points. However, especially for

√
s = 7 TeV and 13 TeV at low pT/A, there seems to be some

tension. Looking at the B2, one can see a rise, which is absent in the high multiplicity and√
s = 5 TeV data. The shape of the B2 parameter is mainly driven by the behavior of the

source size with pT (see e.g., Fig. 6.4. An increase of B2 at low pT/A would indicate that the
source size decreases at low pT, which is not observed in measurements of the source size.
Figure 7.11 (left) shows the pT spectra d2 N

dydpT
and (right) the B2(pT/A) parameter for mini-

mum bias collisions measured by ALICE in pp collisions at
√

s = 5 − 13 TeV. This means
that there are no selection cuts implemented on the multiplicity of the events, except the re-
quirement of one charged particle within |η| < 1, the so-called INEL>0 condition. Modeling
minimum bias collisions in ToMCCA poses a challenge, as the underlying event multiplic-
ity distribution is no longer narrow and can be described using Erlang distributions. For
this, an option was added to ToMCCA to read a histogram that provides a predefined mul-
tiplicity distribution. These distributions can have any arbitrary form. For the predictions
shown in Fig. 7.11 the published multiplicity distributions [23] from ALICE were used. Note
that the published ones are not ⟨dNch/dη⟩|η|<0.5 but Nch,|η|<0.8, and thus, a conversion factor
of 1.6 was needed to reproduce the proper mean multiplicities. With this mode, the event
multiplicity is now drawn from the provided ROOT histogram, and all other processes in-
side ToMCCA work as previously explained. In a sense, the minimum bias results are the
ultimate closure test that the parameterizations as a function of ⟨dNch/dη⟩|η|<0.5 work as
intended. The predictions by ToMCCA using both tunes are in agreement with the mea-
surements, with the sole outlier again for 13 TeV at low pT. All results presented in this
section show an excellent agreement with the measured data for all multiplicities covered
by pp collisions, up to ⟨dNch/dη⟩|η|<0.5 ∼ 36. They demonstrate that the coalescence Model
implemented in ToMCCA works for any tested collision energy and only depends on the
event multiplicity.

7.4 Extension to A = 3 nuclei

7.4.1 Changes in ToMCCA

In order to allow for the coalescence of A=3 nuclei, some fundamental changes need to
be made in ToMCCA. These modifications concern particle production and yields, angular
correlations, and source size calculation, which will be discussed in the following sections.
However, the first extension of the model is that a 3rd nucleon loop needs to be imple-
mented. For 3He, this third particle is a proton, for 3H a neutron, and for 3

ΛH a Λ. The latter
is more involved and will be discussed in the next section. This loop is implemented in
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FIGURE 7.10: (left) pT spectra measured by ALICE in pp collisions at
√

s = 5−
13 TeV [8–10, 20] in various multiplicity classes. The multiplicities range from
⟨dNch/dη⟩|η|<0.5 = 2.4 to ⟨dNch/dη⟩|η|<0.5 = 35.8. The exact values for each
multiplicity class can be found in Tab. 5.3. The bars indicate systematic and
statistical uncertainties added in quadrature. The colored lines indicate the
ToMCCA result in the corresponding multiplicity class. Dashed lines show
the Default tune and full lines show the Advanced tune. Uncertainties on
the Model predictions are not shown. (right) Same as left, but with the B2
parameter as a function of pT/A.

exactly the same way as the two before, but the sum now only runs over NN − 1 nucleons
because the first one is used for the first proton loop.
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FIGURE 7.11: (left) deuteron pT-spectra measured by ALICE in pp collisions
at

√
s = 5 − 13 TeV. Matter and antimatter are averaged to improve statisti-

cal uncertainties. The measurements are compared to ToMCCA predictions
using the published multiplicity distributions from ALICE [23]. Results for
ToMCCA are shown for both tunes, the Default in dashed and advanced in
solid lines, colors represent the different collision energies. (right) Same as
left, but for the coalescence parameter B2 as a function of pT.

Particle production

While the number of neutrons and protons is calculated in precisely the same way as for the
A = 2 coalescence, including A = 3 nuclei introduces the possibility of studying hypernu-
clei, i.e., nuclei where a nucleon has been replaced by a hyperon, such as the Λ. The lightest
and only A = 3 hypernucleus is hypertriton 3

ΛH. Studying hypernuclei requires the pro-
duction of hyperons in ToMCCA. Like with the nucleons, one first needs the absolute yield.
This is done by using the previous parameterization of proton yields and modifying it using
the measured p/Λ ratio. Figure 7.12 shows this ratio measured by ALICE in pp collisions
at

√
s = 7 TeV (blue) and pPb collisions at

√
s = 2.76 TeV (orange) [24] as a function of the

charged particle multiplicity. The purple line shows the ToMCCA output. In ToMCCA, this
ratio is implemented via the function

p
Λ

= (Nch)
A + B, (7.17)

with A = −0.6741 and B = 1.3112. Currently, Λ production is only implemented in
the Tuned Emission particle production model. It functions exactly the same way as
for protons and neutrons, but the Λ production probability (see Eq. 7.3) is modified via
NΛ = Nnucleon/p/Λ. The Λ production probability is affected by the baryon number con-
servation in the same way as neutrons are, but the suppression factor in Eq. 7.7 is modified
from (dNp/dy − Np) to (2dNp/dy − (Np + Nn)) under the assumption that protons and
neutrons are produced in the same amount. Looking at Fig. 7.12, this method seems to
produce ∼5% too many Λs, which is still well within the experimental uncertainty.

Angular correlations

The next modification concerns the Angular ∆φ correlations. Before, the same event ∆φ
distribution was constructed from the measured angular correlation function and a mixed
event distribution from EPOS. This approach, however, only works for two particles. For 3
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FIGURE 7.12: (p + p)/(Λ + Λ) ratio measured by ALICE in pp collisions at√
s = 7 TeV (blue) and pPb collisions at

√
s = 2.76 TeV (orange) [24] as a

function of charged particle multiplicity ⟨dNch/dη⟩|η|<0.5. The statistical and
systematic uncertainties are added in quadrature, however statistical uncer-
tainties are negligible. The purple line shows the p/Λ ratio output from ToM-
CCA.

particles, a different approach is used. The first particle gets assigned a random φ1 ∈ [0, 2π].
For the second particle, a flat φ distribution is assumed, which gets modified according to

P(φ2) = 1 × (N sin(a ∆φ12 − b) + c), (7.18)

with the parameters from Tab. 7.5. ∆φ12 = φ1 − φ2 is the relative angle between the first
two particles. For two particles, this yields the exact same result as the approach used in
A=2 coalescence. The third particle gets modified further, depending on ∆φ13 and ∆φ23, the
relative angles to particles 1 and 2

P(φ3) = 1 × (N sin(a ∆φ13 − b) + c)× (N sin(a ∆φ23 − b) + c). (7.19)

With this approach, the ∆φ12, ∆φ13 and ∆φ23 distributions all give the same result as the
simple 2-body approach used before, but it is extendable to an arbitrary number of nucleons.

Source size

The last change is the determination of the source size. The coalescence probability requires
one source size as an input. In the A=2 case, this is not a problem because the source size
describes the distance between two particles, and thus, one only obtains one value. For 3
particles, various approaches are possible. In the Default tune the source size depends only
on ⟨mT⟩, which can be easily calculated for 3 particles

⟨mT⟩ =

√(pT,1 + pT,2 + pT,3

3

)2

+

(
m1 + m2 + m3

3

)2

. (7.20)
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In the Advanced tune, the source size depends not only on the ⟨mT⟩ but also on the relative
momentum k∗ of the pair. One approach would be to determine the source size from EPOS
as a function of ⟨mT⟩ and the hypermomentum Q3

Q3 =
√
−q2

12 − q2
23 − q2

31, (7.21)

where qij are the relative 4-momenta of the nucleons. However, this approach is very limited
by the statistics of the underlying EPOS simulation and this would cause issues, especially
at low ⟨dNch/dη⟩|η|<0.5, where the triplet yield is very small. Another way, and the one
used throughout this work, is to work with the two-body source size as in the case of A=2,
obtaining three different source sizes and then averaging them.

Averaging three-particle source size

In the following, an equation is obtained to average the source size for three particles
with independent single-particle source sizes Ri

Rav =

√√√√ 8(R2
1 + R2

2 + R2
3)(R2

2R2
3 + R2

1(R2
2 + R2

3))
3

3R1R2R3

√
R−2

1 + R−2
2 + R−2

3 ((R2
1 + R2

2)(R2
1 + R2

2 + 4R2
3))

5/2
. (7.22)

The formula for averaging is obtained by assuming a three-particle source with three
independent single-particle source sizes Ri

S(r1, r2, r3) =
1

(2π)9/2R3
1R3

2R2
3

exp
(
−1

2

[
r2

1

R2
1
+

r2
2

R2
2
+

r2
3

R2
3

])
. (7.23)

Employing a coordinate transformation into Jacobi coordinatesr1
r2
r3

 =

1 1/2 −1/3
1 −1/2 −1/3
1 0 2/3

 R
r12

r312,

 (7.24)

and transforming into hyperspherical coordinates (Eq. 3.56 and Eq. 3.57) one obtains

S(ρ) =
∫

dΩ
3
√

3
8

ρ5

8π3R3
1R3

2R3
3(R−2

1 + R−2
2 + R−2

3 )3/2

exp
(
−1

8

[
R2

1 + R2
2 + 4R2

3

R2
2R2

3 + R2
1(R2

2 + R2
3)

]
ρ2 cos2 φ

)
×

× exp
(
−3

8

[
R2

1 + R2
2

R2
2R2

3 + R2
1(R2

2 + R2
3)

]
ρ2 sin2 φ

)
exp

(
−1

2

[
R2

1 − R2
2

R2
2R2

3 + R2
1(R2

2 + R2
3)

]
r12 · r312

)
. (7.25)

With
r12 · r312 = r12r312 cos θ12 =

3
4

ρ2 cos φ sin φ cos θ12 (7.26)

and
dΩ = cos2 φ sin2 φ dφ dcosθ12 dcosθ312︸ ︷︷ ︸

2

dϕ12︸︷︷︸
2π

dϕ312︸ ︷︷ ︸
2π

(7.27)
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and solving the φ and cos θ12 integrals one obtains

S(ρ) =
3
√

3ρ3

4(2R2
3 − R2

1 − R2
2)R1R2R3

√
R−2

1 + R−2
2 + R−2

3

exp
(
−1

4

[
R2

1 + R2
2 + R2

3

R2
2R2

3 + R2
1(R2

2 + R2
3)

]
ρ2
)
× I1

(
1
8

[
2R2

3 − R2
1 − R2

2

R2
2R2

3 + R2
1(R2

2 + R2
3)

]
ρ2
)

. (7.28)

I1 is the modified Bessel function of the first kind

Iα(x) =
∞

∑
m=0

1
m!Γ(m + α + 1)

(
x
2
)2m+α. (7.29)

This equation is only well defined as long as 2R2
3 > R2

1 + R2
2. Technically, if all sources

are exactly equal, this would lead to an undefined source size, but due to machine precision,
they can never be exactly equal. In ToMCCA, the source sizes obtained from the particle
pairs are thus ordered according to R1 < R2 < R3 to avoid any problems. Now, in order to
calculate the average source size, one can compare the mean ⟨ρ2⟩ =

∫ ∞
0 dρS(ρ)ρ2 of a source

with three equal Ri to the one with three different sizes. Setting R1 = R2 = R3 in Eq 7.25,
one obtains

⟨ρ2
1⟩ =

∫ ∞

0
dρρ5 1

32R6 exp
(
− ρ2

4R2

)
ρ2 = 24R2. (7.30)

Assuming three independent sources, one obtains

⟨ρ2
3⟩ =

128(R2
1 + R2

2 + R2
3)(R2

2R2
3 + R2

1(R2
2 + R2

3))
3

R1R2R3

√
R−2

1 + R−2
2 + R−2

3 ((R2
1 + R2

2)(R2
1 + R2

2 + 4R2
3))

5/2
. (7.31)

Now, the averaged source is R =
√
⟨ρ2

3⟩/24. Note that R, R1, R2 and R3 are all single particle
source sizes. In experiments, we measure the two-particle source size. They are related via

R2
12 =

1
2
(R2

1 + R2
2) (7.32)

R2
13 =

1
2
(R2

1 + R2
3) (7.33)

R2
23 =

1
2
(R2

2 + R2
3). (7.34)

This system of equations can be solved for R1, R2, R3:

R2
1 = R2

12 − R2
23 + R2

13 (7.35)

R2
2 = R2

23 − R2
13 + R2

12 (7.36)

R2
3 = R2

13 − R2
12 + R2

23. (7.37)

Now, the Rij can be obtained in the same way as in the A = 2 case and averaged to obtain
one single source size for three particles. This method works for any particle mass or values
of ⟨mT⟩, because it only assumes that the particles have different single-particle source radii,
regardless of the origin of this difference.
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7.4.2 Results for 3He and 3H

In this section, the results for 3H and 3He coalescence using ToMCCA are presented. Re-
sults are obtained using the Argonne v18 potential for 2-body interactions and the Urbana
IX (UIX) potential for the genuine three-body interaction. For all predictions a momentum
transfer cutoff of Λc = 1 GeV was used. For details, see Ch. 3.3. The impact of incor-
porating a three-body potential is illustrated in Fig. 7.13 (left). The figure shows the ratio
between pT-integrated 3He yields as a function of ⟨dNch/dη⟩|η|<0.5 using wave functions
constructed with only two-body potentials (AV18) and with both two- and three-body po-
tentials (AV18+UIX). The results reveal a significant sensitivity to three-body interactions,
with differences of approximately 20% in high-multiplicity pp collisions. Figure 7.13 (right)
shows the 3H/3He ratio as a function of ⟨dNch/dη⟩|η|<0.5, both obtained using AV18+UIX.
The previous predictions from an analytic coalescence calculation [25] using Gaussian wave
functions tuned to the size of 3He and 3H are also shown. They model their wave functions
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FIGURE 7.13: (left) Ratio of pT-integrated 3He yields as a function of
⟨dNch/dη⟩|η|<0.5, comparing wave functions constructed with two-body po-
tentials (AV18) and those including both two- and three-body potentials
(AV18+UIX). The results highlight a ∼20% sensitivity to three-body interac-
tions in high-multiplicity pp collisions. (right) The ratio between the pT inte-
grated yields of 3H and 3He as a function of ⟨dNch/dη⟩|η|<0.5 obtained from
ToMCCA. The measured data is from ALICE [9] in high multiplicity pp colli-
sions at

√
s = 13 TeV. The statistical and systematic uncertainties are added in

quadrature. The analytic coalescence model calculations from Ref. [25] using
Gaussian wave functions for 2-body and 3-body coalescence assumptions are
also shown.

either as a 3-nucleon bound state (3-body Coalescence) where all nucleons have the same
average distance from each other or as an N–d bound state, with a tightly bound deuteron
and a third nucleon slightly further removed. Also shown is the measured ratio obtained
by ALICE in high-multiplicity pp collisions at

√
s = 13 TeV. The ToMCCA prediction shows

no sensitivity to the multiplicity and, thus, the source size. On the contrary, the analytic
calculation predicts an increase in the ratio toward lower multiplicities, which corresponds
to a smaller source size. This arises in the formalism due to the different sizes of the 3H
and 3He nuclei. Indeed, the 3H has a radius of rH3

C = 1.76 fm, while the 3He nucleus has a
radius of rHe3

C = 1.96 fm [114] and both values are also well reproduced by the AV18+UIX
wave functions (See Tab. 3.4 and Tab. 3.5). Due to the Gaussian nature of the wave func-

tions used in Ref. [25], the nuclei yields are proportional to ∝
[
1 +

( rC
σ

)2
]−1

which explains
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the behavior for low source sizes. Experimentally, the two scenarios are not distinguishable
since the experimental precision on the 3H yields is poor due to it being equally charged
to the proton and having an (almost) equal mass to 3He. Interestingly, in SHM models, the
expected yield ratio is also independent of multiplicity and approximately unity since the
SHM is not sensitive to the size of the objects it produces but only to the mass and quan-
tum numbers. Since both nuclei have approximately the same mass (up to ∼ 0.01%) and
equal spin degeneracy, their production in the SHM is equal. Figure 7.14 shows the ratios
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FIGURE 7.14: Ratio between 3He and 3H pT integrated yields and proton inte-
grated yields. The 3He yields in ToMCCA are obtained using AV18 only and
AV18+UIX potentials, and the 3H yields are obtained using the AV18+UIX
wave function. The model predictions are compared to measurements by AL-
ICE in pp collisions at

√
s = 13 TeV in three different multiplicity classes

from ⟨dNch/dη⟩|η|<0.5 = 6.0 to 31.5. Also shown are predictions from Ref. [25],
which use Gaussian wave functions with two different geometric assumptions
to analytically calculate the ratio. The 2-body coalescence assumes a tightly
bound deuteron with a third nucleon farther removed, while the 3-body coa-
lescence assumes three equidistant nucleons.

of 3He/p and 3H/p between the nuclei and proton yields as a function of ⟨dNch/dη⟩|η|<0.5.
As before, the 3He calculation is done using AV18 and AV18+UIX, and the 3H calculation is
done using AV18+UIX. As expected from Fig. 7.13 the 3He/p (AV18+UIX) and 3H/p ratios
are indistinguishable from each other and the 3He/p (AV18) shows strong deviations from
3He/p (AV18+UIX) for large multiplicities. The predictions for 3He/p from the analytic cal-
culation [25] using Gaussian wave functions, again for 3 equidistant nuclei and for a d–N
bound system, as well as experimental results from ALICE, measured in pp collisions at√

s = 13 TeV for three different multiplicities [9], are also shown. The multiplicity classes
were constructed by separating the minimum bias into two classes, MB-I with a mean mul-
tiplicity of ⟨dNch/dη⟩|η|<0.5 = 18.7 ± 0.3 and MB-II with ⟨dNch/dη⟩|η|<0.5 = 6.0 ± 0.2. The
high multiplicity class corresponds to the 0.1% of events with the highest multiplicity and
reaches ⟨dNch/dη⟩|η|<0.5 = 31.5. While the analytic calculation predicts a rising 3He/p ra-
tio throughout the full multiplicity range covered by pp collisions, ToMCCA predicts an
inversion of the slope around ⟨dNch/dη⟩|η|<0.5 ∼ 25 and then a gentle dropoff. The data
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suggests at least a flattening of the slope going from ⟨dNch/dη⟩|η|<0.5 = 19 to 31, but due
to the large experimental uncertainties, both predictions are covered within 2 standard de-
viations. More precise data or measurements at higher multiplicities could differentiate
between the two scenarios. While a drop in the ratio has experimentally not been observed,
a flattening, similar to the case of deuterons, would be expected. This could be achieved in
ToMCCA by introducing a maximum source size. As of now, the B parameter in the source
parameterization rises with (Nch)

1/3 indefinitely, but due to the limited geometric size of the
colliding protons, it would be expected that the source size saturates to a maximum value.
This would then lead to a flattening in the ratio. However, no direct experimental evidence
has been provided to motivate such a flattening. Figure 7.15 shows the B3 parameter for
pT/A = 0.75 GeV/c obtained from ToMCCA predictions as well as using the same ana-
lytic calculation shown in Fig. 7.9 (right). The results measured by ALICE in pp collisions
at

√
s = 13 TeV in the same multiplicity ranges as in Fig. 7.14 are also depicted. The B3

parameter is defined as

B3 =
4
3

π2 p2
T,p

d2 N3He,3H
dydpT,p(
d2 Np

dydpT,p

)3 (7.38)

At lower It shows similarly that ToMCCA is in good agreement, especially for the lower
multiplicities, but at high multiplicity, the predicted values underestimate the B3 parameter.
This could also be caused by the source size growing indefinitely instead of leveling at a
maximum value. Figure 7.16 shows the 3He pT-spectra measured in the same multiplicity

100 101

dNch/d | | < 0.5

0.5

1.0

1.5

2.0

B 3
(G

eV
4 /c

6 )

1e-4

(3He + 3He)/2
ToMCCA AV18+UIX
ALICE pp, 

√
s = 13TeV

Bellini et al. (PRC 00 (2019) 054905)

(3He + 3He)/2
ToMCCA AV18+UIX
ALICE pp, 

√
s = 13TeV

Bellini et al. (PRC 00 (2019) 054905)

FIGURE 7.15: B3 parameter as a function of ⟨dNch/dη⟩|η|<0.5 for pT/A=0.75
GeV/c measured by ALICE in pp collisions at

√
s = 13 TeV in three multiplic-

ity classes from ⟨dNch/dη⟩|η|<0.5 = 6 to 31.5. The measurement is compared
to the ToMCCA predictions (purple band) and an analytic coalescence calcu-
lation from Ref. [11], which uses a Gaussian wave function.

classes as Fig. 7.15 by ALICE in pp collisions at
√

s = 13 TeV alongside the corresponding
predictions by ToMCCA. Further, the high multiplicity data with ⟨dNch/dη⟩|η|<0.5 = 31.5 ±
0.3 and the minimum bias data with ⟨dNch/dη⟩|η|<0.5 = 6.9 ± 0.1 charged particles. The
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experimental data is averaged between matter and antimatter to reduce uncertainties, while
in ToMCCA there is no difference between matter and antimatter. The experimental data
shown in Fig. 7.16 is in excellent agreement with the ToMCCA predictions. Some systematic
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FIGURE 7.16: 3He pT spectra measured by ALICE in pp collisions at
√

s =
13 TeV in three different multiplicity classes from ⟨dNch/dη⟩|η|<0.5 = 6.0 to
31.5 as well as in minimum bias events. The measurements are compared to
the ToMCCA predictions in the colored bands for the corresponding multi-
plicity classes. The ToMCCA predictions are shown only for the AV18+UIX
wave function.

variations were performed in order to gauge the stability of the coalescence model. As for
the A = 2 case, the source size was varied by ±5.7%. This resulted in a change of ±13%
for ⟨dNch/dη⟩|η|<0.5 = 2 up to ±18% for ⟨dNch/dη⟩|η|<0.5 = 45. Additionally, the cutoff Λc
was varied by ±50 MeV. This resulted in a global variation of ±7%. These two uncertainties
are by far the largest on the predictions shown here, with a combined global uncertainty of
≈17%. These values are comparable with the uncertainties on the experimental data, which
has uncertainties of approx. 15-25%. With these uncertainties included, using the AV18+UIX
wave function the measured 3He/p and 3H/p ratio is reproduced with a global χ2

n.d.f. = 0.16
and χ2

n.d.f. = 0.18 respectively. Using only the AV18 wave function the global χ2
n.d.f. = 0.68.

This shows that currently, there is not enough precision in the predictions to be sensitive to
the effect of 3-body forces.

7.4.3 Results for 3
ΛH

In this section, the A=3 coalescence model is expanded to include hyperons, as explained
in Sec. 7.4.1, which replace the third particle in the loop. Further, since the p–Λ source size
is roughly 0.1 fm larger than the p–p source size, this flat offset is added onto R23 and R13
from Eq. 7.33 and Eq. 7.34. Whether this flat offset holds for the full multiplicity range is un-
known and will have to be part of future femtoscopic measurements. All 3

ΛH predictions are
obtained using the Congleton wave function (Sec. 3.3). Figure 7.17 (left) shows the 3

ΛH/Λ ra-
tio predicted by ToMCCA as the purple band and the ALICE measurement as squares. The
measurement shown in blue is the result of high multiplicity pp collisions at

√
s = 13 TeV.
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FIGURE 7.17: (left) 3
ΛH/Λ ratio predicted by ToMCCA (purple) and the mea-

surement by ALICE in high multiplicity pp collisions at
√

s = 13 TeV. The or-
ange square shows the ALICE minimum bias result, while the hatched purple
box indicates the ToMCCA result using a minimum bias multiplicity distribu-
tion. The dashed and dot-dashed black lines are the predictions from Ref. [25]
using Gaussian wave functions in a 3-body and 2-body coalescence approach.
(right) Same as left, but for the S3 double ratio. The 3He yields were taken
from the prediction using AV18+UIX.

The orange square shows the minimum bias result. Since the minimum bias results are not
comparable with the measurements performed in narrow multiplicity classes, a ToMCCA
prediction using a minimum bias multiplicity distribution is shown in the hatched purple
box. Predictions from Ref. [25] using an analytical coalescence model and Gaussian wave
functions are shown in dashed and dot-dashed black lines. The predictions are separated
into 2-body and 3-body coalescence, which differ in the wave function used. Similarly to
the 3He predictions, the 2-body coalescence assumes a deuteron surrounded by a Λ, and the
3-body coalescence assumes three equidistant baryons. Unlike the 3He case, in the case of
the 3

ΛH, the 2-body coalescence closer represents the structure of the nucleus, which is often
described as the ultimate halo nucleus, with a deuteron core and a halo Λ. This structure
is also visible in the Congleton wave function, which assumes a fully undisturbed deuteron
and a far removed Λ. While ToMCCA does an excellent job of predicting the minimum
bias results, the high multiplicity results for 3

ΛH/Λ are underestimated by 3.3σ and for S3
by 1.9σ. Similarly to the 3He and 3H cases, this can probably be traced back to the source
size continuing to increase instead of leveling off. Another explanation could be the wave
function used, which is only an approximation of an undisturbed deuteron and no genuine

3-body interaction potential is included. The right side of Fig. 7.17 shows the S3 =
3
ΛH× p
Λ× 3He

double ratio of integrated yields, also known as the strangeness population factor. The 3He
predictions used here are the ones obtained using AV18+UIX. The S3 parameter shows the
same trend as the 3

ΛH/Λ ratio. It reproduces the minimum bias value, but for higher mul-
tiplicities, it underestimates the yield of 3

ΛH. The predictions from Ref. [25] are also shown
in Fig. 7.17. For 3He only the 3-body coalescence is used as it makes more sense considering
the structure of the Helium nucleus. Figure 7.18 (left) shows predictions by ToMCCA of the
3
ΛH pT-spectra for the same multiplicity classes as used in the 3He measurements by ALICE.
The predictions for minimum bias collisions as

√
s = 13 TeV are also shown alongside the

measurement by ALICE2. As can be seen the predictions are in excellent agreement with the

2At the time of writing this, the data is not yet published, but the analysis has been approved. The analysis
is performed by Francesco Mazzaschi.
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measurement.
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FIGURE 7.18: (left) Predictions of 3
ΛH pT spectra obtained using ToMCCA for

the same multiplicities as previously the 3He spectra were obtained. The only
available measured spectra are for minimum bias collisions shown as the blue
markers. (right) Ratio between the pT spectra of 3

ΛH and 3He obtained with
ToMCCA. Previous predictions in heavy ion collisions suggested that this ra-
tio could help differentiate between coalescence and thermal production of
clusters, with SHMs + Blast wave models predicting a rise of the ratio with pT
and coalescence models predicting a fall [26]. ToMCCA also predicts a falling
ratio and the slope is dependent on the event multiplicity.

Figure 7.18(right) shows the ratio between the pT spectra of 3
ΛH and 3He obtained with

ToMCCA. Previous predictions [26] made for heavy ion collisions suggested that this ratio
could help differentiate between coalescence and thermal production of clusters, with SHMs
predicting a rise of the ratio with pT and coalescence models predicting a fall. This is due to
a suppression of 3

ΛH in smaller source sizes compared to 3He due to its larger size of r3
ΛH =

4.9 fm [115]. It is known from measurements in heavy-ion and pp collisions [14] that the
source size drops with increasing pT. For SHM predictions, one needs, in addition, a Blast-
Wave model to determine the momentum distributions (see Sec. 4.3 for details). These Blast-
Wave models can be seen as an effective approximation of the hydrodynamic evolution of a
quark-gluon plasma. Using Eq. 4.19 one can derive that the 3

ΛH/3He ratio behaves as [26]

d2 N3
ΛH

dydpT

d2 N3He
dydpT

∝ exp

−
m2

3
ΛH − m2

3He

(mT,3ΛH + mT,3He)Teff

 , (7.39)

which increases with pT (mT), because m3
ΛH > m3He. A phenomenological explanation is,

that the flow velocity is independent of the mass of the particle, which leads to heavier par-
ticles flowing with higher momenta than lighter particles. ToMCCA also predicts a falling
ratio and the slope is dependent on the event multiplicity, similar to the predictions obtained
for different centrality intervals in Ref. [26], showing a flattening of the ratio for lower mul-
tiplicities.
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Chapter 8

Final remarks and outlook

The goal of this thesis was to study the formation mechanism of (anti-)nuclei. Tradition-
ally, nuclear formation is described using two phenomenological models: The statistical
hadronization model (SHM, Sec. 2.1.1) and the coalescence model (Sec. 2.1.2). Only the
coalescence model can explain all the evidence provided. The approach of statistical
hadronization is fundamentally and model-independently incompatible with the findings
presented in this work because the femtoscopic measurements of π±–d pairs show that the
deuteron must be produced after or during the decay of strongly decaying resonances, and
not at the same time as all other hadrons as assumed in SHMs. The task was approached
from two different angles: Femtoscopy and nuclear production via coalescence.
In Ch. 4 π–d, momentum correlation functions were studied using the femtoscopy tech-
nique. The obtained correlation functions showed a prominent enhancement at low k∗,
which was attributed to the decay of ∆-baryons. In order to understand the origin of this
enhancement, several Monte Carlo studies were performed. The predictions for the two
competing production models, SHMs and coalescence, were obtained and qualitatively
compared to the measurement (Fig. 8.1). The predictions for the SHMs were obtained
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FIGURE 8.1: π–d correlation function obtained from thermal and coalescence
models. Same as Fig. 4.3.

by employing the thermalFIST model and the FIST sampler. The latter is needed since,
by default, SHMs only provide the absolute yields of particles but not their momentum
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distributions. The FIST sampler provides an event-by-event momentum distribution
of the particles according to the yields obtained from thermalFIST. The resulting π–d
correlation function shows no features beyond a trivial baseline, which is dominated
by momentum conservation and radial flow. However, no peaked structure akin to the
enhancement observed in the measurements can be seen. To further rule out hadronic
rescattering as the origin of the enhancement, the SMASH model was used as a hadronic
afterburner. The FIST sampler only provides particles at the chemical freeze-out, which
means their traversal of the hot and energetic environment is not described. Indeed, in
such environments, deuterons could undergo so-called pseudoelastic reactions such as
π + (pn) → (∆n) → π + (pn) in which a pion reacts with a nucleon inside the deuteron in
order to form a ∆-baryon. The subsequent decay of this baryon releases only a moderate
amount of energy (≈ 150 MeV), and the deuteron could remain intact afterward. The
released π and the nucleon inside the deuteron would then be correlated due to the decay
kinematics and would have a relative momentum of k∗ ≈ 200 MeV/c, which is exactly
where the enhancement in the measured data is visible. The SMASH model includes
such reactions via the measured elastic cross-sections, which include elastic and pseudoe-
lastic contributions. However, the correlation function obtained from the FISTr+SMASH
approach shows a completely opposite result: The correlation function presents with a
depletion where the enhancement from the ∆ would be expected. This depletion is caused
by deuterons not surviving the pseudoelastic scattering. Indeed, the inelastic scattering
π–d cross-section (Fig 4.5) is approximately four times larger than the elastic channel. Fur-
thermore, even if the deuteron survives, it will not cause an enhancement in the correlation
function. This counterintuitive result can be understood by, again, consulting the measured
elastic cross-section. While the hadrons emerging from the pseudoelastic interaction are
indeed correlated with a fixed relative momentum, this reaction only occurs for pairs that
already have the required relative momentum to form the ∆-baryon. Consequently, the
final distribution of relative momenta remains unchanged, as no additional pairs appear in
the region of interest beyond those that were already present.
The last model tested was the coalescence model. For this purpose, the EPOS 3 event
generator was used. EPOS does not produce (anti)nuclei natively, and their formation
needs to be modeled by an afterburner. This afterburner was developed previously and
is presented in detail in Ch. 6. The prediction from EPOS, including this afterburner, is
also shown in Fig. 4.3. It shows a very prominent peak around k∗ ≈ 200 MeV/c. This
peak is the result of a primordially produced ∆-baryon decaying into a nucleon and a pion,
and the former subsequently coalesces with another nucleon and forms a deuteron. This
process can be understood as resonance-assisted fusion, and it solves the longstanding
problem of energy conservation during the coalescence process. Indeed, coalescence in its
simplest form p + n → d would violate the conservation of 4-momentum since the mass of
the deuteron is slightly lower than the one of the two nucleons combined. This is due to
the binding energy of Ed ≈ 2.3 MeV/nucleon. The resonance-assisted fusion overcomes
this problem by catalyzing the fusion reaction via the meson, which carries away any
excess energy that is released by the binding of the nucleons. While this catalysis can in
principle occur for any pion that is close to the nucleon pair, the pion is automatically
close in phase space if at least one nucleon is the decay product of a resonance such as the
∆-baryon. Using the measured correlation function as well as the EPOS simulation, it is
even possible to estimate the fraction of deuterons that originate from resonance-assisted
fusion. The measurement extrapolates from the fraction of ∆-baryons observed in the
π–d correlation to all resonances by employing the production yields from the canonical
statistical hadronization model and the experimental detection efficiency of particles to
arrive at a fraction of (80.5 ± 8.9)% of deuterons from resonance-assisted fusion. In the
EPOS model, the yields of resonances were also tuned to the predictions from the canonical
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statistical hadronization model. In the event generator, the origin of the nucleons that
make up the deuteron can be determined, and (89.3 ± 1.6)% of deuterons have at least one
nucleon stemming from a resonance. These two results are in excellent agreement with
each other and provide clear evidence that only the coalescence model can explain nuclear
production. A final, model-independent argument in favor of coalescence as the origin of
nuclei is given by simple causality. It has been shown that the enhancement must stem
from the decay of a primordially produced ∆-baryon. This means the deuteron must be
formed after (or during) the decay of the ∆-baryon and not alongside all other hadrons, as
is assumed in statistical hadronization models. It has to be formed by final state interactions
between the nucleons as described by the coalescence model.

Findings of the femtoscopic study

In the Femtoscopic study of π±—d momentum correlations, an enhancement related
to the decay of ∆-resonances is observed. Model studies showed that such a scenario
is only compatible with the production of (anti)nuclei by final state interaction, such
as the coalescence model, and incompatible with the thermal production of light clus-
ters.

The next step to understanding nuclear formation is to directly develop a coalescence
model and compare the resulting yields and yield ratios to existing nuclear measurements
and models. For this, the Wigner function formalism was utilized and first tested with the
EPOS event generator and later wrapped into a specialized toy Monte Carlo model called
ToMCCA. The Wigner function formalism requires a nuclear wave function as an input. In
this work, for the first time, realistic wave functions were used, one based on the Argonne
v18 potential and one based on χEFT, compared to the previously used Gaussian and
Hulthén wave functions. The studies using EPOS made it possible to further understand
all the components that influence the nuclei spectra. These components were the charged
particle multiplicity ⟨dNch/dη⟩|η|<0.5, the transverse momentum distribution of nucleons,
the particle emission source size, and the angular correlations between nucleons. Once all
these factors, except the last one, are under control and the Wigner function formalism with
a realistic wave function is used, the deuteron spectra can be explained without the need for
any free parameter. The effect of angular correlations was estimated to be around 10%, but
a correction was not possible since these are caused by very deeply ingrained mechanisms
inside EPOS. The resulting deuteron pT spectra for different wave functions are shown
again in Fig. 8.2.

Findings of the EPOS coalescence study

In the study applying the Wigner function formalism to the EPOS event generator,
it was found that it is able to reproduce the measured deuteron spectra without any
free parameter. This requires the fixing of certain parameters from measurements.
These parameters are the charged particle multiplicity, the momentum distribution of
nucleons, the particle emission source size, and the use of a realistic wave function,
such as Argonne v18 or one obtained from χEFT.

On the basis of the EPOS study, a purpose-built event generator called ToMCCA was
developed. ToMCCA’s goal is to be a lightweight model that is purpose-built to study
nuclear production. Indeed, the study using EPOS required ≈ 105 CPU hours to achieve
a precision of ∼ 5% for one energy and collision system only. An extrapolation into the
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FIGURE 8.2: Deuteron spectra obtained using the EPOS 3 event generator and
the Wigner function formalism. The results for different wave function as-
sumptions of the deuteron are shown. Same as Fig. 6.8.

energies that are relevant for astrophysical searches would be unfeasible. ToMCCA is a
toy Monte Carlo generator, which means it is not based on an underlying theory, such as
perturbative QCD or Regge theory, to determine the particle yields and momenta, but it
uses direct input from measurements. For this purpose, a large collection of ALICE mea-
surements was utilized for pp collisions in the energy range of 5-13 TeV. These include the
proton pT spectra, the angular correlations between protons, and the measurement of the
source size. While the first two have been measured over the whole range of multiplicities
accessible with pp collisions, the source has only ever been measured in high multiplicity
collisions with a ⟨dNch/dη⟩|η|<0.5 ∼ 30. ToMCCA was used in a reversed configuration in
order to fit the source size to match the deuteron spectra obtained in

√
s = 5 TeV collisions

in the multiplicity range ⟨dNch/dη⟩|η|<0.5 = 2.4 – 18.5 and in the high multiplicity regime
up to ⟨dNch/dη⟩|η|<0.5 = 35.8. The cross-check with the measurements at 7 TeV and 13
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FIGURE 8.3: (top left) B2 as a function of ⟨dNch/dη⟩|η|<0.5 predicted by ToM-
CCA using two different tunes. Shown alongside are the measurements by
ALICE in pp collisions at

√
s = 5 − 13 TeV as well as the measurements at the

ISR and in Serpukhov for pp collisions at
√

s = 53 and 11.5 GeV respectively.
Same as Fig. 7.9. (top right) B3 as a function of ⟨dNch/dη⟩|η|<0.5, predicted by
ToMCCA and measured by ALICE in pp collisions at

√
s = 13 TeV. Same as

Fig. 7.15. (bottom left) The ratio between the pT integrated 3He yields using
a 2-body and 2+3-body potential for the wave function. Same as Fig. 7.13.
(bottom right) The S3 double ratio predicted by ToMCCA and measured by
ALICE in high multiplicity pp collisions and Minimum bias. The hatched box
indicates the ToMCCA result for minimum bias collisions. Same as Fig. 7.17.

TeV showed that the source size only depends on the charged particle multiplicity, not
on the energy. This relation can be easily understood when considering that the particle
multiplicity is related to the volume of the system, e.g., see Eq. 2.1, and this volume should
be directly related to the distances between particles. Using the extracted source sizes,
predictions for deuterons can be made across the whole range of ⟨dNch/dη⟩|η|<0.5, from
1 – 50 charged particles. The predicted values of the B2 parameter, a parameter which
is related to the coalescence probability, are shown again in Fig. 8.3 (top left). Lastly, the
ToMCCA model was extended to also include nuclei with mass number A = 3. These nuclei
include the regular nuclei 3He, 3H, and also the hypernucleus 3

ΛH, where one nucleon
was replaced with a Λ-baryon. The B3 parameter, which is similar to the B2 parameter
related to the coalescence probability of three nucleons, is shown in Fig. 8.3 (top right).
The strangeness population factor S3, which is a double ratio between the 3

ΛH/Λ ratio
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and the 3He/p ratio, is depicted in Fig. 8.3 (bottom right). All A = 3 results show a
good agreement with the data from low to intermediate multiplicities, while yields are
underestimated at high multiplicities. The A = 3 sector is an interesting one because it
enables the study of 3-body forces. Indeed, using only 2-body potentials such as Argonne
v18, the binding energy of nuclei cannot be explained, but an additional genuine 3-body
interaction potential such as Urbana IX has to be added to achieve the measured values. In
ToMCCA, wave functions obtained from potential with and without 3-body interactions
can be used and their differences studies. Fig. 8.3 (bottom left) shows the ratio of the 3He
yields obtained as a function of ⟨dNch/dη⟩|η|<0.5 between wave functions using only 2-body
(Argonne v18) and 2+3-body (Argonne v18 + UIX) interaction potentials. The expected
difference obtained from the ToMCCA model is up to 20% for high multiplicity pp collisions.

Findings of the ToMCCA study

ToMCCA is a purpose-built toy Monte Carlo generator. It was used to extend the
range of the Wigner function formalism into regions of the phase space where not
all ingredients are measured. It is able to reproduce the measured deuteron spectra
for the whole range of energies and multiplicities covered by pp collisions at LHC
energies, and it shows excellent agreement with the measurements of A = 3 nuclei in
the same system.

The goal of this thesis was to finally pin down the production mechanism of nuclei beyond
a reasonable doubt. The excellent results of the coalescence model in Ch. 6 and Ch. 7, which
reproduce the measured results without any fine-tuning - "out of the box" - and the fem-
toscopic results which can only be explained by a delayed emission of deuterons let me
believe that this work has indeed succeeded in its quest. The results presented here show
unequivocally that nuclear production in high-energy collisions can only be explained by
the coalescence mechanism, which binds nucleons together in final-state interactions. The
coalescence model developed in this thesis is able to reproduce measured spectra of not
only deuterons but also A = 3 nuclei with excellent agreement. Considering the small un-
certainties of ≈ 5% in the case of deuterons, even in a conservative approach of doubling
this uncertainty in the extrapolation process, antideuteron spectra in cosmic rays could be
predicted with an uncertainty of no more than 10%, drastically improving on previous pre-
dictions.



113

Appendix A

Strongly decaying resonances in EPOS

In this appendix, a selection of the resonances feeding into nucleons and their fraction of
final state protons stemming from this resonance is presented. The fractions are taken from
EPOS pp events at

√
s = 13 TeV with the high multiplicity trigger described in Sec. 6.2.1. The

FIST fractions are obtained from thermalFIST using the settings presented in Tab. 4.3. This
is used in Ch. 6 and Ch. 4 to correct the cocktail of resonances in EPOS. An important note
that must be made first is that EPOS uses a different nomenclature than the common PDG
scheme. It uses the ISAJET/VENUS convention, which, due to limited numbering space,
groups heavier resonances together. An additional caveat is the production in EPOS is split
up into the core (hydro) and corona. The particles produced from hydro are sometimes
denoted by their PDG PIDs and sometimes by their ISAJET/VENUS PIDs. In this table,
they are grouped together. If the fraction is in parenthesis, the state does not decay into
protons, and the neutron fraction is given.

EPOS State EPOS PID PDG State PDG PID Fraction EPOS (%) Fraction FIST (%)
N+(1440) 1122 N+(1440) 12212 2.09 1.18
N0(1440) 1222 N0(1440) 12112 4.29 0.98
N+(1530) 1123 N+(1520) 2124 2.31 1.74

N+(1535) 22212 1.14
N0(1530) 1223 N0(1520) 1214 2.46 2.04

N0(1535) 22112 0.54
N+(1665) 1125 N+(1650) 32212 1.51 0.54

N+(1675) 2216 1.38
N+(1680) 12216 1.16

N0(1665) 1225 N0(1650) 32112 1.69 0.47
N0(1675) 2116 0.92
N0(1680) 12116 1.07

N+(1710) 1127 N+(1700) 22124 2.03 1.09
N+(1710) 42212 0.38
N+(1720) 32124 1.00

N0(1710) 1227 N0(1700) 21214 1.98 0.32
N0(1710) 42112 0.20
N0(1720) 31214 0.26

Λ(1520) 1234 Λ(1520) 3124 0.50 0.71
Σ+(1775) 1133 Σ+(1775) 3226 0.63 0.46

TABLE A.1: N∗ and strange resonances feeding into protons.
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EPOS State EPOS PID PDG State PDG PID Fraction EPOS (%) Fraction FIST (%)
∆++(1232) 1111 ∆++(1232) 2224 16.47 11.47
∆+(1232) 1121 ∆+(1232) 2214 8.09 8.00
∆0(1232) 1221 ∆0(1232) 2114 4.36 3.99
∆−(1232) 2221 ∆−(1232) 1114 (14.34) (11.47)
∆++(1620) 1112 ∆++(1600) 32224 4.05 2.14

∆++(1620) 2222 0.92
∆+(1620) 1124 ∆+(1600) 32214 1.83 1.61

∆+(1620) 2122 0.68
∆0(1620) 1224 ∆0(1600) 32224 1.46 0.99

∆0(1620) 2222 0.41
∆−(1620) 2222 ∆++(1600) 32224 0 0.36

∆++(1620) 2222 0.13
∆++(1700) 1113 ∆++(1700) 12224 1.95 1.34
∆+(1700) 1126 ∆+(1700) 12214 0.59 0.95
∆0(1700) 1226 ∆0(1700) 12114 0.49 0.52
∆−(1700) 2226 ∆−(1700) 11114 0 0.13
∆++(1925) 1114 ∆++(1900) 12222 2.60 0.26

∆++(1905) 2226 0.75
∆++(1910) 22222 0.27
∆++(1920) 22224 0.56
∆++(1930) 12226 0.51
∆++(1950) 2228 0.71

∆+(1925) 1128 ∆+(1900) 12122 2.70 0.21
∆+(1905) 2126 0.56
∆+(1910) 22122 0.20
∆+(1920) 22214 0.41
∆+(1930) 12126 0.36
∆+(1950) 2218 0.52

∆0(1925) 1228 ∆0(1900) 11212 2.82 0.14
∆0(1905) 1216 0.33
∆0(1910) 21212 0.12
∆0(1920) 22114 0.23
∆0(1930) 11216 0.20
∆0(1950) 2118 0.30

∆−(1925) 2228 ∆−(1900) 11112 0 0.06
∆−(1905) 1116 0.10
∆−(1910) 21112 0.03
∆−(1920) 21114 0.06
∆−(1930) 11116 0.04
∆−(1950) 1118 0.07

TABLE A.2: ∆ resonances feeding into protons.
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