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Resumen Es sabido desde hace décadas que aquellas teorias de campos

que poseen una invariancia de escala se comportan mejor en
el ultravioleta. En este trabajo exploramos las consecuencias que implica
esta simetria en presencia de gravedad dindmica, donde viene descrita en
terminos de invariancia de Weyl, rescaleos locales de la métrica y de los
campos que aparecen en el lagrangiano. Tras describir extensivamente al-
gunas técnicas de uso comun en el tratamiento de Gravedad Cuantica como
una teoria de campos, tratamos de responder dos cuestiones principales.
Primero, estudiamos la supuesta equivalencia entre el referencial de Einstein
y el de Jordan en una teoria que denominamos Gravedad Dilaténica Con-
forme, en la que descubrimos que la equivalencia esté rota por la presencia
de una anomalia Weyl. Pese a que existe una regularizacién que resuelve este
problema, no esta claro que pueda ser implementada en un marco tedrico

consistente.

Mas tarde, centramos nuestra atencion en Gravedad Unimodular, donde
la invariancia de Weyl se presenta como una forma de relajar el problema
de la constante cosmoldgica, que pasa a estar definida en términos de una
constante de integraciéon cuyo valor estd determinado por las condiciones
iniciales del sistema. Gracias a la construcciéon de un sector de fantasmas
adecuado, cuantizamos la teoria y calculamos las correcciones a un lazo a la
accién efectiva. Nuestro resultado sugiere que la proteccion de la constante
cosmoldgica se preserva en la presencia de correcciones cudnticas supuesto

que no econtremos una anomalia Weyl.

Abstract It is been known since long ago that field theories enjoying scale

invariance have an improved behaviour in the Ultraviolet. Here
we explore the consequences of this symmetry in the presence of dynamical
gravitation, where it is described in terms of Weyl invariance, local rescalings
of the metric and the fields involved in the lagrangian. After thoroughly
introducing some techniques of common use in the field theory approach
to Quantum Gravity, we address two main questions. First, we study the
equivalence premise between the Einstein and Jordan frame in a theory we
dub Conformal Dilaton Gravity, where we find that equivalence is broken
in the presence of a Weyl anomaly. Although a regularization that solves
this issue exists, it is not clear that it can be implemented in a consistent

framework.



Later, we move our attention to Unimodular Gravity, where Weyl in-
variance appears as a way to relax the problem of the cosmological constant,
which is here given in terms of an integration constant, its value determined
solely by initial conditions. By constructing a gauge fixing and ghost sector,
we quantize the theory and we compute its one loop effective action. Our re-
sults suggest that the protection of the cosmological constant is preserved by

the quantization process provided no anomaly arises in the Weyl symmetry.
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Introduction

Sir Terry Pratchet wrote once! that “Gravity is a habit that is hard to shake
off” and I cannot think of a better phrase to start this thesis. Although
it was not the original intention of the author (he wrote them in a comedy
book) these few words wisely represent what I understand as the common
feeling of the theoretical physics community in the beginning of the XXI

century.

The XX century was undoubtedly an epoch of great advances in Sci-
ence and, in particular, it gave birth to the pillars of modern physics. On one
hand, the General Theory of Relativity came to complete the old Theory of
Universal Gravitation of Newton, upgrading the newtonian ghostly force to
the concept of a curved space-time that was able to describe classical gravity
with a huge precision. On the other hand, the first experiments with sub-
atomic particles gave rise to a program that ended with the constitution of
Quantum Field Theory, perhaps the most grandiose human construct ever
made. However, these two pillars cannot be used together to hold the same
building. General Relativity, when put into the QFT framework, happens
to be non-renormalizable. The theory develops, through renormalization,
an infinite number of couplings that must be determine by doing an equally
infinite number of experiments, thus rendering the framework useless as a

real physical theory.
The unpleasant part of this issue is that if the problem with gravity

were not there, the Standard Model of Particle Physics, or some minimal
extension of it, could be though as a complete theory of Nature, since it
is renormalizable, asymptotically free and describes with great precision
almost all the phenomena we observe. However, gravity exists and the
requirement to describe it together with the other interactions of Nature
poses what it is probably the biggest problem in the history of physics. A
problem that, as Sir Pratchet described with his words, is hard to shake off
and that has driven many of the most important advances in physics in the

last century.

'Small Gods, Terry Pratchet



Introduction

The seek for a theory of Quantum Gravity has produced some of the
most unexpected discoveries in the history of science and almost everything
has been tried to construct this ultimate theory. From assuming that per-
haps the metric has to be quantized in a special framework, which leads to
the asymptotic safety program or to Loop Quantum Gravity; to the substi-
tution of the UV degrees of freedom of the theory, in a similar manner as
what happens in QCD, which gave birth to String Theory; stopping by the
modification of the symmetry group of the theory, whose main exponent is
the theory known as Horava-Lifshitz gravity. Many many things have been
tried in the decades since Dirac, Feynman and DeWitt initiated the program
of the quantization of the gravitational field and although some of the tries
gave interesting insights, specially the AdS/CFT correspondence found in

String Theory; we have learnt very few about our initial goal.

Nowadays, it is widely accepted that General Relativity cannot be a
complete theory but instead it has to be though as an effective field theory,
valid only up to a certain UV scale which in this case is the Planck scale,
about 10" GeV in natural units? However, this is still problematic, because
the presence of the cosmological constant, the extra coupling that allows to
account for the expansion of the Universe, breaks the standard lore of effec-
tive field theories. While we should expect all higher order operators, those
which renormalize the theory, to be suppressed by powers of the UV cut-off,
this is only true when A = 0 and the mere presence of the cosmological

constant complicates the matter.

In this thesis we introduce a common hint towards the solution of both
problems here discussed in the form of Weyl invariance, a local realization of
the flat space concept of scale invariance. When interpreted as an internal
symmetry in a Quantum Field Theory, it leads to the banishing of both
the cosmological constant and the renormalization scale that accompanies
quantum corrections. It is then natural to hope that a consistent theory of
gravity with Weyl invariance will be free of the problems here referred and
this is the main motivation for the work here summarized.

This thesis is organized as follows. In part I we will introduce some
common techniques for Quantum Field Theory in the presence of gravita-
tion: the background field method and the Schwinger-DeWitt technique,

together with its generalization as introduced by Barvinsky and Vilkovisky.

2We define natural units by taking ¢ = A = 1.



Introduction

The first chapters, though, will be devoted to formally introduce the problem
of the non-renormalizability of Einstein-Hilbert action and Weyl invariance.
Later in part II we will introduce a Weyl invariant model of gravity, which
we dub Conformal Dilaton Gravity, and we will use it to study the UV struc-
ture of Weyl invariant theories, arriving to interesting conclusions about the
role of regularizations in the presence of Weyl invariance. Finally, in III
we will present Unimodular Gravity as a Weyl invariant theory of gravity
which solves the cosmological constant problem, half of it at least, at all
orders in the loop expansion. This is achieved by relaxing the role of A from
a physical coupling in the action to an integration constant at the cost of
having more complicated interactions. We will construct the path integral
formulation for Unimodular Gravity and conclude that the theory is a valid
effective field theory.
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Preliminaries






Einstein Gravity, the Cosmological
Constant and Effective Field Theories

General Relativity (GR)[1] is constructed from a modern point of view under
the assumption of Diffeomorphism (Diff) invariance and Ockam razor[2].
That is, we assume that the space-time is a generically curved manifold M
equipped with a metric g,, whose dynamics are governed by the simplest

action invariant under invertible coordinate transformations
yt = A* 2, det (A) #0 (1.1)

These act infinitesimally on the metric by Lie dragging its components

along a direction &

I — LeGuv (1.2)

and demanding the action to be made of local invariants under these trans-
formations fixes it to be a scalar polynomial of the Riemann tensor integrated

with the right measure

S = /d4:v lg| P (Rwaﬁ,gpo) (1.3)

where all the indices are contracted with the metric . The Einstein-Hilbert
action of General Relativity then corresponds to the simplest term in this
polynomial (we ignore here the constant term which will produce a cosmo-

logical constant to be care about later), the Ricci scalar R

Spn = —Mg/d‘laz\/\g\ R (1.4)

where a dimensionful coupling Mg must be introduced in order to keep the
action dimensionless in natural units. M), is the Planck mass and when the
Einstein-Hilbert action is coupled to matter, it sets the scale at which gravi-
tational interactions are relevant to describe the dynamics of the system. Its
value is fixed by solar system physics to be M, = (167G)~1/2 ~ 10" GeV.



Chapter 1. FKinstein Gravity, the Cosmological Constant and Effective
Field Theories

O YO

Figure 1.1: An arbitrary diagram

. Figure 1.2: Same diagram as be-
with 2 loops, 2 propagators and .
fore but with an extra loop at-

one vertex. Its superficial degree
tached. It has now D = 8.

of divergence is D = 6.

This is important because it is precisely the fact that this coupling
is dimensionful what drives the non-renormalizability of the theory when
its quantization, along the same lines as with Quantum Electrodynamics, is
tried. Since [M,] = 1 in mass dimensions and the propagator of the little
perturbations about flat space h,, = gu, — 1. scales as z%’ where p# is
the relativistic four-momentum, the superficial degree of divergence! of an
arbitrary Feynman diagram with L loops, V vertices and P propagators,

like the ones in figures 1.1 and 1.2, scales as
D =4L+2(V - P) (1.5)

When this is supplemented with the topological identity L = 1+ P—-V,
which states no more than the fact that from P + 1 original integrals over
momenta we are removing V' by momentum conservation in the vertices; we

are left with the simplified formula

D=2+2L (1.6)

Therefore, the divergence of a diagram increases with the number of
loops, yielding at the end of the day an infinite number of divergences which
must be absorbed with an infinite numbers of counter-terms. We conclude

that the theory is non-renormalizable.

Therefore, General Relativity, although it describes with great accu-

racy the solar system and large scale physics, requires a UV completion

1This is defined as the scaling power of the diagram under the rescaling p* — bp*.

10



Chapter 1. FKinstein Gravity, the Cosmological Constant and Effective
Field Theories

when quantum physics enter into game and can only be trusted as an effec-
tive field theory (EFT). In general, at a loop order L we will generate local
counter-terms proportional to a power L + 1 of the Riemann tensor, which
are precisely the higher order terms contained in (1.3) that we did not take
into account. These terms, by dimensionality, will be suppressed by higher

powers of the Planck mass
1 1
S = M,?/d‘*x g1 <R+ 7720 (R?) + 7710 (R*) + ) (1.7)
P P
so that for low energies compared to that scale

E << M, ~ 10" GeV 1.8
p

they can be neglected, leading to the interpretation of the theory as an
EFT. When the energy is comparable to this value, higher order corrections
must be taken into account and low energy predictions must be modified
accordingly. This produces, for instance, a correction to the Newton po-
tential between two static sources that could lead to measurable effects[3].
Although in the particular case of the action (1.4) the one-loop corrections
happen to vanish[4], this is not the case anymore at two-loops [5, 6] or in

the presence of matter.

The Einstein-Hilbert action is enough to take into account for phys-
ical settings in which gravity is weak or, more generally, the curvature of
spacetime is low. There, Minkowsky flat spacetime 7, is a solution of the

vacuum Einstein equations coming from (1.4)

1
Ry = 39uwR =0 — Ry =0 (1.9)

and one can construct the usual perturbation theory about flat space as a
quantum field theory of a spin 2 particle excitation[7]. However, this is not
enough to describe, for instance, the physics of large scale cosmology. In
1998 it was confirmed|8, 9] that the average curvature of our Universe is not
zero but instead it takes a extremely little and non-vanishing value. This
implies that the corresponding metric description of the spacetime manifold
is not a solution of Einstein equations any more (1.9) and that they must be
supplemented with an extra piece, a cosmological constant A which amounts

to the average curvature of the manifold

1
R, — Qg,wR +Agu =0 — R, = Aguw (1.10)

11
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Moreover, and by general field theory arguments, this term would have
to be actually there from the beginning since it corresponds to the zeroth
term in the polynomial (1.3) that we neglected before and that must correct
Einstein-Hilbert action (1.4)

SEHA = —Mg/d% lg| (R —2A) (1.11)

In any case, if our Universe happened to be flat, there would be still
the open problem to explain why A was vanishing. Intead, we face the

problem of explaining a very little but non-vanishing value.

However, this is not the only problem introduced by the cosmological
constant. The real issue is that its mere presence compromises the EFT pic-
ture of General Relativity. The basic assumption of an EFT, as explained
before in this section, is that the action and different physical observables
can be expanded as a power series in the inverse of a mass parameter which
constrains the applicability regime of the theory. By introducing the cosmo-
logical constant A we are now introducing an infra-red parameter? that will
jeopardize this assumption. In the presence of A, (quantum) corrections to
the Einstein-Hilbert action (1.11) can depend both on M, and A and even
on a combination of both. As an example, the one-loop on-shell effective

action corresponding to the action (1.11) was computed in [10] and read

M2 MQ A2
p

which is clearly not given only in terms of the UV scale M,,. Here p is the

regularization ambiguity and the correction has been computed in the M S
scheme[11], therefore keeping only the divergence. M denotes the renormal-

ization scale.

Moreover, the origin of A as a dynamical coupling compromises the
EFT picture even in the absence of gravitational quantum corrections if we
include matter in the game. In order to see this, let us introduce a scalar

field minimally coupled to gravity

5= Spmn+ [ e VI (39,0976~ V() (113)

2Tt is the most relevant operator in the limit in which the four-momentum vanishes

p" — 0 because it does not contain any derivative.

12
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Figure 1.3: Some of the matter contributions to A at two and three-loops

level in a non-abelian gauge theory.

Here we assume the potential V' (¢) to have a non-trivial minimum
V(¢) so that the vacuum state of the theory will be at ¢ = ¢. Expanding
V(¢) about the minimum

— 1 d*V(e)

V(g) =V(e)+ 2 dpr (6 — )+ ... (1.14)

=0
we find that the first term on this expansion (the zero mode), being a con-
stant value, has exactly the form of a cosmological constant in the gravita-

tional action, so that we can redefine
27 _ 2 7
2M A = 2M A+ V() (1.15)

and get a contribution from the matter dynamics to the cosmological con-

stant.

In general, any constant contribution to the action of a Quantum Field
Theory, that we normally would dismiss as a non-dynamical contribution,
will have a relevance when gravity is turned on, by shifting the value of the
cosmological constant. This is what happens when we take into account the
Higgs vacuum expectation value[12] of (h) = 246 GeV or the strong coupling
scale in Quantum Chromodynamics Agcp = 220 MeV.

Finally, if we still believe in the EFT approach to gravity, then we
must consider any other theory, in particular the Standard Model of Particle
Physics, as an effective field theory with validity only up to the gravitational
scale M,,, where gravity must start to be relevant. That means that when
integrating quantum loops containing matter contributions to the cosmolog-
ical constant, as seen in figure 1.3, we must cut-off the momentum integral

in M), and thus we expect the value of the cosmological constant induced by

13
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these to be close to Mﬁ ~ 1076 GeV*, which is very far from the measured
value of A ~ 10~%7 GeV*. This implies that when following Wilsonian ideas
of renormalization, we must fine-tune the bare value contained in (1.11) with

a huge precision in order to recover experimental results
A + (matter loop corrections) ~ 10747 GeV* (1.16)

implying a fine-tuning problem which is even worse than the hierarchy prob-
lem[13] for the Higgs particle mass. We call this the active cosmological

constant problem.

Summarizing, even if the non-completeness of General Relativity in
the ultra-violet leads us to consider it as an effective field theory, valid up
to a scale of M, ~ 10! GeV, the presence of a non-vanishing but very little
cosmological constant jeopardizes this picture and requires the introduction

of additional physics in order to make things work properly.

14



Starring: Weyl Invariance

The simplest way to solve the active cosmological constant problem is to pro-
tect the value of A by introducing a new symmetry in the theory. One option
for this is supersymmetry (SUSY)[14], consisting of extending Poincaré in-
variance by using fermionic generators which span a graded algebra. Its
effect is to double the degrees of freedom of a given theory by producing
new field partners with a spin difference of % with respect to the original
fields. Contributions to A coming from bosons and fermions carry different
signs and thus unbroken SUSY implies that they cancel identically since
there are the same number of degrees of freedom of each kind. However,
we know that SUSY, if it exists, must be broken in our Universe and re-
cent LHC data[l5] constrain the scale of breaking to be above 1 TeV, what
repercutes in the requirement of certain amount of fine-tuning (of the TeV
order, because now momentum integrals run up to the breaking scale) thus

compromising the solution given by SUSY.

Here we will consider instead Weyl Invariance[16], a local realization
of the concept of scale invariance for Quantum Field Theories defined in flat
space. The latter is defined by assigning to the space-time coordinates and
to the fields a scaling dimension A4, where ¢ is a generic field, equal to its

length dimension under rescalings of the form
Q¢ QMg (2.1)

with a constant factor €.

The relevance of scale invariance is linked to renormalizability for the-
ories in flat space. When an action is invariant under the scale transfor-
mations (2.1), it means, since scaling and length dimension are equivalents,
that it does not contain any dimensionful coupling, which is precisely the
requirement for power counting renormalizability. Indeed, the condition to
break perturbatively the renormalizability of the theory, which is to run the

coupling either to a Landau pole or to a region in which it grows monoton-

15



Chapter 2. Starring: Weyl Invariance

ically to be greater than one; will produce a scale, breaking effectively scale
invariance. Only if this symmetry is perturbatively restored, by falling into a
gaussian fixed point, for instance, in which the beta function will vanish and
therefore no scale is generated; we can say that the theory is really renor-
malizable. Moreover, the hint that it forbids dimensionful couplings signal
that it may be of interest in order to solve the active cosmological constant
problem. However, we could be spoiled if there is an anomaly, because global
symmetries can be anomalous without harm since they are not required to
vanish ghost degrees of freedom from the theory. It is then more interesting
to study the case of local scale invariance, when we allow the transforma-
tion parameter to be a function of the space-time coordinate. This leads to
conformal field theories, which are of particular interest in two dimensions,

where the transformation group becomes infinite dimensional[17].

In the presence of gravity, the concept of coordinate is diluted, the
metric is a dynamical field and a scaling dimension must be assigned to it.
We do this by using diffeomorphism invariance and requiring that the proper
distance between any two space-time points scales as ds? = Q2ds?. This

implies

ds® = gudatdx” — g;“, = Q2gW (2.2)

What we are doing here is to translate the scaling dimension from the
coordinates to the metric. Thus, properly talking, we are defining a new
symmetry which can be identified with scale invariance in the flat space
case but which will be in general different. We call this symmetry thus in-
troduced rigid Weyl invariance, the rigid surname implying that it involves a
transformation which is equal for any space-time point and for any observer.
However, as we said before for scale invariance, global symmetries of this
kind are generically broken by the renormalization dependence in quantum
corrections’ and thus it most interesting to consider the case of the local

version of the symmetry, which we call from now just Weyl invariance.

LA recent and interesting phenomenological example of this can be found in [18].

16



Chapter 2. Starring: Weyl Invariance

2.1. Weyl Invariance, We will focus the rest of this work in Weyl invari-
Noether Current and ant theories, defined as Quantum Field Theories
Ward Identities whose action functional satisfies the following as-

sumptions

e The action S(gu, ¢i) is a functional of the metric and a collection of

other fields which we generically denote as ¢;.

e The action S(guv,¢;) is invariant under Weyl transformations of the

form
guw = U2 g, G — Q) Nigy (2.3)
with no transformation of coordinates whatsoever.

Indeed, and as we advanced before, the introduction of Weyl invariance
forbids the presence of a cosmological constant in the action. The reason is

that the coupling

Sy = 2M5/d4a:\/|g| A (2.4)

is not Weyl invariant. This leads to consider a wide range of modified
theories of gravity[19] in order to try to explain the acceleration of the
Universe in the absence of this term. In part III of this work we will consider

Unimodular Gravity as one of those.

Moreover, as with scale symmetry in flat space, the vanishing of di-
mensionful constants from the action could give a hint on how to improve the
renormalizability of Weyl invariant theories of gravity. We will examine this
issue in Part II, conjecturing that for purely Weyl invariant backgrounds, a

finite theory might be achieved.
As with any other symmetry, the presence of Weyl invariance implies

the existence of a constraint over a physical quantity of the theory. Under

an infinitesimal transformation = 1+ w + O(w?), a Weyl invariant action

behaves as?

oL oL
05(guwr ¢i) =6 [/ d'z 'C] = /d433 (29uu59 + Z)\@@&b) w (2.5)
/J/V 74 (]

2Note that we are defining the lagrangian density including the factor of /|g|.

17



Chapter 2. Starring: Weyl Invariance

So that for an arbitrary variation w, Weyl invariance implies that
oL oL
29—+ A, 0i=— =10 2.6
g},LV 5glw zz: ¢z ¢7/ 5¢)Z ( )

If gravity is not dynamical, that is, if we consider a theory of the
fields ¢; living in a fixed background geometry and whose dynamics do not
backreact onto it, this statement would imply the known fact that for local

scale invariant theories, the trace of the energy momentum tensor

oL

\% ’g’ g,uVTMV = 2guu 597 (27)
v

vanishes on the mass-shell>. However, for theories with dynamical gravity,
this is not true anymore. What Weyl invariance states instead is that the
ponderated trace (2.6) of the equations of motion is vanishing. This is
a subtle but important difference because, since now all the terms in the
constraint are dynamical and proportional to the equations of motion for
the propagating fields in the action, this does not give any new information
for on-shell quantities. This gives the hint that probably one is not allowed
to decouple gravitational dynamics from the rest of fields in the theory when
Weyl invariance is introduced. At the end of the day, if the theory is indeed
Weyl invariant, there is no physical scale at all that would stablish the
separation between the dynamical and non-dynamical regimens. Only when
the symmetry is broken by the introduction of a scale, one can stablish this

difference.

The case of a quantum theory is even more interesting. Let us start

by introducing the path integral formulation for the action S(g.., ¢:)

Z[JHV,JZ'} — /Dgw/ (H D(lsz) eiS(guwfﬁi)Jrfd‘lx lg] (g‘w]#VJrZi szh) (28)

with currents J,,, and J; which couple to the fields.

3In flat-space theories invariant under conformal transformations SO(d,2), where d is
the space-time dimension, this appears as a consequence of the current conservation [20]
by Noether theorem 9, D" =T}/’ = 0.

18



Chapter 2. Starring: Weyl Invariance

After an infinitesimal Weyl transformation, and assuming that the

integration measure is invariant, we have

0=0Z = /Dgw (H pqgi) i guvbi)+ [ d*x/lgl (g IH +32; Jidi) o (2.9)
oL oL
N P 7 p

When the sources vanish, this implies that the ponderated trace (2.6)
of the equations of motion must vanish not only clasically as a Noether iden-
tity but also its expectation value between any pair of states connected by

the path integral must do so. The vacuum expectation value is a particular

(0

While deriving this, we have considered, as usual, that the integration

case of this

0L 0L
29#1/6971/ + Z)\@(ﬁz% 0 > =0 (2.10)

measure in the path integral is invariant under Weyl transformations. How-
ever, this does not need to be true and in general it will not. Whenever this
happens, we will find that the Ward identity (2.10) is not satisfied, obtaining
a non-vanishing right hand side. In this situation, we will say that we have

found a Weyl (conformal) anomaly.

2.2. Weyl anomalies Weyl anomalies were first discovered by Duff and
Capper [21] in 1973 by evaluating the flat space
limit of quantum corrections to the gravitational propagator given by loops
of massless fields. They found that the tracelesness condition imposed by
the classical Weyl invariance was lost due to finite parts when quantum cor-
rections entered into game. Being explicit, for some clasically Weyl invariant
systems, it may happen that the Ward identity (2.10) is substituted by

< 0 0 > = choj (2.11)

where C; are constant coefficients and O; Weyl covariant operators with the

oL oL
29/11/@ + Z )\qbz(rbl@

right scaling dimension?. The Weyl anomaly breaks Weyl invariance but its

structure is Weyl invariant by itself.

4We say that an operator is Weyl covariant if it transforms homogeneously under Weyl

transformations

0 =00 (2.12)
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Chapter 2. Starring: Weyl Invariance

The operators entering into the rhs of the anomalous Ward identity
depend on the spacetime dimension n. For example, for n = 2 at the one-

loop level there is a single one
Op—2 =/]g| R (2.13)
while for n = 4 the possible choices grow
O1 = V9] CovpeC*P°, Oy =+/|g| B O3 =+/|g/ OR  (2.14)

where C,p0 and F4 are the Weyl tensor and the Euler density in four

dimensions (Gauss-Bonnet term), given by

R
C/u/po' = Ruupo‘ - g,u,[pRcr]y + gu[pRa]p, + ggu[pga}u (215)
Ey= R* — 4R, R" + Ryy,n R (2.16)
with [...] meaning complete antysimmetrization of the indices contained in-

side the brackets®.

The operator O,—, happens to be a total derivative® and the same
happens for O3. O; and Oy however remain and the important point about
them is that they cannot be cancelled by the addition of any local countert-
erm in the original action[23]. Therefore, a local renormalization process
cannot restore Weyl invariance at an arbitrary loop order. This is the real

statement of the existence of an anomaly.

For a four-dimensional theory, the anomalous Ward identity will gener-

ically take the form
< 0

The value of the coefficients C; must be computed case by case by look-

oL oL
29MV@ + Z )‘dn(lsi% 0 > = ClCWpUC"“’p" + CoEy + C3OR

(2.17)

ing to, for instance, two-point functions or, more generally, to the quantum

effective action. In the next chapter we will introduce the Schwinger-DeWitt

°In the presence of a gauge field A,,, also the square of the field strength T'r (F,,, F*)

is an admissible operator.
This is a consequence of the Theorema Egregium by Gauss[22]. It can be proven by

noting that for n = 2 any manifold admits a foliation in spacelike surfaces. Computing
v/|g| R explicitly by means of this foliation shows that it is a total derivative.
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Chapter 2. Starring: Weyl Invariance

technique, which will become a powerful tool in computing this. Here just
let us note that Weyl anomalies are intimately related to the appearance
of the renormalization scale for quantum corrections, as we would have ex-
pected from the fact that any scale breaks the symmetry. For a generic Weyl
invariant theory, the one-loop divergence of the quantum effective action of

these theories takes the form
1
L= ~ H/dnl‘ lg] (Clc‘m,ng“””” + CoEy) (2.18)

when evaluated in dimensional regularization, thus the pole in n = 4. If we
perform a Weyl transformation of this, we find that that the operators trans-
form with a scaling dimension Ao = —4, while \/@ has dimension n. The
total integrand then transforms as Q" 4. Therefore, under an infinitesimal

transformation we have

ST 1 ~ / d"2/1g] (C1CupeCM"™P" + CoEy) w (2.19)

The pole has been cancelled by the n — 4 factor coming from the
transformation, leaving an evanescent operator, a finite part that remains
after taking the limit n = 4 and breaks Weyl invariance. However, if the
theory was finite, that is, there is no renormalization dependence or, in our
language, no pole dependence, there is no possibility of an anomaly arising
through this mechanism. Therefore, one can envision that a truly Weyl

invariant theory should be finite in the ultra-violet regime[24].

2.3. Regularizations and Up to here we have thoroughly remarked that
the fate of the anomaly  Weyl anomalies cannot be removed by local

counterterms, but they can be removed by
non-local ones. This is linked to the fact that an anomaly can arise also
if we regularize the theory in such a way that our regularization process
breaks explicitly the symmetry. Then, the Ward identity related to such
symmetry is not guaranteed for UV divergent quantities and an anomaly can
generically arise. In our case, the quest for a regularization that preserves
Weyl invariance and thus ensures the absence of anomalies, is only possible

if we choose to introduce non-local counterterms.

However, there is a simple way to understand how this works[25, 26,
27]. In particular, let us exemplify it with the case of a single scalar field

¢ (with scaling dimension A\4) coupled to the metric by a generic action
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Chapter 2. Starring: Weyl Invariance

S(guv, @). In this case, there exists a regularization scheme that removes the
conformal anomaly at the cost of introducing non-local interactions with the
scalar field. For example, for the counterterm (2.18) it amounts to substitute

the counterterm by
1 _n—4
Ip—1~ n—4 /dnmx/ lgl ¢ *¢ (C1CupeCH*° + C2Ey) (2.20)

Note that this counterterm reduces to the previous one (2.18) when
the limit n — 4 is taken but now the dimension dependent coupling with ¢
makes it Weyl invariant in any dimension and thus it cancels the anomaly at
the cost of introducing this new factor that will produce a non-polynomial
counterterm when expanded about n = 4. We will come back to this issue

in part II.

If we were working on a theory containing only the metric, or the
metric together with fields which cannot be accommodated as compensating
factors in the regularization scheme, one can always unveil the conformal
factor of the metric by a change of variables to the Jordan frame” and use

it for the purpose here introduced.

Finally, we must stress that there is an extra way of solving the
anomaly issue without introducing any non-local counterterm. The state-
ment of the anomaly being impossible to be removed by local counterterms
is only true if one wants to preserve diffeomorphism invariance, since it is
this symmetry what forces the structure of the counterterm to be of the

form
=1 ~ /d"as\/\g| @) (2.22)

with some local operator O of dimension four. If we forget about Diff
invariance, then we can consider counterterms with arbitrary powers of the
determinant of the metric in the integration measure. In particular, we can

consider

2
=1 ~ /d"ac lg|m O (2.23)

"This is achieved by transforming the metric as

_4
uv — guu¢27” (221)
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which reduces to the appropiate counterterm once the dimensional limit is
taken and is Weyl invariant in any dimension provided that Ao = 4. This

will be of relevance for our work in Part III.
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The Schwinger-DeWitt technique

Up to here we have talked about generalities of gravitational actions, the ef-
fective action and Weyl anomalies, but the explicit form of those objects will
obviously depend of the theory at hand. A computational technique is thus
required to compute the effective action of a given lagrangian. Although
diagrammatic techniques are always available, they tend to be very involved
in the presence of spin two excitations and non-linear theories. Moreover,
the need to include gauge breaking terms in the action jeopardizes the obvi-
ous gauge invariance of the computations and only when computing physical
quantities it is explicit. In this chapter we present a more suitable alterna-
tive by combining the background field method with the Schwinger-DeWitt
technique, focusing on the properties of determinants of differential opera-

tors in riemannian manifolds.

3.1. The background field We are interested in obtaining the effective
method action of a quantum field theory described

by an action functional S(Q) depending on
a collection of fields that we generically denote ) among whose we include
the metric. In general, the fields @) can carry space-time indices as well as
internal bundle indices but we will suppress any label for the discussion here.

The quantum dynamics of those fields will be given by the path integral
Z[J) = /DQ S (@)+Q,J) (3.1)
where J is a source and we have defined the inner product!

(.7 = / dhz\/g] Tr (Z.7) (3.3)

!This product also induces a measure in the path integral

1= /DQ i@ (3.2)
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Chapter 3. The Schwinger-DeWitt technique

where the trace runs over all internal and space-time indices.

Using this, we can define some standard quantities. We will introduce
the most important ones by following closely the arguments in [28] and [29].
Whenever something is omitted, we refer the reader to these documents and
references therein.

We start by defining the Green’s functions of the theory as time-
ordered n-point functions with coincident argument

G(@Q) = 0IT{ @0 o) = [ DQ (Qu@ )@@ — (1) 21 g

(3.4)

These are the disconnected Green functions, containing completely dis-
jointed parts. However, these will not contribute to the S-matrix of the
theory and it is useful to get rid of them by defining the generator of only

connected Green functions
W(J| = —ilog Z[J| (3.5)

Surprisingly, the logarithm implies that, when taking functional deriva-
tives of WJ] instead of Z[J], the terms rearrange in such a way that the
disconnected parts are subtracted from the total result. However, this is not
the simplest way to write these Green’s functions. Their computation can
be further simplified by writing them in terms of 1PI graphs, those which
cannot be split into two inequivalent functions by cutting a line, that can
be stringed together afterwards to recover the full connected answer. The

1PI functions are generated by the so-called effective action, defined as

QI =w[J] - {/,Q) (3.6)
where the mean field
- 0w
Q=" (3.7)

can be understood as the vacuum expectation value of ) in the presence

of the source J. Differentiating I'[Q)] with respect to the mean field now

computes the 1PI functions. In particular, the first derivative of (3.6) gives

or

6= (3.8)
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Chapter 3. The Schwinger-DeWitt technique

which can be though as the quantum-mechanical correction to the classical

equations of motion.

Computing I'[@Q] to the desired order in a loop expansion gives all the
1PI functions to that order. Obtaining the S-matrix from it is then just
a matter of generating the full connected functions, amputating external
propagators, putting all momenta on-shell and adding wave-function factors
using the LSZ formula. The effective action is therefore an easy way to
access to all the relevant information of a given quantum theory. Now we

will show how the background field method is a suitable tool to compute it.

We start by introducing, analogously to (3.1) a partition functional Z
by taking the classical action S(Q) and writing it in terms of a shifted field

éuép:/DQéﬂ®W”“@ (3.9)

Here Z depends both on the conventional source and on the back-
ground field ¢, which can be though as an alternate source. We continue

with the analogy and introduce
W1J,¢] = —ilog Z[J, d] (3.10)

and by defining the new mean field
- W

= — A1
0= (3.11)
we arrive to the background field effective action

To see the point of these new definitions, let us rewrite (3.9) by shifting

the integration variable, finding

Z[J, ] = Z[J]e "9 (3.13)
and by taking logarithms

WI[J, ¢ = W[J] = (J, ) (3.14)

If we now differentiate both sides with respect of J and keep in mind
the definitions (3.7) and (3.11), we find that both mean fields are related in

a simple way

Q=Q-¢ (3.15)
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Figure 3.1: The only vacuum diagram at one loop in the background field

approach. It is obtained by tracing the two-legs vertex.

and therefore the effective actions are also simply related
L@, 0] = W[J] = (1.6) = (1.Q) + (J,0) =T[Q] =T[Q + 4]  (3.16)

This is the main result of the background field procedure. As a special
case, we can take Q = 0, thus identifying the background field with the mean
field Q = ¢ and having

I'[0, ¢] = I'[¢)] (3.17)

implying that in order to compute the effective action of the theory it is

enough to compute an equivalent effective action f[O, @]

The background field effective action f[@,cﬂ produces all the 1PI
Green’s functions in the presence of such background field. By setting Q = 0
we are killing all the dependence on the field Q and thus generating only

graphs with no external lines. I'[0, #] is then the generator of all 1PI vacuum

graphs in the presence of ¢.

This is particularly helpful when facing one-loop computations. In

such a case, let us go back to the partition function Z [, @]
Z[J,¢] = / DQ 5@+ +il1Q) (3.18)

and consider the field @) perturbatively. Since we are now interested in one-
loop computations and we only need to care about vacuum diagrams, there
is only one single contribution, shown in figure 3.1, which tells us that it is
enough to expand the theory up to second order in the field . Thus, for

the action we have
oL 1 5L

S(@Q+6) =S(6) + <5Q Q¢,Q> +3 <Q, 0 Q¢Q> +0(Q?) (3.19)
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where we have assumed that S(Q) = [ d*z+/|g| £(Q).
When setting later ¢ = Q and using both equation (3.7) and the fact

that at the lowest order I' = 5, the linear term will vanish. The partition

function is then rewritten as

ZN[J’ q_s] — /[DQ]ei5(¢)ei<QﬁQ)+i<lQ) (3.20)
with the differential operator D defined as
. 52
D= TE (3.21)
Qlo=s

Here we are using hats to denote operators while un-hatted quantities

are c-numbers.

The first factor is ultra-local and can be absorbed in the overall nor-
malization of the wave-function. In the absence of sources (which are irrel-
evant for vacuum graphs computations) and assuming that the differential

operator D has non-vanishing determinant?, this is simply>

Z[0, ] = det™2(D) (3.22)
and thus we have
W10, ] = %log [det(ﬁ)} (3.23)

and, since we are setting J = Q = 0, by equations (3.9) and (3.17) we finally

arrive to

L - .
Pg] = 710, 9] = W[0,6] = . log [det(D)] (3.24)

Therefore, we find that the effective action in which we are interested
can be computed as the determinant of some differential operator living in
a riemannian manifold. In order to perform this computation and to obtain
the divergent pieces and the counterterms required to renormalize the theory

we will use the known as Schwinger-DeWitt or Heat Kernel technique.

Finally, let us comment that by using the background field defini-
tion of the effective action, gauge invariance is preserved explicitly in the
computations[30, 31, 32].

2The case of vanishing determinant will imply the existence of a zero mode in the
spectrum of the operator and thus of a gauge symmetry. We will consider this situation

later in chapter 5.
30f course, this is only true if D is self-adjoint with respect to the inner product (..., ...).
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Chapter 3. The Schwinger-DeWitt technique

3.2. Zeta function Up to here we have seen that one can obtain the
regularization effective action of a given theory by computing the
determinant of the self-adjoint operator that governs

second order fluctuations about a background configuration 4

T[g] = %log [det(D)} (3.25)

The operator D lives in a Riemannian manifol equipped with a met-
ric® g and a connection I'* o given by the Levi-Civita condition. Its
determinant will be in general divergent and requires the introduction of a
regularization scheme. As well as with any other technique involving quan-
tum corrections we must cut-off the momentum space in its upper-limit and
differentiate between divergent and finite terms in our result. Only the first
ones will contribute to the renormalization of physical couplings and the UV

structure of the theory.

We do this by using zeta function regularization, first introduced in
[33]. We assume that a suitable set of eigenfunctions @Q; of D exist such that
each one carries an eigenvalue p;. Then, we first define the zeta function

C(s,¢, ﬁ) of the operator as

((s,e,D)=T(s)7! /Oo dt 71 (Qile e 7P |Qs) (3.26)

0

where € = €(x) is a local function of the space-time coordinates.

The bracket contained inside this definition is the trace of a functor®
known as the Heat Kernel[34, 35]

K(teD)=ce ', K(teD)=Tr|K(t.c.D)| = (Qlee"|Q)
(3.27)

where its name comes from the fact that, when ¢ = 1, it solves a heat

equation with appropriate initial conditions

N

(8 + D)K(t,1,D) =0,  K(0,1,D) =6W(y —2) (3.28)

“Here we have turned to euclidean signature by Wick rotating the temporal coordinate

xo = it in order to avoid subtleties with the behavior of the path integral.
5In the case of theories with a dynamical metric, i.e., when the set of fields Q contains

the metric g, itself, the metric defining the manifold will be the background metric g,. .
5Being sloppy, a functor can be though as a function of an operator.
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being this the reason as to why the variable ¢ is sometimes referred to as
proper time. Thought like this, the Heat Kernel describes the diffusion of a

fluid in a space-time with an extra dimension.

More interesting, in particular for us, is the connection of the Heat
Kernel with the spectrum of the operator D. For a given non-vanishing
eigenvalue’ we can always write

log p; = —/ ﬂe*t”i (3.29)
o ¢

This identity is always true up to an infinite constant that can be
disregarded for the purposes here®. It can be also equally extended to the

full spectrum of the operator, allowing us to define

A o0 dt .,
log [det(D)] =~ [ F{Qule ™ 1Q) (3.30)
0
and therefore, by using (3.24) and (3.27), the effective action takes the form
- 1 [°dt .
Mo =5 [ GE@LD) (3.31)
2 ), t

Up to here we did not get rid of the infinities yet but only rewritten the
relevant expression. However, in this form ultraviolet infinities are associated
to the lower limit of the proper time integral in (3.31). The reason is that,
assuming Poincaré invariance, the operator D must be given in Fourier space

as a polynomial in the four-momenta squared
A 5 .
D=> " a(p’) (3.32)
i

with some operator functions &; and higher order term (p?)!. Therefore,
for the exponential to be dimensionless when |p| — oo, t — 0 and the UV

infinity is related to the vanishing limit of ¢.

There are two ways of regularizing this infinities in the present formu-

lation. The obvious one is to introduce a cut-off by changing the lower limit

/O N /A Oow (3.33)

"Recall that we are considering that our operator contains no zero modes and therefore

of the integral

no vanishing eigenvalues.
8This can be proven by differentiating both sides of the identity.
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This is however not Lorentz invariant and, even worse, it explicitly
breaks scale invariance and therefore Weyl invariance. Counterterms in this
regularization are not constrained to preserve any of these symmetries but
complicated Slavnov-Taylor identities[36] instead and cancellations must be
checked order by order. We then prefer to use the second option, which
consists in shifting the power of ¢ inside the integral, arriving to a regularized

effective action

R . 1y, -
Freg[¢} = _5 MZ /0 tl—sK(t’ 11D) = _§M2 F(S)C(S, lvD) (334)

where the zeta function has appeared explicitly and we have introduced a
mass scale i in order to preserve dimensions.
In this way, ultraviolet divergences are identified with divergences at

s — 0 in (3.34). Those are inherited from the pole of the Gamma function

1
D(s)],0 = - = 76+ O(5) (335)
with v being the Euler-Mascheroni constant. Thus
. 1/1 9 A 10 A
F?"CQ[QS”SHO = _5 <S -7 + log (,U' )) C(Oa 17 D) - 5% (Sv 17 D) =0

(3.36)

If we choose a minimal subtraction scheme, the pole term will be
removed by renormalization and the remaining terms will define the renor-
malized effective action

Trenld] = 5108 (1) CO.1,D) ~ 32 C(s,1,D)| (337
where we have introduced a rescaled parameter by pu? = e 7#f2. This
parameter represents in this approach the renormalization ambiguity that

must be fixed by a suitable normalization condition.

Through this work, we will in-distinctively use s = 0 or s = (n—4) —
0 (when working in four dimensions) to denote the cutoff of the theory in
order to connect sometimes with dimensional regularization and with the

discussions about evanescent operators that we did in chapter 2.

Together with (3.30), equation (3.37) yields a definition of the determi-

nant for a positive elliptic operator which is commonly used in mathematics

log [det(f))} = —log (%) ¢(0,1,D) — % (s 1.D)| (3.38)

and that here will represent the core of our computational tools, to be de-

scribed in the following section.
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3.3. The short-time In the last sections we have shown, by using the
expansion background field method and zeta function regu-

larization, how to reduce the problem of comput-
ing the one-loop effective action of a given field theory in the presence of
a background metric to the problem of computing the zeta function of the
operator governing second order fluctuations when the proper time s goes

to zero

renld] = —3 1og (4) €0, 1, D) = 5 2 (5,1, D) _ (339

The zeta function was defined in (3.26) through the Heat Kernel

C(s,e,D) = D(s)"! /0 Tt K (te, D) (3.40)

This is a Mellin transform® and thus it can be inverted

K(t,e,D) = ?{ ds tT(s)C(s, €, D) (3.43)

- 2mi
and this equation can be used to relate the poles of the Heat Kernel with
those of the integrand.

The key point here is that under fairly general assumptions the traced
Heat Kernel of a second order operator in a space-time of dimension n with

no boundary enjoys a short-time expansion when t — 0 of the form

K(t,e,D) =S t'T ap(e, D) (3.44)
k

Here the functions ay (e, D) are known as Heat Kernel coefficients and

they are given as integrals

au(f.D) = [ & /lg] caliu(a) (3.45)
°The Mellin transform ¢(s) = M[f](s) of a function f(z) is defined as
B(s) = /OOO dz z* 7" f(z) (3.41)
Tis inverse is given by
fz) = zim 74 ds 2°(s) (3.42)

with the contour encircling all the poles in the integrand.
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where by (x) are local invariants of the manifold of scaling dimension k. The
coefficients ay(f, 15) are non-vanishing only for even k. For odd labels, the
by (x) are total derivatives and thus they vanish in the absence of a boundary.
The existence of such a power law is a very non-trivial statement that can

be however proven under fairly general assumptions[37].

Let us note however that this expansion is only valid for very particular
hypothesis. First, it is only valid for second order operators and, among
those, only for minimal operators, those whose principal symbol, in Fourier

space, is of the form
Dps = G p? (3.46)

where G is a matrix valued metric which accounts for the possible index
and internal bundle structure of the operator'®. For minimal operators of
arbitrary order 2z, the technique can be extended by considering a more

general ansatz for the short-time expansion|38]

K(t,e,D) ="t ap(e, D) (3.47)
k

This can be also extended to operators which are non relativistic[39]
but we will not consider this case here. In the case of non-minimal operators,
one has to relay in aditional techniques, which will be developed later in

chapter 4.

By going back to (3.44) we can relate the heat kernel coefficients with
the poles of the integrand as

ak(67b) = Ress:(nfk)/Z{P(S)C(Sv€7D)} (3.48)

and, in particular, we find that
(0,6, D) = an(e, D) (3.49)
where, remind, n is the space-time dimension.

Therefore, and going back to (3.37) we find that the renormalized

effective action of our theory can be finally written'! as

- 1 2 .
Cren[d] = —3 log (]\/22> an(€e, D) + regular terms (3.50)

OFor instance, G= Juvdas for gauge fields Al
H1Here we have introduced the renormalization scale M.
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and so, computing the renormalization dependent piece of the effective ac-
tion is reduced to computing the relevant heat kernel coefficient in a given
dimension. Since they are local invariants, this can be done in an universal
way which is blind to the explicit spin or gauge content of the operator D

and thus we can give general formulas for them.

There are two main techniques to compute these coefficients. They
were originally introduced by Schwinger and DeWitt [34, 40, 41, 42, 43]
and their method of obtaining them was based on solving recursively the
heat equation (3.28) order by order. This is a very general method that
can be used for many different operators that go even beyond the original
purporse [44], but it is very involved. For second orders, it is easier to
rely in the universality of the coefficients and use the functorial properties
introduced by Gilkey[45]. Those give three simple recursions between the
different coefficients that can be extensively exploited. A pedagogical review

on how to do this can be found in [29].

The two main properties of the Heat Kernel coefficients have been
already commented here but let us remark them. Let us start by assuming
that we are working with a minimal second order operator, which can be

always taken to the form
D=-GO-E (3.51)

with £ containing no derivatives and G taking a role of a metric in field

(configuration) space. Then
e Heat Kernel coefficients with odd index vanish, az;41 (e, 15) =0.
o Coefficients ag;(e, D) are locally computable in terms of invariants of

the manifold.

The first statement is only true since we are working in manifolds
without boundary. Otherwise, odd coefficients would be proportional to
total derivatives evaluated in the boundary. However, the second statement
is more important, since in it relays the effectiveness of the method here
presented. It can be summarized by saying that the Heat Kernel coefficients

are of the form

aeD) = [ Vi) ¥4tk (3:52)
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where A; are constants depending only on the space-time dimension and

U; represent all the possible independent invariants of scaling dimension k
constructed by using R, 0, E and a curvature F, v constructed out of any

extra bundle carried by the fields by using Ricci’s identity
(Vius Vil = Fyu - 6 (3.53)
The trace Tr[...] is taken over both all space-time and internal indices

(gauge bundles, etc...).

The consequences of these two simple properties are very far reaching.
For instance, a simple statement that can be now proven is the universal
dependence of A; on the space-time dimension n if the operator if second
order. The proof comes as follows. Let us consider a space-time manifold

M which is factorizable, so
M=M; R M, (3.54)
and introduce the only natural differential operator over this

D=D®I+1® Dy (3.55)

This means that the bundle indices are also independent, then in the
definition (3.27) of the traced Heat Kernel, the traces also factorize and,
following the argument, we find for the short-time expansion of the full

operator D

ar(erea, D) = > ap(er, D1)ag(e, Do) (3.56)
pt+g=k

Now, let us assume that our factorizable manifold is, in particular
M= 5" M, (3.57)
and that the operator is then
D= (-02)®I+1® Dy (3.58)

where 27 is the cyclic coordinate over the S', 0 < z; < 2. Then!?

ak<627D) = /S “ d"x \/@ TI‘{6162 ZAZ(n)ZfIZ} =
TQMy i

_on /M2 "'z /Tg] Tr{e(z) Z:Ai(n)lfl,;} (3.59)

12Note that since S! is flat, the invariants U; can here only depend on the details of Ds.

This justifies integration over the cyclic coordinate.
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Chapter 3. The Schwinger-DeWitt technique

where we have made explicit the possible space-time dependence of A;(n).

On the other hand, we can use (3.56) and the fact that we can compute
the spectrum of Dy. Its eigenvalues are [? with | € Z and the kernel can be

summed by using Poisson summation formula

K(t, 61,D1 Zel exp( tl =€ \/7Zexp 2l2/7§2) ~

lez leZ

~ € \/f +0(e" 1Y (3.60)

Since exponentially suppressed terms do not contribute to the power
law, we find that the only non-vanishing coefficient for the short-time ex-

pansion of Dy is

ao(q,f)l) = ﬁ €1 (3.61)
and by (3.56)

ar(erez, D f/ dn1 \/];Tr{elegz.%l (n— 1)U, (3.62)

So that comparing equations (3.59) and (3.62) we have
Ai(n—1) = Vdr A;(n) (3.63)

and we find that all the space-time dependence is contained in an overal
normalization. Therefore, for a second order operator we can rewrite the

ansatz for the coefficients as
ar(e, D) = (4m)~3 / VIgTe{e() S Ak} (3.64)

where now A; are just numerical universal factors.

Now we will introduce three functorial properties which we will relate
the different Heat Kernel coefficients and that we will exploit them in order
to compute the expansion in a very general way. Of course, let us remark
that we are always talking of the expansion for a second order minimal

operator of the form (3.51).

The first property is introduced by considering an operator depending
of a factor . Then, we note that
d

A N ~ d N
—_— Tr{ exp <e*27€tD> } = TI‘{QGtDGtD} = —2tTr{eetD}
=0 dt

dy
(3.65)
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If we now expand both sides of this equation by using the short-time

expansion ansatz, we arrive to the first functorial property

L (1,e DY = (n— k) = ag(e, D) (3.66)

dvl,—o

This property states, in particular, that when the operator is Weyl
invariant (since the lhs of these equation can be regarded as a Weyl trans-
formation), the Heat Kernel critical coefficient which appears in the effective

action a, (€, D) must be also invariant.

In the same way, by relying in the universality of the expansion, one

can prove in a similar manner that when O contains no derivatives

di ar(1,D — 70) = ax_»(0, D) (3.67)
Y v=0

which restricts the dependence of the coefficients on the potential part E.

Finally, let us consider and operator such that

A~

D(y,B) = e (D — BO) (3.68)

and use the first property (3.66) with n = k, then

_ 4

ar(1, D(y, B)) (3.69)
v=0

dry

Now, we vary it also with respect to § and interchange derivation

order
d d - d d .
= | a,DWp)=—= =  al D(p) (3.70)
dv{p=0 47 ]y=0 dv1y=0 @7 15=0
and by using (3.67) we finally arrive to
d A .
—| ap2(e0,e7D) =0 (3.71)
dry 4=0

Now, to calculate the Heat Kernel coefficients, we must write an ansatz
for them. As we saw, they are going to be given solely in terms of invariants
of the appropiate dimension constructed by using R, o, F and F, v, multi-

plied by some constant unknown factors that we must obtain. The number
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of invariants of every given dimension is finite and this allows us to write

for the first three non-vanishing coefficients

ao(e, D) = (47)~"/? / d"z+/|g| Tr{ape} (3.72)
as(e, D) = é(47r)”/2/d”x\/m Tr{e(an E + oy RI)} (3.73)
as(e, D) = 3%0(4@—"/2 / & 2\/Tg] Tefe(as0E + aaRE + s B2+
+ I(as0R + a7 R? + ag R, R* + a9 Ry pe R*P7) + a1, FH)}
(3.74)

where the numerical factors have been chosen for convenience.

Now the rules of the game have been set up. We know that this ex-
pansion is completely universal as long as the operator at hand is second
order and minimal. In that case, all the «; coefficients are purely numerical
factors and all the information about the manifold is encoded in the geo-
metric invariants. Thus, we can choose particular examples of space-times

and operators in different dimensions to fix these coefficients one by one.

As a first example, the ag coefficient follows trivially from the expan-

sion of the scalar laplacian in S! in (3.60), reading ag = 1.

Using this and formula (3.67) with k£ = 2 we find

5 [ @oVial {0} = [ @ /ig] 1:(0) (3.75)

and thus a7 = 6.

ap is fixed by using the scaling property (3.71) in dimension n = 4.
There, for the operator to be Weyl invariant, the square root of the metric

determinant, the Ricci scalar and the endomorphism E must transform as

d
v=0

d

a| Rk 2(n — 1)0e (3.77)
=0

d - .1 .

Z | E=-2E+-(n—2)0el (3.78)

dy 4=0 2

Thus, by using (3.71) with n = 4 and collecting the terms in e we
find straightforward that a; = 6as.
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The rest of the coefficients can be computed in a similar fashion. By
exploiting the functorial properties (3.66), (3.67) and (3.71) together with
the factorization rule (3.56) one can fix all the coefficients but one. That
single final value is then obtained by computing explicitly the trace of etD
for a simple operator in flat space-time, by going to Fourier space. We will
not go into the full detail of this computation here but we will instead refer

the interested reader to section 4 of [29].

After all this work, one finds that the first three non-vanishing Heat

Kernel coefficients for a second order minimal operator are
ao(e, D) = / d"zr/Tg] Tr{e(z)} (3.79)
A 1 ~
wr(e, D) = ¢ / d"z\/[g] Tr{e(x)(6E + R)} (3.80)

R 1 R R R R
as(e, D) = o5 / d"z+/|g| Tr{e(z)(600F + 60RE + 180E2 + 120RI+
+I(5R? — 2R, R" + 2R 100 RMP7) + 30F,,, M} (3.81)

with the higher terms growing exponentially in complexity and the ones

with odd label vanishing.

These coefficients ag(e, D) to a4(e, D) were computed originally in [40,
46]. ag(e, D) was first computed by Gilkey([37]. Higher order coefficients have

been also computed for particular and general cases [47, 48, 49, 50].

Therefore, by using (3.37) and (3.79) we find that the divergent part
of the renormalized effective action for a quantum field theory in four space-
time dimensions and whose second order dynamics is driven by the operator

D can be written as

- 1 1 u? o - . .
Tren[d] = = 35 355 l08(75) / d"z\/|g| Tr{600E + 60RE + 180E%+
+1(120R + 5R? — 2R, R*™ + 2R,y R*P°) + 30F,,, M}

(3.82)

Here there are two remarks to be done. First, R, g is the Riemann
tensor of the background field. If we are working with a quantum field the-
ory defined in a curved space-time (without gravity being a quantum field)
the terms including them can be disregarded. If however we are considering
a theory of Quantum Gravity, those give the renormalization of the opera-

tors in the bare action, through formula (3.17). Let us also note that the
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Chapter 3. The Schwinger-DeWitt technique

invariants involved in a4(e, D) in (3.79) are exactly the different operators
in (2.14), just expressed in a different basis. This is of course not surprising
since in chapter 2 we argued that the effective action and the anomaly are

intimately related.

3.4. The Weyl Anomaly For completeness of the discussion and al-
from the Heat Kernel though we have presented before a method

to obtain the Weyl anomaly as an evanescent
operator from the effective action, let us here rederive it by using the zeta

function regularization that leads to (3.37).

Since we are interested anomalies in Weyl invariance, we assume that
the differential operator D is such that it transforms homogeneously under

Weyl transformations
D— Q02D (3.83)

so that the classical action will be invariant.

This will induce a transformation on the zeta function (3.26) that can

be written as

¢(s,1,D") = r—l(s)/ dt ts_lTr{e_tQQé} (3.84)
0
and this can be rewritten, after a trivial change of variable, as
((s,1,|Dh) =T71(s) / dt 928t51Tr{etD} (3.85)
0

which at the linear level simplifies to
A S I A
3¢(s,1,D) = 25I‘_1/ dt ts_ler{e_tD} = 2s((s,w, D) (3.86)
0

We see that in the variation of the zeta function, the Weyl linearised

parameter w takes the role of the smearing function e.

Now, the rest of the story is simple. We take the expression (3.37) for
the renormalized effective action and perform a Weyl transformation at the

linear level using (3.86). We obtain

N

6l ren[d] = —C(0,w, D) = —ay(w, D) (3.87)

where we have used the relation (3.48) between the poles of the zeta function

and the Heat Kernel coeflicients.
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We find exactly what we expected from the discussion about evanes-
cent operators. The Weyl anomaly is a finite effect (it does not depend on
the renormalization scale M) which is proportional to the pole term of the

effective action in the presence of gravity.
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Beyond the Schwinger-DeWitt technique

In the previous chapter we have presented the Schwinger-DeWitt technique
as a useful tool to compute the functional determinant that gives the one-
loop divergences of the quantum effective action in the background field
approach. However, our analysis was focused in the case of second oder
operators whose principal symbol was minimal. Although this is the most
common situation in known physics', there might be cases in which non-
minimality remains. In those cases, one has to work further and go beyond
the Schwinger-DeWitt technique to obtain the extra contributions to the

effective action given by the non-minimal terms.

This can be done in different manners. As always, the diagramatic
techniques are available but they are very involved for curved space com-
putations. Other option is to use the techniques of [51, 52], both based
upon using the Baker-Campbell-Hausdorff lemma to split the Heat Kernel
into pieces that perturb the minimal part. However, here we are going to
rely in the technique of functional traces developed quite some time ago by
Barvinsky and Vilkovisky [53] and known as Generalized Schwinger-De Witt

technique.

We start by considering a non-minimal second order operator? given
by

F=G0+ J"V,V, + D) (4.1)

where D7) contains at most one derivative.

The basic point of the method is to assume that F can be embedded

in a one-parameter family

F(r)=G0O+7J"V,V, + D) (4.2)

'Both Yang-Mills theory and General Relativity can be taken to this form by an ap-
propiate choice of gauge fixing.
2Here we deal with a second order operator but the technique can be trivially extended

to higher order operators.
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Chapter 4. Beyond the Schwinger-DeWitt technique

such that for 7 = 0 we get a minimal operator and for 7 = 1 we go back to
our starting point.

Now, let us apply formula (3.24) to the case of F (7). By differentiating
with respect to 7 we find that

L 00)(r) = 5 log [det(F(r)] = 5 2 [log(F(r))] = —5Tr de)Q(T)]
(4.3)
where Q(7) is the Green’s function of F(r) defined as?
F(r)Q(r) = -1 (4.4)

By integrating now (4.3) between 7 = 0 and 7 = 1, the quantum
effective action of the initial non-minimal operator F is obtained in terms

of Q(T)

N

dF (1)

T

1
T[d](1) = T[] (0) —;/O dr Ty

@m] (w5

where I'[¢](0) corresponds to the effective action of a minimal operator and

can be computed by the Schwinger-DeWitt technique of chapter 3.

All the problem has been moved to the issue of computing the Green’s
function Q(7) and the traces inside (4.5). In order to do this, perturbation
theory in 7 seems to be the obvious way but it is however very inefficient.
The expression of Q(T) will be in general a non-polynomial function in 7 and
thus its computation requires to sum up all the different graphs to obtain
terms of order O(1). A more efficient expansion is obtained by considering
an expansion in scaling dimension?. The reason is that since we know that
I'[¢] must be marginal in the UV, this uniquely fixes the scaling dimension of
the one-loop logarithmic divergences to be A = 4. Then, we can expand all
the quantities in the problem by using this parameter, throwing away those
that enjoy A > 4 since they will be irrelevant for the one-loop computation.
By doing this, it is important to have in mind that covariant derivatives
have scaling dimension Ay = 1 and that the Riemann tensor has Agp = 2.

That implies that every commutator of covariant derivatives will produce

3Note that this definition introduces an extra minus sign when taking the derivative of

the logarithm.
4 Also referred as to background dimension in [53].
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Chapter 4. Beyond the Schwinger-DeWitt technique

terms with increasing scaling dimension and that by reordering derivatives
we have a natural power series in A which is finite up to the desired order.
The key idea is then to go first to flat space and introduce a four-momentum
p#. The principal part of F (M), which we will denote by ﬁ(V) from now,

can be inverted there in terms of simple fractions

D (p) = éf()fil DRK®) = ()" (4.6)

with some power m which will depend on particular details of the operator.

Going back to curved space, the only difference will be the order of
derivatives due to its anticommutative character. However, as we said, this
will only produce lower order terms that will increase their background di-

mensionality and then they will be cut off at some point. Then, we have

N

D(V)K(V)=10™+ K(V) (4.7)

where K 1 will contain at most 2m — 1 derivatives.

The same happens when we do the trick with the full operator F(7).
By multiplying it by K (V) we produce a higher order minimal operator

A

F(r)K(V)=10"+M (4.8)

with some lower order terms contained in M.

Now this can be worked out by using usual perturbation theory and

write the inverse of F'(7), in the sense of (4.4), as

Om - Om
p:

4 S\ P
A . I ~ 1
Q) =-K(V)=—>_ (—M) +0(9%) (4.9)
where we have cut-off the series at scaling dimension A = 4.

Here Dlm in the m-th power of the inverse laplacian in a operator
sense and we will clarify how to compute it in a while. For now, let us just
commute all of them to the right, rewriting last formula as

4 A

Q) = —K(V) S M=+ O(@) (4.10)

Pam 1
= Om(p+1)

where the operators Mp are given recursively by the rule

My=1 (4.11)
ML, +1 = NIM, + |10, 07, | (4.12)

45



Chapter 4. Beyond the Schwinger-DeWitt technique

Furthermore, we are not going to proof it here, but it can be checked
that when the metric accompanying the minimal factor is covariantly con-

served
V.G =0 (4.13)

and there are no linear derivative term in the original operator 2 , then both
My and My are automatically of scaling dimension equal or greater than five

and we have just that

My =M,  My,=M*+m[IO MIO"?, M=M= 0(Q)
(4.14)

Expression (4.10) gives then a closed operative way to compute the
Green’s function Q(T) as a series of elements ordered by its scaling dimen-
sion. Once this is done, the final step is to take care of the different functional
traces in (4.5). All these traces have, and that is why we have commuted
all the inverse laplacians to the right, the general form

Vi VoV (4.15)

I
NP@
They can be computed by using the Heat Kernel representation for

(1. In order to do that, we write

i — 1/00 ds sm_le_SﬁD = 1/00 ds sm_lff(s 1 ﬁD)
Dm (m—l)' 0 (m—l)' 0 B

(4.16)

In opposite to the case of a minimal operator now we need the the
untraced Heat Kernel in order to apply to them the derivatives in the trace
and then take the trace afterwards. But we are lucky, since the untraced
Heat Kernel also enjoys a short-time expansion that can be used to extract

divergences. In this case, it reads[53]

. . DL/2 N o(ma!) .
R(s,1,i0) = 2@ 7)ot 'S s 4 () (4.17)
(47)>2 o

Here fln(:c, 2') are the corresponding Heat Kernel coefficients, made
up of local invariants of the manifold, but in opposite to the an(e,f)) co-

efficients of chapter 3 now they will be operators. o(z,z') = %0#0“ is the
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world-function, representing the geodesic path between z and 2’ travelled
in a proper time s and D/ 2(x,z), known as the Van-Vleck determinant,
takes care of the integration measure connecting both points. The trace of
these objects, also known as coincidence Imit, can be taken with the help
of recursive relations. A detailed table of these can be found in section 4
of [53] but they can be also derived from the basic ones, inherited from the

Heat equation

O'“VMAo(:L‘,SU/) =0, Ag(z,2) =1
o(x,z) =0, Vua(:x,a:') =0, Vuvya(x,m’) = O
(n + 1)A2(n+1)($7 JZ‘/) + O—MVHAQ(n-&-l) (.’L’, I'/) = A_1/2]AID(A1/2A27L($7 ml))

where D(x,2') = g*/?(x)g"/?(z') A

After taking this representation, one just has to apply all the deriva-
tives in (4.15), plug them in the definition (4.10) of Q(7) and take finally the
trace with the help of the recursive relations. Integration in s will remain,
but only those traces satisfying p — 2n + 4 < 4 will contain divergences, all

of them arising from the basic integral

> ds )

whose pole part can be extracted by the method of part integration, which

gives the result of the integral as a Laurent series.

This generalized Schwinger-DeWitt technique here presented may seem
very involved but it provides a closed technique to be used to compute the
quantum effective action for a huge variety of different theories, regardless
their complicated differential structure. In particular, it will be of great help

when we come to the issue of quantizing Unimodular Gravity.

4.1. The functional traces The biggest computational challenge for the

technique we have described is to compute
the different functional traces that appear in (4.15). Almost all the traces
we are going to need in Part III are contained in [53] but we have rederived
them for completeness. Here we show them together with the new one which
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we needed to compute from scratch.
I
Vﬂvyvavlgﬁ =

V9
_— RwRag+ RuaRup + RugRuo
ey 36( uolap + RuaRup + RupRva) + 105

+R) (11Ruapx — Rpapr) + Ry (11Rupx — Rpuun) + B3 (1R, — Rawun)) +

(R (11Rua,6>\ Rﬁay)\) +

1
A (R )\ya (R)\aUB + Rkﬁoa) + R )\ao (Rkuaﬂ + R}\ﬁdl/) + R#Aﬁa (R)\mrcx + R)\adl/)) +
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1
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I
VMV,,E ==

V9 1 1 BA 8 2
a —Yuv Ra UR(X 7 — R Ra R DR ]I
8(n —om22 || 180 e 180 + 72 T30

Raﬂngﬁ RQBAHRW —R o RO+ RRW—i-

45 45 18
1
v - VFa FQB ~ Fl/
+1OVHV R] o9 tas +6R w +

UR,., +

45 %

gF/_Lanjl—'_gFuaFﬁ_

1 1 .
~ ViV Fu GVDVQFW} (4.20)

]I
Y ng Vo =
1 1.
ﬂ_Q 4 Bua - Vﬂ/,l,a]l +gW gRaﬁH + 7F046 —+
14 1 1. 1 1.
+ 9pv ( RO‘HH §Fo¢ > +gow <6R,uﬁ]1+ 2F,u5) +gﬁ,u <6Rauﬂ §Fa )

1. 1 1. 2
+ Gap <6Rﬁy}1 + 2Fg,,> + Gap <6RWH + 2FW> 129;)aﬂﬂ} (4.21)

I
VaVsV,V, VoV
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g 1 2 i A 2 ~ 2 ~
L B 2B o2 B+ o B +
(2)

2) A 2) A 2) @ 7
+g,u,1/a)\BB‘7 + g;(w)ﬁ)\BfW + gfm)ﬁ,\BW + gz(/aﬁ)\B#U + g,u,l/)o)\BO‘/B +
(2)

- @2 £ 2 7 (2) 2 7
+g,uaa)\BVﬂ + gl/aa)\Bﬂﬁ + gu,Ba)\BVO‘ + gV,BU)\BNa + ga,@a)\BNV -

1
12 |:ga)\ (Rﬁya,u, + Rauﬁ,u) + gsx (Rauau + Rauau) + Ga (Rcrz/ﬁu + RBI/O’/,L) +
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+g,ua R)\ﬁm/ + RGﬁ)\V + 9uv (R)\ﬁoa + Roﬂ/\a + gw/agg)\R:| H} (422)
I NG 1 1, -
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I V9 1 1 1.
VVy—=——"— |- |Rw—=9guR |1+ =F,| (425
mYrope 8(n—4)7r2[6<“ 2m > +2“] (4.25)
(n—2)
I \/?7 Gui....pon—a
AV \% — = — - 4.26
- Han=4 On 8(n — 4)m2 2n2(n — 1)! (4.26)
where we have defined
g0 =1
g;(jzl/) = Guv
2
Gy = G + Gus e + Gy G
(3) _ (2) (2) (2) (2) 2)
g;waﬁo)\ - g#’/gaﬁo')\ + g.“agu,ﬁo')\ + IuBYyao + gﬂggyaﬁ)\ + gli)\guaﬁcr
2n+2
+1 _
gl(ﬁ~~~~l)t2n+2 - Z gului‘g&z?~~ﬂi—lﬂi+lﬂ2n+2
i=2
Bug = ~ Ryl + L F (4.27)
of T g tept T gtk '

4.2. The case of G(O) For the computation of Part III we are going
operators to need also the contribution to the effective ac-

tion of operators which are scalar functions of
the laplacian G(OJ). However, this is not a problem since its Heat Kernel
coefficient can be easily computed by means of the definition of the zeta
function.

Given the asymptotic expansion for the heat-kernel of an operator [J,
one can easily write the heat-kernel coefficients of any polynomial G(O) in
terms of those of OJ [54, 55, 51]. Here we will make this relation by using the
elegant derivation in terms of ¢ functions present in [55, 54]. As shown in
[55], given an operator O of class u acting on a bundle in a D dimensional

manifold with asymptotic expansion
oo
Tr(ee ™) ~ Y ap(e, D)rk=D)/ (4.28)
k=0
the following asymptotic expansion holds

Tr(edme ™) ~ Z ag (e, 0; n, m)r (k= P=mu)/(un) (4.29)
k=0
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with

1
CLk(E, L n, m) = ; lg%

() (B ) o
(4.30)

Notice that for m,n € N, the previous coefficient is always finite. Further-
more, it vanishes for (k — D)/u € N unless (k — D — m)/(un) € N. For a
polynomial G(O) = > ¢,[0", one has

Tr(ee” 70 Zak (e, G(O))rk=P)/(un) (4.31)

To find the heat-kernel coefficients, one uses (4.29) to compute (one can

always take ¢, = 1)

m)!

T?“(EG_TG(D)) —Tr <Ee—TD" Z (G(D) - Dn)m(—r)m> (4'32)

m

Here we have rewritten G(O) = 0" + (G(O) — ") and expanded the
exponential of the latter in a power series. Correspondingly, the final result
can be organised as a series

Tr(ee @) — EE})Z“’C e, O)T (D :+z> / dg g(P—k+2)/u=1=7G(a)

(4.33)
from where the different terms of fixed 7 order in (4.29) can be easily re-
trieved. This result coincides with the expressions of [51, ?]. Afterwards, one
can use the method of functional traces to compute the extra contribution

coming from any non-minimal piece in the operator of interest.
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Dealing with gauge symmetries

In the previous chapters we introduced techniques, based upon the definition
of the zeta function, to compute the one-loop renormalized effective action
in the background field formalism. In doing so we assumed that the differ-
ential operator D that emerges from the second variation of the full action
contained no zero modes or at least just a finite number of those. However,
this is not the case for many of the most interesting physical theories out
there and also of the ones we are going to take care in Parts II and III. In
general, physical theories may contain zero modes as a consequence of gauge
invariance, the fact that the action is invariant under some local (depending
on the spacetime point) symmetry, where the fields ¢ transform under some
group algebra. In that case, configurations that are related to the trivial
¢ = 0 are said to be pure gauge and they appear as zero modes since they
must be annihilated by the action regarded as an operator. Two well-knows
examples of this are Yang-Mills theories, invariant under SU(N) groups;

and Einstein-Hilbert theory, which is invariant under diffeomorphisms.

Classically, gauge invariance only tells us that we have to supplement
the equations of motion with an extra condition which allows to solve them,
like for instance the well-known Lorentz gauge 9, A" = 0 in QED. The issue
is however more problematic when talking about a quantum theory. In the

path integral approach, where we defined the partition function as
ZlJ] = /[p¢]ei5(¢)+i<¢,ﬂ (5.1)

the gauge invariance reflects in the fact that the integration measure D]
is not well-defined. Its integration domain is not compact and we are inte-

grating more than once over the same physical configuration.

We do not expect here to write a detailed work on gauge symmetries
and BRST invariance (to be introduced later) but just to present the latter
as a useful tool to fix the gauge and be able to integrate over quantum

dynamics with complicated symmetries, killing all the zero modes.
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The usual way to come to grips with the problem of the ill-defined
integration measure is to fix then the integration regime to a single orbit of
the gauge group. This can be regarded as performing a redefinition of the
integration variable which will introduce thus the determinant of a jacobian
in the integral when expressed in terms of the original variable. Using the
fact that a determinant can be written as a path integral suggest to ex-
ponentiate this factor and introduce a new set of fields called ghosts that
compensate for this phenomena. This is the usual Faddeev-Popov method
which is used extensively in quantum field theory and that, although it is
very convenient for Yang-Mills theories, it is quite cumbersome when we

need to deal with complicated symmetries.

An alternative which is more suitable to suit our needs here is to use
the method of BRST (Becchi, Rouet, Stora and Tyutin)[56, 57]. Let us
start by assuming that we have an action S[¢] depending on a set of fields
¢ which is invariant under some local symmetry which acts over the fields

infinitesimally as
¢ — ¢+ Rw + O(w?) (5.2)

where w is the infinitesimal parameter of the transformation and R are the

infinitesimal generators of the algebra associated to the invariance group.

The idea behind the method is to substitute the gauge invariance of
the original theory by a new symmetry (the BRST invariance) which does
not constrain the integration measure by itself. This symmetry is generated

by an operator [ which acts over the field as
J¢ = Re (5.3)

where c is a grassman odd field which will take later the role of the ghost. In
this way, the BRST operator acts on the physical field as a gauge transfor-
mation with an anti-commuting parameter, thus ensuring that the classical
action will be still invariant. The BRST operator then has ghost number

one and it is also grassman odd.
The transformation of the ghost under the BRST action is defined as
the Lie bracket with itself
fo= %[C, d (5.4)

which is not vanishing thanks to its anticommutativity.
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By defining the action of [ in this way, the original unfixed action
automatically satisfies [S = 0 due to gauge invariance. Moreover, because
of the anticonmuting nature of ¢, the operator [ is nilpotent over all the

fields present here
/=0 (5.5)

The implications of this relation have a direct physical correspondence.
Because the lagrangian will have now the continuous symmetry o, there will
be a conserved charge Q which commutes with the hamiltonian and thus it

will divide the Hilbert space of the quantum theory at hand in three parts

e Those states |¥;) which are not annihilated by Q will not belong to
the physical Hilbert state of the system. We call this H;

e Those states which satisfy |¥s) = Q|V¥1), where |¥y) is in H; and thus
they are anhilated by a second application of Q due to nilpotency

Q|¥s) = Q% [¥y) =0 (5.6)

We call this subspace Hs.

e Those states which are annihilated by Q
Q[¥g) =0 (5.7)
but they are not in Ho. We call this H,.

It is easy to see that Ho contains only states of zero norm and that

all the states in Hs are orthogonal to those in Hy.

Now, because of the way that BRST transformations act onto the
fields, we see that non-physical polarizations of ¢ (the gauge modes) are
taken to be ghosts by the action of [, which are later annihilated by the
second action of [. This means that states containing gauge modes will
belong to H1 while states containing ghosts will be in Hs. States containing
physical modes will be then contained in Hy and, since Ho and Hg are or-
thogonal, the scattering of two physical states will not receive contributions

of Ha, ensuring gauge independence of the S matrix.

This is all formal but it can be also exploited to construct a path

integral formulation free from the sickness introduced by zero modes of the

95



Chapter 5. Dealing with gauge symmetries

gauge symmetry. The idea is to introduce a new term in the action Sy,

which is so that it satisfies two simple conditions
e It is BRST invariant

[Sgp =10 (5.8)
e It is not gauge invariant

In order to construct such a term it is necessary to introduce two new

extra fields b and f with transformations under the action of | obeying

Jo=f (5.9)
Jf=0 (5.10)

The field b is what we called the anti-ghost and it is here to compensate
the ghost number and grassman character of ¢ in order to obtain a hermitian
action term. It is thus also grassman odd and has ghost number —1. The
other field, f, it is known as a Nakanishi-Lautrup auxiliary field and it is
there in order to be able to close the BRST algebra [? over all the fields.

Now, we can construct S, satisfying all the conditions above by simply
taking it to be the BRST transformation of a local polynomial on b, f and

¢ of ghost number —1 and odd grassman character
Sgp = f/d4xX (5.11)

so that it is automatically BRST invariant because of the nilpotency of [2.

By adding this piece to the action, we can now integrate over the
physical field, the auxiliary field and the ghosts; since the path integral
does not contain an infinite number of zero modes any more. Moreover,
by choosing Sy, to be BRST invariant, any correlation function of a gauge
invariant operator is automatically BRST invariant and, since correlation
functions can only depende on the physical field ¢ and for this one, BRST

transformations are gauge transformations, it will be also gauge invariant.

As a simple example of how this works, let us arrive to the usual
Faddeev-Popov prescription by means of BRST invariance. We start by
choosing the X polynomial to be

X =b(F+f) (5.12)
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where F' = 0 is the gauge fixing condition for the system.

Acting with the BRST operator, we find

Sgp = /d4x{f F+f*—b fF} = (5.13)

/4 1N\ 1,
= da:{(f+2F> -4F —be}

where in the second step we have completed the square.

Now we can shift the f variable in such a way that
1
f—7fr- §F (5.14)

This change will have no effect at all in the path integral for f since

it is just a local shift. After it, the gauge breaking term reduces to
1
Sgp = /d4x{f2 — ZF2 —b fF} (5.15)

We find then three terms to be add to the original action. The first
one has no effect since it will just introduce an ultralocal factor related to
the normalization of f that we can get rid of in connected amplitudes. The
second one is what we would call the gauge fixing term in Faddeev-Poppov
technique, while the last one is the ghost action, since [F is equivalent to a
gauge transformation of the gauge fixing condition. We then arrive to the

complete Faddeev-Popov condition by using the BRST operator method.

More complicated choices for X can be done, involving local operators
acting on f and more bizarre combinations of different auxiliary fields but

the logic behind is exactly the same as the one presented here.
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Part 11

Conformal Dilaton Gravity






Dilaton Gravity

As we thoroughly introduced in 2, the notion of scale invariance, upgraded
to Weyl invariance in the presence of gravity, is believed to be relevant
when studying physics a very short distances. Indeed, it is easy to construct
a gravitational theory enjoying this symmetry by using the Weyl tensor.
Conformal (super)gravity [58] is such a theory which in four space-time

dimensions and is given by the lagrangian

L=+/=g Cuvpo C'P7 = \/|g| C? (6.1)

where C),, 5 is Weyl’s tensor, the tracefree piece of Riemann’s tensor. It is

explicitily defined in terms of the Riemann tensor as

1
Cuvpoe = Ruvpo — n_2 (GupBvo — GuoRup = GupRuo + Guo Ryp) +
1
- <~/ vo oYy, 2
so that
2 _ p2 4 2 2 2
C =R —— R+ R-. (6.3)

Heee i — 27 (n—=1) (n —2)

This theory is Weyl invariant in four dimensions only'. There are local
invariants in arbitrary dimensions, involving derivatives of the Weyl tensor
and the Fefferman-Graham obstruction, whose existence is guaranteed, but

which is not known explicitly in general [59].

Conformal (super)gravities (as any other theory quadratic in curva-
ture) are renormalizable and it has been argued that they can even be finite
at the quantum level provided they have enough supersymmetry. Neverthe-
less, there is always some tension, at least at the perturbative level, with

unitarity, because the propagator is quartic in the four-momentum, implying

'Here n is the space-time dimension. We will keep it arbitrary with an eye on using
dimensional regularization later. However, all our results will be evaluated in four space-

time dimensions only.
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Chapter 6. Dilaton Gravity

the existence of new poles that lead to either unitarity or causality violations.
It is actually not clear in spite of some insightful attempts[60, 61] whether a
non-perturbative unitary definition of the theory is possible at all. The topic
has however attracted a renovated attention recently, since those theories,
when coupled to a scale-invariant version of the Standard Model, seem to
reproduce qualitatively well the known values for the coupling constants in

nature[18].

It is nevertheless quite easy to construct a much simpler theory in
which both dynamical gravitation and Weyl invariance are present and which
is free of these problems by the procedure of group averaging, that is, perform
a Weyl transformation on the Einstein-Hilbert lagrangian and promote the

Weyl rescaling factor to the status of a new field.

Under a Weyl rescaling the Einstein-Hilbert lagrangian behaves as

Vgl R = Vgl [Q"ZR + (n—1)(n —2)Q"4(VQ)? (6.4)

where we have neglected a total derivative which yields a boundary term.

We then define a gravitational scalar field through

(where the n-dimensional Planck mass is defined as M;}*Q = 167r1Gn) obtain-

ing the lagrangian of our theory

n—2 1
Sepg = [ d" ———<R¢* — —¢g"'V .6V, 6.6
cva= [ oVl (~ga iR - 50 VoY) (60
We end up with nothing more than the well known action for a scalar
conformally coupled to gravity, with the difference that now we consider
that gravity is dynamical. In this way, the field ¢ takes the role of a dilaton

and we will dub this theory Conformal Dilaton Gravity(CDG).

It seems that the first to consider CDG was Dirac [62] in a very inter-
esting paper in which he related the large numbers hypothesis with the old
unified theory of Hermann Weyl. Other interesting pioneering works on this
theory include[25, 63, 64, 65]. In those works, it was considered as a confor-
mally invariant off-mass shell extension of quantum gravity in the context
of the early attempts to understand the physical meaning of the conformal

anomaly [21]. In particular and in Duff’s words “Real Weyl invariance has
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anomalies; pseudo- Weyl invariance (i.e. involving a compensator field) does

not. This is a reqularization-scheme-independent statement.”

This statement, as phrased by Duff, represents our main motivation
to study Conformal Dilaton Gravity. As it is presented, this theory is clas-
sically equivalent to General Relativity. We have just redefined the fields
to go from the Finstein Frame, where the kinetic term for the graviton has
the standard form R, to the Jordan Frame[66], where the coupling R¢? ap-
pears2. However, in the quantum theory this is not so obvious any more. In
particular, let us recall our definition (3.24) for the quantum effective action

in the background field approach
- 1 .
(6] = 5 log [det(D)} (6.7)

Under a transformation of the fields

Q@ =QQ (6.8)
it behaves as[67]
f 1 - 0Q"\* 9*Q 9s
I'[¢] = §log [det(D’) + (8%) (‘9@% 8@’] (6.9)

where the first term is the determinant of the corresponding transformed

operator.

This implies that when redefining fields, only quantities which are

evaluated on-shell ( 595, = 0), in particular the S-matrix, are equivalent in

both formulations, meaning that they are the transformation one of the
other. This is a fact known since a long time ago and sometimes referred to
as Kallosh-DeWitt theorem[68, 69, 40]. In the particular case of transforma-
tions between the Einstein and Jordan frame, this is of capital importance,
since non-minimally coupled scalar-fields appear commonly in models of in-
flation and going to the simplest frame is a extensively used technique. One
of the main results of this part of this thesis will be to shed new light to this

question when Weyl invariance is present.

The above considerations are taken as a motivation to study the non-

minimally coupled system gravitational-scalar field in the following sense

5= [ @il (sre? + 5(v07) (6.10)

20f course, if we couple matter to the system, the question of which metric we should

consider as the physical one arises and equivalence is lost.
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with in principle arbitrary non-minimal coupling £. Only when & = £, =
8(’727__21) is the symetry of the theory upgraded to include Weyl invariance.
In that case, the scalar field enjoys scaling dimension Ay = (2 —n)/2. The
global sign in front of the action is irrelevant as it stands, but it is the correct

one to couple to a matter lagrangian containing matter fields.

The vacuum structure of this theory is quite peculiar. There is a global
Zso symmetry

o(z) = —o(x) (6.11)

which is promoted to an U(1) when the scalar field is complex and ¢? is re-
placed by |¢|?. There are then two different phases, depending on whether
the background field vanishes or not. Only the vanishing solution is compat-
ible with the Zs symmetry. In this symmetric phase, quantum perturbations

are defined around the symmetric classical solution
d(x) =0 (6.12)

In this case there is no propagator for the gravitational fluctuation,
and we do not know how to proceed (although some possible paths will be
suggested later). In the broken phase we consider a classically non-vanishing

solution
b(z) 0 (6.13)
that determines the graviton propagator.

Our aim in this part is then to study dilaton gravity both in the
both Weyl and non-Weyl invariant regimes. Using a combination of the
background field and heat kernel techniques introduced in chapter 3, the one-
loop effective action will be first determined for generic value of the coupling
constant £&. This calculation wont be valid at the conformal point, £ = &,
because there the gauge symmetry will be enhanced by Weyl invariance. If
Kallosh-DeWitt theorem holds as it is stated before, then the counterterms
of CDG and GR would be the transformation one of the other, preserving the
group averaging character in the path integral computation. Our objective

is to check whether this is the case or not.
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Non-Conformal Dilaton Gravity

Let us begin by analyzing the non-Weyl invariant action of Dilaton Gravity,
that is

S = —/d% lg| <§R<I>2+ ;(V<I>)2> (7.1)

with free coupling constant £. The reason for the notation ® will be apparent

in a moment.

We are going to obtain the one-loop effective action of this theory by
means of the Schwinger-DeWitt technique described in Chapter 3. For that
reason, let us start by expanding the action around an arbitrary background

for both the gravitational and scalar fields

Guv = Guv + h/ﬂ/ (7.2)
d=¢+0¢

where we have omitted the bars over the background metric in order to keep

the notation clean.

Demanding that the linear terms in the expansion cancel determines
the background equations of motion (EM). When the background fields are
so restricted, absence of tadpoles in the quantum theory is guaranteed. In

four space-time dimensions and with arbitrary parameter £ they read

; 1 - (1 AV 1 V)2
+ 26V, Vo = 29,0 V70 (7.3)
o i 9=
oK = 2§v ¢ (7.4)

while the second order terms determine the differential operator over which
we have to integrate in order to compute the background field effective

action. This is given by

ng/d”x 9l (H+F+HF) (7.5)
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where
22 1 2 1 af 2 1 v 1 a v
H=¢9 —Zhv h + Zh Vhag — §Vuhv,,h” + §Vuh“ Vohe+

1 1 1 1 1
+§h2R = o h R~ —§hha6Rag + S B Ryo + 5wahﬂah”ﬁ +

oy 1 e} 3 ALY 3 [} 1 v a
+£(Vad?) <4hV b= H by ShOOV Gl S
afs 1 afs 1 po g v Iy =z 1 pv = I
~h*OVsh — hVgh? |+ W RN V6 — Thh Y0V L

1 v S wiePh

—gh,wh“ VoV <Z>+—h2 M¢vu¢
1 « 2

= SV 6Vt + ER

HF = £¢¢p (20" Ry, + hR + 2V, V, W — 2V2h) — h*PV ¢V g+
1 _
+ ihVNQSV“qﬁ
Since gravitational fluctuations are symmetric tensors, h,, = h,, only

the symmetric part of the quadratic term contributes. We find convenient

to define the operators
(0% 1 (6 (0% (0% (0% 1
Pites =3 (gupéy 08 + 90385 + Gupb20L + 900l 55) +5@e ) (76)

a 1 o N 1
]C,ugpa = Z (g,uz/(sp 55 +gpg(su(s€) + Z(OL < ﬁ)

which project over the helicity states

W by = W RPTPYS s
h? = K80 o gash™ hP (7.7)

and which simplify a lot the quadratic operators. Using them, the second

order expanded action can be further reduced to
So = —/d"x gl [ "”Hu,,poh”” + ¢(ﬁ)wjh’“’ + pF o+ (7.8)
72 1 v 1 o va
o ( 5 Vuh Vb + SV MV R

where we have kept apart the non-diagonal contributions to the graviton

sector in order to cancel them later with a proper gauge fixing and where
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the corresponding operators are given by

] 5 n w w « «
Hypo = Z(va¢’2) ((Klupcr - BPZVPU) Jyw9 4+ Xufpa) Vit

(5P~ 15 ) (Vad936 - J05(V 5P +

602 | (Pt = Kihne) 90" + 5 (Pl — i) Rt

5 R + (K — 1R ) 900 (79
with the tensor X ﬁfpg defined as

3
X =5 (gﬁgﬁ Gvo + 9595 9uo + 9095900 + 95 gffgup) —
— (g,i“gffgw + 959, gw) —2 (gﬁ‘gf Gpo + gﬁgﬁgm) +

1
+5 (gﬁgﬁgw + 9595 Guo + 9290 gup + g?gfgup) (7.10)

and

— _ 1 _
(HF)MV = §¢ [Rg,u,l/ - 2R;w + QVMVV - 29,uuv2] - §guuva¢va+

_ 1 1, _
+ ViV = 50wV 0+ 5 (VudVy + Vi V,) (7.11)

F= —%v%rgR (7.12)

Here the round parenthesis mean complete symmetrization of the in-

dices contained inside.

The kinetic term for the graviton is, however, non-standard. It con-
tains a second power of the background scalar field ¢ that complicates things.
In particular, it makes the metric on the field space G, as defined in (3.51)
to be non-covariantly constant. To solve this, it is useful then to change

variables to
k/u/ = Qgh,uz/ (713)

in order to eliminate all the dependence on ¢ out of the kinetic term. This
only makes sense in the broken phase, since this transformation is ill-defined

when ¢ = 0. It will also mean nothing for the path integral, since it will
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only add an ultralocal factor. In this case, the action is then rewritten as
Sy = — / d"z+/|g] [/c“”Kw,pgk/"’ + O(KP) k" + pP o+ (7.14)
1 v 1 e v
| —5 Vik VR + SV VL kg
where the explicit values of the coefficients are now
2 o a Vozq_svﬁa) 1 (VQE)2
Hp.l/po = <2P/Luﬁp0 - 4’Cu§pa> ((52 - 19045 (52 +
a¢ w Yyw [e]) 1 (63
+ 25 ¢ <(2’CZV[)O' - P;wpa) Gywd g + glcl“’lm + 4Y1w6pa> v5+

@ @ V)2 V27
* g [ (P“fp” - Kufpa) Gop (2( (;2)) - f) +

) anﬁ(ﬂ N

(Paﬁ ]Cffpa (Iczipa - 377;{”,,0) 969" Xﬁuﬁpa 72

pvpo

a a a a 1
€ |: (P;UJIB/)O' Icugpa) gaBVQ (,Puyﬁpo ’Cpgpa) af + §R(p,pu0')

(8’(:25;)0' - 4,P31?p0) gaﬁR:| (715)
(HF)u = € [Rgu — 2Ry + 2V, — 29,, V2] +
1 (Vb5 Vi V%)
+o R0+ 60 — g — ) V-
2 < ¢ g mTImTg) e
Vo Vo VP
—zg( L2684 5ﬁ—2gy)v+
6 IR
VoV VYo (Ve)? V3¢ )
+2<2’_ - g+ —gw |+
S % g2 T T g
1/ V.V VuVid (VO V29
+5 (2 p 2 ot g (7.16)
) —92)
iy 1
\Y +8(n71)R (7.17)
and finally
Yor, = (g 90 gve + 9590 Gue + 9595 9vp + gi‘gggup) —

(gp 959w + 959, gw) -2 (gf}gfgpa + 95‘95%0) +
1

(7.18)

+ gp g,ugr/a + gp gygua + gggugup + gggl,gup>

2
At this point, the action is still not suitable to use the Schwinger-

DeWitt technique and compute the one-loop divergences of the quantum
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effective action. The reason is that, as it stands now, the theory contains zero
modes inherited from gauge invariance. The original action (7.1) is invariant
under the full group of diffeomorphisms, represented at the infinitesimal level

by Lie dragging the original fields

g;u/ = ££g;w (7.19)
¢ = Leo (7.20)

along a vector £* which contains the infinitesimal generators of the connected
part of the Diff group. Alternatively, and more suitable for the quantization
of the theory, we can define a BRST operator as we did in chapter 5 that

implements the symmetry
sp = £¢ (7.21)

where now ¢ is an odd Grasman field that takes the role of the Faddeev-
Popop ghost.

In the background field approach the operator splits in background and
quantum counterparts and it is this last part what represents a redundancy
in the path integral measure. In particular, this means that the quantum

fluctuations h,, and ¢ can be transformed by

sphu, = Ve, + Ve, +Vohy + Vi hyy +Vuchy, (7.22)
sp¢ = Va(d + ¢) (7.23)
while the background fields are non-sensitive to these transformations. These

leave the second order action (7.5) unchanged. For the field k,, the corre-

sponding transformation is

\

SN

spku, = o (Vuey +Vouey) + PV oku + NV uclkpy + Vol — Pk
(7.24)

Now, there are two things that we aim to do with the gauge fixing,
constructed with the BRST method of chapter 5. We must, of course, cancel
the zero modes in order to have a well-defined action that we can integrate
over and, second, we want to apply the Schwinger-DeWitt technique of
chapter 3 so we will try to cancel any kinetic term which is non-minimal.

This can be achieved in different ways, some of them simple modifications
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of the well-known harmonic or de Donder gauge. It is however actually

possible to choose a very general gauge interpolating between two functions

F,=(1- ’y)Fl} + ’yFi (7.25)
with
1
= Vku — §Vuk — 2V, (7.26)
- 1
Fg =9 (vth - 2vuh> — 2V, (7.27)

Although each of the two functions Fl} and F/f represent perfectly
admissible gauge choices separately, we have decided to consider this more
general linear combination of them as above in order to be able to track the
dependence on the v parameter along the computation and explicitly check

that it vanishes on-shell, as it should. The full gauge fixing choice is then

. ) 1 Vb 1, Vb
Ey = Vkyy = 5Vuk = 2V 6 — vk ¢3¢+ e

Here the situation is easy enough as to use Faddeev-Popov quantiza-
tion, instead of the full BRST method of chapter 5. We thus introduce a

gauge fixing term of the form

Sgiff = g/d":ﬁ\/\g\ E,F¢ (7.29)

(7.28)

- 1 1
E,FH =2 <2V“kvyk”” - v,ikwvykg) +2 [-2¢V, V, k" + ¢V3E] + 4V o+

1 2 V.Q quv ¢ 2 ( (5)2 _ v vﬂévlfé vﬂé v__
+ 1V 41 [k“ T k ol (52 HETEEV
Vi g VH <25 V¢ e
2kH ——V %y kV —==VH 4kt —=V,,
g ¢ hen e SRS S
(7.30)

which cancels exactly the non-minimal terms in (7.5).

By adding the gauge-fixing term to the original action we can fi-
nally write an operator which is almost suitable for the application of the
Schwinger-DeWitt technique. The original action with the gauge fixing
added then reads

Sgull _ /dnsc lq] {kuuﬁuymkﬁa + ¢(ﬁ)w/kuv + ¢F¢] (7.31)
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where the values of the coefficients are again quite contrived

' Oé(b w yw @ 1 @
H,uupa =+ 25 QIC:/I,I/pG' - ’P,ul/pa Iywg A + §,C,u1/pa + 4Yp,yﬂpa v5+

K

+ (Pl — ity - </czipf SP3e) 9280 — Xilp) L2728
() (- )

€[5 (Pt = 58 ) 007 4 § (Pith — Kith) R + 5 Rl
( SICgpr—Zngpr) aﬁR]—%Ef;ﬁMv;‘b 8 (7.32)

(HF)u =€ [Rgu — 2Ry — 9 V2] +
( ¢+ ) < nP 55 ‘z’aﬁgWW) V-

¢ ¢ ¢
B
€ (vlt¢ v¢¢5,6’ _ 2 Gy V¢¢> V,@+
wOVid  VuVid  (V9)? V3¢ )

”5< 7 P O A

1 (. V.Vib  V,.0V.é (V) V29
+3 (2 pamit “&2 ot ) (7.33)

- (25 - ;) V2 +¢R (7.34)

where we have introduced a new tensor

1
B, =5 (gwagafj + G826 + G608 + gpe00 80, — gwgpggaﬁ) _

1
— 5 (9000207 + 9ur02 0] + 9005207 + 90005207 ) (7.35)

In order to apply the Schwinger-DeWitt technique and the short-time
expansion of the Heat Kernel contained in chapter 3 we need now to write

this as
S = /d"$\/|g| U4 (—Gapd— Eqp) U8 (7.36)

where A, B are generalized indices. In our case, they will run over the

different components of the fields in the action. That is, we introduce a
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DeWitt superfield

oA = <k;,,> (7.37)

and the interpretation of the index A is a label for the different polariza-
tions!. Therefore, the rank of the index A is n(n +1)/2 + 1.

By a first manipulation and using this, we can write the full expanded

gauge fixed action as

Sfu” I/dnzc\/|g’ \I/A (—GABDﬂ-Nszuﬂ-MAB) vhB (7.38)
where the metric G 4p is symmetric and given by
% (%’Cgfpo - Pﬁfw) 9ap %g#'/
Gap = ¢ . (7.39)
29p0 7 28

with inverse

AB 1 GHvpo 8gHV
= 8(n—1)—(n—2) ( 8g"  —2(n — 2)) (7.40)

G — —z (86(n — 1) — (n — 2))(g" 9" + g" + ") + 2(1 — 8€)g" ]

defined in such a way that

(7.41)

L6069 +6069) 0
GapGPY = G9BGp4 = (2 (9507 =+ 335)

0 1

and the matrices N’ ; and Myp are anti-symmetric and symmetric respec-
tively. They are obtaining by partial integration of the different terms in
(7.31) and read

Np. N}
NG, = (N’gf N’;;¢> (7.42)
ok ol
where
B _f af af af af vaq_s
Nkk; _Z (Y,prcr - Ypo,uy - ’YE,uypa + rYEpo/,w) (5
B _
Nog =0 ) 7 )
s __ a8 _1(1 Vud s Vud g\ 1 1 VA
& (Vud s, Vud Vi
_ ? i&g + — 55 — Qu——
¢ ¢ ¢

!Mind that here we are not killing the gauge polarizations yet. Those will be taken

care of by the ghost action to be introduced later.
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M. M
Mg ="K ke (7.43)
Mg Mgy

where the different elements are

My, =
§ a a (Vo) V3¢ VadV59 11 a
=3 (PMEPU Icugpo) Gap | 2 »2 o + 72 [(PMEPU Kufpa)
(3PZVPU - ICZVPU) 9109”” Xufprf} } —&Vp ( p > [guupagwg +
o a a 1 a vaévﬁé 1 (VQB)Q
QICMEM +2 3 (Ywﬁpff + chf[/il/)} - 7gufpa <¢2 g 9aB 02 +
o « 1
g |: (,P,ufpcr Icufpa) af T+ g;u/pagaﬁR + QR(IL/)I/O'):| +
€/ ra ad VoV
+ 2 ) (Eufpa + Epau,z/) (’YVﬁ < (E ) + ,72¢2ﬂ> (744)

1/1 V.6
qus :M¢k = § (ng — 2RMV) — 5 (2 — 25) Vﬂ ( (Z(b) +

\V4 V.V, VdVPé VsVPé
+£ (2 #22 d) ¢ d) 72911“/% +g,u,y ng ¢) +
1/ .V,Vup _V.oV,0 VpVh e VsVAié
1 1 VBE\ A& A V.o
~5 (4 5) owws (55°) - 5 [3oww (55°) -5 (7))
(7.45)
Mgy =€R (7.46)
where
gggpo - QIC;C;EpU Pﬁfpo (747)

Finally, to compute the effective action corresponding to Dilaton Grav-
ity out of the Weyl invariant point by means of the Heat Kernel expansion,we
define a bundle connection w, and the endomorphism E that will allow us

to express Sy, by getting rid of the linear derivative term as follows
S i —/d /19l WA (—g™ [V, + Wil [V,0% +wlp] — BAy ) U8 =

:/d”x\/m U4 (~Gapl — Eap) U5 (7.48)
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. . — _ A A
where we are using the notation V, = V6%, + Wi

The bundle connection is then constructed so that

G (=GepV? + NEGV, + Mop) = —g" (Vb e + wi o) (Vs + wip) — E%p,

(7.49)
which is true if
1
wip = QGAC Nucs (7.50)
B4y = GA%(=Mcp — wucrwh) (7.51)

A final ingredient we need is the field strength given by Ricci’s identity
[@Ma @V]\IIA = F;w A B (752)

so that

—_

FaBAB:§

1 0
(R#paﬁdg—|—Rypag(5g—i—R“gag(SZ-l-Ryo—ag(S'g) <0 0) +

+VQWgAB—ngaAB+waAcw503—w5ACwaCB (7.53)

Therefore and through these manipulations, we have finally arrived to

an operator which can be written in the form
DAB = —GABE—EAB (7.54)

so its contribution to the effective action can be computed by direct appli-

cation of expression (3.82) as

2
" H
F?(?n[guw ¢] - - @% log(ﬁ) /dnfE |g| TI'{GODE + 6ORE+
+180FE? + 120R + 5R? — 2R, R" + 2R 00 R"7 +
+ 30F,,, F"'} (7.55)

Finally and as a last ingredient, we have to take care of the ghost fields

induced by the gauge choice (7.25)
Sghost = /dnw ’g’ gwj EILSDFIM (7'56)

where spF), denotes the order-one variation of the gauge-fixing function F, s

as explained in chapter 5. Here ¢, is the anti-ghost field.
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A little algebra yields the contribution to Sgxes: that is quadratic in

the quantum fields. This contribution reads

SghOSt = /d”x 9] & (—gpe0 + N“pgﬁu + Mpo) 7, (7.57)
where
VHé V.o AV
Nt = (1= )G o2 4 (7)Yl (1) Y (758)
s 9 o
V,Ved

Myy = —Ryp +2

The contribution to the effective action associated to SghOSt will be
then the corresponding coefficient of the heat kernel expansion of the fol-

lowing operator

Dot = —(gM (V6% +w, /5] IVu0% +w,] + B ), (7.59)

where we define

1
PG WP vo  _ _L1opxym
w(g)ﬂ AT guyw(g) A? w(g) o 9 N Ao (760)
Efg) o —gpA(M,\a + wu,\swu‘sg + ?Mw“)\g) (7.61)
F(g)pg » = R#Vpa' + @P wo_'uy — @0, wp#l/ + [wp’ wo_],ul/ (762)
so that we have
ghost g 1 1 M2 n
I_‘I'en [guV7 ¢] - - 32?% log(m) d"z ‘g‘ TT{GODE(Q) + GORE(9)+

+180E7 ) + 120R + 5R? — 2Ry, R*" + 2R, 00 RM77 +

+ 30F(g)MVF(l;§} (7.63)

Summarizing, we finally find that the one-loop divergent correction to
the quantum effective action in the background field formalism will be given

by a combination of expressions (7.55) and (7.63)

Fren[guua 5] = I‘}rlgﬁn [guw é] - 2F§Zr018t [gmx’ <l_5] (7.64)

where the ghost contribution comes twice because of the presence of both
ghost and anti-ghost fields and with a minus sign due to its anti-commuting

character. The final result comes after a quite lengthy computation, for
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which extensive use of Mathematica and the package xAct[70] were used. It

reads

- log (u2) 1 . ~
Fren[.%uné] - 167['2 72062(2—854-4(8&— 1))2 /d X ]g] ﬁ (7.65)

where £ is a collection of counterterms given by
VHOVY V.oV VepVP IV V56

5 7
o
+ e T s i)

a 78 4 Ra
+ P ) T
K f
T Py (Vii % Ru€) T Piol€ )R+ Pra(67) Runp R }
(7.66)

£=u%—n{%@w>
V.V, 6VEV
AL
VOVAG R

V2oV26
(52
= Pr(§, ) R R+

+ P2(§7’Y)

+

+ P5(§7g)

and the different off-shell polynomials P;(§,~), which depend both on the
coupling and on the gauge fixing parameter are

Py(&,7) =T20(—5 + 104€ — 72862 + 2784€3 — 1867y + 7262 + 153663y 4 8642 —
— 260£292 4 2064£372 — 16£2~% + 216£34%)
Pi(£,7) = — 9606 (—29 + 4506 — 840€2 — 15y + 88€7y + 91262y — 38¢~2+
+ 5086242 — 8¢7y2 4 108¢2~%)
Py(&,7) =480¢ (1 — T8¢ + 984€> — 68&y + 720€%y — 267 + 28¢%4?)
Py(€,7) = — 480&(—2 + 228¢ — 307262 + 9y + 64 — 1680£%y 4 1662 —
— 3686292 — 8¢7y3 + 108£%4?)
Py(&,7y) = — 480&(—1 — 48¢ + 67267 — 331263 + 56&y — 12482y + 691263+
+ 2672 — 526242 4 336£342)

P5(€,7) = — 384062 (—1 + 126)(3 — 126 — v + 6£7)
Ps(&,7) = — 4806(—1 4 12¢) (—1 + 42¢ — 744> + 528y — 528¢%y — 106y% + 1166%4%)
Pr(€,7) = — 48¢%(—1 + 12¢) (—241 + 2412¢)
P3(&,7) = — 960&(—1 + 12€) (1 — 41€ + 432€% — 326y + 3486y — 6£7° + 906%4°)
Py(&,7) =1920€% (—11 + 189¢ — 1008¢% + v — 18&7 + 72¢2)

Pro(€,7) =120€% (29 — 576¢ + 3168¢7)

Pyi(€,7) =34086(—1 4 12¢)° (7.67)

All these expressions are of course off-shell. We have just obtained

the functional generator of all 1PI n-point functions for Dilaton Gravity in
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the non-Weyl invariant phase. If now we want to extract S-matrix informa-
tion from this result, we must take the background fields to obey the tree
level mean field equations, which are just the classical equations of motion.
Therefore, we must put all the fields in the last expressions on the mass-
shell. In order to do that, apart from the application of the equations of
motion (7.3), we must relate the scalar quantities appearing in L by using

integration by parts.
All the different operators that we find can be classified as

Gs = V2§ R O = <V&>;gva>2
Gs = Ry, R™ E= W
G¢ = R? F = w

G7 = RuuaﬂRumxﬂ

and the equations of motion, together with integration by parts, introduce
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the following equivalences

G :Vgg R 21§A (7.68)
e :(VZ_Z;R - 2153 (7.69)
Ge =R* = 4152A (7.70)
2 :ngfR“” - <41§—2)B—41§C+2E (7.71)
GFWZ<41§—2>(A+B)+2D+<2—21£>E (7.72)
Gs =R, R" = <41€ - 2) R [? + (vq_qu + 2WVV;RW+

/ d(vol) D — / d(vol) <A 2B 42E - WWQ;QERW) (7.74)

/ d(vol)E = / d(vol) (20 _ ;B) (7.75)

/ d(vol) F — / d(vol) (=D + 2F) (7.76)

And also, whenever £ # % there is an extra relation that we can use
and that comes from the fact that the two equations of motion (7.3) for the
metric and the scalar field must be compatible. Taking the trace of the first

one we have

R:(n+2—2n>v%§+<n+2—2n—1> (V)" (7.77)

4¢ ¢ 48 28)  ¢?
so requiring agreement with the scalar equation of motion forces
27 732
Ve, Vor_ (7.78)
¢ ¢

which implies
A=C=-B (7.79)

In the case £ = % this identity is satisfied identically and these last relations

cannot be used.
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Therefore, and by using these identities, we can work out the on-shell
effective action from our result (7.65), finding it to reduce to

_ 1 12 . 71 1259 (1 — 12€2) (V)4
Fren[guu>¢]|on_shen = 1671'2 IOg (W) /d Ty |g| {6002 + 1440 52 ¢4
(7.80)

There are various remarks we must do about this result. First, the
appearance of a pole when & = 0 signals the fact that for that concrete
value of the coupling, the gravitational fluctuation are not propagating any
more, because the coupling to curvature £ R¢? disappears. We come back
to a phase rather similar to the symmetric phase ¢ = 0 and our pertubative
computations fail. Second, when the value of the coupling takes the con-
formal value in four dimension £ = 1/12 the only surviving counterterm is
the one which is precisely Weyl invariant. However, in that phase we have
an extended gauge invariance, Weyl invariance, and the ghost sector will
include new corrections that will shift the numerical value in front of C2.

We plan to take care of this in the next chapter.

Finally, both as a check of the robustness of our computation and
of the validity of Kallosh-DeWitt theorem[68, 69, 40] we find that all the

dependence on the gauge fixing parameter v disappears on-shell.
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We move now to the analysis of the quantum dynamics of Dilaton Gravity

in the Weyl invariant point, with action in arbitrary dimension' n

Scpe = —/d% 9] {8(’;__21)@2}% + ;vuw%} (8.1)

In this case, the result obtained in the last chapter is not valid anymore
because the matrix G op given in (7.39) is not invertible. Its determinant is
singular and this signals the presence of a new zero mode inherited from an
extra gauge symmetry in the theory. Indeed, with that particular choice of
the non-minimal coupling the theory is invariant under Weyl transformations

of the form

Guv — ngm/ (82)
> Q3" (8.3)

so we must enlarge the gauge sector of the theory at hand with a new gauge

fixing and new ghost fields to cope with this.
When expanding around a background field

Guv = Guv + h,uz/ (8.4)
P=¢p+¢ (8.5)

the gauge symmetries translate into infinitesimal symmetries acting on the
fluctuations. In the non-Weyl invariant case, Faddeev-Popov quantization
was enough totake care of the theory. Here, however, the presence of two in-
dependent symmetries requires the introduction of more complicated BRST

techniques. Following chapter 5 we the construct two BRST operators sp

! Again, let us remind that we are using arbitrary dimension in order to connect later
with dimensional regularization, but all the consequences here derived will be specified in

dimension n = 4.
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and sy such that they implement the transformations when acting over the
fields

sphu, = Ve, + Ve, + SV ohy + Vi hyy + Vi cPhy, (8.6

spp = V(4 +¢) (8.7

swhuw = 2¢(guw + b)) (8.8
(

“e(6+ o)

Swo = 5

where c is the grassman odd ghost associated with Weyl transformations in
the same way as ¢ is the one of Diff. The action of both operators over

them is given by

spct = B¥, spB* =0

syt =0, swB* =0

swe = f, swf=0

spe = V¢, spf=cAVyf (8.10)

Here B* and f are the Nakanishin-Lautrup auxiliary fields needed to
close the BRST algebra while ¢# and ¢ are the corresponding anti-ghost
fields. With the transformation so defined, we have that

s%, =0, s, =0, {sw,sp} =0 (8.11)

and so we can define a full BRST operator [ = sp-+sy in order to implement
the gauge fixing and ghost action through the method of chapter 5, by adding

to the action (8.1) a term constructed as a local variation

S =Scpc+ [(Xp+ Xw) (8.12)
where we choose
B 4(n—1) A
— [ w207 2 g
Xp /d x+\/|g| ¢ ( ) B +FM) (8.13)

X = [@aV/lg] (0" = VeVl f —alo+ ) (814)

with F, u as given in (7.25) for the non-Weyl invariant case. Of all those terms

we only need to keep those that are second order in the quantum fields.
Again, as in the non-Weyl invariant case, we choose these functions not

only to cancel the gauge modes but also with the requirement of obtaining

minimal operators to apply the Schwinger-DeWitt technique of chapter 3.
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After applying | we can integrate out the field B*, that appears with
no derivatives and thus it does not propagate, leaving us only with the
extra ghost and anti-ghost pair for the Diff gauge sector. However, it is
not possible to do the same with f since it appears quadratically coupled
to ¢ through the gauge fixing?. Thus, now the bosonic sector of the theory
contains three fields and the corresponding DeWitt superfield that we need

to introduce reads

kv
A= ¢ (8.15)
f

This means that now the metric G4 p and the matrices M 45 and N j B
will have new entries corresponding to terms with the new field f. Indeed,

the metric reads

(n o 2) %ggﬁpagaﬂ ig/“’ ) [() N
1 a(n—
Gap = 4(n —1) 19po -3 T on- (8.16)
0 _ 2a(n—1) 4(n—1)
n—2 n—2

with gﬁfpa as defined in (7.47). Its inverse now exists in the same sense as

in (7.40), and happens to be

11 16 o 8 o
B lf a?(n—2) 9" a(n72%gp
G = 2(n—2)g Y a? T
v 2
= 9" o 0
(8.17)
where
16(n —1 " . 22+a*(1—n "

G = —72 — ) 9" g’ + g g" + 052(2 - 3(n n nz)))g””g” (8.18)

The matrices are extended in such a way that

Ng. Ngy N My My Mg

kf
8 _ | B B A _
NB, = N%k N%¢ N%f Map = | My Mgy My | (8.19)
Ni Npy Nig My, Myy Mg

2 Actually, we could integrate it out but then we would obtain a non-local action for
the field ¢ that exits minimality.
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where the kk, k¢ and ¢¢ elements are the same as in the non-Weyl-invariant
case (provided that we substitute the coupling £ by its Weyl invariant value)

and the new elements read

a V%
Ny == § 55 s st~ )
B _
fo—O
B _ B _
N¢ ——Nf¢—0

-t (6(5) (5w ()

Mgy = Mps =0
M =0

The algorithm now is the same as in the non-conformal case, we only
need to substitute the matrices and construct a new field strength as

Fop™ B =5 (R, apldy + R papdl + R 5 030, + R 5 030)) +

N =
o O O
o O O

1
0
0
—|—Vaw5AB—VﬁwaAg—i-waAcwﬁCB—ngcoJacB (8.20)

With this, the contribution to the effective action in the background
field formalism of the bosonic sector is a trivial extension of the non-Weyl

invariant case and the expression looks the same

- 1 1 2
h n
LLed 9 8 = — 535 550 1081 75) / d"z+/[g] Te{600E + 60RE+
+ 180F? 4+ 120R + 5R? — 2R, R* + 2R, pe R*P7 +
+ 30F), F'"} (8.21)

where we just need to substitute the different objects contained in the ex-

pression by the new ones.

With respect to the ghost sector, now we have two kind of ghosts
fields, ¢* coming from the diffeomophism invariance and ¢ coming from Weyl
invariance, together with their corresponding anti-ghost partners. Moreover,
the fact that the gauge fixing choice Xp in (8.13) is not Weyl invariant will
produce interaction terms between Diff anti-ghosts and Weyl ghosts. This
implies that both ghost sectors are not decoupled and their path integral
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cannot be taken separately. thus, we must introduce, as with the bosonic

sector, two DeWitt super-ghost fields, defined by

ct _ ct
77’4=< > nA=<_> (8.22)
c c
so that we can arrange their action to be
Sy = [ /B (GO NV ) (523
where

v 0 a N3, 0 M, M
o= ). wir= (X 0) ag o (M M
0 1 Ny, 0 Mw,, Mww

with the different elements being

VOC¢ vl/¢5a 7 vu¢5a

NG, = =1 =%)guw——+ 1+ + (1 — ) —Z50
o _ 2 V2¢5a
W™= 9 o v
M, = =Ry, + o VuVv®
v

M = =~ 274

2 V.,V
M =357

V?
MWW:f

This allows us to use again the Schwinger-DeWitt technique of chapter

3 to compute the ghost contribution to the quantum effective action as

_ - 1
Fggn [g,twa ¢] - 3972 % lo

e(112) / " 3\/Tg] TH{600E® + 60RE® +
+180 (B9))? +120R + 58 — 2Ry R + 2Ry R+

+30F ) ploy (8.24)

where here the endomorphism and bundle connection are defined by

il = Sa1ONG, (825
B = G (M)~ wenid? ~ V) (520
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and the field strength reads®

A Rllj o 0
Fégg - ( OP 0) + pr?B — ng;‘B + [wp,wo]’g (8.27)

Finally, we arrive to a closed expression for the quantum effective
action of Dilaton Gravity in the Weyl invariant point, given by a combination
of contributions (8.21) and (8.27)

I'ven [gmu (5] = F?g)r{ [guu’ é] - QPQQH[QW, (5] (8.28)

where, again, the ghost contribution enters with a minus two due to the

presence of two anti-commuting ghost fields.

When this expression is evaluated explicitely, we find that the one-
loop divergent part of the quantum effective action in the background field

formalism reads off-shell

_ 1 /1’2 n ~
Fren[g/.wy¢] = Wlog<]\4—2)/d x ’g’ L (829)

where £ contains a complicated combination of all operators with the right
scaling dimension

. v7 2 I\2

£ =Qa(an) LT

V,.6V2VHG

A

+ Qs(a, 7)73’”%245%?[’

RVHGV .6
5,2

+Q2(0"”W+
T\9w9 T
+ Q4(a77)(v¢()ﬁgv¢ + QS(O"’Y)

+ Q?(aa IY)

LG AL
V2pV2¢
552
+ QS (aa ’Y)RMVR;LV+

+2’7 +

RNV, ¢

0]
o
+ Quol@ )R + Quiany) T2 4 52

3 + ERMV&BRW(IB

+ QQ (Ol, ’Y)
(8.30)

3Note that in the (1,1) element, the indices A, B can be mapped space-time indices
T2
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where
Q1. 7) = 16 + 108a? — 8y + 9602y + 492 + 180?42 + 42 + 4a?43
b a2
2(96 + 40502 — 487 + 39002y + 1372 + 570242 + 33 + 12a24?)
QQ(Q,’Y) = - 90&2
48 + 81a? — 24y + 10202y + 72 + 302~
QS(aa ’7) = 90[2
—102 — 37802 + 96y — 42002y — 44+% — 600?42 + 373 + 120243
Q4(aa7) = - 902
—162 + 22802 — 108a* — 24a%y + 84aty + %42 + 3a*4?
QB(aa'y) == 904
—96 — 6302 4 24 — 782y — ¥% + 15022
QG(OC”V) = 2
9o
4(4 — 302 — v+ a?y)
Q7(Oé, ’Y) = 302
—120 + 3612
Qs(a,) = T 9002
11 4 24a? — 67y + 3202y + 372 + 60242
QQ(OQ’Y) = 302
(0%
18 — 3002 + 43a*
QIO (a7 ’7) - 360&4
—18 + 2502 — 21a* — 202y + 20ty
Qll (a7 7) = 3C¥4

It is worth mentioning that all the monomials including the scalar
field diverge when ¢ = 0. Naive power counting arguments cannot then be
applied here. This fact also prevents the monomials that appear in the bare
lagrangian to appear in the counterterm, representing the already known
fact that we are dealing with a non-renormalizable theory. This physically
means something that we already knew, namely that our calculation is re-
stricted to the broken phase of the theory. When this is put on-shell by
using the relations (7.68) and (7.74) derived in the previous chapter (par-
ticularized for the Weyl invariant value of the coupling &) all the gauge
dependence on the parameters v and « dissapears. This is a powerful check
of the gauge independence of our result, complaining with Kallosh-DeWitt

theorem. Moreover, we can also use the following relations
Ey = RyapR™ P + R* — 4R, R™

1
[ gi= [aaide -2 [@ai (rer., - )
(8.31)

The first line is just the expression of the Gauss-Bonnet term in four
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dimensions, F4 thus corresponding to the Euler density, whose integral gives
the Euler characteristic of the manifold. By using it and the fact that the
last term in the second line vanishes when using the equations of motion

(7.3), we can express the on-shell value of our result as simply

- 1 p2N 53 [ .
Fren[gMV7¢Hon_sheH = W IOg (]\42>)45/d X ’g’ E4 (832)

This result is exactly the same as in General Relativity (including nu-
merical factors). The reason is that, on one hand it is Weyl invariant, in
order to comply with the gauge symmetries of the theory, but, since the
transformation back to General Relativity is actually a conformal transfor-
mation

(n

1 n—2 \n2 __4
v — ﬁﬁ (8 — 1)> "2 G (8.33)

the value of the on-shell counterterm does not change and thus it is forced to
have the same value for both theories related by this transformation. Indeed,
this is no more than a new confirmation of the validity of Kallosh-DeWitt
theorem that the on-shell values of the quantum effective action must be the
transformation one of the other, identical in this case since the particular

transformation is a symmetry of the theory.
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Up to here we have computed the corresponding one-loop counterterms for
Dilaton Gravity both in the Weyl invariant and the non-Weyl invariant
point. In chapter 6 we argued that the former was indeed just a field re-
definition of Einstein-Hilbert action, which can be recovered from the CDG
action (8.1) by just undoing the redefinition, which happens to be precisely

a Weyl transformation

1 n—2 \n-2 __4a_
g‘ul/ — W <8<n_1)> qbnf? gl“’ (91)
p

We also saw in expression (6.9) of chapter 6 that, at the light of
Kallosh-DeWitt theorem, both quantum corrections, those computed in
Einstein-Hilbert action and in CDG owed to preserve equivalence when
taken on-shell. That is, S-matrix was ensured to be equivalent for both
theories. This was because, in the background field formalism, we defined a

new partition function (3.20)
217,4] = / (DQeiS(@) ¢i(Q.DQ)+i(1Q) 9.2)

and proved that its vacuum diagrams correspond to the effective action of
the original theory of interest, a fact that at one-loop is reduced to the

computation of a determinant

T[g] = %log [det(f))} (9.3)

which we obtained by using the Schwinger-DeWitt technique of chapter 3.
Finally, by transforming this result using the transformation relating the
fields in a generic way Q' = Q'(Q) we find that

-

I'[¢] = %log [det(f)') + (

(9.4)

o0Q'\? 52Q oS
oQ ) 0Q"? 0Q’
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which shows that on-shell quantities must be the straightforward transfor-

mation one of the other.

However, there is a caveat in all this argument. If the transformation
Q' = Q'(Q) happens to open a symmetry in the new fields @', as it happens
in our case with Weyl invariance, then the integration measure [DQ] in
(9.2) might not be equivalent and instead be anomalous. Equivalence is
completely lost, since the divergence of the previously conserved current
can now act as an operator producing a non-vanishing expectation value for
some S-matrix amplitude which is not present in the other frame. This is of
course what happens in principle in our case, because Weyl invariance, as

explained in chapter 2 is generically anomalous.

The corresponding Ward identity (2.11) for the Weyl invariance of
CDG reads

oL 2—n 0L
<O ‘Zg;wéglw-i- 5 % 0>—.A (9.5)

where A is the possible anomalous term. It is identically satisfied at tree

level, conveying with the classical result, but at one-loop it might get con-

tributions from the non-invariance of the effective action.

If there were not anomalies, the Ward identity would also hold in the
first frame (even if the symmetry is not there). However, anomalies spoil
this fact and physical effects that depend on the observables related, can be

different in both frames.

Let us particularize. The regularized effective action in the back-
ground field formalism and using zeta function regularization was given in

(3.36) and reads

- 1

Freg [Qﬂ {s—>0 =5

2 20s s=0

(9.6)

<i —YE +10g ([‘2)> C(Ov 17D) - 72 C(S, 1’D)

so that the pole term that we need to substract in the renormalization
process (particularized for a effective action depending on g,,, and the back-

ground dilation ¢) is simply
_ 1 .
Fpole[guua(b] = _%C((LLD) (97)
which, by using the standard relation (3.48) between the poles of the zeta
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function and the short-time expansion of the Heat Kernel, can be written

1 N 1 1 53
——a, (1 D) d"z+/]g| E 9.8
QSG”(’ sionzas | TeVidlEe (08)

I‘pole [g,ulu &] =

where in the second equality we have introduced the particular on-shell value
for CDG, given in (8.32).

The easiest way to make the anomaly appear is to now substitute the
divergent limit s — 0 by the corresponding pole of dimensional regulariza-

tion when n — 4, having

- 1 1 53 n
Fpole[guua¢] = n—4 1672 E d" "z |g| Ey (99)

From here, it is straightforward to obtain the anomalous contribu-
tion A to the Ward identity. We just perform a Weyl transformation of
the regularized effective action and, taking into account that the integrand

transforms as

Vgl Es = Q"*V/|g| E4 (9.10)

we find, at the linear level, a finite contribution coming from a cancellation

of the pole term

- 1 53
(5Fpole[gp,uv ¢} = 16?% d"x/ |g| FEisw (911)
so that
1 53
=——F 12
167245 (9.12)

Anomalies have always provoked some sort of discussion in the com-
munity. The reason is that sometimes, when using an inappropriate regu-
larization scheme, something that looks like an anomaly arises and one has
to be careful to not to break by hand the symmetry because of the scheme
chosen. Thus, it is natural to ask ourselves if such scheme that preserves
Weyl invariance exist. Indeed, in [25] it was suggested that when a dilaton,
like our field ¢, is present in the theory, one can modify dimensional regu-
larization in such a way that the issue is solved. In our case, this amounts
to cancelling the scaling dimension of the integrand by powers of ¢. The
corresponding one-loop pole term would be then

- 1 53
Fpole[guuv¢] 416 245/ T/ ‘g QZ)

n4)

(9.13)
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with £ as given in 8.30.

With this change, now the integrand is exactly Weyl invariant in any
dimension and no anomaly arises. We are now preserving the Ward identity
and saving the frame equivalence. A similar scheme can be implemented for
higher loop corrections but as everything in life, this comes at a price. If we
now perform the renormalization process, although the pole part is exactly
the same as before, we find that finite terms are modified. The renormalized

effective action receives now a new contribution

1 53

~lezas | 4V 9| log(¢) £ (9.14)

which enters as a non-local function of the fields!. This implies that a

corresponding non-local counterterm is required.

Of course, all this discussion is trivial for the one-loop counterterm
since it is a total derivative, but it has a well-defined meaning if we go to
higher loops. There, the counterterms will contain higher powers of the Rie-
mann tensor which are not total derivatives and all this discussion applies.

In particular, at two loops we find?
11 209 2\ (n=0)
_ n — n— _2(n—6
Lpote v = d" n—2 s
polelurs €1 = S 5T 2880 (8(n—1)> / wVlgl 6720
(9.15)

where C3 means the cube of the Weyl tensor.

From this analysis we can conclude two things. First, that the naive
expectation phrased by Duff that "Spurious Weyl invariance is not anoma-
lous” is indeed only true if we get rid of locality notions when renormalizing.

We have found a particular example in which this is realized.

But second, we have argued that the assumed equivalence of Einstein
and Jordan frame must be taken carefully. Adding to the issue already noted
by Vilkovisky quite time ago[67] that mean field equations are not equivalent

we have found that even at the on-shell effective action level there could be

Tt is important not to get confused by the appearance of logarithms of the fields in, for

example, the Coleman-Weinberg potential. There, they appear because an identification

of the p scale with the effective mass of the field p? = %. Here, it appears a priori and
no regularization scheme can avoid it.
2 Assuming that the on-shell equivalence holds and using the result of [5] for the two-

loops counterterm of General Relativity.
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an issue when the transformation opens a new symmetry. Then, anomalies
can spoil the equivalence by modifying physical observables in one of the
frames. We have showed this in particular by using Weyl invariance and
one can argue that this symmetry is not generically present in realistic cos-
mological applications. However, going to the Jordan frame always implies
the substitution of Planck mass by a corresponding power of the dilaton
field Mg — ¢? and a scale invariance emerges. It is natural to question if

quantum effects can break scale invariance and spoil the equivalence.
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A new role for A

As we saw in chapter 1, the standard lore of effective field theory is compro-
mised in the presence of gravity. The cosmological constant gets corrections
from matter (and gravitational) loops in such a way that there is a huge
discrepancy between naive calculations and the observed value obtained by
using different experimental methods. This reflects as a fine-tuning problem
in equation (1.16), implying that the bare value of the cosmological constant
had to be chosen

A + (matter loop corrections) ~ 10747 GeV* (10.1)

with extremely huge accuracy.

This introduces an extra scale in the theory which is not related at
all with the UV scale M,, and wilsonian arguments about EFT’s break com-

pletely.

The reason underneath this problem comes from the fact that that

any potential energy couple to gravitation through a minimal coupling

sv = [ dtay/lg V(@) (10.2)

so that the zero mode of the metric, which is not suppressed at any scale,
mediates the interaction and introduces corrections to A by means of vacuum

diagrams.

Many possible solutions for this issue have been considered so far in
the literature, being the standard lore that the IR behavior of GR must be
modified in some manner, thus changing the way in which this zero mode be-
haves. This has lead in the recent years to a resurgence of massive gravity|[71]
and the consideration of bi-gravity[72] among many other modified gravita-
tional theories that try to reconcile the wilsonian picture with the observed

value for the cosmological constant.

Perhaps the most radical of these modifications is Unimodular Gravity,

consisting on restricting the physically admissible metrics to those of unit
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determinant |g| = 1. By doing this, the zero mode does not couple to the
potential term any more and any possible contribution to the cosmological
constant drops out of the equations of motion. Thus, Unimodular Gravity

(UG) is defined, in the absence of matter, as simply
Sya = —Mg/d‘*m R[|g| = 1] (10.3)

Although this defines UG, it is not fully operationally comfortable.
The degrees of freedom of the theory are not independent and one is forced
to work with a restricted variational principle. Since we are constraining the
physical metrics to be unimodular, the equations of motion of the theory
must be obtained by using a traceless variation

1
0G0 = 09w — Zgwg“ﬁégaﬁ (10.4)

Therefore, when Unimodular Gravity is coupled minimally to matter

with an arbitrary conserved energy momentum tensor

Svgsr = [ do { Rl =11+ g1} (10.5)
the equations of motion will correspond to the traceless part of the Einstein
equations’

1 1
RMV — zRguy = T,uy — ZTQMV (106)

It seems at a first glimpse that this theory fails to reproduce known
IR physics and, in particular, Solar system physics, since the equations of
motion do not reduce to the ones of General Relativity. Moreover, even
if the wilsonian problem of the cosmological constant exists, we also know
that our Universe has a non-vanishing value A and therefore this must be
accommodated in some way in any realistic approach. Completely vanishing

the presence of A is not an appropiate solution.

However, this is illusory and the trace degree of freedom can be taken
back into game by using contracted Bianchi identities, which are always

satisfied in any riemannian manifold. These are

1
VR~ VYR =0 (10.7)

! Actually, these equations could be named Einstein equations too, since they were
already proposed by Einstein back in 1919(73] for completely different reasons than the

ones presented here.
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which, upon substitution of the equations of motion, imply
Vu(R+T)=0 (10.8)

By integrating this we find a constraint that relates the scalar curva-
ture with the trace of the energy momentum tensor and some integration

constant that we cleverly label as A
(R+T)=—4A (10.9)

Finally, combining this with the traceless equations of motion (10.6)

we recover the trace degree of freedom and the full Einstein equations

1
R, — §9WR —Ag =T (10.10)
with the integration constant A taking the role of the cosmological constant.
The main difference with the standard approach is that its value is here given
in terms of initial conditions for the metric evolution, it is an integration
constant after all, instead of being a dynamical coupling of the lagrangian.

Vacuum energy generated by mater loops does not gravitate any more.

There is another main difference of UG with respect to GR. Since we
are restricting ourselves to the set of metrics with a fixed determinant, the
theory cannot be invariant under the full group of diffeomorphisms any more
but only under those that preserve the value of the determinant. In other
words, only those diffeomorphism which preserve the volume are symmetries

of the theory. Those are given infinitesimally by
59}“’ - ££guy - v‘u,gy + vl’gﬂ (1011)
where the generator of the diffeomorphism is constrained to be transverse

V=0 (10.12)

We dub this subgroup transverse diffeomorphisms (TDiff) and al-
though one could think that reducing the symmetry group can compromise
the perturbtive stabilty of the theory, this is not the case at hand. Sur-
prisingly, one does not need full Diff invariance to protect the theory from
ghost propagation and actually TDiff is the biggest subgroup of Diff that
is able to kill all the unphysical polarizations of the graviton perturbation|[?]

huw = guv — N and thus we are safe.
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The main question that arises here is whether this protection of the
cosmological constant can be preserved in a Quantum Field Theory formu-
lation of UG. Were not, then the wilsonian picture of effective field theory

would be compromised anyway and UG would not solve anything.

It is important to note that the unimodular constraint is not a gauge
fixing. Although it is true that in General Relativity one can always choose
the condition |g| = 1 by means of the diffeomorphism invariance of the
theory, in this case we are reducing the space of physical metrics a priori
in the action, while a gauge fixing is done at the level of the equations of
motion. In particular, in the second case, the coupling g,, A between the
metric and the cosmological constant does not vanish in this gauge while for

the unimodular theory it is always absent.

In order to construct a path integral, the action (10.3) is however
not very useful. Using it we would have to integrate over those metric sat-
isfying the unimodularity condition and an extra prescription is required.
One possible option is to write the theory as GR and impose the unimod-
ular condition by using a Lagrange multiplier ([74] and references therein).
However, this is dangerous because the multiplier could acquire dynamics
through quantum corrections, spoiling the constraint. Here instead we prefer

to perform a field redefinition

Guw = 191" gy (10.13)

which is explicitly unimodular, arriving to an action principle[75, 76, 77]

~1)(n—2) V,|g|V*
s:_/d”xygyi{R+(" 4);? ) “'gg|2 ’9’} (10.14)

which we write in arbitrary dimension n in order to use later dimensional
regularization. Note that the appearance of the determinant of the metric
here is not dangerous because it behaves as a scalar under TDiff, so the

action is still covariant with respect to this symmetry.

In this form, the banning of the cosmological constant from the action
happens because of the presence of an extra gauge symmetry in the form of

Weyl invariance
Guv — Q2g;u/ (10.15)

with 2 a function of the spatial coordinates.
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Then, any possible dimensionful constant and in particular a cosmo-
logical constant, is forbidden from the action principle. In particular, the

coupling

/d”‘x\/@A (10.16)

would break Weyl invariance explicitly.

Additionally, and quite surprisingly, this action is the only other pos-
sible one, apart from General Relativity, which propagates a single spin two
degree of freedom about flat space[77, 78].

In the new variables, the equations of motion are still traceless (as
a requirement of the Noether constraint imposed by Weyl invariance) but

they get new contributions proportional to the determinant of the metric

1 (n—2)(2n—1) (V,gV,g 1(Vg)?
R,uu - ﬁRg,U,ll - 4”2 _92 - E 92 g,uzz +
n—2(V,V,g 1V 1
1 ) = (T — =Ty, 10.1
+ m ( p - Iu I ok (10.17)

The original theory is recovered by partialy fixing the gauge to |g| = 1

so that these reduce to the traceless Einstein equations (10.6).

In all the different formulations of Unimodular gravity, Bianchi identi-
ties ensure the full equivalence with General Relativity at the classical level
by reintroducing the trace degree of freedom, recovering the full set of Ein-
stein equations. However, this equivalence is not ensured at the quantum
level [79].

If it is possible to preserve the unimodularity condition in the path
integral formulation, then the naive expectation is that no possible renor-
malization of the cosmological constant may happen and that its property of
being an integration constant is preserved when quantum corrections enter
into game [?, 80]. There are some hints along this path in the context of the

asymptotic safety scenario [81, 82] but their conclussions are not very clear.

In the following we will compute explicitly one-loop corrections to the
action (10.14) by means of the generalized Schwinger-DeWitt technique of
chapter 4. in order to answer this question. We will see how the on-shell
counterterms do not contain any dynamical coupling to the cosmological
constant which is hence fixed to an integration constant at any order in

the loop expansion. Aditionally, we will check that no Weyl anomaly is
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generated so the algebraic gauge fixing |g| = 1 can be done at all levels

without spoiling the equivalence between (10.3) and (10.14).
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In order to compute quantum corrections to Unimodular Gravity, we are go-
ing to exploit the techniques developed in chapters 3 and 4 to compute the
divergences of the one-loop effective action in the background field approach.
We start then by splitting our fields in background plus perturbation. How-
ever, here we will depart from the usual linear splitting. Since afterwards we
pretend to fix the background gauge |g| = 1 in order to recover our original

formulation for Unimodular Gravity, we will use the most useful splitting

~ 1
Guv = 191" (9w + hyw) (11.1)

which makes the background metric unimodular, rather than the usual g, =
Guv + hyw. Notice that we can convert the splitting in (11.1) into the usual
splitting by performing a Weyl transformation of the quantum field together

with one of the background metric.

Let us warn the reader that from now on the covariant derivative will
be defined with respect to the metric g,,, and that, unless explicitly said,
we are dropping any symbol to denote background quantities in order to get
cleaner formulas. Conceptually however it is important to keep in mind the

difference between the full metric and the background one.

As it stands and after expanding it, Sy will still contain the linearized
realization of the gauge symmetries of the theory, TDiff and Weyl, and thus
a proper definition requires a gauge fixing. In the BRST language of chapter

5, the action of these symmetries can be written as

SDYuv = SWGuv = 0
sphu = Vyuck + Yk + PV by + Ve Py + Ve P by,
SWh;w =2c (g/w + h;u/) (11.2)

where ¢ and ¢”* are the anticommuting ghost fields for Weyl invariance and

transverse diffeomorphisms, respectively. In this language, the transverse
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condition is satisfied by imposing VMCT“ = 0 on the ghost field. The su-
perscript 1" thus means that the vector ghost satisfies this condition. The

gauge fixing procedure of these gauge symmetries will be discussed next.

Recalling chapter 3, the quantum effective action in the background

field approach was given by
_ 1 .
[fg) = 5 log [det(D)} (11.3)

where D is the operator driving the one-loop quantum fluctuations, defined
by the quadratic term in the expansion of the action around the background

metric
Sy = / d"x Lo = / A"z W Dy peh?° (11.4)

It is useful to write down the expression in arbitrary dimension as it would
stand before the background metric is assumed to be unimodular

1 9 1
Lo = v Dh, - n + B2 hoh+ - (Vuh“a) (Vohis) = = (V,h) (V1) +

1 2 — 3 1
+ Wth + 27 (v, logg) (hf”whg + fh‘”ﬂvkhg — nmh‘”) +

2n
(n—2)*
8n3

+(n? = 3n +2) (4h2(V log 9)2 - ﬁhﬂyh“”(v log g)* — ﬁhh’“’RW—

1
+ (Ve logg) hVah + = (Vﬁ logg) h®’Vah+ th’ﬁh“RW+

8 &n

T un3
8 — 6n + n?
8n?

1 1
hhag (V*logg) (V7 log g)> + ih’“’h“BRwuB - %h””hwR—

(V*logg) RV ahu, + —5hihgy (V¥ logg) (VP logg)  (11.5)

420“

Of course, D will contain in principle zero modes coming from the
gauge symmetries of the theory translated to the linear level which will
make its determinant singular. This is solved by constructing an appropriate
gauge fixing term using the BRST quantization method.

Finally, since we are using the splitting (11.1), the action for the one-
loop quantum fluctuations greatly simplifies, since all terms depending on

Vg now vanish. Thus, we end up with
1 + 2 1 1
L= $h"Ohy, - DY S hOh+ - 5 (Vult"®) (V1) = = (V,h) (V) +
1 , , 1., 1
+ §h0‘ﬁthua - Ehh“ Ry + 5h“ hPR o — 5 I by R+ 272112}2
(11.6)
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11.1. Fixing the gauge To gauge-fix the symmetries in (11.2), we shall
freedom use the BRST technique in a similar way as ex-
plained in chapter 5 and introduce the following

nilpotent BRST operator
[ =sp+sw (11.7)

where sp and sy are defined in (11.2).

Here, have in mind that sp is denoting diffeomorphisms that are trans-
verse. The path integral over the ghost fields for TDiff cg must be then
restricted to the subspace of transverse vectors. However, the definition of
such a measure [Dc’#] is a notorious problem [83]. The way to come to
grips with it chosen here is to parametrize this subspace in terms of uncon-
strained fields so that we can then integrate over the full space of ¢*, whose
integration measure is well-defined. This we do by introducing an operator
CH

b =0 = (90— VuVy = Ru) ¢ = (Quv — VuVy) ¥ (11.8)

which maps vectors into transverse vectors. In this way, the transversality

condition over cff translates into a gauge symmetry for c,
v = Vo f (11.9)

with f an arbitrary scalar function. Indeed, this transformation takes ¢, into
a longitudinal vector, so that the ©,, operator annihilates it. Of course, in
order to perform now the functional integration over ¢* we must gauge-fix
this new gauge symmetry by introducing a non-trivial stairway of ghost
levels with BRST transformations defined in such a way that the BRST

algebra closes
sh=sh =0
{SD,Sw}:O (11.10)

on all the different fields considered.

The systematic way to obtain this field content together with the
appropriate BRST transformations is by using the Batalin-Vilkovisky|[84]

1One can easily check that O, is an endomorphism in the space spanned by transverse

vectors.
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formalism. However, in our case, things are easy enough as to allow us
to guess what the BRST transformations read, once the field content of the
theory is chosen as done in [84] for first-stage reducible and irreducible gauge
transformations. Notice that the gauge transformations in (11.2) generated
by sp, with ¢, in (11.8), are first-stage reducible due to the gauge symmetry
in (11.9). However, the gauge symmetries in (11.2) generated by sy are
irreducible. We introduce the following set of fields:

h(0,0) C(l,l) b(l’_l), fISO,O), ¢(O,2)’

[ U
7r(1’_1), 7T/(1,1)7 E(O’_Q), C/(O,O)’
D ph=1) - p(0.0) (11.11)

1D denotes Cpus hfﬁ,’o) stands for h,, and the superscript (n,m)

where ¢
carries the Grassmann number, n, (defined modulo two) and ghost number,
m. In this language, the BRST operators sp and sy enjoy Grassmann

number 1 and ghost number 1, each.

Here we have three families —displayed in three different lines— of fields.
The first line includes the physical graviton field together with the usual
ghost field content that would be naively necessary in order to gauge-fix an
unrestricted Diff symmetry. In addition, there is a ¢ field which accounts
for the transformation in (11.9). The second line represents the field content
introduced to gauge fix the gauge symmetry in (11.9), together with the one
that will be induced on b&l’_l) by contraction with c&l’l). Finally, the third

line is the field content due to Weyl invariance.

Now, we define the action of sp and sy on the fields as shown in
Table 11.1, where (Q*I)QL = Gua (Qfl)”a denotes the inverse of the operator
Quv = 9w — Ry, which exists provided Det(Q) # 0. This is our case since

Qv is just a standard Laplacian-type operator acting on vector fields.

With these definitions, it can be readily shown that the equations in
(11.10) hold. In doing so, it is advisable to show first that

spctt = cTPv e (11.12)
if ¢T* is defined as in (11.8). This can be done by using the following results
Vu(eTV,c"™ =0, V. [(Q7H ("V,c™)] =0 (11.13)

The path integral quantization of the theory is accomplished now by

adding to the classical action the gauge-fixing action, Syquge— fizing, Which
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field | sp | sw
Guv 0 0
b || Vel + Vel + TV phy + V0w hyy + VT hyy | 2659 (g + Buy)
C(l,l)p (Qfl)i“‘ (CpTvpCTV) + v,ud)(O,Q) 0
$(0:2) 0 0
1,—-1 0,0
bt 00 0
0,0
L(L ) 0 0
6(07_2) 7'['(17_1) O
=1 0 0
o (0,0) o (11 0
' (1,1) 0 0
C(l,l) CTprc(l’l) 0
p(L—1) cTev bh=b 00
f0:.0) chvpf(0,0) 0

Table 11.1: BRST transformations of the fields involved in the path integral.

is an appropriate BRST-exact term:

Sgaugeffizing = /dnx f (XTD +XW) (1114)

X7rp and Xy are polynomials of the quantum fields with ghost number
-1 and Grassmann number equal to 1 and such that they give rise to free-
kinetic terms that are invertible. Since we are only interested in one-loop
computations, we shall further assume that X7p and Xy are quadratic in
the quantum fields. In the next sections we will construct the terms Xpp
and Xy and derive the differential operators involved in the path integral

whose contribution to the quantum effective action needs to be computed.

11.2. The TD:iff ghost Let us start with the function X7p implement-
sector ing the gauge fixing of the TDiff symmetry. With

the field content introduced above and with the
BRST transformations as given in table 11.1, one has the following general

quadratic polynomial in the quantum fields
Xpp = b&l,—l) [F” +p1f“(0’0)} 4 0-2) [chu+p2w’/ ] 4
+ 00 [F{‘b}}»—l) + pgﬂ(l’_l)] (11.15)

where F), is a function containing the graviton field that can be identified

with the usual gauge fixing condition in the Faddeev-Popov technique and
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FI', F}' and the three p; can be freely chosen as long as they do not vanish.
This is enough to fix the TDiff symmetry with the minimal possible content
of fields.

After applying the s operator, this gives a term in the action

/d% [ Xrp = /dniﬂ {f,(f)’o) (F“ + P1f“(0’0)) — b sFry
NI (ch,(}’l) _|_p27r/(171)> +EO-DpEy 60D 4

FSICRY (FlubM(L_l) +p37r(1,—1)> L (O,O)F{Af;(LO,O)} (11.16)

where we have already taken into account that in the expansion (11.1) the

metric is unimodular.

Now, there are some simplifications that can be done. First, let us

)

take the terms containing f,SO’O
700 (B4 pu 00 ) 4 00 R 00 (11.17)

where we have introduced F{‘ using integration by parts as
/d”x aF'b = /d”a: bE'a (11.18)
These can be rewritten completing the square as

1 _ SR | _
1 <fl50,0) + 7(F,u + Fl,ucl (0,0))> _ 47p1(1_7:u + Fl,ucl (0,0))2 (1119)

2p1

and by shifting the variable fﬁo’o) the first term just gives an overall nor-

malization. We are left with the gauge fixing action

1 _
Sher = —— [ d"x (F, + Fy,d (©0)? (11.20)
4p1
where p; has been chosen to be a constant. This would be the outcome of
a standard Faddeev-Popov procedure if this were all the story.

Now let us focus into the terms containing the fermionic 7 fields.
Those read

2(1,=1) (F;cfjﬂ + por’ <1,1)) FISCRY (Fl“bff"” I p3ﬂ<1,—1>) -

= (W(l’_l) — F{'b V(o2 — Ps)_1> (p2 — ps3) <7T/ D+ (py — PS)_1F50£1’1)> +

+ PO (pg — p3) T ES Y (11.21)
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and, again, by shifting the 7 fields we are left with a gauge fixing term plus

an extra path integral depending on how we choose the operators ps and ps3
Sr + Sb% = /d”x (F(l’_l)(p2 — pg)n’ WD B (py — ps)‘ng‘cf}vl))
(11.22)

So that the BRST action for the TDiff sector is further simplified to
/d"sc sXrp = /d”x { — bl(tl’fl)sF“ + 6(0’72)F2‘LVM¢(0’2)+

_ N i 1 _
£l g = pa)a? )4 FEID (g p) VD (o R OO
(11.23)

As a next step, the function F), is chosen with two requirements in
mind. First, that the term F),F'* is able to cancel the non-diagonal pieces
of the operator for the graviton fluctuations in the original lagrangian and
also that it is Weyl invariant so both gauge fixing sectors decouple and their
ghost fields do not interact. With these two requirements, the choice is

almost unique
1
F,=V"h,, — Ev“h (11.24)

and its variation under a transverse diffeomorphism is the equivalent to the

application of the s operator
spF, =0c) + V'Vyuel =0c, + Ric) (11.25)

where in the second step we have used Ricci identity [V,,V,]¢" = Ryc”

T

and the fact that, since we are performing a transverse diffeomorphism, ¢,

satisfies V“cg =0.

T
i

explained before. We do this by introducing the operator ©,, .

Now, we have to rewrite ¢, in terms of an unconstrained field as

spF = (950 + R3) (gawD — VaVy — Ray) /Y =
=% - v,0v,e'tY — 2R, VPV, 'Y — OR,,, /) —
— 2V, R, Vo’ — R ROV LY (11.26)
The action for bﬁl’_l) and CE}’I) is then
She = —/d”:c pr (=D (D%E}vl) - Vv,0v,c’OY 2R VPV, -

_IZIRHpCP(l,l) _ QVURW)VGCP(I"U _ RW)RPVC(VLD)
(11.27)
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The non-diagonal term with four derivatives can be canceled by an
appropriate choice of the functions FI', F}', p2 and p3. We choose them to
be

F{Lb;(}7_1) — —Vab(()[l’_l)
qucl(}’l) = V“cl(}’l)

(b2 — ps)t = -0 (11.28)
Then

F{Lbftl7_l)(p2 _ p3)—1F;c£1,1) _ (Vubl(ll,—l)) Dvucf},l) _ _bl(ll,—l)vuljvpcgll,l)
(11.29)

where in the second step we have performed an integration by parts keeping
in mind that we are always under an integral sign. The final action term for

1,-1 1,1
b1V and (1D

and ¢ is then

Spe + 8% = / d" b (1) (Dch’l) —2R,,V*V, /0 —0OR,,,c?Y) —

~9V, Ry VoD — Ry R (11.30)

And with this choice of (p2 — p3), the integration over the 7 fields is
given by

Sy = /d"x aL=Hg=ig (LD (11.31)

The operator involving ¢ (%0 and induced by this choice of fixing

functions is

1 7. _ _
Spo = — / dw g - [F{*c’@vo)ch’(OvO) +2F, Fli¢ (00) 4 F“Fﬂ} -
1

1
= / d"z o {vuc’ 0Ogr 00 1 op yre 00 4 F#F“] (11.32)
1

which mixes with the operator of the graviton fluctuation due to the term

containing F), and ¢/ (00),

Finally, the operator for ¢®~2 and ¢(®2) is

Sep = / d"z %2060 (11.33)
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Summarizing, the BRST exact action for the TDIff symmetry is re-
duced to

STpiF = / A"z b (D%E}’l) —2R,,, V"V, 'OV —0OR,,,"Y + &0-20p02) -

_ZVURMpvacp(l,l) _ RupRpl/cl(ll,l)) 4Oty ()

1

= She + S5 + Sep + Sx + Sher (11.34)

The contribution of all these pieces to the quantum effective action

will be computed in section 11.4.

11.3. The Weyl ghost Now we turn our attention to the second part
sector of the gauge fixing sector, corresponding to the

Weyl invariance of the theory. We choose the
function Xy to be

Xy = V,b-Dyn ( FOO _ g(h)) (11.35)

with g(h) being some function of the trace of the graviton fluctuation only,
to ensure that it is invariant under a TDiff transformation and thus the
ghosts do not interact with the TDiff sector. The parameter o we mean to
keep arbitrary all along the computation. Aditionally, we know by Kallosh-
DeWitt theorem that the on shell effective action should be independent of
a (because it appears in a BRST exact piece), and this will be used as a

nice partial check of our results.

After the application of sy, the BRST exact action is
Sty = [ @a [ur®Ovr (109 - a (b)) - aV, bV (sg(h)
(11.36)
And we choose g(h) to be the simplest choice
g(h) =h (11.37)
The BRST term piece is then
Swey = Sw + Shy = /d”x T, fONVE (FO0 —an) — 2nav, b1 D VD <

:/dnm (_f(o,o)mf(o,o) n %f(ovo)Dh+%th(0’0)) 1 2na b0
(11.38)
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This gives two contributions to the one-loop effective action. The first
part needs to be added to the original action of Unimodular Gravity and
mixes the gravitation perturbation with the auxiliar f field. The second

piece is the corresponding ghost action.

11.4. The one-loop ef- Once the gauge freedom is fixed completely, the
fective action of Uni- computation of the one-loop counterterm of Uni-
modular Gravity modular Gravity is reduced to a computation of

a set of determinants. By collecting all the terms
defined in the previous sections, the pole part of the one-loop effective action

will be given, as explained in chapter 3, by
(9] = TY%gu] + T"g] + T (9] + Tgu] + TV [g]  (11.39)

where each I"'[g,,,] refers to the contribution to the pole given by the action
labelled as S; in the previous sections, with the only exception of TV¢ (9]

which is given by
Sua = So + She + Shf (11.40)

All but one of the operators involved in our computation are minimal
operators and thus their contribution to the quantum effective action can
be computed by the techniques in chapter 3. The only exception is given
by Sp. which contains four derivatives. It can be however treated by te
techniques of chapter 4 and its contribution can be read from [53]. The
operator contained in Sy is however non-minimal and thus it requires to

use the Generalized Schwinger-DeWitt technique of chapter 4. It reads
S = o+ Sper + Shy :/d%c (11.41)

with

1

4n
1 o o 1

_ _— pHuv _ - = _~ K2p_
5l h,WR+( fOf + 5 fOh+ 2th)+2n2h R

1 1 1 1
L= W Ohyy — o -hOh + 5mﬁth,m + thhaﬂRWﬁ = ~hh" Ry~

- % (Vuc’ 00 ghe (0.0) 4 9 (vyh; - ;v“h> Vi <0»0>> (11.42)

where we have set p; = % in order to cancel the non-diagonal parts in the

kinetic term for A, .
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To write it in the standard form, we identify

i
A= ¢ (11.43)

C/

and the differential operator takes the form
Fip = ’yABD—I—JﬁI;BVMVV—I—MAB (11.44)
where the different matrices involved read

_% (%’Cﬁfpo - Pﬁfpa) Yap 59w _%guv

YAB = S 9p0 -1 0 (11.45)
_%gw 0 3
0 0 1 (g,‘}gf + 9395)
J 0 0 0 (11.46)
: (gﬁg? + 929, ) 0 0
My, 0 0
Mag=| 0 0 0 (11.47)
0 00

with
1 1 1 1 1
Vi = (3P 55 ) R = § (P = 35300 ) 2057+ 3R
(11.48)

The round parenthesis for us mean complete symmetrization in all the en-
closed indices unless otherwise stated. The tensors ’Pﬁ{?pg and Kﬁfpg are the

same used in chapter 8

0% 1 (0% o (0% (0%

Pipor = 3 (gupéﬁ 02 + 9400500 + 9,006 + g 55)) (11.49)
03 1 o (0%

Kufpo‘ = 5 (g,LLl/él() 55) +gp05,g 65)) (1150)

The contribution of this operator to the effective action can be com-

puted by using the Generalized Schwinger-DeWitt technique of chapter 4 as
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explained there. All but one of the functional traces required for our result
were contained in [53] but they are reproduced in chapter 4 for completeness.
The computation has been performed with the help of the Mathematica soft-
ware zAct [70]. A fair amount of computing time has been necessary in order

to simplify the resulting expressions.

Finally, putting all together we find that the contribution to the pole
part of the effective action of Sy is

1 1
F[g,uz/]UG /dnx a4

T 16m2n—4
with
16 1 46 1 1
— uva _ v - 2
a1 = 13 Ruas B + <6a2 15) Ry R™ + <3 24a2> R (11.51)

where we have neglected total derivatives in the integrand?.

As has been already advertised, all the dependence on the gauge fixing,
represented by the presence of the parameter « in the final result, disappears
when we use the background equations of motion R, = iRgW. This is as

it should be because our gauge fixing is BRST exact.

11.5. The one-loop After computing the contribution of the non-minimal
counterterm operator, we are finally ready to write the pole part
of the effective action of Unimodular Gravity, which

reads
F[gw/] = F[guu]UG + F[guu]bc + F[guu]w + F[Quu]éd) + F[guu]W (1152)

Here T'[g,]uc is the contribution we have computed in the last sec-
tion while the rest of the contributions are given in appendix ?7?. Adding

everything, we find that the final result is

1 1
Igw| = /d"x Ay

1672 n—4
where
119 1 359 1 3
Ay = —RupasR*"P + | — — 2 )R, R"™ + — (22— = | R?
17 Tgp el +<6a2 90) s +72( a2)

(11.53)

2This prevents us to compute the Weyl anomaly from our result, because total deriva-
tives can give non-vanishing contributions to the anomalous Ward identity. However,
this is irrelevant since, as it will be explained later, a regularization that preserves Weyl

invariant can be implemented at all orders in the loop expansion.
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Now we would like to focus on the issue of on-shell renormalizability.

It is known that although General Relativity is one-loop finite in the ab-

sence of a cosmological constant, this property is lost in its presence. The

on-shell counterterm in this case was obtained in [10]. It amounts to a
renormalization of the cosmological constant and is proportional to

rGFr = W / V]gldiz <53 1113452/\2) (11.54)

Since the main attractive feature of Unimodular Gravity is precisely

the different role that the cosmological constant plays with respect to GR,

we would like to see what happens here with the renormalization group

flow when we take the counterterm to be on-shell so that all external legs

correspond to S-matrix states. In that case, the equations of motion for the

lg| = 1 fixed background are the traceless Einstein equations
1
Ry, — ERQW =0 (11.55)

which, altogether with Bianchi identities, imply the following for the oper-

ators appearing in the effective action

RuapR™ = B4 (11.56)
1

R, R" = ZR2 (11.57)

R = constant = A (11.58)

The first line is nothing more than the statement of the Gauss-Bonet theorem
when we take into account the equations of motion. FEj is thus the Euler
density, whose integral gives the Fuler characteristic of the manifold.

By using these, we find that the on-shell effective action takes then

the form

1 1 119 83
F[gwj]on—shell — /dn <E4 _ 22 A > (1159)

1672 n —4

Now we come to the issue of the renormalization of the cosmological
constant. In principle here we have a divergence associated with vacuum

energy that would require to add a counterterm of the form

/d"x SyA? (11.60)

115



Chapter 11. Quantizing Unimodular Gravity

that renormalizes it. However, the point is that here this counterterm does
not couple to gravity at all. The effective equations of motion that come

from the variation of the effective action

T _y (11.61)
0Gw

are blind to this parameter. Therefore, this renormalization is non-dynamical
and completely irrelevant. What we call the cosmological constant in this
setting is still given as an integration constant and its value is chosen clas-
sically by using Bianchi identities. This reduces the cosmological constant
to the role of a standard coupling. Once its physical value is set, it stays as
it is.

Actually, this effect is not specific to one-loop computations. We then
conclude that the bare value of the cosmological constant is protected and

quantum corrections do not modify it.

It could be thought that this effect is just a gauge artifact of our
background choice |g| = 1. However, it can be easily argued that this is not
the case. As we have commented before in this work, if we now want to
obtain the effective action for an arbitrary background from the one with
unimodular background metric, it is enough to make a change of variables
so that

1

gul/ =9 "Guw (11.62)

When doing this, we can see that the real reason of the cosmological
constant not being renormalized is indeed the presence of Weyl invariance in
our formalism, which protects the appearance of any mass scale in the effec-
tive action and, as a consequence, in the expectation value of the equations
of motion. Therefore, our argument holds and the cosmological constant
is protected and fixed to its bare value all along the renormalization group

flow and at any loop order.
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Summarizing our results, we have seen that the one-loop counterterm of

Unimodular Gravity takes the form

onshe 11 . (119 83
T[g,. o5l = T /d T (E4 — A2> (12.1)

The first term is a topological invariant and it will give no contribution
to the effective equations of motion. The same happens for the second term
but for completely different reasons. It is a non-dynamical operator, which
does not couple to any field and therefore its variation vanishes. We then
conclude that Unimodular Gravity in the presence of a cosmological constant
inherits one of the nicest properties of plain General Relativity: it is one-
loop finite. The coupling constants of the theory are not renormalized and

the effective equations of motion read

or 08

69 KV lone-loop 59 v

(12.2)

This has deep implications from the point of view of the cosmological
constant problem. First, it solves the problem of the vacuum energy. In
this theory, vacuum energy does not weight neither clasically or through
quantum corrections and the cosmological constant is stable under radiative
corrections. It is demoted to the role of a simple coupling, whose value has
to be set by an experiment, as with any other physical quantity like the
electron mass in QED.

This also solves the tension with wilsonian arguments. Now all the
higher order corrections of Unimodular Gravity will be weighted solely by
the Planck mass, allowing us to construct a consistent EFT even when the

cosmological constant does not vanish.

Of course, one could think that our result is a consequence of the par-

ticular background splitting we have chosen, where the background metric
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is unimodular by hand
gl =1 (12.3)

However, as explained before, one can recover the result for arbitrary

metrics by performing a Weyl transformations on this result
- _1
uv = 9] ™ Guv (12.4)

This is safe as long as there is not Weyl anomaly in the theory and
this happens to be precisely the case. Let use remind that, as explained
in chapter 2 and in the conclusions of the last section, one can obtain a
regularization scheme which is safe and where Weyl anomalies do not appear
by using a scalar dilaton field as a compensator. It amounts to do the
following. If we were using plain dimensional regularization ,we would have

a counterterm of the form
Top = —— / &'z O (12.5)
= €T .
cT n_4

so that, recalling that the anomaly appears because O is invariant only when
n = 4, the new scheme consists on adding extra powers of the scalar field
(let us call it ¢)

1 n—d
Ter=—— " ¢ 12.
or =ty (@200 (12:6)

so that the integrand is invariant in any dimension. Here Ay is the scaling

dimension of ¢.

In UG we do not have any extra scalar field to use but, since the
symmetry group of the theory is just TDiff, the determinant of the metric
lg| is a scalar quantity and can take the role of the compensator. Therefore,

the anomalous safe one-loop counterterm for arbitrary metrics will be

1 1 11
F[gul/]on—shell — /dnx (’g’ZQOQE — 83A2> (127)

1672 n—4 120

which is not only Weyl invariant in arbitrary dimension but also the cos-
mological constant remains decoupled at all orders in the perturbative ex-
pansion. This regularization scheme is not present in General Relativity or
any other Diff invariant theory because then this would break precisely that

symmetry, exchanging the Weyl anomaly by a Diff one. It is precisely the
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fact that the symmetry group is reduced to TDiff what makes the trick to

work.

To conclude, although Unimodular Gravity it is non-renormalizable
and must be still regarded as an effective field theory of the gravitational
interactions, it solves the issue of the ambiguous description that appears
in GR, where two scales, an UV cutoff M, and an IR one A are present.
Unimodular Gravity is then a trustable EFT.
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The main conclusion of this work could be phrased simply by saying that
scale (Weyl) invariance is still one of the most complex and poor understood
symmetries in physics. The prospectives about the finiteness of quantum
actions that it suggest are equally tarnished by the huge conceptual problems

that it poses, particularly in the presence of dynamical gravitation.

While trying to understand some of the properties of this symmetry
in the framework of Quantum Field Theory, we have studied two actions,
corresponding to what we dub Conformal Dilaton Gravity in part II and to
Unimodular Gravity in part I11. By means of well-known techniques in mod-
ern theoretical physics, the Background Field method and the Schwinger-
DeWitt technique (plus their generalizations) introduced in part I we have
been able to shed light to two main questions where Weyl invariance might

be relevant.

By using Conformal Dilaton Gravity we faced the problem of the
equivalence between actions that are classically related by non-linear trans-
formations. After computing quantum corrections for CDG both in and out
the Weyl invariant point, we concluded that the divergences of the theory
were related to the ones in the Einstein frame by the same transforma-
tions than the classical action. However, this is not true any more when we
have an anomaly in one of the frames. Weyl anomalies in CDG imply the
presence of a new operator whose vacuum expectation value is driven by the
anomaly. In the Einstein frame, however, there is no anomaly, because there
is no Weyl invariance or any equivalent non-exact symmetry, and the corre-
sponding operator does have a vanishing vacuum expectation value. Even
the naive expectation that S-matrix physics should be equivalent for both
theories is broken in the presence of the anomalous term, that can mediate

a scattering amplitude.

We related this situation to the fact that dimensional regularization,
while it can be applied in both frames, is not as good in the CDG frame
as in the Einstein frame. One can turn instead to an improved scheme,

where a compensator field is introduced and anomalies disappear, but this
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comes at the cost of having to introduce non-meromorphic counterterms
which apparently could also lead to an inequivalence of the S-matrix any
way. These conclusions are however premature and more deep research is
needed to assert to what extent one can trust in frame equivalence in order

to extract physical universal results from the theory.

As a corollary of our work with CDG, we also see that since in a pure
Weyl invariant theory there is no scale in the lagrangian, probably we never
can decouple gravitational physics from the matter dynamics. Even when
choosing a vacuum expectation value for the scalar field, thus working on
the Higgs phase of the theory, Ward-Takahashi identities must still be non-
linearly realized and quantization must be done along the same lines as with
the non-broken theory. It is reasonable to think that the equivalence prob-
lems then could be originated by our poor understanding of some aspects of

quantum gravitational fields mixed with the non-renormalizability of theory.

Later, we used Weyl invariance as a tool to address one of the most rel-
evant problems in modern physics, the active cosmological constant problem.
While Einstein gravity is a good behaved effective field theory in the absence
of a cosmological constant, there is an infra-red problem when A # 0 that
we addressed here in terms of Unimodular Gravity. By writing the action of
such theory in a particular frame where the metric variable is Weyl invariant
we were able to quantize the graviton fluctuations (although we had to use
a very complicated ghost sector) and prove that regardless there is matter
or not coupled to gravity, the unimodular theory solves the cosmological
constant in a very elegant way. At every order in the perturbative expan-
sion, the cosmological constant is banished to be a dynamical coupling of
the theory and no operator in the renormalization process is able to produce
it. It is reintroduced only when considering the effective equations of motion
for the mean fields, where Bianchi identities allow for an extra integration

constant to take the role of A at the time of solving the equations.

By using Unimodular Gravity, one can now construct a well-defined
effective field theory for gravitational interactions, whose cut-off is given in
terms of the Planck mass and no infra-red problems arise. Moreover, the
cosmological constant is given, as if it were a marginal coupling, simply in
terms of a physical measure. We believe that this is a huge improvement

over the standard general relativistic lore.

Finally, to summarize all the content of this work in a single paragraph,
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we were able to prove the usefulness of Weyl invariance in allowing to relax
fine-tuning problems related to gravitational operators. However, the quest
for a finite theory of gravity still continues and although Weyl invariance
is a promising idea, there are many questions that must be still answered,
mostly related to the not so well understood Weyl anomalies. There is still
many work to be done and while the XX century was the century of particle
physics, it is reasonable to hope that the XXI century will be the century of

quantum gravity.

Home is behind, the world ahead.
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La conclusién principal de este trabajo puede ser resumida diciendo simple-
mente que la invariancia de Weyl sigue siendo una de las simetrias méas com-
plejas y menos entendidas en fisica, estando las esperanzas sobre la finitud de
acciones cudnticas que sugiere fuertemente frustradas por los grandes prob-
lemas conceptuales que induce, particularmente en la presencia de gravedad
dindamica.

Mientras intentdbamos comprender algunas de las propiedades de esta
simetria en el marco de la Teoria Cuantica de Campos, hemos estudiado dos
acciones, correspondientes a lo que hemos denominado Gravedad Dilaténica
Conforme en la parte II y a Gravedad Unimodular en la parte III. Por
medio de técnicas bien conocidas en la fisica teérica moderna, el método de
campo de fondo y la técnica de Schwinger y DeWitt (y sus generalizaciones),
introducidas en la parte I, hemos sido capaces de arrojar luz sobre dos

cuestiones importantes en las que la invariancia de Weyl es relevante.

Utilizando la Gravedad Dilaténica Conforme, nos enfrentamos al prob-
lema de la equivalencia entre acciones que estan relacionadas por transfor-
maciones no lineales a nivel clasico. Tras calcular las correcciones cuanticas a
GDC tanto en el punto invariante Weyl como en el no invariante, concluimos
que las divergencias de la teorfas estdn relacionadas con las calculadas en
el referencial de Einstein bajo las mismas transformaciones que la accién
clasica. Sin embargo, esto deja de ser cierto si tenemos una anomalia en uno
de los referenciales. Las anomalias Weyl en GDC inducen la existencia de
una nuevo operador cuyo valor esperado en el vacio viene dado precisamente
en términos de la anomalia. En el referencial de Einstein, sin embargo, no
hay anomalia, porque no hay ni invariancia Weyl ni ninguna otra simetria
no exacta equivalente, y el valor esperado del operador correspondiente se
anula. Incluso la esperanza ingenua de que la matriz S sea equivalente para
ambos referenciales deja de ser cierta en presencia de la anomalia, que puede

mediar en una amplitud de dispersion.

Hemos relacionado este efecto con el hecho de que la regularizacién

dimensional, pese a que puede ser utilizada en ambos referenciales, no es
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tan 6ptima en el referencial de GDC como en el de Einstein. Uno siempre
puede pasar a utilizar un esquema diferente, donde introducimos un campo
compensador y la anomalia desaparece, pero a cambio debemos introducir
contratérminos no meromorfos que aparentemente pueden llevarnos a la no
equivalencia de la matriz S de todas formas. Pese a que estds conclusiones
son prematuras, plantean la cuestion de hasta qué punto uno puede confiar
en la equivalencia de referenciales para extraer resultados fisicos universales

a partir de la teoria.

Como corolario a nuestro trabajo en GDC también observamos que
puesto que en una teoria puramente invariante Weyl no existe ninguna es-
cala, probablemente no es posible desacoplar la dinamica gravitatoria de la
de la materia nunca. Incluso si escogemos un valor esperado en el vacio
no nulo para el campo escalar, pasando a trabajar por tanto en la fase de
Higgs de la teoria, las identidades de Ward y Takahashi tienen que seguir
cumpliéndose a nivel no lineal y la cuantizacién debe realizarse de forma
similar a como se realiza con la teoria en la fase no rota. Es razonable,
pues, pensar que los problemas de equivalencia podrian estar originados por
nuestro pobre entendimiento de algunos aspectos de la fisica gravitatoria,

mezclados con el hecho de que la teoria no sea renormalizable.

Maés tarde, utilizamos la invariancia de Weyl como una herramienta
para atacar uno de los problemas mas relevantes de la fisica moderna, el
problema activo de la constante cosmoldgica. Pese a que la gravedad de Ein-
stein es una buena teoria efectiva en ausencia de esta constante, existe un
problema infrarrojo cuando A # 0 que hemos afrontado en este trabajo a
través de la Gravedad Unimodular. Gracias a que escribimos la acciéon en
un referencial particular donde la variable de integracién es estrictamente
invariante Weyl, fuimos capaces de cuantizar las fluctuaciones de graviton
(pese a que tuvimos que usar un sector de fantasmas muy complicado) y
demostrar que independientemente de que haya materia o no acoplada a
la gravedad, la teoria unimodular resuelve el problema de la constante cos-
molégica de una forma muy elegante. A todo orden en la expansion en
perturbaciones, la constante cosmolégica no puede aparecer como un acoplo
de la teoria y no existe ningun operador generado en el proceso de renor-
malizacién que pueda producirla. Reaparece sélo cuando consideramos las
ecuaciones del movimiento efectivas para los campos medios, donde las iden-

tidades de Bianchi permiten que aparezca una constante de integracion que
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toma el papel de A.

Utilizando Gravedad Unimodular, uno puede construir, por tanto, una
teoria efectiva para las interacciones gravitatorias que estd bien definida y
cuyo corte viene dado exclusivamente en términos de la masa de Planck,
sin que aparezca ninguin problema infrarrojo. Creemos que este resultado
representa una mejora sustancial sobre los procedimientos habituales en el

caso relativista general.

Finalmente, podriamos resumir todo el contenido de este trabajo en
un sencillo parrafo: hemos sido capaces de probar lo util de la invariancia
de Weyl a la hora de relajar problemas de ajuste fino relacionados con op-
eradores de origen gravitatorio. Sin embargo, la busqueda de una teoria
finita de la gravedad sigue en pie y pese a que la invariancia de Weyl es
una idea prometedora, ain quedan muchas preguntas abiertas que necesi-
tan respuesta, la mayoria relacionadas con las anomalias Weyl, las cuales no
comprendemos del todo. Todavia queda mucho trabajo por hacer y mientras
que el siglo XX fue el siglo de la fisica de particulas, es razonable esperar

que el siglo XXI sea el siglo de la gravedad cuantica.

Detrds queda el hogar, enfrente el mundo.
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Contributions to I' by unimodular ghosts

Here we compute the different heat kernel coefficients corresponding to each
of the minimal differential operator appearing in the path integral formula-

tion of Unimodular Gravity.

A.1. The contribution of The action term for the fields b*(1:=1) and
She c*11) was defined in equation (11.30) and

reads

/ d"z bﬂ{m%f}vl) — 2R, VY, —OR,,cPBY — 2V, R, Vo Y —
- RWR%(VLU} (A.1)

This is a quartic operator of the standard form that we can find in
[53] if we identify

JH = —2RASY (A.2)
HY5 = —2V"Ros (A.3)
Pag = —0ORag — RapRY, (A.4)

here the bundle indices are just spacetime greek indices that we indicate
with « and .

And the field strength
[V, Vol = F,Pcs =R,y (A.5)

Its contribution to the effective action can be read from the results of

[53] and reads

1 1 11 41 1
be _ m uvaf 72 2 A
we= L1 / o <45 RuasR £ R R — R > (A.6)

where we have set |g| = 1 and we have multiplied by minus two in order to

take into account of the fact that there are two fermionic fields.
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A.1.1 The contribution of S;4

The action term for ¢ and ¢ was given in equation (11.33), reading
/ 4"z &0~20p02) (A7)

This is the simplest possible operator and its a4 coefficient is given

simply as

. 1
af? = 0 d"z (120R + 5R* — 2R, R* + 2R 50 RMP7) (A.8)

where a factor of two has been introduced to take into account that we have

two fields. Again, remind that we have set g = 1.

Its contribution to the effective action is given by

peo_ L1 1

= Toza1mg | @ (120R+5R% = 2Ry R + 2Rype B7)

(A.9)

A.1.2 The contribution of 5,

The action term for the dynamics of the fermionic 7 fields was defined in
(11.31) and reads

Sr = /d":z: a1y (LD (A.10)

Even if this is a pseudodifferential operator, its contribution to the
pole part of the quantum effective action can be easily computed thanks to
the fact that 0 x O0~! = 1. This means that

Det(d) = Det(O0 )" — log [Det(0)] = —log [Det(071)]  (A.11)

if there is no multiplicative anomaly. This sums up into the fact that the
corresponding Heat Kernel expansion of (0~! will be minus the expansion of
0. Therefore

1
as(d) = ~360 | 4* (120R + 5R? — 2R, R* + 2Ry,po R*P7)  (A.12)

where we have already set g = 1.
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However, here we are integrating over two fermionic fields, which in-

troduces another factor of minus two. Thus, we have that

1
af = 155 [ "¢ (120R+5R — 2R, R™ + 2Rupe RP7) - (A.13)

and its contribution to the effective action is given by

1 1 1
Wi =

%= oran—ais0 | 0 (120R 458 = 2R R + 2Ry R77)

(A.14)

A.1.3 The contribution of Sy,

The action term for the Weyl ghost field was given in (11.38) and reads

2na/d”x bOe (A.15)

The global multiplicative constant will not contribute to the pole part
of the quantum effective action, since it gives just an ultralocal contribution,

so we can dismiss it, having just
/d"w be (A.16)

Again, we are left the simplest possible operator and its a4 reads

1
GXV - —@ dnl' (12|:|R + 5R2 - QRHVRMV + 2R,u,l/pURMVpU) <A17)

where a factor of minus two has been introduced to take into account that
we have two fermionic fields and we have set again g = 1.

Its contribution to the effective action is given by

1 1 1
16m2n — 4180

wY = d"z (120R + 5R* — 2R, R + 2R 0 RM7)

(A.18)
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