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Tesis Doctoral diridiga por
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Resumen Es sabido desde hace décadas que aquellas teoŕıas de campos

que poseen una invariancia de escala se comportan mejor en

el ultravioleta. En este trabajo exploramos las consecuencias que implica

esta simetŕıa en presencia de gravedad dinámica, donde viene descrita en

terminos de invariancia de Weyl, rescaleos locales de la métrica y de los

campos que aparecen en el lagrangiano. Tras describir extensivamente al-

gunas técnicas de uso común en el tratamiento de Gravedad Cuántica como

una teoŕıa de campos, tratamos de responder dos cuestiones principales.

Primero, estudiamos la supuesta equivalencia entre el referencial de Einstein

y el de Jordan en una teoŕıa que denominamos Gravedad Dilatónica Con-

forme, en la que descubrimos que la equivalencia está rota por la presencia

de una anomaĺıa Weyl. Pese a que existe una regularización que resuelve este

problema, no está claro que pueda ser implementada en un marco teórico

consistente.

Más tarde, centramos nuestra atención en Gravedad Unimodular, donde

la invariancia de Weyl se presenta como una forma de relajar el problema

de la constante cosmológica, que pasa a estar definida en términos de una

constante de integración cuyo valor está determinado por las condiciones

iniciales del sistema. Gracias a la construcción de un sector de fantasmas

adecuado, cuantizamos la teoŕıa y calculamos las correcciones a un lazo a la

acción efectiva. Nuestro resultado sugiere que la protección de la constante

cosmológica se preserva en la presencia de correcciones cuánticas supuesto

que no econtremos una anomaĺıa Weyl.

Abstract It is been known since long ago that field theories enjoying scale

invariance have an improved behaviour in the Ultraviolet. Here

we explore the consequences of this symmetry in the presence of dynamical

gravitation, where it is described in terms of Weyl invariance, local rescalings

of the metric and the fields involved in the lagrangian. After thoroughly

introducing some techniques of common use in the field theory approach

to Quantum Gravity, we address two main questions. First, we study the

equivalence premise between the Einstein and Jordan frame in a theory we

dub Conformal Dilaton Gravity, where we find that equivalence is broken

in the presence of a Weyl anomaly. Although a regularization that solves

this issue exists, it is not clear that it can be implemented in a consistent

framework.



Later, we move our attention to Unimodular Gravity, where Weyl in-

variance appears as a way to relax the problem of the cosmological constant,

which is here given in terms of an integration constant, its value determined

solely by initial conditions. By constructing a gauge fixing and ghost sector,

we quantize the theory and we compute its one loop effective action. Our re-

sults suggest that the protection of the cosmological constant is preserved by

the quantization process provided no anomaly arises in the Weyl symmetry.
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Introduction

Sir Terry Pratchet wrote once1 that “Gravity is a habit that is hard to shake

off” and I cannot think of a better phrase to start this thesis. Although

it was not the original intention of the author (he wrote them in a comedy

book) these few words wisely represent what I understand as the common

feeling of the theoretical physics community in the beginning of the XXI

century.

The XX century was undoubtedly an epoch of great advances in Sci-

ence and, in particular, it gave birth to the pillars of modern physics. On one

hand, the General Theory of Relativity came to complete the old Theory of

Universal Gravitation of Newton, upgrading the newtonian ghostly force to

the concept of a curved space-time that was able to describe classical gravity

with a huge precision. On the other hand, the first experiments with sub-

atomic particles gave rise to a program that ended with the constitution of

Quantum Field Theory, perhaps the most grandiose human construct ever

made. However, these two pillars cannot be used together to hold the same

building. General Relativity, when put into the QFT framework, happens

to be non-renormalizable. The theory develops, through renormalization,

an infinite number of couplings that must be determine by doing an equally

infinite number of experiments, thus rendering the framework useless as a

real physical theory.

The unpleasant part of this issue is that if the problem with gravity

were not there, the Standard Model of Particle Physics, or some minimal

extension of it, could be though as a complete theory of Nature, since it

is renormalizable, asymptotically free and describes with great precision

almost all the phenomena we observe. However, gravity exists and the

requirement to describe it together with the other interactions of Nature

poses what it is probably the biggest problem in the history of physics. A

problem that, as Sir Pratchet described with his words, is hard to shake off

and that has driven many of the most important advances in physics in the

last century.

1Small Gods, Terry Pratchet
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Introduction

The seek for a theory of Quantum Gravity has produced some of the

most unexpected discoveries in the history of science and almost everything

has been tried to construct this ultimate theory. From assuming that per-

haps the metric has to be quantized in a special framework, which leads to

the asymptotic safety program or to Loop Quantum Gravity; to the substi-

tution of the UV degrees of freedom of the theory, in a similar manner as

what happens in QCD, which gave birth to String Theory; stopping by the

modification of the symmetry group of the theory, whose main exponent is

the theory known as Hořava-Lifshitz gravity. Many many things have been

tried in the decades since Dirac, Feynman and DeWitt initiated the program

of the quantization of the gravitational field and although some of the tries

gave interesting insights, specially the AdS/CFT correspondence found in

String Theory; we have learnt very few about our initial goal.

Nowadays, it is widely accepted that General Relativity cannot be a

complete theory but instead it has to be though as an effective field theory,

valid only up to a certain UV scale which in this case is the Planck scale,

about 1019 GeV in natural units2 However, this is still problematic, because

the presence of the cosmological constant, the extra coupling that allows to

account for the expansion of the Universe, breaks the standard lore of effec-

tive field theories. While we should expect all higher order operators, those

which renormalize the theory, to be suppressed by powers of the UV cut-off,

this is only true when Λ = 0 and the mere presence of the cosmological

constant complicates the matter.

In this thesis we introduce a common hint towards the solution of both

problems here discussed in the form of Weyl invariance, a local realization of

the flat space concept of scale invariance. When interpreted as an internal

symmetry in a Quantum Field Theory, it leads to the banishing of both

the cosmological constant and the renormalization scale that accompanies

quantum corrections. It is then natural to hope that a consistent theory of

gravity with Weyl invariance will be free of the problems here referred and

this is the main motivation for the work here summarized.

This thesis is organized as follows. In part I we will introduce some

common techniques for Quantum Field Theory in the presence of gravita-

tion: the background field method and the Schwinger-DeWitt technique,

together with its generalization as introduced by Barvinsky and Vilkovisky.

2We define natural units by taking c = ~ = 1.
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Introduction

The first chapters, though, will be devoted to formally introduce the problem

of the non-renormalizability of Einstein-Hilbert action and Weyl invariance.

Later in part II we will introduce a Weyl invariant model of gravity, which

we dub Conformal Dilaton Gravity, and we will use it to study the UV struc-

ture of Weyl invariant theories, arriving to interesting conclusions about the

role of regularizations in the presence of Weyl invariance. Finally, in III

we will present Unimodular Gravity as a Weyl invariant theory of gravity

which solves the cosmological constant problem, half of it at least, at all

orders in the loop expansion. This is achieved by relaxing the role of Λ from

a physical coupling in the action to an integration constant at the cost of

having more complicated interactions. We will construct the path integral

formulation for Unimodular Gravity and conclude that the theory is a valid

effective field theory.
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Part I

Preliminaries





1
Einstein Gravity, the Cosmological

Constant and Effective Field Theories

General Relativity (GR)[1] is constructed from a modern point of view under

the assumption of Diffeomorphism (Diff) invariance and Ockam razor[2].

That is, we assume that the space-time is a generically curved manifold M
equipped with a metric gµν whose dynamics are governed by the simplest

action invariant under invertible coordinate transformations

yµ = Λµνx
ν , det (Λ) 6= 0 (1.1)

These act infinitesimally on the metric by Lie dragging its components

along a direction ξµ

gµν → £ξgµν (1.2)

and demanding the action to be made of local invariants under these trans-

formations fixes it to be a scalar polynomial of the Riemann tensor integrated

with the right measure

S =

∫
d4x
√
|g| P

(
R β
µνα , gρσ

)
(1.3)

where all the indices are contracted with the metric . The Einstein-Hilbert

action of General Relativity then corresponds to the simplest term in this

polynomial (we ignore here the constant term which will produce a cosmo-

logical constant to be care about later), the Ricci scalar R

SEH = −M2
p

∫
d4x
√
|g| R (1.4)

where a dimensionful coupling M2
p must be introduced in order to keep the

action dimensionless in natural units. Mp is the Planck mass and when the

Einstein-Hilbert action is coupled to matter, it sets the scale at which gravi-

tational interactions are relevant to describe the dynamics of the system. Its

value is fixed by solar system physics to be Mp = (16πG)−1/2 ∼ 1019 GeV.

9



Chapter 1. Einstein Gravity, the Cosmological Constant and Effective
Field Theories

Figure 1.1: An arbitrary diagram

with 2 loops, 2 propagators and

one vertex. Its superficial degree

of divergence is D = 6.

Figure 1.2: Same diagram as be-

fore but with an extra loop at-

tached. It has now D = 8.

This is important because it is precisely the fact that this coupling

is dimensionful what drives the non-renormalizability of the theory when

its quantization, along the same lines as with Quantum Electrodynamics, is

tried. Since [Mp] = 1 in mass dimensions and the propagator of the little

perturbations about flat space hµν = gµν − ηµν scales as 1
p2 , where pµ is

the relativistic four-momentum, the superficial degree of divergence1 of an

arbitrary Feynman diagram with L loops, V vertices and P propagators,

like the ones in figures 1.1 and 1.2, scales as

D = 4L+ 2(V − P ) (1.5)

When this is supplemented with the topological identity L = 1+P−V ,

which states no more than the fact that from P + 1 original integrals over

momenta we are removing V by momentum conservation in the vertices; we

are left with the simplified formula

D = 2 + 2L (1.6)

Therefore, the divergence of a diagram increases with the number of

loops, yielding at the end of the day an infinite number of divergences which

must be absorbed with an infinite numbers of counter-terms. We conclude

that the theory is non-renormalizable.

Therefore, General Relativity, although it describes with great accu-

racy the solar system and large scale physics, requires a UV completion

1This is defined as the scaling power of the diagram under the rescaling pµ → bpµ.
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Chapter 1. Einstein Gravity, the Cosmological Constant and Effective
Field Theories

when quantum physics enter into game and can only be trusted as an effec-

tive field theory (EFT). In general, at a loop order L we will generate local

counter-terms proportional to a power L+ 1 of the Riemann tensor, which

are precisely the higher order terms contained in (1.3) that we did not take

into account. These terms, by dimensionality, will be suppressed by higher

powers of the Planck mass

S = −M2
p

∫
d4x
√
|g|
(
R+

1

M2
p

O
(
R2
)

+
1

M4
p

O
(
R3
)

+ ...

)
(1.7)

so that for low energies compared to that scale

E << Mp ∼ 1019 GeV (1.8)

they can be neglected, leading to the interpretation of the theory as an

EFT. When the energy is comparable to this value, higher order corrections

must be taken into account and low energy predictions must be modified

accordingly. This produces, for instance, a correction to the Newton po-

tential between two static sources that could lead to measurable effects[3].

Although in the particular case of the action (1.4) the one-loop corrections

happen to vanish[4], this is not the case anymore at two-loops [5, 6] or in

the presence of matter.

The Einstein-Hilbert action is enough to take into account for phys-

ical settings in which gravity is weak or, more generally, the curvature of

spacetime is low. There, Minkowsky flat spacetime ηµν is a solution of the

vacuum Einstein equations coming from (1.4)

Rµν −
1

2
gµνR = 0 −→ Rµν = 0 (1.9)

and one can construct the usual perturbation theory about flat space as a

quantum field theory of a spin 2 particle excitation[7]. However, this is not

enough to describe, for instance, the physics of large scale cosmology. In

1998 it was confirmed[8, 9] that the average curvature of our Universe is not

zero but instead it takes a extremely little and non-vanishing value. This

implies that the corresponding metric description of the spacetime manifold

is not a solution of Einstein equations any more (1.9) and that they must be

supplemented with an extra piece, a cosmological constant Λ which amounts

to the average curvature of the manifold

Rµν −
1

2
gµνR+ Λgµν = 0 −→ Rµν = Λgµν (1.10)

11



Chapter 1. Einstein Gravity, the Cosmological Constant and Effective
Field Theories

Moreover, and by general field theory arguments, this term would have

to be actually there from the beginning since it corresponds to the zeroth

term in the polynomial (1.3) that we neglected before and that must correct

Einstein-Hilbert action (1.4)

SEHΛ = −M2
p

∫
d4x
√
|g| (R− 2Λ) (1.11)

In any case, if our Universe happened to be flat, there would be still

the open problem to explain why Λ was vanishing. Intead, we face the

problem of explaining a very little but non-vanishing value.

However, this is not the only problem introduced by the cosmological

constant. The real issue is that its mere presence compromises the EFT pic-

ture of General Relativity. The basic assumption of an EFT, as explained

before in this section, is that the action and different physical observables

can be expanded as a power series in the inverse of a mass parameter which

constrains the applicability regime of the theory. By introducing the cosmo-

logical constant Λ we are now introducing an infra-red parameter2 that will

jeopardize this assumption. In the presence of Λ, (quantum) corrections to

the Einstein-Hilbert action (1.11) can depend both on Mp and Λ and even

on a combination of both. As an example, the one-loop on-shell effective

action corresponding to the action (1.11) was computed in [10] and read

ΓL=1 = −
M2
p

16π2
log

(
µ2

M2

)∫
d4x
√
|g| Λ2

M2
p

(1.12)

which is clearly not given only in terms of the UV scale Mp. Here µ is the

regularization ambiguity and the correction has been computed in the MS

scheme[11], therefore keeping only the divergence. M denotes the renormal-

ization scale.

Moreover, the origin of Λ as a dynamical coupling compromises the

EFT picture even in the absence of gravitational quantum corrections if we

include matter in the game. In order to see this, let us introduce a scalar

field minimally coupled to gravity

S = SEHΛ +

∫
d4x

√
|g|
(

1

2
∇µφ∇µφ− V (φ)

)
(1.13)

2It is the most relevant operator in the limit in which the four-momentum vanishes

pµ → 0 because it does not contain any derivative.

12



Chapter 1. Einstein Gravity, the Cosmological Constant and Effective
Field Theories

Figure 1.3: Some of the matter contributions to Λ at two and three-loops

level in a non-abelian gauge theory.

Here we assume the potential V (φ) to have a non-trivial minimum

V (φ̄) so that the vacuum state of the theory will be at φ = φ̄. Expanding

V (φ) about the minimum

V (φ) = V (φ̄) +
1

2

d2V (φ)

dφ2

∣∣∣∣
φ=φ̄

(φ− φ̄)2 + ... (1.14)

we find that the first term on this expansion (the zero mode), being a con-

stant value, has exactly the form of a cosmological constant in the gravita-

tional action, so that we can redefine

2M2
pΛ
′

= 2M2
pΛ + V (φ̄) (1.15)

and get a contribution from the matter dynamics to the cosmological con-

stant.

In general, any constant contribution to the action of a Quantum Field

Theory, that we normally would dismiss as a non-dynamical contribution,

will have a relevance when gravity is turned on, by shifting the value of the

cosmological constant. This is what happens when we take into account the

Higgs vacuum expectation value[12] of 〈h〉 = 246 GeV or the strong coupling

scale in Quantum Chromodynamics ΛQCD = 220 MeV.

Finally, if we still believe in the EFT approach to gravity, then we

must consider any other theory, in particular the Standard Model of Particle

Physics, as an effective field theory with validity only up to the gravitational

scale Mp, where gravity must start to be relevant. That means that when

integrating quantum loops containing matter contributions to the cosmolog-

ical constant, as seen in figure 1.3, we must cut-off the momentum integral

in Mp and thus we expect the value of the cosmological constant induced by

13



Chapter 1. Einstein Gravity, the Cosmological Constant and Effective
Field Theories

these to be close to M4
p ∼ 1076 GeV4, which is very far from the measured

value of Λ ∼ 10−47 GeV4. This implies that when following Wilsonian ideas

of renormalization, we must fine-tune the bare value contained in (1.11) with

a huge precision in order to recover experimental results

Λ + (matter loop corrections) ∼ 10−47 GeV4 (1.16)

implying a fine-tuning problem which is even worse than the hierarchy prob-

lem[13] for the Higgs particle mass. We call this the active cosmological

constant problem.

Summarizing, even if the non-completeness of General Relativity in

the ultra-violet leads us to consider it as an effective field theory, valid up

to a scale of Mp ∼ 1019 GeV, the presence of a non-vanishing but very little

cosmological constant jeopardizes this picture and requires the introduction

of additional physics in order to make things work properly.

14



2
Starring: Weyl Invariance

The simplest way to solve the active cosmological constant problem is to pro-

tect the value of Λ by introducing a new symmetry in the theory. One option

for this is supersymmetry (SUSY)[14], consisting of extending Poincaré in-

variance by using fermionic generators which span a graded algebra. Its

effect is to double the degrees of freedom of a given theory by producing

new field partners with a spin difference of 1
2 with respect to the original

fields. Contributions to Λ coming from bosons and fermions carry different

signs and thus unbroken SUSY implies that they cancel identically since

there are the same number of degrees of freedom of each kind. However,

we know that SUSY, if it exists, must be broken in our Universe and re-

cent LHC data[15] constrain the scale of breaking to be above 1 TeV, what

repercutes in the requirement of certain amount of fine-tuning (of the TeV

order, because now momentum integrals run up to the breaking scale) thus

compromising the solution given by SUSY.

Here we will consider instead Weyl Invariance[16], a local realization

of the concept of scale invariance for Quantum Field Theories defined in flat

space. The latter is defined by assigning to the space-time coordinates and

to the fields a scaling dimension λφ, where φ is a generic field, equal to its

length dimension under rescalings of the form

xµ → Ω, φ→ Ωλφφ (2.1)

with a constant factor Ω.

The relevance of scale invariance is linked to renormalizability for the-

ories in flat space. When an action is invariant under the scale transfor-

mations (2.1), it means, since scaling and length dimension are equivalents,

that it does not contain any dimensionful coupling, which is precisely the

requirement for power counting renormalizability. Indeed, the condition to

break perturbatively the renormalizability of the theory, which is to run the

coupling either to a Landau pole or to a region in which it grows monoton-

15



Chapter 2. Starring: Weyl Invariance

ically to be greater than one; will produce a scale, breaking effectively scale

invariance. Only if this symmetry is perturbatively restored, by falling into a

gaussian fixed point, for instance, in which the beta function will vanish and

therefore no scale is generated; we can say that the theory is really renor-

malizable. Moreover, the hint that it forbids dimensionful couplings signal

that it may be of interest in order to solve the active cosmological constant

problem. However, we could be spoiled if there is an anomaly, because global

symmetries can be anomalous without harm since they are not required to

vanish ghost degrees of freedom from the theory. It is then more interesting

to study the case of local scale invariance, when we allow the transforma-

tion parameter to be a function of the space-time coordinate. This leads to

conformal field theories, which are of particular interest in two dimensions,

where the transformation group becomes infinite dimensional[17].

In the presence of gravity, the concept of coordinate is diluted, the

metric is a dynamical field and a scaling dimension must be assigned to it.

We do this by using diffeomorphism invariance and requiring that the proper

distance between any two space-time points scales as ds
′2 = Ω−2ds2. This

implies

ds2 = gµνdx
µdxν −→ g

′
µν = Ω2gµν (2.2)

What we are doing here is to translate the scaling dimension from the

coordinates to the metric. Thus, properly talking, we are defining a new

symmetry which can be identified with scale invariance in the flat space

case but which will be in general different. We call this symmetry thus in-

troduced rigid Weyl invariance, the rigid surname implying that it involves a

transformation which is equal for any space-time point and for any observer.

However, as we said before for scale invariance, global symmetries of this

kind are generically broken by the renormalization dependence in quantum

corrections1 and thus it most interesting to consider the case of the local

version of the symmetry, which we call from now just Weyl invariance.

1A recent and interesting phenomenological example of this can be found in [18].
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Chapter 2. Starring: Weyl Invariance

2.1. Weyl Invariance,

Noether Current and

Ward Identities

We will focus the rest of this work in Weyl invari-

ant theories, defined as Quantum Field Theories

whose action functional satisfies the following as-

sumptions

• The action S(gµν , φi) is a functional of the metric and a collection of

other fields which we generically denote as φi.

• The action S(gµν , φi) is invariant under Weyl transformations of the

form

gµν → Ω(x)2gµν , φi → Ω(x)λφiφi (2.3)

with no transformation of coordinates whatsoever.

Indeed, and as we advanced before, the introduction of Weyl invariance

forbids the presence of a cosmological constant in the action. The reason is

that the coupling

SΛ = 2M2
p

∫
d4x
√
|g| Λ (2.4)

is not Weyl invariant. This leads to consider a wide range of modified

theories of gravity[19] in order to try to explain the acceleration of the

Universe in the absence of this term. In part III of this work we will consider

Unimodular Gravity as one of those.

Moreover, as with scale symmetry in flat space, the vanishing of di-

mensionful constants from the action could give a hint on how to improve the

renormalizability of Weyl invariant theories of gravity. We will examine this

issue in Part II, conjecturing that for purely Weyl invariant backgrounds, a

finite theory might be achieved.

As with any other symmetry, the presence of Weyl invariance implies

the existence of a constraint over a physical quantity of the theory. Under

an infinitesimal transformation Ω = 1 + ω +O(ω2), a Weyl invariant action

behaves as2

δS(gµν , φi) = δ

[∫
d4x L

]
=

∫
d4x

(
2gµν

δL
δgµν

+
∑
i

λφiφi
δL
δφi

)
ω (2.5)

2Note that we are defining the lagrangian density including the factor of
√

|g|.

17



Chapter 2. Starring: Weyl Invariance

So that for an arbitrary variation ω, Weyl invariance implies that

2gµν
δL
δgµν

+
∑
i

λφiφi
δL
δφi

= 0 (2.6)

If gravity is not dynamical, that is, if we consider a theory of the

fields φi living in a fixed background geometry and whose dynamics do not

backreact onto it, this statement would imply the known fact that for local

scale invariant theories, the trace of the energy momentum tensor

√
|g| gµνTµν = 2gµν

δL
δgµν

(2.7)

vanishes on the mass-shell3. However, for theories with dynamical gravity,

this is not true anymore. What Weyl invariance states instead is that the

ponderated trace (2.6) of the equations of motion is vanishing. This is

a subtle but important difference because, since now all the terms in the

constraint are dynamical and proportional to the equations of motion for

the propagating fields in the action, this does not give any new information

for on-shell quantities. This gives the hint that probably one is not allowed

to decouple gravitational dynamics from the rest of fields in the theory when

Weyl invariance is introduced. At the end of the day, if the theory is indeed

Weyl invariant, there is no physical scale at all that would stablish the

separation between the dynamical and non-dynamical regimens. Only when

the symmetry is broken by the introduction of a scale, one can stablish this

difference.

The case of a quantum theory is even more interesting. Let us start

by introducing the path integral formulation for the action S(gµν , φi)

Z[Jµν , Ji] =

∫
Dgµν

(∏
i

Dφi

)
eiS(gµν ,φi)+

∫
d4x
√
|g| (gµνJµν+

∑
i Jiφi) (2.8)

with currents Jµν and Ji which couple to the fields.

3In flat-space theories invariant under conformal transformations SO(d, 2), where d is

the space-time dimension, this appears as a consequence of the current conservation [20]

by Noether theorem ∂µD
µ = Tµµ = 0.
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After an infinitesimal Weyl transformation, and assuming that the

integration measure is invariant, we have

0 = δZ =

∫
Dgµν

(∏
i

Dφi

)
eiS(gµν ,φi)+

∫
d4x
√
|g| (gµνJµν+

∑
i Jiφi)× (2.9)

×
{∫

d4x
√
|g|

(
2gµν

δL
δgµν

+
∑
i

λφiφi
δL
δφi

+ 2gµνJ
µν +

∑
i

λφiφiJi

)
ω

}
When the sources vanish, this implies that the ponderated trace (2.6)

of the equations of motion must vanish not only clasically as a Noether iden-

tity but also its expectation value between any pair of states connected by

the path integral must do so. The vacuum expectation value is a particular

case of this 〈
0

∣∣∣∣∣ 2gµν
δL
δgµν

+
∑
i

λφiφi
δL
δφi

∣∣∣∣∣ 0

〉
= 0 (2.10)

While deriving this, we have considered, as usual, that the integration

measure in the path integral is invariant under Weyl transformations. How-

ever, this does not need to be true and in general it will not. Whenever this

happens, we will find that the Ward identity (2.10) is not satisfied, obtaining

a non-vanishing right hand side. In this situation, we will say that we have

found a Weyl (conformal) anomaly.

2.2. Weyl anomalies Weyl anomalies were first discovered by Duff and

Capper [21] in 1973 by evaluating the flat space

limit of quantum corrections to the gravitational propagator given by loops

of massless fields. They found that the tracelesness condition imposed by

the classical Weyl invariance was lost due to finite parts when quantum cor-

rections entered into game. Being explicit, for some clasically Weyl invariant

systems, it may happen that the Ward identity (2.10) is substituted by〈
0

∣∣∣∣∣ 2gµν
δL
δgµν

+
∑
i

λφiφi
δL
δφi

∣∣∣∣∣ 0

〉
=
∑
j

CjOj (2.11)

where Cj are constant coefficients and Oj Weyl covariant operators with the

right scaling dimension4. The Weyl anomaly breaks Weyl invariance but its

structure is Weyl invariant by itself.

4We say that an operator is Weyl covariant if it transforms homogeneously under Weyl

transformations

O
′

= ΩλOO (2.12)
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The operators entering into the rhs of the anomalous Ward identity

depend on the spacetime dimension n. For example, for n = 2 at the one-

loop level there is a single one

On=2 =
√
|g| R (2.13)

while for n = 4 the possible choices grow

O1 =
√
|g| CµνρσCµνρσ, O2 =

√
|g| E4 O3 =

√
|g| �R (2.14)

where Cµνρσ and E4 are the Weyl tensor and the Euler density in four

dimensions (Gauss-Bonnet term), given by

Cµνρσ = Rµνρσ − gµ[ρRσ]ν + gν[ρRσ]µ +
R

3
gµ[ρgσ]ν (2.15)

E4 = R2 − 4RµνR
µν +RµνρσR

µνρσ (2.16)

with [...] meaning complete antysimmetrization of the indices contained in-

side the brackets5.

The operator On=2 happens to be a total derivative6 and the same

happens for O3. O1 and O2 however remain and the important point about

them is that they cannot be cancelled by the addition of any local countert-

erm in the original action[23]. Therefore, a local renormalization process

cannot restore Weyl invariance at an arbitrary loop order. This is the real

statement of the existence of an anomaly.

For a four-dimensional theory, the anomalous Ward identity will gener-

ically take the form〈
0

∣∣∣∣∣ 2gµν
δL
δgµν

+
∑
i

λφiφi
δL
δφi

∣∣∣∣∣ 0

〉
= C1CµνρσC

µνρσ + C2E4 + C3�R

(2.17)

The value of the coefficients Ci must be computed case by case by look-

ing to, for instance, two-point functions or, more generally, to the quantum

effective action. In the next chapter we will introduce the Schwinger-DeWitt

5In the presence of a gauge field Aµ, also the square of the field strength Tr (FµνF
µν)

is an admissible operator.
6This is a consequence of the Theorema Egregium by Gauss[22]. It can be proven by

noting that for n = 2 any manifold admits a foliation in spacelike surfaces. Computing√
|g| R explicitly by means of this foliation shows that it is a total derivative.
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technique, which will become a powerful tool in computing this. Here just

let us note that Weyl anomalies are intimately related to the appearance

of the renormalization scale for quantum corrections, as we would have ex-

pected from the fact that any scale breaks the symmetry. For a generic Weyl

invariant theory, the one-loop divergence of the quantum effective action of

these theories takes the form

ΓL=1 ∼
1

n− 4

∫
dnx

√
|g| (C1CµνρσC

µνρσ + C2E4) (2.18)

when evaluated in dimensional regularization, thus the pole in n = 4. If we

perform a Weyl transformation of this, we find that that the operators trans-

form with a scaling dimension λO = −4, while
√
|g| has dimension n. The

total integrand then transforms as Ωn−4. Therefore, under an infinitesimal

transformation we have

δΓL=1 ∼
∫
dnx

√
|g| (C1CµνρσC

µνρσ + C2E4)ω (2.19)

The pole has been cancelled by the n − 4 factor coming from the

transformation, leaving an evanescent operator, a finite part that remains

after taking the limit n = 4 and breaks Weyl invariance. However, if the

theory was finite, that is, there is no renormalization dependence or, in our

language, no pole dependence, there is no possibility of an anomaly arising

through this mechanism. Therefore, one can envision that a truly Weyl

invariant theory should be finite in the ultra-violet regime[24].

2.3. Regularizations and

the fate of the anomaly

Up to here we have thoroughly remarked that

Weyl anomalies cannot be removed by local

counterterms, but they can be removed by

non-local ones. This is linked to the fact that an anomaly can arise also

if we regularize the theory in such a way that our regularization process

breaks explicitly the symmetry. Then, the Ward identity related to such

symmetry is not guaranteed for UV divergent quantities and an anomaly can

generically arise. In our case, the quest for a regularization that preserves

Weyl invariance and thus ensures the absence of anomalies, is only possible

if we choose to introduce non-local counterterms.

However, there is a simple way to understand how this works[25, 26,

27]. In particular, let us exemplify it with the case of a single scalar field

φ (with scaling dimension λφ) coupled to the metric by a generic action
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S(gµν , φ). In this case, there exists a regularization scheme that removes the

conformal anomaly at the cost of introducing non-local interactions with the

scalar field. For example, for the counterterm (2.18) it amounts to substitute

the counterterm by

ΓL=1 ∼
1

n− 4

∫
dnx

√
|g| φ

−n−4
λφ (C1CµνρσC

µνρσ + C2E4) (2.20)

Note that this counterterm reduces to the previous one (2.18) when

the limit n→ 4 is taken but now the dimension dependent coupling with φ

makes it Weyl invariant in any dimension and thus it cancels the anomaly at

the cost of introducing this new factor that will produce a non-polynomial

counterterm when expanded about n = 4. We will come back to this issue

in part II.

If we were working on a theory containing only the metric, or the

metric together with fields which cannot be accommodated as compensating

factors in the regularization scheme, one can always unveil the conformal

factor of the metric by a change of variables to the Jordan frame7 and use

it for the purpose here introduced.

Finally, we must stress that there is an extra way of solving the

anomaly issue without introducing any non-local counterterm. The state-

ment of the anomaly being impossible to be removed by local counterterms

is only true if one wants to preserve diffeomorphism invariance, since it is

this symmetry what forces the structure of the counterterm to be of the

form

ΓL=1 ∼
∫
dnx

√
|g| O (2.22)

with some local operator O of dimension four. If we forget about Diff

invariance, then we can consider counterterms with arbitrary powers of the

determinant of the metric in the integration measure. In particular, we can

consider

ΓL=1 ∼
∫
dnx |g|

2
n O (2.23)

7This is achieved by transforming the metric as

gµν → gµνφ
4

2−n (2.21)
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which reduces to the appropiate counterterm once the dimensional limit is

taken and is Weyl invariant in any dimension provided that λO = 4. This

will be of relevance for our work in Part III.
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3
The Schwinger-DeWitt technique

Up to here we have talked about generalities of gravitational actions, the ef-

fective action and Weyl anomalies, but the explicit form of those objects will

obviously depend of the theory at hand. A computational technique is thus

required to compute the effective action of a given lagrangian. Although

diagrammatic techniques are always available, they tend to be very involved

in the presence of spin two excitations and non-linear theories. Moreover,

the need to include gauge breaking terms in the action jeopardizes the obvi-

ous gauge invariance of the computations and only when computing physical

quantities it is explicit. In this chapter we present a more suitable alterna-

tive by combining the background field method with the Schwinger-DeWitt

technique, focusing on the properties of determinants of differential opera-

tors in riemannian manifolds.

3.1. The background field

method

We are interested in obtaining the effective

action of a quantum field theory described

by an action functional S(Q) depending on

a collection of fields that we generically denote Q among whose we include

the metric. In general, the fields Q can carry space-time indices as well as

internal bundle indices but we will suppress any label for the discussion here.

The quantum dynamics of those fields will be given by the path integral

Z[J ] =

∫
DQ eiS(Q)+i〈Q,J〉 (3.1)

where J is a source and we have defined the inner product1

〈I,J 〉 =

∫
d4x
√
|g| Tr (IJ ) (3.3)

1This product also induces a measure in the path integral

1 =

∫
DQ ei〈Q,Q〉 (3.2)
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where the trace runs over all internal and space-time indices.

Using this, we can define some standard quantities. We will introduce

the most important ones by following closely the arguments in [28] and [29].

Whenever something is omitted, we refer the reader to these documents and

references therein.

We start by defining the Green’s functions of the theory as time-

ordered n-point functions with coincident argument

G(n)(Q) = 〈0|T{ Q...Q︸ ︷︷ ︸
n−times

}|0〉 =

∫
DQ ( Q...Q︸ ︷︷ ︸

n−times

)eiS(Q)+i〈Q,j〉 =

(
1

i

δ

δJ

)n
Z[J ]|J=0

(3.4)

These are the disconnected Green functions, containing completely dis-

jointed parts. However, these will not contribute to the S-matrix of the

theory and it is useful to get rid of them by defining the generator of only

connected Green functions

W [J ] = −i logZ[J ] (3.5)

Surprisingly, the logarithm implies that, when taking functional deriva-

tives of W [J ] instead of Z[J ], the terms rearrange in such a way that the

disconnected parts are subtracted from the total result. However, this is not

the simplest way to write these Green’s functions. Their computation can

be further simplified by writing them in terms of 1PI graphs, those which

cannot be split into two inequivalent functions by cutting a line, that can

be stringed together afterwards to recover the full connected answer. The

1PI functions are generated by the so-called effective action, defined as

Γ[Q̄] = W [J ]− 〈J, Q̄〉 (3.6)

where the mean field

Q̄ =
δW

δJ
(3.7)

can be understood as the vacuum expectation value of Q in the presence

of the source J . Differentiating Γ[Q̄] with respect to the mean field now

computes the 1PI functions. In particular, the first derivative of (3.6) gives

δΓ

δQ̄
= −J (3.8)
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which can be though as the quantum-mechanical correction to the classical

equations of motion.

Computing Γ[Q̄] to the desired order in a loop expansion gives all the

1PI functions to that order. Obtaining the S-matrix from it is then just

a matter of generating the full connected functions, amputating external

propagators, putting all momenta on-shell and adding wave-function factors

using the LSZ formula. The effective action is therefore an easy way to

access to all the relevant information of a given quantum theory. Now we

will show how the background field method is a suitable tool to compute it.

We start by introducing, analogously to (3.1) a partition functional Z̃
by taking the classical action S(Q) and writing it in terms of a shifted field

Z̃[J, φ̄] =

∫
DQ eiS(Q+φ̄)+i〈J,Q〉 (3.9)

Here Z̃ depends both on the conventional source and on the back-

ground field φ̄, which can be though as an alternate source. We continue

with the analogy and introduce

W̃ [J, φ̄] = −i log Z̃[J, φ̄] (3.10)

and by defining the new mean field

Q̃ =
δW̃

δJ
(3.11)

we arrive to the background field effective action

Γ̃[Q̃, φ̄] = W̃ [J, φ̄]− 〈J, Q̃〉 (3.12)

To see the point of these new definitions, let us rewrite (3.9) by shifting

the integration variable, finding

Z̃[J, φ̄] = Z[J ]e−i〈J,φ̄〉 (3.13)

and by taking logarithms

W̃ [J, φ̄] = W [J ]− 〈J, φ̄〉 (3.14)

If we now differentiate both sides with respect of J and keep in mind

the definitions (3.7) and (3.11), we find that both mean fields are related in

a simple way

Q̃ = Q̄− φ̄ (3.15)
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Figure 3.1: The only vacuum diagram at one loop in the background field

approach. It is obtained by tracing the two-legs vertex.

and therefore the effective actions are also simply related

Γ̃[Q̃, φ̄] = W [J ]− 〈J, φ̄〉 − 〈J, Q̄〉+ 〈J, φ̄〉 = Γ[Q̄] = Γ[Q̃+ φ̄] (3.16)

This is the main result of the background field procedure. As a special

case, we can take Q̃ = 0, thus identifying the background field with the mean

field Q̄ = φ̄ and having

Γ̃[0, φ̄] = Γ[φ̄] (3.17)

implying that in order to compute the effective action of the theory it is

enough to compute an equivalent effective action Γ̃[0, φ̄].

The background field effective action Γ̃[Q̃, φ̄] produces all the 1PI

Green’s functions in the presence of such background field. By setting Q̃ = 0

we are killing all the dependence on the field Q̃ and thus generating only

graphs with no external lines. Γ̃[0, φ̄] is then the generator of all 1PI vacuum

graphs in the presence of φ̄.

This is particularly helpful when facing one-loop computations. In

such a case, let us go back to the partition function Z̃[J, φ̄]

Z̃[J, φ̄] =

∫
DQ eiS(Q+φ̄)+i〈J,Q〉 (3.18)

and consider the field Q perturbatively. Since we are now interested in one-

loop computations and we only need to care about vacuum diagrams, there

is only one single contribution, shown in figure 3.1, which tells us that it is

enough to expand the theory up to second order in the field Q. Thus, for

the action we have

S(Q+ φ̄) = S(φ̄) +

〈
δL
δQ

∣∣∣∣
Q=φ̄

, Q

〉
+

1

2

〈
Q,

δ2L
δQ

∣∣∣∣
Q=φ̄

Q

〉
+O(Q3) (3.19)
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where we have assumed that S(Q) =
∫
d4x
√
|g| L(Q).

When setting later φ̄ = Q̄ and using both equation (3.7) and the fact

that at the lowest order Γ ≡ S, the linear term will vanish. The partition

function is then rewritten as

Z̃[J, φ̄] =

∫
[DQ]eiS(φ̄)ei〈Q,D̂Q〉+i〈J,Q〉 (3.20)

with the differential operator D̂ defined as

D̂ =
δ2L
δQ

∣∣∣∣
Q=φ̄

(3.21)

Here we are using hats to denote operators while un-hatted quantities

are c-numbers.

The first factor is ultra-local and can be absorbed in the overall nor-

malization of the wave-function. In the absence of sources (which are irrel-

evant for vacuum graphs computations) and assuming that the differential

operator D̂ has non-vanishing determinant2, this is simply3

Z̃[0, φ̄] = det−
1
2 (D̂) (3.22)

and thus we have

W̃ [0, φ̄] =
i

2
log
[
det(D̂)

]
(3.23)

and, since we are setting J = Q̃ = 0, by equations (3.9) and (3.17) we finally

arrive to

Γ[φ̄] = Γ̃[0, φ̄] = W̃ [0, φ̄] =
i

2
log
[
det(D̂)

]
(3.24)

Therefore, we find that the effective action in which we are interested

can be computed as the determinant of some differential operator living in

a riemannian manifold. In order to perform this computation and to obtain

the divergent pieces and the counterterms required to renormalize the theory

we will use the known as Schwinger-DeWitt or Heat Kernel technique.

Finally, let us comment that by using the background field defini-

tion of the effective action, gauge invariance is preserved explicitly in the

computations[30, 31, 32].

2The case of vanishing determinant will imply the existence of a zero mode in the

spectrum of the operator and thus of a gauge symmetry. We will consider this situation

later in chapter 5.
3Of course, this is only true if D is self-adjoint with respect to the inner product 〈..., ...〉.
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3.2. Zeta function

regularization

Up to here we have seen that one can obtain the

effective action of a given theory by computing the

determinant of the self-adjoint operator that governs

second order fluctuations about a background configuration 4

Γ[φ̄] =
1

2
log
[
det(D̂)

]
(3.25)

The operator D̂ lives in a Riemannian manifol equipped with a met-

ric5 gµν and a connection Γµαβ given by the Levi-Civita condition. Its

determinant will be in general divergent and requires the introduction of a

regularization scheme. As well as with any other technique involving quan-

tum corrections we must cut-off the momentum space in its upper-limit and

differentiate between divergent and finite terms in our result. Only the first

ones will contribute to the renormalization of physical couplings and the UV

structure of the theory.

We do this by using zeta function regularization, first introduced in

[33]. We assume that a suitable set of eigenfunctions Qi of D̂ exist such that

each one carries an eigenvalue ρi. Then, we first define the zeta function

ζ(s, ε, D̂) of the operator as

ζ(s, ε, D̂) = Γ(s)−1

∫ ∞
0

dt ts−1〈Qi|ε e−tD̂|Qi〉 (3.26)

where ε = ε(x) is a local function of the space-time coordinates.

The bracket contained inside this definition is the trace of a functor6

known as the Heat Kernel [34, 35]

K̂(t, ε, D̂) = ε e−tD̂, K(t, ε, D̂) = Tr
[
K̂(t, ε, D̂)

]
= 〈Qi|ε e−tD̂|Qi〉

(3.27)

where its name comes from the fact that, when ε = 1, it solves a heat

equation with appropriate initial conditions

(∂t + D̂)K̂(t, 1, D̂) = 0, K̂(0, 1, D̂) = δ(4)(y − x) (3.28)

4Here we have turned to euclidean signature by Wick rotating the temporal coordinate

x0 = it in order to avoid subtleties with the behavior of the path integral.
5In the case of theories with a dynamical metric, i.e., when the set of fields Q contains

the metric gµν itself, the metric defining the manifold will be the background metric ḡµν .
6Being sloppy, a functor can be though as a function of an operator.
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being this the reason as to why the variable t is sometimes referred to as

proper time. Thought like this, the Heat Kernel describes the diffusion of a

fluid in a space-time with an extra dimension.

More interesting, in particular for us, is the connection of the Heat

Kernel with the spectrum of the operator D̂. For a given non-vanishing

eigenvalue7 we can always write

log ρi = −
∫ ∞

0

dt

t
e−tρi (3.29)

This identity is always true up to an infinite constant that can be

disregarded for the purposes here8. It can be also equally extended to the

full spectrum of the operator, allowing us to define

log
[
det(D̂)

]
= −

∫ ∞
0

dt

t
〈Qi|ε e−tD̂|Qi〉 (3.30)

and therefore, by using (3.24) and (3.27), the effective action takes the form

Γ[φ̄] = −1

2

∫ ∞
0

dt

t
K(t, 1, D̂) (3.31)

Up to here we did not get rid of the infinities yet but only rewritten the

relevant expression. However, in this form ultraviolet infinities are associated

to the lower limit of the proper time integral in (3.31). The reason is that,

assuming Poincaré invariance, the operator D̂ must be given in Fourier space

as a polynomial in the four-momenta squared

D̂ =

β∑
i

α̂i(p
2)i (3.32)

with some operator functions α̂i and higher order term (p2)i. Therefore,

for the exponential to be dimensionless when |p| → ∞, t → 0 and the UV

infinity is related to the vanishing limit of t.

There are two ways of regularizing this infinities in the present formu-

lation. The obvious one is to introduce a cut-off by changing the lower limit

of the integral ∫ ∞
0
−→

∫ ∞
Λ−2β

(3.33)

7Recall that we are considering that our operator contains no zero modes and therefore

no vanishing eigenvalues.
8This can be proven by differentiating both sides of the identity.
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This is however not Lorentz invariant and, even worse, it explicitly

breaks scale invariance and therefore Weyl invariance. Counterterms in this

regularization are not constrained to preserve any of these symmetries but

complicated Slavnov-Taylor identities[36] instead and cancellations must be

checked order by order. We then prefer to use the second option, which

consists in shifting the power of t inside the integral, arriving to a regularized

effective action

Γreg[φ̄] = −1

2
µ̃2s

∫ ∞
0

dt

t1−s
K(t, 1, D̂) = −1

2
µ̃2sΓ(s)ζ(s, 1, D̂) (3.34)

where the zeta function has appeared explicitly and we have introduced a

mass scale µ̃ in order to preserve dimensions.

In this way, ultraviolet divergences are identified with divergences at

s→ 0 in (3.34). Those are inherited from the pole of the Gamma function

Γ(s)|s→0 =
1

s
− γE +O(s) (3.35)

with γE being the Euler-Mascheroni constant. Thus

Γreg[φ̄]
∣∣
s→0

= −1

2

(
1

s
− γE + log

(
µ̃2
))

ζ(0, 1, D̂)− 1

2

∂

∂s
ζ(s, 1, D̂)

∣∣∣
s=0

(3.36)

If we choose a minimal subtraction scheme, the pole term will be

removed by renormalization and the remaining terms will define the renor-

malized effective action

Γren[φ̄] = −1

2
log
(
µ2
)
ζ(0, 1, D̂)− 1

2

∂

∂s
ζ(s, 1, D̂)

∣∣∣
s=0

(3.37)

where we have introduced a rescaled parameter by µ2 = e−γE µ̃2. This

parameter represents in this approach the renormalization ambiguity that

must be fixed by a suitable normalization condition.

Through this work, we will in-distinctively use s→ 0 or s = (n−4)→
0 (when working in four dimensions) to denote the cutoff of the theory in

order to connect sometimes with dimensional regularization and with the

discussions about evanescent operators that we did in chapter 2.

Together with (3.30), equation (3.37) yields a definition of the determi-

nant for a positive elliptic operator which is commonly used in mathematics

log
[
det(D̂)

]
= − log

(
µ2
)
ζ(0, 1, D̂)− ∂

∂s
ζ(s, 1, D̂)

∣∣∣
s=0

(3.38)

and that here will represent the core of our computational tools, to be de-

scribed in the following section.
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3.3. The short-time

expansion

In the last sections we have shown, by using the

background field method and zeta function regu-

larization, how to reduce the problem of comput-

ing the one-loop effective action of a given field theory in the presence of

a background metric to the problem of computing the zeta function of the

operator governing second order fluctuations when the proper time s goes

to zero

Γren[φ̄] = −1

2
log
(
µ2
)
ζ(0, 1, D̂)− 1

2

∂

∂s
ζ(s, 1, D̂)

∣∣∣
s=0

(3.39)

The zeta function was defined in (3.26) through the Heat Kernel

ζ(s, ε, D̂) = Γ(s)−1

∫ ∞
0

dt ts−1K(t, ε, D̂) (3.40)

This is a Mellin transform9 and thus it can be inverted

K(t, ε, D̂) =
1

2πi

∮
ds t−sΓ(s)ζ(s, ε, D̂) (3.43)

and this equation can be used to relate the poles of the Heat Kernel with

those of the integrand.

The key point here is that under fairly general assumptions the traced

Heat Kernel of a second order operator in a space-time of dimension n with

no boundary enjoys a short-time expansion when t→ 0 of the form

K(t, ε, D̂) =
∑
k

t
k−n

2 ak(ε, D̂) (3.44)

Here the functions ak(ε, D̂) are known as Heat Kernel coefficients and

they are given as integrals

ak(f, D̂) =

∫
dnx

√
|g| ε(x)bk(x) (3.45)

9The Mellin transform φ(s) = M[f ](s) of a function f(x) is defined as

φ(s) =

∫ ∞
0

dx xs−1f(x) (3.41)

Its inverse is given by

f(x) =
1

2πi

∮
ds x−sφ(s) (3.42)

with the contour encircling all the poles in the integrand.
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where bk(x) are local invariants of the manifold of scaling dimension k. The

coefficients ak(f, D̂) are non-vanishing only for even k. For odd labels, the

bk(x) are total derivatives and thus they vanish in the absence of a boundary.

The existence of such a power law is a very non-trivial statement that can

be however proven under fairly general assumptions[37].

Let us note however that this expansion is only valid for very particular

hypothesis. First, it is only valid for second order operators and, among

those, only for minimal operators, those whose principal symbol, in Fourier

space, is of the form

D̂ps = Ĝ p2 (3.46)

where Ĝ is a matrix valued metric which accounts for the possible index

and internal bundle structure of the operator10. For minimal operators of

arbitrary order 2z, the technique can be extended by considering a more

general ansatz for the short-time expansion[38]

K(t, ε, D̂) =
∑
k

t
k−n
2z ak(ε, D̂) (3.47)

This can be also extended to operators which are non relativistic[39]

but we will not consider this case here. In the case of non-minimal operators,

one has to relay in aditional techniques, which will be developed later in

chapter 4.

By going back to (3.44) we can relate the heat kernel coefficients with

the poles of the integrand as

ak(ε, D̂) = Ress=(n−k)/2{Γ(s)ζ(s, ε, D̂)} (3.48)

and, in particular, we find that

ζ(0, ε, D̂) = an(ε, D̂) (3.49)

where, remind, n is the space-time dimension.

Therefore, and going back to (3.37) we find that the renormalized

effective action of our theory can be finally written11 as

Γren[φ̄] = −1

2
log

(
µ2

M2

)
an(ε, D̂) + regular terms (3.50)

10For instance, Ĝ = gµνδab for gauge fields A(a)µ.
11Here we have introduced the renormalization scale M .
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and so, computing the renormalization dependent piece of the effective ac-

tion is reduced to computing the relevant heat kernel coefficient in a given

dimension. Since they are local invariants, this can be done in an universal

way which is blind to the explicit spin or gauge content of the operator D

and thus we can give general formulas for them.

There are two main techniques to compute these coefficients. They

were originally introduced by Schwinger and DeWitt [34, 40, 41, 42, 43]

and their method of obtaining them was based on solving recursively the

heat equation (3.28) order by order. This is a very general method that

can be used for many different operators that go even beyond the original

purporse [44], but it is very involved. For second orders, it is easier to

rely in the universality of the coefficients and use the functorial properties

introduced by Gilkey[45]. Those give three simple recursions between the

different coefficients that can be extensively exploited. A pedagogical review

on how to do this can be found in [29].

The two main properties of the Heat Kernel coefficients have been

already commented here but let us remark them. Let us start by assuming

that we are working with a minimal second order operator, which can be

always taken to the form

D̂ = −Ĝ�− Ê (3.51)

with Ê containing no derivatives and Ĝ taking a role of a metric in field

(configuration) space. Then

• Heat Kernel coefficients with odd index vanish, a2j+1(ε, D̂) = 0.

• Coefficients a2j(ε, D̂) are locally computable in terms of invariants of

the manifold.

The first statement is only true since we are working in manifolds

without boundary. Otherwise, odd coefficients would be proportional to

total derivatives evaluated in the boundary. However, the second statement

is more important, since in it relays the effectiveness of the method here

presented. It can be summarized by saying that the Heat Kernel coefficients

are of the form

ak(ε, D̂) =

∫ √
|g|Tr

{
ε(x)

∑
i

Ai Ûi
}

(3.52)
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where Ai are constants depending only on the space-time dimension and

Ûi represent all the possible independent invariants of scaling dimension k

constructed by using Rµνρσ, Ê and a curvature F̂µν constructed out of any

extra bundle carried by the fields by using Ricci’s identity

[∇µ,∇n]φ = F̂µν · φ (3.53)

The trace Tr[...] is taken over both all space-time and internal indices

(gauge bundles, etc...).

The consequences of these two simple properties are very far reaching.

For instance, a simple statement that can be now proven is the universal

dependence of Ai on the space-time dimension n if the operator if second

order. The proof comes as follows. Let us consider a space-time manifold

M which is factorizable, so

M =M1 ⊗M2 (3.54)

and introduce the only natural differential operator over this

D̂ = D̂1 ⊗ I + I⊗ D̂2 (3.55)

This means that the bundle indices are also independent, then in the

definition (3.27) of the traced Heat Kernel, the traces also factorize and,

following the argument, we find for the short-time expansion of the full

operator D̂

ak(ε1ε2, D̂) =
∑
p+q=k

ap(ε1, D̂1)aq(ε2, D̂2) (3.56)

Now, let us assume that our factorizable manifold is, in particular

M = S1 ⊗M2 (3.57)

and that the operator is then

D̂ =
(
−∂2

x1

)
⊗ I + I⊗ D̂2 (3.58)

where x1 is the cyclic coordinate over the S1, 0 < x1 < 2π. Then12

ak(ε2, D̂) =

∫
S1⊗M2

dnx
√
|g| Tr{ε1ε2

∑
i

Ai(n)Ûi} =

= 2π

∫
M2

dn−1x
√
|g| Tr{ε(x)

∑
i

Ai(n)Ûi} (3.59)

12Note that since S1 is flat, the invariants Ûi can here only depend on the details of D̂2.

This justifies integration over the cyclic coordinate.
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where we have made explicit the possible space-time dependence of Ai(n).

On the other hand, we can use (3.56) and the fact that we can compute

the spectrum of D̂1. Its eigenvalues are l2 with l ∈ Z and the kernel can be

summed by using Poisson summation formula

K(t, ε1, D̂1) =
∑
l∈Z

ε1 exp(−tl2) = ε1

√
π

t

∑
l∈Z

exp(−π2l2/t2) ∼

∼ ε1
√
π

t
+O(e−1/t) (3.60)

Since exponentially suppressed terms do not contribute to the power

law, we find that the only non-vanishing coefficient for the short-time ex-

pansion of D̂1 is

a0(ε1, D̂1) =
√
π ε1 (3.61)

and by (3.56)

ak(ε1ε2, D̂) =
√
π

∫
M2

dn−1x
√
|g| Tr{ε1ε2

∑
i

Ai(n− 1)Ûi} (3.62)

So that comparing equations (3.59) and (3.62) we have

Ai(n− 1) =
√

4π Ai(n) (3.63)

and we find that all the space-time dependence is contained in an overal

normalization. Therefore, for a second order operator we can rewrite the

ansatz for the coefficients as

ak(ε, D̂) = (4π)−
n
2

∫ √
|g|Tr{ε(x)

∑
i

AiÛi} (3.64)

where now Ai are just numerical universal factors.

Now we will introduce three functorial properties which we will relate

the different Heat Kernel coefficients and that we will exploit them in order

to compute the expansion in a very general way. Of course, let us remark

that we are always talking of the expansion for a second order minimal

operator of the form (3.51).

The first property is introduced by considering an operator depending

of a factor γ. Then, we note that

d

dγ

∣∣∣∣
γ=0

Tr

{
exp

(
e−2γεtD̂

)}
= Tr

{
2εtD̂e−tD̂

}
= −2t

d

dt
Tr

{
εe−tD̂

}
(3.65)
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If we now expand both sides of this equation by using the short-time

expansion ansatz, we arrive to the first functorial property

d

dγ

∣∣∣∣
γ=0

ak(1, e
−2γεD̂) = (n− k) = ak(ε,D) (3.66)

This property states, in particular, that when the operator is Weyl

invariant (since the lhs of these equation can be regarded as a Weyl trans-

formation), the Heat Kernel critical coefficient which appears in the effective

action an(ε, D̂) must be also invariant.

In the same way, by relying in the universality of the expansion, one

can prove in a similar manner that when Ô contains no derivatives

d

dγ

∣∣∣∣
γ=0

ak(1, D̂ − γÔ) = ak−2(Ô, D̂) (3.67)

which restricts the dependence of the coefficients on the potential part Ê.

Finally, let us consider and operator such that

D̂(γ, β) = e−2γε(D̂ − βÔ) (3.68)

and use the first property (3.66) with n = k, then

0 =
d

dγ

∣∣∣∣
γ=0

ak(1, D̂(γ, β)) (3.69)

Now, we vary it also with respect to β and interchange derivation

order

0 =
d

dγ

∣∣∣∣
β=0

d

dγ

∣∣∣∣
γ=0

ak(1, D̂(γ, β)) =
d

dγ

∣∣∣∣
γ=0

d

dγ

∣∣∣∣
β=0

ak(1, D̂(γ, β)) (3.70)

and by using (3.67) we finally arrive to

d

dγ

∣∣∣∣
γ=0

an−2(e−2γεÔ, e−2γεD̂) = 0 (3.71)

Now, to calculate the Heat Kernel coefficients, we must write an ansatz

for them. As we saw, they are going to be given solely in terms of invariants

of the appropiate dimension constructed by using Rµνρσ, Ê and F̂µν , multi-

plied by some constant unknown factors that we must obtain. The number
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of invariants of every given dimension is finite and this allows us to write

for the first three non-vanishing coefficients

a0(ε, D̂) = (4π)−n/2
∫
dnx

√
|g| Tr{α0ε} (3.72)

a2(ε, D̂) =
1

6
(4π)−n/2

∫
dnx

√
|g| Tr{ε(α1Ê + α2RÎ)} (3.73)

a4(ε, D̂) =
1

360
(4π)−n/2

∫
dnx

√
|g| Tr{ε(α3�Ê + α4RÊ + α5Ê

2+

+ Î(α6�R+ α7R
2 + α8RµνR

µν + α9RµνρσR
µνρσ) + α10F̂µνF̂

µν)}
(3.74)

where the numerical factors have been chosen for convenience.

Now the rules of the game have been set up. We know that this ex-

pansion is completely universal as long as the operator at hand is second

order and minimal. In that case, all the αi coefficients are purely numerical

factors and all the information about the manifold is encoded in the geo-

metric invariants. Thus, we can choose particular examples of space-times

and operators in different dimensions to fix these coefficients one by one.

As a first example, the α0 coefficient follows trivially from the expan-

sion of the scalar laplacian in S1 in (3.60), reading α0 = 1.

Using this and formula (3.67) with k = 2 we find

1

6

∫
dnx

√
|g| Tr{α1Ô} =

∫
dnx

√
|g| Tr{Ô} (3.75)

and thus α1 = 6.

α2 is fixed by using the scaling property (3.71) in dimension n = 4.

There, for the operator to be Weyl invariant, the square root of the metric

determinant, the Ricci scalar and the endomorphism Ê must transform as

d

dγ

∣∣∣∣
γ=0

√
|g| = nε

√
|g| (3.76)

d

dγ

∣∣∣∣
γ=0

R = −2εR+ 2(n− 1)�ε (3.77)

d

dγ

∣∣∣∣
γ=0

Ê = −2εÊ +
1

2
(n− 2)�ε Î (3.78)

Thus, by using (3.71) with n = 4 and collecting the terms in �ε we

find straightforward that α1 = 6α2.
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The rest of the coefficients can be computed in a similar fashion. By

exploiting the functorial properties (3.66), (3.67) and (3.71) together with

the factorization rule (3.56) one can fix all the coefficients but one. That

single final value is then obtained by computing explicitly the trace of e−tD̂

for a simple operator in flat space-time, by going to Fourier space. We will

not go into the full detail of this computation here but we will instead refer

the interested reader to section 4 of [29].

After all this work, one finds that the first three non-vanishing Heat

Kernel coefficients for a second order minimal operator are

a0(ε, D̂) =

∫
dnx

√
|g| Tr{ε(x)} (3.79)

a2(ε, D̂) =
1

6

∫
dnx

√
|g| Tr{ε(x)(6Ê +R)} (3.80)

a4(ε, D̂) =
1

360

∫
dnx

√
|g| Tr{ε(x)(60�Ê + 60RÊ + 180Ê2 + 12�RÎ+

+ Î(5R2 − 2RµνR
µν + 2RµνρσR

µνρσ) + 30F̂µνF̂
µν} (3.81)

with the higher terms growing exponentially in complexity and the ones

with odd label vanishing.

These coefficients a0(ε,D) to a4(ε,D) were computed originally in [40,

46]. a6(ε,D) was first computed by Gilkey[37]. Higher order coefficients have

been also computed for particular and general cases [47, 48, 49, 50].

Therefore, by using (3.37) and (3.79) we find that the divergent part

of the renormalized effective action for a quantum field theory in four space-

time dimensions and whose second order dynamics is driven by the operator

D can be written as

Γren[φ̄] =− 1

32π2

1

360
log(

µ2

M2
)

∫
dnx

√
|g| Tr{60�Ê + 60RÊ + 180Ê2+

+ Î(12�R+ 5R2 − 2RµνR
µν + 2RµνρσR

µνρσ) + 30F̂µνF̂
µν}

(3.82)

Here there are two remarks to be done. First, Rµναβ is the Riemann

tensor of the background field. If we are working with a quantum field the-

ory defined in a curved space-time (without gravity being a quantum field)

the terms including them can be disregarded. If however we are considering

a theory of Quantum Gravity, those give the renormalization of the opera-

tors in the bare action, through formula (3.17). Let us also note that the
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invariants involved in a4(ε,D) in (3.79) are exactly the different operators

in (2.14), just expressed in a different basis. This is of course not surprising

since in chapter 2 we argued that the effective action and the anomaly are

intimately related.

3.4. The Weyl Anomaly

from the Heat Kernel

For completeness of the discussion and al-

though we have presented before a method

to obtain the Weyl anomaly as an evanescent

operator from the effective action, let us here rederive it by using the zeta

function regularization that leads to (3.37).

Since we are interested anomalies in Weyl invariance, we assume that

the differential operator D̂ is such that it transforms homogeneously under

Weyl transformations

D̂ → Ω−2D̂ (3.83)

so that the classical action will be invariant.

This will induce a transformation on the zeta function (3.26) that can

be written as

ζ(s, 1, D̂′) = Γ−1(s)

∫ ∞
0

dt ts−1Tr

{
e−tΩ

−2D̂

}
(3.84)

and this can be rewritten, after a trivial change of variable, as

ζ(s, 1, |Dh′) = Γ−1(s)

∫ ∞
0

dt Ω2sts−1Tr

{
e−tD̂

}
(3.85)

which at the linear level simplifies to

δζ(s, 1, D̂) = 2sΓ−1

∫ ∞
0

dt ts−1ωTr

{
e−tD̂

}
= 2sζ(s, ω, D̂) (3.86)

We see that in the variation of the zeta function, the Weyl linearised

parameter ω takes the role of the smearing function ε.

Now, the rest of the story is simple. We take the expression (3.37) for

the renormalized effective action and perform a Weyl transformation at the

linear level using (3.86). We obtain

δΓren[φ̄] = −ζ(0, ω, D̂) = −an(ω, D̂) (3.87)

where we have used the relation (3.48) between the poles of the zeta function

and the Heat Kernel coefficients.
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We find exactly what we expected from the discussion about evanes-

cent operators. The Weyl anomaly is a finite effect (it does not depend on

the renormalization scale M) which is proportional to the pole term of the

effective action in the presence of gravity.
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4
Beyond the Schwinger-DeWitt technique

In the previous chapter we have presented the Schwinger-DeWitt technique

as a useful tool to compute the functional determinant that gives the one-

loop divergences of the quantum effective action in the background field

approach. However, our analysis was focused in the case of second oder

operators whose principal symbol was minimal. Although this is the most

common situation in known physics1, there might be cases in which non-

minimality remains. In those cases, one has to work further and go beyond

the Schwinger-DeWitt technique to obtain the extra contributions to the

effective action given by the non-minimal terms.

This can be done in different manners. As always, the diagramatic

techniques are available but they are very involved for curved space com-

putations. Other option is to use the techniques of [51, 52], both based

upon using the Baker-Campbell-Hausdorff lemma to split the Heat Kernel

into pieces that perturb the minimal part. However, here we are going to

rely in the technique of functional traces developed quite some time ago by

Barvinsky and Vilkovisky [53] and known as Generalized Schwinger-DeWitt

technique.

We start by considering a non-minimal second order operator2 given

by

F̂ = Ĝ� + Ĵµν∇µ∇ν + D̂(−) (4.1)

where D̂(−) contains at most one derivative.

The basic point of the method is to assume that F̂ can be embedded

in a one-parameter family

F̂ (τ) = Ĝ� + τ Ĵµν∇µ∇ν + D̂(−) (4.2)

1Both Yang-Mills theory and General Relativity can be taken to this form by an ap-

propiate choice of gauge fixing.
2Here we deal with a second order operator but the technique can be trivially extended

to higher order operators.
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such that for τ = 0 we get a minimal operator and for τ = 1 we go back to

our starting point.

Now, let us apply formula (3.24) to the case of F̂ (τ). By differentiating

with respect to τ we find that

d

dτ
Γ̄[φ̄](τ) =

1

2
log
[
det(F̂ (τ))

]
=

1

2

d

dτ
Tr
[
log(F̂ (τ))

]
= −1

2
Tr

[
dF̂ (τ)

dτ
Q̂(τ)

]
(4.3)

where Q̂(τ) is the Green’s function of F̂ (τ) defined as3

F̂ (τ)Q̂(τ) = −Î (4.4)

By integrating now (4.3) between τ = 0 and τ = 1, the quantum

effective action of the initial non-minimal operator F̂ is obtained in terms

of Q̂(τ)

Γ[φ̄](1) = Γ[φ̄](0)− 1

2

∫ 1

0
dτTr

[
dF̂ (τ)

dτ
Q̂(τ)

]
(4.5)

where Γ[φ̄](0) corresponds to the effective action of a minimal operator and

can be computed by the Schwinger-DeWitt technique of chapter 3.

All the problem has been moved to the issue of computing the Green’s

function Q̂(τ) and the traces inside (4.5). In order to do this, perturbation

theory in τ seems to be the obvious way but it is however very inefficient.

The expression of Q̂(τ) will be in general a non-polynomial function in τ and

thus its computation requires to sum up all the different graphs to obtain

terms of order O(1). A more efficient expansion is obtained by considering

an expansion in scaling dimension4. The reason is that since we know that

Γ[φ̄] must be marginal in the UV , this uniquely fixes the scaling dimension of

the one-loop logarithmic divergences to be λ = 4. Then, we can expand all

the quantities in the problem by using this parameter, throwing away those

that enjoy λ > 4 since they will be irrelevant for the one-loop computation.

By doing this, it is important to have in mind that covariant derivatives

have scaling dimension λ∇ = 1 and that the Riemann tensor has λR = 2.

That implies that every commutator of covariant derivatives will produce

3Note that this definition introduces an extra minus sign when taking the derivative of

the logarithm.
4Also referred as to background dimension in [53].
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terms with increasing scaling dimension and that by reordering derivatives

we have a natural power series in λ which is finite up to the desired order.

The key idea is then to go first to flat space and introduce a four-momentum

pµ. The principal part of F̂ (λ), which we will denote by D̂(∇) from now,

can be inverted there in terms of simple fractions

D̂−1(p) =
K̂(p)

(p2)m
, D̂(p)K̂(p) =

(
p2
)m Î (4.6)

with some power m which will depend on particular details of the operator.

Going back to curved space, the only difference will be the order of

derivatives due to its anticommutative character. However, as we said, this

will only produce lower order terms that will increase their background di-

mensionality and then they will be cut off at some point. Then, we have

D̂(∇)K̂(∇) = Î �m + K̂1(∇) (4.7)

where K̂1 will contain at most 2m− 1 derivatives.

The same happens when we do the trick with the full operator F̂ (τ).

By multiplying it by K̂(∇) we produce a higher order minimal operator

F̂ (τ)K̂(∇) = Î �m + M̂ (4.8)

with some lower order terms contained in M̂ .

Now this can be worked out by using usual perturbation theory and

write the inverse of F̂ (τ), in the sense of (4.4), as

Q̂(τ) = −K̂(∇)
Î

�m

4∑
p=0

(
−M̂ Î

�m

)p
+O(Ω5) (4.9)

where we have cut-off the series at scaling dimension λ = 4.

Here Î
�m in the m-th power of the inverse laplacian in a operator

sense and we will clarify how to compute it in a while. For now, let us just

commute all of them to the right, rewriting last formula as

Q̂(τ) = −K̂(∇)

4∑
p=0

M̂p
Î

�m(p+1)
+O(Ω5) (4.10)

where the operators M̂p are given recursively by the rule

M̂0 = Î (4.11)

M̂p + 1 = M̂M̂p +
[
Î�m, M̂p

]
(4.12)
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Furthermore, we are not going to proof it here, but it can be checked

that when the metric accompanying the minimal factor is covariantly con-

served

∇µĜ = 0 (4.13)

and there are no linear derivative term in the original operator F̂ , then both

M̂3 and M̂4 are automatically of scaling dimension equal or greater than five

and we have just that

M̂1 = M̂, M̂2 = M2 +m[̂I�, M̂ ]̂I�m−1, M̂3 = M̂4 = O(Ω5)

(4.14)

Expression (4.10) gives then a closed operative way to compute the

Green’s function Q̂(τ) as a series of elements ordered by its scaling dimen-

sion. Once this is done, the final step is to take care of the different functional

traces in (4.5). All these traces have, and that is why we have commuted

all the inverse laplacians to the right, the general form

∇µ1∇µ2 ...∇µp
Î

�m
(4.15)

They can be computed by using the Heat Kernel representation for

�. In order to do that, we write

Î
�m

=
1

(m− 1)!

∫ ∞
0

ds sm−1e−sÎ� =
1

(m− 1)!

∫ ∞
0

ds sm−1K̂(s, 1, Î�)

(4.16)

In opposite to the case of a minimal operator now we need the the

untraced Heat Kernel in order to apply to them the derivatives in the trace

and then take the trace afterwards. But we are lucky, since the untraced

Heat Kernel also enjoys a short-time expansion that can be used to extract

divergences. In this case, it reads[53]

K̂(s, 1, Î�) =
D1/2(x, x′)

(4π)
n
2

e−
σ(x,x′)

2s

∞∑
k=0

s(k−n)/2Âk(x, x
′) (4.17)

Here Ân(x, x′) are the corresponding Heat Kernel coefficients, made

up of local invariants of the manifold, but in opposite to the an(ε, D̂) co-

efficients of chapter 3 now they will be operators. σ(x, x′) = 1
2σµσ

µ is the
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world-function, representing the geodesic path between x and x′ travelled

in a proper time s and D1/2(x, x), known as the Van-Vleck determinant,

takes care of the integration measure connecting both points. The trace of

these objects, also known as coincidence lmit, can be taken with the help

of recursive relations. A detailed table of these can be found in section 4

of [53] but they can be also derived from the basic ones, inherited from the

Heat equation

σµ∇µÂ0(x, x′) = 0, Â0(x, x′) = Î

σ(x, x) = 0, ∇µσ(x, x′) = 0, ∇µ∇νσ(x, x′) = gµν

(n+ 1)Â2(n+1)(x, x
′) + σµ∇µÂ2(n+1)(x, x

′) = ∆−1/2Î�(∆1/2Â2n(x, x′))

where D(x, x′) = g1/2(x)g1/2(x′)∆

After taking this representation, one just has to apply all the deriva-

tives in (4.15), plug them in the definition (4.10) of Q̂(τ) and take finally the

trace with the help of the recursive relations. Integration in s will remain,

but only those traces satisfying p− 2n+ 4 ≤ 4 will contain divergences, all

of them arising from the basic integral

∫ ∞
0

ds

sn/2+k
, with k = −1, 0, 1 (4.18)

whose pole part can be extracted by the method of part integration, which

gives the result of the integral as a Laurent series.

This generalized Schwinger-DeWitt technique here presented may seem

very involved but it provides a closed technique to be used to compute the

quantum effective action for a huge variety of different theories, regardless

their complicated differential structure. In particular, it will be of great help

when we come to the issue of quantizing Unimodular Gravity.

4.1. The functional traces The biggest computational challenge for the

technique we have described is to compute

the different functional traces that appear in (4.15). Almost all the traces

we are going to need in Part III are contained in [53] but we have rederived

them for completeness. Here we show them together with the new one which
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we needed to compute from scratch.

∇µ∇ν∇α∇β
I
�2

=
√
g

8(n− 4)π2

{[
1

36
(RµνRαβ +RµαRνβ +RµβRνα) +

1

180

(
Rλµ (11Rναβλ −Rβανλ) +

+Rλν (11Rµαβλ −Rβαµλ) +Rλα (11Rµνβλ −Rβνµλ) +Rλβ (11Rµναλ −Rανµλ)
)

+

+
1

90

(
R λ σ
µ ν (Rλασβ +Rλβσα) +R λ σ

µ α (Rλνσβ +Rλβσν) +R λ σ
µ β (Rλνσα +Rλασν)

)
+

+
1

20
(∇µ∇νRαβ +∇µ∇αRνβ +∇µ∇βRνα +∇n∇aRµβ +∇ν∇βRµα +∇a∇βRµν)

]
I+

+
1

12

[
Rµν F̂αβ +RµαF̂νβ +RµβF̂να +RναF̂µβ +RνβF̂µα +RαβF̂µν

]
+

+
1

2

[
∇µ∇ν F̂αβ +∇µ∇αF̂ν,b +∇ν∇αF̂µβ

]
+

1

8

[
F̂µν F̂αβ + F̂αβF̂µν + F̂µαF̂νβ+

+F̂νβF̂µα + F̂µβF̂να + F̂ναF̂µβ

]
− 1

12

[
F̂µλ

(
Rλανβ +Rλβνα

)
+ F̂νλ

(
Rλαµβ +Rλβµα

)
+

+F̂αλ
(
Rλνµβ +Rλβµν

)
+ F̂βλ

(
Rλµνα +Rλανµ

)]
− 1

2

[
−1

9
(Rαµβν +Rβµαν)RI+

+gµν

[(
1

36
RαβR+

1

90
RλσRλασβ +

1

90
RρσλαR

ρσλ
β −

1

45
RαλR

λ
β +

1

60
�Rαβ +

1

20
∇α∇βR

)
I+

+
1

12

(
F̂αλF̂

λ
β + F̂βλF̂

λ
α

)
− 1

12

(
∇α∇λF̂λβ +∇β∇λF̂λα

)
+

1

12
RF̂αβ

]
+

+gµα

[(
1

36
RνβR+

1

90
RλσRλνσβ +

1

90
RρσλνR

ρσλ
β −

1

45
RνλR

λ
β +

1

60
�Rνβ +

1

20
∇ν∇βR

)
I+

+
1

12

(
F̂νλF̂

λ
β + F̂βλF̂

λ
ν

)
− 1

12

(
∇ν∇λF̂λβ +∇β∇λF̂λν

)
+

1

12
RF̂νβ

]
+

+gµβ

[(
1

36
RναR+

1

90
RλσRλνσα +

1

90
RρσλνR

ρσλ
α −

1

45
RνλR

λ
α +

1

60
�Rνα +

1

20
∇ν∇αR

)
I+

+
1

12

(
F̂νλF̂

λ
α + F̂αλF̂

λ
ν

)
− 1

12

(
∇ν∇λF̂λα +∇α∇λF̂λν

)
+

1

12
RF̂να

]
+

+gνα

[(
1

36
RµβR+

1

90
RλσRλµσβ +

1

90
RρσλµR

ρσλ
β −

1

45
RµλR

λ
β +

1

60
�Rµβ +

1

20
∇µ∇βR

)
I+

+
1

12

(
F̂µλF̂

λ
β + F̂βλF̂

λ
µ

)
− 1

12

(
∇µ∇λF̂λβ +∇β∇λF̂λµ

)
+

1

12
RF̂µβ

]
+

+gνβ

[(
1

36
RµαR+

1

90
RλσRλµσα +

1

90
RρσλµR

ρσλ
α −

1

45
RµλR

λ
α +

1

60
�Rµα +

1

20
∇µ∇αR

)
I+

+
1

12

(
F̂µλF̂

λ
α + F̂αλF̂

λ
µ

)
− 1

12

(
∇µ∇λF̂λα +∇α∇λF̂λµ

)
+

1

12
RF̂µα

]
+

+gαβ

[(
1

36
RµνR+

1

90
RλσRλµσν +

1

90
RρσλµR

ρσλ
ν −

1

45
RµλR

λ
ν +

1

60
�Rµν +

1

20
∇µ∇νR

)
I+

+
1

12

(
F̂µλF̂

λ
ν + F̂νλF̂

λ
µ

)
− 1

12

(
∇µ∇λF̂λν +∇ν∇λF̂λµ

)
+

1

12
RF̂µν

]]
+

+
1

4
(gµνgαβ + gµαgνβ + gµβgνα)

[[
1

180

(
RλσργR

λσργ −Rλ∂Rλσ
)

+
1

30
�R− 1

72
R2

]
I+

+
1

12
F̂λσF̂

λσ

]}
(4.19)
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∇µ∇ν
I
�

=
√
g

8(n− 4)π2

1

2

{[
−gµν

(
1

180
RαβλσR

αβλσ − 1

180
RαβR

αβ +
1

72
R2 +

1

30
�R

)
I+

+
1

45
RαβRαµβν +

1

45
RαβλµR

αβλ
ν − 2

45
RµαR

α
ν +

1

18
RRµν +

1

30
�Rµν +

+
1

10
∇µ∇νR

]
− 1

12
gµν F̂αβF̂

αβ +
1

6
RF̂µν +

1

6
F̂µαF̂

α
ν +

1

6
F̂ναF̂

α
µ −

−1

6
∇µ∇αF̂αν −

1

6
∇ν∇αF̂αµ

}
(4.20)

∇α∇β∇µ∇ν
I
�3

=

−
√
g

8(n− 4)π2

1

4

{
−2

6
Rµβνα −

2

6
RνβµαI + gµν

(
1

6
RαβI +

1

2
F̂αβ

)
+

+ gβν

(
1

6
RαµI +

1

2
F̂αµ

)
+ gαν

(
1

6
RµβI +

1

2
F̂µβ

)
+ gβµ

(
1

6
RανI +

1

2
F̂αν

)
+

+ gαµ

(
1

6
RβνI +

1

2
F̂βν

)
+ gαβ

(
1

6
RµνI +

1

2
F̂µν

)
− 1

12
g

(2)
µναβI

}
(4.21)

∇α∇β∇µ∇ν∇σ∇λ
I
�3

=

−
√
g

8(n− 4)π2

1

6

{
g

(2)
µναβB̂σλ + g(2)

µνασB̂βλ + g
(2)
µνβσB̂αλ + g

(2)
µαβσB̂νλ +

+g
(2)
µναλB̂βσ + g

(2)
µνβλB̂ασ + g

(2)
µαβλB̂νσ + g

(2)
ναβλB̂µσ + g

(2)
µνσλB̂αβ +

+g
(2)
µασλB̂νβ + g

(2)
νασλB̂µβ + g

(2)
µβσλB̂να + g

(2)
νβσλB̂µα + g

(2)
αβσλB̂µν −

− 1

12

[
gσλ (Rβναµ +Rανβµ) + gβλ (Rσναµ +Rανσµ) + gαλ (Rσνβµ +Rβνσµ) +

+gνλ (Rσαβµ +Rβασµ) + gµλ (Rσαβν +Rβασν) + gβσ (Rλναµ +Rανλµ) +

+gασ (Rλνβµ +Rβνλµ) + gµσ (Rλαβν +Rβαλν) + gαβ (Rλνσµ +Rσνλµ) +

+gνβ (Rλασµ +Rσαλµ) + gµβ (Rλασν +Rσαλν) + gνα (Rλβσµ +Rσβλµ) +

+gµα (Rλβσν +Rσβλν) + gµν (Rλβσα +Rσβλα) +
1

8
g

(3)
µναβσλR

]
I
}

(4.22)

∇µ
I
�

=

√
g

8(n− 4)π2

(
1

12
∇µRI−

1

6
∇νF̂νµ

)
(4.23)

I
�

=

√
g

8(n− 4)π2

1

6
RI (4.24)
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∇µ∇ν
I
�2

= −
√
g

8(n− 4)π2

[
1

6

(
Rµν −

1

2
gµνR

)
I +

1

2
F̂µν

]
(4.25)

∇µ1 .....∇µ2n−4

I
�n

= −
√
g

8(n− 4)π2

g
(n−2)
µ1....µ2n−4

2n−2(n− 1)!
(4.26)

where we have defined

g(0) = 1

g(1)
µν = gµν

g
(2)
µναβ = gµαgνβ + gµβgνα + gµνgαβ

g
(3)
µναβσλ = gµνg

(2)
αβσλ + gµαg

(2)
νβσλ + gµβg

(2)
νασλ + gµσg

(2)
ναβλ + gµλg

(2)
ναβσ

g(n+1)
µ1....µ2n+2

=

2n+2∑
i=2

gµ1µig
(n)
µ2...µi−1µi+1µ2n+2

B̂αβ =
1

24
RαβI +

1

8
F̂αβ (4.27)

4.2. The case of G(�)

operators

For the computation of Part III we are going

to need also the contribution to the effective ac-

tion of operators which are scalar functions of

the laplacian G(�). However, this is not a problem since its Heat Kernel

coefficient can be easily computed by means of the definition of the zeta

function.

Given the asymptotic expansion for the heat-kernel of an operator �,

one can easily write the heat-kernel coefficients of any polynomial G(�) in

terms of those of � [54, 55, 51]. Here we will make this relation by using the

elegant derivation in terms of ζ functions present in [55, 54]. As shown in

[55], given an operator � of class u acting on a bundle in a D dimensional

manifold with asymptotic expansion

Tr(εe−τ�) ∼
∞∑
k=0

ak(ε,�)τ (k−D)/u (4.28)

the following asymptotic expansion holds

Tr(ε�me−τ�
n
) ∼

∞∑
k=0

ak(ε,�;n,m)τ (k−D−mu)/(un) (4.29)
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with

ak(ε,�;n,m) =
1

n
lim
ε→0

[
Γ

(
D − k + ε

u

)−1

Γ

(
D − k + ε

un
+
m

un

)]
ak(ε,�)

(4.30)

Notice that for m,n ∈ N, the previous coefficient is always finite. Further-

more, it vanishes for (k − D)/u ∈ N unless (k − D −m)/(un) ∈ N. For a

polynomial G(�) =
∑n

r cr�
r, one has

Tr(εe−τG(�)) ∼
∑
k

ak(ε,G(�))τ (k−D)/(un) (4.31)

To find the heat-kernel coefficients, one uses (4.29) to compute (one can

always take cn = 1)

Tr(εe−τG(�)) = Tr

(
εe−τ�

n
∑
m

(G(�)−�n)m(−τ)m

m!

)
(4.32)

Here we have rewritten G(�) = �n + (G(�)−�n) and expanded the

exponential of the latter in a power series. Correspondingly, the final result

can be organised as a series

Tr(εe−τG(�)) = lim
z→0

∑
k

ak(ε,�)Γ

(
D − k + z

u

)−1 ∫ ∞
0

dq q(D−k+z)/u−1e−τG(q)

(4.33)

from where the different terms of fixed τ order in (4.29) can be easily re-

trieved. This result coincides with the expressions of [51, ?]. Afterwards, one

can use the method of functional traces to compute the extra contribution

coming from any non-minimal piece in the operator of interest.
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52



5
Dealing with gauge symmetries

In the previous chapters we introduced techniques, based upon the definition

of the zeta function, to compute the one-loop renormalized effective action

in the background field formalism. In doing so we assumed that the differ-

ential operator D̂ that emerges from the second variation of the full action

contained no zero modes or at least just a finite number of those. However,

this is not the case for many of the most interesting physical theories out

there and also of the ones we are going to take care in Parts II and III. In

general, physical theories may contain zero modes as a consequence of gauge

invariance, the fact that the action is invariant under some local (depending

on the spacetime point) symmetry, where the fields φ transform under some

group algebra. In that case, configurations that are related to the trivial

φ = 0 are said to be pure gauge and they appear as zero modes since they

must be annihilated by the action regarded as an operator. Two well-knows

examples of this are Yang-Mills theories, invariant under SU(N) groups;

and Einstein-Hilbert theory, which is invariant under diffeomorphisms.

Classically, gauge invariance only tells us that we have to supplement

the equations of motion with an extra condition which allows to solve them,

like for instance the well-known Lorentz gauge ∂µA
µ = 0 in QED. The issue

is however more problematic when talking about a quantum theory. In the

path integral approach, where we defined the partition function as

Z[J ] =

∫
[Dφ]eiS(φ)+i〈φ,J〉 (5.1)

the gauge invariance reflects in the fact that the integration measure [Dφ]

is not well-defined. Its integration domain is not compact and we are inte-

grating more than once over the same physical configuration.

We do not expect here to write a detailed work on gauge symmetries

and BRST invariance (to be introduced later) but just to present the latter

as a useful tool to fix the gauge and be able to integrate over quantum

dynamics with complicated symmetries, killing all the zero modes.
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The usual way to come to grips with the problem of the ill-defined

integration measure is to fix then the integration regime to a single orbit of

the gauge group. This can be regarded as performing a redefinition of the

integration variable which will introduce thus the determinant of a jacobian

in the integral when expressed in terms of the original variable. Using the

fact that a determinant can be written as a path integral suggest to ex-

ponentiate this factor and introduce a new set of fields called ghosts that

compensate for this phenomena. This is the usual Faddeev-Popov method

which is used extensively in quantum field theory and that, although it is

very convenient for Yang-Mills theories, it is quite cumbersome when we

need to deal with complicated symmetries.

An alternative which is more suitable to suit our needs here is to use

the method of BRST (Becchi, Rouet, Stora and Tyutin)[56, 57]. Let us

start by assuming that we have an action S[φ] depending on a set of fields

φ which is invariant under some local symmetry which acts over the fields

infinitesimally as

φ→ φ+Rω +O(ω2) (5.2)

where ω is the infinitesimal parameter of the transformation and R are the

infinitesimal generators of the algebra associated to the invariance group.

The idea behind the method is to substitute the gauge invariance of

the original theory by a new symmetry (the BRST invariance) which does

not constrain the integration measure by itself. This symmetry is generated

by an operator ∫ which acts over the field as

∫φ = Rc (5.3)

where c is a grassman odd field which will take later the role of the ghost. In

this way, the BRST operator acts on the physical field as a gauge transfor-

mation with an anti-commuting parameter, thus ensuring that the classical

action will be still invariant. The BRST operator then has ghost number

one and it is also grassman odd.

The transformation of the ghost under the BRST action is defined as

the Lie bracket with itself

∫c =
1

2
[c, c] (5.4)

which is not vanishing thanks to its anticommutativity.
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By defining the action of ∫ in this way, the original unfixed action

automatically satisfies ∫S = 0 due to gauge invariance. Moreover, because

of the anticonmuting nature of c, the operator ∫ is nilpotent over all the

fields present here

∫2 = 0 (5.5)

The implications of this relation have a direct physical correspondence.

Because the lagrangian will have now the continuous symmetry σ, there will

be a conserved charge Q which commutes with the hamiltonian and thus it

will divide the Hilbert space of the quantum theory at hand in three parts

• Those states |Ψ1〉 which are not annihilated by Q will not belong to

the physical Hilbert state of the system. We call this H1

• Those states which satisfy |Ψ2〉 = Q |Ψ1〉, where |Ψ1〉 is in H1 and thus

they are anhilated by a second application of Q due to nilpotency

Q |Ψ2〉 = Q2 |Ψ1〉 = 0 (5.6)

We call this subspace H2.

• Those states which are annihilated by Q

Q |Ψ0〉 = 0 (5.7)

but they are not in H2. We call this H0.

It is easy to see that H2 contains only states of zero norm and that

all the states in H2 are orthogonal to those in H0.

Now, because of the way that BRST transformations act onto the

fields, we see that non-physical polarizations of φ (the gauge modes) are

taken to be ghosts by the action of ∫ , which are later annihilated by the

second action of ∫ . This means that states containing gauge modes will

belong to H1 while states containing ghosts will be in H2. States containing

physical modes will be then contained in H0 and, since H2 and H0 are or-

thogonal, the scattering of two physical states will not receive contributions

of H2, ensuring gauge independence of the S matrix.

This is all formal but it can be also exploited to construct a path

integral formulation free from the sickness introduced by zero modes of the
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gauge symmetry. The idea is to introduce a new term in the action Sgb

which is so that it satisfies two simple conditions

• It is BRST invariant

∫Sgb = 0 (5.8)

• It is not gauge invariant

In order to construct such a term it is necessary to introduce two new

extra fields b and f with transformations under the action of ∫ obeying

∫b = f (5.9)

∫f = 0 (5.10)

The field b is what we called the anti-ghost and it is here to compensate

the ghost number and grassman character of c in order to obtain a hermitian

action term. It is thus also grassman odd and has ghost number −1. The

other field, f , it is known as a Nakanishi-Lautrup auxiliary field and it is

there in order to be able to close the BRST algebra ∫2 over all the fields.

Now, we can construct Sgb satisfying all the conditions above by simply

taking it to be the BRST transformation of a local polynomial on b, f and

φ of ghost number −1 and odd grassman character

Sgb = ∫
∫
d4x X (5.11)

so that it is automatically BRST invariant because of the nilpotency of ∫2.

By adding this piece to the action, we can now integrate over the

physical field, the auxiliary field and the ghosts; since the path integral

does not contain an infinite number of zero modes any more. Moreover,

by choosing Sgb to be BRST invariant, any correlation function of a gauge

invariant operator is automatically BRST invariant and, since correlation

functions can only depende on the physical field φ and for this one, BRST

transformations are gauge transformations, it will be also gauge invariant.

As a simple example of how this works, let us arrive to the usual

Faddeev-Popov prescription by means of BRST invariance. We start by

choosing the X polynomial to be

X = b (F + f) (5.12)
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where F = 0 is the gauge fixing condition for the system.

Acting with the BRST operator, we find

Sgb =

∫
d4x

{
f F + f2 − b ∫F

}
= (5.13)

=

∫
d4x

{(
f +

1

2
F

)2

− 1

4
F 2 − b ∫F

}
where in the second step we have completed the square.

Now we can shift the f variable in such a way that

f → f − 1

2
F (5.14)

This change will have no effect at all in the path integral for f since

it is just a local shift. After it, the gauge breaking term reduces to

Sgb =

∫
d4x

{
f2 − 1

4
F 2 − b ∫F

}
(5.15)

We find then three terms to be add to the original action. The first

one has no effect since it will just introduce an ultralocal factor related to

the normalization of f that we can get rid of in connected amplitudes. The

second one is what we would call the gauge fixing term in Faddeev-Poppov

technique, while the last one is the ghost action, since ∫F is equivalent to a

gauge transformation of the gauge fixing condition. We then arrive to the

complete Faddeev-Popov condition by using the BRST operator method.

More complicated choices for X can be done, involving local operators

acting on f and more bizarre combinations of different auxiliary fields but

the logic behind is exactly the same as the one presented here.
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Conformal Dilaton Gravity





6
Dilaton Gravity

As we thoroughly introduced in 2, the notion of scale invariance, upgraded

to Weyl invariance in the presence of gravity, is believed to be relevant

when studying physics a very short distances. Indeed, it is easy to construct

a gravitational theory enjoying this symmetry by using the Weyl tensor.

Conformal (super)gravity [58] is such a theory which in four space-time

dimensions and is given by the lagrangian

L ≡
√
−g Cµνρσ Cµνρσ ≡

√
|g| C2 (6.1)

where Cµνρσ is Weyl’s tensor, the tracefree piece of Riemann’s tensor. It is

explicitily defined in terms of the Riemann tensor as

Cµνρσ ≡ Rµνρσ −
1

n− 2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

+
1

(n− 1)(n− 2)
R (gµρgνσ − gµσgνρ) (6.2)

so that

C2 ≡ R2
µνρσ −

4

n− 2
R2
µν +

2

(n− 1) (n− 2)
R2. (6.3)

This theory is Weyl invariant in four dimensions only1. There are local

invariants in arbitrary dimensions, involving derivatives of the Weyl tensor

and the Fefferman-Graham obstruction, whose existence is guaranteed, but

which is not known explicitly in general [59].

Conformal (super)gravities (as any other theory quadratic in curva-

ture) are renormalizable and it has been argued that they can even be finite

at the quantum level provided they have enough supersymmetry. Neverthe-

less, there is always some tension, at least at the perturbative level, with

unitarity, because the propagator is quartic in the four-momentum, implying

1Here n is the space-time dimension. We will keep it arbitrary with an eye on using

dimensional regularization later. However, all our results will be evaluated in four space-

time dimensions only.
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the existence of new poles that lead to either unitarity or causality violations.

It is actually not clear in spite of some insightful attempts[60, 61] whether a

non-perturbative unitary definition of the theory is possible at all. The topic

has however attracted a renovated attention recently, since those theories,

when coupled to a scale-invariant version of the Standard Model, seem to

reproduce qualitatively well the known values for the coupling constants in

nature[18].

It is nevertheless quite easy to construct a much simpler theory in

which both dynamical gravitation and Weyl invariance are present and which

is free of these problems by the procedure of group averaging, that is, perform

a Weyl transformation on the Einstein-Hilbert lagrangian and promote the

Weyl rescaling factor to the status of a new field.

Under a Weyl rescaling the Einstein-Hilbert lagrangian behaves as√
|g| R→

√
|g|
[
Ωn−2R+ (n− 1)(n− 2)Ωn−4(∇Ω)2

]
(6.4)

where we have neglected a total derivative which yields a boundary term.

We then define a gravitational scalar field through

Ω ≡ 1

Mp

(
(n− 2)

4(n− 1)

) 1
n−2

φ
2

n−2 (6.5)

(where the n-dimensional Planck mass is defined as Mn−2
p ≡ 1

16πGn
) obtain-

ing the lagrangian of our theory

SCDG =

∫
dnx

√
|g|
(
− n− 2

8(n− 1)
Rφ2 − 1

2
gµν∇µφ∇νφ

)
(6.6)

We end up with nothing more than the well known action for a scalar

conformally coupled to gravity, with the difference that now we consider

that gravity is dynamical. In this way, the field φ takes the role of a dilaton

and we will dub this theory Conformal Dilaton Gravity(CDG).

It seems that the first to consider CDG was Dirac [62] in a very inter-

esting paper in which he related the large numbers hypothesis with the old

unified theory of Hermann Weyl. Other interesting pioneering works on this

theory include[25, 63, 64, 65]. In those works, it was considered as a confor-

mally invariant off-mass shell extension of quantum gravity in the context

of the early attempts to understand the physical meaning of the conformal

anomaly [21]. In particular and in Duff’s words “Real Weyl invariance has
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anomalies; pseudo-Weyl invariance (i.e. involving a compensator field) does

not. This is a regularization-scheme-independent statement.”

This statement, as phrased by Duff, represents our main motivation

to study Conformal Dilaton Gravity. As it is presented, this theory is clas-

sically equivalent to General Relativity. We have just redefined the fields

to go from the Einstein Frame, where the kinetic term for the graviton has

the standard form R, to the Jordan Frame[66], where the coupling Rφ2 ap-

pears2. However, in the quantum theory this is not so obvious any more. In

particular, let us recall our definition (3.24) for the quantum effective action

in the background field approach

Γ[φ̄] =
1

2
log
[
det(D̂)

]
(6.7)

Under a transformation of the fields

Q′ = Q′(Q) (6.8)

it behaves as[67]

Γ
′
[φ̄] =

1

2
log

[
det(D̂′) +

(
∂Q′

∂Q

)2 ∂2Q

∂Q′2
∂S

∂Q′

]
(6.9)

where the first term is the determinant of the corresponding transformed

operator.

This implies that when redefining fields, only quantities which are

evaluated on-shell ( ∂S∂Q′ = 0), in particular the S-matrix, are equivalent in

both formulations, meaning that they are the transformation one of the

other. This is a fact known since a long time ago and sometimes referred to

as Kallosh-DeWitt theorem[68, 69, 40]. In the particular case of transforma-

tions between the Einstein and Jordan frame, this is of capital importance,

since non-minimally coupled scalar-fields appear commonly in models of in-

flation and going to the simplest frame is a extensively used technique. One

of the main results of this part of this thesis will be to shed new light to this

question when Weyl invariance is present.

The above considerations are taken as a motivation to study the non-

minimally coupled system gravitational-scalar field in the following sense

S = −
∫
dnx

√
|g|
(
ξRφ2 +

1

2
(∇φ)2

)
(6.10)

2Of course, if we couple matter to the system, the question of which metric we should

consider as the physical one arises and equivalence is lost.
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with in principle arbitrary non-minimal coupling ξ. Only when ξ = ξc =
n−2

8(n−1) is the symetry of the theory upgraded to include Weyl invariance.

In that case, the scalar field enjoys scaling dimension λφ = (2 − n)/2. The

global sign in front of the action is irrelevant as it stands, but it is the correct

one to couple to a matter lagrangian containing matter fields.

The vacuum structure of this theory is quite peculiar. There is a global

Z2 symmetry

φ(x)→ −φ(x) (6.11)

which is promoted to an U(1) when the scalar field is complex and φ2 is re-

placed by |φ|2. There are then two different phases, depending on whether

the background field vanishes or not. Only the vanishing solution is compat-

ible with the Z2 symmetry. In this symmetric phase, quantum perturbations

are defined around the symmetric classical solution

φ̄(x) = 0 (6.12)

In this case there is no propagator for the gravitational fluctuation,

and we do not know how to proceed (although some possible paths will be

suggested later). In the broken phase we consider a classically non-vanishing

solution

φ̄(x) 6= 0 (6.13)

that determines the graviton propagator.

Our aim in this part is then to study dilaton gravity both in the

both Weyl and non-Weyl invariant regimes. Using a combination of the

background field and heat kernel techniques introduced in chapter 3, the one-

loop effective action will be first determined for generic value of the coupling

constant ξ. This calculation wont be valid at the conformal point, ξ = ξc,

because there the gauge symmetry will be enhanced by Weyl invariance. If

Kallosh-DeWitt theorem holds as it is stated before, then the counterterms

of CDG and GR would be the transformation one of the other, preserving the

group averaging character in the path integral computation. Our objective

is to check whether this is the case or not.
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Let us begin by analyzing the non-Weyl invariant action of Dilaton Gravity,

that is

S = −
∫
dnx

√
|g|
(
ξRΦ2 +

1

2
(∇Φ)2

)
(7.1)

with free coupling constant ξ. The reason for the notation Φ will be apparent

in a moment.

We are going to obtain the one-loop effective action of this theory by

means of the Schwinger-DeWitt technique described in Chapter 3. For that

reason, let us start by expanding the action around an arbitrary background

for both the gravitational and scalar fields

gµν = gµν + hµν (7.2)

Φ = φ̄+ φ

where we have omitted the bars over the background metric in order to keep

the notation clean.

Demanding that the linear terms in the expansion cancel determines

the background equations of motion (EM). When the background fields are

so restricted, absence of tadpoles in the quantum theory is guaranteed. In

four space-time dimensions and with arbitrary parameter ξ they read

ξφ̄Rµν =
1

4
gµν∇2φ̄−

(
1

2
− 2ξ

)
∇µφ̄∇ν φ̄

φ̄
−
(

2ξ − 1

4

)
gµν

(∇φ̄)2

φ̄
+

+ 2ξ∇µ∇ν φ̄− 2ξgµν∇2φ̄ (7.3)

φ̄R =
1

2ξ
∇2φ̄ (7.4)

while the second order terms determine the differential operator over which

we have to integrate in order to compute the background field effective

action. This is given by

S2 =−
∫
dnx

√
|g| (H + F +HF ) (7.5)
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where

H = ξφ̄2

[
−1

4
h∇2h+

1

4
hαβ∇2hαβ −

1

2
∇µh∇νhµν +

1

2
∇µhµα∇νhνα+

+
1

8
h2R− 1

4
hµνh

µνR−−1

2
hhαβRαβ +

1

2
hµνhανRµα +

1

2
Rµναβh

µαhνβ
]

+

+ ξ(∇αφ̄2)

(
1

4
h∇αh− 3

4
hµν∇αhµν +

3

2
hαβ∇µhµβ +

1

2
hµν∇µhαν−

−hαβ∇βh−
1

2
h∇βhαβ

)
+

1

2
hµαhνα∇µφ̄∇ν φ̄−

1

4
hhµν∇µφ̄∇ν φ̄+

− 1

8
hµνh

µν∇αφ̄∇αφ̄+
1

16
h2∇µφ̄∇µφ̄

F =
1

2
∇αφ∇αφ+ ξRφ2

HF = ξφ̄φ
(
−2hµνRµν + hR+ 2∇µ∇νhµν − 2∇2h

)
− hαβ∇αφ∇βφ̄+

+
1

2
h∇µφ̄∇µφ

Since gravitational fluctuations are symmetric tensors, hµν = hνµ only

the symmetric part of the quadratic term contributes. We find convenient

to define the operators

Pαβµνρσ =
1

8

(
gµρδ

α
ν δ

β
σ + gµσδ

α
ν δ

β
ρ + gνρδ

α
µδ

β
σ + gνσδ

α
µδ

β
ρ

)
+

1

8
(α↔ β) (7.6)

Kαβµνρσ =
1

4

(
gµνδ

α
ρ δ

β
σ + gρσδ

α
µδ

β
ν

)
+

1

4
(α↔ β)

which project over the helicity states

hµνhµν = hµνhρσPαβµνρσgαβ
h2 = Kαβµνρσgαβhµνhρσ (7.7)

and which simplify a lot the quadratic operators. Using them, the second

order expanded action can be further reduced to

S2 = −
∫
dnx

√
|g|
[
hµνĤµνρσh

ρσ + φ(ĤF )µνh
µν + φF̂φ+ (7.8)

+ξφ̄2

(
−1

2
∇µh∇νhµν +

1

2
∇µhµα∇νhνα

)]
where we have kept apart the non-diagonal contributions to the graviton

sector in order to cancel them later with a proper gauge fixing and where
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the corresponding operators are given by

Ĥµνρσ =
ξ

4
(∇αφ̄2)

((
Kγωµνρσ − 3Pγωµνρσ

)
gγωg

αβ +Xαβ
µνρσ

)
∇β+

+

(
1

2
Pαβµνρσ −

1

4
Kαβµνρσ

)(
∇αφ̄∇βφ̄−

1

4
gαβ(∇φ̄)2

)
+

+ ξφ̄2

[
1

4

(
Pαβµνρσ −Kαβµνρσ

)
gαβ∇2 +

1

2

(
Pαβµνρσ −Kαβµνρσ

)
Rαβ+

+
1

2
R(µρνσ) +

(
1

8
Kαβµνρσ −

1

4
Pαβµνρσ

)
gαβR

]
(7.9)

with the tensor Xαβ
µνρσ defined as

Xαβ
µνρσ =

3

2

(
gαµg

β
ρ gνσ + gαν g

β
ρ gµσ + gαµg

β
σgνρ + gαν g

β
σgµρ

)
−

−
(
gαρ g

β
σgµν + gασg

β
ρ gµν

)
− 2

(
gαµg

β
ν gρσ + gαν g

β
µgρσ

)
+

+
1

2

(
gαρ g

β
µgνσ + gαρ g

β
ν gµσ + gασg

β
µgνρ + gασg

β
ν gµρ

)
(7.10)

and

(ĤF )µν = ξφ̄
[
Rgµν − 2Rµν + 2∇µ∇ν − 2gµν∇2

]
− 1

2
gµν∇αφ̄∇α+

+∇µ∇ν φ̄−
1

2
gµν∇2φ̄+

1

2

(
∇µφ̄∇ν +∇ν φ̄∇µ

)
(7.11)

F̂ = −1

2
∇2 + ξR (7.12)

Here the round parenthesis mean complete symmetrization of the in-

dices contained inside.

The kinetic term for the graviton is, however, non-standard. It con-

tains a second power of the background scalar field φ̄ that complicates things.

In particular, it makes the metric on the field space Ĝ, as defined in (3.51)

to be non-covariantly constant. To solve this, it is useful then to change

variables to

kµν = φ̄hµν (7.13)

in order to eliminate all the dependence on φ̄ out of the kinetic term. This

only makes sense in the broken phase, since this transformation is ill-defined

when φ̄ = 0. It will also mean nothing for the path integral, since it will
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only add an ultralocal factor. In this case, the action is then rewritten as

S2 =−
∫
dnx

√
|g|
[
kµνK̂µνρσk

ρσ + φ(K̂P )µνk
µν + φP̂φ+ (7.14)

+ξ

(
−1

2
∇µk∇νkµν +

1

2
∇µkµα∇νkνα

)]
where the explicit values of the coefficients are now

Ĥµνρσ = +

(
1

2
Pαβµνρσ −

1

4
Kαβµνρσ

)(
∇αφ̄∇βφ̄

φ̄2
− 1

4
gαβ

(∇φ̄)2

φ̄2

)
+

+ 2ξ
∇αφ̄
φ̄

((
1

2
Kγωµνρσ − Pγωµνρσ

)
gγωg

αβ +
1

2
Kµνρσ +

1

4
Y αβµνρσ

)
∇β+

+
ξ

2

[
1

2

(
Pαβµνρσ −Kαβµνρσ

)
gαβ

(
2

(∇φ̄)2

φ̄2
− ∇

2φ̄

φ̄

)
+

+
(
Pαβµνρσ −Kαβµνρσ −

(
Kγδµνρσ − 3Pγδµνρσ

)
gγδg

αβ −Xαβ
µνρσ

) ∇αφ̄∇βφ̄
φ̄2

]
+

+ ξ

[
1

4

(
Pαβµνρσ −Kαβµνρσ

)
gαβ∇2 +

1

2

(
Pαβµνρσ −Kαβµνρσ

)
Rαβ +

1

2
R(µρνσ)

+

(
1

8
Kαβµνρσ −

1

4
Pαβµνρσ

)
gαβR

]
(7.15)

(ĤF )µν = ξ
[
Rgµν − 2Rµν + 2∇µ∇ν − 2gµν∇2

]
+

+
1

2

(
∇µφ̄
φ̄

δβν +
∇ν φ̄
φ̄

δβµ − gµν
∇βφ̄
φ̄

)
∇β−

− 2ξ

(
∇µφ̄
φ̄

δβν +
∇ν φ̄
φ̄

δβµ − 2gµν
∇βφ̄
φ̄

)
∇β+

+ 2ξ

(
2
∇µφ̄∇ν φ̄

φ̄2
− ∇µ∇ν φ̄

φ̄
− 2

(∇φ̄)2

φ̄2
gµν +

∇2φ̄

φ̄
gµν

)
+

+
1

2

(
2
∇µ∇ν φ̄

φ̄
− 2
∇µφ̄∇ν φ̄

φ̄2
+

(∇φ̄)2

φ̄2
− gµν

∇2φ̄

φ̄

)
(7.16)

F̂ = −1

2
∇2 +

(n− 2)

8(n− 1)
R (7.17)

and finally

Y αβ
µνρσ =

(
gαµg

β
ρ gνσ + gαν g

β
ρ gµσ + gαµg

β
σgνρ + gαν g

β
σgµρ

)
−

−
(
gαρ g

β
σgµν + gασg

β
ρ gµν

)
− 2

(
gαµg

β
ν gρσ + gαν g

β
µgρσ

)
+

+
1

2

(
gαρ g

β
µgνσ + gαρ g

β
ν gµσ + gασg

β
µgνρ + gασg

β
ν gµρ

)
(7.18)

At this point, the action is still not suitable to use the Schwinger-

DeWitt technique and compute the one-loop divergences of the quantum
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effective action. The reason is that, as it stands now, the theory contains zero

modes inherited from gauge invariance. The original action (7.1) is invariant

under the full group of diffeomorphisms, represented at the infinitesimal level

by Lie dragging the original fields

g′µν = £ξgµν (7.19)

φ′ = £ξφ (7.20)

along a vector ξµ which contains the infinitesimal generators of the connected

part of the Diff group. Alternatively, and more suitable for the quantization

of the theory, we can define a BRST operator as we did in chapter 5 that

implements the symmetry

sD ≡ £c (7.21)

where now cµ is an odd Grasman field that takes the role of the Faddeev-

Popop ghost.

In the background field approach the operator splits in background and

quantum counterparts and it is this last part what represents a redundancy

in the path integral measure. In particular, this means that the quantum

fluctuations hµν and φ can be transformed by

sDhµν = ∇µcν +∇νcµ + cρ∇ρhµν +∇µcρhρν +∇νcρhρµ (7.22)

sDφ = cλ∇λ(φ̄+ φ) (7.23)

while the background fields are non-sensitive to these transformations. These

leave the second order action (7.5) unchanged. For the field kµν the corre-

sponding transformation is

sDkµν = φ̄ (∇µcν +∇νcµ) + cρ∇ρkµν +∇µcρkρν +∇νcρkρµ − cρkµν
∇ρφ̄
φ̄

(7.24)

Now, there are two things that we aim to do with the gauge fixing,

constructed with the BRST method of chapter 5. We must, of course, cancel

the zero modes in order to have a well-defined action that we can integrate

over and, second, we want to apply the Schwinger-DeWitt technique of

chapter 3 so we will try to cancel any kinetic term which is non-minimal.

This can be achieved in different ways, some of them simple modifications
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of the well-known harmonic or de Donder gauge. It is however actually

possible to choose a very general gauge interpolating between two functions

F̂µ = (1− γ)F 1
µ + γF 2

µ (7.25)

with

F 1
µ = ∇νkµν −

1

2
∇µk − 2∇µφ (7.26)

F 2
µ = φ̄

(
∇νhµν −

1

2
∇µh

)
− 2∇µφ (7.27)

Although each of the two functions F 1
µ and F 2

µ represent perfectly

admissible gauge choices separately, we have decided to consider this more

general linear combination of them as above in order to be able to track the

dependence on the γ parameter along the computation and explicitly check

that it vanishes on-shell, as it should. The full gauge fixing choice is then

F̂µ = ∇νkµν −
1

2
∇µk − 2∇µφ− γkνµ

∇ν φ̄
φ̄

+ γ
1

2
k
∇µφ̄
φ̄

(7.28)

Here the situation is easy enough as to use Faddeev-Popov quantiza-

tion, instead of the full BRST method of chapter 5. We thus introduce a

gauge fixing term of the form

Sdiff =
ξ

2

∫
dnx

√
|g| F̂µF̂µ (7.29)

with

F̂µF̂
µ = 2

(
1

2
∇µk∇νkµν −

1

2
∇µkµα∇νkνα

)
+ 2

[
−2φ∇µ∇νkµν + φ∇2k

]
+ 4φ∇2φ+

+
1

4
k∇2k + γ

[
kµνkαν

∇µφ̄∇αφ̄
φ̄2

+
1

4
k2 (∇φ̄)2

φ̄2
− kkµν∇µφ̄∇ν φ̄

φ̄2
+ k
∇µφ̄
φ̄
∇νkµν−

−2kµν
∇ν φ̄
φ̄
∇αkαµ −

1

2
k∇µk

∇µφ̄
φ̄

+ kµν∇µk
∇ν φ̄
φ̄
− 2k

∇µφ̄
φ̄
∇µφ+ 4kµν

∇µφ̄
φ̄
∇νφ

]
(7.30)

which cancels exactly the non-minimal terms in (7.5).

By adding the gauge-fixing term to the original action we can fi-

nally write an operator which is almost suitable for the application of the

Schwinger-DeWitt technique. The original action with the gauge fixing

added then reads

Sfull2 = −
∫
dnx

√
|g|
[
kµνĤµνρσk

ρσ + φ(ĤF )µνk
µν + φF̂φ

]
(7.31)
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where the values of the coefficients are again quite contrived

Ĥµνρσ = + 2ξ
∇αφ̄
φ̄

((
1

2
Kγωµνρσ − Pγωµνρσ

)
gγωg

αβ +
1

2
Kµνρσ +

1

4
Y αβµνρσ

)
∇β+

+
γ2ξ

4
Eαβµνρσ

∇αφ̄∇βφ̄
φ̄2

+
ξ

2

[
1

2

(
Pαβµνρσ −Kαβµνρσ

)
gαβ

(
2

(∇φ̄)2

φ̄2
− ∇

2φ̄

φ̄

)
+

+
(
Pαβµνρσ −Kαβµνρσ −

(
Kγδµνρσ − 3Pγδµνρσ

)
gγδg

αβ −Xαβ
µνρσ

) ∇αφ̄∇βφ̄
φ̄2

]
+

+

(
1

2
Pαβµνρσ −

1

4
Kαβµνρσ

)(
∇αφ̄∇βφ̄

φ̄2
− 1

4
gαβ

(∇φ̄)2

φ̄2

)
+

ξ

[
1

4

(
Pαβµνρσ −

1

2
Kαβµνρσ

)
gαβ∇2 +

1

2

(
Pαβµνρσ −Kαβµνρσ

)
Rαβ +

1

2
R(µρνσ)

+

(
1

8
Kαβµνρσ −

1

4
Pαβµνρσ

)
gαβR

]
− γξ

2
Eαβµνρσ

∇αφ̄
φ̄
∇β (7.32)

(ĤF )µν =ξ
[
Rgµν − 2Rµν − gµν∇2

]
+

+

(
γξ +

1

2

)(
∇µφ̄
φ̄

δβν +
∇ν φ̄
φ̄

δβµ − gµν
∇βφ̄
φ̄

)
∇β−

− 2ξ

(
∇µφ̄
φ̄

δβν +
∇ν φ̄
φ̄

δβµ − 2gµν
∇βφ̄
φ̄

)
∇β+

+ 2ξ

(
2
∇µφ̄∇ν φ̄

φ̄2
− ∇µ∇ν φ̄

φ̄
− 2

(∇φ̄)2

φ̄2
gµν +

∇2φ̄

φ̄
gµν

)
+

+
1

2

(
2
∇µ∇ν φ̄

φ̄
− 2
∇µφ̄∇ν φ̄

φ̄2
+

(∇φ̄)2

φ̄2
− gµν

∇2φ̄

φ̄

)
(7.33)

F̂ =

(
2ξ − 1

2

)
∇2 + ξR (7.34)

where we have introduced a new tensor

Eαβµνρσ =
1

2

(
gµνδ

α
ρ δ

β
σ + gµνδ

α
σ δ

β
ρ + gρσδ

α
µδ

β
n + gρσδ

α
ν δ

β
m − gµνgρσgαβ

)
−

− 1

2

(
gµρδ

α
ν δ

β
σ + gµσδ

α
ν δ

β
ρ + gνρδ

α
µδ

β
σ + gνσδ

α
µδ

β
ρ

)
(7.35)

In order to apply the Schwinger-DeWitt technique and the short-time

expansion of the Heat Kernel contained in chapter 3 we need now to write

this as

S =

∫
dnx

√
|g| ΨA (−GAB�− EAB) ΨB (7.36)

where A,B are generalized indices. In our case, they will run over the

different components of the fields in the action. That is, we introduce a
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DeWitt superfield

ΨA =

(
kµν

φ

)
(7.37)

and the interpretation of the index A is a label for the different polariza-

tions1. Therefore, the rank of the index A is n(n+ 1)/2 + 1.

By a first manipulation and using this, we can write the full expanded

gauge fixed action as

Sfull =

∫
dnx

√
|g| ΨA

(
−GAB� +Nµ

AB∇µ +MAB

)
ΨB (7.38)

where the metric GAB is symmetric and given by

GAB =

(
ξ
4

(
1
2K

αβ
µνρσ − Pαβµνρσ

)
gαβ

ξ
2gµν

ξ
2gρσ

1
2 − 2ξ

)
(7.39)

with inverse

GAB =
1

8ξ(n− 1)− (n− 2)

(
Gµνρσ 8gµν

8gρσ −2(n− 2)

)
(7.40)

Gµνρσ = −2

ξ
[(8ξ(n− 1)− (n− 2))(gµσgνρ + gµρ + gνσ) + 2(1− 8ξ)gµνgρσ]

defined in such a way that

GABG
BC = GCBGBA =

(
1
2

(
δρµδσν + δρνδσµ

)
0

0 1

)
(7.41)

and the matrices Nµ
AB and MAB are anti-symmetric and symmetric respec-

tively. They are obtaining by partial integration of the different terms in

(7.31) and read

Nβ
AB =

(
Nβ
kk Nβ

kφ

Nβ
φk Nβ

φφ

)
(7.42)

where

Nβ
kk =

ξ

4

(
Y αβ
µνρσ − Y αβ

ρσµν − γEαβµνρσ + γEαβρσµν

) ∇αφ̄
φ̄

Nβ
φφ =0

Nβ
kφ =−Nβ

φk =
1

2

(
1

2
− 2ξ

)(
∇µφ̄
φ̄

δβν +
∇ν φ̄
φ̄

δβµ

)
− 1

2

(
4ξ − 1

2

)
gµν
∇βφ̄
φ̄
−

− ξγ

2

(
∇µφ̄
φ̄

δβν +
∇ν φ̄
φ̄

δβµ − gµν
∇βφ̄
φ̄

)
1Mind that here we are not killing the gauge polarizations yet. Those will be taken

care of by the ghost action to be introduced later.
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MAB =

(
Mkk Mkφ

Mφk Mφφ

)
(7.43)

where the different elements are

Mkk =

=
ξ

2

{
1

2

(
Pαβµνρσ −Kαβµνρσ

)
gαβ

(
2

(∇φ̄)2

φ̄2
− ∇

2φ̄

φ̄

)
+
∇αφ̄∇βφ̄

φ̄2

[(
Pαβµνρσ −Kαβµνρσ

)
+

+
(
3Pγωµνρσ −Kγωµνρσ

)
gγωg

αβ −Xαβ
µνρσ

]}
− ξ∇β

(
∇αφ̄
φ̄

)[
Gγωµνρσgγωgαβ+

+
1

2
Kαβµνρσ +

1

8

(
Y αβµνρσ + Y αβρσµν

)]
− 1

2
Gαβµνρσ

(
∇αφ̄∇βφ̄

φ̄2
− 1

4
gαβ

(∇φ̄)2

φ̄2

)
+

+ ξ

[
1

2

(
Pαβµνρσ −Kαβµνρσ

)
Rαβ +

1

4
GαβµνρσgαβR+

1

2
R(µρνσ)

]
+

+
ξ

8

(
Eαβµνρσ + Eαβρσµν

)(
γ∇β

(
∇αφ̄
φ̄

)
+ γ2∇αφ̄∇βφ̄

φ̄2

)
(7.44)

Mkφ =Mφk =
ξ

2
(Rgµν − 2Rµν)− 1

2

(
1

2
− 2ξ

)
∇µ
(
∇µφ̄
φ̄

)
+

+ ξ

(
2
∇µφ̄∇ν φ̄

φ̄2
− ∇µ∇ν φ̄

φ̄
− 2gµν

∇βφ̄∇βφ̄
φ̄2

+ gµν
∇β∇βφ̄

φ̄

)
+

+
1

4

(
2
∇µ∇ν φ̄

φ̄
− 2
∇µφ̄∇ν φ̄

φ̄2
+ gµν

∇βφ̄∇βφ̄
φ̄2

− gµν
∇β∇βφ̄

φ̄

)
−

− 1

4

(
4ξ − 1

2

)
gµν∇β

(
∇βφ̄
φ̄

)
− γξ

2

[
1

2
gµν∇β

(
∇βφ̄
φ̄

)
−∇µ

(
∇ν φ̄
φ̄

)]
(7.45)

Mφφ =ξR (7.46)

where

Gαβµνρσ =
1

2
Kαβµνρσ − Pαβµνρσ (7.47)

Finally, to compute the effective action corresponding to Dilaton Grav-

ity out of the Weyl invariant point by means of the Heat Kernel expansion,we

define a bundle connection ωµ and the endomorphism E that will allow us

to express Sfull by getting rid of the linear derivative term as follows

Sfull =

∫
dnx

√
|g| ΨA

(
−gµν [∇µδAC + ωAµC ][∇νδCB + ωCν B] − EAB

)
ΨB =

=

∫
dnx

√
|g| ΨA

(
−GAB�̃− EAB

)
ΨB (7.48)
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where we are using the notation ∇̃µ = ∇µδAC + ωAµC .

The bundle connection is then constructed so that

GAC
(
−GCB∇2 +Nµ

CB∇µ +MCB

)
= −gµν(∇µδAC + ωAµC)(∇νδCB + ωCν B) − EAB ,

(7.49)

which is true if

ωAµB =
1

2
GAC NµCB (7.50)

EAB = GAC(−MCB − ωµCFωµFB) (7.51)

A final ingredient we need is the field strength given by Ricci’s identity

[∇̃µ, ∇̃ν ]ΨA = Fµν
A
B (7.52)

so that

Fαβ
A
B =

1

2

(
Rµ ρ αβδ

ν
σ +Rν ρ αβδ

µ
σ +Rµ σ αβδ

ν
ρ +Rν σ αβδ

µ
ρ

)(1 0

0 0

)
+

+∇αωβ A B −∇βωα A B + ωα
A
Cωβ

C
B − ωβ A Cωα

C
B (7.53)

Therefore and through these manipulations, we have finally arrived to

an operator which can be written in the form

D̂AB = −GAB�̃− EAB (7.54)

so its contribution to the effective action can be computed by direct appli-

cation of expression (3.82) as

Γhφren[gµν , φ̄] =− 1

32π2

1

360
log(

µ2

M2
)

∫
dnx

√
|g| Tr{60�E + 60RE+

+ 180E2 + 12�R+ 5R2 − 2RµνR
µν + 2RµνρσR

µνρσ+

+ 30FµνF
µν} (7.55)

Finally and as a last ingredient, we have to take care of the ghost fields

induced by the gauge choice (7.25)

Sghost =

∫
dnx

√
|g| gµν c̄µsDF̃ν , (7.56)

where sDF̃ν denotes the order-one variation of the gauge-fixing function F̃µ,

as explained in chapter 5. Here c̄µ is the anti-ghost field.
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A little algebra yields the contribution to Sghost that is quadratic in

the quantum fields. This contribution reads

Sghost2 =

∫
dnx

√
|g| c̄ρ

(
−gρσ� +Nµ

ρσ∇̄µ +Mρσ

)
cσ, (7.57)

where

Nµ
ρσ = −(1− γ) ḡρσ

∇̄µφ̄
φ̄

+ (1 + γ)
∇̄σφ̄
φ̄

δµρ + (1− γ)
∇̄ρφ̄
φ̄

δµσ (7.58)

Mρσ = −R̄ρσ + 2
∇̄ρ∇̄σφ̄

φ̄

The contribution to the effective action associated to Sghost2 will be

then the corresponding coefficient of the heat kernel expansion of the fol-

lowing operator

D̂(ghost) = −(gµν [∇̄µδρλ + ω ρ
µ λ][∇̄νδλσ + ω λ

ν σ] + Eρ(g) σ), (7.59)

where we define

ω ρ
(g)µ λ = ḡµνω

νρ
(g) λ, ωνρ(g) σ = −1

2
ḡρλNµ

λσ (7.60)

Eρ(g) σ = −ḡρλ(Mλσ + ωµλδω
µδ
σ + ∇̄µωµλσ) (7.61)

F µ
(g)ρσ ν = R̄µνρσ + ∇̄ρ ω µ

σ ν − ∇̄σ ω µ
ρ ν + [ωρ, ωσ]µν (7.62)

so that we have

Γghostren [gµν , φ̄] =− 1

32π2

1

360
log(

µ2

M2
)

∫
dnx

√
|g| Tr{60�E(g) + 60RE(g)+

+ 180E2
(g) + 12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ+

+ 30F(g)µνF
µν
(g)} (7.63)

Summarizing, we finally find that the one-loop divergent correction to

the quantum effective action in the background field formalism will be given

by a combination of expressions (7.55) and (7.63)

Γren[gµν , φ̄] = Γhφren[gµν , φ̄]− 2Γghostren [gµν , φ̄] (7.64)

where the ghost contribution comes twice because of the presence of both

ghost and anti-ghost fields and with a minus sign due to its anti-commuting

character. The final result comes after a quite lengthy computation, for
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which extensive use of Mathematica and the package xAct[70] were used. It

reads

Γren[gµν , φ̄] =
log
(
µ2
)

16π2

1

720ξ2(2− 8ξ + 4(8ξ − 1))2

∫
dnx

√
|g| L̃ (7.65)

where L̃ is a collection of counterterms given by

L̃ =(12ξ − 1)

{
P0(ξ, γ)

∇µφ̄∇ν φ̄∇µφ̄∇ν φ̄
φ̄4

P1(ξ, γ)
∇αφ̄∇βφ̄∇α∇βφ̄

φ̄2
+

+ P2(ξ, γ)
∇µ∇ν φ̄∇µ∇ν φ̄

φ̄2
+ P3(ξ, γ)

(∇φ̄)2∇2φ̄

φ̄3

}
+ P4(ξ, γ)

∇2φ̄∇2φ̄

φ̄2
+

+ P5(ξ, g)
∇α∇βφ̄ Rαβ

φ̄
+ P6(ξ, γ)

∇αφ̄∇βφ̄ Rαβ
φ̄2

− P7(ξ, γ)RµνR
µν+

+ P8(ξ, γ)
(∇φ̄)2R

φ̄2
+ P9(ξ, γ)

∇2φ̄ R

φ̄
+ P10(ξ, γ)R2 + P11(ξ, γ)RµναβR

µναβ

}
(7.66)

and the different off-shell polynomials Pi(ξ, γ), which depend both on the

coupling and on the gauge fixing parameter are

P0(ξ, γ) =720(−5 + 104ξ − 728ξ2 + 2784ξ3 − 18ξγ + 72ξ2γ + 1536ξ3γ + 8ξγ2−

− 260ξ2γ2 + 2064ξ3γ2 − 16ξ2γ3 + 216ξ3γ3)

P1(ξ, γ) =− 960ξ(−29 + 450ξ − 840ξ2 − 15γ + 88ξγ + 912ξ2γ − 38ξγ2+

+ 508ξ2γ2 − 8ξγ3 + 108ξ2γ3)

P2(ξ, γ) =480ξ
(
1− 78ξ + 984ξ2 − 68ξγ + 720ξ2γ − 2ξγ2 + 28ξ2γ2

)
P3(ξ, γ) =− 480ξ(−2 + 228ξ − 3072ξ2 + 9γ + 64ξγ − 1680ξ2γ + 16ξγ2−

− 368ξ2γ2 − 8ξγ3 + 108ξ2γ3)

P4(ξ, γ) =− 480ξ(−1− 48ξ + 672ξ2 − 3312ξ3 + 56ξγ − 1248ξ2γ + 6912ξ3γ+

+ 2ξγ2 − 52ξ2γ2 + 336ξ3γ2)

P5(ξ, γ) =− 3840ξ2 (−1 + 12ξ)(3− 12ξ − γ + 6ξγ)

P6(ξ, γ) =− 480ξ(−1 + 12ξ)
(
−1 + 42ξ − 744ξ2 + 52ξγ − 528ξ2γ − 10ξγ2 + 116ξ2γ2

)
P7(ξ, γ) =− 48ξ2(−1 + 12ξ) (−241 + 2412ξ)

P8(ξ, γ) =− 960ξ(−1 + 12ξ)
(
1− 41ξ + 432ξ2 − 32ξγ + 348ξ2γ − 6ξγ2 + 90ξ2γ2

)
P9(ξ, γ) =1920ξ2

(
−11 + 189ξ − 1008ξ2 + γ − 18ξγ + 72ξ2γ

)
P10(ξ, γ) =120ξ2

(
29− 576ξ + 3168ξ2

)
P11(ξ, γ) =3408ξ2(−1 + 12ξ)2 (7.67)

All these expressions are of course off-shell. We have just obtained

the functional generator of all 1PI n-point functions for Dilaton Gravity in
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the non-Weyl invariant phase. If now we want to extract S-matrix informa-

tion from this result, we must take the background fields to obey the tree

level mean field equations, which are just the classical equations of motion.

Therefore, we must put all the fields in the last expressions on the mass-

shell. In order to do that, apart from the application of the equations of

motion (7.3), we must relate the scalar quantities appearing in L̃ by using

integration by parts.

All the different operators that we find can be classified as

G1 ≡ ∇µφ̄∇ν φ̄ R
µν

φ̄2 A = ∇2φ̄∇2φ̄
φ̄2

G2 ≡ ∇µ∇ν φ̄ R
µν

φ̄
B = ∇2φ̄(∇φ̄)2

φ̄3

G3 ≡ ∇
2φ̄ R
φ̄

C = (∇φ̄)2(∇φ̄)2

φ̄4

G4 ≡ (∇φ̄)2R

φ̄2 D =
∇µ∇ν φ̄∇µ∇ν φ̄

φ̄2

G5 ≡ RµνRµν E =
∇µφ̄∇ν φ̄∇µ∇ν φ̄

φ̄3

G6 ≡ R2 F =
∇µφ̄∇2∇µφ̄

φ̄2

G7 ≡ RµναβRµναβ

and the equations of motion, together with integration by parts, introduce
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the following equivalences

G3 =
∇2φ̄ R

φ̄
=

1

2ξ
A (7.68)

G4 =
(∇φ̄)2R

φ̄2
=

1

2ξ
B (7.69)

G6 =R2 =
1

4ξ2
A (7.70)

G1 =
∇µφ̄∇ν φ̄ Rµν

φ̄2
=

(
1

4ξ
− 2

)
B − 1

4ξ
C + 2E (7.71)

G2 =
∇µ∇ν φ̄ Rµν

φ̄
=

(
1

4ξ
− 2

)
(A+B) + 2D +

(
2− 1

2ξ

)
E (7.72)

G5 =RµνR
µν =

(
1

4ξ
− 2

)
R

[
∇2φ̄

φ̄
+

(∇φ̄)2

φ̄2

]
+ 2
∇µ∇ν φ̄ Rµν

φ̄
+

+

(
2− 1

2ξ

)
∇µφ̄∇ν φ̄ Rµν

φ̄2
(7.73)

∫
d(vol)D =

∫
d(vol)

(
A− 2B + 2E − ∇

µφ̄∇ν φ̄ Rµν
φ̄2

)
(7.74)∫

d(vol)E =

∫
d(vol)

(
3

2
C − 1

2
B

)
(7.75)∫

d(vol)F =

∫
d(vol) (−D + 2E) (7.76)

And also, whenever ξ 6= 1
12 there is an extra relation that we can use

and that comes from the fact that the two equations of motion (7.3) for the

metric and the scalar field must be compatible. Taking the trace of the first

one we have

R =

(
n

4ξ
+ 2− 2n

)
∇2φ̄

φ̄
+

(
n

4ξ
+ 2− 2n− 1

2ξ

)
(∇φ̄)2

φ̄2
(7.77)

so requiring agreement with the scalar equation of motion forces

∇2φ̄

φ̄
+

(∇φ̄)2

φ̄2
= 0 (7.78)

which implies

A = C = −B (7.79)

In the case ξ = 1
12 this identity is satisfied identically and these last relations

cannot be used.
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Therefore, and by using these identities, we can work out the on-shell

effective action from our result (7.65), finding it to reduce to

Γren[gµν , φ̄]
∣∣
on-shell

=
1

16π2
log

(
µ2

M2

)∫
dnx

√
|g|
{

71

60
C2 +

1259

1440

(1− 12ξ2)

ξ2

(∇φ)4

φ4

}
(7.80)

There are various remarks we must do about this result. First, the

appearance of a pole when ξ = 0 signals the fact that for that concrete

value of the coupling, the gravitational fluctuation are not propagating any

more, because the coupling to curvature ξRφ2 disappears. We come back

to a phase rather similar to the symmetric phase φ̄ = 0 and our pertubative

computations fail. Second, when the value of the coupling takes the con-

formal value in four dimension ξ = 1/12 the only surviving counterterm is

the one which is precisely Weyl invariant. However, in that phase we have

an extended gauge invariance, Weyl invariance, and the ghost sector will

include new corrections that will shift the numerical value in front of C2.

We plan to take care of this in the next chapter.

Finally, both as a check of the robustness of our computation and

of the validity of Kallosh-DeWitt theorem[68, 69, 40] we find that all the

dependence on the gauge fixing parameter γ disappears on-shell.
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We move now to the analysis of the quantum dynamics of Dilaton Gravity

in the Weyl invariant point, with action in arbitrary dimension1 n

SCDG = −
∫
dnx

√
|g|
{

n− 2

8(n− 1)
Φ2R+

1

2
∇µΦ∇µΦ

}
(8.1)

In this case, the result obtained in the last chapter is not valid anymore

because the matrix GAB given in (7.39) is not invertible. Its determinant is

singular and this signals the presence of a new zero mode inherited from an

extra gauge symmetry in the theory. Indeed, with that particular choice of

the non-minimal coupling the theory is invariant under Weyl transformations

of the form

gµν → Ω2gµν (8.2)

Φ→ Ω
2−n

2 (8.3)

so we must enlarge the gauge sector of the theory at hand with a new gauge

fixing and new ghost fields to cope with this.

When expanding around a background field

gµν = gµν + hµν (8.4)

Φ = φ̄+ φ (8.5)

the gauge symmetries translate into infinitesimal symmetries acting on the

fluctuations. In the non-Weyl invariant case, Faddeev-Popov quantization

was enough totake care of the theory. Here, however, the presence of two in-

dependent symmetries requires the introduction of more complicated BRST

techniques. Following chapter 5 we the construct two BRST operators sD

1Again, let us remind that we are using arbitrary dimension in order to connect later

with dimensional regularization, but all the consequences here derived will be specified in

dimension n = 4.
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and sW such that they implement the transformations when acting over the

fields

sDhµν = ∇µcν +∇νcµ + cρ∇ρhµν +∇µcρhρν +∇νcρhρµ (8.6)

sDφ = cλ∇λ(φ̄+ φ) (8.7)

sWhµν = 2c(gµν + hµν) (8.8)

sWφ =
2− n

2
c(φ̄+ φ) (8.9)

where c is the grassman odd ghost associated with Weyl transformations in

the same way as cµ is the one of Diff. The action of both operators over

them is given by

sDc
µ = Bµ, sDB

µ = 0

sW c̄
µ = 0, sWB

µ = 0

sW c̄ = f, sW f = 0

sD c̄ = cρ∇ρc̄, sDf = cλ∇λf (8.10)

Here Bµ and f are the Nakanishin-Lautrup auxiliary fields needed to

close the BRST algebra while c̄µ and c̄ are the corresponding anti-ghost

fields. With the transformation so defined, we have that

s2
D = 0, s2

W = 0, {sW , sD} = 0 (8.11)

and so we can define a full BRST operator ∫ = sD+sW in order to implement

the gauge fixing and ghost action through the method of chapter 5, by adding

to the action (8.1) a term constructed as a local variation

S = SCDG + ∫ (XD +XW ) (8.12)

where we choose

XD =

∫
dnx

√
|g| c̄µ

(
−4(n− 1)

(n− 2)
Bµ + F̂µ

)
(8.13)

XW =

∫
dnx

√
|g| (gµν − hµν)∇µc̄∇µ(f − α(φ̄+ φ) (8.14)

with F̂µ as given in (7.25) for the non-Weyl invariant case. Of all those terms

we only need to keep those that are second order in the quantum fields.

Again, as in the non-Weyl invariant case, we choose these functions not

only to cancel the gauge modes but also with the requirement of obtaining

minimal operators to apply the Schwinger-DeWitt technique of chapter 3.
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After applying ∫ we can integrate out the field Bµ, that appears with

no derivatives and thus it does not propagate, leaving us only with the

extra ghost and anti-ghost pair for the Diff gauge sector. However, it is

not possible to do the same with f since it appears quadratically coupled

to φ through the gauge fixing2. Thus, now the bosonic sector of the theory

contains three fields and the corresponding DeWitt superfield that we need

to introduce reads

ΨA =

k
µν

φ

f

 (8.15)

This means that now the metric GAB and the matrices MAB and Nµ
AB

will have new entries corresponding to terms with the new field f . Indeed,

the metric reads

GAB =
(n− 2)

4(n− 1)


1
8G

αβ
µνρσgαβ

1
4gµν 0

1
4gρσ

n
(n−2) −2α(n−1)

n−2

0 −2α(n−1)
n−2

4(n−1)
n−2

 (8.16)

with Gαβµνρσ as defined in (7.47). Its inverse now exists in the same sense as

in (7.40), and happens to be

GAB =


G11 16

α2(n−2)
gρσ 8

α(n−2)g
ρσ

16
α2(n−2)

gµν − 4
α2 − 2

α
8

α(n−2)g
µν − 2

α 0


(8.17)

where

G11 = −16(n− 1)

n− 2

[
gµρgνσ + gνρgµσ +

2(2 + α2(1− n))

α2(2− 3n+ n2)
gµνgρσ

]
(8.18)

The matrices are extended in such a way that

Nβ
AB =

N
β
kk Nβ

kφ Nβ
kf

Nβ
φk Nβ

φφ Nβ
φf

Nβ
fk Nβ

fφ Nβ
ff

 MAB =

Mkk Mkφ Mkf

Mφk Mφφ Mφf

Mfk Mfφ Mff

 (8.19)

2Actually, we could integrate it out but then we would obtain a non-local action for

the field φ that exits minimality.
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where the kk, kφ and φφ elements are the same as in the non-Weyl-invariant

case (provided that we substitute the coupling ξ by its Weyl invariant value)

and the new elements read

Nβ
kf = −Nβ

fk =
α

4

∇αφ̄
φ̄

(
gανδ

β
µ + gαµδ

β
ν − gµνδβα

)
Nβ
ff = 0

Nβ
φf = −Nβ

fφ = 0

Mkf = Mfk = −α
8

(
∇µ
(
∇ν φ̄
φ̄

)
+∇ν

(
∇µφ̄
φ̄

)
− gµν∇β

(
∇βφ̄
φ̄

))
Mφf = Mfφ = 0

Mff = 0

The algorithm now is the same as in the non-conformal case, we only

need to substitute the matrices and construct a new field strength as

Fαβ
A
B =

1

2

(
Rµ ρ αβδ

ν
σ +Rν ρ αβδ

µ
σ +Rµ σ αβδ

ν
ρ +Rν σ αβδ

µ
ρ

)1 0 0

0 0 0

0 0 0

+

+∇αωβ A B −∇βωα A B + ωα
A
Cωβ

C
B − ωβ A Cωα

C
B (8.20)

With this, the contribution to the effective action in the background

field formalism of the bosonic sector is a trivial extension of the non-Weyl

invariant case and the expression looks the same

Γhφfren [gµν , φ̄] =− 1

32π2

1

360
log(

µ2

M2
)

∫
dnx

√
|g| Tr{60�E + 60RE+

+ 180E2 + 12�R+ 5R2 − 2RµνR
µν + 2RµνρσR

µνρσ+

+ 30FµνF
µν} (8.21)

where we just need to substitute the different objects contained in the ex-

pression by the new ones.

With respect to the ghost sector, now we have two kind of ghosts

fields, cµ coming from the diffeomophism invariance and c coming from Weyl

invariance, together with their corresponding anti-ghost partners. Moreover,

the fact that the gauge fixing choice XD in (8.13) is not Weyl invariant will

produce interaction terms between Diff anti-ghosts and Weyl ghosts. This

implies that both ghost sectors are not decoupled and their path integral
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cannot be taken separately. thus, we must introduce, as with the bosonic

sector, two DeWitt super-ghost fields, defined by

ηA =

(
cµ

c

)
, η̄A =

(
c̄µ

c̄

)
(8.22)

so that we can arrange their action to be

Sghost =

∫
dnx

√
|g| η̄A

(
−G(g)

AB� +N
(g)µ
AB ∇µ +M

(g)
AB

)
ηB (8.23)

where

G
(g)
AB =

(
gµν 0

0 1

)
, N

(g)α
AB =

(
Nα
µν 0

Nα
W,µ 0

)
, M

(g)
AB =

(
Mµν Mµ,W

MW,µ MWW

)

with the different elements being

Nα
µν = −(1− γ)gµν

∇αφ
φ

+ (1 + γ)
∇νφ
φ

δαµ + (1− γ)
∇µφ
φ

δαν

Nα
W,ν =

2

n− 2

∇2φ

φ
δαν

Mµν = −Rµν + 2
∇µ∇νφ

φ

Mµ,W = −γ(n− 2)
∇µφ
φ

MW,ν =
2

n− 2

∇ν∇2φ

φ

MWW =
∇2φ

φ

This allows us to use again the Schwinger-DeWitt technique of chapter

3 to compute the ghost contribution to the quantum effective action as

Γηη̄ren[gµν , φ̄] =− 1

32π2

1

360
log(µ2)

∫
dnx

√
|g| Tr{60�E(g) + 60RE(g)+

+ 180
(
E(g)

)
)2 + 12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ+

+ 30F (g)
µν F

(g)µν} (8.24)

where here the endomorphism and bundle connection are defined by

ωAµB =
1

2
G(g)ACN

(g)
µBC (8.25)

E
(g)A
B = GAC

(
−M (g)

BC − ωµCDω
µD
B −∇µωµCB

)
(8.26)
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and the field strength reads3

F
(g)A
ρσB =

(
Rµνρσ 0

0 0

)
+∇ρωAσB −∇σωAρB + [ωρ, ωσ]AB (8.27)

Finally, we arrive to a closed expression for the quantum effective

action of Dilaton Gravity in the Weyl invariant point, given by a combination

of contributions (8.21) and (8.27)

Γren[gµν , φ̄] = Γhφfren [gµν , φ̄]− 2Γηη̄ren[gµν , φ̄] (8.28)

where, again, the ghost contribution enters with a minus two due to the

presence of two anti-commuting ghost fields.

When this expression is evaluated explicitely, we find that the one-

loop divergent part of the quantum effective action in the background field

formalism reads off-shell

Γren[gµν , φ̄] =
1

16π2
log(

µ2

M2
)

∫
dnx

√
|g| L̂ (8.29)

where L̂ contains a complicated combination of all operators with the right

scaling dimension

L̂ =Q1(αγ)
(∇φ̄)2(∇φ̄)2

φ̄4
+Q2(α, γ)

∇µφ̄∇ν φ̄∇µ∇ν φ̄
φ̄3

+Q3(α, γ)
∇µ∇ν φ̄∇µ∇ν φ̄

φ̄2
+

+ 2γ
∇µφ̄∇2∇µφ̄

φ̄2
+Q4(α, γ)

(∇φ̄)2∇2φ̄

φ̄3
+Q5(α, γ)

∇2φ̄∇2φ̄

φ̄2
+

+Q6(α, γ)
Rµν∇µφ̄∇ν φ̄

φ̄2
+Q7(α, γ)

Rµν∇µ∇ν φ̄
φ̄

+Q8(α, γ)RµνRµν+

+Q9(α, γ)
R∇µφ̄∇µφ̄

φ̄2
+Q10(α, γ)R2 +Q11(α, γ)

R∇2φ̄

φ̄
+

53

45
RµναβRµναβ

(8.30)

3Note that in the (1, 1) element, the indices A,B can be mapped space-time indices

µ, ν.
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where

Q1(α, γ) =
16 + 108α2 − 8γ + 96α2γ + 4γ2 + 18α2γ2 + γ3 + 4α2γ3

α2

Q2(α, γ) = −2(96 + 405α2 − 48γ + 390α2γ + 13γ2 + 57α2γ2 + 3γ3 + 12α2γ3)

9α2

Q3(α, γ) =
48 + 81α2 − 24γ + 102α2γ + γ2 + 3α2γ2

9α2

Q4(α, γ) = −−102− 378α2 + 96γ − 420α2γ − 44γ2 − 60α2γ2 + 3γ3 + 12α2γ3

9α2

Q5(α, γ) = −−162 + 228α2 − 108α4 − 24α2γ + 84α4γ + α2γ2 + 3α4γ2

9α4

Q6(α, γ) = −−96− 63α2 + 24γ − 78α2γ − γ2 + 15α2γ2

9α2

Q7(α, γ) = −4(4− 3α2 − γ + α2γ)

3α2

Q8(α, γ) = −−120 + 361α2

90α2

Q9(α, γ) = −11 + 24α2 − 6γ + 32α2γ + 3γ2 + 6α2γ2

3α2

Q10(α, γ) =
18− 30α2 + 43α4

36α4

Q11(α, γ) =
−18 + 25α2 − 21α4 − 2α2γ + 2α4γ

3α4

It is worth mentioning that all the monomials including the scalar

field diverge when φ̄ = 0. Naive power counting arguments cannot then be

applied here. This fact also prevents the monomials that appear in the bare

lagrangian to appear in the counterterm, representing the already known

fact that we are dealing with a non-renormalizable theory. This physically

means something that we already knew, namely that our calculation is re-

stricted to the broken phase of the theory. When this is put on-shell by

using the relations (7.68) and (7.74) derived in the previous chapter (par-

ticularized for the Weyl invariant value of the coupling ξ) all the gauge

dependence on the parameters γ and α dissapears. This is a powerful check

of the gauge independence of our result, complaining with Kallosh-DeWitt

theorem. Moreover, we can also use the following relations

E4 = RµναβR
µναβ +R2 − 4RµνR

µν∫
dnx

√
|g| E4 =

∫
dnx

√
|g| C2 − 2

∫
dnx

√
|g|
(
RµνRµν −

1

3
R2

)
(8.31)

The first line is just the expression of the Gauss-Bonnet term in four
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dimensions, E4 thus corresponding to the Euler density, whose integral gives

the Euler characteristic of the manifold. By using it and the fact that the

last term in the second line vanishes when using the equations of motion

(7.3), we can express the on-shell value of our result as simply

Γren[gµν , φ̄]
∣∣
on-shell

=
1

16π2
log

(
µ2

M2

)
)
53

45

∫
dnx

√
|g| E4 (8.32)

This result is exactly the same as in General Relativity (including nu-

merical factors). The reason is that, on one hand it is Weyl invariant, in

order to comply with the gauge symmetries of the theory, but, since the

transformation back to General Relativity is actually a conformal transfor-

mation

gµν →
1

M2
p

(
n− 2

8(n− 1)

) 2
n−2

φ̄
4

n−2 gµν (8.33)

the value of the on-shell counterterm does not change and thus it is forced to

have the same value for both theories related by this transformation. Indeed,

this is no more than a new confirmation of the validity of Kallosh-DeWitt

theorem that the on-shell values of the quantum effective action must be the

transformation one of the other, identical in this case since the particular

transformation is a symmetry of the theory.
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9
Anomalous equivalence of frames

Up to here we have computed the corresponding one-loop counterterms for

Dilaton Gravity both in the Weyl invariant and the non-Weyl invariant

point. In chapter 6 we argued that the former was indeed just a field re-

definition of Einstein-Hilbert action, which can be recovered from the CDG

action (8.1) by just undoing the redefinition, which happens to be precisely

a Weyl transformation

gµν →
1

M2
p

(
n− 2

8(n− 1)

) 2
n−2

φ̄
4

n−2 gµν (9.1)

We also saw in expression (6.9) of chapter 6 that, at the light of

Kallosh-DeWitt theorem, both quantum corrections, those computed in

Einstein-Hilbert action and in CDG owed to preserve equivalence when

taken on-shell. That is, S-matrix was ensured to be equivalent for both

theories. This was because, in the background field formalism, we defined a

new partition function (3.20)

Z̃[J, φ̄] =

∫
[DQ]eiS(φ̄)ei〈Q,D̂Q〉+i〈J,Q〉 (9.2)

and proved that its vacuum diagrams correspond to the effective action of

the original theory of interest, a fact that at one-loop is reduced to the

computation of a determinant

Γ[φ̄] =
1

2
log
[
det(D̂)

]
(9.3)

which we obtained by using the Schwinger-DeWitt technique of chapter 3.

Finally, by transforming this result using the transformation relating the

fields in a generic way Q′ = Q′(Q) we find that

Γ
′
[φ̄] =

1

2
log

[
det(D̂′) +

(
∂Q′

∂Q

)2 ∂2Q

∂Q′2
∂S

∂Q′

]
(9.4)
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which shows that on-shell quantities must be the straightforward transfor-

mation one of the other.

However, there is a caveat in all this argument. If the transformation

Q′ = Q′(Q) happens to open a symmetry in the new fields Q′, as it happens

in our case with Weyl invariance, then the integration measure [DQ] in

(9.2) might not be equivalent and instead be anomalous. Equivalence is

completely lost, since the divergence of the previously conserved current

can now act as an operator producing a non-vanishing expectation value for

some S-matrix amplitude which is not present in the other frame. This is of

course what happens in principle in our case, because Weyl invariance, as

explained in chapter 2 is generically anomalous.

The corresponding Ward identity (2.11) for the Weyl invariance of

CDG reads 〈
0

∣∣∣∣ 2gµν
δL
δgµν

+
2− n

2
φ
δL
δφ

∣∣∣∣ 0

〉
= A (9.5)

where A is the possible anomalous term. It is identically satisfied at tree

level, conveying with the classical result, but at one-loop it might get con-

tributions from the non-invariance of the effective action.

If there were not anomalies, the Ward identity would also hold in the

first frame (even if the symmetry is not there). However, anomalies spoil

this fact and physical effects that depend on the observables related, can be

different in both frames.

Let us particularize. The regularized effective action in the back-

ground field formalism and using zeta function regularization was given in

(3.36) and reads

Γreg[φ̄]
∣∣
s→0

= −1

2

(
1

s
− γE + log

(
µ̃2
))

ζ(0, 1, D̂)− 1

2

∂

∂s
ζ(s, 1, D̂)

∣∣∣
s=0

(9.6)

so that the pole term that we need to substract in the renormalization

process (particularized for a effective action depending on gµν and the back-

ground dilation φ̄) is simply

Γpole[gµν , φ̄] = − 1

2s
ζ(0, 1, D̂) (9.7)

which, by using the standard relation (3.48) between the poles of the zeta
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function and the short-time expansion of the Heat Kernel, can be written

Γpole[gµν , φ̄] = − 1

2s
an

(
1, D̂

)
=

1

s

1

16π2

53

45

∫
dnx

√
|g| E4 (9.8)

where in the second equality we have introduced the particular on-shell value

for CDG, given in (8.32).

The easiest way to make the anomaly appear is to now substitute the

divergent limit s → 0 by the corresponding pole of dimensional regulariza-

tion when n→ 4, having

Γpole[gµν , φ̄] =
1

n− 4

1

16π2

53

45

∫
dnx

√
|g| E4 (9.9)

From here, it is straightforward to obtain the anomalous contribu-

tion A to the Ward identity. We just perform a Weyl transformation of

the regularized effective action and, taking into account that the integrand

transforms as √
|g| E4 → Ωn−4

√
|g| E4 (9.10)

we find, at the linear level, a finite contribution coming from a cancellation

of the pole term

δΓpole[gµν , φ̄] =
1

16π2

53

45

∫
dnx

√
|g| E4 ω (9.11)

so that

A =
1

16π2

53

45
E4 (9.12)

Anomalies have always provoked some sort of discussion in the com-

munity. The reason is that sometimes, when using an inappropriate regu-

larization scheme, something that looks like an anomaly arises and one has

to be careful to not to break by hand the symmetry because of the scheme

chosen. Thus, it is natural to ask ourselves if such scheme that preserves

Weyl invariance exist. Indeed, in [25] it was suggested that when a dilaton,

like our field φ̄, is present in the theory, one can modify dimensional regu-

larization in such a way that the issue is solved. In our case, this amounts

to cancelling the scaling dimension of the integrand by powers of φ. The

corresponding one-loop pole term would be then

Γpole[gµν , φ̄] =
1

n− 4

1

16π2

53

45

∫
dnx

√
|g| φ̄

2(n−4)
n−2 L̂ (9.13)
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with L̂ as given in 8.30.

With this change, now the integrand is exactly Weyl invariant in any

dimension and no anomaly arises. We are now preserving the Ward identity

and saving the frame equivalence. A similar scheme can be implemented for

higher loop corrections but as everything in life, this comes at a price. If we

now perform the renormalization process, although the pole part is exactly

the same as before, we find that finite terms are modified. The renormalized

effective action receives now a new contribution

∼ 1

16π2

53

45

∫
dnx

√
|g| log(φ̄) L̂ (9.14)

which enters as a non-local function of the fields1. This implies that a

corresponding non-local counterterm is required.

Of course, all this discussion is trivial for the one-loop counterterm

since it is a total derivative, but it has a well-defined meaning if we go to

higher loops. There, the counterterms will contain higher powers of the Rie-

mann tensor which are not total derivatives and all this discussion applies.

In particular, at two loops we find2

Γpole[gµν , φ̄] =
1

n− 4

1

(4π)4

209

2880

(
n− 2

8(n− 1)

)n−6
n−2

∫
dnx

√
|g| φ̄

2(n−6)
n−2 C3

(9.15)

where C3 means the cube of the Weyl tensor.

From this analysis we can conclude two things. First, that the näıve

expectation phrased by Duff that ”Spurious Weyl invariance is not anoma-

lous” is indeed only true if we get rid of locality notions when renormalizing.

We have found a particular example in which this is realized.

But second, we have argued that the assumed equivalence of Einstein

and Jordan frame must be taken carefully. Adding to the issue already noted

by Vilkovisky quite time ago[67] that mean field equations are not equivalent

we have found that even at the on-shell effective action level there could be

1It is important not to get confused by the appearance of logarithms of the fields in, for

example, the Coleman-Weinberg potential. There, they appear because an identification

of the µ scale with the effective mass of the field µ2 = δL
δφ̄2 . Here, it appears a priori and

no regularization scheme can avoid it.
2Assuming that the on-shell equivalence holds and using the result of [5] for the two-

loops counterterm of General Relativity.

92



Chapter 9. Anomalous equivalence of frames

an issue when the transformation opens a new symmetry. Then, anomalies

can spoil the equivalence by modifying physical observables in one of the

frames. We have showed this in particular by using Weyl invariance and

one can argue that this symmetry is not generically present in realistic cos-

mological applications. However, going to the Jordan frame always implies

the substitution of Planck mass by a corresponding power of the dilaton

field M2
p → φ̄2 and a scale invariance emerges. It is natural to question if

quantum effects can break scale invariance and spoil the equivalence.
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Unimodular Gravity





10
A new role for Λ

As we saw in chapter 1, the standard lore of effective field theory is compro-

mised in the presence of gravity. The cosmological constant gets corrections

from matter (and gravitational) loops in such a way that there is a huge

discrepancy between näıve calculations and the observed value obtained by

using different experimental methods. This reflects as a fine-tuning problem

in equation (1.16), implying that the bare value of the cosmological constant

had to be chosen

Λ + (matter loop corrections) ∼ 10−47 GeV4 (10.1)

with extremely huge accuracy.

This introduces an extra scale in the theory which is not related at

all with the UV scale Mp and wilsonian arguments about EFT’s break com-

pletely.

The reason underneath this problem comes from the fact that that

any potential energy couple to gravitation through a minimal coupling

SV =

∫
d4x
√
|g| V (φ) (10.2)

so that the zero mode of the metric, which is not suppressed at any scale,

mediates the interaction and introduces corrections to Λ by means of vacuum

diagrams.

Many possible solutions for this issue have been considered so far in

the literature, being the standard lore that the IR behavior of GR must be

modified in some manner, thus changing the way in which this zero mode be-

haves. This has lead in the recent years to a resurgence of massive gravity[71]

and the consideration of bi-gravity[72] among many other modified gravita-

tional theories that try to reconcile the wilsonian picture with the observed

value for the cosmological constant.

Perhaps the most radical of these modifications is Unimodular Gravity,

consisting on restricting the physically admissible metrics to those of unit
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determinant |g| = 1. By doing this, the zero mode does not couple to the

potential term any more and any possible contribution to the cosmological

constant drops out of the equations of motion. Thus, Unimodular Gravity

(UG) is defined, in the absence of matter, as simply

SUG = −M2
p

∫
d4x R[|g| = 1] (10.3)

Although this defines UG, it is not fully operationally comfortable.

The degrees of freedom of the theory are not independent and one is forced

to work with a restricted variational principle. Since we are constraining the

physical metrics to be unimodular, the equations of motion of the theory

must be obtained by using a traceless variation

δgtµν = δgµν −
1

4
gµνg

αβδgαβ (10.4)

Therefore, when Unimodular Gravity is coupled minimally to matter

with an arbitrary conserved energy momentum tensor

SUG+T =

∫
d4x

{
R[|g| = 1] + gµνT

µν

}
(10.5)

the equations of motion will correspond to the traceless part of the Einstein

equations1

Rµν −
1

4
Rgµν = Tµν −

1

4
Tgµν (10.6)

It seems at a first glimpse that this theory fails to reproduce known

IR physics and, in particular, Solar system physics, since the equations of

motion do not reduce to the ones of General Relativity. Moreover, even

if the wilsonian problem of the cosmological constant exists, we also know

that our Universe has a non-vanishing value Λ and therefore this must be

accommodated in some way in any realistic approach. Completely vanishing

the presence of Λ is not an appropiate solution.

However, this is illusory and the trace degree of freedom can be taken

back into game by using contracted Bianchi identities, which are always

satisfied in any riemannian manifold. These are

∇µRµν −
1

2
∇νR = 0 (10.7)

1Actually, these equations could be named Einstein equations too, since they were

already proposed by Einstein back in 1919[73] for completely different reasons than the

ones presented here.
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which, upon substitution of the equations of motion, imply

∇µ (R+ T ) = 0 (10.8)

By integrating this we find a constraint that relates the scalar curva-

ture with the trace of the energy momentum tensor and some integration

constant that we cleverly label as Λ

(R+ T ) = −4Λ (10.9)

Finally, combining this with the traceless equations of motion (10.6)

we recover the trace degree of freedom and the full Einstein equations

Rµν −
1

2
gµνR− Λgµν = Tµν (10.10)

with the integration constant Λ taking the role of the cosmological constant.

The main difference with the standard approach is that its value is here given

in terms of initial conditions for the metric evolution, it is an integration

constant after all, instead of being a dynamical coupling of the lagrangian.

Vacuum energy generated by mater loops does not gravitate any more.

There is another main difference of UG with respect to GR. Since we

are restricting ourselves to the set of metrics with a fixed determinant, the

theory cannot be invariant under the full group of diffeomorphisms any more

but only under those that preserve the value of the determinant. In other

words, only those diffeomorphism which preserve the volume are symmetries

of the theory. Those are given infinitesimally by

δgµν = £ξgµν = ∇µξν +∇νξµ (10.11)

where the generator of the diffeomorphism is constrained to be transverse

∇µξµ = 0 (10.12)

We dub this subgroup transverse diffeomorphisms (TDiff) and al-

though one could think that reducing the symmetry group can compromise

the perturbtive stabilty of the theory, this is not the case at hand. Sur-

prisingly, one does not need full Diff invariance to protect the theory from

ghost propagation and actually TDiff is the biggest subgroup of Diff that

is able to kill all the unphysical polarizations of the graviton perturbation[?]

hµν = gµν − ηµν and thus we are safe.
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The main question that arises here is whether this protection of the

cosmological constant can be preserved in a Quantum Field Theory formu-

lation of UG. Were not, then the wilsonian picture of effective field theory

would be compromised anyway and UG would not solve anything.

It is important to note that the unimodular constraint is not a gauge

fixing. Although it is true that in General Relativity one can always choose

the condition |g| = 1 by means of the diffeomorphism invariance of the

theory, in this case we are reducing the space of physical metrics a priori

in the action, while a gauge fixing is done at the level of the equations of

motion. In particular, in the second case, the coupling gµνΛ between the

metric and the cosmological constant does not vanish in this gauge while for

the unimodular theory it is always absent.

In order to construct a path integral, the action (10.3) is however

not very useful. Using it we would have to integrate over those metric sat-

isfying the unimodularity condition and an extra prescription is required.

One possible option is to write the theory as GR and impose the unimod-

ular condition by using a Lagrange multiplier ([74] and references therein).

However, this is dangerous because the multiplier could acquire dynamics

through quantum corrections, spoiling the constraint. Here instead we prefer

to perform a field redefinition

g̃µν = |g|−1/ngµν (10.13)

which is explicitly unimodular, arriving to an action principle[75, 76, 77]

S = −
∫
dnx|g|

1
n

{
R+

(n− 1)(n− 2)

4n2

∇µ|g|∇µ|g|
g2

}
(10.14)

which we write in arbitrary dimension n in order to use later dimensional

regularization. Note that the appearance of the determinant of the metric

here is not dangerous because it behaves as a scalar under TDiff, so the

action is still covariant with respect to this symmetry.

In this form, the banning of the cosmological constant from the action

happens because of the presence of an extra gauge symmetry in the form of

Weyl invariance

gµν → Ω2gµν (10.15)

with Ω a function of the spatial coordinates.
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Then, any possible dimensionful constant and in particular a cosmo-

logical constant, is forbidden from the action principle. In particular, the

coupling ∫
d4x
√
|g| Λ (10.16)

would break Weyl invariance explicitly.

Additionally, and quite surprisingly, this action is the only other pos-

sible one, apart from General Relativity, which propagates a single spin two

degree of freedom about flat space[77, 78].

In the new variables, the equations of motion are still traceless (as

a requirement of the Noether constraint imposed by Weyl invariance) but

they get new contributions proportional to the determinant of the metric

Rµν −
1

n
Rgµν −

(n− 2)(2n− 1)

4n2

(
∇µg∇νg

g2
− 1

n

(∇g)2

g2
gµν

)
+

+
n− 2

2n

(
∇µ∇νg

g
− 1

n

∇2g

g
gµν

)
=

(
Tµν −

1

n
Tgµν

)
(10.17)

The original theory is recovered by partialy fixing the gauge to |g| = 1

so that these reduce to the traceless Einstein equations (10.6).

In all the different formulations of Unimodular gravity, Bianchi identi-

ties ensure the full equivalence with General Relativity at the classical level

by reintroducing the trace degree of freedom, recovering the full set of Ein-

stein equations. However, this equivalence is not ensured at the quantum

level [79].

If it is possible to preserve the unimodularity condition in the path

integral formulation, then the naive expectation is that no possible renor-

malization of the cosmological constant may happen and that its property of

being an integration constant is preserved when quantum corrections enter

into game [?, 80]. There are some hints along this path in the context of the

asymptotic safety scenario [81, 82] but their conclussions are not very clear.

In the following we will compute explicitly one-loop corrections to the

action (10.14) by means of the generalized Schwinger-DeWitt technique of

chapter 4. in order to answer this question. We will see how the on-shell

counterterms do not contain any dynamical coupling to the cosmological

constant which is hence fixed to an integration constant at any order in

the loop expansion. Aditionally, we will check that no Weyl anomaly is
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generated so the algebraic gauge fixing |g| = 1 can be done at all levels

without spoiling the equivalence between (10.3) and (10.14).
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Quantizing Unimodular Gravity

In order to compute quantum corrections to Unimodular Gravity, we are go-

ing to exploit the techniques developed in chapters 3 and 4 to compute the

divergences of the one-loop effective action in the background field approach.

We start then by splitting our fields in background plus perturbation. How-

ever, here we will depart from the usual linear splitting. Since afterwards we

pretend to fix the background gauge |g| = 1 in order to recover our original

formulation for Unimodular Gravity, we will use the most useful splitting

g̃µν = |g|
1
n (gµν + hµν) (11.1)

which makes the background metric unimodular, rather than the usual gµν =

ḡµν + hµν . Notice that we can convert the splitting in (11.1) into the usual

splitting by performing a Weyl transformation of the quantum field together

with one of the background metric.

Let us warn the reader that from now on the covariant derivative will

be defined with respect to the metric gµν and that, unless explicitly said,

we are dropping any symbol to denote background quantities in order to get

cleaner formulas. Conceptually however it is important to keep in mind the

difference between the full metric and the background one.

As it stands and after expanding it, SUG will still contain the linearized

realization of the gauge symmetries of the theory, TDiff and Weyl, and thus

a proper definition requires a gauge fixing. In the BRST language of chapter

5, the action of these symmetries can be written as

sDgµν = sW gµν = 0

sDhµν = ∇µcTν +∇νcTµ + cTρ∇ρhµν +∇µcTρhρν +∇νcTρhρµ
sWhµν = 2c (gµν + hµν) (11.2)

where c and cTµ are the anticommuting ghost fields for Weyl invariance and

transverse diffeomorphisms, respectively. In this language, the transverse
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condition is satisfied by imposing ∇µcTµ = 0 on the ghost field. The su-

perscript T thus means that the vector ghost satisfies this condition. The

gauge fixing procedure of these gauge symmetries will be discussed next.

Recalling chapter 3, the quantum effective action in the background

field approach was given by

Γ[φ̄] =
1

2
log
[
det(D̂)

]
(11.3)

where D̂ is the operator driving the one-loop quantum fluctuations, defined

by the quadratic term in the expansion of the action around the background

metric

S2 =

∫
dnx L2 =

∫
dnx hµνD̂µνρσh

ρσ (11.4)

It is useful to write down the expression in arbitrary dimension as it would

stand before the background metric is assumed to be unimodular

L2 =
1

4
hµν�hµν −

n+ 2

4n2
h�h+

1

2
(∇µhµα) (∇νhνα)− 1

n
(∇µh) (∇νhµν) +

+
1

2n2
h2R+

2− n
2n

(∇α log g)

(
1

2
hβλ∇λhαβ +

3

2
hαβ∇λhλβ −

1

n
h∇λhαλ

)
+

+
(n− 2)2

8n3
(∇α log g) h∇αh+

n− 2

2n2
(∇β log g) hαβ∇αh+

1

2
hαβhµβRµα+

+ (n2 − 3n+ 2)

(
1

8n4
h2(∇ log g)2 − 1

8n3
hµνh

µν(∇ log g)2 − 1

n
hhµνRµν−

− 1

4n3
hhαβ (∇α log g)

(
∇β log g

))
+

1

2
hµνhαβRµανβ −

1

2n
hµνhµνR−

− 8− 6n+ n2

8n2
(∇α log g) hµν∇αhµν +

1

4n2
hλαhβλ (∇α log g)

(
∇β log g

)
(11.5)

Of course, D̂ will contain in principle zero modes coming from the

gauge symmetries of the theory translated to the linear level which will

make its determinant singular. This is solved by constructing an appropriate

gauge fixing term using the BRST quantization method.

Finally, since we are using the splitting (11.1), the action for the one-

loop quantum fluctuations greatly simplifies, since all terms depending on

∇µg now vanish. Thus, we end up with

L2 =
1

4
hµν�hµν −

n+ 2

4n2
h�h+

1

2
(∇µhµα) (∇νhνα)− 1

n
(∇µh) (∇νhµν) +

+
1

2
hαβhµβRµα −

1

n
hhµνRµν +

1

2
hµνhαβRµανβ −

1

2n
hµνhµνR+

1

2n2
h2R

(11.6)
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11.1. Fixing the gauge

freedom

To gauge-fix the symmetries in (11.2), we shall

use the BRST technique in a similar way as ex-

plained in chapter 5 and introduce the following

nilpotent BRST operator

∫ = sD + sW (11.7)

where sD and sW are defined in (11.2).

Here, have in mind that sD is denoting diffeomorphisms that are trans-

verse. The path integral over the ghost fields for TDiff cTµ must be then

restricted to the subspace of transverse vectors. However, the definition of

such a measure [DcTµ] is a notorious problem [83]. The way to come to

grips with it chosen here is to parametrize this subspace in terms of uncon-

strained fields so that we can then integrate over the full space of cµ, whose

integration measure is well-defined. This we do by introducing an operator

Θµν
1

cTµ = Θµνc
ν = (gµν�−∇µ∇ν −Rµν) cν = (Qµν −∇µ∇ν) cν (11.8)

which maps vectors into transverse vectors. In this way, the transversality

condition over cTµ translates into a gauge symmetry for cν

cν → ∇νf (11.9)

with f an arbitrary scalar function. Indeed, this transformation takes cν into

a longitudinal vector, so that the Θµν operator annihilates it. Of course, in

order to perform now the functional integration over cµ we must gauge-fix

this new gauge symmetry by introducing a non-trivial stairway of ghost

levels with BRST transformations defined in such a way that the BRST

algebra closes

s2
D = s2

W = 0

{sD, sW } = 0 (11.10)

on all the different fields considered.

The systematic way to obtain this field content together with the

appropriate BRST transformations is by using the Batalin-Vilkovisky[84]

1One can easily check that Θµν is an endomorphism in the space spanned by transverse

vectors.
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formalism. However, in our case, things are easy enough as to allow us

to guess what the BRST transformations read, once the field content of the

theory is chosen as done in [84] for first-stage reducible and irreducible gauge

transformations. Notice that the gauge transformations in (11.2) generated

by sD, with cµ in (11.8), are first-stage reducible due to the gauge symmetry

in (11.9). However, the gauge symmetries in (11.2) generated by sW are

irreducible. We introduce the following set of fields:

h(0,0)
µν , c(1,1)

µ , b(1,−1)
µ , f (0,0)

µ , φ(0,2),

π(1,−1), π′(1,1), c̄(0,−2), c′(0,0),

c(1,1), b(1,−1), f (0,0) (11.11)

where c
(1,1)
µ denotes cµ, h

(0,0)
µν stands for hµν and the superscript (n,m)

carries the Grassmann number, n, (defined modulo two) and ghost number,

m. In this language, the BRST operators sD and sW enjoy Grassmann

number 1 and ghost number 1, each.

Here we have three families –displayed in three different lines– of fields.

The first line includes the physical graviton field together with the usual

ghost field content that would be naively necessary in order to gauge-fix an

unrestricted Diff symmetry. In addition, there is a φ field which accounts

for the transformation in (11.9). The second line represents the field content

introduced to gauge fix the gauge symmetry in (11.9), together with the one

that will be induced on b
(1,−1)
µ by contraction with c

(1,1)
µ . Finally, the third

line is the field content due to Weyl invariance.

Now, we define the action of sD and sW on the fields as shown in

Table 11.1, where
(
Q−1

)µ
ν

= gνα
(
Q−1

)µα
denotes the inverse of the operator

Qµν = gµν�−Rµν , which exists provided Det(Q) 6= 0. This is our case since

Qµν is just a standard Laplacian-type operator acting on vector fields.

With these definitions, it can be readily shown that the equations in

(11.10) hold. In doing so, it is advisable to show first that

sDc
Tµ = cTρ∇ρcTν (11.12)

if cTµ is defined as in (11.8). This can be done by using the following results

∇µ(cρT∇ρcTµ) = 0, ∇µ
[(
Q−1

)µ
ν

(
cρT∇ρcTν

)]
= 0 (11.13)

The path integral quantization of the theory is accomplished now by

adding to the classical action the gauge-fixing action, Sgauge−fixing, which

106



Chapter 11. Quantizing Unimodular Gravity

field sD sW

gµν 0 0

hµν ∇µcTν +∇νcTµ + cρT∇ρhµν +∇µcρThρν +∇νcρThρµ 2c(1,1) (gµν + hµν)

c(1,1)µ
(
Q−1

)µ
ν

(
cρT∇ρcTν

)
+∇µφ(0,2) 0

φ(0,2) 0 0

b
(1,−1)
µ f

(0,0)
µ 0

f
(0,0)
µ 0 0

c̄(0,−2) π(1,−1) 0

π(1,−1) 0 0

c′ (0,0) π′ (1,1) 0

π′ (1,1) 0 0

c(1,1) cTρ∇ρc(1,1) 0

b(1,−1) cTρ∇ρb(1,−1) f (0,0)

f (0,0) cTρ∇ρf (0,0) 0

Table 11.1: BRST transformations of the fields involved in the path integral.

is an appropriate BRST-exact term:

Sgauge−fixing =

∫
dnx ∫ (XTD +XW ) (11.14)

XTD and XW are polynomials of the quantum fields with ghost number

-1 and Grassmann number equal to 1 and such that they give rise to free-

kinetic terms that are invertible. Since we are only interested in one-loop

computations, we shall further assume that XTD and XW are quadratic in

the quantum fields. In the next sections we will construct the terms XTD

and XW and derive the differential operators involved in the path integral

whose contribution to the quantum effective action needs to be computed.

11.2. The TDiff ghost

sector

Let us start with the function XTD implement-

ing the gauge fixing of the TDiff symmetry. With

the field content introduced above and with the

BRST transformations as given in table 11.1, one has the following general

quadratic polynomial in the quantum fields

XTD = b(1,−1)
µ

[
Fµ + ρ1f

µ(0,0)
]

+ c̄(0,−2)
[
Fµ2 cµ + ρ2π

′′ (1,1)
]

+

+ c′ (0,0)
[
Fµ1 b

(1,−1)
µ + ρ3π

(1,−1)
]

(11.15)

where Fµ is a function containing the graviton field that can be identified

with the usual gauge fixing condition in the Faddeev-Popov technique and
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Fµ1 , Fµ2 and the three ρi can be freely chosen as long as they do not vanish.

This is enough to fix the TDiff symmetry with the minimal possible content

of fields.

After applying the s operator, this gives a term in the action∫
dnx ∫XTD =

∫
dnx

{
f (0,0)
µ

(
Fµ + ρ1f

µ(0,0)
)
− b(1,−1)

µ sFµ+

+ π(1,−1)
(
Fµ2 c

(1,1)
µ + ρ2π

′ (1,1)
)

+ c̄(0,−2)Fµ2 ∇µφ
(0,2)+

+ π′ (1,1)
(
F1µb

µ(1,−1) + ρ3π
(1,−1)

)
+ c′ (0,0)Fµ1 f

(0,0)
µ

}
(11.16)

where we have already taken into account that in the expansion (11.1) the

metric is unimodular.

Now, there are some simplifications that can be done. First, let us

take the terms containing f
(0,0)
µ

f (0,0)
µ

(
Fµ + ρ1f

µ(0,0)
)

+ f (0,0)
µ F̄µ1 c

′ (0,0) (11.17)

where we have introduced F̄µ1 using integration by parts as∫
dnx aFµ1 b =

∫
dnx bF̄µ1 a (11.18)

These can be rewritten completing the square as

ρ1

(
f (0,0)
µ +

1

2ρ1
(Fµ + F̄1µc

′ (0,0))

)2

− 1

4ρ1
(Fµ + F̄1µc

′ (0,0))2 (11.19)

and by shifting the variable f
(0,0)
µ the first term just gives an overall nor-

malization. We are left with the gauge fixing action

Shc′ = − 1

4ρ1

∫
dnx (Fµ + F̄1µc

′ (0,0))2 (11.20)

where ρ1 has been chosen to be a constant. This would be the outcome of

a standard Faddeev-Popov procedure if this were all the story.

Now let us focus into the terms containing the fermionic π fields.

Those read

π(1,−1)
(
Fµ2 c

(1,1)
µ + ρ2π

′ (1,1)
)

+ π′ (1,1)
(
Fµ1 b

(1,−1)
µ + ρ3π

(1,−1)
)

=

=
(
π(1,−1) − Fµ1 b(1,−1)

µ (ρ2 − ρ3)−1
)

(ρ2 − ρ3)
(
π′ (1,1) + (ρ2 − ρ3)−1Fµ2 c

(1,1)
µ

)
+

+ Fµ1 b
(1,−1)
µ (ρ2 − ρ3)−1Fµ2 c

(1,1)
µ (11.21)
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and, again, by shifting the π fields we are left with a gauge fixing term plus

an extra path integral depending on how we choose the operators ρ2 and ρ3

Sπ + Sbcgf =

∫
dnx

(
π(1,−1)(ρ2 − ρ3)π′ (1,1) + Fµ1 b

(1,−1)
µ (ρ2 − ρ3)−1Fµ2 c

(1,1)
µ

)
(11.22)

So that the BRST action for the TDiff sector is further simplified to∫
dnx sXTD =

∫
dnx

{
− b(1,−1)

µ sFµ + c̄(0,−2)Fµ2 ∇µφ(0,2)+

+ π(1,−1)(ρ2 − ρ3)π′ (1,1) + Fµ1 b
(1,−1)
µ (ρ2 − ρ3)−1Fµ2 c

(1,1)
µ − 1

4ρ1
(Fµ + F̄1µc

′ (0,0))2

}
(11.23)

As a next step, the function Fµ is chosen with two requirements in

mind. First, that the term FµF
µ is able to cancel the non-diagonal pieces

of the operator for the graviton fluctuations in the original lagrangian and

also that it is Weyl invariant so both gauge fixing sectors decouple and their

ghost fields do not interact. With these two requirements, the choice is

almost unique

Fµ = ∇νhµν −
1

n
∇µh (11.24)

and its variation under a transverse diffeomorphism is the equivalent to the

application of the s operator

sDFµ = �cTµ +∇ν∇µcTν = �cTµ +Rνµc
T
ν (11.25)

where in the second step we have used Ricci identity [∇ν ,∇µ]cν = Rµνc
ν

and the fact that, since we are performing a transverse diffeomorphism, cTµ
satisfies ∇µcTµ = 0.

Now, we have to rewrite cTµ in terms of an unconstrained field as

explained before. We do this by introducing the operator Θµν .

sDFµ =
(
gαµ� +Rαµ

)
(gαν�−∇α∇ν −Rαν) cν(1,1) =

= �2c(1,1)
µ −∇µ�∇νcν(1,1) − 2Rµρ∇ρ∇νcν(1,1) −�Rµρc

ρ(1,1)−

− 2∇σRµρ∇σcρ(1,1) −RµρRρνc(1,1)
ν (11.26)

The action for b
(1,−1)
µ and c

(1,1)
µ is then

Sbc = −
∫
dnx bµ (1,−1)

(
�2c(1,1)

µ −∇µ�∇νcν(1,1) − 2Rµρ∇ρ∇νcν(1,1)−

−�Rµρcρ(1,1) − 2∇σRµρ∇σcρ(1,1) −RµρRρνc(1,1)
ν

)
(11.27)
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The non-diagonal term with four derivatives can be canceled by an

appropriate choice of the functions Fµ1 , Fµ2 , ρ2 and ρ3. We choose them to

be

Fµ1 b
(1,−1)
µ = −∇αb(1,−1)

α

Fµ2 c
(1,1)
µ = ∇µc(1,1)

µ

(ρ2 − ρ3)−1 = −� (11.28)

Then

Fµ1 b
(1,−1)
µ (ρ2 − ρ3)−1Fµ2 c

(1,1)
µ =

(
∇νb(1,−1)

ν

)
�∇µc(1,1)

µ = −b(1,−1)
ν ∇ν�∇µc(1,1)

µ

(11.29)

where in the second step we have performed an integration by parts keeping

in mind that we are always under an integral sign. The final action term for

b
(1,−1)
µ and c

(1,1)
µ is then

Sbc + Sbcgf =

∫
dnx bµ (1,−1)

(
�2c(1,1)

µ − 2Rµρ∇ρ∇νcν(1,1) −�Rµρc
ρ(1,1)−

−2∇σRµρ∇σcρ(1,1) −RµρRρνc(1,1)
ν

)
(11.30)

And with this choice of (ρ2 − ρ3), the integration over the π fields is

given by

Sπ =

∫
dnx π(1,−1)�−1π′ (1,1) (11.31)

The operator involving c′ (0,0), and induced by this choice of fixing

functions is

Shc′ = −
∫
dnx

1

4ρ1

[
F̄µ1 c

′(0,0)F̄1µc
′(0,0) + 2FµF̄

µ
1 c
′ (0,0) + FµF

µ
]

=

= −
∫
dnx

1

4ρ1

[
∇µc′ (0,0)∇µc′ (0,0) + 2Fµ∇µc′ (0,0) + FµF

µ
]

(11.32)

which mixes with the operator of the graviton fluctuation due to the term

containing Fµ and c′ (0,0).

Finally, the operator for c̄(0,−2) and φ(0,2) is

Sc̄φ =

∫
dnx c̄(0,−2)�φ(0,2) (11.33)
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Summarizing, the BRST exact action for the TDIff symmetry is re-

duced to

STDiff =

∫
dnx bµ

(
�2c(1,1)

µ − 2Rµρ∇ρ∇νcν(1,1) −�Rµρc
ρ(1,1) + c̄(0,−2)�φ(0,2)−

−2∇σRµρ∇σcρ(1,1) −RµρRρνc(1,1)
ν

)
+ π(1,−1)�−1π′ (1,1)−

− 1

4ρ1

(
FµF

µ +∇µc′ (0,0)∇µc′ (0,0) + 2Fµ∇µc′ (0,0)
)

=

= Sbc + Sbcgf + Sc̄φ + Sπ + Shc′ (11.34)

The contribution of all these pieces to the quantum effective action

will be computed in section 11.4.

11.3. The Weyl ghost

sector

Now we turn our attention to the second part

of the gauge fixing sector, corresponding to the

Weyl invariance of the theory. We choose the

function XW to be

XW = ∇µb(1,−1)∇µ
(
f (0,0) − α g(h)

)
(11.35)

with g(h) being some function of the trace of the graviton fluctuation only,

to ensure that it is invariant under a TDiff transformation and thus the

ghosts do not interact with the TDiff sector. The parameter α we mean to

keep arbitrary all along the computation. Aditionally, we know by Kallosh-

DeWitt theorem that the on shell effective action should be independent of

α (because it appears in a BRST exact piece), and this will be used as a

nice partial check of our results.

After the application of sW , the BRST exact action is

SWeyl
BRST =

∫
dnx

[
∇µf (0,0)∇µ

(
f (0,0) − α g(h)

)
− α∇µb(1,−1)∇µ (sg(h))

]
(11.36)

And we choose g(h) to be the simplest choice

g(h) = h (11.37)

The BRST term piece is then

SWeyl = SW + Shf =

∫
dnx ∇µf (0,0)∇µ

(
f (0,0) − α h

)
− 2nα∇µb(1,−1)∇µc(1,1) =

=

∫
dnx

(
−f (0,0)�f (0,0) +

α

2
f (0,0)�h+

α

2
h�f (0,0)

)
+ 2nα b(1,−1)�c(1,1)

(11.38)
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This gives two contributions to the one-loop effective action. The first

part needs to be added to the original action of Unimodular Gravity and

mixes the gravitation perturbation with the auxiliar f field. The second

piece is the corresponding ghost action.

11.4. The one-loop ef-

fective action of Uni-

modular Gravity

Once the gauge freedom is fixed completely, the

computation of the one-loop counterterm of Uni-

modular Gravity is reduced to a computation of

a set of determinants. By collecting all the terms

defined in the previous sections, the pole part of the one-loop effective action

will be given, as explained in chapter 3, by

Γ[gµν ] = ΓUG[gµν ] + Γbc[gµν ] + Γπ[gµν ] + Γc̄φ[gµν ] + ΓW [gµν ] (11.39)

where each Γi[gµν ] refers to the contribution to the pole given by the action

labelled as Si in the previous sections, with the only exception of ΓUG[gµν ]

which is given by

SUG = S2 + Shc′ + Shf (11.40)

All but one of the operators involved in our computation are minimal

operators and thus their contribution to the quantum effective action can

be computed by the techniques in chapter 3. The only exception is given

by Sbc which contains four derivatives. It can be however treated by te

techniques of chapter 4 and its contribution can be read from [53]. The

operator contained in SUG is however non-minimal and thus it requires to

use the Generalized Schwinger-DeWitt technique of chapter 4. It reads

S
(1)
UG = S2 + Shc′ + Shf =

∫
dnx L (11.41)

with

L =
1

4
hµν�hµν −

1

4n
h�h+

1

2
hαβhµβRµα +

1

2
hµνhαβRµανβ −

1

n
hhµνRµν−

− 1

2n
hµνhµνR+

(
−f�f +

α

2
f�h+

α

2
h�f

)
+

1

2n2
h2R−

− 1

2

(
∇µc′ (0,0)∇µc′ (0,0) + 2

(
∇νhνµ −

1

n
∇µh

)
∇µc′ (0,0)

)
(11.42)

where we have set ρ1 = 1
2 in order to cancel the non-diagonal parts in the

kinetic term for hµν .
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To write it in the standard form, we identify

ΨA =

h
µν

f

c′

 (11.43)

and the differential operator takes the form

FAB = γAB� + JµνAB∇µ∇ν +MAB (11.44)

where the different matrices involved read

γAB =


−1

4

(
1
4K

αβ
µνρσ − Pαβµνρσ

)
gαβ

α
2 gµν −1

8gµν
α
2 gρσ −1 0

−1
8gρσ 0 1

2

 (11.45)

JαβAB =


0 0 1

4

(
gαµg

β
ν + gαν g

β
µ

)
0 0 0

1
4

(
gαρ g

β
σ + gασg

β
ρ

)
0 0

 (11.46)

MAB =

Mhh 0 0

0 0 0

0 0 0

 (11.47)

with

Mhh =

(
1

2
Pαβµνρσ −

1

4
Kαβµνρσ

)
Rαβ −

1

8

(
Pαβµνρσ −

1

4
Kαβµνρσ

)
γαβR+

1

2
R(µρνσ)

(11.48)

The round parenthesis for us mean complete symmetrization in all the en-

closed indices unless otherwise stated. The tensors Pαβµνρσ and Kαβµνρσ are the

same used in chapter 8

Pαβµνρσ =
1

4

(
gµρδ

(α
ν δ

β)
σ + gµσδ

(α
ν δ

β)
ρ + gνρδ

(α
µ δ

β)
σ + gνσδ

(α
µ δ

β)
ρ

)
(11.49)

Kαβµνρσ =
1

2

(
gµνδ

(α
ρ δ

β)
σ + gρσδ

(α
µ δ

β)
ν

)
(11.50)

The contribution of this operator to the effective action can be com-

puted by using the Generalized Schwinger-DeWitt technique of chapter 4 as
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explained there. All but one of the functional traces required for our result

were contained in [53] but they are reproduced in chapter 4 for completeness.

The computation has been performed with the help of the Mathematica soft-

ware xAct [70]. A fair amount of computing time has been necessary in order

to simplify the resulting expressions.

Finally, putting all together we find that the contribution to the pole

part of the effective action of SUG is

Γ[gµν ]UG =
1

16π2

1

n− 4

∫
dnx a4

with

a4 =
16

15
RµναβR

µναβ +

(
1

6α2
− 46

15

)
RµνR

µν +

(
1

3
− 1

24α2

)
R2 (11.51)

where we have neglected total derivatives in the integrand2.

As has been already advertised, all the dependence on the gauge fixing,

represented by the presence of the parameter α in the final result, disappears

when we use the background equations of motion Rµν = 1
4Rgµν . This is as

it should be because our gauge fixing is BRST exact.

11.5. The one-loop

counterterm

After computing the contribution of the non-minimal

operator, we are finally ready to write the pole part

of the effective action of Unimodular Gravity, which

reads

Γ[gµν ] = Γ[gµν ]UG + Γ[gµν ]bc + Γ[gµν ]π + Γ[gµν ]c̄φ + Γ[gµν ]W (11.52)

Here Γ[gµν ]UG is the contribution we have computed in the last sec-

tion while the rest of the contributions are given in appendix ??. Adding

everything, we find that the final result is

Γ[gµν ] =
1

16π2

1

n− 4

∫
dnx A4

where

A4 =
119

90
RµναβR

µναβ +

(
1

6α2
− 359

90

)
RµνR

µν +
1

72

(
22− 3

α2

)
R2

(11.53)

2This prevents us to compute the Weyl anomaly from our result, because total deriva-

tives can give non-vanishing contributions to the anomalous Ward identity. However,

this is irrelevant since, as it will be explained later, a regularization that preserves Weyl

invariant can be implemented at all orders in the loop expansion.
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Now we would like to focus on the issue of on-shell renormalizability.

It is known that although General Relativity is one-loop finite in the ab-

sence of a cosmological constant, this property is lost in its presence. The

on-shell counterterm in this case was obtained in [10]. It amounts to a

renormalization of the cosmological constant and is proportional to

ΓGR∞ ≡ 1

16π2(n− 4)

∫ √
|g|d4x

(
53

45
C2 − 1142

135
Λ2

)
(11.54)

Since the main attractive feature of Unimodular Gravity is precisely

the different role that the cosmological constant plays with respect to GR,

we would like to see what happens here with the renormalization group

flow when we take the counterterm to be on-shell so that all external legs

correspond to S-matrix states. In that case, the equations of motion for the

|g| = 1 fixed background are the traceless Einstein equations

Rµν −
1

4
Rgµν = 0 (11.55)

which, altogether with Bianchi identities, imply the following for the oper-

ators appearing in the effective action

RµναβR
µναβ = E4 (11.56)

RµνR
µν =

1

4
R2 (11.57)

R = constant ≡ Λ (11.58)

The first line is nothing more than the statement of the Gauss-Bonet theorem

when we take into account the equations of motion. E4 is thus the Euler

density, whose integral gives the Euler characteristic of the manifold.

By using these, we find that the on-shell effective action takes then

the form

Γ[gµν ]on-shell =
1

16π2

1

n− 4

∫
dnx

(
119

90
E4 −

83

120
Λ2

)
(11.59)

Now we come to the issue of the renormalization of the cosmological

constant. In principle here we have a divergence associated with vacuum

energy that would require to add a counterterm of the form∫
dnx δλΛ2 (11.60)
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that renormalizes it. However, the point is that here this counterterm does

not couple to gravity at all. The effective equations of motion that come

from the variation of the effective action

δΓ

δgµν
= 0 (11.61)

are blind to this parameter. Therefore, this renormalization is non-dynamical

and completely irrelevant. What we call the cosmological constant in this

setting is still given as an integration constant and its value is chosen clas-

sically by using Bianchi identities. This reduces the cosmological constant

to the role of a standard coupling. Once its physical value is set, it stays as

it is.

Actually, this effect is not specific to one-loop computations. We then

conclude that the bare value of the cosmological constant is protected and

quantum corrections do not modify it.

It could be thought that this effect is just a gauge artifact of our

background choice |g| = 1. However, it can be easily argued that this is not

the case. As we have commented before in this work, if we now want to

obtain the effective action for an arbitrary background from the one with

unimodular background metric, it is enough to make a change of variables

so that

g̃µν = g−
1
n gµν (11.62)

When doing this, we can see that the real reason of the cosmological

constant not being renormalized is indeed the presence of Weyl invariance in

our formalism, which protects the appearance of any mass scale in the effec-

tive action and, as a consequence, in the expectation value of the equations

of motion. Therefore, our argument holds and the cosmological constant

is protected and fixed to its bare value all along the renormalization group

flow and at any loop order.
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Summarizing our results, we have seen that the one-loop counterterm of

Unimodular Gravity takes the form

Γ[gµν ]on-shell =
1

16π2

1

n− 4

∫
dnx

(
119

90
E4 −

83

120
Λ2

)
(12.1)

The first term is a topological invariant and it will give no contribution

to the effective equations of motion. The same happens for the second term

but for completely different reasons. It is a non-dynamical operator, which

does not couple to any field and therefore its variation vanishes. We then

conclude that Unimodular Gravity in the presence of a cosmological constant

inherits one of the nicest properties of plain General Relativity: it is one-

loop finite. The coupling constants of the theory are not renormalized and

the effective equations of motion read

δΓ

δgµν

∣∣∣∣
one-loop

=
δS

δgµν
(12.2)

This has deep implications from the point of view of the cosmological

constant problem. First, it solves the problem of the vacuum energy. In

this theory, vacuum energy does not weight neither clasically or through

quantum corrections and the cosmological constant is stable under radiative

corrections. It is demoted to the role of a simple coupling, whose value has

to be set by an experiment, as with any other physical quantity like the

electron mass in QED.

This also solves the tension with wilsonian arguments. Now all the

higher order corrections of Unimodular Gravity will be weighted solely by

the Planck mass, allowing us to construct a consistent EFT even when the

cosmological constant does not vanish.

Of course, one could think that our result is a consequence of the par-

ticular background splitting we have chosen, where the background metric
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is unimodular by hand

|g| = 1 (12.3)

However, as explained before, one can recover the result for arbitrary

metrics by performing a Weyl transformations on this result

g̃µν = |g|−
1
n gµν (12.4)

This is safe as long as there is not Weyl anomaly in the theory and

this happens to be precisely the case. Let use remind that, as explained

in chapter 2 and in the conclusions of the last section, one can obtain a

regularization scheme which is safe and where Weyl anomalies do not appear

by using a scalar dilaton field as a compensator. It amounts to do the

following. If we were using plain dimensional regularization ,we would have

a counterterm of the form

ΓCT =
1

n− 4

∫
dnx O (12.5)

so that, recalling that the anomaly appears because O is invariant only when

n = 4, the new scheme consists on adding extra powers of the scalar field

(let us call it φ)

ΓCT =
1

n− 4

∫
dnx φ

n−4
λφ O (12.6)

so that the integrand is invariant in any dimension. Here λφ is the scaling

dimension of φ.

In UG we do not have any extra scalar field to use but, since the

symmetry group of the theory is just TDiff, the determinant of the metric

|g| is a scalar quantity and can take the role of the compensator. Therefore,

the anomalous safe one-loop counterterm for arbitrary metrics will be

Γ[gµν ]on-shell =
1

16π2

1

n− 4

∫
dnx

(
|g|

2
n

119

90
E4 −

83

120
Λ2

)
(12.7)

which is not only Weyl invariant in arbitrary dimension but also the cos-

mological constant remains decoupled at all orders in the perturbative ex-

pansion. This regularization scheme is not present in General Relativity or

any other Diff invariant theory because then this would break precisely that

symmetry, exchanging the Weyl anomaly by a Diff one. It is precisely the
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fact that the symmetry group is reduced to TDiff what makes the trick to

work.

To conclude, although Unimodular Gravity it is non-renormalizable

and must be still regarded as an effective field theory of the gravitational

interactions, it solves the issue of the ambiguous description that appears

in GR, where two scales, an UV cutoff Mp and an IR one Λ are present.

Unimodular Gravity is then a trustable EFT.
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The main conclusion of this work could be phrased simply by saying that

scale (Weyl) invariance is still one of the most complex and poor understood

symmetries in physics. The prospectives about the finiteness of quantum

actions that it suggest are equally tarnished by the huge conceptual problems

that it poses, particularly in the presence of dynamical gravitation.

While trying to understand some of the properties of this symmetry

in the framework of Quantum Field Theory, we have studied two actions,

corresponding to what we dub Conformal Dilaton Gravity in part II and to

Unimodular Gravity in part III. By means of well-known techniques in mod-

ern theoretical physics, the Background Field method and the Schwinger-

DeWitt technique (plus their generalizations) introduced in part I we have

been able to shed light to two main questions where Weyl invariance might

be relevant.

By using Conformal Dilaton Gravity we faced the problem of the

equivalence between actions that are classically related by non-linear trans-

formations. After computing quantum corrections for CDG both in and out

the Weyl invariant point, we concluded that the divergences of the theory

were related to the ones in the Einstein frame by the same transforma-

tions than the classical action. However, this is not true any more when we

have an anomaly in one of the frames. Weyl anomalies in CDG imply the

presence of a new operator whose vacuum expectation value is driven by the

anomaly. In the Einstein frame, however, there is no anomaly, because there

is no Weyl invariance or any equivalent non-exact symmetry, and the corre-

sponding operator does have a vanishing vacuum expectation value. Even

the naive expectation that S-matrix physics should be equivalent for both

theories is broken in the presence of the anomalous term, that can mediate

a scattering amplitude.

We related this situation to the fact that dimensional regularization,

while it can be applied in both frames, is not as good in the CDG frame

as in the Einstein frame. One can turn instead to an improved scheme,

where a compensator field is introduced and anomalies disappear, but this
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comes at the cost of having to introduce non-meromorphic counterterms

which apparently could also lead to an inequivalence of the S-matrix any

way. These conclusions are however premature and more deep research is

needed to assert to what extent one can trust in frame equivalence in order

to extract physical universal results from the theory.

As a corollary of our work with CDG, we also see that since in a pure

Weyl invariant theory there is no scale in the lagrangian, probably we never

can decouple gravitational physics from the matter dynamics. Even when

choosing a vacuum expectation value for the scalar field, thus working on

the Higgs phase of the theory, Ward-Takahashi identities must still be non-

linearly realized and quantization must be done along the same lines as with

the non-broken theory. It is reasonable to think that the equivalence prob-

lems then could be originated by our poor understanding of some aspects of

quantum gravitational fields mixed with the non-renormalizability of theory.

Later, we used Weyl invariance as a tool to address one of the most rel-

evant problems in modern physics, the active cosmological constant problem.

While Einstein gravity is a good behaved effective field theory in the absence

of a cosmological constant, there is an infra-red problem when Λ 6= 0 that

we addressed here in terms of Unimodular Gravity. By writing the action of

such theory in a particular frame where the metric variable is Weyl invariant

we were able to quantize the graviton fluctuations (although we had to use

a very complicated ghost sector) and prove that regardless there is matter

or not coupled to gravity, the unimodular theory solves the cosmological

constant in a very elegant way. At every order in the perturbative expan-

sion, the cosmological constant is banished to be a dynamical coupling of

the theory and no operator in the renormalization process is able to produce

it. It is reintroduced only when considering the effective equations of motion

for the mean fields, where Bianchi identities allow for an extra integration

constant to take the role of Λ at the time of solving the equations.

By using Unimodular Gravity, one can now construct a well-defined

effective field theory for gravitational interactions, whose cut-off is given in

terms of the Planck mass and no infra-red problems arise. Moreover, the

cosmological constant is given, as if it were a marginal coupling, simply in

terms of a physical measure. We believe that this is a huge improvement

over the standard general relativistic lore.

Finally, to summarize all the content of this work in a single paragraph,
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we were able to prove the usefulness of Weyl invariance in allowing to relax

fine-tuning problems related to gravitational operators. However, the quest

for a finite theory of gravity still continues and although Weyl invariance

is a promising idea, there are many questions that must be still answered,

mostly related to the not so well understood Weyl anomalies. There is still

many work to be done and while the XX century was the century of particle

physics, it is reasonable to hope that the XXI century will be the century of

quantum gravity.

Home is behind, the world ahead.

123



Conclusions

124



Conclusiones

La conclusión principal de este trabajo puede ser resumida diciendo simple-

mente que la invariancia de Weyl sigue siendo una de las simetŕıas más com-

plejas y menos entendidas en f́ısica, estando las esperanzas sobre la finitud de

acciones cuánticas que sugiere fuertemente frustradas por los grandes prob-

lemas conceptuales que induce, particularmente en la presencia de gravedad

dinámica.

Mientras intentábamos comprender algunas de las propiedades de esta

simetŕıa en el marco de la Teoŕıa Cuántica de Campos, hemos estudiado dos

acciones, correspondientes a lo que hemos denominado Gravedad Dilatónica

Conforme en la parte II y a Gravedad Unimodular en la parte III. Por

medio de técnicas bien conocidas en la f́ısica teórica moderna, el método de

campo de fondo y la técnica de Schwinger y DeWitt (y sus generalizaciones),

introducidas en la parte I, hemos sido capaces de arrojar luz sobre dos

cuestiones importantes en las que la invariancia de Weyl es relevante.

Utilizando la Gravedad Dilatónica Conforme, nos enfrentamos al prob-

lema de la equivalencia entre acciones que están relacionadas por transfor-

maciones no lineales a nivel clásico. Tras calcular las correcciones cuánticas a

GDC tanto en el punto invariante Weyl como en el no invariante, concluimos

que las divergencias de la teoŕıas están relacionadas con las calculadas en

el referencial de Einstein bajo las mismas transformaciones que la acción

clásica. Sin embargo, esto deja de ser cierto si tenemos una anomaĺıa en uno

de los referenciales. Las anomaĺıas Weyl en GDC inducen la existencia de

una nuevo operador cuyo valor esperado en el vaćıo viene dado precisamente

en términos de la anomaĺıa. En el referencial de Einstein, sin embargo, no

hay anomaĺıa, porque no hay ni invariancia Weyl ni ninguna otra simetŕıa

no exacta equivalente, y el valor esperado del operador correspondiente se

anula. Incluso la esperanza ingenua de que la matriz S sea equivalente para

ambos referenciales deja de ser cierta en presencia de la anomaĺıa, que puede

mediar en una amplitud de dispersión.

Hemos relacionado este efecto con el hecho de que la regularización

dimensional, pese a que puede ser utilizada en ambos referenciales, no es

125



Conclusiones

tan óptima en el referencial de GDC como en el de Einstein. Uno siempre

puede pasar a utilizar un esquema diferente, donde introducimos un campo

compensador y la anomaĺıa desaparece, pero a cambio debemos introducir

contratérminos no meromorfos que aparentemente pueden llevarnos a la no

equivalencia de la matriz S de todas formas. Pese a que estás conclusiones

son prematuras, plantean la cuestión de hasta qué punto uno puede confiar

en la equivalencia de referenciales para extraer resultados f́ısicos universales

a partir de la teoŕıa.

Como corolario a nuestro trabajo en GDC también observamos que

puesto que en una teoŕıa puramente invariante Weyl no existe ninguna es-

cala, probablemente no es posible desacoplar la dinámica gravitatoria de la

de la materia nunca. Incluso si escogemos un valor esperado en el vaćıo

no nulo para el campo escalar, pasando a trabajar por tanto en la fase de

Higgs de la teoŕıa, las identidades de Ward y Takahashi tienen que seguir

cumpliéndose a nivel no lineal y la cuantización debe realizarse de forma

similar a como se realiza con la teoŕıa en la fase no rota. Es razonable,

pues, pensar que los problemas de equivalencia podŕıan estar originados por

nuestro pobre entendimiento de algunos aspectos de la f́ısica gravitatoria,

mezclados con el hecho de que la teoŕıa no sea renormalizable.

Más tarde, utilizamos la invariancia de Weyl como una herramienta

para atacar uno de los problemas más relevantes de la f́ısica moderna, el

problema activo de la constante cosmológica. Pese a que la gravedad de Ein-

stein es una buena teoŕıa efectiva en ausencia de esta constante, existe un

problema infrarrojo cuando Λ 6= 0 que hemos afrontado en este trabajo a

través de la Gravedad Unimodular. Gracias a que escribimos la acción en

un referencial particular donde la variable de integración es estrictamente

invariante Weyl, fuimos capaces de cuantizar las fluctuaciones de gravitón

(pese a que tuvimos que usar un sector de fantasmas muy complicado) y

demostrar que independientemente de que haya mateŕıa o no acoplada a

la gravedad, la teoŕıa unimodular resuelve el problema de la constante cos-

mológica de una forma muy elegante. A todo orden en la expansión en

perturbaciones, la constante cosmológica no puede aparecer como un acoplo

de la teoŕıa y no existe ningún operador generado en el proceso de renor-

malización que pueda producirla. Reaparece sólo cuando consideramos las

ecuaciones del movimiento efectivas para los campos medios, donde las iden-

tidades de Bianchi permiten que aparezca una constante de integración que
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toma el papel de Λ.

Utilizando Gravedad Unimodular, uno puede construir, por tanto, una

teoŕıa efectiva para las interacciones gravitatorias que está bien definida y

cuyo corte viene dado exclusivamente en términos de la masa de Planck,

sin que aparezca ningún problema infrarrojo. Creemos que este resultado

representa una mejora sustancial sobre los procedimientos habituales en el

caso relativista general.

Finalmente, podŕıamos resumir todo el contenido de este trabajo en

un sencillo párrafo: hemos sido capaces de probar lo util de la invariancia

de Weyl a la hora de relajar problemas de ajuste fino relacionados con op-

eradores de origen gravitatorio. Sin embargo, la busqueda de una teoŕıa

finita de la gravedad sigue en pie y pese a que la invariancia de Weyl es

una idea prometedora, aún quedan muchas preguntas abiertas que necesi-

tan respuesta, la mayoŕıa relacionadas con las anomaĺıas Weyl, las cuales no

comprendemos del todo. Todavia queda mucho trabajo por hacer y mientras

que el siglo XX fue el siglo de la f́ısica de part́ıculas, es razonable esperar

que el siglo XXI sea el siglo de la gravedad cuántica.

Detrás queda el hogar, enfrente el mundo.
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A
Contributions to Γ by unimodular ghosts

Here we compute the different heat kernel coefficients corresponding to each

of the minimal differential operator appearing in the path integral formula-

tion of Unimodular Gravity.

A.1. The contribution of

Sbc

The action term for the fields bµ(1,−1) and

cµ(1,1) was defined in equation (11.30) and

reads∫
dnx bµ

{
�2c(1,1)

µ − 2Rµρ∇ρ∇νcν(1,1) −�Rµρc
ρ(1,1) − 2∇σRµρ∇σcρ(1,1)−

−RµρRρνc(1,1)
ν

}
(A.1)

This is a quartic operator of the standard form that we can find in

[53] if we identify

Jµναβ = −2Rµαδ
ν
β (A.2)

Hµ
αβ = −2∇µRαβ (A.3)

Pαβ = −�Rαβ −RαρRρβ (A.4)

here the bundle indices are just spacetime greek indices that we indicate

with α and β.

And the field strength

[∇µ,∇ν ]cα = F̂ αβ
µν cβ = R αβ

µν cβ (A.5)

Its contribution to the effective action can be read from the results of

[53] and reads

W bc
∞ =

1

16π2

1

n− 4

∫
dnx

(
11

45
RµναβR

µναβ − 41

45
RµνR

µν − 1

18
R2

)
(A.6)

where we have set |g| = 1 and we have multiplied by minus two in order to

take into account of the fact that there are two fermionic fields.
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A.1.1 The contribution of Sc̄φ

The action term for c̄ and φ was given in equation (11.33), reading∫
dnx c̄(0,−2)�φ(0,2) (A.7)

This is the simplest possible operator and its a4 coefficient is given

simply as

ac̄φ4 =
1

180

∫
dnx

(
12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ

)
(A.8)

where a factor of two has been introduced to take into account that we have

two fields. Again, remind that we have set g = 1.

Its contribution to the effective action is given by

W c̄φ
∞ =

1

16π2

1

n− 4

1

180

∫
dnx

(
12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ

)
(A.9)

A.1.2 The contribution of Sπ

The action term for the dynamics of the fermionic π fields was defined in

(11.31) and reads

Sπ =

∫
dnx π(1,−1)�−1π′ (1,1) (A.10)

Even if this is a pseudodifferential operator, its contribution to the

pole part of the quantum effective action can be easily computed thanks to

the fact that �×�−1 = 1. This means that

Det(�) = Det(�−1)−1 −→ log [Det(�)] = − log
[
Det(�−1)

]
(A.11)

if there is no multiplicative anomaly. This sums up into the fact that the

corresponding Heat Kernel expansion of �−1 will be minus the expansion of

�. Therefore

a4(�) = − 1

360

∫
dnx

(
12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ

)
(A.12)

where we have already set g = 1.
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However, here we are integrating over two fermionic fields, which in-

troduces another factor of minus two. Thus, we have that

aπ4 =
1

180

∫
dnx

(
12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ

)
(A.13)

and its contribution to the effective action is given by

W π
∞ =

1

16π2

1

n− 4

1

180

∫
dnx

(
12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ

)
(A.14)

A.1.3 The contribution of SW

The action term for the Weyl ghost field was given in (11.38) and reads

2nα

∫
dnx b�c (A.15)

The global multiplicative constant will not contribute to the pole part

of the quantum effective action, since it gives just an ultralocal contribution,

so we can dismiss it, having just∫
dnx b�c (A.16)

Again, we are left the simplest possible operator and its a4 reads

aW4 = − 1

180

∫
dnx

(
12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ

)
(A.17)

where a factor of minus two has been introduced to take into account that

we have two fermionic fields and we have set again g = 1.

Its contribution to the effective action is given by

WW
∞ = − 1

16π2

1

n− 4

1

180

∫
dnx

(
12�R+ 5R2 − 2RµνR

µν + 2RµνρσR
µνρσ

)
(A.18)
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