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Abstract
Continuous Feedback on Quantum Superconducting Circuits
by
William Livingston
Doctor of Philosophy in Physics
University of California, Berkeley

Professor Irfan Siddiqi, Chair

Quantum measurement theory describes the dynamics of a quantum system when it transfers
information to an observer. Within the framework of continuous measurement, this outflow
of information and resultant back-action occur at a finite rate. Continuously measured sys-
tems do not instantaneously collapse to eigenstates, but rather undergo stochastic evolution
highly correlated with the observer’s received information. When the measurement rate is
on the same timescale as the processing speed of classical control electronics, we can per-
form feedback on a quantum system during its collapse process. We experimentally realize
such a protocol by using an adaptively controlled quantum amplifier to implement a canon-
ical phase measurement on a flying photon. Continuous measurements can also be used as
a tool in quantum error correction. Error correction typically requires discrete rounds of
measurement, often using entangling gates and ancilla qubits. In contrast, continuous error
correction is implemented via always-on measurements of parity syndromes. Using direct
parity measurements of pairs of qubits in a three-qubit system along with a custom classical
controller, we implement the first continuous quantum error correction code.
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Lumped element oscillators. (a) Parallel LC oscillator with no loss. (b) LCR
oscillator. (c¢) Resonator connected to a transmission line in a reflection geometry.
A small input capacitance weakens the coupling to the transmission line.

Physical layout for two varieties of resonators with a common measurement feed-
line. The left resonator is primarily a lumped element design. A meandering
wire at the top acts as an inductor and the interdigitated fingers at the bottom
form the capacitor. This element supports one low frequency mode and has a
large frequency gap to the next resonance. On the right is a distributed element
resonator, which supports many modes roughly evenly spaced in frequency. The
design is that of a quarter wave (open on one end and terminated on the other).
(a) 4-port directional coupler with weak scattering e. (b) Hanger resonator geom-
etry. Port 3 is terminated in an open, represented by an x. Port 4 is connected
to a resonant circuit and, for illustration purposes grounded on the far end. (In
principle, there could be additional coupling to ground.) . . . . ... ... ...
Resonator in transmission. The central red section is the resonator. The capac-
itors act as beamsplitters which partially transmit and partially reflect signals
with coupling constant €; and €. The incoming and outgoing waves at each port
are shown in blue. Although the transmission lines and the resonator often have
the same impedance, they do not have to. Effects of mismatched port impedances
can be absorbed into the coupling constants. . . . . . . .. ... ... ... ...
Summary of typical styles of resonators. The scattering parameters and resonator
geometry are shown, with the resonator in red. In the middle are plots of complex
sample scattering parameters for different internal kappas of the resonators. The
bottom plots show the phase and Log Mag responses of the resonators as a func-
tion of detuning from resonance. Notice in that for the resonator in reflection, as
the system transitions from x; > k. to k. < k;, the phase response starts to wrap
afull 2. . . L
Fitting resonance data. The resonator is measured in a hangar geometry, with
measured Sy parameters in light blue. The green dashed line is the fit guessed
from the linear regression, and the red solid line is the result of the full regression
using the parameters found in the linear fit as an initial guess. . . . . . . . . ..
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Transmon qubit. (a) The transmon consists of a capacitor and a Josephson
junction indicated by a box with an x. The junction allows a jump in BCS phase
from ¢, in purple to ¢, in pink. (b) Physical images of a transmon. i) The
transmon’s footprint is primarily capacitor pads. A coupling resonator enters at
the top right and a control line enters from the bottom. ii) Leads connecting the
capacitor pads to a junction. iii) Josephson junction formed from a thin layer
of aluminum oxide between two layers of aluminum. (c) Energy potential in the
phase basis for F;/Ec- = 50, with the first six eigenfunctions plotted. Dotted
lines represent the periodicity of the potential and eigenfunctions as they are
defined over a phase variable. . . . . . . .. . ... ... .. ... ... ...
Transmon in brown coupling to a resonator in black through a capacitor with
coupling strength ¢g. . . . . . . . ...
Parameters extracted for a coupled resonator-transmon system with a single junc-
tion as a function of Josephson inductance (L;). The “Symplectic” method takes
the quartic approximation in the transformed frame and the “Sym w/ND” method
diagonalizes the two excitation subspace using the quartic (and quadratic) terms
in the transformed frame. The bare frequencies and participation ratios for the
resonator and qubit respectively are (6.379 GHz, .02) and (5.751 GHz, .965).
These values correspond to a subsystem of a fabricated parity chip with a tun-
able qubit and a resonator of frequency 6.314 GHz. After tuning the qubit so
that the system match the numerical-BBQ expected resonator-qubit detuning, we
measure qubit anharmonicity a and dispersive shift y. This single data point is
plotted as a red star. A more comprehensive comparison of theory to experiment
over a wide range of participation ratios may be found in [32]. . . . . . ... ..

Interaction of a quantum system and a transmission line. (a) An example of an
interacting system: a cavity couples to a transmission line with decay constant ~.
(b) Coupling between the system and the waveguide can be modeled as a series
of harmonic oscillators which serially interact with the cavity each for time AT
The outgoing modes can then be measured by a detector. . . . ... ... ...
Simulating decay under photodetection measurement. (a) Single shot decay of a
cavity (S = a) starting in a Fock state, and starting in a coherent state. (b) Decay
of a qubit (S = o) starting in a pure state with initial population {(¢'o) ~ .96
under different trajectories of a photon loss. The dashed line shows the ensemble
average decay. . . . . . ...
Decay under homodyne measurement. (a) Single shot decay of a cavity (S = a)
starting in a Fock state, and starting in a coherent state. (b) Decay of a qubit
(S = o) starting in a pure state with initial population {(¢'o) ~ .96 under different
trajectories. For an individual trajectory, the state stays pure for the duration of
the measurement. . . . . . . . ..
Sample Wiener processes. Such processes occur in many contexts, including when
integrating vacuum noise coming down a transmission line. . . . . . . . . . . ..
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Cavity states separating during during readout. The centers of the circles repre-
sent the coherent states a;;. Dynamics of the cavity states associated with each
qubit eigenvector are classical in that they remain coherent states throughout the
measurement. The labeled vectors on each cavity state are the different com-
ponents of ¢;. The cavity drive £ moves both states in the same direction, the
dispersive term Y rotates the states in opposite directions, and the dissipative
term k pulls the states back towards the ground state at the center of the 1Q
plane. In steady state (not shown), the vectors acting on each coherent state add
to zero. Maximal qubit state information is obtained by measuring along the real
AXIS. . .. e e e e
Simulation of a qubit dephasing from a measurement. Parameters used are y =
k =1MHz. (a) In-phase (real) and quadrature (imaginary) response of the cavity
to a square drive pulse in the rotating frame of the drive. Only oy dynamics are
shown, but since the drive term & is real, under the cavity equations of motion
in Eq. 3.78a, a; = af for all time. The dotted line shows the drive £ in units
of us~'. (b) Measurement-induced (T'4) and irreversible dephasing (T's) of the
qubit during the readout pulse. The measurement induced dephasing dips below
zero in the final transient, indicating coherence revival of the p. Inset: integrated
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difference I'y — f‘¢ remains positive throughout the readout and asymptotes to zero. 53

Geometry of backaction on the Bloch sphere. The effects of dephasing are shown
in pink and pull the state towards the Z-axis. The effects of backaction are
shown in blue and are tangent to the Bloch sphere (for a pure state). (a) In
the case where the measurement axis is aligned with information quadrature,
measurement backaction disturbs the state (partially) along the z axis as shown
by the direction of the blue arrows. Assuming perfect efficiency (I',, = 2I'y), the
stochastic motion repurifies the state. (b) In the case where the measurement
axis is perpendicular to the information quadrature, phase backaction rotates the
state in the XY plane to repurify the state. The dashed arc represents the initial
XY radius of the state. . . . . . . .. ..
Simulation of readout separation using the solution in Eq. 3.94 with I',, =1 us.
The red histogram shows the distribution of integrated voltages as a function of
time for the qubit initialized in the excited state. The blue trace shows the same
for the qubit initialized in the ground state. The separation of the histograms
grows faster than their standard deviations, allowing for good readout. . . . . .



4.1

4.2

4.3

4.4

Experimental implementation. (a) Atom in a cavity, with phase Oy, encoded
into its dipole moment. The atom decays and emits a photon into a 1D waveguide
with phase encoded into the electric field as shown. The JPA receives the photon
and measures an amplitude quadrature selected by the FPGA. (b) Sideband
cooling scheme to emit photon. Sideband converts a qubit excitation to a cavity
excitation, which is then emitted as a single photon at the cavity frequency. (c)
Measured mode shape (E-field envelope) of emitted photon. Dashed line shows
mode shape if constant cooling rate were used instead. (d) Output of JPA.
Signal is amplified along measurement axis ¢ and squeezed along the other. (e-g)
Estimating and tracking state by changing measurement basis. Receiver attempts
to maintain the phase measurement condition ¢ = 6 + 7/2. See text for details.
Measurement back-action and quantum trajectories. Coordinate axes are chosen
so that the atom decays to o, = —1. (a) A single homodyne quantum trajectory
(¢(t) = 0). The state only propagates in the plane of the measurement axis. (b) A
single heterodyne trajectory (¢(t) = whet.t). The qubit is initialized in |+) for both
trajectories. (c¢) Amplitude back-action, which occurs when the measurement
axis (red line) is aligned to the best estimate of the state (blue arrow). (d) Phase
back-action, which occurs when the phase measurement condition is satisfied.
Back-action and measurement validation. (A) A single adaptive-dyne quantum
trajectory. The red right-angle bracket emphasizes orthogonality between the
measurement axis and the state. (B) Quality of tracking for heterodyne and adap-
tivedyne, where the optimal amplification phase is ¢op. = 0(t) + 7/2. Adaptive-
dyne significantly outperforms the heterodyne and comes close to the ideal phase
by T' = 13us. The difference ¢, — ¢ is cut to lie on the interval [—7/2,7/2]. (C)
Distribution of trajectories at t = 10us. Due to suppression of photon-number
back-action, adaptivedyne trajectories cluster in a ring at late times. In contrast,
heterodyne trajectories would form a roughly spherical shape inside the Bloch
sphere. (D) Statistics of the phase back-action df for adaptivedyne and hetero-
dyne. On average, the phase back-action is significantly larger for adaptivedyne,
indicating a stronger measurement of phase. . . . . .. ... ... 0L
Phase-estimation performance. (A) Histogram of the difference between the mea-
surement outcome and the true phase i.e. 0(T) — Oye (B) Performance is eval-
uated by computing the Holevo variance of this distribution. Quantum limit
(bottom black line) homodyne limit (top black line) and absolute theory predic-
tion based on feedback delay are inferred from the performance of heterodyne,
with corresponding error bars shown as gray rectangles. (C) Distribution of the
amplitude information. The blue distribution for Heterodyne is behind the other
histograms. The distribution is significantly narrower for adaptivedyne, indicat-
ing suppression of this information channel. . . . . . . ... ... ...

vil

67

68



4.5

4.6

4.7

5.1

5.2

Pulse sequence and associated calibrations. (A) Pulse sequence of each shot of
the experiment. Vertical axis represents the amplitude of each pulse, with the
exception of the cooling sideband, in which the vertical axis is the quantitative
cooling rate. Cavity-resonant pulses are shown in red, cavity sideband pulses
in blue and qubit-resonant pulses in green. The discoloration and distortion
of the central qubit pulse represent cooling-sideband-dependent frequency and
amplitude modulation, as calibrated in (C) and (D) respectively. Effects are
exaggerated for visual clarity. (B) Measurement of the bath engineering cooling
rate versus sideband amplitude. (C) Measurement of the Stark shift induced
by the sideband as a function of sideband amplitude (D) Sideband amplitude

viii

required to drive 20 MHz Rabi oscillations as a function of the sideband amplitude. 72

Internal logic block diagram for the FPGA. (A) Photon signal demodulation. The
demodulation phase ¢ is determined by the JPA’s pump phase. The demodu-
lation amplitude P(t) is given by Eq. 4.16. (B) JPA pump frequency selection,
advanced each trigger of the AWG: 1) adapting JPA frequency proportional to
the incoming signal; 2) replaying JPA frequency from the previous AWG trigger;
3) heterodyning using a fixed JPA frequency. (C) Instantaneous JPA frequency
fpump increments the JPA pump phase ¢ and determines the instantaneous am-
plitude A through the gain calibration shown in Fig. 4.7. The real and imaginary
parts of this pump tone are sent to DACO and DACI respectively for single side-
band modulation. (D) The JPA pump frequency is halved, accumulated, and
delayed to determine the demodulation phase ¢'. . . . . . . . ... ... ... .
Gain calibration curve for the JPA. (A) Major axis variance (arb. units) of
amplified vacuum as a function of pump frequency and amplitude. The red line
represents a contour of constant variance, the gain curve. (B) Major axis variance
of amplified vacuum along the gain curve with the JPA pump on as opposed to
off. (C) Angle in radians of the amplified vacuum’s major axis along the gain
curve. An electrical delay is calibrated to keep this curve flat across frequency.

Density matrix of the three qubit bit-flip code in the logical basis. The logical
subspace is shown in green and has syndrome 00. Error spaces comprise the three
orange blocks with definite syndrome values other than 00. Physical X flips lead
to transitions amongst the syndrome subspaces. Purple transitions directly out
of the logical subspace move the logical state to an error subspace, but do not
affect the logical qubit. Red transitions between two error spaces induce an X
flip in the logical subspace in addition to changing subspaces. . . . . . . .. ..
Ancilla based three qubit error correction. Stabilizer values are copied to two
ancillary qubits, which are then measured. Based on the measured syndrome,
correction pulses are applied. . . . . . . .. ..o L
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Full Parity Detection. (a) Three qubits in two cavities, with each cavity im-
plementing a full parity measurement. Lower right: ideal phase responses of a
coherent tone reflected off each cavity for different qubit states. The parity probe
tones are centered on the odd-parity resonances. The phase space (1Q) plots show
the ideal steady state reflected tone for the shown qubit configuration. Dashed
circles are centered on all possible steady state responses. (b) Micrograph of the
superconducting chip with three transmons and two joint readout resonators.

Error Correction. (a) Sample experimental voltage traces of the controller cor-
recting induced bit flips. With no errors, both voltages remain positive. When
an error occurs, one or both of the voltages flip and the cross thresholds, trig-
gering the controller to send a corrective m pulse to bring the system back to the
codespace. (b) Voltage responses to an induced flip on @ with (blue) and with-
out (red) feedback. Bold lines are averages and light lines are sample individual
Traces. . . . . L e e e s s
Characterizing the time to correct an error. a, Histogram of time between an
induced error and the correction pulse for each of the qubits, normalized such
the integral of the probability distribution Py;,(t) gives the detection probability.
Dashed lines indicate the dark count rates for each error type. b, Probability of
detecting certain flip sequences given a flip on )y preceding a flip on ()5. The
green region is the probability of the controller correctly detecting a )y flip and
then a ()5 flip. The red region is the probability of the controller detecting a ()¢
flip, resulting in a logical error. The dotted line indicates the dead time, when
these two probabilities are equal. ¢, Population decay of the excited logical state,
|101), of the odd-odd subspace with and without feedback. With feedback on,
the lifetime of the logical basis state is longer than that of an individual bare
qubit. . .
Population lifetimes for each of the protected subspaces with and without feed-
back. . ..
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Preservation of quantum coherence. (a) Distinguishability of various state pairs
in steady state readout for each measurement tone. Pairs of states in the yellow
region differ in one or both of their parities. Pairs of states in the green region
share their parities. Dashed lines indicate theoretically predicted distinguishabil-
ity of the even eigenstates. (b) Relative state coherence after preparing a logical
|+ X 1) state in each of the plotted parity subspaces, applying parity measurement
tones without feedback, and flipping one of the qubits. Coherences are normalized
to results from the same sequence without the measurement tones applied. Error
bars are statistical uncertainty from repeated runs of the measurement. Dashed
lines indicate predicted relative dephasing due to an odd to even parity flip on
each, both, or no resonators. (c) Sample coherences from preparing a logical
|+X1) state in the odd-odd (OO) subspace, applying an error pulse, and letting
the controller correct the error. Coherences are reconstructed by time bins set by
the time it takes to correct the error. Oscillations due to static ZZ coupling are
visible. . ..
Cryogenic wiring diagram. The Josephson parametric amplifiers (JPAs) operate
in reflection, and additionally have off chip coils not shown. The JPAs also
provide narrow-band gain, so when the readout chains are combined at room
temperature, the combined noise at each cavity frequency is dominated by the
noise amplified by that cavity’s JPA. Each superconducting coil has its leads
connected by a small piece of copper wire, forming a low frequency (< 1Hz) RL
filter with the coil. The room temperature wiring is also shown, but with linear
elements (attenuators, amplifiers, filters, isolators) removed. . . . . . . ... ..

Inside an FPGA. (a) FPGA wire routing is shown in blue. At the intersections
of the wires, there are are switches to route the signals in a configurable manner.
Example processing blocks such as adders (square) and multiplexers (trapezoids)
are shown in the middle of the routing. (b) Example of a “programmed" FPGA.
Two bits are added together and the result is used to select one of two remaining
inputs to be an output. . . . .. ...
Sample hierarchy of HDL source files, which eventually get compiled onto the
FPGA. Modules have inputs and outputs, and can instantiate other modules as
submodules. The wires connecting to the outside get mapped to physical FPGA
pins as described in a user constraint file not shown here. . . . . . . . ... ..
Using Matlab simulink to write for an FPGA. Wires are made between blocks in
a GUI and blocks are can be inspected to tailor their behavior. . . . . . . . ..



A.4 Data flow through the system. Acquired data is streamed back to the computer
through fast lanes using off-chip RAM as buffering memory. Fast lanes are addi-
tionally used to transfer sequencing instructions and pulse shapes to the FPGA.
Extra configuration data (not to be confused with the bitstream) can be sent to
FPGA registers over the slow lanes. These lanes are also used to read back status
information. The FPGA Sequencer interacts sends and receives data to and from
the DACs and ADCs respectively. Processed data is sent back to the computer.
The ISE computer (used for bitstream compilation) programs the FPGA with
the bitstream over a JTAG connector. . . . . . . . . . ... ...
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Chapter 1

Introduction

Over the last century, physicists have worked towards finer control of quantum systems.
Much of modern technology from transistors to lasers to MRIs relies on concepts from quan-
tum mechanics. However, most of these applications relate to material properties at a
macroscopic scale and rely on gross control over quantum ensembles. They consist of many
degrees of freedom interacting strongly with an outside environment. Within the last few
decades, it has become increasingly feasible to not just engineer bulk properties, but also
exhibit control over small quantum systems. These systems can be made highly isolated
from their environment, and contain a limited number of degrees of freedom. Scientists have
significant control over the unitary and dissipative dynamics these systems experience. Once
confined to the thought experiments of theorists, concepts such as entanglement are now
regularly realized in physical laboratories. Indeed, an experiment violating Bell’s inequality
has verified quantum entanglement while closing all except the most contrived loopholes to
get around its existence [1]. We are now at the point where we can conduct research into
how to use this new quantum technology.

1.1 Quantum measurement and feedback

Recent technological advances have allowed for detailed investigation into the nature of
quantum measurement. Measurement plays the fascinating role in quantum mechanics of
simultaneously providing information and generating true randomness. On one hand, making
measurements on a system can provide information about its prior state. On the other, even
with full knowledge of the state, most measurements are only predictable with probabilistic
outcomes. Indeed, for any given state, it is possible to construct a measurement whose
outcome is completely uncertain and dictated by pure randomness. An intimately related
core feature of quantum measurement is that the act of state collapse as dictated by the Born
rule: measurement will change the state of the system, with this change perfectly correlated
to the outcome (up to inefficiencies). From the bare statement of the Born rule, state collapse
appears as an instantaneous process. However, physical measurements are performed with
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finite interaction strengths, so are not truly instantaneous. Instead, the act of measurement
can be considered to be smeared over time.

Using the Born rule to study the temporal dynamics of measurement leads to the field
of quantum trajectories, also known as continuous measurement. Introduced as a numerical
tool to allow theorists to simulate dissipation with fewer computer resources [2, 3, 4], it
was difficult to measure these trajectories experimentally. The main challenge to studying
quantum trajectories in a laboratory setting is that, although the information leaving the
system may be perfectly correlated with collapse dynamics, this information can be difficult
to collect. For example, consider observing the fluorescence of an atom. We would need
to completely surround the atom with photodetectors just to have a chance at collecting
most of the emitted photons. Without access to a substantial portion of these photons, the
information needed to reconstruct a trajectory is lost.

With proper care and engineering, scientists have been able to isolate systems from
the environment to the degree where they can capture a large percentage of the emitted
information. For example, superconducting qubits can be coupled to a one dimensional
waveguide acting as their primary window to the outside world. Such a platform has been
used to experimentally track state collapse using quantum trajectories [5, 6]. Indeed, multiple
measurements can be tracked at the same time [7|, even if those measurements do not
commute [8]!

One compelling aspect of studying quantum trajectories is that since information can
be extracted as the state is collapsing, it can be used to feed back on the system before
total collapse. Such feedback allows one to generate deterministic entanglement [9] and to
indefinitely stabilize the coherence of a Rabi-driven qubit [10]. In the first experimental work
of this thesis, we employ feedback on a measurement device during a continuous measurement
to realize a canonical phase measurement.

1.2 Quantum computation and error correction

In the last few years, the technology to isolate, control, and measure qubits has improved to
the point where it is has become conceivable to build large interconnected systems of qubits.
Unlike the large ensembles of the past, these newer platforms are vastly more reconfigurable
and programmable, with the ability to support controllable multipartite entanglement. Such
technology can be used to emulate a variety of Hamiltonians under the model of “it takes
a quantum system to simulate a quantum system.” One can construct and simulate exotic
phases of matter, and inspect individual components in great detail. Being able to individ-
ually address every qubit and tailor qubit-qubit interactions also opens the door to digital
quantum computation. Therein lies the tantalizing possibility of performing certain compu-
tations faster than could be done on a classical computer. The most famous example of such
an algorithm is Shor’s algorthm, a method to factorize large numbers, with the cryptographic
implication of essentially breaking RSA. However, a machine with such capabilities is still
quite a distant goal.



CHAPTER 1. INTRODUCTION 3

A large hurdle in the path of quantum computation is the compounding effects of errors
as the complexity of devices and algorithms grow. Unlike in a classical computer, information
in a quantum computer is inherently fragile. Interactions with the environment decohere the
computational state, and imperfections in applied unitaries accumulate over the course of a
circuit. Although this fragility could be a devastating blow to quantum computation, the
advent of error correction [11] has possibly turned the impossible into merely the extraor-
dinarily difficult. Further developments demonstrated that if one could lower error rates
sufficiently, then under certain assumptions error correction could be made fault tolerant
[12]. In other words, with the ability to produce an arbitrary number of “good enough”
qubits, one could run an algorithm arbitrarily well.

A key ingredient to quantum error correction is checking whether or not errors have
occurred and correcting any that have. In order to check for errors, one has to measure certain
joint properties of the qubits. When considered in standard stabilizer error correction, these
measurements are treated as an instantaneous process which occur periodically during a
quantum circuit. However, as previously described, measurement is inherently a continuous
process. In fact, if we can construct a direct measurement of the correct operators, we can
leave the measurement on at all times and implement a continuous error correction code. In
the second experimental work of this thesis, we demonstrate such a protocol on three qubits
to protect them against bit flip errors.

1.3 Superconducting qubits

Quantum mechanics is one of the most well tested theories, and is used as a framework un-
derpinning most, if not all, physical processes. This universality means that there are a range
of systems which can be used to construct qubits and process quantum information. Nat-
ural choices for qubits include photon polarization and spin-1/2 particles (such as electrons
trapped in a quantum dot [13]). Similarly to spin-1/2 systems, certain crystal defects such
as nitrogen-vacancy (NV) centers in diamonds have addressable electronic and nuclear spin
degrees of freedom [14]. One can alternatively use two levels of multi-level system as a qubit
so long as transitions can be selectively driven between the two chosen levels. Such systems
include the electronic states of trapped ions [15] and neutral atoms [16], where the atomic
potentials provide a strong non-linearity in the electronic level spacing. In most of the above
examples, the physical sizes of the qubits is on the scale of atoms with a correspondingly
small interaction cross-section.

An intriguing alternative for processing quantum information is to engineer qubits out
of superconductors. Circuit elements made from superconductors are nearly loss-less in
the microwave domain. They can be used to construct microwave resonators which can
hold high quality bound photons. With the addition of Josephson junction, a non-linear
circuit element, these resonators can can be turned into non-linear oscillators whose lowest
two levels can be treated as qubits. Superconducting circuits are typically quite large with
respect to their atomic scale peers, which helps them to strongly couple to other circuit
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elements. The variety of coupling strengths as well as the amount of qubit connectivity are
extremely flexible, as these properties can be engineered when designing a microwave circuit.
A particular style of superconducting qubit, the transmon [17], is the workhorse of both this
thesis and (currently) of the superconducting field more broadly. However, there are other
superconducting qubits varieties which are being explored as alternatives or complimentary
partners to the transmon. These include capacitively shunted flux qubits [18, 19], fluxonium
[20, 21], and O-7 qubits [22, 23].

1.4 Thesis overview

In chapter 2, we describe the classical physics associated with microwave resonators. Res-
onators are the basic elements of readout and can be additionally used to characterize the
quality of our fabrication processes. Understanding microwave resonator physics is crucial
when designing and measuring superconducting qubits. We then introduce the qubit used
throughout the thesis, the transmon, and describe its coupling to a resonator. We include a
primer on how to view this interaction through black-box quantization, a useful technique
for simulating parameters of a physical chip.

In chapter 3, we provide background on continuous measurement. We go through the
generalization of the quantum measurement beyond the standard von Neumann description.
We then derive the continuous time limit of measuring the emitted field of a quantum
system decaying into a transmission line. In doing so, we connect the ideas of decoherence
and measurement. We additionally introduce the concept of stochastic calculus, a useful
descriptor of quantum trajectories. Finally, we discuss how to use a resonator to dispersively
measure a qubit and what backaction such a measurement has on the qubit state.

In chapter 4, we present our first work on integrating continuous measurement and feed-
back. We measure a photonic wave-packet while constantly adapting the quadrature operator
measured by our Jospehson parametric amplifier. By doing so, we are able to implement
a canonical phase measurement, demonstrating that feedback can extend our measurement
capabilities.

In chapter 5, we demonstrate the first experimental realization of a continuous quantum
error correction code. We start the chapter with a review of how information is stored in a
quantum error correction and how it is protected against errors. We also describe the ancilla-
based approach of performing discrete error correction. In the main body of the chapter, we
describe how engineer a direct full ZZ parity measurement between two qubits. Using two
of these measurements, we implement a three qubit continuous error correction code. Under
this code, we are able to correct bit flips as they are detected and, in doing so, extend the
logical T7 lifetimes of our logical qubit past the lifetimes of the comprising qubits.



Chapter 2

Circuit Quantum Electrodynamics

Quantum electrodynamics (QED) describes the interaction between light and matter. Atoms
in free space have consistent coupling to incoming and outgoing photons. In order to enhance
or suppress these interactions, atoms can be placed inside of optical cavities which bunch
the local density of optical modes near the cavity resonances. The physics of these modified
interactions between atoms and light in a cavity is known as cavity quantum electrodynamics
(cQED).

When making microwave superconducting qubits, their coupling to the environment is
highly controllable. Through variations in coupling capacitance and inductance, one can
engineer a range of interaction strengths between these qubits and microwave cavities. In
fact, their interaction strengths can be made relatively much larger than those in their
tiny atomic counterparts. These microwave qubits became known as artificial atoms due to
their anharmonic energy levels, and their interactions with cavities became known as circuit
quantum electrodynamics (another cQED).

2.1 Classical resonators

One of the most basic elements of a quantum microwave circuit is the microwave resonator.
Resonators can be used to readout the state of qubits, mediate interactions between qubits,
and even act as qubits themselves |24, 25]. However, in the absence of a non-linear circuit
element or a non-linear microwave drive, resonators will respond classically (i.e. they will
be describable using a coherent state). Even in this mode of linear response, resonators are
useful for characterizing material properties such as microwave loss and probing the local
electromagnetic environment. When just considering the linear response of a resonator, it
is convenient to measure them in continuous wave, where a single frequency tone is sent
into a microwave network and recollected to reconstruct a scattering parameter. By fitting
this scattering parameter as a function of frequency, one can extract information about the
resonator such as the center frequency, strength of coupling to the drive line, and internal
loss [26]. The exact details of this resonance feature will depend on the coupling geometry,
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but here we present the structure of the three most common couplings (reflection; hanger;
and transmission) as well as other details about measuring resonators.

Resonator impedance

To begin, we determine the impedance of a resonant circuit uncoupled to a microwave net-
work. The continuous wave dynamics of a resonator can be captured by considering a parallel
LC circuit as shown in Fig. 2.1a. The impedance of this circuit from probe to ground is:
1 —1
Ziow) = — +wC 2.1
1) = (o +ieC) 2.)

This circuit has a resonance feature at €y = 1/+/LC'". Near this resonance (|w — Q| << ),
the impedance is approximately

1

7el) = 5t — 00y

(2.2)
This equation is in the form of a Mobius transformation, which are functions z — w of the
form b
az

W= (2.3)
These transformations have many nice properties, chiefly that they map every circle in the
complex plane to another circle in the complex plane (with straight lines being counted as
circles going though complex infinity). For example, Z;c(w) maps the real line in complex
frequency space (w) to the imaginary line in complex impedance space (Zrc). Addition-
ally, Mobius transformations form a group under composition, so that the composition of
two Mobius transformations is a third Mobius transformation. The matrix representation
of the Mobius group allows for formulaic composition and is useful when doing these sorts
of calculations. As a trivial example, consider adding a resistor in parallel to the LC oscil-
lator as shown in Fig. 2.1b. This new impedance, Zrcr = (1/Z1c + 1/R)™" is a Mdbius
transformation of Z; ¢, and is thus also a Md&bius transformation of w:

Zror(w) = 2iC(w — &120) + R (2.42)
v (2.4b)
Q’LC(W - Qo)

Here, we define SNZO = Qy+ir;/2 as the general complex resonance frequency, with x; called the
internal linewidth of the oscillator. In our LCR example, x; = 1/RC. In physical systems,
internal losses comes from many mechanisms, such as dielectric and radiative losses. These
losses are also often specified as a dimensionless quality factor, Q; = Q/k;. Note that this
form of Z;cr(w) still requires |w — Qg << o, meaning that it is most useful in the limit
where ) >> 1.
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Figure 2.1: Lumped element oscillators. (a) Parallel LC oscillator with no loss. (b) LCR
oscillator. (c¢) Resonator connected to a transmission line in a reflection geometry. A small
input capacitance weakens the coupling to the transmission line.

Resonators in reflection

If we want to perform real measurements on a resonator, we need to couple it to a measuring
device, usually as part of a microwave scattering network. In the simplest case, we have a
resonator at the end of a lossless transmission line with characteristic impedance Z,. We can
then use an impedance-matched Vector Network Analyzer (VNA) to measure the reflected
scattering parameter I' of voltage waves sent down the transmission line. This I' can be
written in terms of the impedance of the load Z; and the impedance of the line [27]:

_ZL—ZO
_ZL+Z0

To add another free parameter (which will end up controlling coupling strength to the net-
work) to the model, we take the load to be Z;cg in series with a coupling impedance Z¢,
such that Z; = Zycr + Z¢. This coupling impedance is often taken to be a capacitor as
shown in Fig. 2.1c, but we will assume the coupling impedance is more generically purely
reactive and not very frequency dependent within the bandwidth of the resonance. We then
get an equation for I,

P(Z1) (2.5)

Zrer + Zo — 2o
Zier+Zc+ Zy
Notice that I' is a Mobius transformation of Z;cg, meaning that we can write I'(w) as a
Mobius transformation as well.

 Ze— Zy (w —(1/2iC(Zy — Z..) — 50)) (2.7)

 Zet Zo \w+ (1/2iC(Zo + Z2) — Qo)

F(ZLCR) = (26)

['(w)
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While the coefficients may look complicated, we can define new variables to capture some
essential details. We will use the fact that, under the given conditions, Zy + Z. = Zy — Z..
We can then rewrite the above in a new form, defining ¢ and v in the process.

P(w) = ¢ (M) (2.8)

w—i-@—Qo)

Since the line impedance is positive, S[v] is guaranteed to be positive, and we define the
external linewidth as k. = 23[v]. The resonance in the scattering parameter gets shifted
with respect to the uncoupled resonator due to the coupling impedance. However, if the
coupling impedance is high (for example because of a small capacitor), this effect will be
small. Defining wy = €y — R[v], we now have

P(w) = ¢ (“" ~ (w0 5(m - “e))> = ¢ ("” - "E’) . (2.9)

W—(W0+%(Hi+ﬁe)) W — Wo

We define w, and wy as seen directly in Eq. 2.9. Recognizing this equation is in the form of a
Mébius transformation as descibed in Eq. 2.3, we see that I'(w) forms a circle in the complex
scattering plane. Furthermore, if k. >> k;, then |I'| & 1, indicating that little energy is lost
in the reflection. If kK, << k;, then the resonance is a very small circle, as the resonator is
dissipating faster than it can be pumped. Scattering parameters for different x., x; regimes
are shown in Fig. 2.5.

Waveguide resonators

The behavior of a lumped element resonator (schematically shown Fig. 2.1c and visually
shown Fig. 2.2, left) can be replicated by a section of transmission line acting as a distributed
element resonator (Fig. 2.2, right). In contrast to the theoretical lumped element circuit
model which supports a single electromagnetic mode, a theoretical distributed element res-
onator supports many modes roughly even spaced apart.! As an example, we will discuss a
resonator terminated in a short to ground through a very small resistance to provide internal
loss. The resonator has impedance Z,. The shorted end of the resonator has the reflection
coefficient I' = —1 + ¢;, where the deviation from -1 is due to the resistor. Looking at the
shorted end of the resonator from the coupling end of the resonator, the reflection coefficient
is I'yes = I'e?™7 where 7 is the electrical delay of the resonator, the time for a wave to
propagate from one end of the resonator to the other. The impedance of this resonator is
then:

'In practice, even lumped element circuits act as distributed element resonators at high enough frequen-
cies; capacitors have stray inductance and inductors have stray capacitance. However, with proper design,
a physical "lumped element" resonator can have a large frequency gap between the lowest mode and higher
order modes.
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1 + 1_‘€2in
1 — [e2iwt '

Resonance conditions occur near poles of this function (when I'e**™ ~~ 1), where we can

7 = Z, (2.10)

define the resonance condition as w = Q(()n) = (2n + 1)m/27 for integer n. Such conditions

imply that the resonator supports multiple modes, with the lowest mode being a quarter
wavelength. N f th d the i in w— 0
gth. Near one of these resonances, we can expand the impedance in w — €.

2
AQIA - (2.11a)
2i(w — Q)T + €
Z 1
=2 o (2.11b)
T w— QY —ie/2T
Z 1
_ %o = (2.11c)
1T w— QY — ik /2
Z, 1
_ % (2.11d)

Ew — Qé")

We thus again get to the impedance of a resonator with complex poles Q(()n) = Q(()n) + 1K /2,
similar to Eq. 2.4b. If we couple the resonator for a transmission line in reflection, we will
get the same form of reflection parameter as in Eq. 2.9.

Resonators terminating a network

More generally, suppose that we have some scattering network, S;;, where 7, j enumerate
the network’s N ports. We can terminate one of the network ports with Z;cr and come
up with a reduced scattering matrix, 7Ty;, where £, enumerate the reduced network’s N — 1
ports. To do so we write the S matrix in block format with [, £ running from 0 to N-1 and
separating out the N-th index. We then apply the condition that aqg = I'by, where I' is a
generic reflection parameter.

bk Skl SkN ap
= 2.12
anN — r (SNlCLl + SNNaN) (213&)
I'Shi
= 2.1
an 1_ FSNN ajg ( ?)b)

I'SpnS
b = Skvay + Suar = | —— o+ Sy | @ (2.14)
1— FSNN
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Figure 2.2: Physical layout for two varieties of resonators with a common measurement
feedline. The left resonator is primarily a lumped element design. A meandering wire at
the top acts as an inductor and the interdigitated fingers at the bottom form the capacitor.
This element supports one low frequency mode and has a large frequency gap to the next
resonance. On the right is a distributed element resonator, which supports many modes
roughly evenly spaced in frequency. The design is that of a quarter wave (open on one end
and terminated on the other).

Transmission Line e—

We then identify the the matrix Tj; as the transformation such that b, = T}q;.

I'SknSni

T, = —2RNONL
M T Syy

+ Skt (2.15)
Now we consider I' to be the reflection parameter of the Z;cg resonator and assume that
the scattering parameters of the original network are roughly constant over the bandwidth of
the resonance. Since Ty (I") and I'(w) are Mobius transformations, the scattering parameters
Ty (w) are Mobius transformations as well, so will show up as circles in the complex scattering
plane.

Resonators in hanger geometry

When a transmission line is weakly coupled to a resonator on a third port as shown in Fig.
2.3b, this is know as a hanger resonator. One way to construct a hanger resonator is to use a
directional coupler as shown in Fig. 2.3a and leave port 3 open while attaching resonator to
port 4. Although this resonator may be quarter-wave, half-wave, lumped element, or other,
we will simply assume that the impedance Z,., is in a standard form, with A > 0 being an

arbitrary constant.
1
Lres = —1Z5A ~ (2.16)
W — QQ
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This element has the reflection coefficient

_W_AZ+§0
W—Ai—ﬁo .

= (2.17)

Assuming the directional coupler has a small coupling e between weakly coupled ports,
its scattering matrix V is approximately [27]

0 1—% 1€ 0
62 -
v= 177 O 0 “ Ll (2.18)
7€ 0 0 1—%
0 e 1—-2 0

T=|1-2 —¢& e | - (2.19)

We then use the general reflection coefficient I' in Eq. 2.17 to terminate port 3 to form a
2-port network S, and calculate the resultant Ss.

(TosTs — TonT3) + Ty

_ 2.2
Sz T3l + 1 (2.202)
-0
- L (2.20D)
W — (Qo + ZA62/2)
et VO e O 1) (2.20¢)

w—@o  w— (wo+ (ki + Ke))

Here, the external linewidth is x, = A€?, and Wy = wy + 1(k; + ke) /2. Plots of this scattering
function are shown in Fig. 2.5. When the probe tone is far off resonance, S;, is near unity,
as the resonator does not get populated. Interestingly, on resonance in the x; — oo limit,
the transmission goes to zero. This is the effect of the resonator being highly excited and
emitting a coherent tone which destructively interferes with the transmitted signal. In a real
experiment, there are other effects such as impedance mismatches in the line which modify
the Syo circle [26]. In these cases, R[] gets shifted with respect to R[wy], resulting in a
circle that still goes through unity in the scattering plane, but is tilted away from the real
axis. Formally, this shift is introduced by making . complex.

Resonators in transmission

As a final example of basic resonator-waveguide couplings, consider a resonator in transmis-
sion, as shown in Fig. 2.4. In this geometry, there is no direct coupling from the input port of
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Figure 2.3: (a) 4-port directional coupler with weak scattering e. (b) Hanger resonator
geometry. Port 3 is terminated in an open, represented by an x. Port 4 is connected to a
resonant circuit and, for illustration purposes grounded on the far end. (In principle, there
could be additional coupling to ground.)

the resonator to the output port. This network has two high reflective ports (parameterized
by transmission coefficients €1, €5) joined by a section of lossy transmission line (parame-
terized by loss ¢;). We solve the following scattering equations for the output scattering
parameter d,,.

.

[ao} _ -3 1€1 . {ai = 1] (2.21a)
bol | e 1-Z|L b
(0% _1 - =2 iEQ ] C;

_ 2 5 2.21b

M | i 13 {di = 0} (2:210)

bi = (1 —¢) (2.21c)

ci = be™T(1—¢) (2.21d)

We then get an equation for the transmission Sy = d, as a function of frequency, which we
can expand out near resonance conditions, €7 ~ e¢~*7  where the resonance frequencies are
w(()") = nm /7. Depending on if n is even or odd, the scattering parameter will have a different



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS 13

sign.
—€1€
So1 = — 1 622+€2 ) (=1)" (2.22a)
e=iwm(1 4+ ¢;) — (1 v T) (1 — ;)
€1€2 1 n
~ AT (—1) (2.22b)

2iT W — Wo + 4iT

_ —VR1R (1) = VR gy (2.22¢)

w—(wo—l—%(/ﬁ—i—/sg—i—m)) w — Wy

Here the resonator has three decay paths: internal (k; = 2¢;/7); out port 1 (k; = €/27);
and out port 2 (kg = €3/27). Example scattering parameters are shown in Fig. 2.5. We see
that transmission goes to zero far away from the resonance, and is maximal on resonance.
An interesting note is that when ki = ks and k; = 0, the resonator transmits with unit
efficiency (|S21] = 1). Also notice that for a transmission resonator, a priori knowledge of
the external couplings would be required to extract the internal linewidth.

S

21 >
81 82
¥\ ¥\
a, + b, c, + d,
-— | —> < : >
a : b C : d

Figure 2.4: Resonator in transmission. The central red section is the resonator. The capaci-
tors act as beamsplitters which partially transmit and partially reflect signals with coupling
constant €; and €;. The incoming and outgoing waves at each port are shown in blue. Al-
though the transmission lines and the resonator often have the same impedance, they do not
have to. Effects of mismatched port impedances can be absorbed into the coupling constants.

Fitting resonators

As mentioned in section 2.1 , the scattering parameters of a resonator follow a particular
functional form regardless of the coupling geometry, namely a Mébius transformation. With
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Figure 2.5: Summary of typical styles of resonators. The scattering parameters and resonator
geometry are shown, with the resonator in red. In the middle are plots of complex sample
scattering parameters for different internal kappas of the resonators. The bottom plots
show the phase and Log Mag responses of the resonators as a function of detuning from
resonance. Notice in that for the resonator in reflection, as the system transitions from
K; > K 10 K. < K;, the phase response starts to wrap a full 2.
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knowledge of the coupling geometry and the parameters of this transformation, one can
determine the resonance frequency and the linewidths. Furthermore, if the coupling geometry
allows, the internal loss of the resonator can be separated from the external loss of the
resonator. This internal loss can then be used to estimate various loss channels of the
resonator and the material it is made from. The first step in this analysis process is fitting
the scattering parameters to a model. If we scan over the resonator with a list of frequencies
w and get back a list of corresponding scattering parameters s, then we use least squares
regression to minimize the function,

D18 (@i) = sl (2.23)

In addition to the standard M&bius form, we include an additional electrical delay parameter

7 into the model:
aw + b Wt

S(w) = o d (2.24)

In practice, this delay is mostly calibrated out of the measurements such that 1/7 in the
resonator fit should be large as compared to the sampled bandwidth.

In order to get the regression to converge, we need good initial guesses of the complex
parameters a, b, ¢, d (while assuming 7 is close to zero). We note that, in theory, a measured
scattering datum (w;, s;) would satisfy (cs;w; + ds; = aw; + b). We also note that a,b,c,d
can be uniformly scaled without changing S(w). Given that ¢ will generally be non-zero we
set ¢ = 1 without loss of generality. Motivated by these insights, we solve a linear system of
equations to get initial guesses of the fit parameters.?

wo 1 —sp ao SoWo
. bo| = | (2.25)
WN 1 —SN dO SNWN

After solving the linear equation, we can use these (ag, by, dy) as a starting point for the full
regression in Eq. 2.23 along with the initial guesses 79 = 0. The linewidths for a particular
resonance geometry can then be found with the parameters of the fully regressed data. An
example of this strategy working on resonator data is shown in Fig. 2.6.

Error bars on fit parameters are very useful, particularly when making claims about a
high internal quality factor. In order to get error bars on desired coordinates like qpew =
{Qi, Qc,wo, T, ...} (the other coordinates depend on the geometry), the covariance matrix
calculated in the coordinates of the fit (qoia = {R[a], R[], R[d], Sa], I[b], (d], 7}) must be
transformed using the Jacobian of the transformation from the original coordinates to the
new ones (Oqnew/0do1a). Alternatively, one can explicitly write a fitting routine for a specific
resonance geometry and directly get error bars from this fit.

20ne useful numerical trick to prevent singularities in this initial linear regression is to offset all the
frequency values such that the center frequency is at 0 Hz, and then re-add this offset to the fit frequencies.
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Figure 2.6: Fitting resonance data. The resonator is measured in a hangar geometry, with
measured S5, parameters in light blue. The green dashed line is the fit guessed from the
linear regression, and the red solid line is the result of the full regression using the parameters
found in the linear fit as an initial guess.

2.2 Quantum circuits

So far we have discussed the classical linear response of resonators. However, in order to treat
a resonator in a quantum manner, we need to quantize the circuit. Furthermore, in order
to experimentally use microwave oscillators as quantum bits, we need to add a non-linearity
which breaks the level spacing degeneracy. We will first summarize the Hamiltonian and
supporting fields involved in a harmonic LC oscillator, and then write down the Hamiltonian
for our qubit degree of freedom, the transmon.

Quantum resonators

Continuing the discussion of resonators, we will quantize their fields and write down their
quantum Hamiltonian. An excellent in-depth discussion of this topic for a more general
electromagnetic network can be found in a review [28|, which is an update of notes from Les
Houches. Here, we will present a brief summary of results as they apply to a single resonator
with inductance L and capacitance C in parallel. Foreseeing the introduction of Josephson
junctions as non-linear elements into our circuits, we use a generalized flux variable ® to
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describe the state of the circuit.
t
d(t) = / V(t)dt (2.26)

Although such a flux can be defined across any circuit element, here ® denotes the generalized
flux across the inductor. In analogy to a mass on a spring, we chose generalized flux to
act analogously to the position variable. In this analogy, the charge () across capacitor is
analogous to momentum.

Qt) = / t I(t)dt’ (2.27)

In a more general network, one may have a complex set of circuit elements, each with an
associated flux and charge variable. However, one can use Kirchoff’s laws to constrain these
and reduce the physical degrees of freedom; in our LC example, we only have one degree of
freedom despite having two circuit elements. The potential energy U and kinetic energy T
of this degree of freedom are

1

= —? 2.2
U T (2.28a)
C .
T = §¢2’ (2.28b)
resulting in the Lagrangian £L =T — U,
C. 1
= —¢* — —9°. 2.29
£ 2 2L (229)

One can verify that the conjugate momentum p to ® is indeed charge across the capacitor,

p= g—g = Cd=CV(t) = Q(t), (2.30)

as well as that the Lagrangian gives the correct equations of motion:

3} 1
b =—09. 2.31
70 (2.31)
Constructing a classical Hamiltonian from the Lagrangian through the standard transforma-
tion,
2 (1)2
Hclassical = Q_ + =7
2C 2L
one can promote ® and its conjugate variable () to quantum operators using the commutation
relation

(2.32)

(@, Q] = ih. (2.33)
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We can now write down these coordinates in terms of ladder operators, so that H = woata,

with the resonator’s impedance as Z = /L/C.

P = \/? (a+al) (2.34a)

Q=—i % (a — af) (2.34b)
While the flux and charge were originally written in terms of a lumped element model, these
same coordinates can be used to describe distributed, multimode systems as well. It is often
helpful to think of the quantum mode as being the electromagnetic field confined by boundary
conditions set by resonator’s geometry rather than the current flowing in the conductor. That
being said, when dealing superconducting cavities, there is extra kinetic inductance which
can contribute to potential energy not stored in the magnetic field. Similarly, Josephson
junctions will store potential energy not calculable from just magnetic fields.

Transmon qubits

The qubits used in this thesis and the most popular superconducting qubit at the time of
writing is the transmon qubit [17]. These oscillators are weakly non-linear oscillators, such
that their energy levels are not evenly spaced apart. This allows an external microwave
drive to selectively drive the |0) <+ |1) transition without exciting the system to high levels.
Transmons are constructed by taking a lumped element L.C circuit and replacing the inductor
with a Josephson junction. For a full derivation of the Hamiltonian, see the original paper on
transmons [17]. Before introducing the Hamiltonian, we give motivation on how Josephson
junctions may be viewed as non-linear inductors. A Josephson junction connects two islands
of superconductors, with BCS phase ¢, and ¢, respectively. The phase difference ¢ = ¢, —pp
is proportional to the generalized flux ® used to describe the resonator field, as can be seen
by the first Josephson relation, with ®y as the magnetic flux quantum:

= — 2.

¥ @07 ( 35&)
I N o

o=— V(t')dt' mod 2m = — mod 2. (2.35b)
®0 —00 ©0

Note that the phase is restricted from 0 to 27 as it corresponds to a phase difference in
the BCS wavefunction. This phase jump across the junction plays the role of changing
the junction’s inductance as voltage is applied. To see this, consider the second Josephson
relation and differentiate it:

I = Iysin(y), (2.36a)

I = Iycos(p)p = — cos(p)V. (2.36b)
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Comparing to the standard inductor’s V = LI, we have the relation

Q)

V=— -0
Iy cos(yp)

I. (2.37)
So far, although ¢ has represented the phase jump of the BCS phase, it has been treated

as a definite non-quantum variable. Indeed one can write down a classical potential energy
needed to twist the BCS phase by o,

Uj = E;(1—cos(p)), (2.38)

where E; = ®¢ly/27 is the Josephson energy. However, when promoted to operator status,
¢ becomes canonically conjugate to the number of Cooper pairs on each island n such that
n and ¢ satisfy the commutation relation [, ] = 4.> Adding a capacitance in parallel with
the junction as shown in Fig 2.7a, the full Hamiltonian for the transmon is then

H = 4Eq(i — ng)? — Ejcos(9). (2.39)

Here, the charging energy Eo = ¢2/2C is given by the energy penalty of moving a Cooper
pair (charge 2e) across the capacitance C. The gate charge n, is an offset charge present if
there is an external classical electric potential which biases the steady state charge on the
capacitor. The energy levels of this Hamiltonian are described by Mathieu functions [31], and
are shown in Fig. 2.7 for n, = 0. Although this system is more generally called the Cooper
pair box, in the limit £; >> E(, the level splittings of the system become exponentially less
sensitive in ny. The system becomes highly localized in ¢ and much less sensitive to charge
noise in the local environment. We call devices in such a limit transmons and, by expanding
the cosine term in the Hamiltonian to fourth order, can approximate their n-th energy level

to be [17] 1 1 1 1
E, =+/8E.E; (n - —) - E, <—n2 +-n+ —) : (2.40)

2 2 2 4

2.3 Dispersive coupling

An important coupling in cQED is that of a transmon to a resonator, as shown in Fig. 2.8.
Resonators can facilitate multiqubit gates and are the primary method of reading out the
state of a transmon. The relevant interaction has the form of a dipole coupling with strength
g.* We will approximate the transmon as an anharmonic oscillator with anharmonicity «,

3There is a subtlety in this relation in that it requires n >> 0 [29, 30]. The same subtlety arises in
chapter 4 when discussing phase measurements.

4 Although it is often convenient and useful to think of the interaction as an electric dipole-dipole coupling
of the qubit-transmon, there are circumstances where this intuition breaks down for systems of multiple
junctions when determining dispersive shifts. Such an example is explained in Appendix B of [32].
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Pa

©b

Figure 2.7: Transmon qubit. (a) The transmon consists of a capacitor and a Josephson
junction indicated by a box with an x. The junction allows a jump in BCS phase from ¢,
in purple to ¢ in pink. (b) Physical images of a transmon. i) The transmon’s footprint
is primarily capacitor pads. A coupling resonator enters at the top right and a control line
enters from the bottom. ii) Leads connecting the capacitor pads to a junction. iii) Josephson
junction formed from a thin layer of aluminum oxide between two layers of aluminum. (c)
Energy potential in the phase basis for F;/FEc = 50, with the first six eigenfunctions plotted.
Dotted lines represent the periodicity of the potential and eigenfunctions as they are defined

over a phase variable.

lowering operator b, and frequency w,. We let the resonator have lowering operator a and
frequency w,. The coupled Hamiltonian can be written as

H = w,a'a+wb'b+ %(bT)Qb2 +g(a+a")(b+0b"). (2.41)

In order to use the resonator for qubit readout, the system is taken into the dispersive
regime(17, 33|, meaning that the qubit resonator detuning A = w, —w, is much greater than
the dipole coupling (A >> g). Using second-order perturbation theory, we will renormalize
the qubit and cavity eigenstates and acquire adjusted energy levels. The dipole coupling
term contains two types of terms: number conserving terms (like aTb) and number non-
number conserving terms (like ab). We make another approximation that the qubit-resonator
detuning is smaller than the bare frequencies (wg,w, >> A). Although this is not strictly
necessary, we can use this approximation to drop the number non-conserving terms from
the perturbation. We are then left with a coupling which only has support within subspaces
of total excitation number, M. We can then apply perturbation theory with each subspace
with M excitations and extract relevant effects. Note that the M = 0 subspace comprises
just the ground state and is thus unaffected.
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Transmon | 1 Cavity
|1

x:: —

Figure 2.8: Transmon in brown coupling to a resonator in black through a capacitor with
coupling strength g.

H | (00| | (01] (10| | (02| (11| (20]
00y | O V2g V2g
01) Wy 9
|10) g W
02) | V2¢ 2w, + a V2g 0
|11) V29 witwr V29
120) | V29 0 V29 2w,

Table 2.1: Resonator-transmon Hamiltonian with dipole coupling arranged into blocks of
equal excitation number, truncated to the M < 2 subspaces. Greyed out coupling terms are
number non-conserving. These terms are dropped since they connect energy levels which are
separated on the energy scale of the bare modes.

The M = 1 subspace includes two bare states, |01) and |10), where the first index is the
number of excitations in the resonator and the second is the number of excitations in the
qubit. The approximate dressed states and frequencies are

2

01)" ~ [01) + % 110) , why =~ w + gz, (2.42a)
2
[10)" % [10) = X [01). who =~ wr = (2.42b)

In the M = 2 subspace, there are three states: [02), |11), |20). For simplicity, we just
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write down the energy perturbations, and not the state perturbations:

: 2¢°
Whe & 2w, + a + A+a (2.43a)
2g° 2g° 20%«
1~ r+— — = . 2.43b
wll wq+w+A A—{—CY WQ+W+A(A—|—Q) ( )
2g°
~ 2w, — —— 2.43
Wao w. A ( c)
Using these dressed energies, we can rewrite the dispersive Hamiltonian as:®
/
Hy = wiyata + wy b’ + %(bT)zbZ — 2xa’ab’d (2.44)

If we let o, = II(1 — 2bTh)II, where II projects onto the subspace of zero or one transmon
excitation, we find the Hamiltonian of a resonator dispersively coupled to a transmon as

/
Wo1

MH,IT = (w)y — x)a'a — — 0t xa'ao,. (2.45)

We can use the above energies to write down an expression for y:

Wiy — Wop — Wig e
= — = — . 2.46
X 2 A(A +a) (2.46)

We can see that, under the dispersive approximation the g X X like term turns into a
xZZ term.% One can imagine performing a similar transformation on a true qubit-resonator
system, a resonator-resonator system, and a true qubit-qubit system. A true qubit has
infinite anharmonicity, so a true qubit-resonator system has a dispersive coupling constant
of g?/A. A resonator has no anharmonicity, so, as one would expect, there is no dispersive
shift in a resonator-resonator system. If we consider a true qubit-qubit system, the levels
|02) and |20) do not exist, leaving |11) as the only state in the M = 2 subspace. Again, in
this case, there is no dispersive shift.”

2.4 Black box quantization

When designing quantum circuits, one is interested in efficiently simulating the dispersive
couplings between different transmon and resonator modes. One method is to simulate the

®Here we use the original (undressed) lowering/raising operators for simplicity in presentation. Effects
from using the dressed lowering/raising operators are suppressed by O(g/A).

6Here we refer to X loosely as a field operator such as o_ + o4 or a+a' and Z as a number-like operator
such as o, or ata.

"Even if one considers the full Hamiltonian of two true qubits coupled with an go, 0, interaction, including
the non-number conserving term, there is no dispersive shift.
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direct coupling ¢ and use Eq. 2.46 to calculate y. An alternative way to simulate the effects
of dispersive coupling between modes is to derive the couplings and energy levels through
black box quantization (BBQ)[34, 32|. One can go further than finding just the couplings
between a single transmon and a single resonator; one can find multiple couplings in a multi-
mode system. The goal of this method is to simulate all the relevant modes of the system in
a classical eigenmode finite-element electromagnetic simulation using lumped-element induc-
tors in place of the non-linear Josephson junctions. The fraction of the mode energy stored
in the junction can then be used in conjunction with the simulated frequencies and junction
inductances to extract relevant parameters about the quantum system. In particular, the co-
efficients of ZZ-like (a}a}aiaj—like) interactions can be found: anharmonicities of qubits and
self-Kerr of resonators when ¢ = j; cross-Kerr between resonators, dispersive shift between a
resonator and a qubit, and static ZZ couplings between two qubits when ¢ # j. In principle,
higher order interactions may be found as well. In BBQ), resonators and qubits modes are
set on equal footing, with the only difference being the fraction of the mode energy stored
in the junctions. Indeed, Josephson parametric amplifiers (reviewed in [35]), which have a
much weaker anharmonicity than transmons, may also be analyzed using this method.

Calculating participation ratios

A paper by Minev et al. [32] presents the full theory behind setting up the black box equa-
tions, with most details in the paper’s appendix, but here we will present a brief summary.
Consider a system with modes indexed by ¢ and junctions indexed by «. The phase across
each junction « is a dipole-like element,

o =3 @ (ai + aj) . (2.47)

We have assumed that phases are the sum of field operators, where a; are the ladder operators
of as yet undefined modes, which we will refer to as the bare modes. We have also assumed
that the %‘(a) are real. The first step in the BBQ procedure is to calculate the coefficients
71-(&). We assume that Hamiltonian can be broken up into a piece Hg)y; determined by linear
electromagnetics, and a term H;; from the Josephson junctions.

H:HEM+HJJ (248&)

Hpy =Y ESM(a;+ af)(a; + af) (2.48h)
tj

Hyy =Y EY (1 cos(¢)) (2.48¢)

Here E[J" are energy coupling terms which will not explicitly be used in the analysis, but
are included to demonstrate the functional form of Hgy,. If we truncate H;; to quadratic
order in gb(a) to form Hjy;; and add in Hgys, we get a linear Hamiltonian H;, with vacuum
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energy Fy. Since H, consists of purely linear circuit elements, the modes may be found with
a classical eigenmode solver. We claim these simulated modes correspond to the quantum
ladder operators a;, with frequency f; found in the simulation.

HL = Z hfzajaz + E() (249&)
=Hpy + Hygp (2.49Db)

1 (o) o) 2
— Hpyy + 5 ;EJ (¢( )) (2.49C)
(2.49d)

We now find the energy stored in junction o when a single mode 7 of the system is excited,
with colons indicating the normal ordering of the enclosed operator:

« 1 « o)) 2
Efi) = §E§ ) (L 3(¢>( )) F L) (2.50a)

= By )2 (2.50Db)

7

For consistency with [32|, we define the participation ratio pga) as ratio of E{f‘) to the total

inductive energy of the mode. Note that the total inductive energy of the mode is half of
the total energy of the mode. We thus have:

2 ov i il

(a) 17
@) — 9 =9 2.51
BTy hJi 250
w2 M ()
7| = P (2.52)

We can take the %(a) values to be real and can calculate their absolute magnitudes, which
leaves only a sign degree of freedom undefined in Eq. 2.52. This sign represents the flow of
current through the junction and is extractable from simulations, In the simplest case, the
sign comes into play when two modes have support on two junctions with one mode having

aligned current flow and the other having anti-aligned current flow.

BBQ parameter extraction

Once the participation ratios have been calculated, the full non-linear Hamiltonian Hppg can
be written down by replacing the linearized junction in H;, with the full junction Hamiltonian,
HJJI

Hppg=H,+H;;—Hjyp (2.53a)
(63 o7 1 « 2
=3 hfuala+ Y B (1 ~ cos (¢) — & (¢ >)) (2.53b)
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There are multiple ways of approximating the eigenmodes and eigenenergies to these equa-
tions. Here we will cover three methods: quartic approximation; numerical diagonalization;
and symplectic approximation. The first two are presented in [32| while the third represents
a middle ground.

Quartic approximation

The first way to approximate the eigenenergies of Hpp( is to expand the cosine term of the
Hamiltonian out to quartic order and directly match terms to the dispersive couplings as they
would appear in a generalized expansion. Instead of expanding the cosine and then normal
ordering, we will use an identity to normal order the cosine and then expand to quartic
order. Since normal ordering results in higher order terms partially reducing to lower order
terms as one commutes a; and a}, normal ordering before expansion gives a slightly different
result than the converse (which is derived in [32]). The identity[36] we will use is

eiratal) — o=N2/2  pix(atal), (2.54)

cos(A(a+ a')) = e /2 :cos(A(a + a)): . (2.55)

Looking at a single cosine term in Hppg, we expand while only keeping terms that con-
serve excitation number within every mode. This approximation assumes the system is in
the dispersive regime where the mode frequencies are well separated as compared to their
couplings. This prevents an excitation in one mode from hopping to another mode as well
as preventing particle gain or loss. Expanding out to fourth order, we get

[ [} o 1 @ «
Ccos (¢( )) ~ N@ (1 — Z \Pyz( )\Qaiai + 1 2(4 — 35@‘)!%( )]2\73(- )|2aja}aiaj> : (2.56)

(]

where the normalization constant R(® is defined as
1
(@) _ - ()2
N —exp[ 5 g 17 ] . (2.57)

We also expand H 1, out in terms of %-(a), dropping the constants and non-particle conserving
terms:

Hyjp~ Z ESQ)I%Q)IQGIai (2.58)

ol

We now use this correction to look for quadratic terms H;; — H ;1 not present in the linear
Hamiltonian H;. We first look for Lamb shifts using the quadratic terms,

Hramy = (Hyy — Hyj1)quad = Z B (R —1) i Pala;. (2.59)

a,l
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In the transmon and resonator regime, E; >> hf;, typically making |’yi(a) |2 << 1, such that
N(@) is close to one. Under this assumption we get

1 (0% (0% (0%
Heam ~ 5 3 BV 1 Py Fala (2.60)
,ij

We do the same approximations for the quartic terms in Eq. 2.56, which we label as ZZ
terms. Again, we also present the equation with and without the assumption that R(®) ~ 1:

Hzz = (Hyy— Hysr)quart = — Z (4 —30;)E (a)|%~(a)|2|%a)|2 1 Ta i (2.61a)
az>]
1 (0% (0% (6%
~ > (436 Y P10 Palalasa; (2.61b)
a,i>]

We then compare these terms to the the functional form of the Lamb shifts A;, the anhar-
monicities o; (distinct from junction «), and the dispersive shifts x;;, where

71042

Hips + Hzy = Z hA,; a a; + Z a? + Z 2hxija1aia§aj (2.62)
i>j
and then match terms in the R(® = 1 limit:
3 S EPROPhOP (263
a,j
o~ 5 30 ) (2.63b)
s~ =5 30 B (2:630

Careful! Note that the y;; derived here have a different sign convention than y in Eq. 2.46
due to the difference of sign convention between Eq. 2.45 and Eq. 2.62.

Numerical diagonalization

Although the quartic approximation gives elegant formulas, in practice these tend to not give
accurate results for the coupling. One alternative is to extract the energy levels of Hppg
numerically and use these energies to calculate couplings, as implemented in the python
package pyEPR|37]. For the simplest approach to diagonalization, one truncates the Hilbert
space of each mode a; to a set number of levels and expands the junctions’ cosine terms to set
order in ¢(®. By diagonalizing the matrix, the lowest energy state is the calculated vacuum.
The single excitation subspace will consist of renormalized modes which have large overlap
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with the bare simulated modes. Similarly, doubly excited states may be identified by their
large overlap with the doubly excited states of the linear Hamiltonian. Once the states are
matched, the dispersive couplings may be calculated by computing differences in energies.
It is worth noting that the size of the Hilbert space being diagonalized is exponential in the
number of modes. When simulating couplings for the continuous error correction project, we
used twelve levels per mode with a cosine truncation at order 8. Simulating five modes would
give a Hilbert space of dimension 12° ~ 250,000, which is prohibitively large to reasonably
simulate. Instead, one can run the diagonalization with a reduced set of modes that have
the highest impact on the desired coupling parameter. For example, using three modes with
twelve levels each reduces the Hilbert space to a more reasonable 1,728 dimensions.

Symplectic transformation

While exploring ways to reduce the computational demands of numerical computation, we
found a method to increase the accuracy of a quartic-like approximation to Hgpg. In this
approach, we map the bare ladder operators {a;, a;r} into new ladder operators {b;, bj} using
a symplectic transformation to preserve the proper commutation relations. We will discuss
how to find this transformation later, but it is chosen such that the only quadratic terms
of Hppg in the new basis are of the form bjbi. The cosine terms can then be expanded
and coupling terms can be identified as done in the quartic approximation above. To start,
we map {a;,al} to {b;, b} using the symplectic transform represented as matrix 7' [38, 39).

Restricting ourselves to real matrices, we can split T" into submatrices A and B:

b a A Bl la
Sl =T 2| = - (2.64)
bt at B Al |af
The matrix T" obeys the relation
T7'=%T™S (2.65)
where Y is defined block-wise as
I 0
Y= . (2.66)
0o —1I

We then find the transformed versions of the field coefficients 72-(0‘) in the new frame and label

these new field coeflicients 51-(&). If we consider the ladder operators to transform covariantly,

then %(a) transform contravariantly to preserve ¢(®) = [¥(®) §@)] . [g a?] = [ ). [p b?].
o) () A— B)A@
S ere |77 2| i (2.67)
gle 7] 7 (4~ By

&) = (A- B (2.68)
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With these new field coefficients we want to find the quadratic terms of H;;— H ;. Putting
the cosine term in its normal order and defining the the normalization coefficients in the new

frame as () = exp [—% > |§l.(a)]2], we express this part of the Hamiltonian as

(Hyy— Hysn)quad = ZE(Q Zg (b by + bibl + b;b! + b*b*) (2.69a)

W) g fo) ) g o] [3
£ @) Mg zﬁ]’ (2.600)

1 (@) (@) [ﬁ *}
= - @) T
Q;EJ (N —1) 15 b fe) g fle) dle) g dlo

up to additive constants from commutation relations. Here we have used “®” to symbolize
the outer product. We define the matrix @) to be

Q=5 ZE 1E™ @ &), (2.70)

Similarly, we transform Hp, which only includes uncoupled harmonic oscillator terms
in the original basis, to the new basis. Here, we let w be a diagonal matrix whose entries
correspond to the frequencies of the bare modes.

AT 2110 wl | a
H == 1|g at IR 2.71
Tl
. b
_hr bf} STy STTS ﬁ] (2.71b)
2L w bT
it -1 |— (AwBT + BwAT AwAT + BwBT b
e } ( ) - (2.71c)
2L AwAT + BwBT — (AwBT + BwAT) bt
We define the matrices S and R to be
S = AwA" + BwB', (2.72a)
R = AwB" + BwAT, (2.72D)

leading to the fully transformed Hamiltonian under the renormalized modes.

b
bt

h Q—R Q+S
(HBBQ)quad: |:b bi| Q—|—S Q R

: (2.73)

If the correct transformation matrix 7" is chosen, then the quadratic terms of Hppg will
only be those of decoupled harmonic oscillators. In other words, () — R will be all zero and
@ + S will be diagonal and will consist of the Lamb shifted eigenfrequencies. In order to find
the correct transformation 7', one can numerically optimize the n? coefficients for generators
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of the symplectic transform with n modes to reach these conditions. Expanding the cosine
term out in this new basis, the coupling coefficients can be matched as has been done for
the quartic case. Alternatively, one can numerically diagonalize the two-excitation subspace
in this new basis using the Hamiltonian terms of the form bjb}bkbl as well as the quadratic
terms. In the b basis, the two-excitation states do not mix with the single-excitation states
to first order.

When choosing a BBQ extraction method, there is some trade off between speed of the
BBQ computation and parameter accuracy. If one is including a full finite element solver in
an optimization loop, then numerical diagonalization (incorporating only critical modes and
junctions) is likely the best option. If one is using many modes or exploring parameter space
of frequencies and participation ratios, then using a symplectic method is a good way to get
preliminary results. Fig. 2.9 demonstrates the results of BBQ for a single junction resonator-
qubit system as a function of the junction inductance for a constant bare simulated frequency.
All methods perform similarly in the highly linear case of a low Josephson inductance, but
the quartic approximation quickly becomes inaccurate for realistic transmon regimes. Note
that this comparison is for a particular coupling and frequency regime. It does not represent
a general comparison of the methods in more exotic system regimes such as the straddling
regime where the resonator frequency is between wgy; and wqo of the qubit.
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Figure 2.9: Parameters extracted for a coupled resonator-transmon system with a single
junction as a function of Josephson inductance (L;). The “Symplectic” method takes the
quartic approximation in the transformed frame and the “Sym w/ND” method diagonalizes
the two excitation subspace using the quartic (and quadratic) terms in the transformed
frame. The bare frequencies and participation ratios for the resonator and qubit respectively
are (6.379 GHz, .02) and (5.751 GHz, .965). These values correspond to a subsystem of a
fabricated parity chip with a tunable qubit and a resonator of frequency 6.314 GHz. After
tuning the qubit so that the system match the numerical-BBQ expected resonator-qubit
detuning, we measure qubit anharmonicity « and dispersive shift y. This single data point
is plotted as a red star. A more comprehensive comparison of theory to experiment over a
wide range of participation ratios may be found in [32].
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Chapter 3

Quantum Measurement

Quantum mechanics is a theory of information. The dynamics of a quantum systems are
often broken up into the two strictly distinct processes of unitary evolution and projective
measurement. Whereas unitary evolution dictates the flow of information within a quan-
tum system, projective measurement describes the irreversible transfer of information to an
observer. Although these two processes are theoretically sufficient to determine the evolu-
tion of any quantum system, measurements in experimental setups are better described as
a combination of unitary evolution and projective measurements. This description encom-
passes a larger class of generalized measurements representing the action of measurement
on a system over a finite time. Additionally, we can use these generalized measurements to
describe continuous measurements, wherein the observer gets information about a system at
a finite rate. Such continuous measurements describe the internal dynamics of measurement,
as finite interaction strengths limit how fast information can be transferred.

3.1 Discrete maps

We will begin our measurement discussion by describing measurements as discrete actions
on a quantum system. Here we will discuss measurement on the level of mapping density
matrices to density matrices, without discussing the internal, infinitesimal dynamics of how
the measurements are made.

Projective measurement

When making a measurement on a quantum system, two things happen: the state of the
system is disturbed and information about how the system was disturbed is picked up by the
observer. We can define a projective measurement M through a set of complete orthonormal
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quantum projectors and classical meter labels indexed by A:

M= {(fIA,A)} (3.1a)
d =1 (3.1b)
A

ﬂ)\ﬂ)\/ = 5)\’)\/121)\ (31C)

When the measurement is applied to a system represented by the the density matrix p, the
meter reports the outcome \ with probability

px = Tr[pll,]. (3:2)
and, conditional on this outcome the state evolves as
Myl

SN (3.3)

p

The evolution of the density matrix is non-linear due to the denominator being dependent on
p, which is a general feature of measurements so long as one is observing the classical meter.
If the observer performs a measurement, but does not look at the meter, their knowledge of
the state may be captured in a density matrix which is the weighted sum of density matrices
over all possible outcomes:

[pll, N

= pr= > ILpIl,. (3.4)
X D y

In this unconditional case, the density matrix evolution stays linear. In the section on con-

tinuous measurement, we will similarly see that measuring without looking at the outcomes

results in linear evolution, but measuring and looking at the outcomes results in a non-linear

evolution.

Generalized measurement: POV Ms

One can perform a larger class of discrete measurements on a system than just projec-
tive measurements. These measurements are known as positive operator-valued measures
(POVMs). To model POVMs, we include a quantum meter which is able to interact with
the system we wish to perform a measurement on. For this section, we assume that the
observer is perfectly efficient at extracting information from the meter, such that any infor-
mation leaving the system is captured by the observer. The meter and system start out in
a factorized state. For simplicity, we will additionally consider each of them to be in a pure
state (with the meter in |m) and the system in |1);)):

[Wi) = |m) @ [¢i) (3.5)
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We then apply a joint unitary on the two systems, resulting in the (possibly) entangled state
W)= U |0 (3.)

Finally, the meter is projectively measured with outcome A. To prevent possible future
backflow of information from the meter to the system, we want this projection to completely
disentangle the meter from the system for all possible initial states of the system. We ensure
this condition by making the corresponding projector II, project onto one state: I, = IA) (Al
The unnormalized final state of the unitary and projection is

A
W) = (N © D U|T). (3.7)
Indeed, we can capture the system process conditional on outcome A in the operator
=AU (lm)&1). (3.8)

If we now generalize the system’s initial state [1;) to the density matrix p, the probability
of outcome A\ is

Dy = Tr[QKQ)\p], (3.9)

resulting in a nonlinear state evolution when normalized. We present this action in both the
density matrix and state vector formats:

V.U (3.10a)
Tr[Q4 2]
) oy 21 (3.10b)
(i Q0 1s)

These equations are similar in form to the direct projective measurements in Eq. 3.3, but
the {€2,} operators are not necessarily projectors and instead satisfy the weaker condition

doolay=1. (3.11)
A

As in the case of projective measurements, if observer does not look at the results of the
meter, they again recover a linear map for the density matrix:

Q ,oQ
pl—>z )}?)\ D —ZQ,\/)QT (3.12)
A

This unconditional map is know as a Kraus map, with the set of operators {{2)} called the
Kraus operators. This formulation indeed captures any possible unconditional dynamical
map of a quantum system (including unitaries) [40], under the condition that the system is
factorizable from any other Hilbert space at the start of the map.
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3.2 Continuous measurement

Moving away from discrete measurements, we wish to model the infinitesimal processes of
continuous measurement. In order to perform a continuous measurement, an observer must
have a constant stream of information coming in from the quantum system under observation.
In a laboratory setting, this stream is often encoded in an outgoing electromagnetic field,
so we will consider a system interacting with a series of harmonic oscillators flying past the
system as shown in Fig. 3.1 [[41, 42]]. In a microwave experiment, these waves travel through
a transmission line. We assume there is a system operator S which allows the system to
interact with each of these probing oscillators in turn for a short period of time AT. Although
we leave S generic, it is often the lowering operator of a cavity or a qubit. Such a process
models reflection off of circuit elements such the cavities as shown in Fig 5.3. We label each
flying oscillator 7 with an annihilation operator B,, where 7 € {0, AT, 2AT,...}. During the
period from 7 to 7 + AT, the system interacts with cavity 7 under a Hamiltonian

H, =ig(SB! — S'B,) (3.13)

where we have taken g to be real. Such a Hamiltonian can arise using the most standard
way of coupling cavities or a transmons together through dipole moments. Indeed, when S
is the lowering operator of a qubit, this Hamiltonian is the rotating Jaynes-Cummings for a
qubit and oscillator on resonance.

a. b.
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Figure 3.1: Interaction of a quantum system and a transmission line. (a) An example of
an interacting system: a cavity couples to a transmission line with decay constant 7. (b)
Coupling between the system and the waveguide can be modeled as a series of harmonic
oscillators which serially interact with the cavity each for time AT. The outgoing modes
can then be measured by a detector.

Before finding the dynamics this Hamiltonian generates, we take a closer look at g, and
in particular how ¢ scales as we shrink the time interval AT. Here, we give a plausibility
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argument rather than a full proof. (See [43] for a more full derivation.) Consider that B
exists as a mode traveling down in a transmission line with temporal width AT with a
corresponding spacial width Ax oc AT. The electric field operator on the transmission line
scales like

E x (B + B) (3.14)

1
VAz
The g in the system-probe coupling, which has the form p - E, then scales like 1/v/Ax,
resulting in a scaling of 1/v/AT. We can then write g by including a new frequency v which

is independent of AT
~y
=4\ == 1
9=\ AT (3.15)

We now use the original Hamiltonian in Eq. 3.13 to generate a unitary which we truncate
at order AT.

U, = e AT (3.16a)
~ 1+ +\/yAT(SB! — S'B,) (SBj_ — STB.)’AT (3.16b)

Note that to get to order AT, we had to expand out the exponential to second order. This
second order expansion is not only important because of the physical considerations of ¢’s
scaling, but actually necessary from an informational perspective. If the scaling of g in AT
were different, the rate of information coming out of the system would either diverge or go
to zero in the limit that AT — 0.

To see the measurement’s effect on the system, we need to first decide both how to
initialize the probe and how we want to measure the probe. For simplicity will assume that
each of the probe oscillators is initialized in the ground state. We will then consider two
cases of measurement bases corresponding to common lab bases: the Fock basis, and the
quadrature basis.

Photon counting

Our first choice of bases is the Fock basis, which can be implemented using a photon counter.
Starting with the unitary in Eq. 3.16b, we perform the partial trace over the probe with
initial probe state |0) and final probe state |i), i € {0,1,2} to recover the Kraus operators
(); on the system associated with each outcome. Tracing over the probe with any other final
state will result in zero, and thus does not result in a Kraus operator. Indeed, we find below
that in the AT — 0 limit, the chance of measuring |2) in a finite time also goes to zero, so
photon counting may only result in zero or one photons.

Qo = (0|U]0) = 1 — —STSAT (3.17a)

= (1|U]0) = \/VATS (3.17b)
0, = (2|U)0) = —§S2AT (3.17¢)
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From these Kraus operators, we then get the probabilities of a given outcome, with expec-
tation values taken with respect to the system’s density matrix:

po = () =1 — 7 (S'S) AT (3.18)
pr = (Q{) = 5 (STS) AT (3.18b)
p2 = () = O(AT?) (3.18¢)

As promised, the integrated probability of getting two photons goes to zero as AT goes to
zero while the integrated probability of getting a single photon in a finite time is between
zero and one. Using Eq. 3.12, we derive the unconditional evolution of the system density
matrix p,

Ap = Z QL — p (3.19a)
y

= (—%{S* S, p}+ SpST) VAT (3.19b)

dp =~ (S,OST — %{STS, p}> dt (3.19¢)

= ~D[S]p dt, (3.19d)

where in the final two lines we take the infinitesimal limit AT — dt express the decoherence
in Linbladian form. Here D is a linear map of p with parameter S defined as

1
D[Slp == SpS" — {55, p}, (3.20)

which is a common form of a linear map generating irreversible decoherence in a system [44].
To derive the equations of motion for the system conditional on the measurement, we first
note that in the limit of short time, the probability of getting a single count in a single time
bin tends is zero. Indeed, if a count comes out of the system, it will happen at a finite time.
Up to that point, we can consider the system evolving under the unnormalized equation

dp = QopQl — p = —%[STS, pldt (3.21a)
p= —%[STS, ol. (3.21b)

Although one could normalize the density matrix at every time step to get a normalized
state, it is helpful both computationally and theoretically to keep the state unnormalized.
By doing so, the trace of the density matrix dictates the probability that the system has
so far not undergone any jumps. To determine whether a jump occurs, the experimentalist
looks at their photo detector to see if a click has happened at a particular time. In contrast,
the theorist simulating such a system chooses a random number p uniformly from 0 to 1.
If the trace of the evolved density matrix ever falls below p, a jump event occurs. Since,
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under perfect photodetection, the density matrix remains pure, it is often preferable to evolve
an unnormalized wave function (which we denote with an overhead tilde) according to the
equation

Al) = ld) - |§) = —2S'S9) AT, (3.222)
[$) = —2 5S|4 (3.22b)

This form allows one to keep track of fewer numbers in a computer’s memory, though at
the expense of having to run a simulation multiple times over different trajectories, each
of which constitutes an experimentalist’s set of detection times or theorist’s probabilities p;
depending on the number of decay events one wishes to consider. Once a decay event does
occur, and the photon counter clicks, the system undergoes a discrete jump:

Q1 pU SpSt
Qi p]  Tr[STSp] (329

a) Cavity Photodetection b) Qubit Photodetection
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Figure 3.2: Simulating decay under photodetection measurement. (a) Single shot decay of
a cavity (S = a) starting in a Fock state, and starting in a coherent state. (b) Decay of a
qubit (S = o) starting in a pure state with initial population (ofo) ~ .96 under different
trajectories of a photon loss. The dashed line shows the ensemble average decay.

Example trajectories of decay under photodetection are shown in Fig. 3.2 for cavities
(S = a) and qubits (S = o) under decay operators. Note that for a cavity’s coherent state,
the jump events themselves do not actually affect the state other than a global phase since
coherent states are eigenstates of the annihilation operator. However, this phase could be
picked up if the cavity is prepared in a cat state such as |a) + |—«), in which case a decay
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event flips the relative phase of the two coherent component states. As in the cavity case, a
decaying qubit (S = o) is slowed by the act of collecting no photons, and a pure state will
decay on the surface of the Bloch sphere. If a photon is detected, then the qubit immediately
jumps to the |0) state.

Homodyne measurement

In the microwave domain, photon detection remains relatively rare. A more common mea-
surement is to readout the quadrature basis of the probe (“in-phase” I, “quadrature” @, or
some linear combination thereof). Such a measurement is known as homodyne and can be
implemented by a variety of devices. In this work, we use Josephson parametric amplifiers
(JPAs) [45].! By pumping a JPA with a tone phase-locked to the measurement tone and
choosing a relative phase offset, a chosen quadrature can be amplified. For our analysis, we
will measure in the I quadrature, in which we construct the operator R:

R= B+ B (3.24)

This quadrature measurement is analogous to measuring dimensionless position in a me-

chanical oscillator, with a normalization such that (0|R*|0) = 1 instead of 3. Measuring

in this basis, the output is a continuous variable r» with associated Kraus operator

Q, = (r|U]0) (3.25a)
= (r[0) + (r|1) V/YATS — ZAT ((r[0) S8 — (r|2) v/25?) (3.25D)
= (r[0) |1+ 7/7ATS - JAT(S'S - (1 - 1s?)] . (3.25¢)

Here, (r|0) = (27)""/*exp[—r?/4] is a Gaussian representing the probe’s ground state ex-
pressed in the position basis. In the last line, we have used the Hermite polynomials to
express the harmonic oscillator’s first and second excited states in terms of it’s ground state.
We also drop out the (r? — 1)AT term for convenience since, as we will later learn, even in
conditional evolution this term does not affect the system dynamics. Letting the probability
of measuring r if the probe is in the ground state be

Polr) = | (r[0) |2 = jz_ﬂ/ (3.26)

we are then left with the operator

0, = /Po(r) [1 4 /yATS — %ATSTS] (3.27)

!For design considerations of JPAs, see [35].
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which governs the measurement dynamics of the system. We can then rederive the uncon-
ditional evolution of the system under a homodyne measurement:

Ap = /OO dr Q.pQ — p (3.28a)
- /_ " py(r) :r\/'yA—T(Sp + pSt) + AATI2SpST — %AT(STSp + pSTS)] (3.28b)
= /_Oo dr Py(r) :fyATTQSpST - %AT(STS;) + pSTS)] (3.28¢)
- /_ T py(r) :’yAT(TQ —1)Spst - %AT(STSp +pStS — 2Spsf)] (3.28d)
= —yAT (%{STS, p}— S,oST) (3.28e)

dp =~ (SpST — %{STS, p}) dt. (3.28f)

Here we have used the orthonormality of the Hermite polynomials under the Gaussian weight
of Py(r) to do all of our integrations. As we would hope, the unconditional density matrix
evolution matches Eq. 3.19¢, the unconditional evolution when using a photodetector.

To determine the conditional evolution of the system, we determine the probability of
measuring a particular outcome r as

p = (Q10,) = Ry(r) [1 + /AT (S + 8T +7AT (r* — 1) <sTs>p] (3.29a)
~ Py(r) [1 4 /AT (S + ST>p] . (3.20b)

Here, we again drop the (r? — 1)AT term even though it is of order AT (as we will justify in
a digression on stochastic calculus). We also explicitly label the system expectation values
with p such that (4), = Tr[Ap]. We then want to determine the mean and variance of r,
where we use (A), = [ Ap.dr:

(r), = / " arRo(r) [7‘ + 2 /4AT (S + SM — VAAT (S + 51, (3.30a)

(r*), = /Z drPy(r) [7‘2 + 18 /YAT (S + ST)J =1 (3.30D)

Here we start to introduce the finite time equivalent of a concept from stochastic calculus:
the stochastic increment AW. AW is a random variable drawn from a Gaussian with zero
mean and variance AT. At every time-step, r also has the statistics of a (shifted and scaled)
Gaussian, so every measured r has a corresponding AW. Therefore, if one has a sequence
{r:}, one can turn it into a sequence {AW.} and vice versa. Explicitly this relation is

rVAT = /7(S+ ST AT + AW. (3.31)
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One can verify that this correctly gives us (AW) = 0 and (AW?) = AT. Note that
AW = O(+/AT), which is important when taking approximations to the correct order in
Taylor expansions.

Under a normalized time step and assuming AW? = r>AT = AT (equivalent to dropping
(r? — 1)AT), the density matrix propagates as

Q,pQf _ h() [p+ rV/AAT(Sp + pST) — LAT(STSp + pStS — 2r2SpST)]

p— (3.32a)
Pr Po(r) [1 4 /AAT (S + swp}

_ p+T¢7A—T(ip++T/1i’;) +yATD[S]p (3.32b)

~ (,0 4 /AAT(Sp + pST)> (1 =7 {r), + 72 (r)?) + yATD[S]p (3.32c)

~ (p + /AT (Sp + pST)> <1 —(r), %) +~ATD[S]p (3.32d)

~p+ 7 (ot pST— (S + 51),p) AW +9ATD[S]p (3.32¢)

Ap= /7 (Sp +pSt— (S + 5T, p) AW +~D[S]pAT (3.32f)

Although some algebra steps have been skipped, we have calculated the density matrix
propagation as a function of the probe’s measured quadrature. Note that due to the normal-
ization, the propagation is no longer linear in p. To finish the finite time-step treatment of
measuring a decaying system in homodyne, we need to transform r into a classical measured
voltage. As described in Eq. 3.14, the electric field and hence the voltage at the detector
scales like (B + BY)/v/AT. Using Eq. 3.24, the quantum measured voltage will be of the

form BB .

~ +

V=A =A 3.33
VAT VAT ( )

resulting in a classical voltage
-

V=A AT (3.34)

where A is a constant scaling factor in units of Volts/v/s~! characterizing the physical noise

power in a certain bandwidth. Using Eq. 3.31, we write down the measured voltage in terms
of AW.

VAT = A (\/7 (S+ST) AT+ AW) . (3.35)

This finite-time equation is often appropriate in a laboratory setting as one generally in-
tegrates voltage for some finite time (AT ~ 10 - 100 ns for a typical superconducting
microwave circuit applications), in which case V' is the average voltage during this inter-

val, and A = /AT (AV?) \,y,, where (AV?) ., is the variance of the average voltage in a



CHAPTER 3. QUANTUM MEASUREMENT 41

time window AT.2 Since the value of A as measured at the detector is dependent on the
amplification chain, we set A = 1 for the remainder of the chapter.

Although so far we have worked in the limit of finite time steps and in so doing been able
to take liberties with our notation, this conditional evolution can be taken to the infinitesimal
time limit. To do so we take AT — dt and AW — dW. Here, dW represents a stochastic
increment, which we will briefly discuss after presenting Eq. 3.32f and Eq. 3.35 in their
infinitesimal form. We also introduce the non-linear operator H[S],

H[Slp = Sp+pST— (S + ST, p. (3.36)

Setting A = 1, we present the stochastic master equation for our original system in a compact
form:

dp = yDI[S]p dt + \/7H[S]p AW (3.37a)
Vdt = /7 (S + ST, dt +dW. (3.37h)

Different references on the stochastic master equation have different conventions on how
to scale V', as well as whether or not to absorb /7 into the operator S. We present the
equations in their current form since the units are all captured by v and voltage fluctuations
are normalized without reference to the coupling strength of the system. Under the chosen
normalization, if one measures the average voltage (Vauy = =+ fOT Vdt) over time T, then the
variance of Vg, with respect to different realizations of dW is

Var(Vay,) = <(% /OT dW>2> = % (3.38)
aw

We additionally reiterate that the initial state of the transmission line is the vacuum state
for the previous analysis. This is a good assumption for a cavity in transmission. However,
when a cavity is in a reflection geometry, the emitted signal is combined with the reflected
tone used to drive the cavity state. Since this input tone is usually a coherent state, the
emitted voltage is simply displaced by the reflected voltage, adding a constant offset to the
dt term, but not changing the dWW term.?

As with the case for photon counting, a pure state evolving under the stochastic master
equation stays pure, so one can derive a similar stochastic equation for the wave function.
Conceptually the derivation is the same as for the density matrix evolution in that

Q, )
(W]QLQ,[v)

2For experimentalists determining the scaling factor A, check the bandwidth of your amplifiers when
characterizing the noise. In order to measure in homodyne, one often uses a Josephson parametric amplifier,
which offers limited bandwidth resulting in temporal voltage correlations. Effectively, an experimental
calculation of A depends on AT when AT is less than the inverse bandwidth of the amplifier.

3For an example where the initial state of the transmission line is not a coherent state, and instead a
squeezed state, see [46].

|1) — (3.39)
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for the normalized case and . .
V) = Q. [¥) (3.40)

for the unnormalized case. Then one would express r in terms of AW to get the equation
of motion in standard form which can be combined with Eq. 3.37b for the full evolution of
the state and measurement outcome. Without derivation (see [47, 48] for details), this state
update equation is

a1d) = (~25'5dt + y7SAW ) |9) (3.41)
a) Cavity Homodyne b) Qubit Homodyne
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Figure 3.3: Decay under homodyne measurement. (a) Single shot decay of a cavity (S = a)
starting in a Fock state, and starting in a coherent state. (b) Decay of a qubit (S = o)
starting in a pure state with initial population (oTo) ~ .96 under different trajectories. For
an individual trajectory, the state stays pure for the duration of the measurement.

Sample trajectories of decay under homodyne detection are shown in Fig. 3.2. Similarly
to the photon detection case, the stochastic measurement dynamics do not affect a coher-
ent state. One can confirm this by plugging a coherent state into Eq. 3.36 and finding
Hla] |a) (o] = 0. In the case of a qubit, the stochastic evolution will disturb Z, and in
the process also disturb at least one of the quadratures X or Y. If we measure in the X
quadrature while also knowing Tr[pY] = 0, then the stochastic dynamics will only affect the
X and Z expectation values of the system.

Digression on stochastic calculus

In the previous section, we used the random variable AW and then abruptly changed it into
the quantity dW. Although this turns out to be a reasonable thing to do, understanding the
properties of dWW and how to manipulate formulas involving dW requires the use of principles
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from stochastic calculus. Although we cover some basic principles here, see [49, 50| for more
rigorous introductions. Central to stochastic calculus is the concept of a Wiener process,
W (t), which can be thought of as the continuous limit of a random walk. Each W (t) is an
element from a set of Wiener processes {W} all obeying the same set of rules. Given any
time interval [¢,%o] and W, the quantity AW = W (ty) — W (¢;) must satisfy the conditions
(AW)y, = 0 and (AW?),,, = t5 — t;. The process also is independent in time in the sense
that for two non-overlapping intervals ATy and ATy, their stochastic increments AW; and
AW, are independent ((AW;AW3)y,, = 0). Examples of such W (t) are shown in Fig. 3.4.
One can write W (t) as the integral of the quantity dW, which is the limiting infinitesimal
of AW

W (t) = /O L (3.42)

Wiener Processes
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Figure 3.4: Sample Wiener processes. Such processes occur in many contexts, including
when integrating vacuum noise coming down a transmission line.

In the finite interval case, (AW?),,, = AT, but in the infinitesimal limit, an even stronger
condition holds where the expectation brackets are unneeded:
dW? = dt (3.43)
This may be seen by considering the variance on the variance of AW

AAW = ((AW?)?),, — (AW?)2, = 3AT? — AT? = 2AT? (3.44)

when summing AAW calculated over increasingly smaller partitions of a time interval, AAW
vanishes. We have actually used this property in the previous section when judiciously
dropping terms of order (r? — 1)AT.
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Another technique we unwittingly borrowed from stochastic calculus was Taylor expand-
ing to second order when using the chain rule. For example if we want to find variations in

G(X) where

dX(t) = a(t)dt + b(t)dW, (3.45)
then we would expand G and use dX? = b*(t)dt to find
1/ X
dG = G'(X)dX + MdX2 (3.46a)
2
14 X
= (G'(X)a(t) + #bz(t)) dt + b(t)G'(X)dw (3.46b)

This expansion is know as Itd’s lemma, and underpins the It6 formulation of stochastic
calculus. Although this expansion may seem straightforward, there are also less intuitive
aspects of stochastic calculus. In particular, when solving equations of the form

dX(t) = a(X,t)dt + b(X,t)dW, (3.47)

where a and/or b depend on X, integration is tricky both analytically and numerically, and
one needs to take care to use the correct definition of the integral. An alternative formulation
of stochastic calculus uses a slightly different integral know as the Stratonovich integral, but
whose differential form does not follow It6’s lemma. We will not discuss this form, but it is
often used in place of or in conjunction with the It6 form.

Finally, we briefly introduce the concept of multiple Wiener increments acting as the
basis vectors for a vector space. If one has a vector of independent Wiener increments
AW = (dW1, ..., dW,), then multiplication forms an inner product:

AW;dW; = 6;;dt (3.48)

Among other things, this means that one can transform a vector of Wiener increments into
other bases.

Measurement inefficiency

Although the stochastic master equation in Eq. 3.37 is valid for a perfectly efficient measure-
ment where all the information leaving the qubit makes its way to the observer, in reality
physical measurements are noticeably lossy. Physically, one can conceptualize this process
in two distinct ways. In the first case, one could imagine two simultaneous measurements
on the system, in which case the system would propagate as one state update equation with
two voltage records. Such inefficiencies can model internal losses of a cavity, which can be
thought of decay through an unmonitored port. The equations of motion for this process
are:

2
dp=">_¥D[S]p dt + H[S]p AW (3.49a)
=1

Vidt = /; (S + ST dt + dW; (3.49D)
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Consider that we only have access to V;. If v = 71 4+ 75 is the total measurement strength
of both measurements, we call the fraction 7 = ~; /v our quantum efficiency. Since we don’t
have access to dWs, we remove this term from the master equation and are left with

dp = yDI[S]p dt + /myH[S]p dWy (3.50a)
Vidt = /iy (S + ST) dt + dW, (3.50D)

Note the stochastic term in 3.50a shrinks as the quantum efficiency drops, so it cannot
“combat” the decohering Linbladian as well. Additionally, the average voltage magnitude
drops while the noise on the voltage stays at the same level, resulting in worse SNR for a
given total dephasing rate.

Equivalently, one can consider inefficiency based on a single outgoing voltage being put
through a beam splitter which transmits a fraction n of the power. We will consider the other
input of the beamsplitter to be the vacuum state, though if this input is in a thermal state,
it will add extra noise and further lower the efficiency. This beamsplitter model of quantum
efficiency is realized in physical systems where lossy lines and circulators act as beam splitters
with the environmental temperature acting as the second input. In this model, our initial
master equation is

dp = ~yDI[S]p dt + /7H[S]p dW; (3.51a)
Vdt = /i (V7 (S + STy dt +dWi) + /1 — ndW, (3.51Db)

One can verify that dW = \/ndW; + /1 — ndW5 is indeed a Wiener process itself. Unfor-

tunately, we can’t simply plug dW; = dW/,/n — dW3+/(1 —n)/n into Eq. 3.51a and drop
dW5 because dW is correlated with dWWs. Instead, we need to treat (dWi,dWs) as a vector,

which we transform to a new basis (dW,dV') using a unitary matrix:

-l e @

We invert the transformation and find that
dWy = /ndW — /1 —ndV (3.53)

with independent Wiener increments dWW and dV. We can now plug this result into Eq.
3.51a and drop the dV term to get

dp = yD[S]p dt + /Y H[S]p AW (3.54a)
Vdt = /ny (S + ST dt + dW (3.54b)

which is in agreement with Eq. 3.50.
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Heterodyne detection

A standard alternative to homodyne measurement is heterodyne measurement. In this con-
figuration, one measures both quadratures of the incoming field simultaneously. This can be
accomplished theoretically by putting a beam splitter on the outgoing field and measuring
one of the arms in the I quadrature and measuring the other arm in the @) quadrature [47|.
When the cavity’s output field passes through the beam splitter, it is combined with vacuum
noise on the second input port. This process prevents both quadratures from being measured
with the same SNR as a single quadrature without a beam splitter, maintaining the Heisen-
berg uncertainty principle. Motivated by this picture, we can write down the equations of
motion for heterodyne:

dp = yD[S]p dt + %H[S]p dWr + 4 /%H[iS]p dWg (3.55a)
_ f
Vidt =\ [TL(S + 1) dt +dw (3.55)

Vo dt = /% (i(S — Sy dt + dWg (3.55¢)

Here, as before, p is the system density matrix. A similar effect can be achieved by directly
amplifying both quadratures of the emitted field using a phase preserving amplifier such as a
Josephson traveling wave parametric amplifier (TWPA) [51]. The amplified signal can now
be interpreted as a complex voltage V = V; + 1V with each V' encoded in a quadrature
of the signal.? Although one inevitably adds noise in each quadrature during amplification
since the two quadratures do not commute, this effect is informationally compensated by
having information in both quadratures. Notice that if one ignores one of the measured
quadratures, the quantum efficiency appears to be cut in half. If one is interested in a problem
such as dispersive qubit readout (as described in the next section), the state discrimination
information is always in one quadrature, so it is often loosely said that the maximum quantum
efficiency for readout with a heterodyne detector is 50%. However, this is a matter of
interpretation, so it is good to always check and be clear when talking about efficiency.

If one has a homodyne detector such as a JPA, it can be converted into a heterodyne
detector by detuning the pump frequency from the signal frequency. In this manner, it will
alternately amplify the I quadrature and the ) quadrature. So long as this detuning is fast
compared to the dynamics of the system, this procedure implements a good approximation
to a heterodyne detector.

4Although we implicitly worked in the rotating frame of the resonator or qubit, the physical voltage is
oscillating at a characteristic frequency w of the system. This physical voltage is real, but can be decomposed
into V' = V; cos(wt+¢)+ Vg sin(wt+¢) where the phase ¢ is set by a reference oscillator. It is mathematically
convenient to represent this voltage as a complex quantity V=V+ 1Vg.
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3.3 Qubit readout with a cavity

In a typical superconducting system, the qubits are not directly coupled to a readout bus,
but are instead dispersively coupled to a cavity with strength x as in Eq. 2.45. The readout
cavity is then driven with a classical drive £, which is generally time dependent (possibly
with a detuned frequency). We present this Hamiltonian here in a rotating frame such that
there is no non-qubit dependent a'a term.

H = yo.d'a+i(Et)a’ — E*(t)a) (3.56)

To make the dynamics tractable here, we assume that the qubit is undriven and does not
undergo decay. In this case we can write down a density matrix ansatz for the qubit-cavity
system where each of the qubit basis states |j) is associated with a coherent state |a;):

p=> pilias) (kal = pix17) (k| @ ) ol (3.57)

Jk Jk
We now aim to find equations of motion for p;; and a; under the master equation
dp = —i[H, p|dt + kD|a|pdt + \/nxH[a]pdW. (3.58)

To help find the dynamics, we use an identity for the variations of a coherent state |a):

dlo) =d <e—al2/2 ; ?—; |n)> (3.59a)
—d <e—|a|2/2@m* |0>> (3.50b)
d|a) = (—R[a* da] + a'da) |a) (3.59¢)

to expand our ansatz in differential form dp:

dp =Y i) (k [ (43— Rlojdo + apdoi]pse) |og) fou
" (3.60)
+psn (day al Jag) (| + [ay) (el @ day”)

Along with the dynamics of the full density matrix p, we will consider the dynamics of the
reduced density matrix of the qubit

p = Traw ] = 3 o 13) (k] (o). (3.61)

where we trace out the cavity resulting in the relation

pik = Pjk (o) - (3.62)
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Although p is similar to p, the off diagonal elements are suppressed by a factor of {(«g|ay)
which will have consequences in how we account for dephasing of the qubit.

Under the ansatz in Eq. 3.57, the qubit-cavity state is completely represented by the
2x2 density matrix p;;, (or alternatively the reduced density matrix p;;) and two complex
numbers (ag, 1) representing the coherent states. Going through each term in Eq. 3.58,
we find their individual contribution to the dynamics of «;, pjx, and pj;, by expanding the
term with our ansatz (Eq. 3.57) and matching the result with the ansatz’s differential form
(Eq. 3.60). We find that all terms preserve the form of the ansatz. After determining their
individual contributions, we present the full dynamics.

Dispersive interaction Combining the dispersive term from the equations of motion and
our ansatz, we get

—ix[oala, p] = —ix Y g [5) (k| @ [(=1)ajal |a;) (ax| + |ay) (x| a(=D)Faj] . (3.63)
jk
Matching terms of Eq. 3.63 to the differentiated ansatz Eq. 3.60, we find

—ixpi(—1Y ajal [jay) (kax| = pday al jaz) (kay (3.64a)
0 = (dpjr — Rlojda; + ardag]pr) [7oy) (kagl (3.64b)
leading to the dynamics:
day = (—1) (—ixa;) dt (3.65a)
dpje = R [—(=1)|aj|*i — (=1)*| e |*i] pji dt =0 (3.65b)

As expected, the coherent states rotate at different frequencies, but the combined qubit-
cavity system does not dephase. We can also look at the reduced qubit dynamics obtained
by tracing Eq. 3.63 over the cavity state:

dpji = ixayap, [(=1)" = (=1)7] (awlay) pi dt (3.66a)
dplO = 2@')(041048/)10 dt (366b)

= (2ixR[a1a5]p1o — 2xS[arag]pro) dt (3.66¢)
dp()o = dpll =0 (366d)

In this reduced basis, we see the effects of the AC stark shift on the qubit inducing a rotation
of the qubit coherence (first term in Eq. 3.66¢), as well as the effects of dephasing (second
term in 3.66c). Note that the sign of the dephasing term is dependent on whether the
coherent states associated with each basis state are moving away from each other or closer
together. This can be shown by looking at the time derivative of the |ag — a;]?:

dlay — agl? = d|ag|® + d|as |* — d(arag) — d(apar)
= —2R[d(aq )] = —2R[da o + a1 dag)]
= —4xR[iaiag)] di (3.67c
= 4xSazag) dt (3.67d
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We can see that when the distance between the coherent states is increasing, 4xS[aq o]
is positive, resulting in an effective dephasing of the reduced qubit density matrix. On the
other hand, when the distance between the coherent states is decreasing (due to the dispersive
interaction), there is non-Markovian recoherence of the reduced qubit density matrix.

Cavity drive The cavity drive term is not qubit dependent, so we only need to look at
the dynamics of the cavity part of the full density matrix:

—i [i(€a’ — €%a), p] = —i [i(Ea — £7a), o) (aul] @D pj 15) (k] (3.68a)
ik
—i [i(€a" — €*a), |ay) (] = —(E"ay + Ea) |ay) (o] + Ea' |ay) (| + |as) (] al.
(3.68D)
Matching terms of Eq. 3.68 to the differentiated ansatz Eq. 3.60, we find
Epjral [joy) (ko] = pjrday at |jay) (ke , (3.69a)
— (&% + Eap)pji |jay) (kow| = (dpjx — Rlojdoy + awdog]pir) 7o) (ko . (3.69b)

The effect of the cavity drive is to displace the coherent states in a qubit-independent manner:

doj =€ dt (3.70a)
dpj = (—(E*a; + Eag) + R[Eas + E*ayr]) pi dt (3.70b)
=13 (g — ay)]pjr dt (3.70¢)

Additionally, the off-diagonal elements of the density matrix pick up a geometric phase from
the act of translating different coherent states with respect to one another. In the reduced
density matrix of just the qubit, this phase disappears, and in fact when tracing out the
cavity in 3.68, one is left with

dp=0 (3.71)

Cavity dissipation Similarly to the displacement term, the dissipation term is not qubit
dependent, so it is sufficient to consider its action on the cavity.

wDlalp = wDla] (|ag) () @ D e 17} (k1. (3.72a)
#Dla) (lag) (o) = rajai las) ol = Sazal lag) (ol — 5 o) el ac; (3.72b)

Extracting the equations of motion in a similar manner as above, we get
K

dCYj = 9

_ . K _
i = (rajoi = 3R [l + lawl’] ) e dt (3.73b)

a; dt (3.73a)

= (—g|0¢j — o |* + kS [%’0472]) Pik dt (3.73¢)
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As expected, we see that the dissipation term damps the cavity field with time constant
k/2. If oy and oy have different phases, there is an additional geometric phase from the
ik [a;a] pjx term associated with the dissipation in Eq. 3.73c. However this phase is only
relevant in the full qubit-cavity system. Tracing out the cavity in Eq. 3.72, we are again left
with no dynamics on the reduced qubit subspace:

dp =0 (3.74)

Stochastic update The final term to consider is the stochastic update term. We assume
that we are measuring the outgoing wave in the I quadrature i.e., along the real axis V'
B + Bf. To mathematically change the axis, one would change the phase of a in the H][a]
operator. Since this term includes the variation dW, one might expect that the ansatz
expansion for dp (Eq. 3.60) does not go to high enough order, and that we should consider
second order variations as per Itd’s lemma. However, when we consider what a higher
order variation of dp would look like, contributions from a non-zero d |a) would result in
terms including a' |o;) (ag| and (a')? |a;) (ax|. In contrast, when we look at the form of the
equations of motion, we find

ViIRH[alf AW = iRHa) (jo) {ul) aW © 3 i) (K], (3.750)
VIEH[a) (jas) fawl) dW = /i (a5 + af = {a -+ al), ) o) o] dVV (3.75b)

which is strictly proportional to |a;) (ay|. Since there are no terms of Eq. 3.75b proportional
to a' |a;) or (a')?|a;), the coherent states are not affected by the stochastic term, resulting
in do;j = 0. The only non-zero equation of motion we need to extract is for dp;:

dpji = /MK (ozj +ap — (a+ aT>ﬁ> pik AW (3.76a)
— TR (0 + af — ool + af) — pua(au + o) e AW (3.76b)
= /MK (?R[(Oéo - Oél)ij_k]ij+k + %[Ozl — Oéo](ﬁ()() — ﬁu)) ﬁjk dW (376C)

One can verify the third equality in Eq. 3.76 by explicitly plugging in the various combina-
tions for ¢« and j. We present the equation in this form to explicitly see that the stochastic
term only depends on the differential state a; — . Additionally, since the coherent states
themselves have no motion under this term, we find that the reduced qubit state mirrors the
dynamics of the the full density matrix:

dpjr = % dpjk (3.77)

Full dynamics In computing the equation of motion for our the parameters in our ansatz
Eq. 3.57, we have shown that the dynamics preserve the form of the ansatz. We present
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the evolution of the coherent cavity states, the full density matrix, and the reduced qubit
density matrix in one series of equations. We additionally add in the dynamics of the voltage
record computed from Eq. 3.50b for completeness. The voltage provided here only includes
the emitted field from the cavity, and no reflected tone, which can be achieved by measuring
the cavity in transmission.

a5 = (—(-1Yix - g) o+ & (3.78a)

= i( S1E*(ax = ] + W ayai] )

—g|ozj — ay|*pjp dt (3.78b)
-+ (R](ag — o) + Rl — oo (poo — p11)) i AW

dpje = 2ixooi(1 = Oji)pse dt- (3.78¢)
+v/1k (R[(ao — o)) 4+ Rlar — o) (poo — p11)) pir AW

Vdt = 2\/nk (pooR[co] + p11Raa]) dt + dW (3.78d)

Although the reduced qubit system is not directly coupled to a Markovian bath, and thus was
not guaranteed to have dynamics expressible in Linbladian form, in this case it is possible:

A r Il .
dp = —i ;C o2, p] dt + 7¢D[az]p dt + %’H[Uzez‘s]p dw (3.79a)

Vdt = (2\/77_/@8%[% + ay] + /20T (02) cos(é)) dt +dW (3.79b)

In these update equations we have defined the following quantities:

Ao = 2x Ry o] (3.80a)
Iy =2xSoag) (3.80b)

- K
F¢ = §|041 — CYO|2 (3800)
§ = arg[apg — o] (3.80d)

A 4¢ is the AC stark shift of the qubit, a shift in the qubit frequency dependent on the number
of photons in the cavity. I'y and f‘¢ are measurement-related dephasing rates associated
with p and p respectively. We will discuss these dephasing rates more thoroughly in the next
section. ¢ is the angle of the difference phasor oy — a; to the measurement axis (in our case
the real axis), and sets the type of backaction which will be seen on the qubit. The first
term in the voltage update equation, Eq. 3.79b, generates deterministic evolution regardless
of the qubit state. In steady state, this term simply amounts to a constant voltage offset.
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Figure 3.5: Cavity states separating during during readout. The centers of the circles rep-
resent the coherent states ;. Dynamics of the cavity states associated with each qubit
eigenvector are classical in that they remain coherent states throughout the measurement.
The labeled vectors on each cavity state are the different components of ;. The cavity
drive £ moves both states in the same direction, the dispersive term y rotates the states
in opposite directions, and the dissipative term s pulls the states back towards the ground
state at the center of the IQ plane. In steady state (not shown), the vectors acting on each
coherent state add to zero. Maximal qubit state information is obtained by measuring along
the real axis.

Measurement induced dephasing

Unlike the standard form of the master equation (Eq. 3.37), the dynamics of the reduced
qubit system in Eq. 3.79 included two distinct dephasing rates: I', and f¢. The former
appears in the dissipative term and is known as the measurement induced dephasing, while
the later appears in the stochastic term, which we will call the irreversible dephasing. The
measurement induced dephasing represents dephasing as seen in the reduced qubit system.
As shown in the analysis of Eq. 3.66c, it is not strictly positive, since collisions of the coherent
states can result in coherence revivals. The irreversible dephasing is more commonly reported
in terms of a quantity known as the measurement rate I, = 20f¢, where 7) is the quantum
efficiency. The irreversible dephasing rate is strictly positive since decay of the coherent
states is an irreversible process.

When the cavity field is in steady state and on resonance with the cavity, the coherent
states are |o;) with

2&

%= A (k= (=1)2ix) = N (k — (=1)’2ix) . (3.81)
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This results in equal dephasing rates I'y and f¢:

Ty = 2xSarag] = 2x|N°S [(k + 2ix)*] = 8N *X*k, (3.82a)
~ K K, .
Iy = §|oz1 —l* = ]./\/]2§|4le2 = 8|N|*x k. (3.82b)
a. Cavity Response b. Qubit Dephasing
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Figure 3.6: Simulation of a qubit dephasing from a measurement. Parameters used are
X = k=1 MHz. (a) In-phase (real) and quadrature (imaginary) response of the cavity to a
square drive pulse in the rotating frame of the drive. Only g dynamics are shown, but since
the drive term £ is real, under the cavity equations of motion in Eq. 3.78a, a; = o for all
time. The dotted line shows the drive & in units of us~*. (b) Measurement-induced (T';) and
irreversible dephasing (f¢) of the qubit during the readout pulse. The measurement induced
dephasing dips below zero in the final transient, indicating coherence revival of the p. Inset:
integrated difference I'y — r » remains positive throughout the readout and asymptotes to
Z€ero.

Although we do not show it here explicitly, these rates are also equal when the cavity
fields are in steady state, but in a different rotating frame (i.e. when the drive tone is
detuned from the cavity). Indeed, we will show the two measurement rates can only differ
during cavity transients. More generally, we can discuss the integrated induced dephasing
rates deriving from each of these terms. Ignoring the measurement record so that we can
drop the stochastic terms in Eq. 3.78, the integrated dynamics of the coherences |p1g| and
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|p10| are obtained from

ol = puaO) exp [ [ ] (3 830)
)] = )]s [~ | ) roit]. (3.83h)
(3.83¢)

Using our knowledge of the relation (Eq. 3.77) between p and p, we can write

(3.84)

/tl(m —Ty)dt =1In <

to

In a typical experiment of duration 7', the cavity drive £ starts and ends at zero, as seen in
Fig. 3.6. The coherent states representing the cavity response similarly start and (asymptot-
ically) end in the ground state. As a result, the right hand side of Eq. 3.84 is zero, implying
that the integrated dephasing of the system over a readout cycle is the same whether calcu-
lated using I'y or f‘¢. From an entanglement based viewpoint, during the readout itself, the
qubit becomes entangled with the cavity, at a rate characterized by I'y,. The cavity transfers
its entanglement with the qubit to the transmission line as the cavity decays, characterized
by the rate I'y. After the cavity has rung down (after about 5 us in Fig. 3.6a), the cavity
state factorizes from the qubit, so that the qubit now only shares entanglement with the
outgoing wave on the transmission line. By measuring this emitted tone, all the information
extracted from qubit is retrieved (up to measurement inefficiency).

Measurement backaction

We now look at the effects of the stochastic term on the reduced qubit system, also known
as the backaction. It is now useful to properly introduce the measurement rate [52] of the
system,

T, = 20Ty = nklag — ar)?. (3.85)

We first look at the dynamics of the diagonal elements of the density matrix. Since p;; =
1 — poo, it is sufficient to consider the dynamics of pgo:

dp()[) = 2\/’17%%[0[0 - Ozl]poopn dW (386&)
= 24/}, cos(0) poop11 dW. (3.86b)

This equation represents the measurement backaction on the qubit. This backaction is only
realized if the coherent states oy and a; have some amount of distinguishability when pro-
jected onto the measurement quadrature. In the steady state of the measurement operation,
the qubit will find a minimal variation location, i.e., where dpyy = 0. The two steady states
in this case are the qubit basis states |0) and |1). Since there are no other dynamics of
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the total system to push the state away, these states are the long time steady states of the
system. We can also use this equation to argue for why the measurement rate deserves its
name [53]. The entropy of the distribution P(Z|p) is

S = —pooIn(poo) — p111n(p11) (3.87)

Using It6’s lemma, we get the differential form of S

dpoo)? dp11)?
45 = ~dpoo(in(poo) + 1) — dpus (n(puy) + 1) — (2200 (dPm) (359
Poo P11
Knowing from Eq. 3.86b that dpyy = —dp;; only includes a stochastic term we can find
the expected decrease in entropy from doing a measurement on the state by looking at the

second order variation of dS.

_ _(dpoo)2 _ (dp1)? a
A5 = Poo P11 (3.89)

= —4T,, cos®(8) poop11 dt (3.89Db)

When we are measuring fully in the information quadrature (defined as the quadrature
parallel to the difference phasor a; — ayp, i.e., 6 = 0) and have no information about the Z
axis of the qubit (pog = p11 = .5), the expected rate of decrease in entropy for P(Z|p) is the

measurement rate ((S),, = —I',).
If we now consider the stochastic dynamics of p1q,
(deO)stochastic =V nk (%[al - CM()] (POO - pll) + i%[al - aO]) P10 dW (390&)
= —/I['u(cos(0) (o.) + isin(6))p1o AW (3.90b)

we see that both the real and imaginary parts of the displacement ag — a;; contribute to its
evolution. If ap — « is aligned with the measurement axis (§ = 0), then pj is disturbed in
magnitude. Alternatively, if the measurement axis id orthogonal to ay — a, then pyy will
stochastically evolve in phase and cause the qubit to rotate around the z axis. In the latter
case, the stochastic portion of the evolution just amounts to random unitary evolution and
does not move the state towards an eigenvector.

When including a stochastic term in a master equation, there is the associated dissipation

term, in this case I'y/2 H[o,]p. For all angles of 0, assuming that I, = 2T, the combination
of the stochastic term and the dissipative term will result in the qubit stochastically evolving
on the surface [54]
%(af +y8)+ 22 =1 (3.91)
where {z,y,z} are the three coordinates of the Bloch sphere and § is Bloch coordinate
radius which is determined by the lack of purity in the system. We visualize this interplay
of dissipation and backaction for the case of an initially pure state in Fig. 3.7. During a
measurement, 3 will shrink due to the qubit’s entanglement with the cavity, but its value can
be revived by letting the cavity ring down. More significantly in practice, realistic quantum
efficiencies (on the order of .5) will irreversibly shrink 5.
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Figure 3.7: Geometry of backaction on the Bloch sphere. The effects of dephasing are shown
in pink and pull the state towards the Z-axis. The effects of backaction are shown in blue and
are tangent to the Bloch sphere (for a pure state). (a) In the case where the measurement
axis is aligned with information quadrature, measurement backaction disturbs the state
(partially) along the z axis as shown by the direction of the blue arrows. Assuming perfect
efficiency (I',, = 2I'y), the stochastic motion repurifies the state. (b) In the case where the
measurement axis is perpendicular to the information quadrature, phase backaction rotates
the state in the XY plane to repurify the state. The dashed arc represents the initial XY
radius of the state.

Voltage readout

When considering the effects of backaction in an experimental setting, the voltage record
plays the crucial role of determining the stochastic increment dW, also known as the “un-
ravelling” of the trajectory. In this section we will look at the dynamics of this record under
the condition that 6 = 0 such that the measurement axis is aligned with the informational
quadrature. First, we will assume that the measurement rate is constant and that the voltage
is offset to have zero mean when (o) , = 0. Although these assumptions do not qualitatively
change the results in this section, they prevent undue stretching and offset factors. We use
z = (0,) , as the qubit coordinate and define the quantity ¢ to be the integrated voltage

dq = +/Tyz dt + dW. (3.92)
We also recast the equations of motion for the qubit z-axis from Eq. 3.86b in terms of z:
dz = /T (1 = 2%) dW. (3.93)

If the qubit is in one of the eigenstates of 0., then the qubit is stationary and the
integrated voltage is

qe(t) = £v/Tot + W, (3.94)
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Figure 3.8: Simulation of readout separation using the solution in Eq. 3.94 with I',,, = 1 us.
The red histogram shows the distribution of integrated voltages as a function of time for the
qubit initialized in the excited state. The blue trace shows the same for the qubit initialized
in the ground state. The separation of the histograms grows faster than their standard
deviations, allowing for good readout.

where ¢4 represents the trajectory with the qubit being in the 41 or —1 eigenstate. Due to
the stochastic nature of the trajectory, ¢. is distributed normally with mean ++/T,,t and
variance t. (Here we assume that we start the measurement at ¢ = 0 such that (W?2) = t.)
Since the standard deviation of ¢ rises with v/t and the mean rises proportional to ¢, the
q+ and ¢_ distributions separate, allowing the two states to be distinguishable as shown in
Fig. 3.8. If the qubit is not initially in an eigenstate, we still see that the average integrated
voltage distributions still separate conditional on the final measurement result, which can
thereby be guaranteed to be +£1. We can write the conditional average integrated voltage
as E[q1|zi00) where the expectation value is taken over noise realizations W and note by
symmetry that

E[q|zt—00 = 1] = —E[g|2t500 = —1]. (3.95)

We can use this fact to cast this quantity into a more manageable form. For the rest of the
section, expectation values unless otherwise stated are taken with respect to the stochastic
process W.

Elq|z1-00 = 1] = (q(t)2(0)) (3.96a)

— ((t)=(t)) + / " (q(t)d=(n) (3.96b)
= (qz) (3.96¢)
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Since ¢(t) is uncorrelated with noise processes after time ¢ and (dz) = 0, the integral in
Eq. 3.96¢ drops out. We are left with the correlator (gz), whose dynamics we can readily
determine:

d(qz) = (g dz) + (= dg) + (dg dz> (3.97a)

= /T (22 dt + /Ty (1 = (22))dt = \/Tdt (3.97b)

We thus see (gz) grow linearly with time just like (gi). This means that the average tra-
jectories starting from an arbitrary state but post-selected on a final measurement outcome
are the same as the average trajectories when the qubit starts in an eigenstate.

Since continuous measurements are inherently noisy, we wish to characterize the signal
to noise ratio of the integrated voltage. To find the noise on ¢ conditional on a particular
final outcome for an arbitrary initial 2, we find the dynamics of {¢?):

d{q*) = 2(q dq) + (dg*) (3.984)
= 2y/T, (g2) dt + dt (3.98)
= 2(qz) d{qz) + dt = d({qz)?) + dt (3.98¢)

(@) = (g2)" +1 (3.98d)

Similarly to the case where the qubit started out in an eigenstate, we have a signal power
S = (qz)* = I')nt? and a noise power N = (¢2) — (gz)* = t. Dividing the two, we get a signal
to noise ratio of

SNR =Tt (3.99)

Experimentally, the SNR can be extracted by preparing a qubit in |0) and |1) and extracting
sets of integrated voltages {¢,} and {g_}. The SNR can then be computed from the means
1+ and standard deviations o of these traces:

(e - f-)®
SNR = —<J+ o) (3.100)

Now that we have solved some basic voltage dynamics, we wish to answer the following
question: given that we have a particular integrated readout voltage, what is the probability
that the qubit is in |0) or |1)? Given a prior distribution of a qubit’s z-state (described by
the qubit’s initial z;) and the integrated voltage ¢ at time T, we can construct a posterior
probability P(0f|q) of the qubit being in the ground state. In these probability functions,
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we abbreviate |0;) and |0f) as 0; and Of for notational clarity.

P(q|0;)P(0;)

PUOs19) = B0y Plo) + PlalL) (L) (3.101a)
_ (14 igq:?”; >) (3.101b)
1 :LZ < ¢ = VInT)* T(q + VI T)? )) (3.101c)

I
_|_

1+Z (2\/_q>) (3.101d)
+exp< <\/_q+tanh ))) B (3.101e)

(3.101f)

Briefly defining the suggestive quantity # = +/T,,q + tanh™'(2;), we now write out the
expected final z state of the qubit which we notate as Z, where the tilde indicates that
this value is calculated through a Bayesian method and not by integration of the stochastic
equations.

2 =2P(0q) — 1 (3.102a)
1—e %

= tanh <mq + tanh_l(zi)> (3.102¢)

Since ¢ = 0 at time zero, as expected we find that at time zero, Z = z;. Furthermore, we can
use It0’s lemma to find the stochastic equations of motion for zZ. Without loss of generality,
we let z; = 0, so Eq. 3.102c reduces to

5 = tanh (ﬂq) (3.103)

Then,
dz = /T, sech? (@q) dg — T, tanh (\/ﬂq) sech? (@@ dg? (3.104a)
= T, (1-2) (ﬂz dt + dW — /T2 dt) (3.104b)

We can then self-consistently set Z = 2z and verify we recover Eq. 3.93. This gives us the
nice result that the probability distribution for Z is the same whether calculated through
a Bayesian method or through a stochastic equation.® Furthermore, this leaves us with a

5 Although we do not cover the approach here, there is an elegant method to generate full state update
equations using a purely Bayesian method [55]. In summary, the on-diagonal elements of the density matrix
are updated based on the voltage traces according to a Bayesian rule, while the magnitudes of the off-diagonal
elements roughly “go along for the ride” in the form |po1| o< \/poop11 up to measurement efficiency.
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direct mapping between ¢ and z [5]:

z = tanh <\/ﬁq + tanhfl(zi)> (3.105)

As a caveat to this equation, a real system includes the effects of 77 decay at rate v, so
the above equation only represents a short time approximation. Indeed, most results of this
section would need reanalysis to account for the effects of T, which one could approximate
(up to possibly breaking the ansatz in Eq. 3.57 by mixing coherent states) through an
additional decay term in Eq. 3.93:

(dz)g, = =z dt 4+ /T (1 — 2%) dW (3.106)

SNR and quantum efficiency

The calculated measure of SNR in Eq. 3.100 can be used in conjunction with a Ramsey
experiment to extract the quantum efficiency of the measurement. In a typical Ramsey
experiment, one prepares |+X) and then measures the X and Y component of the qubit
to extract the qubit polarization pig = (), = = +dy. The polarization decays with rate
74 + 'y where 7, is the intrinsic dephasing rate. By setting up a Ramsey experiment with
the initialization pulse and the tomography pulse a set time T apart, the net dephasing as
a function of the applied readout pulse £ is

p10[€]] = [p10(0)| exp [/OT Vo dt] exp [/OT Iy[€] dt} : (3.107)

Since [I',,dt = 2n [T4dt, we can write the decay of pio in terms of the SNR and a newly
defined effective quantum efficiency 7 (which we are careful not to conflate with the actual
quantum efficiency 7):

SN—R[S]} | (3.108)

2n
By varying the amplitude or duration of the readout pulse, one can then measure both pq
and the SNR for different readout strengths to extract 7. 7 is dependent on the readout
pulse shape and, as we will see in the next paragraph, how we integrate the signal traces.

At this point we want to be a bit more careful and consider the effects of a time dependent
measurement rate ', (¢). Specifically, we can increase our SNR by replacing ¢ with g, which
we take to be a integral of the voltage weighted with some kernel k(t):

p10l€]] o exp [—

g = /0 k() (3.109)

Using this modified coordinate g, our new SNR dependent on kernel k is

SNR, = (@) _ <f° VEnk dt) . (3.110)
(a7) — (@)’ Jo K2t
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From inspection and treating the integrals as inner products ({a,b) = [ab dt), we can

maximize the SNR by choosing k(t) o< \/T',(t). In this case, the SNR is maximized at

T T
SNR,, 0z :/ I,.dr :/ 2nlydr. (3.111)
0 0

Plugging SN R, ., into Eq. 3.108 and comparing to Eq. 3.107, we find that 7 = 7. Therefore,
7 sets a lower bound on the quantum efficiency and is acceptable to report as an achievable
quantum efficiency.
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Chapter 4

Canonical Phase Measurement with
Adaptive Feedback

Much of modern metrology and communication technology encodes information in traveling
electromagnetic waves, typically encoded in amplitude or phase. Current hardware can
perform near-ideal measurements of photon number or field amplitude, in the sense that such
devices are limited by material, manufacturing, and experimental capabilities. In contrast,
to date no device exists that can even in principle perform an ideal phase measurement on an
incoming electromagnetic wave. Nevertheless, phase is used in a wide variety of applications
from telecom to the detection of gravitational waves.

In this chapter, we describe the implementation of a single-shot canonical phase mea-
surement on a traveling single photon wave packet using a standard homodyne (amplitude)
detector in conjunction with a fast feedback loop. This method provides a more accurate
estimate of the phase than heterodyne detection, which is the best non-adaptive technique
for determining the phase [56]. These results demonstrate an important capability for optical
quantum computing, and show that quantum feedback can both enhance the precision of a
detector and enable it to measure new classes of physical observables. We use a transmon
qubit and a cavity to generate the traveling wave packet in the microwave regime, which
is then amplified using a JPA and digitized for processing. By doing this processing on a
field programmable gate array (FPGA), we can adjust the axis of the JPA amplification in
a closed feedback loop, thus implementing an adaptive protocol. We first give some intro-
ductory material in section 4.1 and then in section 4.2, we present the experimental work
which first appeared in [57].

4.1 Background on canonical phase measurements
We wish to define what it means to measure phase in the context of quantum mechanics. To

simplify the explanation, we will ignore the temporal duration of the incoming photon and
treat the incoming photon as a state in the Hilbert space of a harmonic oscillator. Consider
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the classical definition of the phase of an oscillator. The set of classical states in a cavity
are the coherent states |a) which can be labeled by a = |ale®®. Here, |a| represents the
amplitude of the state while 6 represents the phase we wish to measure. However, if we try
to write down an observable operator that can correspond to a measurement of the phase,
we run into trouble. Since we consider phase to be conjugate to photon number [58], we
could try to write down a phase operator in the form:

sfﬁ:/oﬂsow (ol dp (4.1a)
)= o= 3 ¢ (1.10)

Here, |¢) has uniform support on the number basis, and ¢ is a Hermitian operator. However,
there are multiple problems with defining phase as being a Hermitian operator and attempts
to do so have a surprisingly long history [29, 30]. A minor issue is the ambiguity of choosing
integration bounds such they cover all angles. By changing the bounds, one changes the
weights on each projector by offsets of 2rn. However, in practice, ¢ enters into physical
equations in cyclic terms such as cos(y), in which case offsets in the definition do not matter.
A more glaring issues is that the definition of |p) in Eq. 4.1b includes negative photon number
states, an obvious non-physicality. When dealing with states which only have support on
large photon-number states, one can use this definition of phase since the extension to
negative Fock states will not affect simple calculations. In this situation, one can use an
approximate commutation relation [, ] = —i and the uncertainty relation AnA¢ > 1/2.
Indeed, this uncertainty relation’s equality is satisfied for coherent states in the large |a
limit [59]. However, when dealing with coherent states with small || and other low photon
number states, these relations no longer hold. One could try to salvage the phase operator
by keeping only the positive n terms in the sum in |¢), but this results in {|¢)} forming a
non-orthogonal basis [30].

Instead of using the traditional Hermitian observable method, we can use the POVM for-
malism to describe measurements resulting in collapse into states which are non-orthogonal.
Here, we define the Kraus operators of the canonical phase measurement. We omit negative
number states and for ease of normalization, we truncate the Hilbert space to a maximal
Fock state N — 1:

Qy = VN 9) (¢] (4.22)
6) = —=>_ e [n) (4.2b)

One can verify that these operators satisfy the POVM normalization with Iy being the
identity matrix of dimension N x N:

2 d¢ 1 N-1 27
A Q,— = — in—m)¢ do =1 4.
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Interestingly, we never needed to take N to infinity here, meaning that this operator is
valid even in finite dimensions. One consequence of using this definition is that, assum-
ing one could perform a non-destructive canonical phase measurement (one such that p —
QpQt ) Tr[pQTQ)), there is no steady state obtained upon repeated phase measurements. Ad-
ditionally, once the measurement has been performed, the system is left in a pure state |¢)
that is completely known to the observer. As a consequence, there is no extra measurement
one could do on the system to improve one’s knowledge of the phase of the initial state.
Indeed, performing a canonical phase measurement on a single instance of the system is the
optimal way to extract phase information [60|. In tradeoff, the canonical phase measurement
gives no information on the conjugate variable of photon number. Indeed, one can construct
an upper bound on how well one can extract phase information from a particular measure-
ment scheme based on how much photon number information is gained by the measurement
[61].

When discussing how well phase can be extracted from a system, it is useful to introduce
the concept of the Holevo variance [62|. The Holevo variance has similar properties to the
standard variance, but is defined on on a periodic probability distribution (or equivalently a
probability distribution on a circle). Supposing one has a distribution P() on 6 € [0, 27),
the Holevo variance is defined as

1
V| P] TNk 1. (4.4)
The Holevo variance is a natural way to quantify variations of an unbiased estimator on a
circle. In the limit that P is a uniform distribution, the Holevo variance diverges. In the
limit of a distribution sharply peaked on a small range of angles (away from a phase cut),
the Holevo variance reduces to the standard variance. Additionally, the uncertainty principle
ApAn > 1/2 holds if the variance used for the phase variable is the Holevo variance [62].

Canonical phase measurement on Two Levels

Given that phase is a continuous variable, and physical states have support on a finite
subset of Fock states, one cannot extract phase information perfectly with a single instance
of the unknown state. This fact becomes increasing relevant for states with low photon
numbers. In our experiment, we used two Fock states of a traveling electromagnetic mode,
so it is useful to consider features of phase measurements on a qubit system. To compress
the temporal/spatial dimension of the waveguide, we define the Fock state wavepackets
(polychromatic Fock states [63, 64]).

) = / Jal®e“tal [0y dt (4.5)

where |0) is the vacuum state of the waveguide, u(t) is the mode shape of the photon
(which integrates to 1), and w is the central frequency of the wavepacket. aI is the creation
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operator for an output mode labeled by time t in the input-output formalism [65] with the
commutation relations [ay, a},] = §(t — #')." We then treat |0) and |1) as the basis vectors of
a qubit system.

Suppose one wants to encode maximal information in the phase of the qubit. To do so,
one would prepare the initial state

_
V2

and then perform a measurement to try to recover this phase as accurately as possible. At
the end of the measurement protocol, one has a guess # of the phase. Depending on the type
of measurement performed, one will have different distributions for P(0|©). In t he case of
a canonical phase measurement, one finds that

©) (10) +€*1)) (4.6)

P(0|©) = (0]Q}|©) = 1 + cos(d — O). (4.7)

(Note that the normalization here is with respect to the measure df/27.) In absence of a
canonical phase measurement, one can estimate the phase using other standard measurement
techniques such as heterodyne or homodyne (with a photon counter, one would not recover
any phase information!) Under these other measurements, the posterior distribution of
will have the form

Pr(0|©) =1+ Fcos(6 — ©). (4.8)

where I’ is a number from 0 to 1, and can be used as a metric for how well one is performing
the canonical phase measurement. Under the form of this distribution, there is a direct map
from F' to Vg, as can be verified by calculating the Holevo variance of Eq. 4.8:
4

Vg = I 1. (4.9)
In the worst case (photon detection), F© = 0, and in the ideal case, F' = 1. The best
method to estimate phase using a non-adaptive protocol is to do heterodyne detection on
the incoming photon, which has F' =~ .89 [61]. A homodyne detector does even worse, with
F =~ .80.

4.2 Implementation of the canonical phase measurement

To implement the canonical phase measurement, we apply quantum feedback to a Josephson
parametric amplifier, adaptively changing its measurement basis in response to the incident
field. When the system continuously optimizes this measurement basis for phase sensitiv-
ity, it implements a canonical phase measurement on an incoming single-microwave-photon
state[56]. We verify implementation of a canonical phase measurement using the entangle-
ment between the emitted photon and its source. By confirming smaller stochastic variations

Tt is often convenient to go into a rotating frame with creation operators b;r where b;r = e"“‘”fa;fr .
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in the emitter’s Z axis (which is correlated to the photon number), we confirm that acquisi-
tion of photon number information is suppressed. The system surpasses heterodyne detection
by 15 4 2% in Holevo variance.

As shown in Fig. 4.1A, our system consists of a transmitter, which encodes a variable
O4rue into the phase of a single-photon electromagnetic wavepacket, and a receiver, which uses
a continuous feedback protocol to guess this phase in a single shot. A transmon embedded in
a 3D aluminum cavity acts as the transmitter. We use coherent bath engineering [66] of this
artificial atom to generate our photonic state, a technique which yields more control over the
rate of photon emission than does direct spontaneous decay. To implement this scheme, we
Rabi drive our qubit at Qg /27 = 20 MHz, which creates an effective low-frequency qubit.
Simultaneously, we apply a cavity sideband at wc.,. + 2r, where we,,. = 7.3918 GHz is the
cavity resonance frequency. As shown in Fig. 4.1B, the sideband drives a transition from the
[+, 0) state to |—, 1) state, where |£) = (|e) £1|g))/v/2 are the dressed states of qubit under
driving and 0, 1 count the number of photons in the cavity. The cavity then decays, emitting
a photon and leaving the system in the |—,0) state, which is not affected by the sideband.
We ensure that the cavity decay rate is fast compared to the sideband-induced coupling, so
that the qubit’s effective decay rate from |+) to |—) is limited by the sideband amplitude. By
modulating the sideband amplitude during photon emission, we tune the sideband-induced
coupling to generate a photon with a flat modeshape (Fig. 4.1C), which greatly ameliorates
the detrimental effects of feedback delay at the receiver[61]. To encode the phase Oy, We
prepare the qubit in a superposition state of the form (|—) + e’ |4+))//2, which decays
by emitting the photonic state (|0) + e*©uu|1))/v/2.

Our receiver consists of a JPA flux-pumped at twice its resonance frequency and con-
trolled by a field-programmable gate array (FPGA), which serves as a classical feedback
controller (Fig 4.1A). To maintain high measurement bandwidth for quantum feedback, we
operate the JPA at a relatively low gain of 6 dB, which yields a gain bandwidth of 45 MHz,
and follow it with a traveling wave parametric amplifier|67| (not shown) to boost the signal
strength and maintain a quantum efficiency of n = 0.4. The JPA measures field amplitude
via the quantum mechanical quadrature operator ae~**® + afe’*®  where a is the quantum
mechanical annihilation operator of the incident field and ¢(t) is the instantaneous phase of
the parametric pump.

To perform a canonical phase measurement on the incident field, the feedback controller
continuously adapts the measurement axis ¢(t) as the photon arrives at the receiver[56].
The measurement axis is chosen to maximize the acquisition of phase information as follows.
Before the photon reaches the JPA, the receiver has no information and therefore chooses
¢ arbitrarily. Upon arrival of a portion of the photon, the JPA detects a small positive (or
negative) fluctuation, which then informs the system that the true phase is likely oriented
along (or opposite) the measurement axis (Fig. 4.1E). At this point, any further measurement
in this basis interrogates the amplitude of the incident field and thus yields undesired photon
number information. Ideally, the system would then rotate the measurement axis by 90
degrees (Fig. 4.1F), so that a small deviation between the current best estimate of the phase
0(t) and the true phase Oy, would be detectable as a positive or negative fluctuation in the
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Figure 4.1: Experimental implementation. (a) Atom in a cavity, with phase ©y, encoded
into its dipole moment. The atom decays and emits a photon into a 1D waveguide with
phase encoded into the electric field as shown. The JPA receives the photon and measures
an amplitude quadrature selected by the FPGA. (b) Sideband cooling scheme to emit photon.
Sideband converts a qubit excitation to a cavity excitation, which is then emitted as a single
photon at the cavity frequency. (c) Measured mode shape (E-field envelope) of emitted
photon. Dashed line shows mode shape if constant cooling rate were used instead. (d)
Output of JPA. Signal is amplified along measurement axis ¢ and squeezed along the other.
(e-g) Estimating and tracking state by changing measurement basis. Receiver attempts to
maintain the phase measurement condition ¢ = 6 4+ 7/2. See text for details.
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A Homodyne B Heterodyne

Figure 4.2: Measurement back-action and quantum trajectories. Coordinate axes are chosen
so that the atom decays to 0, = —1. (a) A single homodyne quantum trajectory (¢(t) = 0).
The state only propagates in the plane of the measurement axis. (b) A single heterodyne
trajectory (¢(t) = wnet.t). The qubit is initialized in |+) for both trajectories. (c) Ampli-
tude back-action, which occurs when the measurement axis (red line) is aligned to the best
estimate of the state (blue arrow). (d) Phase back-action, which occurs when the phase
measurement condition is satisfied.

signal. As the photon continues to arrive, the feedback controller gains more information
and updates the phase ¢(t) to maximize sensitivity to phase (Fig. 4.1G). If the phase
measurement condition ¢(¢) = 0(t)+m/2 is maintained at all times, then the system acquires
no photon number information and implements a canonical phase measurement.

To track the best estimate of the phase, the feedback controller must continuously update
its best guess of the photon’s state based on the measurement signal starting with no prior
information i.e., it should track the quantum trajectories of the system|68, 6] given an
initially maximally mixed state. We begin by observing and verifying quantum trajectories
[48] for homodyne (¢(t) = 0) and heterodyne (¢(t) = whet.t, Whet. /27 = 0.5 MHz) detection|6].
Example trajectories are plotted in Fig. 4.2A,B and tomographically validated in [57]. These
data allow us to characterize measurement back-action and check consistency with theory.
The stochastic component of the back-action always lies in the plane of the instantaneous
measurement basis, as is clear from the homodyne data.

The presence of back-action not only governs how to adapt the measurement axis ¢(t), but
also offers a method to independently validate the receiver’s implementation of a canonical



CHAPTER 4. CANONICAL PHASE MEASUREMENT WITH ADAPTIVE
FEEDBACK 69

C  Adaptivedyne Heterodyne

Adaptwedyne Heterodyne

_ — Adapt
© mi2 ] Heterodyne 1500
|
5 \ 1000
1)
= 500
0 0

0 5 2 4 6 8 2 4 6 8

time [us time [us] time [ps]

Figure 4.3: Back-action and measurement validation. (A) A single adaptive-dyne quantum
trajectory. The red right-angle bracket emphasizes orthogonality between the measurement
axis and the state. (B) Quality of tracking for heterodyne and adaptivedyne, where the
optimal amplification phase is ¢op. = 0(t) + 7/2. Adaptivedyne significantly outperforms
the heterodyne and comes close to the ideal phase by 7' = 13us. The difference ¢gpi. — ¢
is cut to lie on the interval [—m/2,7/2]. (C) Distribution of trajectories at ¢ = 10us.
Due to suppression of photon-number back-action, adaptivedyne trajectories cluster in a
ring at late times. In contrast, heterodyne trajectories would form a roughly spherical
shape inside the Bloch sphere. (D) Statistics of the phase back-action df for adaptivedyne
and heterodyne. On average, the phase back-action is significantly larger for adaptivedyne,
indicating a stronger measurement of phase.

phase measurement. Because an ideal phase measurement acquires maximal phase informa-
tion and no photon-number information, it maximally disturbs the atomic dipole phase while
minimally disturbing the atomic excitation probability. This effect is directly visible in the
quantum trajectories, as illustrated conceptually in Fig. 4.2C and D. When the measure-
ment axis is aligned with the best estimate of the phase (¢ = 0), the resulting acquisition
of amplitude information manifests as a random disturbance of the qubit state along the
axis of decay (Fig. 4.2C). Conversely, when the phase measurement condition is satisfied
(¢ = 0+ m/2), then only the phase of the qubit state is subject to noise (Fig. 4.2D). Using
this knowledge, we can verify the performance of our receiver by characterizing the dynam-
ics of the transmitter. This capability is uniquely quantum, and arises from entanglement
between the atom and its emitted photon.

We show the results of this verification scheme in Fig. 4.3. Fig. 4.3A shows a single
quantum trajectory under adaptivedyne detection, in which ¢(¢) is continuously adapted by
the feedback controller. Fig. 4.3B shows the difference between the ideal quadrature phase
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Figure 4.4: Phase-estimation performance. (A) Histogram of the difference between the
measurement outcome and the true phase i.e. 0(T) — Oy (B) Performance is evaluated
by computing the Holevo variance of this distribution. Quantum limit (bottom black line)
homodyne limit (top black line) and absolute theory prediction based on feedback delay
are inferred from the performance of heterodyne, with corresponding error bars shown as
gray rectangles. (C) Distribution of the amplitude information. The blue distribution for
Heterodyne is behind the other histograms. The distribution is significantly narrower for
adaptivedyne, indicating suppression of this information channel.

and the measured phase, which shows that the feedback controller approximately maintains
the phase measurement condition. To interpret the dynamics, we plot the ensemble statistics
of the phase back-action as a function of time in Fig. 4.3D, with the heterodyne detection case
included for comparison. It can be seen that the phase back-action df is significantly larger
for adaptivedyne detection. Fig. 4.3C shows the ensemble statistics of the state at ¢ = 10 us.
As observed in [6], the quantum trajectories of a decaying atom evolve on a spherical shell
that shrinks deterministically to the south pole of the Bloch sphere. Due to the suppression
of back-action along the decay axis, adaptivedyne trajectories are further confined, exhibiting
something closer to a ring-like structure. This feature presents an unambiguous signal that
our system approximately implements a canonical phase measurement.

A canonical phase measurement should outperform heterodyne detection in estimating
the phase ©y.. To verify superior performance, we prepare our qubit in one of 8 equally
spaced points along the equator of the Bloch sphere. From each shot, the receiver opti-
mally[61] estimates the phase of the photon by computing the following quantity

R= /T O\ u(t)V (t)dt (4.10)

where u(t) is the photon mode shape, and T is the duration of each experimental run and
V (t) is the measurement signal read out from the JPA normalized such that its variance is
dt. The best estimate of the photon’s phase in a single shot is given by the complex argument
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0(T) = arg(R), regardless of the function ¢(t) [61]. Fig. 4.4A plots a histograms of this best
estimate for adaptivedyne detection, which exhibits the cos(6 — Ou.) dependence expected
theoretically[61].

We compare the performance of adaptivedyne and heterodyne detection by plotting the
Holevo variance of each underlying distribution in Fig. 4.4B. We also include data for what
we term replay detection; in each replay shot, ¢(¢) from the preceding adaptivedyne shot of
the experiment is replayed instead of feeding back based on the current signal. In this way,
we can confirm that it is the correlations between ¢(t) and the state that yield enhanced
performance, rather than the independent statistics of ¢(t). For additional confirmation, we
independently measure the signal-to-noise ratio of our amplifier chain for heterodyne and
adaptivedyne detection and verify that it remains the same to well within 1%. Heterodyne
and replay perform equally well, and are both significantly surpassed by a canonical phase
measurement implemented via adaptivedyne detection. Adaptivedyne does not reach the
quantum limited Holevo variance of 3 due to a combination of loss, qubit decoherence and
feedback delay. However from our heterodyne data we infer an adjusted quantum limit given
our quantum efficiency and purity of the emitted photon, both of which directly reduce the
contrast F', increasing the Holevo variance. We calibrate the adjusted quantum limit from
the hypothetical homodyne Holevo limit of ~5.28 and, as calculated from F' = y/7/2,
and the measured efficiency and photon purity. The canonical phase measurement comes
significantly closer to this adjusted quantum limit than any other scheme, and is limited
almost entirely by feedback delay.

We infer the sensitivity of each scheme to photon-number information from the distri-
butions of |R|, which are shown in Fig. 4.4. The distributions for heterodyne and replay
are almost identical, while the adaptivedyne histogram is substantially narrower, indicating
that the latter is less sensitive to this undesired information|61].

Single photon generation, mode shape control and feedback

To generate our photon, we use the bath engineering scheme first described in [66]. We
work in a dressed frame of the qubit set by an applied Rabi drive of Qg/27 = 20 MHz. As
the qubit undergoes hundreds of coherent oscillations during photon wavepacket emission,
it is not possible to produce a phase-stable photon unless the Rabi frequency is actively
stabilized[8]. We maintain Qgr/27 to within +2 kHz standard deviation by periodically
running a pair of sequences in which we Rabi drive the qubit for Tra, &~ 4 s, measure
the qubit state and then correct the Rabi drive amplitude based on the measurement result.
By timing the measurement so that (0,) = 0 at the end of the calibration Rabi drive, we
ensure maximum sensitivity to small drifts in Q0g. We measure at two different points in
time separated by half a period, since that a shift in Qg leads to a differential shift in (o)
between the two time points, as opposed to readout drift, which shifts them in the same
direction. The measurement time is chosen to satisfy a trade-off between sensitivity and
maximum tolerable frequency drift before slipping to another period of the Rabi oscillation.
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Figure 4.5: Pulse sequence and associated calibrations. (A) Pulse sequence of each shot
of the experiment. Vertical axis represents the amplitude of each pulse, with the exception
of the cooling sideband, in which the vertical axis is the quantitative cooling rate. Cavity-
resonant pulses are shown in red, cavity sideband pulses in blue and qubit-resonant pulses in
green. The discoloration and distortion of the central qubit pulse represent cooling-sideband-
dependent frequency and amplitude modulation, as calibrated in (C) and (D) respectively.
Effects are exaggerated for visual clarity. (B) Measurement of the bath engineering cooling
rate versus sideband amplitude. (C) Measurement of the Stark shift induced by the sideband
as a function of sideband amplitude (D) Sideband amplitude required to drive 20 MHz Rabi
oscillations as a function of the sideband amplitude.

If the qubit is measured N times, then the uncertainty in the measured Rabi frequency is
1/ (27r\/N Trapi) while the maximum tolerable frequency drift is 1/8TRapi.

The full experimental sequence is shown in Fig. 4.5A. We first focus on the generation
of a photon with the desired flat mode shape, which requires a time-dependent cooling rate
~(t). To implement these dynamics, we measure the induced cooling rate as a function of
sideband amplitude as shown in Fig. 4.5B. The sideband also induces a Stark shift on the
qubit, which in turn changes the Rabi drive amplitude that achieves Qgr/27 = 20 MHz.
These calibrations are plotted in Fig. 4.5C and D respectively. To emit the photon, we
first ramp up the Rabi drive, and then apply the time-dependent sideband drive. As the
sideband amplitude changes, we adjust the Rabi drive frequency and amplitude according
to Fig. 4.5 C and D respectively. The result is the flat photon shown in Fig. 1A, which is
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highly phase-stable.

We use the full master equation to derive the required ~y(t), which also lets us calculate
the optimal feedback strategy for a given photon mode shape. These results are also derived
in [61], but we include a variant here for completeness. As photon loss does not affect the
decay dynamics or the best estimate of the phase, we assume 1 = 1 for this analysis. We also
neglect other forms of coherence, which have a negligible effect on the decay dynamics. This
allows us to perform our computations with a pure state, so we begin with the unnormalized
stochastic Schrodinger equation for an atom observed via homodyne detection|[47|, which
provides a state update from the acquisition of an infinitesimal amount of information via
homodyne detection of the atom’s spontaneous emission

d) = —%y oo+ /A0 M OaV (1) 1) dt. (4.11)

V/(t) is the measurement voltage, o = |—)(+| and 1) is the unnormalized pure state de-
scribing the state of the atom. If we write [1)) as |¢)) = c_|—) 4 c4|+), then the equation of

motion for ¢, is

de, 1 1

= —éy(t)ar — ey (t) = ey (0)e" 3 Jo () (4.12)
where we have assumed that v(t < 0) = 0. Recall that our system decays from |+) to |—).
Although in general Eq. 4.11 does not preserve the norm of |7,Z>, one nevertheless derives
the correct equation of motion for the average population from the above in the absence
of measurement. The result is d|cy|?/dt = ~(t)|cs |, which coincides with the expectation
based on a standard rate equation for decay of the excited state population. We identify
the mode shape with the instantaneous emitted intensity, assuming the atom was initialized

withcy =1,¢c. =0
u(t) = A(Dles | = y(t)e o7, (4.13)

Notice that u(t) integrates to 1 for any ~(¢). If we demand a flat mode shape so that u(t) is
constant, then v(t) = 1/(7 — t), where 7 = 10 ps parameterizes the photon’s duration. As
~(t) diverges at t = 7, we set a maximum cooling rate of 1.4 MHz and cool at this maximum
rate for several microseconds longer than 7, such that more than 99% of the excited state
population has decayed by T' = 13us. The v(t) used experimentally is shown in Fig. 4.5A.
The flat portion when ~ /27 = 1.4 MHz coincides with the portion of the photon that decays
exponentially, as can be seen in Fig. 4.1C.

Now that we have developed the necessary tools for emitting a flat photon, we derive the
optimal feedback protocol given our photon. The equations of motion for ¢_ determine the
best estimate of the phase

L e DOV = () = e (0) + (0 /0 eI u(s)V(s)ds. (4.14)

Notice the similarity between Eq. 4.14 and Eq. 4.10. For feedback, we wish to compute
the best estimate of the atomic dipole phase at time ¢ assuming that the controller initially
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has no information about the phase. This best estimate coincides with the best estimate for
the phase of the emitted photon after that time. To compute it, we note that the dynamics
are trivial if the system is initialized in |—), so that the dipole phase evolution of the zero-
knowledge mixed state pg = (|—)(—| + |+)(+|)/2 is entirely determined by the dynamics of
the second term. Again taking ¢, = 1, c. = 0, the dipole phase is given by the relative
complex phase between ¢, and ¢* . As the complex phase of ¢, remains constant, the dipole
moment phase is simply

0(t) = arg(R), R(t) = /Ot )\ /u(s)V (s)ds (4.15)

in agreement with Eq. 4.10 of the main text. In principle, Eq. 4.10 and the phase measure-
ment condition ¢(t) = 0(t) + m/2 define the optimal protocol. For ease of implementation,
this protocol may further simplified by solving for the absolute value and complex argument
of R individually as follows. If the controller maintains the phase measurement condition,
then we have exp(i¢(s)) = iR/|R|. Making this substitution and differentiating with respect
to t yields

IR = i%\/u(t)‘/(t)dt. (4.16)
To compute a differential equation for |R|, one must be aware that V(t)dt is a stochastic
increment, so one must apply [t6’s lemma when using the chain rule. As V' (¢)dt is normalized
to have a variance dt, (V(t)dt)? = dt and we have

d|R|* = R*dR + RAR* + dR*dR = u(t)dt (4.17a)
t
|R(t)[? —/ u(s)ds. (4.17b)
0
Thus the time evolution of |R| is deterministic. Substituting this solution into Eq. 4.16
yields

dR = iRP()V (t)dt, P(t) %' (4.18)

Finally, we use Itd’s lemma one more time to compute the differential increment of § =
arg(R) = Im[log(R)]

df = Im(dlog(R)) = Im {iP(t)V(t)dt + %ﬂzdt} = P()V(t)dt. (4.19)

As do(t) = df(t), Bq. 4.19 states that the instantaneous angular frequency 6 of the measure-
ment axis is proportional to the measurement outcome V'(t) with a constant of proportion-
ality P(t) set by the temporal shape of the photon wavepacket. Thus in the limit that the
feedback delay is small, the process of computing a quantum trajectory and then calculating
the optimal phase may be reduced to applying proportional feedback. We implement this
feedback law in the FPGA, as described in the next section.
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Figure 4.6: Internal logic block diagram for the FPGA. (A) Photon signal demodulation.
The demodulation phase ¢’ is determined by the JPA’s pump phase. The demodulation
amplitude P(t) is given by Eq. 4.16. (B) JPA pump frequency selection, advanced each
trigger of the AWG: 1) adapting JPA frequency proportional to the incoming signal; 2)
replaying JPA frequency from the previous AWG trigger; 3) heterodyning using a fixed JPA
frequency. (C) Instantaneous JPA frequency foump increments the JPA pump phase ¢ and
determines the instantaneous amplitude A through the gain calibration shown in Fig. 4.7.
The real and imaginary parts of this pump tone are sent to DACO and DACI respectively
for single sideband modulation. (D) The JPA pump frequency is halved, accumulated, and
delayed to determine the demodulation phase ¢'.

FPGA Implementation

As shown schematically in Fig. 4.6, we use an Innovative Integration X6-1000M FPGA board
to control the flux pump tone for the JPA and to digitize the down-converted photon signal.
The JPA pump is generated using two on-board 1 Gsample/s digital-to-analog converters
(DACs) generating tones at 210 MHz, and an external 1/Q mixer to perform single sideband
modulation. The LO for this mixer is the frequency-doubled cavity LO, so that the JPA
pump is twice the cavity frequency and phase locked to the photon. On the FPGA input
side, the photon signal is down-converted to 105 MHz by an external mixer using the cavity
LO, and is sampled by the FPGA board’s analog-to-digital converters (ADCs) at 1 GSa/s.
Inside the FPGA, the signal is further demodulated to DC and filtered (Fig. 4.6A). During
adaptive feedback, the pump tone is continuously detuned from the baseline pump frequency
of 210 MHz by an amount proportional to the instantaneous value of the demodulated signal
quadrature according to Eq. 4.19. The FPGA board is the same as described in Appendix
A, though the logic firmware is different.
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Figure 4.7: Gain calibration curve for the JPA. (A) Major axis variance (arb. units) of
amplified vacuum as a function of pump frequency and amplitude. The red line represents a
contour of constant variance, the gain curve. (B) Major axis variance of amplified vacuum
along the gain curve with the JPA pump on as opposed to off. (C) Angle in radians of the
amplified vacuum’s major axis along the gain curve. An electrical delay is calibrated to keep
this curve flat across frequency.

Since the JPA pump phase is continuously changing, we use the pump’s instantaneous
output phase delayed by the 374 ns electrical delay of the feedback cycle to determine the
amplified quadrature of the input (Fig. 4.6D). To ensure that the correct quadrature is
read out, we perform a separate calibration in which we sweep the pump frequency from
202 MHz to 218 MHz. We see less than a 0.5 degree variation between the pump frame
delayed through the FPGA and the amplified quadrature measured from the JPA. We also
ensure that the pump gain stays constant over this frequency band using the lookup table
shown in Fig 4.7, which determines the pump amplitude for a given pump frequency. Using
the major axis variance of the squeezed vacuum ellipse as a proxy for gain, we intersperse
the calibration of this lookup table throughout our measurements to compensate for slow
changes in the pump chain, which occur due to room temperature amplifier drift.

Alongside the feedback mode, the FPGA has two other modes: replay and heterodyne. In
replay mode, the output pump waveform is identical to the waveform of the previous adaptive
pump waveform; the JPA undergoes the same rotations as it had during adapting, but the
pump phase is no longer correlated with the estimated photon phase. In heterodyne mode,
the JPA pump frequency is detuned from 210 MHz by a constant heterodyne frequency, 0.5
MHz. During our measurements, the board cycles through adaptive, replay, and heterodyne,
changing modes on each trigger of the AWG (Fig. 4.6B).
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4.3 Outlook

Several avenues remain for future work in this area. Firstly, we have optimized the system
for fair comparison between heterodyne and adaptivedyne detection in order to be sure
that the observed improvements arise from feedback alone. A system that is optimized
for adaptivedyne could easily yield further improvements. Quantum efficiencies as high
as 80% have been demonstrated in circuit QEDI[69], and similar improvements could be
achieved by increasing amplifier gain or adding low-loss or on-chip circulators|70]. Integrating
low-temperature electronics closer to the amplifier could also significantly reduce feedback
latency, which would yield immediate gains in the phase estimation efficiency.

Our system has several immediate applications to quantum information and computation.
Firstly, the implementation of quantum feedback on a detector is known to allow enhanced
readout of superconducting circuits|71]. Furthermore, the ability to perform a canonical
phase measurement enables linear-optics preparation of the |0) 4 |1) photonic state, which
is a major experimental challenge of single-rail linear optics quantum computing|72|. More
broadly, it is known that adaptive measurements are universal|73|, meaning that many rel-
atively simple measurement devices augmented with quantum feedback can perform any
generalized measurement allowed by quantum mechanics (see section 3.1). Thus our exten-
sion of a standard amplitude measurement device to an ideal phase measurement represents
a more general and exciting direction for future research.
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Chapter 5

Continuous Quantum Error Correction

Quantum computing offers tantalizing prospects of performing certain algorithms faster than
possible on a classical computer. However, quantum processors are inherently noisy and
susceptible to decoherence from the environment and noise on applied unitaries. As one
performs quantum circuits of greater gate depth, these errors accumulate until the signal to
noise ratio at the circuit’s output is vanishingly small. Although one can try to increase the
quality of qubits and the quality of control over said qubits until the effects of errors are
negligible, realistic systems do not appear to be conducive to such efforts. An alternative
to making better and better qubits is to make the qubits good enough, and then cleverly
encode information in these qubits so that is protected against common sources of errors.
By detecting these error before they have a chance to impact the protected information,
we can theoretically perform longer circuits in the protected space. Under the standard
error correction formalism, the measurement (though possibly imperfect) is regarded as an
instantaneous operation. As we have seen in the previous chapters though, measurement
is not instantaneous. We can use the dynamics of measurements to turn quantum error
correction to a continuous process. We experimentally demonstrate this capability using a
three qubit bit-flip code.

5.1 Background on quantum error correction

We first give a brief primer on quantum error correction. Error correction is an extremely
rich field, and there are many extensive introductory resources [74, 75, 40| for more detailed
explanations and a wider range of concepts. Codes of particular interest are surface codes|76],
bosonic codes|77|, and holographic codes|78|. Also interesting is the Holy Grail of fault
tolerant quantum error correction whereby when one’s physical qubits and gates get good
enough, one can make computation better by simply throwing more qubits at it|79]. However,
we will not dive into these depths. Instead we present a recap of the basic concepts of
quantum error correction.

Quantum information is inherently fragile. The No-Cloning theorem states that there is
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no physical operation which performs the map

) = [) ) (5.1)

While this theorem is beautiful from a theoretical and informational standpoint, it is frus-
trating for the experimentalist trying to protect their quantum state. In classical error
correction, we can simply make copies of a classical bit string to have informational redun-
dancy. Indeed, if we think about even a supposedly atomic bit of information stored in a
capacitor or on a magnetic disk, such a bit comprises enormous numbers of electrons storing
the same bit of classical information. In quantum systems, such an encoding does not appear
so naturally. Anything that interacts with a quantum state can siphon away information, or
at the very least disturb the state.

As another complication, quantum states are analog in the sense that they are param-
eterized by continuous complex coefficients. The operations we apply to quantum systems
are similarly analog and susceptible to imperfections. For example, if we try to perform a
gate which brings a qubit to the state |¢)) = «|0) 4+ §|1), we may end up with the state
[YV") = (a4 €4) |0) + (B4 €5) |1) for some small complex €, and ez. These over-rotations can
add up over the course of an algorithm and produce errors.

In order to protect quantum information, we can construct a quantum error correction
code. Such a code consists of a small logical quantum system embedded inside a larger
physical system. Often times, both the logical system and the physical system are thought
of in terms of qubits. In this case, a small number of qubits k is mapped onto to a larger
number of qubits n. If A is the Hilbert space of the full system (dimension 2"), we can
decompose H into two important bases:

Physical Basis  H = ® or (5.2a)
i=1
Logical Basis  H = @Hg‘ (5.2b)

Here, {QF} are physical qubits labeled by physical number i and {Hz} are the protected
subspaces of the code, labeled by 5 € {0,1}®("=%) representing an error syndrome. Each
element of 5 represents a particular error having occurred. Every Hy is of dimension 2* and
could be used as a subspace to protect quantum information. Without loss of generality, we
take H_g to be the logical subspace. The logical state stays in this subspace until an error
occurs. The other protected subspaces of definite error syndrome are known as error spaces
of the code. After a detectable error, the logical state moves from the logical subspace to a
corresponding error subspace.

In the context of quantum error correction, qubits are a two-state quantum degree of
freedom (i.e. a Hilbert space of dimension 2). The physical qubits are usually taken to be
spatially local, and are generally associated with the construct which holds the qubit degree
of freedom. For example, transmons, atoms, ions, etc. are loosely referred to as qubits,
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whereas in the context of quantum error correction, it is more accurate to say that these
physical objects have a local degree of freedom which holds a qubit of information. The
logical subspace (and error subspaces) consists of degrees of freedom which are spread across
many physical qubits.

Looking at the form of Eq. 5.2b, it is not immediately obvious that the logical qubits are
protected any more-so than a physical qubit. In particular, if [¢)) is the desired k-qubit state
to protect, then the equivalent logical state on the full Hilbert space can be decomposed like
|1) ® |gauge qubits) and not 1) ® |¢) ® ... ® |¢). If all operations in the Hilbert space were
equally as likely to occur, then the logical qubit would be no better at protecting information
than a physical qubit. This leads into two basic requirements for quantum error correction:
errors in the physical basis should be local and uncorrelated; and operations on the logical
subspace should be non-local in the physical basis.!

When an error which the code protects against (say a local error on a physical qubit),
occurs on a state in the logical subspace, the syndrome label § changes and the state moves
to a new protected subspace. As long as the number of errors is low, the original logical state
can be recovered by measuring which error subspace the state is in, and applying corrective
actions to move it back to the original logical subspace. If too many errors occur, they can
eventually affect the logical state as will be described for the three qubit code in the next
section.

Three qubit bit-flip code

To give a concrete example, consider the 3-qubit bit-flip code used in this work. Although
the code does not protect against all single qubit errors, it demonstrates the basic principles
of error correction. The logical states of the code are given by

|0) = ]000) (5.3a)
1) = [111), (5.3b)
where kets are taken to be in the physical basis. The different protect subspaces can be
specified by a set of measurement operators {M} known as stabilizers of the code. The
stabilizers have eigenvalues of +1, and have constant value within each protected subspace.

If we consider the state |¢). to be a k-qubit state |¢)) encoded in the logical subspace Hz,
then we can define a minimal set of stabilizers {M;} such that

M)z = (=1)" [¥);. (5.4)
In the case of the 3-qubit code, the base stabilizers are

Ml = Zozl (553)
My = Z,Z, (5.5b)

!These conditions are not hard and set. Error correction codes can handle some spatially and temporally
correlated errors, though these errors decrease code performance. Additionally, these correlations must die
off with distance at some reasonable rate.
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where Z; are the Pauli Z operators in the physical basis.? These two stabilizers are not
unique. Indeed, we can use these stabilizers to generate a third stabilizer M3 = MM, =
ZyZy. However, measuring M3 will give information degenerate with information from the
first two stabilizers, so is not strictly necessary. By measuring the two stabilizers, we project
the system into a single definite logical or error subspace, discretizing any errors which result
in state support on multiple protected subspaces.

The 3-qubit code protects against single qubit bit-flips. To see this, consider the action
of an X error in the Hilbert space of the syndrome qubits. X, anti-commutes with M; and
commutes with M. Therefore, if the state [¢) is an eigenvector of all the stabilizers, then
Xo|9) is also an eigenvector of the stabilizers, though with the eigenvalue of A/, flipped.
Similarly, an X5 error flips the eigenvalue of My, and an X error flips the eigenvalues of both
M, and M,. We consider the set {F; = X;} to be the possible errors on system detectable
by the code, labeling the errors with E; since the following results do not depend on the
errors being X errors. We also let |a) and |b) be basis states in the logical subspace. To see
that a set of errors are not only detectable but correctable, we need to make sure that every
error-state F; |a) is distinguishable from every other error state E; [b) for a # b:

@EE;|b) =0, a#b. (5.6)

We would also like to ensure that we can apply a correct error inversion for every error that
occurs on a given logical state. Although the condition

(al EL Ejla) = (5.7)

is clearly sufficient to achieve distinguishability of errors occurring on a single state, it turns
out that only a weaker condition is necessary|74]:

(al B} E;|b) = Cijbu, (5.8)

where C;; is a Hermitian matrix. We have already seen that a Pauli X error acting on a single
qubit, does not commute with the two stabilizers. One can also show that the combination
of any two X errors (X;X;) also does not commute with the stabilizers; Acting X;X; on a
state in the logical subspace either takes the system out of the logical subspace or preserves
the state, thus satisfying Eq. 5.8.

Now that we have defined our logical states and seen how errors affect them, we would like
to define the basis vectors of the error subspaces. These error spaces do not have immediately
well defined bases since arbitrary SU(2) rotations in these subspaces do not affect stabilizer
values or the ability of the code to correct errors. To fix their bases, we ensure that when a
correctable error occurs on the logical subspace, the logical qubit basis vectors do not change
labeling other than switching to a new s. In the three qubit code using the logical subspace
defined in Eq. 5.3, the logical qubit’s |0) and |1) states in each Hz are

{10Y, Xo|0), X1 [0), X2]0)} = {|000), 100}, |010), |001)}, (5.92)
(1), Xo|1), X1 1), Xo|D)} = {|111),]011),]101),]110)}. (5.9)

2For consistency with the experimental work, we use zero indexing for the physical qubits.
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Figure 5.1: Density matrix of the three qubit bit-flip code in the logical basis. The logical
subspace is shown in green and has syndrome 00. Error spaces comprise the three orange
blocks with definite syndrome values other than 00. Physical X flips lead to transitions
amongst the syndrome subspaces. Purple transitions directly out of the logical subspace move
the logical state to an error subspace, but do not affect the logical qubit. Red transitions
between two error spaces induce an X flip in the logical subspace in addition to changing
subspaces.

This choice of basis vectors is dependent on which syndrome subspace was taken as the
codespace (§ = 6) In this frame, transitions among the subspaces are shown in Fig. 5.1.
If we had chosen one of the error spaces as the codespace, we would construct a basis such
that transitions out of that chosen subspace would always preserve the logical qubit.

To perform operations in our logical qubit subspace, we need unitary operators which
commute with all of the stabilizers, and anti-commute with each other. These operators will
be identified as the X and Z of the logical state and in general these logical operators are
not unique [75]. With this in mind we can choose

X = X()XlXQ, (5103)
7 = Zyl 1y (5.10b)

to be the logical operators for the three qubit code. One can also verify that these operators
act as expected in the logical subspace given the labellings [0) and |1). Note that X has
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weight 3 and that Z has weight 1. This is expected as we know that the code will detect
(not correct®) X errors up to weight 2 and correct X errors of weight 1, but cannot detect
Z errors at all.

Measurement in error correction

In the formulation of standard error correction, logical gates are interspersed with rounds
of error correction. In each correction round, the stabilizers are measured, and then any
detected errors are corrected.® This process discretizes errors by forcing the system into
one of the protected subspaces. As an example, suppose that we start with the state [¢)) =
a|0) + B |1) which undergoes a small rotation around X:

) = (1+ieXo) [¥) (5.11)

Before measuring the stabilizer, the state has support on both the codespace and one of
the error spaces. By measuring with the M; = ZyZ; stabilizer, the system is projected
definitively into either the codespace or the error space. The outcome of the correction is
the same as if we had instead corrected a probabilistic X, gate (i.e. where p — p+€*XopX).
To see how this correction process can extend the lifetime of a logical state, we can consider
each error channel X; as having some probability p of occurring between rounds of error
correction. We consider zero or one errors as correctable and two or three errors as a logical
error. Assuming we can perform a perfect syndrome measurement, the probability of the
state being correctable is

Pcm‘r = (1 - p)3 + 3p(1 - p)2 =1- O(p2)7 (512>

so, for low error rates, the probability of being correct increases when a round of error
correction is applied.

In an experimental setting, there different ways to measure stabilizers. A crucial aspect
of stabilizers is that they are inherently joint-qubit measurements. In order to measure ZyZ;
for use as a stabilizer, one cannot simply measure Z, and Z; individually, as doing so will
destroy the coherence of the logical state. To preserve local readout, the most common way
to measure stabilizers is to map their value onto the ancillary qubits in the ancilla’s Z basis,
as shown in Fig. 5.2. These ancilla are then projectively measured along the Z basis to
determine the stabilizers’ values.

An alternative method is to perform a direct joint readout on all qubits involved in the
stabilizer measurement. This method avoids the need for entangling gates between ancilla

3Using the stablizer measurements, a weight 2 error on two of the qubits is indistinguishable from a
weight 1 error on the remaining qubit; if a weight 2 error such as XoX; occurs, this will be decoded as an X5
error. If a “corrective” X5 pulse is applied to the system, the net action of error and “correction” is Xy X7 X5:
a logical error.

4As an alternative to active error correction, the logical subspace can be reassigned to be the current mea-
sured error subspace. Under this protocol, the logical basis states of each protected subspace are reassigned
from their original definitions in Eq. 5.9.
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Figure 5.2: Ancilla based three qubit error correction. Stabilizer values are copied to two
ancillary qubits, which are then measured. Based on the measured syndrome, correction
pulses are applied.
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and data qubits (the physical qubits of the code). In our experiment, we implement a
direct measurement of the ZZ stabilizers using a coherent microwave tone to probe a joint
readout resonator. Using this method of direct stabilizer measurement opens the possibility
of performing continuous error correction [47, 80|. In contrast to discrete error correction,
where rounds of error correction are periodically performed, continuous error correction is
always on and reading out information about the error syndromes.

5.2 Experimental demonstration

In this experimental work we implement a continuous error correction protocol for the three
qubit code. The continuous measurement is monitored by an FPGA controller that actively
corrects errors as they are detected. Using this method, we achieve an average bit-flip detec-
tion efficiency of up to 91%. Furthermore, we use the protocol to increase the relaxation time
of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare compris-
ing qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit
architecture and demonstrate how continuous error correction codes can address challenges
related to ancilla-based errors in realizing a fault-tolerant system.

Demonstrations of discrete quantum error correction have been exhibited using various
physical systems such as ion traps[81, 82, 83|, defects in diamonds|84|, and superconducting
circuits[85, 86, 87, 88, 89, 90]. Continuous measurements have been used to study the
dynamics of wavefunction collapse and, with the addition of classical feedback, to stabilize
qubit trajectories and correct for errors in single qubit dynamics[10, 91, 92|. In systems of
two or more qubits, direct measurements of parity can be used to prepare entangled states
through measurement|93, 94, 95, 96, 97, 9]. When applied to error correction, continuous
parity measurements eliminate the cycles of discrete error correction and remove the need for
entangling gates|98, 99|. Errors are detected on a rolling basis, with the measurement rate
as the primary limitation to how quickly errors are detected. In this experimental section,
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Figure 5.3:  Full Parity Detection. (a) Three qubits in two cavities, with each cavity
implementing a full parity measurement. Lower right: ideal phase responses of a coherent
tone reflected off each cavity for different qubit states. The parity probe tones are centered on
the odd-parity resonances. The phase space (IQ) plots show the ideal steady state reflected
tone for the shown qubit configuration. Dashed circles are centered on all possible steady
state responses. (b) Micrograph of the superconducting chip with three transmons and two
joint readout resonators.

we use two continuous parity measurements and associated filtering[100] to correct bit-flip
errors while maintaining logical coherence.

We realize our code in a superconducting architecture using three transmons as the
physical qubits. As depicted in Fig. 5.3, we implement the ZZ parity measurements using
two pairs of qubits coupled to joint readout resonators[101, 9]. The resonators are coupled
to the qubits with the same dispersive coupling x; with ¢ indexing the resonator, thereby
making the resonator reflection response when the two qubits are in |01) identical to the
response when the qubits are in |10). For each resonator, we set the parity probe frequency
to be at the center of this shared odd parity resonance. To approximately implement a full
parity measurement, we make the line-width x; (636 kHz, 810 kHz) of each resonator smaller
than their respective dispersive shift y; (2.02 MHz, 2.34 MHz). When the qubit pair is
in either |00) or |11), the resonance frequency is sufficiently detuned from the odd parity
probe tone to keep the cavity population low and the reflected phase responses for the two
even states nearly identical as demonstrated in the section on steady-state dephasing. After
reflecting a parity tone off a cavity, the signal is amplified by a JPA in phase-sensitive mode
aligned with the informational quadrature.

We implement the three qubit repetition code using two ZZ parity measurements as
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Figure 5.4:  Error Correction. (a) Sample experimental voltage traces of the controller
correcting induced bit flips. With no errors, both voltages remain positive. When an error
occurs, one or both of the voltages flip and the cross thresholds, triggering the controller to
send a corrective 7 pulse to bring the system back to the codespace. (b) Voltage responses
to an induced flip on @y with (blue) and without (red) feedback. Bold lines are averages
and light lines are sample individual traces.

stabilizers: ZyZ, and Z;Z5. The codespace can be any of the four subspaces with definite
stabilizer values, but, as in the previous section, we choose the subspace with positive parity
values (+1, +1) for simplicity. This choice of codespace is spanned by the logical code states
|0) = ]000) and |1) = |111). The three remaining stabilizer values identify error subspaces
in which a qubit has a single bit-flip (X) error relative to the codespace. A change in parity
heralds that the logical state has moved to a different subspace with a different logical state
encoding.

Ideal strong measurements of both code stabilizers project the logical state into either
the original codespace or one of the error spaces, effectively converting analog errors to
correctable digital errors. In contrast, measurements with a finite rate of information ex-
traction, like the homodyne detection used in this experiment, result in the qubit state un-
dergoing stochastic evolution such that the logical subspaces are invariant attractors [102].
The observer receives noisy voltage traces with mean values that are correlated to stabilizer
eigenvalues and variances that determine the continuous measurement collapse timescales.
Monitoring both parity stabilizers in this manner suppresses analog drifts away from the
logical subspaces, while providing a steady stream of noisy information to help identify and
correct errors that do occur.
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Previous work has shown that Bayesian filtering is optimal at extracting parity infor-
mation from such noisy voltage traces[103, 100|. Here, we implement a simpler technique
with performance theoretically comparable to that of the Bayesian filter while using fewer
resources on our FPGA controller[100]. We first filter the incoming voltage signals with a
1536 ns exponential filter to reduce the noise inherent from measuring our system with a
finite measurement rate (0.40 MHz) and call this signal V;(¢) for resonator i. We offset and
normalize V;(t) such that (V;(t)) = —1 corresponds to the system being in an odd parity
state, and (V;(t)) = 1 corresponds the the system in an even parity state. Here we have
defined expectation values as averaging over all possible noise realizations. As shown in
Fig. 5.4a, we monitor the trajectories of V; for signatures of bit-flips using a thresholding
scheme[100, 104, 105]. Supposing we prepare an even-even parity state, a bit-flip on one of
the outer qubits is detected when one of the signals goes lower than a threshold ©; = —0.50
while the other signal stays above another threshold, ©, = 0.72. A flip of the central qubit
is detected when both signal traces fall below a threshold ©3 = —0.39. These thresholds are
numerically chosen based on experimental trajectories to maximize detection efficiencies of
flips while minimizing dark counts and misclassification errors due to noise. When a thresh-
olding condition is met, the controller sends out a corrective m-pulse to the qubit on which
the error was detected, with threshold to qubit decoding shown in Fig. 5.4a. The controller
also performs a reset operation on the voltage signals in memory to reflect the updated qubit
state. As shown in Fig. 5.4b, when a deterministic flip is applied to the |000) state, the
system is reset back to |000) faster with feedback than through natural 77 decay.

To characterize the code, we first check the ability of the controller to correct single
bit-flips. We prepare the qubits in |000) and apply the parity readout tones for 16 ps. After
4 s of readout to let the resonators settle, we apply a m-pulse to one of the qubits, inducing
a controlled error. We record if and when the controller detects the error and sends out a
correction pulse. Errors are successfully detected on @y with 90% efficiency, @)1 with 86%
efficiency, and Q9 with 91% efficiency. The primary source of inefficiency is 77 decay bringing
the qubits back to ground before detection can happen. On average, the controller corrects
an error 3.1 ps to 3.4 ps after the error occurs, with the full time distribution shown in Fig.
5.5a. We also characterize a dark count rate for each flip variety by measuring the rate at
which the controller detects a qubit flip after preparing in the ground state (3.4, 1.0, 4.0)
ms~'. In comparison, the thermal excitation rates for each qubit are estimated to be (1.8,
1.0, 2.0) ms™ 1.

We next investigate the dominant source of logical errors while running the code: two
bit flips occurring in quick succession. When two different qubits flip close together in time
relative to the inverse measurement rate, the controller may incorrectly interpret the signals
as an error having occurred on the unflipped qubit. The controller then flips this remaining
qubit, resulting in a logical error. For continuous error correction, this effect results in a
time after an error occurs we call the dead time, when a following error cannot be reliably
corrected. To characterize this behavior, we prepare the system in the ground state and
apply two successive bit-flips with varying times between the pulses. We then check if the
controller responds with the right sequence of correction pulses. In Fig. 5.5b, we show the
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Figure 5.5: Characterizing the time to correct an error. a, Histogram of time between an
induced error and the correction pulse for each of the qubits, normalized such the integral of
the probability distribution Pp;,(t) gives the detection probability. Dashed lines indicate the
dark count rates for each error type. b, Probability of detecting certain flip sequences given
a flip on Qg preceding a flip on Q3. The green region is the probability of the controller
correctly detecting a (g flip and then a )5 flip. The red region is the probability of the
controller detecting a ()1 flip, resulting in a logical error. The dotted line indicates the dead
time, when these two probabilities are equal. ¢, Population decay of the excited logical state,
|101), of the odd-odd subspace with and without feedback. With feedback on, the lifetime
of the logical basis state is longer than that of an individual bare qubit.

controller’s interpretation of successive flips on Qg and ()» as a function of time between
them. We mark the dead time at the point where the probability of a logical error crosses
the probability of successfully correcting the state. Among the possible pairs and orderings
of two qubit errors, the dead times vary from 1.6 ps to 2.6 ps.

Although the code is designed to correct bit-flip errors, the code will also protect the
logical computational basis states against qubit decay, extending the 77 lifetimes of the
logical system beyond that of the bare qubits. As opposed to a bit-flip, a qubit decaying
loses any coherent phase of the logical state, and the system will be corrected to a mixed state
with the same probability distribution in the computational basis as the initial state. For
example, the state \/Lﬁ(|0 1) + |11)) undergoing a qubit decay and correction will be restored

as the density matrix $(|02) (0| + |1.) (12]). In the long time limit of active feedback, the
system will reach a steady state described by a mixed density matrix with the majority
of population (87-99.6%) in the selected codespace. The T; of a codespace is defined by
the exponential time constant at which population of computational basis states in the
codespace approach this steady state. The different codespaces of different parities have
different 7} decay times, with the longest decay time of 66 ps associated with the odd-odd
subspace, as shown in Fig. 5.5¢. The lifetimes of other subspaces are shown in Fig. 5.6. The
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Figure 5.6:  Population lifetimes for each of the protected subspaces with and without
feedback.

shortest lifetime, 32 s, is associated with the even-even subspace, since the higher energy
level in this codespace has three bare excitations and the lower energy has no excitations.
In comparison, the bare T} values of the bare qubits range from 20 ps to 24 ps, making the
logical qubit excited life 2.7 times longer than that of a bare qubit.

Although phase errors are not protected against by this code, an ideal implementation of a
bit-flip code should not increase their occurrence rate. However, with our physical realization
of continuous correction, we induce extra dephasing in the logical subspace through three
primary channels: continuous dephasing due to the measurement tone; dephasing when going
from an odd parity subspace to an even parity subspace; and dephasing related to static ZZ
interactions intrinsic to the chip design.

The first source of excess dephasing is measurement-induced dephasing, where the de-
phasing rate is proportional to the distinguishability of different qubit eigenstates under

. . 12
the measurement[106]. Distinguishability is measured as D,(fl)n = a|(2> — a‘(:%

where |m)
and |n) are different basis states of the two qubits coupled to resonator i, and a(? is the
resonator’s associated coherent state[106]. By tuning the qubit frequencies, the dispersive
shifts of the system are calibrated such that D(()Zﬁ10 are close to zero. The parity measurement
distinguishability (D((fl{11 ~ D(()il)’oo) determines the measurement-induced dephasing rate of
the code. Due to finite x/k, the even subspaces are not perfectly indistinguishable, with
the theoretical distinguishability ratio D(()Z&m / D(()Z())Jl ~ 4(x;/ki)>. We use this formula to
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Figure 5.7:  Preservation of quantum coherence. (a) Distinguishability of various state
pairs in steady state readout for each measurement tone. Pairs of states in the yellow
region differ in one or both of their parities. Pairs of states in the green region share
their parities. Dashed lines indicate theoretically predicted distinguishability of the even
eigenstates. (b) Relative state coherence after preparing a logical |[4+X7,) state in each of the
plotted parity subspaces, applying parity measurement tones without feedback, and flipping
one of the qubits. Coherences are normalized to results from the same sequence without
the measurement tones applied. Error bars are statistical uncertainty from repeated runs
of the measurement. Dashed lines indicate predicted relative dephasing due to an odd to
even parity flip on each, both, or no resonators. (c) Sample coherences from preparing a
logical |[+X) state in the odd-odd (OO) subspace, applying an error pulse, and letting the
controller correct the error. Coherences are reconstructed by time bins set by the time it
takes to correct the error. Oscillations due to static ZZ coupling are visible.

calculate this ratio to be 40 and 33 for resonator 0 and 1 respectively. We plot the measured
distinguishability of various state pairs in Fig. 5.7a, and find agreement with these pre-
dicted values as well as low distinguishability between eigenstates of odd parity. Using the
experimental distinguishability and the known measurement rate, we calculate an maximum
induced even-even dephasing rate from a single tone to be

The second source of excess dephasing occurs when a pair of qubits switches from an odd
parity state to an even parity state. When two qubits coupled to one of the resonators have
odd parity, the resonator is resonantly driven by the measurement tone and thus reaches a
steady state with a larger number of photons as compared to when the qubits have even
parity. If one of these qubits undergoes a bit-flip while the system is in an odd parity state,
the resonator frequency shifts and the system undergoes excess dephasing as the resonator
rings down to the steady state for the even subspace. The coherence of the logical state is
expected to contract by a factor of e™", with 7 being the steady state photon number of
a resonator when its qubits are in an odd parity state. From the steady state dephasing
rates and the resonator parameters, we independently estimate the photon number in each
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resonator to be ng=.7 and n;=.6. To measure this effect, we prepare a 3-qubit logical
encoding of an X-eigenstate, |[+X/) = \%(|OL/) + |11/)), where L’ is one of the four possible
logical encodings. With the measurement tone on, but without feedback, we apply a pulse
on one (or none) of the qubits, taking the state to a different (or the same) codespace, L.
We then tomographically reconstruct the magnitude of the coherence in the new codespace,
|pt1|, as shown in Fig. 5.7b. The coherences are normalized to the |pf,| generated by same
experiment with the measurement tones off. The system demonstrates significantly less
coherence when one of the parities changes from odd to even than when the parities change
from even to odd, with reasonable agreement to the expected dephasing.

The third source of excess dephasing is related to static ZZ interactions among the
qubits and the uncertainty in timing between when a bit-flip error occurs and when the
correction pulse is applied. Performing a Ramsey sequence on @); while @); is either in the
ground or excited state, we measure the coefficients of the system’s intrinsic ZZ Hamiltonian,
Hy; = % > oy BijZ;iZ;. Since the three qubits are in a line topology, with the joint readout
resonators also acting as couplers, there is significant coupling between Qg and @1 (601 =
0.49 MHz) and between () and @ (f12 = 1.05 MHz) while there is almost no coupling
between Qg and @2 (fo2 < 2 kHz). Due to this coupling, the definite parity subspaces
have different energy splittings: In the rotating frame of the qubits, the odd-odd, odd-even,
even-odd, and even-even subspaces have logical energy splittings of 0, B12, Bo1, and (g1 + S12
respectively. When a bit-flip occurs, the system jumps to an error space and precesses at
the frequency of that error space until being corrected by the controller. Since the time from
the error flip to the correction pulse is generally unknown, the state can be considered to
have picked up a random unknown relative phase. The net dephasing (., can be calculated
by averaging the potential phases over the probability distribution of time, T, it takes to
correct an error: ¢?~%= = (¢/T28) with AS being the energy difference between codespace
and error space. Using the distributions in Fig. 5.5a and known Af, we compute (.. to
be from 2.5 to 5.7 depending on the codespace and the qubit flipped. Although we don’t
observe this dephasing directly, we perform an experiment to capture this effect. For each
of the codespaces, we prepare a |+X) state in the odd-odd codespace and induce a bit-flip
error while the feedback controller is active. After 6 us, we perform tomography on all three
qubits and note the time at which the correction pulse occurred. We then reconstruct the
logical coherence element p; of the density matrix conditional on time it took the controller
to apply the correction pulse. As shown in Fig. 5.7c, we observe oscillations with frequency
corresponding to the effects of ZZ coupling.

Design and fabrication

The microwave properties of the chip were simulated in Ansys high-frequency electromagnetic-
field simulator (HFSS), and dispersive couplings were simulated using the energy participa-
tion method with the python package pyEPR|[32]. Resonators, transmission lines, and qubit
capacitors were defined by reactive ion etching of 200 nm of sputtered niobium on a sili-
con wafer. Al-AlOx-Al Josephson junctions were added using the bridge-free "Manhattan
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style" method[107|. The junctions were then galvanically connected to the capacitor paddles
through a bandaid process[108]. The middle qubit is fixed frequency, and the outer two
qubits are tunable with a tuning range of 260 MHz and 220 MHz. Wire bonds join ground
planes across the resonators and bus lines. We summarize chip frequencies and typical qubit
lifetimes in the tables below.

Qo @1 @
Frequency (MHz) 5355 5182 5392
Anharmonicity (MHz) | 307 310 310
) 22 23 23
T5 (us) 18 26 20
TEcho (ps) 31 31 35

Table 5.1: Qubit parameters

Ry R
Frequency (MHz) 6314 6405
k (kHz) 636 810
x (MHz) 2.02 2.34
Quantum Efficiency | 0.62 0.56

Table 5.2: Resonator parameters

Measurement setup

A wiring diagram of our experimental setup is show in Fig. 5.8. The Josephson Parametric
Amplifiers (JPAs) are fabricated with a single step using Dolan bridge Josephson junctions.
They are flux pumped at twice their resonance frequency, providing narrow-band, phase-
sensitive amplification. The signals are further amplified by two cryogenic high-electron-
mobility transistor (HEMT) amplifiers, model LNF4 8. In the output chain for resonator
0, we include a TWPA between the JPA and the HEMT to operate that JPA at a lower
gain. Infrared filters on input lines are made with an Eccosorb dielectric. The outer qubits
are flux tuned with off-chip coils. The FPGA board provides full control of the qubits and
readout of the resonators. The arbitrary waveform generator controls the cavity and JPA
drives, as well as triggering the FGPA. The JPA modulation tone is split with one branch
phase shifted before both go into an IQQ mixer to modulate a reference RF tone on a single
sideband.
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Figure 5.8: Cryogenic wiring diagram. The Josephson parametric amplifiers (JPAs) operate
in reflection, and additionally have off chip coils not shown. The JPAs also provide narrow-
band gain, so when the readout chains are combined at room temperature, the combined
noise at each cavity frequency is dominated by the noise amplified by that cavity’s JPA.
Each superconducting coil has its leads connected by a small piece of copper wire, forming a
low frequency (< 1Hz) RL filter with the coil. The room temperature wiring is also shown,
but with linear elements (attenuators, amplifiers, filters, isolators) removed.
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FPGA logic

The FPGA board we used for the feedback is an Innovative Integration X6-1000M board.
For technical details on the FPGA code, see Appendix A. We programmed a custom pulse
generation core to drive qubit pulses and to demodulate and filter incoming readout signals.
A control unit parses instructions loaded in an instruction register. These instructions may
include 1) putting a specified number of pulse commands into a queue to await pulse timing;
2) resetting a pulse timer keeping track of time within a sequence while incrementing a
trigger counter; and 3) resetting the pulse timer, the trigger counter, and the instruction
pointer. When a pulse instruction enters the timing queue, it waits until a specified time
and is then sent to one of three different possible locations. The first possible location is a
pulse library where the instruction points to a complex pulse envelope of a given duration,
which is then modulated by one of three CORDIC sine/cosine generators and sent to the
correct digital to analog converter (DAC). These pulses are sent down one of three qubit
control lines. The second possible location is to one of the CORDIC sine/cosine generators,
where the instruction will increment the phase of the generator by a specified argument,
thus implementing Z rotations in the qubit frame. The third location is a demodulation
core, which, similarly to the qubit pulse block, plays a complex waveform from memory for a
specified duration. This waveform is then multiplied against the complex incoming readout
signals and low-pass filtered with a 32 ns exponential filter to generate the signal V;?¢ for
feedback as well as to readout projective measurements.

When the feedback control unit is active, it takes V;”¢, applies a secondary 1536 ns
ns exponential filter /accumulator to further reduce the noise, and then continuously checks
these traces (V;) against the threshold conditions for an error to have been detected (as
shown in Fig. 5.4a). When an error is detected, the controller injects instructions for a
corrective pi pulse into the pulse generation unit. Any voltage V; which went across a
threshold is then inverted as to not trip further corrective pulses. After a delay such that
the corrective pulse has taken effect on chip, the V;P¢ is inverted before being accumulated
into the running average V;. In conjunction with the previous inversion of V;, this effectively
resets the feedback controller while avoiding interpreting the corrective pulse as another
€error.

The board’s 1/O comprises the PCle slot for exchanging data with the computer and the
ADC/DACs on the analog front-end. The FPGA can stream from multiple sources to the
computer along 4 data pipelines. The primary sources are V,°¢ and a list of timestamped
pulse commands. The timing of any corrective pulses can be obtained from this second
source. Further data sources include raw ADC voltages, raw DAC voltages, and V;, which
are only used as diagnostics. On the analog front-end, there are two ADCs running at 1
GSa/s which take in the IF readout signals from the I and Q ports of an 1Q mixer, treating
the two ADC inputs as the real and imaginary parts of a complex signal. To drive the three
qubit lines, there is one DAC running at 1 GSa/s and, due to board constraints, two DACs
running at 500 MSa/s.
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Optimizing filter parameters

To optimize the threshold values, we prepare the ground state and then flip either one or
none of the qubits while taking parity traces (V;?¢). In post processing, we filter the traces
with the same exponential filter as on the FPGA to recreate V;, and classify the resultant
traces according to whether or not they pass the different thresholds registering as a qubit
flip. We use these data to construct a confusion matrix P;; = P(i|j), the probability of
classifying a trace as a flip on ¢ given a preparation flip j, where i,j € (None,0,1,2). The
thresholds were chosen to minimize . (Pi; — d;;)*.

Tomographic reconstruction

We use the parity resonators to perform qubit tomography and measure the various life-
times of the qubits. However, due to the nature of the parity condition, not all states are
distinguishable by this measurement. To perform tomography, we use single qubit pulses to
map each three-qubit Pauli eigenstate to |000) and then measure both resonators on their
|00) resonance [109, 110]. We then measure the probability that full qubit system is in the
ground state, which corresponds to reading out both resonators as 0. We additionally in-
clude data into the tomography analysis if one of the resonators reads out 1 and the other
reads out 0, since we know the final state to be in either [100) or |001) depending on which
resonator reads 1. Using this information, we construct partial Pauli expectation values such
as (XTY 1), with P, P~ being the plus and minus projectors for a particular Pauli P such
that P = Pt — P~. We then apply readout correction on these probabilities to mitigate
the effects of readout infidelity. From this corrected data taken over many tomographic
sequences, we can reconstruct full Pauli expectation values such as (XY ). When recon-
structing logical coherences, we only measure in the X and Y bases. When reconstructing
populations, we only measure in the Z basis.

Ramsey heralding

Qubits 0 and 2 demonstrate a strong temporal bistability in qubit frequency, with a splitting
of about 80 kHz and a typical switching time on the order of .1-10 s. When taking data to
reconstruct logical coherences, we include five extra sequences in our AWG sequence table,
each consisting of five repeated restless Ramsey measurements with free precession times of
6 pus. With a typical initial sequence length of 64 and a repetition rate of 100 us, the qubit’s
frequency state is sampled every 7 ms, allowing us to herald data runs to only include data
from runs when the qubits have a particular frequency.

Steady state dephasing

Here we derive relative dephasing rates for two qubits in a dispersive parity measurement
using a classical analysis of the resonator steady states. The measurement dephasing rate
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is proportional to the distinguishability of resonator responses when the coupled qubits are
in different eigenstates|[52]. We set the probe frequency on resonance with the cavity when
qubits are in the single-excitation subspace and assume that y >> k. We also assume the
external cavity coupling is much larger than the internal cavity loss, so the cavity responds
with the following scattering parameter:

—2f0 + 1K

S(fo:=x({Zo+ Z1)) = “of, —in

(5.13)
Odd parity states are perfectly indistinguishable. The distinguishability between states of
opposite parity is
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From these equations, we get the following relative dephasing (I') and measurement rates
(I'™) between states of different parity and states of even parity:

_A (5.15)
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Dynamic dephasing

When the resonator is not at steady state, one can have significantly increased dephasing
rates after a parity flip. Here we will consider the effect of a bit flip error taking an odd
parity qubit state to an even parity state while the parity measurement is on. In this case,
the measurement tone is on resonance with the cavity and the cavity field will initially be in a
steady state ap. When the qubit parity is flipped from odd to even, the cavity evolves as two
copies, one for each even parity basis state (agy and aq1). As a simplifying approximation,
we assume the measurement tone is turned off at the moment the parity changes as to
capture just the transient dynamics. There are two equivalent methods as shown in chapter
3 to calculate the net dephasing (. The first can be obtained by integrating the rate at
which information leaves the cavity, I'l' = |ago — a11|%. The second can be obtained by
integrating the rate at which the cavity dephases the qubit, I'y, = 4x Im[ages,], with 4y
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being the frequency difference between the |00) resonance and the |11) resonance. Here we
use the second method to simplify the calculation. We work in the rotating frame of the
odd-parity resonance and define k = k/2 — 2iy to get two cavity equations, one associated
with each basis state:

. . K
Qoo = (2XZ - 5) Qoo

; (5.17)
an = (—2Xi - —> 11
2
ago(t) = age ™
wolt) = a0 . (5.18)
0411<t> = 0406_
(= / 4x Im [agoad;] dt = 4x Im {/ ozooo[{ldt}
0 0
= |ao|* 4x Im [/ e_%tdt]
f o (5.19)
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Therefore, the magnitude of the final coherence between |00) and |11), | p£0711|, will be de-
phased from the initial coherence between |01) and [10), |pf; 10l :

‘050711‘ =e ¢ |Pf)1,10| = ¢laol ‘Pé1,1o| (5.20)

5.3 Outlook and conclusion

Our experiment demonstrates the power of continuous measurements, demonstrating active
feedback on multiple multipartite measurement operators. We demonstrate the feasibility
of using continuous measurements in quantum error correction. Furthermore, the protocol
as implemented is compatible with existing superconducting qubit architectures so can in
principle be combined with ancilla-based error correction methods. Future improvements
could be made by reducing spurious decoherence effects through novel implementations of
continuous parity measurements[111, 112|, engineering systems with a lower static ZZ cou-
pling|[113] or tunable gate coupling, and using additional feedback to reduce the effects of
measurement induced dephasing|114].

Beyond the technological improvements to the existing devices, the ability to continu-
ously measure X Z or XX style stabilizers would allow for the creation of continuous error
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correction codes which correct for Z errors as well as X errors. When added to the knowl-
edge that non-commuting continuous observables can be simultaneously measured, one could
implement a continuous Bacon-Shor Code [104]. Similar to the work in this paper such a
code would only require two-qubit measurement stabilizers.

The canonical phase measurement demonstrates the power of implementing feedback
during continuous measurement. At its heart, this experiment required some notion of
quantum state tracking. The implemented tracking was relatively easy, as the update equa-
tion was linear in the measured voltage, but other systems require more complicated update
equations, such as when qubit Rabi drive terms are added in at rates comparable to the
readout resonator’s linewidth|[47|. Linear feedback has been used to stabilize a driven state
in a particular parameter regime[115], but FPGAs offer more processing flexibility when the
linear regime breaks down. Even in the continuous error correction experiment, there are
inherently non-idealities in linear filtering even without considering unwanted effects such as
cavity ringing. Neural networks have been shown to be able to track quantum states [116]
and are able to capture a wide range of dynamics. Implementing such an architecture on an
FPGA could prove useful in more generalized real-time feedback protocols.

Continuous measurements could also be used to probe questions more grounded in physics
[48]. With its flexible nature, cQED allows for the simulation of many quantum systems.
Collective phenomena such as superradiance, in which atoms get synchronized via a common
mode to emit coherently could be observed under continuous measurement [117]. One could
observe how trajectories change when these collective systems cross a phase boundary. With
the improvement of microwave photon detectors [118], one can additionally consider unrav-
eling these trajectories using photodetectors as well as homodyne and heterodyne detectors.
It remains to be seen what dynamics could be generated in these larger system under the
influence of feedback.
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Appendix A

Making a Continuous Feedback
Controller

The electronics controlling quantum circuits need to be fast enough to operate on the
timescales of the qubits, parallel enough to route and process multiple streams of data,
and deterministic enough to make sure that every pulse sent to or received from the quan-
tum chip happens exactly when expected. Field Programmable Gate Arrays (FPGAs) are
the answer to this call. FPGAs are digital integrated circuits allowing configurability of
digital logic to a point just shy of having to making an entirely new piece of silicon.

A.1 FPGA basics

FPGAs are enormously complex devices, as can be verified by looking at an FPGA datasheet.
We will not get into the details of all the individual features, though you are encouraged
to actually look at a datasheet. Instead we hope to convey a framework in which to think
about FPGAs. There are two and a half main ingredients in an FPGA: the routing fabric,
the processing blocks, and I/O interfaces.! The routing fabric does just as its name suggests
and routes signals around the chip. The fabric consists of wires periodically going through
switchboard-like structures which can be reconfigured after power-up to electrically connect
different wires together. When programming (i.e. configuring or flashing) an FPGA, the
main role of the bitstream (i.e. configuration file) is to set the correcting wiring on these
switchboards.

The second set of components is the processing blocks. These are atomic digital circuits
built into the silicon of the FPGA. They have input wires where signals come in and output
wires where processed signals come out. The primary components are know as logic blocks

IThe I/O blocks count as half mostly because they almost fall under the category of processing blocks.
However they are special in that they form the boundary between internal FPGA logic and the external
environment of the PCB. They can have advance features such as integrated (de)serialization, voltage control,
and encoding/decoding logic.
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Figure A.1: Inside an FPGA. (a) FPGA wire routing is shown in blue. At the intersections
of the wires, there are are switches to route the signals in a configurable manner. Example
processing blocks such as adders (square) and multiplexers (trapezoids) are shown in the
middle of the routing. (b) Example of a “programmed" FPGA. Two bits are added together
and the result is used to select one of two remaining inputs to be an output.

and comprise look-up tables, multiplexers (muxs), and registers. Logic blocks take up most of
the physical space on the FPGA, numbering in the tens or hundreds of thousands on a single
device. Additionally, FPGAs can have more specialized processing blocks such as dedicated
multiplier and RAM modules. These blocks also have run-time static configurations which
are set when loading the bitstream onto the FPGA.

A model of an FPGA is shown in Fig. A.1. The programmer’s job is to route incoming
signals from the outside world to internal blocks which process the data, and then route
the results back out of the FPGA. This is accomplished through a hardware description
language (HDL) such as VHDL or verilog, which describes these connections, though at a
much higher level than the atomic processing blocks! That being said, the source code of an
FPGA mirrors the framework of the FPGA itself in that they define modules? with inputs
and outputs. As visualized in Fig. A.2, there is a top level module for the entire device
which contains submodules which can in turn contain more submodules, and so on. For
example, if someone else has programmed a module to increment every clock cycle, then it
can be incorporated into a module using the following VHDL code:

inst counter : Counter
port map(
Clock = sys_clk,

20ften these modules (aka blocks or cores) are called IP blocks, which often gets shortened to just IP.
IP stands for intellectual property, with IP blocks referring to proprietary blocks.
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Figure A.2: Sample hierarchy of HDL source files, which eventually get compiled onto the
FPGA. Modules have inputs and outputs, and can instantiate other modules as submodules.
The wires connecting to the outside get mapped to physical FPGA pins as described in a
user constraint file not shown here.

active => enable ,
reset = rst,
count out => counter

);
Here, we have made an instance of a counter and hookup its input wire to the system clock
(sys_clk), and hook its output to a wire called ‘counter’ which we can now use for something
else. We also add two extra inputs, an enabling wire “enable” and reset wire “rst”. Modules
also contain elements called processes. These contain the information to update the values
of wires using conditional logic, allowing for step by step computation. For example, if we
could not find a module for counting, we could make it ourselves inside a process:

process(sys_ clk) begin
if (rising edge(sys clk)) then
if (rst = '1") then
counter <= x"00";
elsif (enable = '1")
counter <= counter + 1;
else
counter <= counter;
end if;
end process;
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Processes are all instantiated independently of one another, allowing for mass parallelization.
However, there are limits as to how complex a single process can get. All the logic inside a
process must get accomplished within a clock cycle. If the logic becomes too complex (say
one tries to add sequentially add five or six 16-bit numbers together in series), then the time
for this procedure to have a stable output on all wires might be longer than a clock cycle.
This leads to unexpected and possibly non-deterministic behavior. Fortunately, there are
simulation tools which can tell if your code will break this timing constraint.

FPGAs, as with other digital integrated circuits, run on clocks, which synchronize logic
throughout the device. Clocks are dedicated signal lines which periodically toggle between
on and off. These signals can be generated with dedicated clock circuitry on the FPGA or,
as with this board, can be generated off-chip. Ideally, on the rising edge of a clock, all wires
have a stable value. When the clock rises, elements called registers change their output state
to match their input state, and then hold that value. The logic is then in an unstable state,
with the old outputs not valid for the new inputs, but quickly stabilizes as the new logic
propagates. If all the timing constraints are met, then the logic will be stable when the next
clock cycle rolls around and the race begins again. One thing to bear in mind is that FPGAs
can run multiple clocks, where logic running on a particular clock is said to be in a clock
domain. Trying to “cross domains" can lead to unpredictable behavior. For example, trying
to pass a multi-bit value over a clock domain can cause some bits to lag or lead by a clock
cycle in the new domain, leading to nonsensical results. The proper way to do this transfer
is through first in, first out (FIFO) buffers, which keeps data synchronized at the cost of
some small time delay.

Writing, simulating, and compiling

The code for this thesis was written partially in VHDL, and partially in a graphical interface
using Matlab Simulink. Simulink is a Matlab tool for diagrammatic programming (drawing
wires between processing boxes). Although Simulink’s main purpose is to simulate models
in control systems, this framework overlaps nicely with describing data flow in FPGA logic
(also wires and boxes). Using the System Generator for DSP (digital signal processing)
plugin from Xilinx, one can create and simulate modules which can then be compiled into
HDL files and integrated into the rest of the VHDL codebase.

Using this method of coding has some advantages and disadvantages. The main upside
is that it is very easy to visualize at a high level how data is moved around, and is very
beginner friendly. It is easy to trace the path of any signal. Testing is quite straightforward,
though I never tried automating tests. The downsides of using Simulink are that conditional
logic is difficult to directly implement, and, since simulink files are binary, version control is
non-transparent. Finite state machines (FSMs), a critical concept in FPGA programming,
are a mess if done purely diagrammatically, but straightforward in VHDL. Although there is
supposedly a way to include VHDL code blocks into Simulink, I found this to always crash
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Figure A.3: Using Matlab simulink to write for an FPGA. Wires are made between blocks
in a GUI and blocks are can be inspected to tailor their behavior.

the program.> When writing FSMs in Matlab, I used a variation of Matlab m-code, which
is less preferable than VHDL. As a minor point, Simulink models can only have one clock.

In order to synthesize a design (i.e. compile it to an FPGA), one also needs a user
constraint file. This maps the input/output wires of the top level HDL file onto the physical
pins of the FPGA. This file also contains information on what speed the various clocks are
expected to run at, which allows the compilation tools to know when to stop optimizing
circuit placement (because timing is met), or throw a warning (because timing is not met).
The constraint file can also limit where certain modules are allowed to be physically placed
on the FPGA. It is an enormously complex global optimization task to try to shove all the
code onto the physical logic cells in a giant uniform mess. By adding area constraints, all
logic cells in the constrained modules are physically bundled together within a discrete areas.
As a result, the compilation is more likely to succeed.

Simulation and testing are extremely important! Starting with the HDL and simulink
files, there is an entire stack of compilers which transform your code into the final bitstream,
the configuration file which is actually uploaded to the FPGA at run time.* Compiling
everything from source to bitstream for the works in this thesis took on the order of 1-2
hours. Additionally, once the code is on the FPGA, it is inside a black box, with limited
opportunity to peek inside. Once you compile, you want to be sure that it will run properly.
As mentioned above, Simulink can run a simulation for the code written in Simulink. VHDL
code can be simulated in software such as ModelSim, though for the VHDL in this thesis,
we primarily used the simulator built into the Xilinx design suite (ISE).

3This error occurred in Matlab R2013b, which is recommended by the manufacturer of the FPGA board.

4This upload is done every time the host computer is power-cycled, and doesn’t add any time to the
booting process. Once the FPGA is programmed, loading the soft configuration of the internal waveform
generator and feedback parameters is near instantaneous.
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Although ISE has now been replaced by Xilinx’s Vivado software, since we are using a
Virtex-6 chip, we are tied to using ISE for all of our compilation steps.® This compilation
process on a secondary computer with ISE installed. As previously mentioned, there are a list
of steps to go through for compilation: synthesis, translation, mapping, place & routing, and
bitstream generation. One can also use an internal ISE GUI called PlanAhead to visualize
and potentially modify the area constraints in the user constraints file. After placing &
routing, the FPGA configuration is completely determined. One can then check if all the
timing constraints are met. If they are, then this mid-level code is ready to be further
compiled into a bitstream and sent to the FPGA. Otherwise, one can determine “how bad”
the timing violation is. If there are a small number of small violations, the map compilation
step can be run again with a different seed in order to insert some randomness into the
compilation. (The compilation is otherwise deterministic.) If the violations are large, or the
reseeding does not help, then either the area constraints need to be modified, or extra delay
is needed in critical time paths. It is helpful to consult PlanAhead, where one can check
where all the logic elements from a particular module were placed on the chip. if they are
far from where it would make sense for them to be or if they are scattered throughout the
chip, the constraints file can be modified to mitigate these effects.

Once the bitstream is generated, it needs to be loaded onto the FPGA. With the board
used for this thesis, the loading was done over a JTAG connector with the Impact tool
inside ISE. Once loaded onto the FPGA, then the only way to check internal logic is if you
had the foresight to put virtual probes inside your code. These were done in this project
using ChipScope IP cores. When certain conditions are triggered, these cores will record
and transmit data back to the computer over JTAG. Although everything should work as
in the simulations, this is still an invaluable debugging tool. Although the simulations are
accurate, sometimes the stimuli are not as expected, or something gets driven into a strange
configuration.

A.2 A board for control

An FPGA alone is not enough to drive transmons and readout their state. The quantum
system needs analog inputs and outputs, and the FPGA is entirely digital. The FPGA
therefore needs to be connected to analog to digital converters (ADCs) and digital to analog
converters (DACs). The FPGA also should be able to stream data back to the computer on
the order of GB/s. Given that this is a very challenging task, we opted to buy a commercial
board with these components all integrated on a single module. Our only task is then
to reprogram the FPGA in order to implement our custom arbitrary waveform generator
(AWG) and feedback code. Here we discuss the board we chose to implement our code on.

50pen source compilation chains exist, but were not used for this project.
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The integrated solution

The board we used for both of the projects in this thesis was the X6-1000M board from
Innovative Integration. This board is built around a Xilinx Virtex-6 SX475T FPGA. The
FPGA is connected to two ADC chips (TI ADS5400) and two DAC chips (TT DAC5682Z).
The ADC chips digitize signals at 1 GS/s with 12-bit resolution. The 16-bit DAC chips each
has two outputs, and can be run with one output running at 1 GS/s, or with both outputs
independently effectively running at 500 MS/s such that data rate from the FPGA to the
DAC chip is always 1 GS/s.°

The board also pairs with a bridging board to plug into a high speed PCle slot on a
computer. The board additionally has RAM chips to act as large FIFO buffers to make
sure no data is lost as it is transferred to the computer. As configured for the AWG, there
are four “fast channels” streaming back to the computer, each using one of these buffering
memory banks. These fast lanes use the Velocia/Vita packet protocol provided by Innovative
Integration and described in the user manual [119]. In addition, there is a slower channel
over the PCle designed to configure the “Wishbone” registers on the board. These operate
on a slower timescale and are not intended for streaming data or configuring large blocks of
FPGA RAM. Both the fast and the slow data lanes interface with the host computer using
a custom DLL based on Innovative Integration’s Malibou framework to expose these data
transfer protocols to python. A schematic of data flow and the various coding pieces are
shown Fig. A.4.

Along with the physical board, which comes as a turnkey device, we bought the FPGA
logic source code, called the Framework Logic [120]. Tt contains the basic functionality to talk
to all of the other chips on the board as well as to the computer. As a result, we did not for
the most part have to deal with finicky hardware bugs, and could focus on implementing our
applications. The FPGA code we wrote for this project was built on top of this Framework
Logic.

Clock talk

The timing of the DACs and the ADCs is tightly controlled by hardware design of the X6
module. An external phase locked loop provides each of the four A /D chips with a clock line
and also feeds a local clock on the FPGA. This means that the front end logic communicating
for each A/D chip is on a separate local clock running at 250 MHz. Although these clocks
are phase locked, the relative clock phases are skewed. There is another phase-locked 250
MHz input which we use as a global clock to run our sequencing code. Much of the rest of

When running the DAC in 500 MS /s, the chip and outputs are still physically running at 1 GS/s, but the
incoming data is from the FPGA is interpolated so effective the bandwidth is 500 MS/s. The interpolation
unfortunately also adds an extra 88 ns of delay. One could in theory run the entire DAC chip on a 500
MS/s clock while still supply 1 GS/s of data from the FPGA for a latency of 72 ns, but this proved more
challenging to implement. Additionally, if run in interpolation mode, the output can be mode-shaped to put
the output power in the 250-500 MHz band.
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Figure A.4: Data flow through the system. Acquired data is streamed back to the computer
through fast lanes using off-chip RAM as buffering memory. Fast lanes are additionally used
to transfer sequencing instructions and pulse shapes to the FPGA. Extra configuration data
(not to be confused with the bitstream) can be sent to FPGA registers over the slow lanes.
These lanes are also used to read back status information. The FPGA Sequencer interacts
sends and receives data to and from the DACs and ADCs respectively. Processed data is
sent back to the computer. The ISE computer (used for bitstream compilation) programs
the FPGA with the bitstream over a JTAG connector.

the FPGA code is run on a global 260 MHz clock, allowing data to be shuttled around and
eventually sent back to the computer.

The first task when processing incoming ADC data is to synchronize the data coming
from both ADCs. We use FIFOs to bring the samples from the local clock to the global
clock and another buffer to ensure they are synchronized with each other. Data sent from
the sequencer to the DACs are similarly sent into FIFOs to cross into the DAC local clocks.
Once the samples are on this clock, the Framework Logic ensures that they are synchronized
to each other and to an external trigger provided at the start of every sequence. Additional
latency is artificially added if the DAC is run in single output mode at 1 GSa/s” so that it
synchronized when the other DAC is run in 500 MSa/s mode.

"Gigasample per second
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A.3 Writing an AWG for feedback

The first goal of the FPGA sequencer is to send qubit control pulses out via the DACs, after
which the pulses are unconverted and sent to the qubit chip. The waveforms coming out of
the DAC will be an envelope function (such as a Gaussian) which has modulated a digital
local oscillator inside a “pulse block.” This digital local oscillator frequencies are controlled
by “phase accumulators.” The waveform envelopes are stored in a bank of internal RAM,
and a “control unit” dictates when a particular waveform is to be played. The second goal
of the sequencer is to readout the state of the qubits. An external AWG sources the readout
pulses which are modulated, reflected off the quantum chip, and demodulated to intermediate
frequency (IF). This IF signal is read in by the ADCs and further demodulated to DC on the
FPGA board. The FPGA demodulation is performed similarly to the envelope modulation:
a bank of internal RAM holds pulses which are multiplied against the incoming signal inside
the “readout block” when the control unit dictates. The ultimate goal is then to link input
and output, using a feedback module to analyze the incoming data and determining when a
correction pulse is needed.

Control unit

The control unit for this project is relatively simple. An instruction memory holds commands
for the control unit’s finite state machine (the CUFSM) as well as timed commands for the
pulse blocks, control blocks, and phase accumulators. The instruction memory is 46 bits wide
and 16,384 deep. A 12-bit trigger counter counts the number of external triggers received
where each trigger represents a new set of pulses to be run. A 16-bit timer increments every
clock cycle to keep track of time. The control unit enqueues timed commands into one of
ten FIFOs (for ten destinations) which wait until the timer matches the release time and the
trigger counter matches the pulse’s trigger number.
The format of CUFSM instructions is

Unused | Arguement | Command
29 bits 14 bits 3 bits

The command bits contain a number from 0 to 5 with definitions are as follows:

0: Enqueue the next Arguement commands in the instruction memory as timed com-
mands.

Unused. (historical)

Jump to the address in instruction memory as specified in Arguement.®

Return to the address instruction memory just after the last jump command was called.
Reset the timer, and wait for the next trigger

Reset the timer, reset the trigger, and send the instruction pointer back to zero.

8The jumping commands (3 and 4) were to be used as a compression technique, but never put into
practice since we almost never ran up against the depth of the instruction memory.
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The format of a timed command is

Block Command | Time (in ns) | Destination
24 bits 18 bits 4 bits

Destination is one of 10 locations (4 DACs [via 2 pulse blocks|, 3 phase accumulators, 2
readout blocks, and 1 feedback signal). Time is the number of ns since the time of the last
timed command for the next command to launch. Since the FPGA is on a 4 ns clock, the
last two bits of Ttme cannot be used to compare with the timer. Instead, these two bits are
tacked onto the end of the block command (making it 26 bits) before it is enqueued.”

Pulse block

There are two pulse blocks implemented, each associated with a DAC chip. The pulse blocks
hold the envelope waveforms in RAM. To supply a sample on every nanosecond, 4 samples
per clock cycle need to be looked up. Additionally, the envelopes are complex with 16-bit
resolution for both the real and imaginary components. In total, there are 8 numbers to look
up every clock cycle,!? so 8 banks of RAM are used, each with depth 4,096. Therefore, the
sum time of all the stored pulse is 16,384 ns, which was virtually never a limiting factor.

The pulse block can be used in either single output mode for a sampling rate of 1 GSa/s,
or in dual output mode for two outputs each with 500 MSa/s sampling rate. When sending
loading samples to the FPGA, the sample data is sent using the following format, with
subscripts referring to nanoseconds:

Single output | Img Im, Im; Img Res Rey Req Reg
Dual output Img“c1 Imgac0 Img“‘Cl Img“CO Reg“Cl Regaco Regac1 Reg’aco

We implemented a barrel shifter to dictate where the first of the 4 samples should start to
ns accuracy, or 2-ns accuracy in dual output mode.

Each pulse pulse block also contains 4 DDS generators, which generate the sine and cosine
components of the complex modulation from one of the phase accumulators. The complex
envelope is multiplied against the complex modulation, after which the real part is taken
and sent off to the DAC.

The block command for the pulse block (coming from the control unit) has the following
structure:

Duration (ns) | Instruction Address | LO Choice
10 bits 12 bits 2 bits

90nly the pulse blocks and phase accumulator can use this extra 2 bits for ns resolution. If a pulse block
is run in dual mode (2 outputs at 500 MHz), then only the first of the two bits is used. If these two bits are
non-zero in a command to another block, such as a readout block, the behavior will not be as desired, and
will cause unexpected rotations in readout. This is only protected against in software.

10Tf the end of one pulse happens “off a clock cycle” and another one starts immediately, two numbers
need to be looked up from the same RAM, but the RAM used is dual read, so that is ok.
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LO choice selects one of the three phase accumulators, thus choosing the frequency to mod-
ulate against. The instruction address gives the starting location of the pulse envelope. The
duration is the duration of the pulse in ns.

Phase accumulator

There are three phase accumulators implemented, each associated with a qubit and its
modulation frequency. The frequency is set before the experiment by changing a register
dictating how much phase to accumulate each clock cycle. The block outputs 4 phases
per clock cycle, each corresponding to a particular nanosecond offset. The control unit can
send block commands to the phase accumulators to implement virtual Z gates [121]. These
commands take the following form:

Unused | Phase shift
8 bits 16 bits

where the phase shift has the range |0, 1) representing 0 to 27, with resolution of 2.
The phase accumulators themselves use 30 bits of resolution for a future-proof 230 mHz of
resolution.

Readout block

There are two readout blocks, each associated with a readout frequency multiplexed on the
same RF line. When the reflected readout tone comes out of the cryostat at 6 GHz or
so, it is demodulated using an IQQ mixer, with the I quadrature feeding ADC 0 and the Q
quadrature feeding ADC 1. By treating the two inputs as the real and imaginary parts of
a complex signal, the IF tone is selectively at a positive or negative frequency component
in frequency space. Similarly to the pulse block, the readout block has 8 banks of RAM
containing the real and imaginary parts of the complex conjugate of the desired signal to
extract within a 4 ns window. Again, each RAM is 16 bits wide and 4096 samples (16,384
ns) deep. Unlike the pulse blocks, there is no extra modulation step: the signal stored in
RAM is already modulated and ready to multiply against the incoming data.l’ After the
multiplication (i.e. demodulation), the signal is filtered with a sliding exponential filter as
an anti-aliasing device. This filter can be configured to have a time constant of 0, 32, 64, or
128 ns. This filtered data is then sent out from the block for feedback analysis or streaming
back to the computer.

The block command for the readout block (coming from the control unit) has the following
structure:

HSince the stored waveform is already modulated, we need to play tricks to readout longer than 16 ps.
We can do this by storing a chunk of readout waveform twice as large as an “atomic readout” and then
replaying parts of this waveform having precomputed a starting phase for each section of readout. This
requires the frequency to be higher than an inverse atomic integration time, and incommensurate with the
250 MHz FPGA clock.
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Unused | Duration (clks) | Instruction Address
2 bits 10 bits 12 bits

The instruction address gives the starting address in memory for the pulse. The duration is
given in clock cycles, since the readout block does not have barrel shifters implemented for
ns resolution.

Feedback block

The feedback block is specialized for the continuous error correction protocol. It takes in
data from the readout block and applies an exponential filter of a much longer time constant
(in increments of 256 ns) to cut down on stochastic noise. This filter is reinitialized to
a programmable preset value when the feedback ends. The pigpen thresholding scheme
describe in Chapter 5 is then applied. When the filtered trace enters one of the “error pens”,
the thresholds are reflected around the correct axes in voltage space such that the voltages
are no longer in an error pen. After a “loop delay,” the time it takes for the feedback pulse
to have taken effect, the voltage would start trending back to the original voltage quadrant,
which is now an error pen. To prevent this, after a loop delay, the correct voltage trace(s)
is inverted before going into the stochastic filter. This means that even though the true
voltage flips after a correction pulse, the effective voltage as seen by the thresholding scheme
is unchanged in sign.

When the feedback detects an error, it sends out a signal to the control unit encoding
which qubit needs correction. There is a special block inside the control unit which injects
predefined block commands immediately to every pulse block. Only the relevant pulse blocks
get actionable commands,'? at which point they send out the corrective pi pulse.

The feedback block gets block commands from the control unit in the form:

Unused | Duration (clks) | Initial Ry Parity | Initial Ry Parity
6 bits 16 bits 1 bit 1 bit

The initial Ry and R; parities tell the feedback block whether the parities are initially even
(0) or odd (1). This value tells the stochastic filter the correct initial value as well as how to
set up the pigpen thresholds correctly. The duration represents the duration of the feedback
in clock cycles.

Data streaming

The RAM blocks of the control unit, pulse blocks, and readout blocks are loadable through
the use of Velocia/Vita packets, the fastest and most efficient way to transfer data to the
FPGA. Other small configuration numbers for the FPGA such as qubit modulation frequency
and feedback thresholds are configure through the Wishbone registers.

12Due to crosstalk cancellation, the pi pulses on @y and Q3 have weight on both drive lines 0 and 2.
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There are up to four output data channels to stream back to the computer simultaneously
over the Velocia/Vita channels. The channels have the following possible streaming sources:

Channel
Source
Raw ADC 0 X
Raw ADC 1 X
Raw DAC 0 X
Raw DAC 1 X
ADC demod /filtered 0 | X X
ADC demod /filtered 1 X
Command unit data X
Feedback filtered data XX

X
X

Raw ADC data allows streaming from a particular ADC on the board. Raw DAC is the raw
signal sent to the DAC chip. Both of these raw values are used for diagnostic purposes and
not on a regular basis. The ADC demodulated data is the output of the readout block (V;P¢
in chapter 5), which is further binned and averaged. Typically, this averaging bin size was
chosen to be 32 ns, allowing for efficient streaming while still being able to resolve continuous
dynamics. Choosing command unit data streams back time-stamped versions of every block
command coming from the command unit. This is useful for diagnostics but primarily used
to get timing data as to when feedback pulses occurred. The feedback filtered data is the
heavily filtered signal trace used for feedback (V; in chapter 5) and is used as a diagnostic to
verify the accuracy of the filter.

A.4 Computer interface

Data streaming from the FPGA can be very demanding on bandwidth. The FPGA board
uses direct memory access (DMA) to transfer data directly to a dedicated block of computer
RAM, which acts as a computer-side memory buffer for streaming data. This process is
controlled by a dynamic-link library (DLL) written in C-++ based on the Malibou framework
provided by Innovative Integration. This code includes board initialization procedures and
access to Wishbone registers as well as the ability to stream data.

The main purpose of the DLL is to expose board functionality as “quickly” as possible
to python and minimize the amount of code written in C+-+. Basic functionality such
as opening the board and accessing the registers were wrapped and exposed in the DLL.
Large data transfers, such as sending data to configure the AWG RAM, are accomplished
by creating the data in numpy arrays, which can then be accessed by the DLL layer and
transferred to the board. When receiving data, the python layer initializes numpy arrays,
and as data comes into the computer, the DLL layer copies the data from the computer’s
DMA RAM buffer to these arrays.
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Python interface

The lowest level python module is the II_Board_Interface of ii_fpga.py. This provides
the wrapper class for the functions in the DLL. For the parity project, this is sub-classed by
the Parity_Board in ii_parity_board.py, which has code specific to the implementation
of the AWG sequencer on the FPGA. The primary functions are

e open: creates a connection to the board.

e start_streaming: starts the ADCs and DACs (though does not output any waveforms
or acquire data). Usually only needs to be run after opening the board.

e load_config: loads the a configuration dictionary with all data to run a sequence.

e start_acquire: starts the FPGA listening for triggers.

e acquire: blocks python until all the expected data is acquired or a timeout is hit.
Returns the acquired data.

e close: closes the board in a clean manner. Nothing bad happens if the python session
ends without closing the board.!?

In practice, the Parity_Board object is instantiated as part of the initialization of a Parity_-
Experiment object, which also has control over the other instrumentation including the
external AWG which controls the FPGA trigger. The Parity_Experiment.acquire_ii is
then typically used to acquire data.

The configuration dictionary for the Parity_Board is typically generated by compil-
ing a sequence. First an “AMiable Sequence” is generated using the Sequence object in
amiable_sequencer.py. This sequence is then compiled through seq_utils.standard_-
compile, which uses functions in ii_pulse_parser to generate a compiled sequence for
the external AWG as well as a configuration dictionary for the FPGA and RO_slices,
which is related to the FPGA readout. This is all the configuration technically needed to
load and run an experiment. However, we have one more convenience layer, the FPGA_-
Measurement object in fpga_measurement.py. The output of standard_compile can be
used to initialize an FPGA_Measurement object which can be made to hold metadata for
the sequence as well as an RO_map object, which holds information on how to process data
coming from the FPGA. This RO_map maps demodulation elements of the AMiable Se-
quence to an fpga_measurement.RO_settings object, which dictates how the data will be
post-processed. This FPGA_Measurement is then loaded into the parity experiment using
Parity_Experiment.set_measurement. Examples of sequences are in seq_utils.py.

13The MemDrv Controller, an Innovative Integration applet, may need resetting before restarting.
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