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Abstract

Motivated by the search for a microscopic description of spacetime and the study of quantum

chaos, this thesis explores deformations of the Sachdev-Kitaev-Ye (SYK) model. These deformed

models exhibit a rich holographic landscape and provide rare examples of strongly coupled

systems with non-trivial and tractable thermal RG flows. We start by studying thermodynamics

properties the flows. We find that, under certain circumstances, the thermal RG flow in the

strongly coupled infrared phase exhibits two regions of linear-in-temperature entropy, which we

interpret in terms of Schwarzian actions. We also find a novel model dependent zero temperature

entropy for a certain family of deformations. Conformal perturbation theory affords us analytical

control over the flows away from the near-conformal fixed point of the original Hamiltonian. We

show how this can potentially be used to engineer holographic geometries that contain a portion

of de Sitter space, if we allow our deformations to be non-Hermitian. We then turn to more

dynamical probes of the deformed models, focussing on Krylov complexity, which has recently

been proposed as a diagnostic of quantum chaos. By computing and comparing Krylov and

Lyapunov exponents in these deformed models we are able to show that, in all studied examples,

while the Lyapunov exponent can have non-monotonic behaviour the Krylov exponent behaves

monotonically, and in many cases provides a poor bound for Lyapunov exponent. We speculate

on the possibility that this monotonicity might be a generic feature of the Krylov exponent in

quantum systems evolving under unitary evolution.
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1 Introduction

This thesis is motivated by two distinct but deeply connected problems in theoretical physics. The

first is the search for a microscopic description of spacetime and the second is the study of signatures

of chaos in many body quantum systems. In this work we will explore both topics in the context

of simple but concrete models, where we are able to perform precise calculations both analytically

and numerically.

Motivation 1: A microscopic description of spacetime

A theory describing the thermodynamic properties of substances was known before a theory de-

scribing their particulate nature was fully developed. Nevertheless, the deep physical principle that

matter is made of particles had long been suspected. The application of mechanical laws to these

hypothesised particles, initiated by Bernoulli in 1738 [1] and with pivotal contributions by Maxwell

and Boltzmann in the mid-19th century [2,3], resulted in the dramatic mathematical realisation of

this principle. For the first time we saw the macroscopic properties of substances as emerging in a

precise way from the behaviour of their particulate constituents. Many of the great developments

in physics since then have come from revising the laws that should be applied to these particles in

light of ever developing observational and theoretical evidence.

It is possible that we find ourselves in an analogous situation with an entirely different kind

of ‘substance’ - spacetime itself. A compelling reason to think along these lines goes as follows.

In statistical mechanics we can compute the partition function of a thermal ensemble from the

Euclidean path integral of the theory. In the case of Einstein’s theory of gravity we can analogously

compute ‘thermodynamic properties’ of spacetimes via the gravitational path integral [4]. In this

scheme we compute the Euclidean path integral of the gravitational action and interpret the results

as thermodynamic quantities. We can speculate that these quantities are more than just an analogy

and picture the gravitational action as an effective action for some underlying theory containing

microscopic degrees of freedom. In other words we may think of spacetime as emerging from

‘particles’.

Though this idea may seem superficial at first, there has been strong theoretical evidence in

support of it. The story of combining thermodynamics with general relativity began with the
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study of black hole thermodynamics, initiated by Bekenstein [5] and Hawking [6]. Their arguments,

which were independent of the gravitational path integral, led to the conclusion that black holes are

thermodynamic objects that carry an entropy proportional to one quarter the area of their horizon

SBH =
Ahor

4

(
kbc

3

~G

)
+ · · · . (1.1)

Notably, the entropy of a black hole is a factor of ∼ 1019 times greater than that of a star of

the same mass. Though it is not clear how we should interpret this entropy, its enormous value

suggests that it is counting more than the states of ordinary matter that could be associated to

the black hole. Moreover, as the appearance of both ~ and G in the formula suggests, this entropy

must combine both gravitational and quantum mechanical effects. It is also telling that, to leading

order, the entropy of black holes as calculated from the gravitational path integral gives the same

result. Such a calculation provides quantum corrections that any candidate theory of quantum

gravity should be able to predict.

The fact that the entropy of a black hole scales with its area and not its volume led to the

conjecture of the holographic principle [7, 8], that the information content of a region of space

can be encoded on its boundary. The most famous realisation of this principle in a concrete

model is called the AdS/CFT correspondence [9]. The AdS/CFT correspondence claims a 1-1

correspondence between states in a string theory containing gravity in AdS5 × S5 and N = 4

Super Yang-Mills, a conformal field theory without gravity that lives on the AdS5 boundary. It is

hoped that other dualities exist along the lines of the AdS/CFT correspondence that can provide a

new way to understand theories of gravity and the emergence of spacetime. Of particular interest

would be to find a holographic dual to de Sitter space, providing a microscopic model in which test

ideas about our own expanding universe. Despite various proposals, the lack of natural boundary

at infinity to anchor the dual theory makes this a particularly difficult problem and a definitive

framework remains elusive; see [10] for a recent review.

The pursuit of a microscopic description of spacetime is more than just a theoretical curiosity.

Firstly, a description of spacetime, based on the theory of General Relativity, is known to break

down in regimes of high energy or short distances (UV). Most famously General Relativity predicts

singularities at the centre of black holes and at the beginning of the universe. Such problems cannot

be resolved by an effective theory of quantum gravity based on quantising the Einstein Hilbert action
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and it is likely that a microscopic UV completion will be needed. But it is not only in the UV that

a microscopic description of spacetime might be crucial. Problems such as eternal inflation [11,12],

the black hole information paradox [13, 14] and the cosmological constant problem [15, 16] all hint

at a possible breakdown of effective field theory low energies or long distances (IR) and the need

of a microscopic model to shine a light on these problems. The cosmological constant problem

is a particularly illustrative example of this. This constant, needed to describe the accelerating

expansion of our universe, has a current measured value of [17]

Λ = 1.1056× 10−52 m−2 , (1.2)

which differs from the naive quantum field theory estimate by ∼ 120 orders of magnitude [15, 16].

This small positive constant is thought to account for ∼70% of the energy content of the universe,

and yet we have not found a fundamental explanation for its observed value. Nonetheless, the

thermodynamics of de Sitter space give a deep clue that a microscopic description is needed. The

leading term of the entropy of de Sitter, found by the gravitational path integral, is found to

proportional to the area of the cosmological horizon,

SdS =
Ahor.

4

(
kBc

3

~G

)
+ · · · = 3π

Λ

(
kBc

3

~G

)
+ · · · . (1.3)

This remarkable formula binds the value of the cosmological constant to a microscopic description

of spacetime, and just as in the case of the black hole, the fact that it follows an area law hints

that this description should be holographic.

Motivation 2: Diagnosing quantum chaos

In classical systems, chaos is diagnosed by exponential sensitivity to the initial conditions of a

system. Quantum mechanics however is governed by a linear equation, excluding the possibility of

such a definition. Nonetheless, given that chaos can exist in the classical limit of quantum systems,

it is natural to ask what the underlying signatures of chaos are in quantum systems. The study of

such signatures falls under the umbrella of quantum chaos.

In quantum many body systems diagnosing chaos presents a further challenge: dynamical probes

are typically hard to compute, in part due to the fact that the Hilbert space grows exponentially
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with the number of constituents. This difficulty is even more pronounced in quantum systems that

are strongly coupled and quantum chaotic. Despite significant progress in the area [18], defining a

good quantum signature of chaos valid for all time scales can be difficult. The situation improves

when the quantum system has some intrinsically small parameter, such as in large N theories or

those with a semi-classical limit. Following the use of the exponential growth of the Poisson bracket

as a function of time [19] to diagnose classical chaos, one might hope that in a quantum theory

with a semi-classical limit, the commutator of simple (local) operators might be related to quantum

chaos. Indeed, in such systems the square of the commutator [20] was found to grow exponentially

with a growth rate λL, known as the Lyapunov exponent. Further, it was shown in [21] in local,

unitary quantum systems the Lyapunov exponent satisfies,

λL ≤
2π

β
, (1.4)

thus setting a bound on quantum chaotic behaviour. There are, of course, other interesting quan-

tities to diagnose quantum chaos, such as the onset of random matrix statistics [22], the spectral

form factor [23] or quantum circuit complexity [24,25].

Another related quantum signature of chaos comes from the idea of operator growth. The

intuition is that, if the Hamiltonian is chaotic, an initially simple operator will grow exponentially in

complexity under Heisenberg time evolution. As opposed to the Lyapunov exponent, this concept

does not require a small parameter. Recently, the use of Krylov subspace methods has been

proposed to quantify this idea of operator growth [26].

Since their conception in 1931, Krylov methods have played an important role in mathematics

and theoretical physics [27]. Their main feature is to project a higher-dimensional (computationally

hard) problem to a lower-dimensional one (approximate, but computationally more accessible).

Typical examples involve matrix diagonalisation or eigenvalue problems. In the case of operator

growth, the idea is to find the minimal subspace needed to follow the time-evolution of an operator,

without the need of diagonalising the full Hamiltonian. This is done by considering the subspace

spanned by the set of nested commutators of the operator with the Hamiltonian. The nested

commutators are said to form a basis of the Krylov subspace. It was conjectured that the properties

of this subspace can be used to diagnose whether the quantum system is chaotic or not by using

the operator growth hypothesis [26]. Since then a critical amount of work has been devoted to
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understand and test this hypothesis in different quantum systems. See [28], and references therein,

for a comprehensive review of recent results on the subject.

As a quantitative measure of operator growth, the concept of Krylov complexity was coined

in [26]. Under certain assumptions that we will discuss later, this complexity grows exponentially

with time in chaotic systems, and it was conjectured that the exponent, called the Krylov exponent

λK , would serve as a tighter bound for the Lyapunov exponent (when this one is well-defined),

namely,

λL ≤ λK ≤
2π

β
. (1.5)

As we will see, while the Lyapunov exponent appears require the computation of the four-point

out-of-time-ordered correlator, the computation of the Krylov exponent only requires knowledge of

the two-point function of the operator. Then, if the left bound turns out to be tight, this gives a

computational advantage to λK as a probe of quantum chaos. Given this potential advantage and

the fact that a semi-classical or large N limit is not needed, it is important to understand whether

Krylov complexity can serve as a more general diagnosis of chaos.

A tractable model at the intersection of holography and quantum chaos

Whilst the AdS/CFT correspondence was a significant achievement, its computational challenges

limit its usefulness as a tool for understanding quantum gravity. At the same time studies of

many body chaos are hampered by the complexity of the systems involved. Fortunately, there is

a model that lies at the intersection of these two fields that is complex enough to capture their

essential features while still being simple enough to remain highly solvable. This model is called

the Sachdev-Kitaev-Ye (SYK) model.

The SYK model is a many body quantum mechanical model in 0 + 1 dimensions, consisting

of Majorana fermions with random all-to-all interactions. A version of the model was originally

proposed by Sachdev and Ye in 1992 who used the model to study strongly correlated materials [29].

The model was later revisited by Kitaev in 2015 who proposed using a simplified version of the

model in the context of AdS2 holography [30]. Moreover, Kitaev showed the SYK model to be

maximally chaotic at low temperatures by virtue of it saturating the chaos bound (1.4) [30,31].

Extending Kitaev’s insights, an explicit duality between the SYK and AdS2 dilaton gravity (JT

gravity) was found [32–34]. As well as describing the AdS2 black hole, this theory has quantum
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fluctuations coming from boundary dynamics that are described by the SYK model. It is also worth

noting that since JT gravity universally describes the near horizon behaviour of near-extremal black

holes in higher dimensions, the duality should also capture important properties of astrophysical

black holes; see e.g., [33, 35] for a discussion. From the holographic perspective, the saturation of

the chaos bound provides evidence towards black holes being the fastest scramblers in nature [36].

A new direction in SYK research and holography

Studying the SYK model at strong coupling has been extremely fruitful, yielding many insights

in the context of both holography and many body chaos [26, 31, 37–45]. Nonetheless, the need for

concrete and tractable models in both quantum chaos and holography remains. In this thesis we

look to address this problem by opening a new chapter in the study of deformed SYK models and

holography. Our goal is to perform a systematic study of relevant deformations of the SYK model,

examining their rich thermodynamic and chaotic behaviours and exploring the new holographic

possibilities that they present. We will do so by employing cutting-edge numerical methods (see

section 3) alongside innovative analytical techniques to extract a collection of precise and insightful

results.

Concretely, the SYK model admits a rich landscape of relevant deformations that take the form

of another SYK Hamiltonian with fewer fermions in each interaction term [46–55]. These deformed

models can have highly non-trivial behaviour in the infrared. We will examine the Hamiltonian

Hq = i
q
2

∑
1≤i1<i2<···<iq≤N

Ji1i2···iqψi1ψi2 · · · ψiq , q ∈ 2Z+ , (1.6)

deformed by an operator sHq̃i with q̃ < q, where s is a dimensionless coupling and ψi are N

Majorana fermions. The couplings of both Hq and Hq̃ are drawn from a Gaussian ensemble. For

such a deformation, provided that s is small enough, as we flow towards the IR of the theory we

first reach the IR fixed point of the original SYK model described by JT gravity before flowing to a

new fixed point in the deep IR of the model. Studying these deformed models along their thermal

RG flow we uncover a diverse and noteworthy set of behaviours. These include, for example, a

zero temperature entropy that varies continuously with model parameters, and the possibility for

a worldline theory residing in the interior of their holographic bulk [54].

We further enhance the richness of the flows by considering deformations built from concate-

12



nating multiple SYK Hamiltonians. This opens up a vast landscape of holographic geometries that

could potentially be realised by these models. By developing new techniques in relevant conformal

perturbation theory, we gain analytical control over these flows in the vicinity of their first fixed

point. We exploit this to explore the possibility of engineering new holographic geometries, includ-

ing ones that contain a portion of de Sitter space [56, 57]. This could perhaps open new avenues

for exploring the holographic nature of our own expanding universe, providing a complementary

approach to active research in this direction [58–60].

The flows also include the possibility of transitions between different regions of near-maximal

chaos or transitions between near-maximally chaotic and integrable behaviour. This provides a

unique opportunity to test out signatures of quantum chaos in the context of these highly non-

trivial behaviours. We make use of this to test the robustness of Krylov complexity as a diagnostic

for quantum chaos that has recently attracted significant research attention [26, 28, 61–69]. This

leads us to make a novel conjecture about the growth of the Krylov exponent, which sharply

contrasts it to that of the better established Lyapunov exponent [70].

These deformed SYK models offer a unique example of strongly coupled systems with complex

yet tractable thermal RG flows. We hope this new chapter in their study can continue to provide

new and interesting insights into the nature of chaos and holography.

Outline of the thesis

The thesis is structured as follows. In section 2 we review the relevant background material needed

to motivate and develop the results of this thesis. In section 3 we give an overview of key method-

ologies used in the thesis by detailing the numerical techniques used to investigate the deformed

models. The main results of the thesis are then presented in the following three sections.

In section 4 we study deformed SYK models with a single unitary deformation. These models

correspond holographically to flow geometries that interpolate between two Euclidean near-AdS2

spacetimes with different radii. We significantly generalise the study of these deformed models

beyond the analytically solvable regime studied in previous work [52,53], establishing new insights

including a non-trivial model dependent zero temperature entropy and the fact that relevant con-

formal perturbation theory can be used to describe the flow.

In section 5 we extend our analysis to multiple deformations and allow for non-unitary models.
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From the holographic perspective, these deformed SYK models open up a far richer set of bulk

geometries. JT gravity can be generalised to a set of dilaton gravity theories that describe a

much more general set of two-dimensional spacetimes than just AdS2 [71]. In particular these can

describe a geometry that is asymptotically AdS2 but flows to dS2 in the interior [56,57,72]. In this

section we provide evidence towards the idea that deformed SYK models may be able to realise

such geometries, if we allow ourselves to consider non-Hermitian models.

In section 6 we return to considering single, unitary deformations, and use the flows to test

Krylov complexity as a diagnostic for quantum chaos. We find that while the Lyapunov exponent

can have non-monotonic behaviour along the flows as a function of temperature, in all studied exam-

ples the Krylov exponent behaves monotonically. Moreover, we show that although in undeformed

SYK model the Krylov exponent is found to equal the Lyapunov exponent at all temperatures, in

the case of the deformed model the two can diverge significantly, rendering the Krylov exponent a

poor measure for diagnosing chaos in such models.

Finally, in section 7 we present our main conclusions and outlook. In particular, we speculate on

the need for open quantum systems in the context of de Sitter holography. Further, we conjecture

that (as long as it is well-defined) the Krylov exponent has a monotonic behaviour along thermal

RG flows. It is hoped that these ideas could open up new directions in the study of chaos and

holography.
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2 Preliminaries

2.1 Quantum chaos

Dynamical information about a quantum system is encoded in its spectrum. This is therefore a

natural place to search for statistical signatures of chaos. In 1984, Bohigas, Giannoni and Schmit

stated the famous BGS conjecture that the spectral statistics of chaotic quantum system should

be described by random matrix theory (RMT) [73]. RMT was introduced initially by Wigner, and

later developed by Dyson and Metha [74–76]. The idea was that the eigenvalue statistics of heavy

nuclei are well described by that of random Hamiltonians - in particular by Hamiltonians whose

matrix elements are drawn from Gaussian distributions. Gaussian ensembles of n×n matrices have

probability density functions of the form

p({Hij}) = NβDe
−βD

4
Tr(H2) , βD = 1, 2 or 4 , (2.1)

where NβD is a normalisation constant and βD is known as the Dyson index. There are three

Gaussian ensembles, often denoted by their Dyson index. These are the Gaussian Orthogonal

Ensemble (GOE) with βD = 1, Gaussian Unitary Ensemble (GUE) with βD = 2 and Gaussian

Symplectic Ensemble (GSE) with βD = 4. These ensembles are defined on the spaces of real

symmetric, Hermitian and Hermitian quaternionic matrices respectively and the βD dependence in

(2.1) ensures that their probablity densities are invariant under orthogonal, unitary and symplectic

similarity transformations respectively. The BGS conjecture extends the idea of RMT to state that

any quantum system that displays chaotic behaviour in its classical limit should have the same

spectral properties as predicted by random matrices models defined by (2.1). In particular the

eigenvalue distribution of such models is given by [77]

P ({λi}) = NβD exp

(
−βD

4

n∑
i=1

λ2
i

)∏
i<j

|λi − λj |βD . (2.2)

We observe that the exponential term stops the eigenvalues form spreading too far from the origin

whilst the product term stops any two eigenvalues from getting too close to each other. A notable

consequence of the conjecture is that the distribution of the spacing between eigenvalues, s, expected
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for chaotic systems goes like p(s) ∼ se−s
2/4σ2

whilst that of an integrable system follows Poisson

statistics, p(s) ∼ e−s. The SYK model has been shown to have spectral statistics corresponding to

each of the GOE, GUE and GSE ensembles depending on the number of Majorana fermions, N , in

the model [41].

In many body systems another important signature of chaos is the growth of simple (few body)

operators into complex (many body) ones. An important diagnostic for this effect is the dou-

ble commutator. For a system at finite temperature β−1, the double commutator for Hermitian

operators V and W is defined as [20,21]

C(t) = 〈−[W (t), V (0)]2〉β , (2.3)

where 〈•〉β = Z−1
β tr(e−βH•) is the thermal average. For fermionic systems the commutator is

replaced by an anti-commutator. The idea behind this diagnostic is that in a chaotic system the

operator W (t) spreads across the system in such a way that it will quickly fail to commute with

any simple operator in the system V . More precisely, in chaotic systems, after an initial dissipation

time td ∼ β the double commutator is conjectured to grow exponentially at early times before

saturating to its late time average. Within this time frame we can write the growth of the double

commutator for a chaotic system as

C(t) ∼ εeλLt + · · · , (2.4)

where ε is a small parameter, typically either proportional to ~ in the case of systems with a

semi-classical limit, or 1/N for systems permitting a large N limit like the SYK. The rate of early

time growth is governed by λL, known as the quantum Lyapunov exponent. The time at which

saturation occurs is called the scrambling time, ts = (1/λL) log(1/ε). Note that for the Lyapunov

exponent to be meaningful, this timescale has to be much larger than the dissipation time td ∼ β,

which is guaranteed as long as N � 1 with β ∼ O(1).

We can gain an intuition for the double commutator by taking the semi-classical limit of a single

particle quantum system with W (t) = q(t) and V = p. The double commutator then becomes a
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Poisson bracket which we can write as [20,21]

− (i~{q(t), p})2 = ~2

(
∂q(t)

∂q(0)

)2

. (2.5)

This quantity measures the sensitivity of trajectories to the initial position of the system, and is

precisely the quantity we expect to grow exponentially for classically chaotic systems. When W

and V are Hermitian and unitary we can rewrite the double commutator as

C(t) = 2 (1− Re (OTOC(t))) , (2.6)

where the out of time order correlator is defined as OTOC(t) = 〈W (t)V (0)W (t)V (0)〉β. Therefore,

in such cases, the OTOC contains the same information as the double commutator and is often

computed instead. In a quantum chaotic system with a small parameter, that we will now take to

be 1/N , this correlator generically behaves as [21]

OTOC = f0 −
f1

N
expλLt+ · · · , (2.7)

where f0,1 are order one numbers that are theory dependent and λL is the Lyapunov exponent. It

was shown in [21] that in local, unitary quantum systems, f0,1 > 0 and

λL ≤
2π

β
, (2.8)

which we will refer to as the chaos bound. Since the OTOC can have divergences one often computes

a regularised OTOC

OTOC(t) = Tr
(
ρ

1
4W (t)ρ

1
4V (0)ρ

1
4W (t)ρ

1
4V (0)

)
, ρ =

1

Z(β)
e−βH . (2.9)

It has be shown in the case of the SYK that the Lyapunov exponent does not depend on the choice of

regularisation [44,78]. The Lyapunov exponent of the SYK model can be computed analytically at

low temperatures and is found to saturate the chaos bound [30,31], rendering the model maximally

chaotic in this regime.
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2.2 Krylov complexity

In this section we review the notion of Krylov complexity and its relation to chaos in quantum

systems. We will be interested in the growth of a simple operator O under Heisenberg time

evolution. Heisenberg time evolution spreads the operator through a series of nested commutators,

which can be written in terms of the Liouvillian operator L := [H, ·] as

O(t) = eiHtOe−iHt =
∞∑
n=0

(it)n

n!
LnO . (2.10)

In the following we will always assume the Hamiltonian and the operator O to be Hermitian. To

describe the operator spreading, we first consider the vector space spanned by the nested commu-

tators

HO = span{O, [H,O], [H, [H,O]], . . .} . (2.11)

This operator space is called the Krylov subspace and it contains the time-evolved operator O(t)

for all t. In order to quantify the operator growth within this subspace one defines an inner product

acting on operators in the theory. The inner product used at infinite temperature is given by

(O1|O2) :=
Tr(O†1O2)

Tr(I)
, (2.12)

where I is the identity operator. One can also consider the system at finite inverse temperature β,

for which it is usually useful to use the Wightman inner product,

(O1|O2)Wβ :=
1

Z
Tr
(
e−βH/2O†1e

−βH/2O2

)
, (2.13)

where Z = Tr
(
e−βH

)
. Taking the β → 0 limit recovers the inner product at infinite temperature.

One can then find an orthonormal basis with respect to the inner product via the Gram-Schmidt

procedure. We will refer to this basis as the Krylov basis. For a Hermitian operator, the Gram-

Schmidt procedure applied to (2.10) is described in [26] as follows. First define

|O0) := |O) , b1 = (O0L|LO0) , |O1) := b−1
1 L |O0) . (2.14)
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Then, for n > 1, carry out the following recursive algorithm
|An) := L|On−1)− bn−1|On−2) ,

bn := (An|An)1/2 ,

|On) := b−1
n |An

)
.

(2.15)

For finite dimensional Hilbert spaces, the recursive algorithm stops for some n = DK known as the

Krylov dimension.

The bn’s are called Lanczos coefficients and from (2.15) it is easy to see that the Liouvillian

operator is tridiagonal with respect to the Krylov basis with the upper and lower diagonal entries

corresponding to the Lanczos coefficients,

(On|L|Om) =



0 b1 0 0 · · ·

b1 0 b2 0 · · ·

0 b2 0 b3 · · ·

0 0 b3 0
. . .

...
...

...
. . .

. . .


. (2.16)

The time-dependent operator admits the following expansion,

O(t) =

DK−1∑
n=0

inϕn(t)|On) , (2.17)

where all the time-dependence has been completely transferred to “wavefunctions” ϕn(t) of the

Schrödinger equation of an effective one dimensional tight-binding chain

∂tϕn(t) = bnϕn−1(t)− bn+1ϕn+1(t) , ϕn(0) = δn0 , ϕ−1(t) = 0. (2.18)

From this one can directly infer that the spread of the operator in time over the Krylov basis is

determined by the Lanczos coefficients. The faster the Lanczos coefficients grow with n, the faster

the operator will spread over the Krylov basis.

In [26], it was noted that in non-integrable many body systems the Lanczos coefficients are
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asymptotically linear in n,1

bn ∼ αn+ γ , (2.19)

where the slope α > 0 and γ are constant real numbers. When the system is integrable, the Lanczos

coefficients will grow with a fractional power bn ∼ nδ, for 0 < δ < 1. A linear growth in the Lanczos

coefficients2 is expected to lead to an exponential growth in the Krylov complexity that is defined

as,

CK ≡
DK−1∑
n=0

n|ϕn|2
bn∼αn∼ eλKt , (2.20)

where we defined the Krylov exponent as follows3

λK ≡ 2α . (2.21)

Note that the form of the exponential growth in (2.20) has not been proved for all cases of coefficients

with linear asymptotic growth. Nonetheless, it has been checked analytically and numerically for

a large range of cases and is expected to hold in general [26]. The Krylov complexity CK measures

the average position of the operator in the tight-binding chain, which effectively describes the

spread of the operator over the Krylov basis. Note that, as a consequence, in integrable quantum

systems, the Krylov complexity typically does not grow exponentially. See [28] for different known

behaviours. In such cases the Krylov exponent is not well-defined.

For chaotic systems where (2.19) holds and the Lyapunov exponent is also well-defined, it was

proposed that the Krylov exponent could provide an upper bound for the Lyapunov exponent, see

(1.5) that we recall here,

λL ≤ λK ≤
2π

β
. (2.22)

1Note that for one-dimensional systems, there could be a logarithmic correction to the linear growth [28]. This
correction is not present in SYK-like models.

2This assumes that the dependence of the Lanczos coefficients on n is smooth.
3One should note that there are known examples where the exponential of the Krylov complexity λK does not

satisfy this relation with the slope of the Lanczos coefficients α. This was shown to happen in thermal quantum field
theory, where the Lanczos coefficients split into separate branches for even and an odd n [79,80], where the staggering
was proposed to be related to the mass gap in the power spectrum. We will indeed see such a splitting for the finite
q SYK, but both even and odd coefficients will be linear with the same slope and the staggering effect will be very
small in all the cases we study. Therefore, we will assume that λK = 2α. We leave a full evaluation of λK for future
work.
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The left inequality was proved at infinite temperature in [26], and follows from properties of the

Krylov basis. In [26] the inequality was further conjectured to hold at finite temperature so long as

the Wightman inner product (2.13) is used. This conjecture was evidenced by the study of the SYK

model in a certain scaling limit, where the inequality was found to be saturated. It is worth noting

that while the Lyapunov exponent requires the computation of the four-point OTOC, the Krylov

exponent only requires the two-point autocorrelation function (see section 6.2). It is not obvious

why these two distinct correlators should be related in this manner and moreover whether the bound

should be tight. We will explore the tightness of this bound and how reliable λK is as a means for

diagnosing chaos in section 6. Under the assumption of certain analytic and smoothness properties

of the Lanczos coefficients n, the right inequality was proved at finite temperature in [26,61,62]. It

is worth noting that Krylov complexity was generalised to study the spread of states rather than

operators both in unitary [63–65,68] and non-unitary systems [66,67,69].

2.3 The SYK model

Having explored general ideas about quantum chaos we know turn our attention to the main

protagonist of the thesis - the SYK model. The SYK model is a quantum mechanical model

with random, q-local interactions. See [31, 35, 81–83], for instance, for some reviews of the model.

The observables of the theory are built from N Majorana fermions, ψi, obeying equal time anti-

commutation relations

{ψi, ψj} = δij , i, j = 1, . . . , N . (2.23)

The model consists of an ensemble of Hamiltonians

Hq = (i)
q
2

∑
1≤i1<i2<...<iq≤N

Ji1i2...iqψi1ψi2 . . . ψiq , q ∈ 2Z+ , (2.24)

where the coupling constants Ji1i2...iq of the theory are independent and identically distributed

random variables drawn from a Gaussian distribution with

〈Ji1i2···iq〉 = 0 , 〈J2
i1i2···iq〉 =

2q−1

q

J 2(q − 1)!

N q−1
. (2.25)
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At finite N , the dimensionality of the Hilbert space is 2N/2, which makes it computationally hard

to exactly diagonalise the Hamiltonian for N & 36. In this regime, it can already be observed that

the spectrum of the theory is chaotic for all values of q ≥ 4, and integrable for q = 2 [31,35].

Large N limit

From the perspective of the path integral, it is useful to express the theory in terms of bi-local

fields G(τ1, τ2), Σ(τ1, τ2) [31,40,84]. For a detailed derivation the reader may refer to appendix A.

The Euclidean time coordinate τ ∼ τ +β is periodically identified with period given by the inverse

temperature β. Physically, G(τ1, τ2) computes the (time-ordered) thermal two-point function

G(τ1, τ2) =
1

N

N∑
i=1

〈Tψi(τ1)ψi(τ2)〉β , (2.26)

In terms of G and Σ the action reads

I = −1

2
log det (δ(τ1 − τ2)∂τ2 − Σ(τ1, τ2))+

1

2

∫ β

0

∫ β

0
dτ1dτ2

(
Σ(τ1, τ2)G(τ1, τ2)− J 2 2q−1

q2
G(τ1, τ2)q

)
,

(2.27)

and the disorder averaged partition function of the theory is given by

〈Z(β)〉J =

∫
[DGDΣ]e−NI[G,Σ] , (2.28)

where we indicate a disorder average by 〈•〉J . At large N , the theory permits a saddle point approx-

imation. The resulting Schwinger-Dyson equations are the following integro-differential equations


G−1(τ1, τ2) = δ(τ1 − τ2)∂τ2 − Σ(τ1, τ2) ,

Σ(τ1, τ2) = J 2 2q−1

q G(τ1, τ2)q−1 .

(2.29)

The above equations can be solved numerically using a recursive algorithm and the fast Fourier

transform [31] or the Legendre spectral method [85]. Details of these procedures are given in section

3.2. In the IR of the theory, given by |τ1−τ2| � 1/J , we can self-consistently drop the δ(τ1−τ2)∂τ2
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term in (2.29), resulting in an effective theory described by the equations


∫ β

0 dτ ′ G(τ1, τ
′)Σ(τ ′, τ2) = −δ(τ1 − τ2) ,

Σ(τ1, τ2) = 2q−1

q J
2G(τ1, τ2)q−1 .

(2.30)

Provided ∆ = 1/q these above equations are invariant under the transformations


G(τ1, τ2)→ G̃(τ1, τ2) = φ′(τ1)∆G(φ(τ1), φ(τ2))φ′(τ2)∆ ,

Σ(τ1, τ2)→ Σ̃(τ1, τ2) = φ′(τ1)∆(q−1) Σ(φ(τ1), φ(τ2))φ′(τ2)∆(q−1) ,

(2.31)

with φ(τ) a smooth, monotonically increasing function that maps the thermal circle to the thermal

circle with single unit of winding. The structure of φ(τ) is that of a reparameterisation of the circle

to itself.

In the IR, the SYK model is approximated by a one-dimensional conformal field theory [31,40].

The fermions ψi transform as primary operators of conformal weight ∆ = 1/q. At the level of the

action, the low-energy effective description is given by

ICFT = −1

2
log det(−Σ(τ1, τ2)) +

1

2

∫ β

0

∫ β

0
dτ1dτ2

(
Σ(τ1, τ2)G(τ1, τ2)− J 2 2q−1

q2
G(τ1, τ2)q

)
.

(2.32)

The solution to the IR Schwinger-Dyson equations (2.30) is given by

Gφ(τ1, τ2) = φ′(τ1)∆ b sgn(τ1 − τ2)

 π

βJ sin
(
π(φ(τ1)−φ(τ2))

β

)
2∆

φ′(τ2)∆ , (2.33)

with

b =
1

2

(
(1− 2∆) tan(π∆)

π∆

)∆

. (2.34)

All solutions Gφ have the same action when evaluated on the conformal action (2.32). As such,

the saddle approximation naively diverges as the volume of the reparameterisation group. To get

a finite answer we must account for the effect of the leading ‘irrelevant’ correction away from the
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conformal action. It is given by the Schwarzian action [31]

ISch = −α(q)

2J

∫ β

0
dτ

((
2π

β

)2

φ′(τ)2 −
(
φ′′(τ)

φ′(τ)

)2
)
. (2.35)

The constant α(q) has to be determined numerically by solving the full Schwinger-Dyson equations,

as discussed further in appendix B, as its precise value does not follow from IR considerations. The

Schwarzian action explicitly breaks the reparametrisation symmetry of the conformal action down

to an unphysical SL(2,R) reparametrisation group. The final path integral must still be divided

by the volume of the residual SL(2,R) to be made sense of [86,87].

Given the Schwarzian theory (2.35), one can compute thermodynamic quantities to leading

order in the saddle point approximation. For instance, given the on-shell solution φ(τ) = τ , the

free energy FSch is found by taking the Schwarzian action on shell

− βFSch

N
=

2π2α(q)

βJ
, (2.36)

and is found to be quadratic in the temperature. Given an expression for free energy F , the

thermodynamic entropy S can be computed as

S = (1− β∂β)(−βF ) . (2.37)

It is straightforward from (2.36) to verify that the entropy of the Schwarzian theory is linear in the

temperature,
SSch

N
=

4π2α(q)

βJ
. (2.38)

Additionally, the zero temperature entropy of the SYK can be computed explicitly [31, 40] such

that the entropy of the SYK model admits the following small temperature expansion

S

N
=

(
Sfree

0 −
∫ 1/q

0
dx π

(
1

2
− x
)

tanπx

)
+

4π2α(q)

βJ
+ · · · , (2.39)

where Sfree
0 ≡ log 2/2 is the zero temperature entropy of a free fermion.
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Large q limit

The SYK model admits further computational control if, after taking the large N limit, we also

take the large q limit.4 In this case, we can expand the two-point function G(τ1, τ2) = G(τ1 − τ2)

as

G(τ) =
sgn(τ)

2

(
1 +

g(τ)

q
+O(1/q2)

)
. (2.40)

To leading order in q, the Schwinger-Dyson equations (2.29) become a single ordinary differential

equation for g(τ), namely

∂2
τ g(τ) = 2J 2eg(τ) . (2.41)

Imposing thermal boundary conditions, g(0) = g(β) = 0, we find that,

eg(τ) =
cos2 ν

cos2
(

2ν
(

1
2 −

τ
β

)) , βJ =
2ν

cos ν
. (2.42)

Given g(τ), we can compute the complete thermodynamics of the theory by evaluating the action

(2.27) on-shell to leading order in the large q expansion,

βF

N
= −Sfree

0 − β

8q2

∫ β

0
dτ

[
1

2
(∂τg(τ))2 + 2J 2eg(τ)

]
+ · · · . (2.43)

At low temperatures, the parameter ν can be expanded as follows,

ν =
π

2
− π

βJ
+

2π

(βJ )2
−
π
(
24 + π2

)
6(βJ )3

+O(βJ )−4 , (2.44)

while at large temperatures ν ∼ βJ /2 + · · · . Using (2.44) with (2.42) and (2.43) one can extract

the low-temperature thermodynamic behaviour of the theory. In particular, the thermal entropy

at low temperatures reads [54]

S

N
=

(
Sfree

0 − π2

4q2

)
+
π2

q2

1

βJ
+ · · · . (2.45)

By comparing (2.45) with (2.38), we see that α(q) → 1/4q2 as q → ∞. Next order corrections in

the large q limit have been studied in [90].

4Another solvable case is known as the double-scaled SYK model, obtained by taking both the large N and large
q limit, but with N/q2 fixed. See, for instance, [88, 89].
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Chaos exponent

One of the salient features of the SYK model is that there is enough computational control to

compute dynamical quantities such as the OTOC at large N and in the strongly-coupled regime.

At infinitely low temperatures, where conformal symmetry is emergent, it can be checked that

the SYK model saturates the maximal chaos bound [21]. The leading order correction away from

maximal chaos can also be computed analytically and it gives, e.g., for q = 4, q = 6, and q →∞ [31],

λC ≡ (λL)βJ�1 ≈


2π
β

(
1− 4.28

βJ + . . .
)
, q = 4 ,

2π
β

(
1− 3.11

βJ + . . .
)
, q = 6 ,

2π
β

(
1− 2

βJ + . . .
)
, q →∞ .

(2.46)

Away from this limit, the Lyapunov exponent can be computed numerically, see section 3.4. In the

large q limit, it is possible to compute it analytically for all temperatures, obtaining λL = 4ν
β .

2.4 Deformed SYK models

A relevant question is whether the SYK model admits deformations away from its near-conformal

infrared fixed point. Simple operators in the SYK model are mostly irrelevant [81]. However, it is

possible to deform the SYK model with deformations that take the form of the SYK Hamiltonian

itself, but with a different number of fermions. Namely, it is possible to consider the following

theory,

Hdef = Hq + sHq̃ , (2.47)

where s is a tunable dimensionless parameter and the Hamiltonian Hx denotes the Hamiltonian

(independent random) ensemble (2.24)-(2.25) of a single SYK model with x-fermion interactions.5

Note that the Hamiltonian is built from the same N fermions.

In this thesis, we will assume that q > q̃. A naive power counting argument indicates that this

is required for the second term to be relevant. The argument goes as follows. Near the conformal

fixed point of the first SYK, the fermions acquire a scaling dimension of ∆ = 1/q, so the second

SYK Hamiltonian, thought of as a disordered operator [53, 54], has a naive scaling dimension of

∆ = q̃/q < 1, and will become dominant in the infrared. In section 4.3.3 we will carry out a more

5Similar deformations have been recently considered in the double-scaling limit [91,92].
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careful analysis of this intuition and demonstrate that it is indeed correct.

Large N limit and large q limits

Similar to the single SYK case, in the large N limit, the deformed action can be described in terms

of bi-local fields [52,53]

I = −1

2
log det(∂τ − Σ) +

1

2

∫ β

0

∫ β

0
dτ1dτ2

(
ΣG− J 2

(
2q−1

q2
Gq + s2 2q̃−1

q̃2
Gq̃
))

, (2.48)

from which we get a set of deformed Schwinger-Dyson equations


G−1(τ1, τ2) = δ(τ1 − τ2)∂τ2 − Σ(τ1, τ2) ,

Σ(τ1, τ2) = J 2
(

2q−1

q G(τ1, τ2)q−1 + s2 2q̃−1

q̃ G(τ1, τ2)q̃−1
)
.

(2.49)

A case of special interest is q̃ = 2. The deformation then consists of an integrable Hamiltonian,

often referred to as mass-deformed SYK, and has been broadly studied in the context of quantum

chaotic to integrable transitions [46–51].

The deformed SYK model can also be studied in the large-q, q̃ limit [52–55]. It is convenient to

define the ratio n ≡ q/q̃ > 1 and take both q and q̃ to infinity, while keeping n fixed. In this case,

the Schwinger-Dyson equations (2.49) reduce to

∂2
τ g(τ) = 2J 2

(
eg(τ) + ns2eg(τ)/n

)
. (2.50)

In general, this differential equation (supplemented with thermal boundary conditions) can be

solved numerically using standard shooting methods [54], see section 3.3 for details.

An analytically solvable deformation

Notably, there is at least one case that can be solved analytically for all values of βJ and s. This

is when n = 2, which means that the number of fermions in the relevant deformation is half of that

in the original Hamiltonian [52,53]. In this case, the two-point function is given by

eg(τ) =
4ν4(√

(βJ )2ν2 + s4(βJ )4 cos
(
ν
(

2τ
β − 1

))
+ s2(βJ )2

)2 , (2.51)
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where the parameter ν is defined as

cos ν =
2ν2 − s2(βJ )2√

(βJ )2ν2 + s4(βJ )4
. (2.52)

Paralleling the analysis of the single SYK model, we can compute the thermodynamic behaviour of

this model. To leading order in the large q and q̃ expansion, the free energy of the deformed model

is given by

βF

N
= −Sfree

0 − β

8q2

∫ β

0
dτ

[
1

2
(∂τg(τ))2 + J 2

(
2n2s2eg(τ)/n + 2eg(τ)

)]
. (2.53)

Of particular interest is low temperature thermodynamics of the model. Provided that s � 1,

there turns out to be two regimes in which the theory is nearly conformal and the entropy becomes

(nearly) linear in the temperature. We refer to these two regimes as the intermediate (1/s2 �

βJ � 1) and the deep infrared (βJ � 1/s2) of the theory.

To extract the intermediate infrared behaviour analytically, we expand the parameter ν above

for small values of s and large values of βJ such that βJ s is kept fixed (of order one). This

expansion yields

νInt IR =
π

2
+

2(βJ s)2 − π2

πβJ
+

2

π3

(
π4 − 4(βJ s)4

)
(βJ )2

+
16
(
24− π2

)
(βJ s)6 − 96π2(βJ s)4 + 6π6(βJ s)2 − π6

(
24 + π2

)
6π5(βJ )3

+ · · · . (2.54)

In this case we obtain for the entropy [53]6

Intermediate IR:
S

N
=

(
Sfree

0 − π2

4q2

)
+
π2

q2

1

βJ
− 2s2βJ

q2
+ · · · , (2.55)

which has the linear-in-temperature behaviour expected for a single SYK theory with Hq, and s

will only appear as a small correction away from this intermediate near fixed point. For lower

temperatures, the theory develops a new near fixed point, that can be studied analytically by doing

6The model studied in in [53] has fermions with two different flavours and so effectively, the number q of fermionic
interactions in each term of the Hamiltonian was twice the one considered here. One can recover the thermodyamic
formulas in [53] by simply taking q → 2q in our expressions.

28



the following expansion,

νDeep IR = π− π
√

1 + 4s2

s2βJ
+
π(4s2 + 1)

s4

1

(βJ )2
+
π3
(
−2s4 + 2s2 + 1

)
− 3π

(
4s2 + 1

)2
3s6
√

4s2 + 1

1

(βJ )3
+ · · · ,

(2.56)

in this case the entropy becomes

Deep IR:
S

N
=

(
Sfree

0 − π2

4q̃2

)
+ ℵ̄π

2

q̃2

1

sβJ
+ · · · , (2.57)

where

ℵ̄ =

√
1 + 4s2

2s
. (2.58)

We can compare (2.57) to the IR behaviour of the single SYK model, sHq̃, which is (2.45) with

q → q̃ and J → sJ . While the zero temperature entropy is unchanged, the deformed model changes

dramatically the coefficient of the entropy that is linear in the temperature. This is parameterised

by the constant ℵ̄. Note that in the limit s→∞, ℵ̄ → 1 and we recover the single SYK result, as

expected.

The full behaviour of the thermal entropy can also be computed [53]. In figure 1 we plot

the entropy as a function of temperature for different values of s2. We see that for values of s2

sufficiently small the entropy interpolates between the two near-conformal fixed points described

by (2.55) and (2.57).
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Fig. 1: The entropy as a function of temperature (in logarithmic scale) for the deformed SYK model at
large N and large q with n = 2. The black dashed-dotted curve gives the intermediate IR entropy (2.55) for
s2 = 10−6 whilst the black dashed curve gives the deep IR entropy (2.57) for s2 = 10−6.
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Chaos exponent

As with the single SYK, in this model it is also possible to compute dynamical quantities associated

with quantum chaos. In particular, for the case n = 2, the Lyapunov exponent can be computed

analytically around both near fixed points [52],

λL =


2π
β

(
1− 2

βJ −
(

1
2 −

4
π2

)
s2βJ + · · ·

)
, Intermediate IR ,

2π
β

(
1− 1

s2βJ + · · ·
)
, Deep IR .

(2.59)

This shows, that close enough to both fixed points the system becomes maximally chaotic, while

in between the Lyapunov exponent decreases to non-maximal values. Away from these limits, the

full behaviour of the Lyapunov exponent was also found numerically in [52], which we reproduce

in section 6.4.1.1 and compare to the Krylov computations.

2.5 Dilaton gravity theories

We close the preliminary material by giving a brief review of JT gravity and its thermodynamics.

As we shall describe, JT gravity is the holographic dual to the SYK model. We refer the reader

to [35,82,93] for more detailed reviews. The natural action to write for 2d gravity is the Einstein-

Hilbert action

SEH =
1

2κ

∫
M
d2x
√
g(R− 2Λ) . (2.60)

In two dimensions however, the Einstein tensor vanishes identically and so the theory is topological.

This can be seen directly by invoking the Gauss-Bonnet theorem which tells us that the Einsten-

Hilbert action in two dimensions evaluates to the Euler characteristic of the manifold on which it

is defined. In order to generate a non-trivial theory Jackiw and Teitelboim proposed introducing

a scalar field, φ, called the dialton field, that couples to the Ricci scalar [94, 95]. Since we are

interested in the thermodynamics of the theory we will work in Euclidean signature and consider

the action

SE = −S0 −
1

2κ

∫
M
d2x
√
gφ (R− 2Λ)− 1

κ

∫
∂M

√
hφK . (2.61)

We consider the theory on a disc topology with boundary ∂M that we will describe later. The final

term in the action is called the Gibbons-York-Hawking (GYH) boundary term and is included to
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make the variational principle well defined. We have also chosen to supplement the action with an

Einsten-Hilbert term

S0 ≡
φ0

2κ

∫
M
d2x
√
gR+

φ0

κ

∫
∂M

√
hK =

2πφ0

κ
χ(M) =

2πφ0

κ
, (2.62)

where we have used that the Euler Characteristic, χ(M), evaluates to 1 for the disc topology and

φ0 is a free parameter that sets the zero temperature entropy of the theory. We now focus on the

case Λ = −1 which classically gives rise to AdS2 space. In Poincaré coordinates the AdS2 metric is

given by

ds2 =
dz2 + dt2

z2
. (2.63)

We will allow our boundary to fluctuate and parametrise it by a trajectory (t(u), z(u)) where u

denotes the time along the boundary curve, as shown in figure 2.

Fig. 2: The circle is the hyperbolic disc representing Euclidean AdS2. We consider the space within the
boundary curve parametised by (t(u), z(u)).

We compute the thermodynamics of the theory by taking a gravitational path integral with the

following boundary conditions for the metric and dilaton field

ds2
∣∣
bdry

=
t′(u)2 + z′(u)2

z(u)2
=

1

ε2
du2, φ|bdry =

φ̃

ε
. (2.64)

Note that the boundary condition on the metric fixes the z coordinate on the boundary curve in
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terms of the t coordinate

z(u) = εt′(u) +O(ε3) . (2.65)

We now compute the thermal partition function by taking path integral

Z (β) = eS0

∫
[Dg][Dφ] e

1
2κ

∫
M
√
gφ(R+2)+ 1

κ

∫
∂M
√
hφ(K−1)

= eS0

∫
[Dg] δ(R+ 2) e

1
κ

∫
∂M
√
hφ(K−1) .

(2.66)

In the second line we have integrated over the dilaton field. This reduces the path integral to one

over boundary action, and restricts geometries to those with R = −2 and hence with bulk metric

(2.63). To write the boundary action explicitly we first compute the extrinsic curvature to find

K =
t′
(
t′2 + z′2 + z′z′′

)
− zz′t′′

(t′2 + z′2)3/2
= 1 + ε2 Sch(t, u) +O(ε4) , (2.67)

where Sch(t, u) is the Schwarzian derivative defined by

Sch(t, u) ≡ t′′′(u)

t′(u)
− 3

2

(
t′′(u)

t′(u)

)2

. (2.68)

Then, using the boundary conditions (2.64) we find that the boundary action is given by the

Schwarzian action

ISch = −1

κ

∫
∂M

√
hφ(K − 1) = − φ̃

κ

∫
du Sch(t, u) . (2.69)

Since we are considering a thermal system it is more natural to use the Rindler frame, which we

can find by making the transformation

t = tan
πτ

β
. (2.70)

Note that τ ∼ τ + β and the period β carries the physical interpretation of being the inverse

temperature of the spacetime. We then find that the Schwarzian action can be written as

ISch = − φ̃

2κ

∫ β

0
dτ

((
2π

β

)2

τ ′(u)2 −
(
τ ′′(u)

τ ′(u)

)2
)
. (2.71)

Note that this is the same action that governs the IR dynamics the SYK model (2.35) upon making

32



the identification φ̃/κ = α(q)/J , revealing the duality between the two models. The partition

function then becomes a path integral purely over reparametrisations, τ ∈ Diff(S1), of the boundary

curve, whose action is given by the Schwarzian action (2.71)

Z (β) = eS0

∫
Diff(S1)/SL(2,R)

[Dτ ] e−ISch . (2.72)

Here, it is important to note that overall translations and rotations do not change the shape of

the boundary curve, and so the path integral must be quotiented over reparametrisations in the

SL(2,R) subgroup. The saddle solution to the Schwarzian action is given by τ(u) = u and leads

to the following thermodynamics

SJT = S0 +
4π2φ̃

κ

1

β
, (2.73)

which is the analogue of the SYK entropy at low temperatures (2.39). Going beyond the thermo-

dynamics one can also explore the chaotic behaviour of the model by computing the OTOC of the

boundary modes [32, 33]. As with the SYK one finds that the model saturates the maximal chaos

bound.

Finally we can consider generalisations to JT gravity by including a potential, U(φ), for the

dilaton field [71]. The action is then given by

SE = −S0 −
1

2κ

∫
M
d2x
√
g (φR+ U(φ))− 1

κ

∫
∂M

√
hφK . (2.74)

Taking U(φ) = −2Λφ recovers the JT action (2.61). This theory permits general black hole solutions

of the form

ds2 = f(r)dt2 +
dr2

f(r)
, f(r) =

1

φ̃

∫ r

rh

dr′U(φ(r′)) , φ(r) = φ̃r , (2.75)

where rh is the position of the horizon which is located at the origin of the disc. The thermodynamics

of the theory are then given by

β−1 =
|U (φ(rh)) |

4πφ̃
, S =

2πφ0

κ
+

2πφ̃

κ
rh . (2.76)

We shall explore the connection between these more general dilaton gravity theories and deformed

SYK models later in the thesis.
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3 Manual for numerical methods

In this section we provide an overview of the numerical methods used in this thesis. We will review

the relevant equations to solve, outline the numerical algorithms used, and point reader to existing

code that can be readily implemented. For simplicity we will focus on the case of the SYK model

with a single deformation, which we recall is defined by

Hdef = Hq + sHq̃ , (3.1)

where s is a dimensionless tunable parameter and the Hamiltonian of the each SYK is defined by

Hq = (i)
q
2

∑
1≤i1<i2<...<iq≤N

Ji1i2...iqψi1ψi2 . . . ψiq , (3.2)

with q ∈ 2Z+. The coupling constants of the theory independently drawn from a Gaussian distri-

bution that satisfies

〈Ji1i2···iq〉 = 0 , 〈J2
i1i2···iq〉 =

2q−1

q

J 2(q − 1)!

N q−1
. (3.3)

Code for this section written by the author can be found on GitHub via the following URL

https://github.com/sameersheorey/Deformed-SYK-Numerics (3.4)

Though the code provided here applies for a single deformation, it can be easily adapted to handle

multiple deformations as considered in section 5. This code is written in Python and Mathematica.

3.1 Finite N methods for the SYK

The SYK model (3.1) can be solved at finite N by exact diagonalisation methods. To do so we

first need an explicit matrix representation of the Hamiltonian. In all cases the matrices are built

from Majorana fermions obeying anti-commutation relations (2.23), and so we look for matrix

representations of these operators. For simplicity we focus on the case of there being an even

number of fermions, N = 2K. In this case we can pair up our fermions (1↔ 2, 3↔ 4 etc) and for
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each pair of fermions we define a new operator χi such that

χi =
1√
2

(ψ2i−1 − iψ2i) , i = 1, 2, ...,K . (3.5)

We then have that the χi obey the anti-commutation relations for K = N/2 Dirac fermions

{χi, χ†j} = δij , {χi, χj} = 0 , {χ†i , χ
†
j} = 0 . (3.6)

For K = 1 it is well known that we have a two state space with basis we label by {|0〉, |1〉} such

that

χ1|0〉 = 0, χ1|1〉 = |0〉 ,

χ†1|0〉 = |1〉, χ†1|1〉 = 0 .
(3.7)

Representing our basis states as vectors

|0〉 =

1

0

 , |1〉 =

0

1

 , (3.8)

and using (3.7) we find that

χ1 =

0 1

0 0

 , χ†1 =

0 0

1 0

 , (3.9)

from which it follows that

ψ
(K=1)
1 =

1√
2

0 1

1 0

 , ψ
(K=1)
2 =

1√
2

0 −i

i 0

 , (3.10)

For K > 1, the Hilbert space can be represented as matrices acting in a tensor product space of K

such Hilbert spaces. The dimension of the Hilbert space of the model is therefore 2K and we can

define our basis elements to be

(χ†1)n1(χ†2)n2 · · · (χ†K)nK |0〉 , nk = 0, 1 . (3.11)
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Starting from the case K = 1 where the fermions are given by (3.10), we can extend the matrix

representation to K > 1 with the following iterative procedure. For K = 2, 3, . . . we recursively

build the following matrices

ψ
(K)
i = ψ

(K−1)
i ⊗

−1 0

0 1

 , i = 1, . . . , N − 2 ,

ψ
(K)
N−1 =

1√
2
I2K−1 ⊗

0 1

1 0

 , ψ
(K)
N =

1√
2
I2K−1 ⊗

0 −i

i 0

 .

(3.12)

Once one has obtained the fermions in matrix form they can be multiplied together to construct the

Hamiltonian (3.2), which can then be diagonalised using standard numerical libraries. However,

the direct diagonalisation of the Hamiltonian becomes computationally expensive for large N . In

particular, the SYK Hamiltonian is a 2N/2 × 2N/2 matrix and is not sparse. The computational

complexity of diagonalising the Hamiltonian is O(23N/2) and so grows exponentially with N [44,96].

One trick to speed up the procedure is to take advantage of the fact that both the single and

deformed SYK Hamiltonians preserve the parity of the Dirac fermion number operator

Q ≡
K∑
i

(
χ†iχi

)
. (3.13)

This means that basis (3.11) can be split into and even and odd parity sectors and the Hamil-

tonian can be made block diagonal. One can then diagonalise the Hamiltonian in each sector

separately. This was enough to diagonalise the Hamiltonian for N = 30 in ∼ 15 mins. In sec-

tion 5.3 we use results up to N = 30 as the basis for an extrapolation to large N . The code we

used to diagonalise the Hamiltonian is based on a Mathematica implementation that is available

at https://fidel-schaposnik.github.io/mathematica/. To get to significantly larger N more

sophisticated techniques need to be used, such as parallel processing, using GPU’s and using ap-

proximate techniques where the error can be ignored. One package that is able to reach N = 46 is

available at https://github.com/guygurari/syk. It has also been reported [44] that correlation

functions with N = 60 fermions could be computed using the Dynamite package which can be

found at https://github.com/GregDMeyer/dynamite.
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3.2 Large N Schwinger Dyson equations

Here we describe numerical methods used to solve the Schwinger-Dyson equations for the deformed

SYK model, which we recall are given by

G−1(τ1, τ2) = δ(τ1 − τ2)∂τ2 − Σ(τ1, τ2) , (3.14)

Σ(τ1, τ2) = J 2

(
2q−1

q
G(τ1, τ2)q−1 + s2 2q̃−1

q̃
G(τ1, τ2)q̃−1

)
. (3.15)

We describe two methods for solving these. The first involves solving the Schwinger-Dyson equations

in Matsubara frequency space [31] and allows for inverse temperatures of βJ ∼ 102 to be reached.

A second method introduced in [85] involves writing G and Σ as Legendre series. This method

allows for even larger inverse temperature of βJ ∼ 104 to be reached.

Matsubara Frequency Method

The idea behind this method is to start with the free solution of the single SYK as an initial seed

for an iterative algorithm that has fast convergence properties. For the numerical procedure, it is

convenient to write (3.14) in frequency space, so that at finite temperature it becomes

1

G(ωn)
= −iωn − Σ(ωn) , (3.16)

where ωn = 2π (n+ 1/2) /β are Matsubara frequencies and β is the inverse temperature. At each

step in the procedure we update G(ωn) by a proportion of the error in (3.16),

Gj+1(ωn) = Gj(ωn) + a

(
1

−iωn − Σj(ωn)
−Gj(ωn)

)
, (3.17)

where the weight a is initially set to a = 0.5. We then use (3.15) to get an update for Σ(ωn), using

the fast Fourier transform (FFT) to switch between frequency and position space. The iteration is

continued until the error in (3.16) is deemed to be sufficiently small. We implemented the algorithm

in python using the inbuilt FFT, and IFFT functions from the NumPy module.

To get good convergence, it is important to discretise the τ -interval into many points, partic-

ularly near 0 and β where we found the most error from the expected solution. 20,000 points is

enough to see good plots, but we could go up to 2,000,000 and still run the algorithm in reasonable
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time. This allowed us to reach inverse temperatures of the order of βJ ∼ 102. To reach much

larger βJ requires significant time and memory.

Another important aspect in the numerical code is to keep track of the full absolute error

squared,
∑

n |Gj+1(ωn)−Gj(ωn)|2, at each iteration. In the case it increases, we half the value of

the weighting parameter a. We found that around 50 iterations was sufficient to get convergence

to the solution.

Legendre Spectral Method

For this method we expand the G and Σ fields as Legendre series and iteratively update their

Legendre coefficients. To solve the Schwinger-Dyson equations we take the following steps. We

first discretise our time interval τ ∈ [0, β] by τi = β(xi+ 1)/2 for i = 0, ..., N where xi are Legendre

points. On this discretised interval we approximate our G and Σ fields by the first N + 1 terms of

their Legendre series

G(τi) ≈
N∑
`=0

G`L`(xi) , Σ(τi) ≈
N∑
`=0

Σ`L`(xi) . (3.18)

We will need be able to transform back from Σ` to Σ(τi). This is implemented as

Σ` =
N∑
i=0

S`iΣ (τi) , S`i =
2`+ 1

2
ωiL` (xi) , (3.19)

where wi = 2
N(N+1)

1
[LN (xi)]

2 are the Legendre weights. The equation (3.14) can be written as

N∑
`=0

(
Dk` −

β2

4
[Σ∗]k`

)
G` = 0 , (3.20)

N∑
`=0

(
(−1)` + 1

)
G` = 1 . (3.21)

Here the condition (3.21) comes from the delta function in the Schwinger-Dyson equation (3.14).

In (3.20) the derivative matrix Dk` is given by Dk` = (2k + 1) if k + ` is odd and k < ` and the

convolution matrix [Σ∗]k` is found by the following recursive algorithm. First we compute the first
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two columns of the matrix using the relations

[Σ∗]0,0 = −2Σ1

3
, [Σ∗]k,0 = 2

(
Σk−1

2k − 1
− Σk+1

2k + 3

)
, k ≥ 1 ,

[Σ∗]0,1 = − [Σ∗]1,0
3

, [Σ∗]k,1 =
[Σ∗]k−1,0

2k − 1
−

[Σ∗]k+1,0

2k + 3
, k ≥ 1 .

(3.22)

We then compute the lower triangular part of the matrix, where k ≥ l using the relations

[Σ∗]k,`+1 =− 2`+ 1

2k + 3
[Σ∗]k+1,` +

2`+ 1

2k − 1
[Σ∗]k−1,` + [Σ∗]k,`−1 . (3.23)

Finally we compute the upper triangular part of the matrix, where k < l using the relation

[Σ∗]k,` = (−1)`+k
2k + 1

2`+ 1
[Σ∗]`,k . (3.24)

Equations (3.20) and (3.21) are then implemented as a single matrix equation

N∑
`=0

Mk`G` = δkN , (3.25)

where the M is a (N + 1)× (N + 1) matrix whose first N rows are given by Mkl = Dk` + β2

4 [Σ∗]k`
and final row is MNl = (−1)l + 1. The algorithm is then implemented as follows

1. Initialise to the free solution G
(0)
` = 1

2δ`0.

2. Use (3.18) to compute G(τi), and then (3.15) to compute Σ(τi). Then use (3.19) to compute

Σ`.

3. Compute the convolution matrix [Σ∗]k` using the recursive algorithm (3.22)-(3.24) and then

solve the equation (3.25) for G` using a linear solver.

4. Make the weighted update: G
(j+1)
` = G

(j)
` + u

(
solution to equation (3.25)−G(j)

`

)
, where

initially u = 0.5.

5. Compute
∑

` |G
(j+1)
` − G

(j)
` |. In the case it increases, we half the value of the weighting

parameter u. Repeat steps 2-5 until the sum converges within a desired tolerance.

For more details on the derivation of the algorithm see appendix A in [85].
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3.3 Large q shooting method

In the large q limit of the deformed SYK model we send both q and q̃ to infinity while keeping their

ratio, n = q/q̃ finite and fixed. We recall that substituting the large q expansion,

G(τ) =
sgn(τ)

2

(
1 +

g(τ)

q
+O(1/q2)

)
, (3.26)

into large N Schwinger-Dyson equations (3.14) and (3.15) reduces them to a single, second order

differential equation

∂2
τ g(τ) = 2J 2

(
eg(τ) + ns2eg(τ)/n

)
. (3.27)

where at finite temperature the equation has thermal boundary conditions, g(0) = g(β) = 0. Our

goal will be to solve this equation numerically. Before discussing the boundary value problem we

first review how to solve the equation (3.27) when given initial conditions g(0) = a and g′(0) = b

instead. The first step is to package the second order differential equation as a first order vector

differential equation

~y ′(τ) = ~F (τ, ~y(τ)) , (3.28)

where ~y(τ) = (g(τ), g′(τ)) and the function ~F (τ, ~y(τ)) = (g′(τ), f(τ, g(τ))) with

f(τ, g(τ)) = 2J 2
(
eg(τ) + ns2eg(τ)/n

)
. (3.29)

We then discretise our space into into intervals of size h and solve the differential equation iteratively

at points τi = ih for i ∈ N. The simplest way to do this is to use the Euler method, for which we

take

~y(τi+1) = ~y(τi) + h~F (τi, ~y(τi)) , (3.30)

with the initial condition ~y(τ0) = (a, b). The Euler method (3.30) has an error of order h2 at each

step. It can be improved by adding higher order corrections in h. For our purposes we will use

the fourth order Runge-Kutta method which has an error of order h5 at each step [97]. For this

method we take

~y(τi+1) = ~y(τi) +
1

6

(
~K0 + 2 ~K1 + 2 ~K2 + ~K3

)
, (3.31)
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where 

~K0 = h~F (τi, ~y(τi)) ,

~K1 = h~F
(
τi + h/2, ~y(τi) + ~K0/2

)
,

~K2 = h~F
(
τi + h/2, ~y(τi) + ~K1/2

)
,

~K3 = h~F
(
τi + h, ~y(τi) + ~K2

)
.

(3.32)

We now consider the boundary value problem of solving (3.27) with boundary conditions g(0) =

g(β) = 0. We solve this using a standard numerical procedure called the shooting method. The

idea behind this method is as follows. We don’t know the value of g′(0) that will give us the correct

solution, satisfying our boundary conditions. Instead we guess a value g′(0) = u and iteratively

solve the differential equation using the Runge-Kutta method described above until we reach τ = β

at the other end of the interval. We then check how close the value of g(β) is to the boundary

condition g(β) = 0. The strategy is to then tune the value of u until we satisfy this boundary

condition within some pre-specified tolerance. If we define a function H(u) that gives the value of

g(β) for a given initial condition u, then the shooting method is equivalent to finding the root of

H(u). This can be done using any root finding algorithm. In practice, to ensure convergence we

found it best to use the bisection method.

As we go to smaller temperatures the magnitude gradient of the solution g(τ) becomes larger

near the edges, τ = 0 and τ = β. This means that to ensure convergence of the method at low

temperatures we need to take a small interval h, and so the shooting method can be slow to run.

One way to speed up the convergence is to observe that the solution always satisfies g′(β/2) = 0.

We can therefore re-define H(u) to give the value of g′(β/2) for a given initial condition u. Once

we have found a solution u by the bisection method, we compute the g(τ) on the whole interval

with this u and check the solution is consistent with g(β) = 0. This cuts down the interval we need

to apply the Runge-Kutta method over by half. A second way to speed up the method is to use

variable step sizes, hi, in the Runge-Kutta method. In particular we can use a smaller spacings

near the edges and a larger spacings in the middle of the interval. This is because the gradient of

the solution is small in the middle of the interval and so we don’t need as much resolution here.

We found that using the Legendre points to set the spacings hi works well.
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3.4 Lyapunov exponent in the deformed SYK

In this appendix we discuss the numerical method used to find the Lyapunov exponent for the

deformed SYK model at finite q > 2 and large q. In both cases we will be concerned with the

regularised OTOC defined by

OTOC (t1, t2) =
1

N2

N∑
i,j=1

Tr
(
ρ

1
4ψi(t1)ρ

1
4ψj(0)ρ

1
4ψi(t2)ρ

1
4ψj(0)

)
, ρ =

1

Z(β)
e−βH . (3.33)

At large N we can write the OTOC as

OTOC(t1, t2) = F0(t1, t2) +
1

N
F (t1, t2) + · · · . (3.34)

The 1/N contribution to the OTOC is described by a set of ladder diagrams that satisfy the

equation [31]

F (t1, t2) =

∫
dt3dt4 K (t1, t2, t3, t4)F (t3, t4) , (3.35)

where the Kernel K (t1, t2, t3, t4) is given by

K (t1, t2, t3, t4) = GR(t13)GR(t24)J 2

(
2q−1

q
(q − 1)GW (t34)q−2 + s2 2q̃−1

q̃
(q̃ − 1)GW (t34)q̃−2

)
,

(3.36)

where tij ≡ ti− tj . Here GR(t) is the retarded propagator and GW (t) is the Wightman propagator

defined between two real time folds separated by half the thermal circle. These are defined by the

following relations


GR(t) = 1

N

∑
i θ(t)〈ψi(t)ψi(0) + ψi(0)ψi(t)〉β = θ(t) (G(it+ ε)−G(it− ε)) ,

GW (t) = G(β/2 + it) .

(3.37)

Finite q

To find the Lyapunov exponent at finite q we first make the growth ansatz

F (t1, t2) = eλL(t1+t2)/2f(t12) . (3.38)
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Writing (3.35) in frequency space gives

f
(
ω′
)

=

∫
dω M(ω′, ω)f(ω), (3.39)

where 
M(ω′, ω) = J 2

2π

∣∣∣GR (ω′ + iλL2

)∣∣∣2 m(ω′, ω) ,

m(ω′, ω) =
∫
dt ei(ω

′−ω)t
(

2q−1

q (q − 1)GW (t)q−2 + s2 2q̃−1

q̃ (q̃ − 1)GW (t)q̃−2
)
.

(3.40)

We can find the Lyapunov exponent numerically by discretising ω and treating (3.39) as a matrix

equation. We then search for a value of λL such that M(ω′, ω) has an eigenvalue of 1. We do this

using binary search to find the value of λL for which the largest eigenvalue of M crosses 1. To

compute the matrix M(ω′, ω) we first numerically compute the spectral function ρ(ω) defined by

ρ(ω) =
G>(ω)

2π
(1 + e−βω) , G>(t) =

1

N

∑
i

〈ψi(t)ψi(0)〉β = G(it+ ε) . (3.41)

The numerical computation of ρ(ω) is given in appendix 3.5. From ρ(ω) we can find GR(t) and

GW (t) by the following relations


GR(t) = θ(t)

∫
dω ρ(ω) cos(ωt) ,

GW (t) =
∫
dω e−ω(it+β

2 ) ρ(ω)
1+e−βω

.

(3.42)

We can then compute GR
(
ω′ + iλL2

)
from (3.42) by performing a Fourier transform with frequen-

cies shifted by iλL/2. For the single SYK one can check the numerical computation of GR(t) and

GW (t) by comparing to their conformal solutions and leading corrections given by [31],


GRC(t) = 2 b cos(π∆)θ(t)

(
π

βJ sinh πt
β

)2∆
(

1− αG(q)
βJ

(
2−

π tan(π∆)+ 2πt
β

tanh
(
πt
β

)
))

,

GWC (t) = b

(
π

βJ cosh πt
β

)2∆ (
1− αG(q)

βJ

(
2− 2πt

β tanh
(
πt
β

)))
,

(3.43)
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where ∆ = 1/q, αG(q) is a q dependent constant that must be fitted numerically and

b =
1

2

(
(1− 2∆) tan(π∆)

π∆

)∆

. (3.44)

In figure 3 we show plots with numerical computations of GR(t) and GW (t) against their respective

conformal solutions (3.43) for q = 6 at inverse temperature βJ = 10. For these plots we use the

numerical value of αG(6) = 0.1737 given in [31].

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

(a) GR(t)

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) GW (t)

Fig. 3: Numerical computations of GR(t) and GW (t) for q = 6 at inverse temperature βJ = 10. The numerics
(solid lines) are plotted against the conformal solution (dashed-dotted lines) and the conformal solution with
leading correction (dashed lines).

Large q

Using (3.37) along with (3.26) we find that to leading order in the large q limit the kernel (3.36) is

given by

K(t1, t2, t3, t4) = 2J 2θ(t13)θ(t24)
(
eg(β/2+it) + s2e

g(β/2+it)
n

)
. (3.45)

Substituting this into (3.35) with the growth ansatz (3.38) and applying ∂t1∂t2 to both sides of the

equation gives (
λL
4
− ∂2

t

)
f(t) = 2J 2

(
eg(β/2+it) + s2e

g(β/2+it)
n

)
f(t) . (3.46)

We can then find λL by looking for a normalisable solution to this equation. This can be done

numerically by solving the equation with the Runge-Kutta method starting at t = 0 and going up

to some large value of t. From (3.33) and (3.34) we see that F (t1, t2) = F (t2, t1), which in turn

means that f(t12) is an even function. This gives us the initial condition f ′(0) = 0. The initial
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value of f(0) can be any positive real number for the procedure since the value of the Lyapunov

exponent does not depend on the overall normalisation of f . We then do a binary search for λL

looking for the solution to cross zero at the end of the interval. To compute the plots in figure

31 we used initial conditions f(0) = 0.01, f ′(0) = 0 and applied the Runge-Kutta method on the

interval t ∈ [0, 3β].

3.5 Spectral function in the deformed SYK

In this appendix we describe the numerical method used to compute the spectral function of G(t),

labelled by ρ(ω) and defined by (3.41). The method we use follows that described in [98, 99] for

an SYK Lindbladian model, though it is also applicable for unitary deformed SYK models. The

procedure involves numerically solving a system of equations involving ρ(ω) and the analogously

defined spectral function of Σ(t), which we label by σ(ω). Specifically, after passing to real time and

Fourier transforming (see supplementary materials of [98] for a detailed derivation), the Schwinger-

Dyson equations (3.15) can be written as7


ρ(ω) = σ(ω)

(ω+πσH(ω))2+(πσ(ω))2
,

σ(ω) = J 2
(

2 cosh(βω/2)
q ρ̃∗(q−1)(ω) + s2 2 cosh(βω/2)

q̃ ρ̃∗(q̃−1)(ω)
)
,

(3.47)

where σH is the Hilbert transform,

σH(ω) = − 1

π
P
∫

dν
σ(ν)

ω − ν
, (3.48)

with P denoting the Cauchy principal value. The spectral function ρ̃(ω) is given by ρ̃(ω) ≡

ρ(ω)/ cosh(βω/2), while ρ̃∗(n)(ω) denotes the n-fold convolution defined by

ρ̃∗(n)(ω) =

∫ [n−1∏
i=1

dµi

]
ρ̃(ω −

n−1∑
i=1

µi)

n−1∏
i=1

ρ̃(µi) . (3.49)

The equations (3.47) are then solved numerically on a discretised frequency grid. The size and

spacing of the grid needed depends on how quickly the spectral function ρ(ω) decays, which in turn

depends the values of q and the inverse temperature βJ . For our purposes we typically used a grid

7Our ρ(ω) and σ(ω) are ρ−(ω) and σ−(ω), respectively, in the conventions of [98].
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spanning from ω = −30 to ω = 30 in steps of ∆ω = 0.01.

The numerical procedure begins with an ansatz for ρ(ω) which we take to be ρ(ω) ∼ 1/(ω2+0.1).

At each step in the iteration σ(ω) is computed from ρ(ω) using the second equation of (3.47) and

then σH(ω) is computed from (3.48). Finally, ρ(ω) is updated by a proportion of the error in the

first equation of (3.47),

ρj+1(ω) = ρj(ω) + η

(
σj(ω)

(ω + πσHj (ω))2 + (πσj(ω))2
− ρj(ω)

)
, (3.50)

where the weight η is initially set to 0.5. After each iteration we keep track of the difference

ρdiff =
∑
ω

|ρj+1(ω)− ρi(ω)| . (3.51)

If the difference increases we drop the value of the weighting parameter η by half. We terminate

the procedure when ρdiff < 10−8. The n-fold convolution (3.49) can be carried out extremely

efficiently in Mathematica using the built-in ListConvolve function. Due to the appearance of

diverging factors of cosh(βω/2), a further trick is needed to avoid large numbers causing numerical

instabilities when βJ & 10. The trick involves expanding out the factors of cosh(βω/2) multiplying

the convolutions in the second equation of (3.47) in such a way that the resulting equation consists

of convolutions only involving ρ(ω) and ρ(ω) tanh(βω/2). For example, if q = 4 we would write the

factor of cosh(βω/2) as

cosh(βω/2) = cosh (β (ω − µ1 − µ2) /2 + βµ1/2 + βµ2/2) , (3.52)

and then expand the three terms in the argument of the RHS using the addition formula. This

results in four terms involving products of hyperbolic cosines and hyperbolic sines, that simplify

with the hyperbolic cosines in the denominator of the convolution ρ̃∗(3)(ω). This trick can be

trivially extended to any value of q. The procedure converges in the order of seconds on a standard

laptop.

In figure 4 we plot numerical computations of ρ(ω) and σ(ω) for the single SYK model with

q = 6 at inverse temperatures of βJ = 10, 100. We note that as βJ increases the spectral

functions become more sharply peaked around the origin, making it more difficult to compute
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them accurately. Using ρ(ω) computed with this method we were able to compute the Lyapunov

and Krylov exponents for inverse temperatures of up to βJ ∼ 125.
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Fig. 4: Spectral functions computed for the single SYK model with q = 6 at inverse temperatures βJ =
10, 100. For large inverse temperatures the spectral functions are more sharply peaked around the origin.
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4 Single deformation and RG flows

4.1 Introduction

Given the description of a theory at a conformally invariant fixed point, one is naturally led to

examine deformations causing the theory to flow toward a novel phase in the infrared. Sufficiently

close to the fixed point, one can quantify the deformations by the set of primary operators which

are relevant with respect to the original fixed point. The richer the space of relevant operators, the

more elaborate the landscape of renormalisation group (RG) flows away from the underlying fixed

point, and the more ample the opportunity to design particular infrared behaviour.

A useful strategy to gain insight into RG flows is to study the theory at finite temperature and

use this as the energy scale of the problem [53,100–103]. In this part of the thesis we will take this

approach to analyse the effect of a relevant deformation causing a flow away from the near-fixed

point of the SYK model [29,31,40]. The structure of the flow will be revealed through the detailed

dependence of thermal correlations and thermodynamic quantities on the strength of the relevant

term. The presence of additional fixed points and other properties of the flow are revealed through

such physical quantities.

The essential motivation behind this work is to develop a new direction in the study of holo-

graphic renormalisation [104,105] by identifying tractable renormalisation group flows for strongly

coupled theories at large N . From the perspective of the gravitational description, the renormalisa-

tion group flow manifests itself in a geometry that flows away from the asymptotically AdS boundary

describing the fixed point. The basic challenge is that strongly coupled fixed points with tractable

renormalisation group flows are hard to come across. Although relevant deformations of SYK have

not been studied extensively in the literature, there are exceptions [46, 49, 50, 52, 53]. Moreover,

there have been a host of interesting variations of SYK including entangling a pair of SYK theories

to each other [106,107], endowing SYK type models with internal global symmetries [108–111], non-

Hermitian SYK Hamiltonians modelling open quantum systems [112, 113], models of SYK chains

and higher-dimensional analogues [38,114,115], and supersymmetric extensions [116,117].

In what follows we employ a variety of analytical and numerical techniques to analyse deformed

SYK models of the form (2.47). Concrete evidence is provided that for sufficiently small s, the

deformation can be viewed as a relevant deformation by a specific conformal operator of the near-

48



fixed point describing the low energy physics of the undeformed SYK model. Previous work [53]

has established this in the large q limit with q/q̃ = 2. Here, we establish this phenomenon at both

large and finite q, q̃. Moreover, the effect is seen for several values for n ≡ q/q̃. The flow is shown

to end at a near-fixed point in the deep infrared, where the theory is captured by an SYK theory

governed by Hq̃. Interestingly, the Schwarzian sector of the theory in the deep infrared resides

entirely within the strongly coupled sector of the theory. From a holographic point of view, this

can be viewed as a soft mode emerging in the interior of a bulk asymptotically AdS2 spacetime.

4.2 Thermodynamics of the deformed SYK

In this section we analyse the deformed models (2.47) for general values of n = q/q̃, both at finite

and large q. An emphasis is placed on the deep IR behaviour of the deformed model, given by

βJ � 1/s2. When n 6= 2, we must resort to a combination of analytical and numerical techniques

to compute thermodynamic quantities. We begin by analysing the large q limit. We compute

the large q entropy at low temperatures, from which we can numerically extract the coefficient,

denoted by ℵ̄(s, n), of the linear-in-temperature part of the entropy, for various values of n. We

conjecture that a similar structure for the entropy holds for finite values of q and check it against

numerical data for n = 2, 3, 4, and different finite values of q, finding good agreement. We also

provide evidence for the existence of models with two near-conformal regimes at both large and

finite q, characterised by two linear-in-temperature regimes for the entropy. Finally, we uncover a

novel analytically tractable window for n = 1 + ε, with ε small.

4.2.1 Large q

We start by computing ℵ̄(s, n) numerically for general n, in the large q limit. To do so, we need to

solve equation (2.50), with boundary conditions g(0) = g(β) = 0. Given a numerical solution g(τ),

we can compute the free energy following equation (2.53). The entropy then can be obtained using

(2.37). Instead of computing the thermodynamic derivative numerically we use that β∂β = J ∂J [31]

to compute the entropy directly as

S

N
= Sfree

0 +
β

8n2q̃2

∫ β

0
dτ

[
1

2
(∂τg(τ))2 − J 2

(
2n2s2eg(τ)/n + 2eg(τ)

)]
. (4.1)
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In the deep IR, it is more convenient to parameterise formulae in terms of q̃ instead of q, as Hq̃ is

the dominating term in the Hamiltonian in this regime. Our numerical results confirm that at low

enough temperatures, βJ � 1/s2, the entropy is linear in the temperature, taking the form

S

N
=
(
Sfree

0 + S0(s, n)
)

+ ℵ̄(s, n)
π2

q̃2

1

sβJ
+ · · · , (4.2)

where ℵ̄(s, n) can in general depend on s and n, but is independent of βJ . The zero temperature

entropy is shifted by a factor S0(s, n) that may also generally depend on s and n.

Zero temperature entropy. We can find q̃2S0(s, n) numerically by performing a linear fit of

q̃2βJ
(
S/N − Sfree

0

)
as a function of βJ for large values of βJ . In figure 5, we show results for

s2 = 0.1, 1, 4 with 1 ≤ n ≤ 3, using values of βJ between 2000 and 3000 for the linear fit. We find

that for n ≥ 2, the shift in the zero temperature entropy is given by q̃2S0(s, n) = −π2/4, the same as

that of a single SYK model with Hamiltonian sHq̃. As shown in figure 5, there are deviations from

the single SYK result within the interval 1 < n < 2, but they vanish as n→ 2. The s dependence

of the entropy at vanishing temperature, as well as the transition at n = 2, and their potential

holographic interpretation, merit a deeper understanding perhaps along the lines of [118]. We will

return to this in future work.

1.0 1.5 2.0 2.5 3.0

-2.45

-2.40

-2.35

-2.30

-2.25

-2.20

-2.15

-2.10

Fig. 5: The zero temperature entropy q̃2S0(s, n) as a function of n, for s2 = 0.1, 1, 4. The circles are numerical
computations for different values of s2, while the dashed black line indicates the analytic value of q̃2S0 for a
single SYK model sHq̃.

The deep IR phase at large q. We numerically compute the entropy q̃(S/N − Sfree
0 ) at a single

50



low temperature point.8 Subtracting the previously obtained values for q̃2S0(s, n) from this, the

leading contribution to the difference is a term that is proportional to (βJ )−1, from which we can

numerically extract ℵ̄(s, n) in (4.2). For n = 2, there is an analytic answer for ℵ̄ given by (2.58).

We use this as a consistency check of our numerical procedure. In figure 6, we show agreement

between our numerical algorithm and the analytic result for n = 2.
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Fig. 6: ℵ̄ as a function of s2 for the deformed SYK model in the large q limit with n = 2. The circles are
numerical computations while the blue solid curve shows the analytic result in (2.58), for comparison. At large
s, we expect the numerics to tend towards the black dashed line at ℵ̄ = 1.

For n 6= 2, there are no known analytic solutions. However, we do expect a certain behaviour

of ℵ̄(s, n) in a variety of limits. Namely,

1. For s→∞ and fixed n, we expect the leading entropy to be that of a single SYK model with

Hamiltonian sHq̃ and so, ℵ̄(s→∞, n)→ 1 in this limit.

2. At fixed s but n→∞, we also expect ℵ̄(s, n→∞)→ 1. To see this, note that n→∞ implies

q →∞ with q̃ finite. The contribution to the free energy from Hq is given by 2q−1q−2Gq, see

(2.48). Given that |G(τ)| ≤ 1/2, if we take q to infinity this contribution is negligible and

only the terms with q̃ will contribute. Thus, ℵ̄(s, n→∞)→ 1.

3. When n = 1, the theory is equivalent to a single SYK with Hamiltonian
√

1 + s2Hq. We

therefore expect that

ℵ̄(s, n = 1) =
s√

1 + s2
. (4.3)

8In figures 6 and 7 we present numerical results for βJ = 3000. We have also performed this procedure for other
values of βJ between 2000 and 3000 allowing us to test the postulated β-dependence of (4.2).
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4. Finally, as discussed, when n = 2, we know analytically that

ℵ̄(s, n = 2) =

√
1 + 4s2

2s
. (4.4)

In figure 7 we plot numerical values of ℵ̄(s, n) as a function of n for different values of s2. We see

that the numerical results behave as expected in the limits mentioned above. When n = 1 and

n = 2, the numerical values agree with the analytically known values. We also observe that as s2

grows deviations from ℵ̄(s, n) = 1 decrease for all values of n, consistent with the expectation that

when s becomes large ℵ̄(s, n) → 1. Furthermore, as n becomes large we see that ℵ̄(s, n) → 1, as

expected.

We also notice an interesting behaviour of ℵ̄(s, n) between n = 1 and n = 2, characterised by a

peak whose position depends on s. Following the analytic arguments on section 4.3.1, we expect

the peak to move towards n = 3/2, as s becomes smaller. Though we were unable to find a general

analytic form for ℵ̄(s, n), the numerical results suggest that, at least at small s and n ≥ 2, the

empirical formula

ℵ̄(s, n) ≈ a(n)

s4/n2
, (4.5)

holds with 1/2 ≤ a(n) ≤ 1. More details on this are provided in appendix C.
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Fig. 7: ℵ̄(s, n) as a function of n for s2 = 0.1, 1, 4. The circles are numerical computations. For large n, ℵ̄(s, n)
tends towards the expected value of ℵ̄(s, n) = 1 shown in a dashed black line.

The intermediate IR phase at large q. For large values of q and n ≥ 2, the RG flow at small

enough s develops two near-fixed points. At finite temperature this is revealed by the presence of

two linear-in-temperature regimes for the entropy. We find that, just as in the n = 2 case, the
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entropy in the intermediate IR regime is given by (2.55). An example of this behaviour, for n = 3,

is given in figure 8.
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(a) n = 3, full RG flow
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(b) n = 3, intermediate IR

Fig. 8: The entropy as a function of temperature (in logarithmic scale) for the deformed SYK model at large
N and large q with n = 3. In 8(a) we plot the full RG flow accessible to our numerics. The dashed line gives
the expected zero temperature entropy (see figure 5, noting that in this case q = 3q̃). In 8(b) we zoom into
the intermediate IR regime. The dashed line gives the expected analytic form (2.55).

In sections 4.2.2 and 4.3.3 we provide evidence for the existence of a near-fixed point at finite

q. Moreover, in section 4.3.3 we present evidence of the intermediate fixed point for 1 < n < 2

at large q. A systematic analysis of the behaviour in the proximity of the two near-fixed points is

discussed in section 4.3.

4.2.2 Finite q

Given the results in the large q limit, we now analyse the case of finite q. This is numerically more

involved than the previous case, as the Schwinger-Dyson equations no longer reduce to an ordinary

differential equation. Instead, we need to solve the Schwinger-Dyson equations (2.49) numerically.

This set of equations is amenable to numerical computations using a recursive algorithm and the

fast Fourier transform. In section 3.2 we outline the details of this procedure, which is analogous

to the one described in appendix G of [31] for the single SYK model. The simplest deformed model

at finite q has q = 4 and q̃ = 2, which is first studied in [46]. In the present work, we extend this

analysis to include smaller values of s2, allowing us to observe two different near-conformal regimes.

We also present results for a more general class of models with different values of q and q̃.

The deep IR phase at finite q. We start by focussing on the form of the entropy in the deep
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IR limit. We have numerical access to this regime provided s is not very small. For a single SYK

model with q̃ and coupling sJ , the entropy in the limit βJ � 1/s is given by

S

N
=

(
Sfree

0 −
∫ 1/q̃

0
dx π

(
1

2
− x
)

tanπx

)
+

4π2α(q̃)

sβJ
+ · · · , (4.6)

where α(q̃) is the same (numerical) coefficient that appeared in the Schwarzian action in (2.35) (see

appendix B for more detail).

Moving to the case of the deformed Hamiltonian, we first discuss the case of n = 2. In section

4.2.1, we found that for n ≥ 2 the zero temperature entropy of the deformed model was the same

as that of a single SYK. Assuming this is the case even at finite q, we propose that the entropy in

the deformed theory should be generalised to

S

N
=

(
Sfree

0 −
∫ 1/q̃

0
dx π

(
1

2
− x
)

tanπx

)
+ ℵ̄ 4π2α(q̃)

sβJ
+ · · · . (4.7)

Namely, the zero temperature entropy remains the same and the linear-in-temperature term gets an

extra coefficient of ℵ̄ – as defined in (2.58) – with respect to the single SYK theory. We numerically

find that for large s and low temperatures, (S/N −Sfree
0 ) approaches the predicted value of −0.346

obtained from setting q̃ = 2 in (4.7) (see for example figure 11).

To test the linear-in-temperature coefficient, we compute the entropy at a single low temperature

point and subtract the zero temperature entropy. In figure 9, we show the numerical results for

the coefficient and compare to the analytic prediction, as in (4.7), for different values of q and q̃,

with fixed n = 2. To compute the predicted coefficient, we use values of α(q̃) obtained from the

Padé approximation as described in appendix B and the analytic value of ℵ̄ for n = 2 in the large

q limit. We find good agreement, suggesting the possibility of using large q (analytical) results to

extract finite q information.
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Fig. 9: The linear-in-temperature coefficient of the entropy as a function of s2, in the deformed SYK with n = 2
for finite q and q̃. The circles correspond to numerical computations while the blue solid curve corresponds to
(4.7), conjectured from the large q limit behaviour.

The results for n = 2 hint towards the possibility of generalising the form of the low temperature

entropy even away from the n = 2 point. In fact, following the results at large q, we propose that

the only change in the form of the entropy (4.7) for n > 2 is to take ℵ̄ → ℵ̄(s, n), where ℵ̄(s, n) is

the coefficient obtained numerically in the large q limit, see figure 7. Note that for 1 < n < 2 we

would also expect a change in the zero temperature entropy, as is seen at large q. The proposal,

then, is that, at finite q, for n ≥ 2, the low temperature entropy takes the form,

S

N
=

(
Sfree

0 −
∫ 1/q̃

0
dx π

(
1

2
− x
)

tanπx

)
+ ℵ̄(s, n)

4π2α(q̃)

sβJ
. (4.8)

We test this conjecture for n = 3 and n = 4 by numerically computing the entropy for q = 12, q̃ = 4

and q = 16, q̃ = 4 respectively. As before we use a single low temperature point and subtract the

zero temperature entropy to isolate the linear-in-temperature coefficient. To compute the predicted

linear-in-temperature coefficient, as in (4.8), we again use values of α(q̃) from the Padé approximant
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described in appendix B but now use values of ℵ̄(s, n) obtained numerically at large q. The results

are shown in figure 10, providing strong evidence for (4.8).
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(b) q = 16, q̃ = 4

Fig. 10: The linear-in-temperature coefficient of the entropy as a function of s2, in the deformed SYK for
n = 3, 4 with finite q and q̃. The circles correspond to numerical computations while the crosses correspond
to (4.8) with the value of ℵ̄(s, n) obtained numerically in the large q, q̃ limit.

The intermediate IR phase at finite q. We now provide evidence that even at finite q, the RG

flow at small enough s develops two near-conformal regimes. We consider the cases of n = 2 with

q = 4 and q̃ = 2 and n = 3, with q = 6 and q̃ = 2. In figure 11, we plot entropy as a function of

(βJ )−1 for different values of the coupling s2, from s2 = 1 to s2 = 10−6, for both models. In each

case, at large temperatures, all the curves approximate the entropy of the free fermions. As we move

towards the IR, and similar to what happens at large q, there are two clearly different behaviours

depending on the value of s2. When s2 ∼ 1, the entropy goes directly into the deep IR phase. When

s2 � 1, there is a different intermediate IR phase appearing with a linear-in-temperature regime.

It is natural to suspect that at even lower temperatures, these theories will also end up flowing

into the deep IR phase. However, the numerical techniques employed are only powerful enough

to reach (βJ )−1 & 10−3. This does not permit us to compute a full RG flow exhibiting both the

intermediate and the deep IR phase. Implementing an algorithm based on spectral methods might

provide an efficient way of reaching even lower temperatures of order at least (βJ )−1 ∼ 10−4 (see

section 3.2) [85]. We leave such an approach for future work.
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Fig. 11: The entropy as a function of temperature (in logarithmic scale) for the deformed SYK model at
large N and finite q. Different colours correspond to different values of s2. Circles correspond to numerical
computations.

4.2.3 Large q with n = 1 + ε

To finish this section we discuss a novel analytically tractable RG flow at large q, for n = 1 + ε,

with ε a small positive number.

We first discuss the leading order solution g0(τ) with n = 1. At the level of the effective action

(2.48), the deformed model with n = 1 is equivalent to a single SYK model with random couplings

averaged over a Gaussian distribution with a variance proportional to J 2(1 + s2). In fact, at large

q, the differential equation (2.50) for n = 1, becomes

∂2
τ g0(τ) = 2J 2(1 + s2)eg0(τ) , (4.9)

which after imposing thermal boundary conditions, g0(0) = g0(β) = 0, is solved by

eg0(τ) =
cos2 ν

cos2
(

2ν
(

1
2 −

τ
β

)) , βJ =
2ν√

1 + s2 cos ν
. (4.10)

We now consider n = 1 + ε, perturbatively in ε. We can expand g(τ) as

g(τ) = g0(τ) + εg1(τ) +O(ε2). (4.11)

Substituting this into the differential equation (2.50), we find, at leading order in ε, a differential
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equation for g1(τ)

∂2
τ g1(τ) = 2eg0(τ)J 2

(
(1− g0(τ))s2 + g1(τ)

(
1 + s2

))
. (4.12)

It is straightforward to show that

g1(τ) =
s2

1 + s2
g0(τ) , (4.13)

is the solution to (4.12) with boundary conditions g1(0) = g1(β) = 0. To see this, note that if we

plug this expression for g1(τ) in (4.12), we get that

∂2
τ g0(τ) = 2J 2(1 + s2)eg0(τ) , (4.14)

which is exactly (4.9), so it is satisfied by g0(τ). Next, we consider the corrections to the free energy

coming from this deformation. Expanding (2.53) to leading order in ε we obtain

βF

N

∣∣∣∣
n=1+ε

= −Sfree
0 +

ν(ν − 2 tan ν)

q̃2
− 2ν(ν − 2 tan ν)

1 + s2

ε

q̃2
+O(ε2) . (4.15)

Using (2.37) we find the entropy to leading order in ε is given by

S

N

∣∣∣∣
n=1+ε

= Sfree
0 − ν2

q̃2
+

2ν2

1 + s2

ε

q̃2
+O(ε2) . (4.16)

This can be used to find the entropy as a function of temperature for the full RG flow. Though we

do not observe an intermediate IR at this order in ε, we are able to access some interesting features

of the deep IR. Expanding (4.16) in powers of (βJ )−1 we find the correction to the entropy,

S

N

∣∣∣∣
n=1+ε

=
S

N

∣∣∣∣
n=1

+

(
π2

2 (1 + s2)
− 2π2

(1 + s2)3/2

1

βJ
+O (βJ )−2

)
ε

q̃2
+O(ε2) , (4.17)

where the entropy at low temperatures for n = 1 is given by equation (2.45) with J →
√

1 + s2J and

q → q̃. Equation (4.17) provides two predictions that can be tested against numerical computations.

We study these next.

Zero temperature entropy. Note that the correction to the zero temperature entropy at large
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q̃ is given by

lim
βJ→∞

q̃2S(βJ )

N

∣∣∣∣
n=1+ε

− q̃2S(βJ )

N

∣∣∣∣
n=1

=
π2

2(1 + s2)
ε+O(ε2) . (4.18)

We can numerically compute the large q, q̃ entropy for n = 1 and for n = 1 + ε at large βJ for

small values of ε and compare with the analytic prediction. We show the results for s2 = 0.1, 1, 4 at

βJ = 2000 in figure 12, showing agreement between the analytical predictions and the numerical

computations.
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Fig. 12: The difference in the zero temperature entropy between the large q, q̃ model with n = 1 + ε and
n = 1, as function of small ε, for different values of s2. The circles correspond to numerical computations at
βJ = 2000, while the solid lines are the analytic prediction from (4.18). For small enough ε, both overlap.

Linear-in-temperature entropy. We can also find analytically the correction to the linear-in-

temperature term in the entropy, and from this the correction ℵ̄(s, n) near n = 1. From (4.17), we

find

ℵ̄(s, 1 + ε)− ℵ̄(s, 1) = −ε 2s

(1 + s2)3/2
+O(ε2) , (4.19)

where as ℵ̄(s, 1) is given by (4.3). Note that the expected value of ℵ̄(s, n) is lower than the value

for n = 1. In figure 13, we test the predicted correction in (4.19) against numerical computations

for s2 = 0.1 and small values of ε, finding excellent agreement.
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Fig. 13: Difference in the values of ℵ̄(s, n) between n = 1 + ε and n = 1, as a function of small values of
ε, with s2 = 0.1. The circles correspond to numerical computations, while the solid blue line is the analytic
result from (4.19). Note that they match at small ε, showing that ℵ̄(s, n) initially decreases as n moves away
from n = 1. For larger ε, ℵ̄(s, n) starts increasing again, which agrees with the results shown in figure 7. We
do not see the initial decrease in ℵ̄(s, n) in figure 7 since the lowest ε considered there is ε = 0.05, much larger
than the values shown in this plot.

4.3 Conformal perturbation theory

In this section we explore thermodynamic contributions to the free energy and entropy of the

deformed SYK near each fixed point. We argue that the leading terms in the entropy expansions

(2.57) and (2.55) can be understood as perturbations to the conformal actions of the single SYK

models sHq̃ and Hq, respectively. In particular, we will argue that in both cases, the leading

irrelevant correction to the free energy, which is proportional to the temperature, stems from

a Schwarzian action. Moreover, in the intermediate IR regime, the leading relevant correction

away from the intermediate fixed point can be understood from a relevant conformal operator in

conformal perturbation theory.

4.3.1 Schwarzian for the deep IR

In section 4.2.2 numerical evidence was presented indicating that the entropy, S, for the finite q

deformed model in the deep IR takes the low temperature expansion

S

N
= const + ℵ̄(s, n)

4π2α(q̃)

sβJ
+ · · · . (4.20)

The linear-in-temperature part in S is modified from that of an undeformed SYK model with

Hamiltonian sHq̃ by ℵ̄(s, n).
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We would like to understand the linear-in-temperature part in S as coming from the leading

correction to a conformal piece of the action associated with the SYK Hamiltonian sHq̃ [81]. More

explicitly, by taking Σ→ Σ + ∂τ , we can re-write the GΣ-action (2.48) as I = ĨCFT + ĨUV where

ĨCFT = −1

2
log det(−Σ) +

1

2

∫ β

0

∫ β

0
dτ1dτ2

(
ΣG− s2J 2 2q̃−1

q̃2
Gq̃
)
, (4.21)

ĨUV =
1

2

∫ β

0

∫ β

0
dτ1dτ2

(
δ(τ1 − τ2)∂τ2G− J 2 2q−1

q2
Gq
)
. (4.22)

The CFT action (4.21) is the same as the action (2.32) discussed in section 2.3 upon making the

replacements J → sJ and q → q̃. The UV action, ĨUV, has an additional term as compared to

that of the undeformed SYK model. Note that so far all we have done is to rewrite (2.48). We

rewrite it in this way because we would like to view ĨUV as a perturbation to ĨCFT and will be

interested in computing its leading effect.

We have a continuous family of saddle solutions of ĨCFT written in terms of reparameterisations,

φ(τ), of the circle to itself with a single unit of winding

Gφ(τ1, τ2) = φ′(τ1)∆ b sgn(τ1 − τ2)

 π

βsJ sin
(
π(φ(τ1)−φ(τ2))

β

)
2∆

φ′(τ2)∆ , ∆ ≡ 1/q̃ , (4.23)

where the constant b is given by (2.34).

We now argue that the leading correction to ĨCFT due to the effect of ĨUV takes the form of a

Schwarzian action and gives a linear-in-temperature contribution to the specific heat. The argument

we make is analogous to the one used for the single SYK [40, 81].9 For an alternative treatment

of the Schwarzian action and near-conformal perturbations see [119, 120]. It will be convenient to

rewrite the reparameterisation modes φ(τ) in terms of modes on the line f(τ), defined by

f(τ) = tan

(
πφ(τ)

β

)
. (4.24)

After this transformation we find our solutions (4.23) are parameterised as

Gf (τ1, τ2) =
b

(sJ )2∆

f ′(τ1)∆f ′(τ2)∆

|f(τ1)− f(τ2)|2∆
. (4.25)

9In appendix D we show that this argument gives the correct low temperature entropy in the integrable case of a
single SYK model with q = 2.
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We will want to use (4.25) in ĨUV, so that we only pick out contributions to the path integral

along the conformal saddle solutions. We expand Gf (τ1, τ2) around (τ1, τ2) = (τ+, τ+), where

τ+ ≡ (τ1 + τ2)/2, giving a series in powers of τ12 ≡ τ1 − τ2,

Gf (τ1, τ2) =
1

(sJ )2∆|τ12|2∆

(
1 +

∆

6
τ2

12 Sch(f(τ+), τ+) +O(τ3
12)

)
, (4.26)

where the Schwarzian derivative is defined by

Sch(f(τ+), τ+) ≡ f ′′′(τ+)

f ′(τ+)
− 3

2

(
f ′′(τ+)

f ′(τ+)

)2

=
1

2

((
2π

β

)2

φ′(τ+)2 −
(
φ′′(τ+)

φ′(τ+)

)2
)
. (4.27)

We now substitute the expansion (4.26) into ĨUV while changing the integration variables from

(τ1, τ2) to (τ+, τ12). Due to the periodicity of our fields in β we can take the new region of integration

as 0 ≤ τ12 < β and 0 ≤ τ+ < β. We then carry out the integral over τ12 by taking a cutoff at

short time scales beyond τ12 = ε/sJ , where ε is a small positive number (the range of integration

is taken to be ε/sJ ≤ τ12 < β − ε/sJ ). Assuming n ≡ q/q̃ 6= 3/2, we find a term proportional to

the Schwarzian action in terms of the cutoff ε

ĨSch =

[(
bn(n− q)ε1−2∆

6q2

)
1

sJ
−
(

n

2n− 3

(2b)qε3−2n

24q2s2

)
1

sJ

] ∫ β

0
dτ+ Sch(f(τ+), τ+) . (4.28)

Here, we have kept only terms in the coefficient of the Schwarzian that are constant in β as these

contribute to the linear-in-temperature specific heat when the Schwarzian is evaluated on shell.

The first term in the Schwarzian coefficient (4.28) stems from the kinetic term in IUV, while the

second from the non-kinetic term in IUV. Notice that in the large q limit the cutoff dependence of

the first term goes like ε whilst that of the second term goes like ε3−2n. This suggests that for n

close to 1 both terms are important as we take the cutoff ε→ 0. For larger values of n, the second

term dominates.10 For the sake of concreteness, let us focus on the case n = 2. Equation (4.28)

becomes

ĨSch =

[(
b(2− q)ε1−2∆

3q2

)
1

sJ
−
(

(2b)q

12q2s2ε

)
1

sJ

] ∫ β

0
dτ+ Sch(f(τ+), τ+) . (4.29)

10Since the coefficient of the Schwarzian governs the linear-in-temperature specific heat, this competition of factors
could perhaps underlie the transition we see in the value of ℵ̄(s, n) for small values of n in figure 7.
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The non-kinetic term goes like 1/ε and so provides the most significant correction to the conformal

part of the action. The reparametrisation symmetry is broken by choosing the saddle of the

Schwarzian which occurs when φ(τ) = τ . Substituting this into (4.29) we find the linear-in-

temperature contribution to the entropy to leading order in ε

SSch

N
=

(2b)q

6q2s2ε

(
2π2

sβJ

)
. (4.30)

The takeaway message of this analysis is that due to the dominance of the second term (4.29)

the correction to the conformal action comes from the strongly coupled phase of the theory rather

than the weakly coupled UV regime which is customary for the undeformed SYK model. Holo-

graphically, for those deformed SYK models having both an intermediate and deep IR near-fixed

point, we anticipate the emergence of the Schwarzian mode in the interior of an asymptotically

AdS2 spacetime flowing to a distinct infrared AdS2 region.

4.3.2 Schwarzian for the intermediate IR

We now proceed to consider the conformal fixed point associated to Hq with a small perturbation

near the fixed point. By taking Σ→ Σ + ∂τ in (2.48) we can then write I = ICFT + Ipert where

ICFT = −1

2
log det(−Σ) +

1

2

∫ β

0

∫ β

0
dτ1dτ2

(
ΣG− J 2 2q−1

q2
Gq
)
, (4.31)

Ipert =
1

2

∫ β

0

∫ β

0
dτ1dτ2

(
δ(τ1 − τ2)∂τ2G− s2J 2 2q̃−1

q̃2
Gq̃
)
. (4.32)

As in the previous section, we make an expansion of the saddle solution to ICFT in powers of τ12,

written in terms of soft modes f(τ+),

Gf (τ1, τ2) =
1

J 2∆|τ12|2∆

(
1 +

∆

6
τ2

12 Sch(f(τ+), τ+) +O(τ3
12)

)
, (4.33)

where now ∆ = 1/q. Substituting this into Ipert., we change variables to (τ12, τ+) and carry out the

τ12 integral with a short time scale cutoff ε/J . Keeping only terms constant in β (since these are

the terms that contribute to the linear-in-temperature part of the entropy when the Schwarzian is
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evaluated on shell). Again focusing on n = 2 for the sake of concreteness, we find

ISch =

[(
b(1− q)ε1−2∆

6q2

)
1

J

] ∫ β

0
dτ+ Sch(f(τ+), τ+) . (4.34)

The coefficient of the Schwarzian is seen to come purely from the kinetic term in (4.32), mimicking

the behaviour of the underformed SYK model with Hamiltonian Hq. Accordingly, the linear-in-

temperature term in the entropy expansions (2.55) and (2.45) are found to be the same, and do

not depend on s.

4.3.3 Relevant conformal perturbation theory

We would now like to test the hypothesis that the leading infrared correction away from conformality

of the intermediate IR phase can be studied using conformal perturbation theory. The starting

point [85,121] is to view the deformed SYK model near the intermediate fixed point as a conformal

field theory perturbed by a series of relevant primary operators Oh(τ) of weight h ∈ (0, 1).11 More

explicitly,

I = ICFT +
∑
h∈rel.

gh

∫ β

0
dτ Oh(τ) , (4.35)

where h denotes the conformal weight of the given operator. We note here that the spectrum of

conformal operators discussed in [31,37,85,108,121], does not contain any relevant operators with

h ∈ (0, 1). They are in fact all irrelevant and are encoded in the operator product expansion of

the fusion of two fermionic operators. Motivated by the structure of the Hamiltonian deformation

(2.47), here we will focus instead on the following microscopic operator

Oh(τ) ≡ Nh i
q̃
2

∑
1≤i1<···<iq̃≤N

Ji1i2···iq̃ψi1ψi2 · · · ψiq̃ . (4.36)

This operator is to be understood in an averaged sense since it depends on the couplings Ji1i2···iq̃

which are averaged over.12 The operator Oh(τ) involves a product of q̃ fermions. In the undeformed

model each fermion has scaling dimension ∆ψ = 1/q, so the naive estimate of the total weight of the

11Since in one dimension we can conformally map the line to the circle, we can employ conformal perturbation
theory methods on the circle.

12This is somewhat in the spirit of [122]. It is interesting that in contrast to operators associated to large black
holes, which are highly irrelevant, Oh(τ) is a complicated operator that is relevant. Perhaps, given its averaged
nature, one can associate an entropy different from that of the horizon to its effect on the bulk spacetime.
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operator (4.36) is h = 1/n up to small corrections, which is within the relevant window h ∈ (0, 1).

We fix the value of Nh implicitly by our choice of normalisation for the conformal two-point function

averaged over the couplings

〈Oh (τ1)Oh (τ2)〉β = N

 π

βJ sin
(
πτ12
β

)
2h

. (4.37)

The action ICFT in (4.35) governs the intermediate IR fixed point. According to conformal pertur-

bation theory we find the following free energy

βF = βFCFT + gh

∫ β

0
dτ〈Oh〉β −

g2
h

2

∫ β

0

∫ β

0
dτ1dτ2〈Oh (τ1)Oh (τ2)〉β + · · · . (4.38)

Here Oh is the relevant operator (4.36), and again it is understood that we are averaging over

the couplings. The one-point function of the Oh vanishes under the assumption of conformal

invariance of the vacuum. Using the conformal form of the two-point function (4.37), the second

order correction is given by [85,103,121]

− βδ2Fh
N

=
π2h− 1

2 Γ
(

1
2 − h

)
2Γ(1− h)

g2
h

J 2(βJ )2h−2
. (4.39)

We will now provide evidence that the above correction indeed gives the leading correction to the

intermediate CFT as we flow towards the IR. First, we consider the large q limit with n = 2, where

we have the analytical form of the correction. We then consider general n in the large q limit and

at finite q, where we compare to numerics.

Case I: n = 2. The intermediate IR CFT free energy is known analytically [53] at large q with

q/q̃ = 2. Concretely, in the regime 1� βJ � 1/s2, the free energy of the deformed model can be

written as

− βF

N
=

[
1

q2
βJ +

(
Sfree

0 − π2

4q2

)
+
π2

2q2

1

βJ
+ · · ·

]
+

[
2s2

q2
βJ log

(
2βJ
π

)
+ · · ·

]
, (4.40)

where the terms in the first square bracket are derivable from ICFT given by (4.31) accompanied by

the leading irrelevant operators [85, 121], and they grow with increasing temperature. The terms
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in the second square bracket stem from the corrections due to relevant operators.

We will now argue that the leading relevant correction to the free energy arises from a relevant

operator of weight h = 1/2. Given that expression (4.39) diverges when we take h = 1/2, we

are led to a divergent contribution to the free energy which requires regularisation. As a simple

regularisation scheme, we take h = 1/2− hε for some small number hε > 0, such that

−
βδ2Fh=1/2−hε

N
=

Γ(hε)
2(g2

1/2/J
2)

4Γ(2hε)
βJ

(
2βJ
π

)2hε

. (4.41)

Expanding in small hε gives

−
βδ2Fh=1/2

N
=

g2
1/2

2hεJ 2
βJ +

g2
1/2

J 2
βJ log

(
2βJ
π

)
+O(hε) . (4.42)

Consequently, the divergent term only affects the zero point energy whose contribution to the free

energy is independent of β. The remaining hε-independent terms agree with (4.40) provided we

take

g2
1/2 →

2s2J 2

q2
as q →∞ . (4.43)

This provides evidence that for n = 2, and in the large q limit, we can view Oh in (4.36) as a

relevant conformal primary of conformal dimension h = q̃/q = 1/2. We now consider the case of

general n.

Case II: General n. For general n we do not have access to an analytic form of the free en-

ergy near the intermediate IR fixed point. Nonetheless, we can test the prediction from conformal

perturbation theory against numerical results. To do so, we compute the entropy of the model

numerically in the large q limit with q = nq̃ as described in section 4.2.1. Taking h = 1/n in (4.39)

and using the formula S = (1 − β∂β)(−βF ) we find that the correction to the entropy due to the

relevant perturbation is given by

δ2Sh=1/n

N
=

(
1−

(
2− 2

n

)) π
2
n
− 1

2 Γ
(

1
2 −

1
n

)
(g2

1/n/J
2)

2Γ
(
1− 1

n

) (βJ )2− 2
n . (4.44)

From this it follows that the entropy near the intermediate IR fixed point, as predicted by conformal
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perturbation theory, can be expressed as

q2

(
S

N
− Sfree

0

)
=

[
−π

2

4
+

π2

βJ
+ · · ·

]
+

[
q2 δ

2Sh=1/n

N
+ · · ·

]
. (4.45)

The terms in the first square bracket are derivable from ICFT and the irrelevant operators whilst

the terms in the second square bracket are proposed to come from the relevant deformation. In

figure 14 we plot numerical results for the entropy in the intermediate IR phase against the analytic

prediction (4.45), as well as the linear-in-temperature curve without the correction from the relevant

perturbation. We show plots for s2 = 10−6 and s2 = 10−8, both with curves for n = 3, 4, 5, 6 and

10. Provided

g2
1/n →

n2s2J 2

2q2
as q →∞ , (4.46)

there is strong agreement with the numerics.
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Fig. 14: Entropy as a function of temperature (in logarithmic scale) for the intermediate IR phase in the
large N and q expansion. The circles give numerical results. The solid lines give the analytical prediction
(4.45) with both the leading irrelevant and relevant corrections. The dashed line gives the analytical prediction
(4.45) with only the leading irrelevant correction.

We can also study higher order corrections from conformal perturbation theory. By dimensional

analysis the kth order correction is found to be of the form

δkSh=1/n

N
∝ sk(βJ )k−

k
n , k ≥ 2 . (4.47)

To find the sub-leading relevant correction we subtract the prediction (4.45), up to and including

the leading relevant correction, from the numerically calculated entropy and perform a numerical fit.
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For the values of n we have tested we find the sub-leading relevant correction to be proportional to

s4(βJ )4− 4
n . We also find evidence, as discussed below, that this is true even at finite q. The absence

of a term proportional to s3(βJ )3− 3
n leads us to believe that the conformal three-point function

is sub-leading in the large N expansion, as is seen to be the case for the conformal three-point

functions discussed in [123].

Finally, it is also interesting to note that we also find an intermediate IR regime for values of

n such that 1 < n < 2, whose behaviour is in agreement with (4.45). In figure 15 we plot the

intermediate IR regime for n = 1.3 and various values of s2, again seeing excellent agreement with

the prediction from conformal perturbation theory. From our analysis in section 4.2.1 we would

also expect the zero temperature entropy of such flows to have a non-trivial s dependence, giving

them an additional richness compared to the case n ≥ 2.

10-6 10-5 10-4 10-3 10-2

-2.55

-2.50

-2.45

-2.40

-2.35

-2.30

Fig. 15: Entropy as a function of temperature (in logarithmic scale) for n = 1.3 and s2 = 10−5, 10−4, 10−3 in
the intermediate IR phase in the large N and q expansion. The circles give numerical results. The solid lines
give the analytical prediction (4.45) with both the leading irrelevant and relevant corrections. The dashed line
gives the analytical prediction (4.45) with only the leading irrelevant correction.

Case III: Finite q. We now test whether the perturbative correction (4.44) still applies at

finite q, q̃ and large N . In this case, the predicted entropy near the intermediate IR fixed point is

given by

S

N
− Sfree

0 =

[
−
∫ 1/q

0
dx π

(
1

2
− x
)

tanπx+
4π2α(q)

βJ
+ · · ·

]
+

[
δ2Sh=1/n

N
+ · · ·

]
, (4.48)
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and the coupling constant of our conformal operator takes the form

g2
1/n = γ(q, q̃)s2J 2 , (4.49)

where γ(q, q̃) is an unknown function which, from (4.46), we know tends to 1/(2q̃2) in the large q̃

limit. The value of γ(q, q̃) can be found by fitting the prediction (4.48) to numerically determined

values for the entropy in the intermediate IR phase. In figure 16 we plot numerical results against

the prediction (4.48) and (4.49) with values for γ(q, q̃) shown in Table 1. We show plots with

s2 = 10−4 and s2 = 10−3.

q q̃ γ(q, q̃)

4 2 0.098

6 2 0.111

8 2 0.116

8 4 0.028

Table 1: Numerical values for γ(q, q̃) in (4.49) found by fitting the prediction (4.48) to numerically determined
values for the entropy in the intermediate IR phase.
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Fig. 16: Entropy as a function of temperature (in logarithmic scale) for the intermediate IR phase at finite
q in the large N expansion. The circles give numerical results. The solid lines give the analytical prediction
(4.48) and (4.49) with values for γ(q, q̃) shown in Table 1. The dashed line gives the analytical prediction
(4.48) with only the leading irrelevant correction.

As for the large q limit, we can also find the sub-leading relevant correction by performing

a numerical fit. In all cases considered, we again find that the sub-leading relevant correction is

proportional to s4(βJ )4− 4
n .

4.4 Geometrisation of an RG flow

The goal of this section has been to explore RG flows at strong coupling, and in particular at finite

temperature, for deformations of SYK models. We have identified a class of models permitting

a robust treatment by means of both numerical and analytic methods. Given the holographic

character of SYK models, our analysis opens up an interesting chapter in the story of holographic

renormalisation [104,105], which has so far been explored mostly from the bulk perspective. We have

identified models exhibiting RG flows between two near-fixed points and provided an interpretation

in terms of conformal perturbation theory. The general character of the models is a sum of two

70



ordinary SYK Hamiltonians (2.47), but with differing numbers of interacting fermions. As for the

ordinary SYK model, the flows we study preserve a rich thermodynamic structure and exhibit an

extensive entropy all the way into the deep infrared/small temperature regime.

Our analysis is performed entirely from the perspective of the microphysical theory. From a

holographic perspective, it is interesting to assess what features the putative holographic dual will

exhibit. In the vicinity of each near-fixed point, it is natural to postulate that the bulk theory will

mimic that of an ordinary SYK, whose thermodynamic features in the large N limit are captured

by a JT gravity theory governed by the classical Euclidean action

SE = −S0 −
1

2κ

∫
M
d2x
√
g (φR+ U(φ))− 1

κ

∫
∂M

√
hφK , (4.50)

with dilaton potential U(φ) = −2αφ with α real and positive. For α = −1, one finds that the

two-dimensional metric gij is Euclidean AdS2 at the classical level. At finite temperature, M is

taken to have a disk topology with S1 boundary ∂M, and we have the metric on the Poincaré disk.

The thermodynamic properties of asymptotically AdS2 geometries follow readily from the form of

U(φ). The specific heat CU and temperature, for instance, are given by [71,124,125]

CU =
2π

κ

U(φh)

∂φU(φh)
, β =

4π

|U(φh)|
, (4.51)

where φh is the value of the dilaton field φ at the Euclidean horizon. It follows that the near-fixed

point exhibits a specific heat linear in the temperature.

For two near-fixed points, the ratio of the specific heats fixes the ratio, R ≡ αUV/αIR, of the

slopes for the two linear regimes of U(φ). For the models we have studied, we find R > 1. This is

in line with an increasing number of degrees of freedom as we go to higher temperatures and can

be viewed as a consequence of unitarity and thermal equilibrium. At large enough temperatures,

the geometry is a pure AdS2 and there is boundary soft mode governed by the Schwarzian action.

This is the bulk dual of the Schwarzian associated to the intermediate near-fixed point discussed

in section 4.3.2. As we decrease the temperature, we flow to the interior of the geometry and an

additional AdS2 region emerges, corresponding to the near-fixed point in the deep infrared.

Continuity of the thermodynamic quantities along the RG flow, throughout which the theory

remains in the strongly coupled phase, suggests that the geometric picture continues to hold between
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the two near-fixed points. For this to occur, one can invoke [53] a more general dilaton potential

U(φ), as studied for example in [71, 124–126] with linear behaviour at the two endpoints. The

classical geometry will be asymptotically, but not isometrically, Euclidean AdS2. The presence of a

macroscopic entropy in the deep infrared/low temperature regime of the flow leads us to postulate

that the dual geometry retains a horizon. In section 4.3 we argued that the RG flow is triggered by

a relevant operator of weight ∆rel = q̃/q < 1. Thus, the bulk theory should have a corresponding

field associated to the relevant operator. Moreover, associated to the near-fixed point in the deep

infrared is the presence of a soft mode residing at the boundary of the near-AdS2 geometry in the

deep finite interior region, governed by the Schwarzian action. It is interesting that this soft mode

resides entirely within the geometric description.13 We depict this phenomenon in figure 17. The

appearance of a worldline theory in the midst of a gravitating spacetime is a phenomenon worth

pursuing in more detail.

(a) βJ & (βJ )∗ (b) βJ . (βJ )∗

Fig. 17: Pictorial representation of the two Schwarzian soft modes appearing inside Euclidean AdS2. (a) For
βJ larger that some critical (βJ )∗ there is a Schwarzian soft mode appearing in the deep interior of AdS2.
(b) For 1 � βJ . (βJ )∗, there is a Schwarzian soft mode residing closer to the AdS boundary. In the large
q model with n = 2, (βJ )∗ ∼ s−2, with s� 1.

13A similar emergence of a soft mode in the interior of an interpolating geometry was also discussed for the centaur
geometries studied in [72,127,128].
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5 Multiple deformations and non-Hermitian models

5.1 Introduction

In this section we shall be interested in extending our discussion of SYK flows to a larger class of

deformations given by concatenating multiple SYK Hamiltonians,

Hdef = Hq +
k∑
i=1

siHq̃i , (5.1)

where q > q̃1 > q̃2 > . . . > q̃k and the coupling constants si ∈ C are tunable dimensionless

parameters. The term
∑k

i=1 siHq̃i can be viewed as a relevant deformation of the model Hq that

induces an RG flow and modifies the thermodynamic behaviour of the model in the infrared.

While unitarity constrains s ∈ R, we also extended our consideration to the more general case

of s ∈ C. This extension is rooted in the holographic interpretation of the deformed SYK models.

Here, the IR thermodynamics are described by a dilaton gravity theory governed by the Euclidean

action

IE = − 1

2κ

∫
M
d2x
√
g (φR+ U(φ))− 1

κ

∫
∂M

√
hφK , (5.2)

where U(φ) is the dilaton potential. By choosing an appropriate dilaton potential it is possible

construct geometries that flow from an AdS2 boundary to a dS2 interior [53, 56, 127], providing

the possibility for a holographic interpretation of (a portion of) the de Sitter static patch. Dilaton

gravity theories with a dS interior entail a dilaton potential transitioning from a +φ dependence

for large values of φ to a −φ dependence at small values of φ.

A no-go argument. In the SYK dual, this manifests as an entropy flow S
(
β−1

)
, transition-

ing from a positive linear dependence on the temperature β−1, to a negative linear one. For the

thermal state, ∂S/∂(β−1) = β3(∆E)2, where (∆E)2 signifies the energy variance in the ensemble.

Consequently, a negative entropy slope proves unattainable for a Hermitian Hamiltonian.

We are thus left with two options: either working with a state other than the thermal one, or

considering non-Hermitian physics. Non-Hermitian Hamiltonians defined by considering s ∈ I are

able to yield negative entropy gradients in two scenarios:
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• For a single deformation Hdef = Hq + sHq̃ in the large q limit, with q/q̃ = 2, another regime

of linear-in-temperature entropy is seen in the deep infrared (βJ � 1/s2). Moreover, the

gradient of the entropy in this regime scales as 1/s2. Naively, an imaginary s produces a

negative linear-in-temperature entropy. This was suggested in [53].

• Perturbatively around the intermediate fixed point of Hq.

In this part of the thesis, we consider the latter case. In this case, considering the thermal state re-

mains pertinent since we are perturbing near the intermediate conformal fixed point which we know

to be described by unitary physics. Conformal perturbation theory reveals the role of imaginary s.

In particular, the leading relevant correction to the entropy predicted by conformal perturbation

theory is proportional to s2. This results in imaginary values of s giving positive corrections to the

entropy as we flow away from the fixed point, which can lead to a negative slope in S(β−1).

5.2 Entropy flow from conformal perturbation theory

5.2.1 Large N for multiple deformations

Generalising the large N effective theory from a single deformation to multiple deformations is

simple, and we now state the key formulae. In terms of G and Σ the large N action reads

I = −1

2
log det (δ(τ1 − τ2)∂τ2 − Σ) +

1

2

∫ β

0
dτ1dτ2

(
ΣG− J 2

(
2q−1

q2
Gq +

k∑
i=1

s2
i

2q̃i−1

q̃2
i

Gq̃i

))
,

(5.3)

from which we find the Schwinger-Dyson equations


G = (∂τ − Σ)−1 ,

Σ = J 2
(

2q−1

q Gq−1 +
∑k

i=1 s
2
i

2q̃i−1

q̃i
Gq̃i−1

)
.

(5.4)

In the large q limit, the Schwinger-Dyson equations (5.4) become a single ordinary differential

equation for g(τ), namely

∂2
τ g(τ) = 2J 2eg(τ) + 2J 2

k∑
i=1

nis
2
i e
g(τ)/ni , (5.5)
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where ni := qi/q̃i and the equation is has thermal boundary conditions, g(0) = g(β) = 0. The

entropy can be computed from the large q action [52,53]

S

N
= Sfree

0 +
β

8q2

∫ β

0
dτ

[
1

2
(∂τg(τ))2 − J 2

(
k∑
i=1

2n2
i s

2
i e
g(τ)/ni + 2eg(τ)

)]
, (5.6)

where Sfree
0 ≡ log 2/2.

5.2.2 Conformal perturbation theory: thermodyamics

We now generalise our discussion of relevant conformal perturbation theory in section 4.3.3 to flows

with multiple and possibly non-Hermitian deformations. As before we describe the deformed SYK

model near the intermediate fixed point by the action (4.35), where

ICFT = −1

2
log det(−Σ) +

1

2

∫ β

0

∫ β

0
dτ1dτ2

(
ΣG− J 2 2q−1

q2
Gq
)
. (5.7)

For multiple deformations we now have a relevant operator Ohi(τ) of weight hi = 1/ni for each

Hamiltonian term Hq̃i in (5.1). Following the same steps as in section 4.3.3, we find that the leading

relevant correction to the entropy due to the relevant perturbation is given by

δ2S

N
=

k∑
i=1

(
2

ni
− 1

) π
2
ni
− 1

2 Γ
(

1
2 −

1
ni

)
2Γ
(

1− 1
ni

) g2
1/ni

J 2
(βJ )

2− 2
ni , (5.8)

where g2
1/ni

is given by (4.46) at large q and (4.49) at finite q. The entropy of the model in the

neighbourhood of the near-conformal fixed point is therefore well described by

S

N

∣∣∣∣
Hdef

=
S

N

∣∣∣∣
Hq

+
δ2S

N
+ · · · , (5.9)

where the dots signify further relevant corrections. We also recall that one can also expand the

entropy of the undeformed SYK as [31,40]

S

N

∣∣∣∣
Hq

= Sfree
0 −

∫ 1/q

0
dx π

(
1

2
− x
)

tanπx+
4π2α(q)

βJ
+ · · · , (5.10)
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where α(q) is the coefficient of the Schwarzian action and must be computed numerically. The

dots signify further irrelevant corrections that can also be found by conformal perturbation the-

ory [37, 85, 121]. In figure 18 we compare the predictions of conformal perturbation theory with

multiple deformations to numerics. Specifically, we deform the Hamiltonian H8 by (10−3/2)H2,

(10−1i)H4 and (10−3/2)H2 + (10−1i)H4 and plot the numerical computation of the entropy against

the prediction (5.9) and (5.10).
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Fig. 18: Entropy as a function of temperature (in logarithmic scale) in the vicinity of the intermediate fixed
point at finite q in the large N limit. The circles give numerical results from solving the Schwinger-Dyson
equations (5.4). The dashed lines give the analytical prediction (5.9) with the leading relevant correction (5.8).

Note in particular that for the model Hdef = H8 + (10−3/2i)H4, the slope of the entropy turns

from positive to negative as we decrease the temperature. Such a turning of the entropy slope is

generally possible when allow imaginary couplings, si ∈ I. To see this note that

(
2

ni
− 1

) π
2
ni
− 1

2 Γ
(

1
2 −

1
ni

)
2Γ
(

1− 1
ni

)
J 2

< 0 for ni > 1 , (5.11)

and so the sign of each term in the correction (5.8) is determined by the sign of g2
1/ni

. From (4.46)

and (4.49) we see that g2
1/ni

> 0 for si ∈ R, but g2
1/ni

< 0 for si ∈ I. Thus imaginary values of si

will give positive corrections to the entropy which in turn can lead to a negative slope in S(β−1).

We shall explore such models further in the following sections.
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5.2.3 Conformal perturbation theory: two-point function

We can also use conformal perturbation theory to study relevant corrections to the two-point

function near the intermediate fixed point. Using (4.35) the two-point function in this regime can

be computed as

G(τ) =
1

Z

∫
[Dψ]

ψi(τ)ψi(0)

N
e−ICFTe

−
k∑
i=1

ghi
∫ β
0 dτ ′Ohi (τ

′)
. (5.12)

Expanding the second exponential we find that the first two relevant corrections to the two-point

function are given by

G(τ) = GCFT(τ) −
k∑
i=1

ghi

∫ β

0
dτ
〈ψi(τ)ψi(0)Ohi(τ)〉β

N

+
k∑
i=1

g2
hi

2

∫ β

0
dτ3dτ4

〈ψi(τ)ψi(0)Ohi(τ3)Ohi(τ4)〉β
N

, (5.13)

where the three-point and four-point functions in the above expression are conformal. We will now

focus on the case were we deform by a single SYK; that is Hdef = Hq + sHq̃, where q̃ < q and

s ∈ C. Recall that at the intermediate conformal fixed point the fermions have scaling dimension

∆ψ = 1/q and the relevant operator Oh has scaling dimension h = 1/n. Using this and the general

form of conformal three and four-point functions, without computing the integrals we can observe

that the first and second order corrections to G(τ) have the form

δ1G ∝ gh
1

(βJ )
h+ 2

q
−1
f1(τ/β), (5.14)

δ2G ∝ g2
h

1

(βJ )
2h+ 2

q
−2
f2(τ/β) , (5.15)

where f1, f2 are functions of τ/β whose exact form we will not need. We can test the β dependence

of these corrections in the following way. We first numerically compute the two-point function for

both the undeformed and deformed SYK models at τ = kβ for some fixed constant k ∈ (0, 1).

We do this over a range of temperatures near the intermediate fixed point. We then compare the

difference between the two and check that it is consistent with the corrections. Numerics show that

the leading non-vanishing correction to G(τ) near the intermediate fixed point takes the form (5.15)

and hence we conclude that the three-point function is subleading. Moreover recall that g2
h ∝ s2
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and so the leading correction to the two-point function is proportional to s2. This means that the

correction will have opposite signs depending on whether s is taken to be purely real, or purely

imaginary. By looking at numerics we find that


G(τ) ≤ Gsingle(τ) for s ∈ R ,

G(τ) ≥ Gsingle(τ) for s ∈ I ,
(5.16)

where Gsingle(τ) denotes the two-point function for the undeformed SYK. As an example, in figure

19 we show log-log plots for the difference between the two-point functions for Hsingle = H6 and

Hdef = H6 + sH2, across a range of temperatures in the vicinity of the intermediate fixed point at

fixed time τ = β/2. Plots are shown for s = 10−3/2 and s = 10−3/2i. In agreement with (5.15)

(and the fact that (5.14) vanishes) we find for both plots a straight line with slope 2h + 2/q − 2.

Figure 20 compares the full two-point functions at fixed temperature (βJ )−1 = 0.01. All figures

also show agreement with (5.16). Numerics were also performed for other values for the parameters

(q, q̃, s, τ), and all cases checked are consistent with these conclusions.
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(a) Hdef = H6 + 10−3/2H2
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(b) Hdef = H6 + (10−3/2i)H2

Fig. 19: The difference between the two-point function of the undeformed SYK model H6 and deformed SYK
H6 + sH2 at fixed time τ = β/2 and over a range of temperatures near the intermediate fixed point. For plot
(a) s = 10−3/2 whilst for plot (b) s = 10−3/2i.
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Fig. 20: The two-point functions at finite temperature, with βJ = 100, for the undeformed SYK model H6

(blue line) and deformed models H6 + 10−3/2H2 (orange line) and H6 + (10−3/2i)H2 (green line).

5.3 Entropy flows at finite N

So far the entropy flows have only been shown to leading order in the large N limit of the theory.

We would like to also see evidence for them at finite N . At finite N the SYK model is solvable

by exact diagonalisation procedures for values of N up to N ∼ 34. Thermodynamics results at

large N should be comparable to finite N calculations for N � βJ . Since even the intermediate

fixed point in the large N limit occurs at temperatures for which βJ � 1 direct comparisons of the

entropy flows to finite N results would require values of N far beyond current numerical capabilities.

However, it was shown in [41] that, for the undeformed SYK, the regime of linear-in-temperature

entropy characterising the (single) near fixed point can be matched to an extrapolation of finite

N results with N ≤ 32. We carry out a similar extrapolation, detailed below, for our deformed

models with a single deformation. We find that not only are we able to access the linear-in-

temperature regime of the intermediate fixed point, but we are also able to match the leading

relevant correction away from the fixed point. Thus we find finite N evidence of the flow from the

intermediate IR fixed point towards the deep IR fixed point found in the large N limit. As done

for the undeformed SYK model in [41], at finite N , we compute the entropy numerically by exact

diagonalisation of the Hamiltonian. For more details on the specrta of such models see appendix

E. We then compute the average entropy for each N by averaging over a number of realisations

of the couplings. Finally, we extrapolate to infinite N by fitting to a polynomial in 1/N up to

O(N−2) and taking the constant term as the result. In figure 21 we compare extrapolations from

finite N with large N numerics from solving the Schwinger Dyson equations (5.4) for the models
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H = H4, H = H4 + 0.1H2 and H = H4 + 0.1iH2. The extrapolations show excellent agreement

with the large N solution for βJ > 10−1. For temperatures below this the extrapolations start

to deviate significantly. There are likely multiple sources contributing to this error. Firstly at

low temperatures, handling both small and large numbers poses numerical precision challenges in

computing the entropy. Secondly, the extrapolations are up to N = 30; it is likely that larger

N is necessary to improve accuracy at smaller temperatures. Related to this, with relatively few

values of N used, the extrapolations are fit to curves up to O(N−2), neglecting higher-order terms

to prevent overfitting. However, it’s possible that including such terms may be necessary at lower

temperatures for accurate extrapolation. Finally, more averaging may be needed to improve the

accuracy of the extrapolations. Nonetheless, in both cases the extrapolations capture the leading

relevant correction away from the near-conformal fixed point of the undeformed SYK, H4, providing

finite N evidence of the flow away from the intermediate fixed point.
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(a) Hdef = H4 + 0.1H2
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(b) Hdef = H4 + (0.1i)H2

Fig. 21: Extrapolations of the averaged entropy S/N from finite N curves. In each case even values of N
from N = 16 to N = 30 were used with 220−(N/2) realisations averaged over. Extrapolations (red dashed lines)
are compared to large N numerics from solving Schwinger Dyson equations (circles).

5.4 A model with linear-in-temperature entropy and negative slope

Working in the large N and large q limits, we now present a model of the type (5.1), whose entropy

as a function of temperature exhibits a region of negative slope that is approximately linear. Such

a model is achieved by tuning the model parameters (ni, si) using conformal perturbation theory as

a guide. In particular we know that the correction to the flow away from the near-conformal fixed

point of Hq at large q is described by (5.8) and (4.46). Using linear regression we fit regressors

belonging to set of functions {(βJ )2− 2
n : n ∈ Z, n > 1} to a straight line with negative slope. Once
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an appropriate fit is found we can read off the parameters si from the regression coefficients which,

along with the ni of the chosen regressors, describe a model that gives rise to such a correction term.

We can then compute the entropy for such a model by numerically solving the equation (5.5) and

plugging this into (5.6). In figure 22 we plot numerics for the entropy as a function of temperature

for such a model around the near-conformal fixed point, along with the prediction from conformal

perturbation theory. In table 2 we state the parameters used.
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Fig. 22: Entropy as a function of temperature in the vicinity of the intermediate fixed point for the large
q deformed SYK with model parameters given in table 2. Circles give numerics from solving the large q
Schwinger-Dyson equation (5.5) whilst the orange line shows the prediction from conformal perturbation
theory (5.9). The black dashed line shows the function used to fit the regressors and hence define the model.
Such a model is seen to have a region of approximately linear-in-temperature entropy with negative slope.

i ni s2
i

1 20/7 3.36385× 10−7

2 4 2.4819× 10−7

3 5 9.76218× 10−8

4 20/3 −3.44481× 10−8

5 10 −4.53241× 10−8

6 20 8.36213× 10−9

7 200 −1.70624× 10−11

Table 2: Model parameters for the large q deformed SYK model whose entropy is shown in figure 22.
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5.5 Holographic spacetimes

5.5.1 Thermodynamic considerations

We first briefly review how to construct the bulk holographic spacetime of the deformed SYK

models from their thermodynamics. We recall from section 2.5 that in general the gravitational

part of the bulk theory is described by a dilaton gravity theory with Euclidean action

SE = − 1

2κ

∫
M
d2x
√
g (φR+ U(φ))− 1

κ

∫
∂M

√
hφK , (5.17)

where M is taken to be a disk topology with boundary ∂M = S1. A purely topological term can

also always be added to the theory which sets the zero temperature entropy of the theory. This

theory permits general black hole solutions of the form

ds2 = f(r)dt2 +
dr2

f(r)
, f(r) =

1

φ̃

∫ r

rh

dr′U(φ(r′)) , φ(r) = φ̃r , (5.18)

where rh is the position of the horizon. The low energy sector of the undeformed SYK model is

thought to correspond to JT gravity, where the dilation potential has the form U(φ) = 2φ and the

corresponding metric for the theory is that of AdS2. The duality manifests itself in the IR limit of

SYK model, where the physics is described by the same Schwarzian action that governs the theory

of the JT gravity. At the level of the thermodynamics this corresponds to both theories having a

linear-in-temperature entropy with positive slope.

By adding a relevant deformation to the SYK model of the form (5.1) we expect to deform the

interior of the bulk AdS2 geometry [53]. To understand how the bulk interior gets deformed it is

useful to note that the dilaton potential can be obtained directly from the thermodynamics of the

dilaton theory. In particular, from (2.76), we have that

T =
|U
(
κ
2π (S − S0)

)
|

4πφ̃
, (5.19)

where T is the temperature of the theory, S is the entropy and S0 is the zero temperature entropy.

Thus, if we have access to S(T ) for our deformed SYK model, we can invert this function to find

the dilaton potential for the holographic bulk. In particular, a deformed SYK model where S(T )

has a regime with a negative linear slope, the corresponding dilaton potential will contain a portion
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of a negative linear slope. The deformed SYK model described in section 5.4 is proposed to be

describe such a situation.

5.5.2 Two-point correlation functions: heavy fields

We would now like to explore the correspondence between the deformed SYK models and their

proposed dual dilaton-gravity theories beyond the level of thermodynamics. To do so we shall first

borrow our intuition from the worldline formalism where one can compute the two-point function

of a free massive scalar as a path integral

G(X,Y ) =

∫
dPe−mL[P] ≈

∑
g∈geodesics

e−mLg , (5.20)

where P denotes a path between the points X and Y and L[P] the length of the path. The

final approximation assumes the mass is large allowing us to take a saddle point approximation,

reducing the integral to a sum over geodesic between X and Y . In the case of spacetimes that

are asymptotically AdS, the two-point function between points on the spacetime boundary can be

related to the two-point function of operators in the holographic dual.

To check this statement holds in our case, we would like to first evaluate how the lengths of

geodesics anchored at the boundary of AdS2 are affected by a small deformation of the dilaton

potential. Consider,

U(φ) = 2φ+ δU(φ) , (5.21)

where δU(φ) is a smooth function of φ. In our comparison we would like to keep the temperature of

the deformed and undeformed geometries fixed. From (2.76), we see that to keep the temperature

fixed after deforming the dilaton potential we must shift the position of the horizon. In particular,

the shifted horizon r′h can be expressed in terms of the original horizon rh as

|2φ̃r′h + δU(φ̃r′h)| = |2φ̃rh| . (5.22)

For our argument we will avoid this subtlety by setting δU(φ̃r′h) = 0, so that r′h = rh. We can do

this for example by taking δU(φ) to have compact support in some region [r∗1, r
∗
2] for r∗2 > r∗1 > φ̃rh.
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The blackening factor resulting from such a dilaton potential is given by

f(r) = r2 − r2
h + g(r) , g(r) =

1

φ̃

∫ r

rh

dr′ δU(φ̃r′) , (5.23)

where we note that this is consistent with the horizon being at r = rh, since g(rh) = 0. As a further

simplification, we focus on geodesics which correspond to straight lines through the centre of the

deformed Poincaré disc, connecting opposite sides of the thermal circle, see figure 23. We provide

further details on how to compute the geodesics in appendix F.

Fig. 23: The brown shaded region depicts the deformed region of the geometry that is supported on r∗1 ≤
r ≤ r∗2 . The blue shaded region depicts the pure AdS2 geometry for r∗2 ≤ r ≤ Rb. The dashed line depicts the
geodesic under consideration.

The length of such a geodesic is given by

L =

∫
ds = 2

∫ Rb

rh

1√
r2 − r2

h + g(r)
dr , (5.24)

where we regularise the length by anchoring the geodesic to a boundary circle of finite radius Rb.

We will consider two cases corresponding to δU(φ) ≤ 0 and δU(φ) ≥ 0. The case where δU(φ) ≤ 0

corresponds to a bending downward of the dilaton potential as we reduce φ past r∗2, thus mimicking a

deformed SYK with real s in the vicinity of the intermediate fixed point. The case where δU(φ) ≥ 0

corresponds to a bending upward of the dilaton potential and thus mimics the deformed SYK with

imaginary s near the intermediate fixed point. Note that beyond the aforementioned constraints,

the exact form of the dilaton potential does not matter for our argument, and in particular we can

choose it to match the thermodynamics of the corresponding SYK model we are trying to describe.

What is important for us to note is that in the case that δU(φ) ≤ 0 we have that g(r) ≤ 0 for all r
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and similarly in the case δU(φ) ≥ 0 we have that g(r) ≥ 0 for all r. From (5.24) we see that this

means that 
L ≥ LAdS2 for δU(φ) ≤ 0 ,

L ≤ LAdS2 for δU(φ) ≥ 0 ,

(5.25)

where LAdS2 corresponds to the case g = 0. To relate this result to the SYK model we use (5.20).

From this we would expect the two-point function of the deformed SYK to obey the following

inequalities


G(β/2) ∼ e−mL ≤ e−mLAdS2 ∼ Gsingle(β/2); s ∈ R ,

G(β/2) ∼ e−mL ≥ e−mLAdS2 ∼ Gsingle(β/2); s ∈ I ,
(5.26)

which is consistent with (5.16).

5.5.3 Two-point correlation functions: light fields

We can also check whether our expectation from (5.16) is consistent with what we find for the

bulk two-point functions of light fields. In [53], it is shown that for a two-dimensional metric in

Euclidean signature of the form

ds2 = e2γ(z)(dτ2 + dz2) , (5.27)

the boundary two-point function for light fields in frequency space can be written as a perturbative

expansion in the mass of the field, taking the form

G(ω) = −
(
|ω|+m2

∫ ∞
zc

dy e2γ(y)e−2|ω|(y−zc) + · · ·
)
. (5.28)

For thermal spacetimes the only modification to this formula is that ω should take discrete values.

It is easy to apply (5.28) to both the AdS2 black hole and for the deformed geometry (5.23) by

re-writing these metrics in the conformal frame. One can then show that we have the following

inequality valid for δU(φ) ≥ 0

|G(ωn)| ≥ |GAdS2(ωn)| , (5.29)
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where in (5.29) G is the boundary two-point function for the deformed AdS2 geometry and GAdS2

is that of pure AdS2 space. Applying Parseval’s identity to this we find

δU(φ) ≥ 0⇒
∑
n∈Z
|G(ωn)|2 ≥

∑
n∈Z
|GAdS2(ωn)|2

⇒
∫ β

0
dτ |G(τ)|2 ≥

∫ β

0
dτ |GAdS2(τ)|2 .

(5.30)

We can also make an analogous argument to conclude

δU(φ) ≤ 0⇒
∫ β

0
dτ |G(τ)|2 ≤

∫ β

0
dτ |GAdS2(τ)|2 . (5.31)

This is again consistent with our expectations from the boundary theory. More details of the

computation can be found in appendix G.
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6 Krylov complexity and chaos in deformed SYK models

6.1 Introduction

In this section we will explore the relation between the Lyapunov exponent λL and the Krylov

exponent λK in the SYK model and its deformations. In most cases, the SYK model develops a

chaotic behaviour in its strongly-coupled phase, but it can nevertheless be solved in different limits

using different numerical and analytical techniques at any temperature. In fact, the SYK model

is maximally chaotic at low temperatures in the sense of (1.5). The Lyapunov exponent [31, 129],

the spectral form factor [41] and operator size distribution [43] were among the first ideas explored

regarding the chaotic nature of the SYK model.

We will focus on the large N limit of the SYK model and its deformations, where the model

is dominated by a saddle-point approximation of its partition function. When one further takes

the large q limit, it has been shown that the Krylov exponent satisfies λL = λK , both at infinite

and finite temperature [26]. Thus the lower bound on λK in eq. (1.5) is saturated, fuelling the

hope that Krylov complexity provides a computational advantage to diagnose chaos in quantum

systems. We will see in this section however that this is only the case when the SYK model is not

deformed. As a first step, we extend the previous result to the next order in the large q expansion,

as well as to finite q and conclude that the tight upper bound on the Lyapunov exponent remains

robust in these models at all temperatures. When q = 2, the interaction term in the Hamiltonian

becomes a random mass term, which is known to be integrable. In this case, we show that the

Lanczos coefficients saturate both at finite and infinite temperature, which gives λK = 0.

We then turn our attention to deformed SYK models of the form (2.47) [46–55]. These deformed

models can have non-trivial behaviour in the infrared, including the possibility of transitions be-

tween different regions of near-maximal chaos or transitions between near-maximally chaotic and

integrable behaviour. In both cases, both the Lyapunov and the Krylov exponent can be computed

and compared. We find strong evidence analysing different kinds of deformed SYK models, both

analytically and numerically, that while the Lyapunov exponent can have non-monotonic behaviour

as a function of the inverse temperature, the Krylov exponent can only behave monotonically. So,

for instance, if an initially chaotic system becomes integrable (or the Lyapunov exponent becomes

very small) at large inverse temperatures, λK will not provide a good diagnostic of this transition.
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In fact, in some of the models we studied, the Lyapunov exponent decays to zero at large inverse

temperatures, while the Krylov exponent saturates to its maximal value. We conjecture that, when

it is well-defined, the monotonicity of the Krylov exponent may be a generic feature of unitary

quantum systems.

6.2 Computation of Krylov exponent

6.2.1 Krylov exponent from moments

In what follows, we will compute λK , in different quantum systems where λL can also be computed,

to gain insight into how tight is the bound, especially in systems where the behaviour of λL is not

necessarily monotonic, and could even go to zero. For a brief review of quantum chaos and Krylov

complexity and the definitions we use for λL,K , we refer the reader back to sections 2.1 and 2.2

respectively. We now describe two methods to compute λK , one based on the explicit calculation

of the Lanczos coefficients and the other based on analytic properties of the Wightman two-point

function.

Performing the algorithm (2.15) can be numerically challenging. Instead, if we know the Wight-

man autocorrelation function, C(t), defined by

C(t) = (O(t)|O(0))Wβ , (6.1)

the Lanczos coefficients can be computed using a recursive algorithm [130]. The first step is to

analytically continue to imaginary time and perform a Taylor expansion to find the moments, µ2n,

C(−iτ) =

∞∑
n=0

µ2n
τ2n

(2n)!
, (6.2)

where the odd coefficients vanish since we have assumed that O is Hermitian. The moments

are therefore related to expectation values of powers of the Liouvillian µ2n := (O|L2n|O) =

d2n

dτ2n
C(−iτ)|τ=0 and so products of the Lanczos coefficients are given by determinants of minors

of the Hankel matrix of moments: b2n1 ....b2n = det(µi+j)0≤i,j≤n.14 Therefore, after obtaining the

14In this expression we fixed a small typo in equation (A4) of [26], see e.g., (2.10) of [68].
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moments the following recursive algorithm can be used to obtain the Lanczos coefficients, bn:


Goal : bn =

√
M

(n)
2n ,

Recursive step : M
(n)
2k =

M
(n−1)
2k

b2n−1
− M

(n−2)
2k−2

b2n−2
,

Stopping conditions : M0
2k = µ2k , M

(−1)
2k = 0 , b−1 = b0 = 1 .

(6.3)

Once sufficiently many Lanczos coefficients are obtained in this way, the Krylov exponent, λK can

be found by computing the slope of the coefficients, see however footnote 3.

In what follows we will study the Krylov complexity for the SYK model and its deformations

with respect to a single fermion operator O =
√

2ψ1. In the large N , limit the autocorrelation

function 〈ψi(τ)ψi(0)〉 is independent of i [83] and therefore

C(−iτ) = 2G(τ + β/2) , (6.4)

where G(τ) ≡ G(τ, 0) was defined in (2.26). The moments used as a starting point for the algorithm

(6.3) are computed as follows

µ2n =
d2n

dτ2n
(2G(τ + β/2)) |τ=0 . (6.5)

6.2.2 Krylov exponent from pole of autocorrelation function

If the Lanczos coefficients bn have a linear asymptotic growth of the form (2.19), then the asymptotic

slope α can be extracted from the location of the first pole of the autocorrelation function in

Euclidean time [26, 61, 79, 131]. This can be seen by relating the moments µ2n to the Lanczos

coefficients bn. Assuming (2.19) the moments have the following asymptotic form [26],

µ2n =

(
4nα

eπ

)2n

eo(n) . (6.6)

Using (6.6), one can then apply the root test to (6.2) to see that the radius of convergence and

hence the location of the first pole, which we denote by τ∗, is given by

τ∗ =
π

2α
. (6.7)
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From this one can compute the Krylov exponent using the relation

λK =
π

τ∗
. (6.8)

For the SYK and its deformations, from (6.4) we see that τ∗ is the first pole of G(τ + β/2).

6.3 Krylov complexity of a single SYK model

6.3.1 The integrable q = 2 model

Consider the single SYK Hamiltonian (2.24). When q = 2, the interaction term becomes just a

random mass term for the fermions, and the model is known to be integrable. We thus expect the

Lanczos coefficients to grow sub-linearly with n, for large enough n. At infinite temperature, this

was already demonstrated in [26]. Here we consider the theory at finite inverse temperature β. For

q = 2, the thermal two-point function is known analytically [31],

G(τ) =

∫ π

0

dθ

π
cos2 θ

cosh[( τβ −
1
2)2βJ sin θ]

cosh(βJ sin θ)
. (6.9)

We can use the two methods described in sections 6.2.1 and 6.2.2 to compute the Krylov exponent.

Using the first method, we computed the first ∼ 25 Lanczos coefficients, for a range of different

temperatures. The results are shown in figure 24. We see that bn/J initially grows with n but then

reaches a plateau around the value of 1. As we increase βJ the value of n at which the plateau is

reached increases approximately linearly with βJ , as can be seen from figure 25.
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Fig. 24: Lanczos coefficients bn for the single SYK with q = 2 for different values of βJ .
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This means that at sufficiently low temperatures, the number of Lanczos coefficients required

to see the saturation can go beyond computational control. One might be fooled to think that

the system becomes chaotic at low temperatures, since the available Lanczos coefficients seem to

behave linearly with n. However, this is not the case. To verify this, it is useful to use the second

method, which directly gives the asymptotic behaviour of the slope of the Lanczos coefficients.

Since we have the analytic form of the autocorrelation function this is not hard to compute. We

need to find the location of the pole in Euclidean time that is closest to the origin in (6.9).
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Fig. 25: The saturation point n∗ as a function of βJ . The saturation point is defined as the first n such that
|bn/J − 1| ≤ 0.1.

At any temperature, the only divergence of the two-point function is at τ∗ → ∞. From (6.8),

this trivially gives that the slope of the Lanczos coefficients is zero and so, as expected, λK = 0 at

any temperature for the single SYK with q = 2.

This behaviour of the Lanczos coefficients provides a sharp distinction from that of chaotic

many body systems, for which the Lanczos coefficients are expected to grow indefinitely according

to the operator growth hypothesis (2.19).

Finally, let us remark that in [132], it was found that at finite but large N , with q = 4, the

Lanczos coefficients do in fact reach a plateau. In this case however, this is not due to the system

being integrable but rather that the Hilbert space is finite. In particular they show that the value

of this plateau grows linearly with N suggesting that they would not get saturation in the large N

limit.

6.3.2 Large q and 1/q corrections

Now we turn to the discussion of chaotic SYK models. The first example analysed in the context

of Krylov complexity was the large q model, as it is possible to get analytic expressions for the
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autocorrelation function, see (2.42).

It was shown that both at finite and infinite temperature, the resulting Lanczos coefficients

display the expected linear growth [26]. Using the moments method, the Lanczos coefficients at

infinite temperature take the form

bn/J =


√

2/q +O(1/q) , n = 1 ,√
n(n− 1) +O(1/q) , n > 1 .

(6.10)

At finite temperature, we have that

bn/J =


2ν
βJ
√

2/q +O(1/q) , n = 1 ,

2ν
βJ
√
n(n− 1) +O(1/q) , n > 1 .

(6.11)

By considering the asymptotic form of the coefficients for large n, it follows that

λK =
4ν

β
. (6.12)

This value for the Krylov exponent can also be verified by looking at the pole of the autocorrelation

function (2.42), with the Euclidean time shifted to compute the Wightman correlator, see (6.4). In

fact, one finds that

τ∗ =
βπ

4ν
−→ λK =

4ν

β
. (6.13)

It is easy to find the low-temperature behaviour of λK by using the expansion of ν in (2.44),

λK =
2π

β

(
1− 2

βJ
+

4

(βJ )2
− 24 + π2

3(βJ )3
+ · · ·

)
. (6.14)

We see that the Krylov exponent, in the strict large q limit, provides a far better bound for the

Lyapunov exponent than the chaos bound (2.8). Indeed, the Krylov exponent saturates the left

inequality in (1.5),

λL = λK ≤
2π

β
, (6.15)

yielding an optimal bound for the Lyapunov exponent, while the chaos bound (2.8) is only reached,

in this case, in the zero temperature limit.
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Corrections in 1/q. It is natural to ask if the tight bound (6.15) holds beyond the large q-

limit. To answer this question, we consider the next-to-leading contributions in 1/q to the thermal

autocorrelation function, which were computed in [90]. We will consider the full finite q result

numerically in the next section.

We expand the autocorrelation function as follows,

G(τ) =
1

2

(
1 +

g(τ)

q
+
h(τ)

q2
+O(1/q3)

)
, (6.16)

where the leading order g(τ) is given in (2.42) while h(τ) is found to be [90]

h(τ) =
1

2
g2(τ)− 2`(τ)− 4

(
tan

(
ν − 2ντ

β

)∫ τ

β/2

(
−2ν

β

)
`(y) dy + 1

)

+ 4
1 +

(
ν − 2ντ

β

)
tan

(
ν − 2ντ

β

)
1 + ν tan ν

(
tan ν

∫ 0

β/2

(
−2ν

β

)
`(y) dy + 1

)
,

(6.17)

with `(τ) ≡ g(τ)− e−g(τ)Li2(1− eg(τ)) and

∫ 0

β/2

(
−2ν

β

)
`(y) dy = − ν2

6 cos2 ν
(2ν + 3 sin 2ν) . (6.18)

Here ν is the same as in the large q SYK, given implicitly as a function of the inverse temperature

in equation (2.42).

As before, we evaluate the moments and Lanczos coefficients from G(τ), which now includes a

correction at order 1/q. Note that when evaluating the moments, the integral
∫ τ
β/2

(
−2ν

β

)
`(y) dy

does not need to be computed since the moments µ2n for n > 1 are extracted by taking τ -derivatives

and for the case of µ0 the integral vanishes at τ = β/2. Figure 26(a) shows the first 15 Lanczos

coefficients at large q and infinite temperature including the 1/q corrections for different values of

q.
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Fig. 26: Lanczos coefficients as a function of n, computed perturbatively in the large q expansion including
the 1/q correction at infinite temperature. In (a) we plot different values of q while in (b) we compare to the
finite q = 10 result.

Note that the Lanczos coefficients at infinite temperature and large q (including the next-order

correction) differ significantly from those found in [133]. We do not observe a super-linear growth

and sub-linear growth in the even and odd Lanczos coefficients, respectively. In fact we find a linear

dependence and do not observe any staggering.

We can compare our large q results with numerical results obtained at finite q (see section 6.3.3).

For q = 10 at infinite temperature, the results are shown in figure 26(b), finding good agreement

between the large q expansion and the finite q numerical result. In figure 27 we compare the large

q Krylov exponent (computed from the slope of the Lanczos sequence) at infinite temperature to

the finite q results for different values of q, again finding good agreement for q & 10. Note that in

both cases, in order to get this agreement, it was essential to also include the 1/q-correction. This

shows that, at least at infinite temperature, the results obtained in the large q expansion for the

Lanczos coefficients are reasonable and a good approximation to the finite q results.
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Fig. 27: Comparison of the Krylov exponent at infinite temperature between the large q result with 1/q-
correction and finite q results for different values of q. The dashed-dotted purple line at λK/J = 2 denotes
the value of the Krylov exponent to leading order in the large q expansion.

Next, we move away from infinite temperature. In fact, using the expansion in ν, we can obtain

analytic results for the first Lanczos coefficients at small βJ . The first five Lanczos coefficients as

βJ → 0 are given by,



b1/J =
(√

2− (βJ )2

4
√

2
+O (βJ )3

)
1√
q ,

b2/J =
(√

2− (βJ )2

4
√

2
+O (βJ )3

)
+
(
− 1√

2
+ 5(βJ )2

8
√

2
+O (βJ )3

)
1
q ,

b3/J =
(√

6−
√

3(βJ )2

4
√

2
+O (βJ )3

)
+
(
− 5√

6
− 13(βJ )2

8
√

6
+O (βJ )3

)
1
q ,

b4/J =
(

2
√

3−
√

3(βJ )2

4 +O (βJ )3
)

+
(
− 35

6
√

3
+ 85(βJ )2

48
√

3
+O (βJ )3

)
1
q ,

b5/J =
(

2
√

5−
√

5(βJ )2

4 +O (βJ )3
)

+
(
− 377

36
√

5
− 883(βJ )2

288
√

5
+O (βJ )3

)
1
q .

(6.19)

Note that this is a double expansion, first in 1/q, and then in βJ , that seems reliable for small βJ .

We can also perform an expansion for large βJ , where we expect both the Lyapunov and the
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Krylov exponent to saturate the chaos bound. Perturbatively, for large βJ , they are given by,
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2π
βJ +O

(
1
βJ
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)

1√
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(√
2π
βJ +O

(
1
βJ

)2
)

+

(√
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+
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12π
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(
1
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+
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2π√
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(
1
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)2
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1
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(
1
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)

+
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5π

2βJ +O
(

1
βJ

)2
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1
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(6.20)

The first 10 Lanczos coefficients up to order 1/q are shown for different temperatures in figure 28,

where we also compare to numerical finite temperature results at finite q (see section 6.3.3), again

finding good agreement.
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Fig. 28: Lanczos coefficients as a function of n, computed perturbatively in the large q expansion including
the 1/q correction with q = 6 at finite temperature. In (a) we plot different values of βJ while in (b) we
compare to the finite q = 6 result at βJ = 5.

6.3.3 Finite q

The final analysis we perform for a single SYK model is for finite q ≥ 4 and finite temperatures.

The aim is to find whether the conjectured bound (1.5) holds and how tight it is. For q ≥ 4 the

autocorrelation function can only be obtained numerically. In order to get to the regime of very

low temperatures where the maximal chaos bound is almost saturated, we need high numerical

precision in our calculations. We find that it is necessary to get to at least βJ ∼ 100, to be close

to maximal chaos.
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To find the Lanczos coefficients, one could proceed by solving the Schwinger-Dyson equations

(2.29) numerically and then taking numerical derivatives. This method however quickly accumu-

lates errors. The reason is that at very low temperatures, G(τ) becomes very flat near τ ∼ β/2,

which is the point at which derivatives need to be evaluated to compute the moments (6.5) at finite

temperature. Then, in order to get higher-n Lanczos coefficients it is necessary to take further

and further derivatives, whose values become smaller and smaller, and even small numerical errors

become important.

Instead, it is more convenient to work in frequency space and numerically compute the spectral

function ρ(ω) defined by

ρ(ω) =
G>(ω)

2π
(1 + e−βω) , G>(t) ≡ 1

N

∑
i

〈ψi(t)ψi(0)〉β = G(it+ ε) , (6.21)

using the procedure introduced in [98]. See appendix 3.5 for details. From ρ(ω) we can find

G(τ + β/2) by the following relation [31]

G(τ + β/2) =

∫
dω e−ω(τ+β

2 ) ρ(ω)

1 + e−βω
. (6.22)

Taking derivatives, we find that

µ2n =
d2n

dτ2n
(2G(τ + β/2)) |τ=0 =

∫
dω ω2ne−

ωβ
2

2ρ(ω)

1 + e−βω
. (6.23)

We compute the moments µ2n by numerically evaluating the integral in (6.23) and then obtain the

Lanczos coefficients using the algorithm (6.3). With this method we are able to reliably compute up

to ∼ 40 Lanczos coefficients, with inverse temperatures as large as βJ ∼ 100. Using this procedure,

all these numerical computations can be done in the order of minutes on a standard laptop.

The first thing we note is that the Lanczos coefficients for q = 4, unlike those of q = 2, do not

saturate for large values of n and finite inverse temperature. The comparison between the results

in section 6.3.1 and the Lanczos coefficients for the q = 4 model at finite temperature can be found

in figure 29.
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Fig. 29: First 35 Lanczos coefficients for the single q = 4 (yellow) and q = 2 (blue) SYK model at βJ = 50.
While the coefficients saturate for the q = 2 model, they keep growing linearly for the q = 4 one.

Note also that the even and the odd coefficients are staggered, but both sets grow linearly for

large values of n with equal slope and the staggering is a very small effect. To find λK , we calculate

the slope from the largest 3 odd coefficients computed. We perform the same analysis for different

values of βJ to get the Krylov exponent λK as a function of βJ .

In figure 30 we show the result of this computation both for q = 6 and q = 4. We also

plot their corresponding Lyapunov exponents, that we also computed numerically following the

procedure described in appendix 3.4. For comparison, we also include the analytic expression

for the Lyapunov exponent computed in the conformal (low temperature) limit and its leading

correction (2.46). Finally, we also include the analytic curve for the Krylov exponent at large q

which is known to be the same as the Lyapunov exponent and given by (6.12).
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Fig. 30: Krylov and Lyapunov exponent as a function of βJ in the single SYK model. The dots are numerical
computations of λK for q = 4 and q = 6. The dashed-dotted and dashed curves are the respective Lyapunov
exponents, computed numerically. The solid curves are analytical computations of the exponent in the large q
limit (black), and analytic results at low temperatures for the Lyapunov exponent for q = 4 (green) and q = 6
(red). To the precision achieved, we find that λK ' λL, which was previously found to be equal analytically
at large q.

As can be seen in figure 30, the computation of the Krylov exponent matches (at least to

numerical accuracy) the one for the Lyapunov exponent, both for q = 4 and q = 6. This provides

clear evidence that for the undeformed SYK model, λK ' λL for all temperatures, not just at large

q but at finite q as well. This also shows that in these models λK is a tight bound for the Lyapunov

exponent, in general better than the chaos bound, that is only reached at very low temperatures.

6.4 Krylov complexity of deformed SYK models

In this part of the thesis, we will study deformed SYK models in which the total Hamiltonian is the

sum of two SYK Hamiltonians with different number of fermions q and q̃ in each interaction term,

see section 2.4. At finite temperature, these Hamiltonians generate interesting renormalisation

group (RG) flows [54]. As a consequence, the Lyapunov exponent does not behave monotonically

as a function of βJ . We are interested in comparing the behaviour of the Krylov exponent λK

along the RG flow to that of the Lyapunov exponent λL.

When q̃ 6= 2, the thermal RG flow interpolates two regions of nearly maximal chaos. Between

these regions, the Lyapunov exponent decreases and then increases again when approaching the

second maximally chaotic region. We refer to these models as chaos-to-chaos RG flows and we

study them in section 6.4.1, both at infinite and finite q, q̃.

When q̃ = 2, the intermediate near fixed point is still near-maximally chaotic, but the deforma-
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tion consists of an integrable Hamiltonian. The Lyapunov exponent decreases at sufficiently large

βJ . We refer to this case as chaos-to-integrable RG flow, and we study it both at finite and infinite

q in section 6.4.2.

6.4.1 Chaos-to-chaos RG flows

6.4.1.1 Large q, q̃

The simplest model that presents non-monotonic behaviour of the Lyapunov exponent is the de-

formed SYK model with Hamiltonian (2.47) and q̃ = q/2, in the large q limit. The two-point

correlator of this model is known analytically for any value of βJ and s, see (2.51), (2.52) [52–54].

If s� 1, the infrared of the theory is known to have two regions where the Lyapunov exponent is

nearly maximal, see (2.59). In between these two regions, the Lyapunov exponent is sub-maximal,

but it can nevertheless be computed numerically [52], see details in appendix 3.4. Since we have an

analytic expression for the two-point function, we can compute λK using both methods described

in sections 6.2.1 and 6.2.2.

We start by computing the asymptotic slope of the Lanczos coefficients by looking at the pole of

the Wightman autocorrelation function. It is straightforward to verify that the pole τ∗ of G(τ+β/2)

in (2.51) is given by,

τ∗ =

β cos−1

(
− s2(βJ )2√

(βJ )2ν2+s4(βJ )4

)
2ν

, (6.24)

where ν is implicitly given as a function of βJ and s in (2.52). This immediately gives,

λK =
2πν

β cos−1

(
− s2(βJ )2√

(βJ )2ν2+s4(βJ )4

) , (6.25)

that reproduces the single SYK large q result (6.12) when s → 0. We emphasise again that this

result is valid for any value of βJ and s. If s � 1, we can further expand ν analytically at low

temperatures close to each of the near fixed points, see (2.54) and (2.56). This gives,

λK =


2π
β

(
1− 2

βJ + 4
(βJ )2

− 24+π2

3(βJ )3
+ 2(βJ )2s2

(βJ )3
+ · · ·

)
, Intermediate IR ,

2π
β

(
1−

√
4s2+1−1
βJ s2 + 2+4s2−2

√
4s2+1

(βJ )2s4
+ · · ·

)
, Deep IR ,

(6.26)
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where we observe for the first time an SYK-like model where the Krylov exponent λK does not

provide a tight bound for the Lyapunov exponent λL. Comparing to (2.59), we see that nevertheless,

the conjectured bound (1.5) still holds around the fixed points, where the expansion is valid. Note

that the first four terms in the intermediate IR expansion, are exactly the ones of a single SYK,

see (6.14), so the first correction that depends on s will be very suppressed. Furthermore, the

corrections away from maximal chaos in the deep IR are extremely small for small s.

In order to have an independent calculation of the Krylov exponent, we also compute the slope

of the Lanczos coefficients using the moment method (6.3). We indeed verify that the slope is linear

and the Lanczos coefficients do not stagger for the values of n that are computationally available,

which validates the use of the pole method above. The full plot of the Krylov exponent as a function

of βJ for different values of s can be found in figure 31. We include the computation of λK using

both methods, as well as the result of the Lyapunov exponent, computed numerically, as described

in appendix 3.4.
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Fig. 31: Krylov and Lyapunov exponents as a function of βJ for the deformed model (2.47) in the large
q limit with q = 2q̃. The Krylov exponent is computed in two ways: the blue dots are computed using
the moments method described in section 6.2.1 whilst the solid orange lines are computed from the pole
of the autocorrelation function. The black dashed lines show the Lyapunov exponent, which is computed
numerically. Plots are shown for different values of s. Unlike the Lyapunov exponent, the Krylov exponent
grows monotonically and does not detect the region of sub-maximal chaos between the near maximally chaotic
regions.

The first aspect to notice is that both methods agree to good precision, except for a small

bump that can be seen in the computation using the moments method for inverse temperatures

slightly larger than βJ ∼ s−2. If physical, this bump would not violate the left inequality in (1.5),

but it would violate the right one. Moreover, it would mean that the two methods of computing

the Krylov exponent are not equivalent. However, we checked that this bump is not physical. In

particular, it is an artifact of the numerical procedure to compute the moments at large Lanczos

coefficient index n, and we verified that the size of the bump decreases with n. See appendix H.15

Secondly, we observe that the Krylov exponent is always larger than or equal to the Lyapunov

exponent, so that the bound between the two still holds for all the values of βJ and s explored. The

difference with the single SYK is that now the bound λL ≤ λK is not tight anymore in the infrared.

15We are grateful to Xiangyu Cao and Pratik Nandy for discussions on this point.
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In fact, while the Lyapunov exponent exhibits non-monotonic behaviour and sub-maximal chaos in

between the near-maximally chaotic regions, the Krylov exponent is monotonic in βJ . This can be

clearly seen from figure 32, where we plot β∂β (λK,L(β/2π)) and observe that β∂β (λK(β/2π)) ≥ 0.
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Fig. 32: Derivatives of Krylov and Lyapunov exponents as a function of βJ for the deformed SYK in the
large q limit with q = 2q̃. We observe that in all cases β∂β (λK(β/2π)) ≥ 0, whilst this is not the case for the
Lyapunov exponent.

In passing, we note that if instead of looking at the asymptotic growth of the Lanczos coefficients

at large n, we focus on the approximately linear slope of the first few coefficients, we surprisingly

find a non-monotonic behaviour that resembles closely the one of the Lyapunov exponent. We refer

the reader to appendix I for plots substantiating the relation. It would be interesting to understand

the physical reason for this feature, if any, in future work. It would also be interesting to understand

how the various features presented in this section depend on n = q/q̃ and we leave this for future

work.
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6.4.1.2 Finite q, q̃

Next, we move to the study of deformed SYK models at finite q and q̃. The numerical methods

used in section 6.3.3 to compute the Krylov and the Lyapunov exponent, can be readily adapted

to the deformed Hamiltonians (2.47).

To compute the Krylov exponent, we will be using the moments method, as in the single SYK

at finite q. In contrast to the analytic control of the large q models, in the current case, numerical

errors pose a challenge to a reliable computation of the autocorrelation function (and its moments)

at very low temperatures. Using the techniques described in appendices 3.4 and 3.5, we managed to

reliably compute the Krylov and Lyapunov exponents along the RG flow for inverse temperatures

as high as βJ ∼ 100. As we will see, this will not allow us to observe the full RG flow in the deep

infrared, but will be enough to observe the main chaotic features of the flow for values of s ∼ 0.1.

If we want to consider models that are maximally chaotic in the deep infrared, then q̃ has to

be at least 4, which also means that q ≥ 6. Reaching large values of βJ is even more challenging

in this case, since the spectral function ρ(ω) becomes sharply peaked at lower values of βJ as

we increase q, see appendix 3.5. Nevertheless, we managed to compute both the Krylov and the

Lyapunov exponents up to βJ = 100 for s = 0.2. The result can be seen in figure 33. From the

results at large q, we expect that the Lyapunov exponent will initially grow for small βJ . At some

intermediate region, this growth will stop, the Lyapunov exponent will decrease and eventually it

will go back to near maximal chaos at very large βJ . At the computationally available inverse

temperatures, we managed to clearly observe the slowdown of the growth of the Lyapunov exponent,

see the dashed-dotted purple curve in figure 33. On the other hand, the Krylov exponent of the

flow SYK follows closely the Krylov exponent of the single SYK with q = 6 at all available inverse

temperatures, until it saturates to the value of the near-conformal Lyapunov exponent result of a

single q = 6 SYK model (2.46).
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Fig. 33: The Krylov exponent λK and the Lyapunov exponent λL as a function of βJ for the deformed SYK
model with q = 6, q̃ = 4 and s = 0.2. We added the analogous computations for the single SYK model with
q = 6 (together with the analytic expansion for the Lyapunov exponent at large βJ ) as a reference (red). In
the caption, we zoom into the region of large βJ , to clearly distinguish the behaviour of λK from λL.

Once again, paralleling the large q results, the Krylov exponent shows a monotonic behaviour

and is not able to follow the slowdown of the Lyapunov exponent. This does not violate either

of the bounds in (1.5), but shows that the Krylov exponent does not provide a tight bound for

chaotic-to-chaotic thermal RG flows in SYK. We therefore suspect that it cannot distinguish the

different regimes of chaos-to-chaos RG flows.

6.4.2 Chaos-to-integrable RG flows

6.4.2.1 Finite q and q̃ = 2

We now consider the deformed SYK model with q̃ = 2 and finite q ≥ 4. For q = 4, the Lyapunov

exponent has been numerically computed before showing an initial increase at low temperatures,

with a later decrease at even lower temperatures [46]. It is a subject of debate whether the Lyapunov

exponent (in the large N limit) actually becomes zero at finite temperature or if this is only achieved

in the strict zero temperature limit [46–48].

In order to compute the Krylov exponent, we first compute the Lanczos coefficients for fixed

values of βJ and s, using the numerical moments method. As an example, we show the first ∼ 40

Lanczos coefficients for βJ = 80 and s = 0.2 in figure 34. We compare them with the Lanczos

coefficients of the single SYK with q = 2, see section 6.3.1, and we clearly see that the saturation

present in the q = 2 model is not present in the deformed SYK model. Moreover, the Lanczos

coefficients seem to closely follow those of the single SYK with q fermions, both for q = 6 and

q = 4, so it seems unlikely that the Krylov exponent will decrease (when taking larger values of the
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Lanczos index n) for this choice of parameters.
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Fig. 34: First 38 Lanczos coefficients for the deformed SYK Hamiltonian with s = 0.2 and βJ = 80. For
reference, we also include the first Lanczos coefficients for the single q = 2 SYK (which saturate at large n)
and those of the single q model with q = 6 in plot (a) and q = 4 in plot (b).

We show the full behaviour of the Krylov exponent as a function of βJ for fixed s = 0.2 in

figure 35, both for q = 6 and q = 4 to q̃ = 2 flows, along with their corresponding Lyapunov

exponents, computed using techniques in appendix 3.4 . In the range of temperatures numerically

available, we can clearly see a pronounced decrease of the Lyapunov exponent, which becomes even

more evident in the q = 6 case. In contrast, the Krylov exponent does not depart from the Krylov

exponent of the single q SYK model, that we also plot for reference. In particular, while the bound

(1.5) is still obeyed at all temperatures, we do not observe a decrease in the Krylov exponent,

that monotonically increases towards the maximal chaos bound at very low temperatures. See also

figure 36, where we plot β∂β(λKβ/2π). This is consistent with the behaviour found for λK in the

other examples considered so far, both in the single SYK and in the chaos-to-chaos RG flows.

Before going to a large q example of chaos-to-integrable flows, let us make a brief comment on

the behaviour of the Lyapunov exponent at low temperatures. In [47], it was reported that for the

q = 4 to q̃ = 2 SYK flow, the decay of the Lyapunov exponent at large inverse temperatures for

large s follows a power-law behaviour, λL(β/2π) ∼ (βJ )−1. From 35(a), it seems that the q = 6

model with small s also exhibits a power-law behaviour. In this regime, we observe that the tail

at large βJ seems to go as λL(β/2π) ∼ (βJ )−2, which suggests that, as in [47], at large N the

Lyapunov exponent λL reaches zero only at infinite βJ . The precise low-temperature behaviour

seems to depend both on q and s. It would be interesting to understand this dependence better.
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Fig. 35: The Krylov exponent λK and the Lyapunov exponent λL as a function of βJ for the deformed
SYK model with s = 0.2. We added the analogous computations for the single SYK model (together with its
analytical prediction at large βJ ) as a reference. At low temperatures λL ≤ λK , but the bound is not tight.
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Fig. 36: Derivatives of Krylov and Lyapunov exponents as a function of βJ for the deformed model with
s = 0.2. Plots are shown for different values of s. We observe that β∂β (λK(β/2π)) ≥ 0, whilst this is not the
case for the Lyapunov exponent.

6.4.2.2 Large q and q̃ = 2

There is one more example of a chaos-to-integrable RG flow, that can be solved analytically, at

least perturbatively in the deformation parameter. This is the model with q → ∞ and q̃ = 2.

We need to be careful when taking the large q limit of this model. The relevant Schwinger-Dyson

equation from (2.49), for q̃ = 2 becomes

Σ(τ1, τ2) = J 2

(
2q−1

q
G(τ1, τ2)q−1 + s2G(τ1, τ2)

)
. (6.27)
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As can be seen, the deformation would become dominant if we take the large q limit naively.

Instead, we re-scale the coupling s2 → s2/q so that in the large q limit, using (2.40), we obtain,

∂2
τ g(τ) = J 2

(
2eg(τ) + s2

)
. (6.28)

This equation does not have an analytic solution, but can be solved both perturbatively in s [46]

or numerically. For the perturbative solution, we expand g(τ) as,

g(τ) = g(0)(τ) + s2 g(1)(τ) +O((βJ s)4) . (6.29)

The undeformed solution is given by (2.42), while g(1)(τ) is given by [46],

g(1)(τ) =

(
βJ
2ν

)2[
α

(
τ

β

)
tan

(
τ

β

)
+ log cos

(
τ

β

)
+
τ

β
tan

(
τ

β

)
+B(ν)

(
τ

β
tan

(
τ

β

)
+ 1

)]
,

(6.30)

with 
α(x) =

∫ x
dt log cos t = i

2Li2
(
−e2ix

)
+ ix2

2 − x log
(
1 + e2ix

)
+ x log cos(x) ,

B(ν) = −−α(−ν) tan ν+α(ν) tan ν+2ν tan ν+2 log cos ν
2ν tan ν+2 .

(6.31)

The perturbative correction to the Lyapunov exponent to this order was computed in [46], and it

is given by

λ
(pert.)
L =

2π

β

(
2ν

π
− s2ν

2π

B(ν) + 19
18 − log 2

cos2 ν
+ · · ·

)
. (6.32)

In principle, given that we have the analytic two-point function, we should be able to use either

the moments method or look at the pole of the Wightman autocorrelator to compute λK . However,

in this case, there are two difficulties. Since the solution is only perturbative in s and the pole might

depend on s, the pole method cannot be applied to the expansion directly since it will not capture

the correct location of the pole in the two-point function. We could still use the moments method,

but then the solution can only be trusted up to βJ ∼ 1/s, where we do not expect to see a great

deviation of the Krylov exponent from the Lyapunov exponent.

Instead of the perturbative solution, we directly solve (6.28) numerically and then compute both

108



the Lanczos coefficients and the Lyapunov exponent. The first step is to compute g(τ) numerically

using a shooting method to solve (6.28), with thermal boundary conditions g(0) = g(β) = 0. Then,

using the equation of motion (6.28) and derivatives of it, we can efficiently compute the moments

of g, without any additional input other than the numerical value of g(τ = β/2). In this way, we

can obtain up to around 16 Lanczos coefficients in the order of seconds and around 35 if one is

patient. We fit the slope of the largest 3 even coefficients computed to obtain λK . To compute

the Lyapunov exponent we follow the method described in [52], that does not need the explicit

form of g(τ). In figure 37 we plot both λK and λL for s2 = 0.01 and s2 = 0.08, along with the

corresponding perturbative Lyapunov exponents (6.32). We also include in this plot the analytic

curve for λL = λK in the undeformed model with s2 = 0, see (6.12).
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Fig. 37: Krylov and Lyapunov exponents for the q → ∞ and q̃ = 2 model. Plots are shown for s2 =
0, 0.01, 0.08. The solid curves are numerical computations. The blacked dashed curve is the analytical λL = λK
for s2 = 0, given by (6.12). Note that for the Krylov exponent curves with s2 > 0, we indicate the first two
points that are observed to deviate significantly from the s2 = 0 curve by filled circles. These points should
not be taken as valid Krylov exponents, as the Lanczos coefficients are not linear. The dotted lines are the
pertubative Lyapunov exponents computed from (6.32). These are valid up to βJ ∼ 1/s and so do not agree
with with the numerical computations beyond this point.

The Lyapunov exponent. We first note that the numerically computed Lyapunov exponents

agree with the perturbative results only up to inverse temperatures βJ ∼ 1/s, as expected from

the perturbative analysis. At larger inverse temperatures, the two results disagree so we cannot

draw further conclusions from the perturbative analysis. In particular, we see that the value at

which λ
(pert.)
L hits zero [46], is not an accurate description of the inverse temperatures in which the

actual Lyapunov exponent becomes very small.
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Next we note that for fixed s2 > 0, the numerically computed Lyapunov exponent initially

increases with βJ in line with the Lyapunov exponent of s2 = 0 before reaching a maximum and

then decreasing towards zero. Recall that in section 6.4.2.1, we observed that at finite q and large

βJ there is a power-law behaviour at large inverse temperatures that seems q and s dependent.

In the regimes analysed here and in [47], the power seems to increase with q. Here we observe a

much steeper decay towards zero, that does not seem to fit a power law, maybe in line with the

large q limit taken. It seems that the Lyapunov exponent is reaching zero at a finite temperature

in this case. As far as our numerics can assess, the lowest values of λL we managed to compute

are as small as ∼ 10−6 for both values of s analysed. It remains an interesting open question to

understand if there is an actual chaotic-to-integrable phase transition at finite temperature in this

model.

The Krylov exponent. For fixed s2 > 0, the Krylov exponent also initially increases with βJ in

line with the Krylov exponent of s2 = 0, with this behaviour continuing beyond the point that the

corresponding Lyapunov exponent reaches its maximum. As in previous cases, we do not observe

any non-monotonic behaviour for the Krylov exponent along the flow.

At around the inverse temperatures where the corresponding Lyapunov exponent reaches zero

however, the Krylov exponent seems to sharply deviate from the s2 = 0 curve. In figure 37 we

indicate the first two points that are observed to deviate significantly from the s2 = 0 curve by

filled circles. Upon examining the Lanczos coefficients from and beyond this point we see significant

staggering between even and odd coefficients and it is no longer clear that either the even or the odd

coefficients grow linearly. Therefore, these points should not be taken as valid Krylov exponents.

As evidence, in figure 38 we contrast the Lanczos coefficients for s2 = 0.08 at βJ = 10 and

βJ = 100. For the latter case we computed an additional 19 coefficients to ensure we are capturing

the asymptotic behaviour. Whilst at βJ = 10, the coefficients clearly grow linearly, at βJ = 100

it is possible to fit both linear and square root growth to the later coefficients (after taking into

account the staggering of even and odd coefficients).
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Fig. 38: The Lanczos cofficients for s2 = 0.08 at (a) βJ = 10 and (b) βJ = 100. The late coefficients for
βJ = 10 have a clear linear fit, bn/J = 0.26n − 0.19. At βJ = 100, the staggering is more pronounced.
The late odd coefficients fit with both a square root fit, bn/J = 0.29

√
n − 0.11 and a linear one, bn/J =

0.026n + 0.65. Though not shown here, the late even coefficients can also be fit with both linear and square
root behaviour.

It is suggestive that the Lanczos coefficients stop being conclusively linear at approximately

the same inverse temperatures that the Lyapunov exponent becomes close to zero.16 As far as our

analysis reaches, we observe monotonic behaviour of the Krylov exponent up to temperatures where

we cannot guarantee anymore the existence of a Krylov exponent. The interplay between Krylov

methods and chaos-to-integrable phase transitions at finite temperature remains an interesting

problem that deserves further investigation. We comment on this in the outlook.

16For the finite q to q̃ = 2 examples of the previous subsection, the Lyapunov exponent follows instead a power law
fall-off. This could be why we do not see the Lanczos coefficients stopping to be linear at finite q.
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7 Conclusions and outlook

7.1 Summary of main results

In this thesis we have extended the study of the SYK model by carrying out a systetmatic analysis

of deformed SYK models that exhibit tractable RG flows, employing a range of both analytical and

numerical techniques. In section 4 we studied thermodynamic properties of the flows in a variety

of regimes. At large q we established numerically that the zero temperature entropy carries a non-

trivial dependence on model parameters n and s. We also established numerically the relationship

of the slope of the deep IR linear-in-temperature entropy with n and s. We found the existence of

flows between two near-fixed points for finite values of q for the first time. We provided evidence

that the deep IR regime is captured by a Schwarzian action. We exhibited a novel, analytically

tractable model in the n = 1 + ε regime, with ε small. Finally we showed that the small temper-

ature deformations away from the intermediate near-fixed point can be computed via conformal

perturbation theory at both large q and finite q.

In section 5 we extended our analysis to consider multiple deformations. We established the use

of conformal perturbation theory to describe multiple deformations, including those with imaginary

couplings. We also provided evidence that the thermodynamic behaviour we observe in the large N

limit persists at large but finite N for both unitary and non-unitary flows. Finally, we demonstrated

how conformal perturbation theory can be used to engineer the IR theormydamics of the theory

away from the first near confomal fixed point, opening up a far richer landscape of potential dilaton

gravity duals beyond JT gravity. This allowed us to presented a finely tuned model that exhibits

a region of negative linear-in-temperature entropy, a feature exhibited by dS2 space.

In section 6 we turned our attention to signatures of chaos, computing and comparing Lyapunov

and Krylov exponents in a variety of models. We started by studying the single SYK model. In the

large q limit, it was already known that the Krylov exponent, λK , is exactly equal to the Lyapunov

exponent λL, not only at infinite but also at finite temperature [26]. We computed the slope of

the Lanczos coefficients to the next order in the 1/q expansion, and also numerically at finite q,

finding an excellent agreement with the Lyapunov exponent both at finite and infinite temperature,

reinforcing some already existing evidence that the bound λL ≤ λK might be precisely saturated,

and thus provide a tighter bound to the Lyapunov exponent than the chaos bound, λL ≤ 2π/β. We
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then considered the deformed SYK models for which, in certain regimes, the Lyapunov exponent

was known to have a non-monotonic behaviour, interpolating between two near-maximally chaotic

regions or even decreasing to almost zero at very low temperatures when the deformation was

integrable. We found that in all cases in which the Krylov exponent can be defined the bounds

λL ≤ λK ≤ 2π/β are satisfied. However, we also found that the computation of the Krylov exponent

fails to capture the non-monotonic behaviour of the Lyapunov exponent. In particular, in cases

where the deformation was integrable and λL → 0 at low temperatures, the Krylov exponent shows

maximal chaos λK → 2π/β. We found one model, the deformed SYK with large q and q̃ = 2,

in which the Lanczos coefficients stop being linear at large n. It is interesting to note that this

behaviour starts happening at inverse temperatures where the Lyapunov exponent becomes very

small (or presumably, zero).

7.2 Outlook

Having established the deformed SYK models as a valuable setting to study holography and chaos,

there are several new directions worth exploring in future work.

Non-Hermitian deformations

In the section 5, we provided strong evidence that non-Hermitian Hamiltonians can be used in the

context of two-dimensional holography to microscopically describe certain gravitational scenarios.

In attempting to realise a portion of dS2 by flowing away from the AdS2 near-fixed point, we

reached the surprising conclusion that the deformation must be non-Hermitian. It is unclear to us

what the role, if any, of non-Hermitian physics is for a microscopic picture of quantum de Sitter

space. Nonetheless, several facts point to a departure from ordinary unitary physics for a quantum

theory of de Sitter. The logarithm of the Euclidean path integral of de Sitter space, which has

been postulated by Gibbons and Hawking [4] to compute the de Sitter horizon entropy, generically

has an overall phase [134], and potentially fully fledged complexified saddles [135], rendering the

partition function complex-valued. Edge-mode contributions from refined quantum features near

the de Sitter horizon contribute negatively to the de Sitter partition function [136, 137]. The

de Sitter horizon, moreover, is unlike a black hole horizon in that it does not evaporate and its

interior does not harbor a singular spacelike slice. Instead, the interior of the de Sitter horizon
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is an exponentially expanding region of spacetime that can harbor, at least naively, an arbitrary

amount of quantum information–another potential indication that the static patch is a genuinely

open system [138].

Given these ideas it would interesting to more firmly establish the validity of using a non-

Hermitian Hamiltonian in our case. Generally, the use of non-Hermitian operators to understand

physical systems has been the subject of significant research. For applications to the SYK see for

example [112, 113, 139–142]. One direction of the existing literature on non-Hermitian physics has

been to explore pseudo-Hermitian Hamiltonians, which allow for real spectra [143, 144]. However,

this approach does not align with our objectives, as we necessitate complex spectra to invert the

sign of heat capacity. Beyond pseudo-Hermiticity, non-Hermitian Hamiltonians have also garnered

attention in their own right, as a potential means to describe dissipative systems. For reviews of

the subject see for example, [145,146].

A more complete picture is offered by Lindbladian time evolution [147, 148]. Here, one con-

siders the dynamics for the density matrix ρ of a subsystem coupled to a large environment. The

constraints are positivity, trace preservation, Hermiticity, and a Markovian environment. The

Lindbladian equation can be expressed as

ρ̇ = −i[H, ρ] +
∑
i

(
LiρL

†
i −

1

2
{L†iLi, ρ}

)
. (7.1)

The complex jump operators Li encode the dissipative part of the system and H is the system

Hamiltonian. For a derivation of this equation see appendix J. Lindbladian systems have already

been studied in the context of the SYK model [98, 149–151], and could offer a natural framework

to extend our analysis of de Sitter holography in the context of deformed SYK models. In addition

to holographic considerations, quantum chaos has also been studied in the context of Lindbadlian

systems, including Krylov complexity [152–155]. Such studies could provide a fruitful extension to

our current understanding of these topics.

Engineering IR physics

In studying the thermal RG flows of the deformed SYK models we found several interesting features.

Notably, the zero temperature entropy dependence on continuous model parameters n and s found in

section 4 warrants further investigation. It would be interesting to understand better the underlying
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physics of this degenerate behaviour. It would also be interesting to find the analytical dependence

on n and s of the slope of the deep IR linear-in-temperature entropy. This could open up the

possibility of engineering the deep IR thermodynamics of the flow along the lines of what was done

in the neighbourhood the first conformal fixed point in section 5.

Borrowing the idea of engineering the thermodynamic properties of the RG flows, one could

also ask whether it is possible to engineer the chaotic properties of the deformed SYK models,

thus extending the non-monotonic behaviours of the Lyapunov exponent observed in section 6.

One could perhaps use the SYK model with multiple deformations (5.1) to engineer a theory that

has some particular desired non-maximal Lyapunov behaviour in the infrared. For example, one

could imagine using parametrically separated couplings si, so that the behaviour of the Lyapunov

becomes almost oscillatory as you move to lower temperatures.

A conjecture on the growth of the Krylov exponent

Going back to the results of this section 6, it seems tempting to conjecture that (as long as it is

well-defined) the Krylov exponent has a monotonic behaviour along thermal RG flow. Namely, in

quantum systems that obey unitary evolution at finite temperature,

β∂β

(
λKβ

2π

)
≥ 0 . (7.2)

This conjecture is satisfied in all the examples considered in this thesis where the Krylov exponent

could be computed, including the single SYK model. It would be interesting to test this conjecture

in other models that exhibit chaos-to-integrable transitions, e.g., [91,92,156–159]. In particular, it

would be nice to see whether this conjecture holds at finite N , where the Lyapunov exponent has

been computed up to N ∼ 60 using Krylov methods for the single SYK [44] and exact diagonalisa-

tion is available up to around N ∼ 34. Krylov complexity computations for the single SYK model

have also been developed at finite N [132, 160], so it would be desirable to adapt them to include

these deformed models. See [51] for some progress in this direction. At finite N , other quantities

that probe late quantum chaos (such as the spectral form factor [41]) could also be used to charac-

terise deformed SYK models, see [46] for some progress in this direction. In particular, the relation

between the infrared sector that exhibits seemingly non-maximal chaos and holography seems like

an interesting question to be explored [127, 161, 162]. Conjectures on operator growth have been
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violated when tested in quantum field theory [79, 131, 163], so studying Krylov complexity in RG

flows in QFT might be a natural avenue to test these ideas.

If the conjecture is true and the Krylov exponent is indeed monotonic, then, it would seem

that λK behaves more as an entropy or a c-function, rather than as a quantum signature of chaos.

In particular, it would mean that λK is not good at diagnosing chaos in quantum systems where

the Lyapunov exponent has non-monotonic behaviour as a function of the energy scale, like, for

instance, in systems where the Lyapunov exponent goes to zero at very low energies. See however

the discussion in appendix I which suggests that the slope of early Lanczos coefficients could

potentially capture additional properties of such flows.

Chaotic to integrable phase transitions

Finally in section 6 we further provided a concrete example where the Krylov exponent cannot be

well-defined after some given inverse temperature. This was the deformed SYK with large q and

q̃ = 2, where observe staggering and no definite asymptotic behaviour in the Lanczos coefficients

beyond this point. Given this occurs around inverse temperatures where the Lyapunov exponent

becomes very small it would be desirable to further study this model to assess whether indeed

there is a phase transition. If so, one would like to see whether the Krylov complexity stops being

exponential and what is its characteristic behaviour at late times. Throughout section 6 we have

assumed, following [26], that Krylov complexity CK grows exponentially with time and that λK

is given by 2α, α being the slope of the Lanczos coefficients at large n. One should compute the

actual Krylov complexity to verify this is actually the case and understand what happens when

there is a phase transition.

If we are to continue to make progress on the deep problems in theoretical physics, we must

remain ambitious in our motivations whilst grounded in our calculations. Driven by the need for

microscopic models of spacetime and a better understanding of chaos in quantum systems, we have

identified a concrete set of models that have remarkably rich and intriguing behaviours in these

contexts, whilst remaining tractable enough to extract precise insights. We hope the findings and

numerical techniques presented in this thesis can help inspire further research in these fascinating

fields.
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A Derivation of the G and Σ action

In this appendix we describe how to derive the G and Σ action of the SYK model at large N .

For a fermionic system there is no corresponding classical system that approximates the quantum

system as ~ → 0. However we can define an action in terms of anti-commuting numbers, called

Grassmann numbers, which can be quantised to produce fermionic quantum systems via a standard

prescription. Such models therefore can be thought of as pseudo-classical models. In the case of

the SYK, the pseudo-classical action expressed in Euclidean space is given by

SE =

∫
dτ

1

2
ψi∂τψi −

∑
1≤i1<···<iq≤N

Ji1i2···iqψi1ψi2 · · · ψiq

 . (A.1)

We will take q = 4 in what follows for notational simplicity but the results are easily extended to

general q. The averaged partition function of the theory is then given by

〈Z(β)〉J =

〈∫
[Dψ]e−SE(ψ(τ))|β0

〉
J

=

∫ ∏
i<j<k<l

dJijkl P(Jijkl)

∫
[Dψ] exp


∫ β

0
dτ

−1

2
ψi∂τψi +

∑
i<j<k<l

Jijklψiψjψkψl

 ,

(A.2)

where in the last line we have used the fact that the Jijkl are independent random variables.

Recalling that our couplings are drawn from a Gaussian distribution with mean and variance given

by (2.25), we have that

P(Jijkl) =
1√

2π
(

12J 2

N3

)e− 1
2
J2
ijkl

N3

12J 2 . (A.3)
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We now integrate over the coupling constants. For example, to perform the integral over J1234 we

note that∫
dJ1234

1√
2π
(

12J 2

N3

) exp

{
−1

2
J2

1234

N3

12J 2

}
exp

{∫ β

0
dτ J1234ψ1ψ2ψ3ψ4

}

=

∫
dJ1234

1√
2π
(

12J 2

N3

) exp

{
− N3

24J 2

[(
J1234 −

∫ β

0
dτ

12J 2

N3
ψ1ψ2ψ3ψ4

)2

−
(∫ β

0
dτ

12J 2

N3
ψ1ψ2ψ3ψ4

)2
]}

= exp

{
N3

24J 2

(∫ β

0
dτ

12J 2

N3
ψ1ψ2ψ3ψ4

)2
}∫

dJ1234

exp

{
− N3

24J 2

(
J1234 −

∫
dτβ0

12J 2

N3 ψ1ψ2ψ3ψ4

)2
}

√
2π
(

12J 2

N3

)
= exp

{
6J 2

N3

(∫ β

0
dτ ψ1ψ2ψ3ψ4

)2
}

.

(A.4)

Performing the rest of the integrals in the same way we find that

〈Z(β)〉J =

∫
[Dψ] exp


(
−1

2

∫ β

0
dτ ψi∂τψi

)
+

6J 2

N3

∑
i<j<k<l

(∫ β

0
dτ ψiψjψkψl

)2
 . (A.5)

The sum over fermions in the last term can of this expression can be re-written as

∑
i<j<k<l

ψi(τ)ψj(τ)ψk(τ)ψl(τ)ψi(τ
′)ψj(τ

′)ψk(τ
′)ψl(τ

′)

=
∑

i<j<k<l

[ψi(τ)ψi(τ
′)][ψj(τ)ψj(τ

′)][ψk(τ)ψk(τ
′)][ψl(τ)ψl(τ

′)]

=
1

4!

∑
i 6=j 6=k 6=l

[ψi(τ)ψi(τ
′)][ψj(τ)ψj(τ

′)][ψk(τ)ψk(τ
′)][ψl(τ)ψl(τ

′)]

=
1

4!

(
N∑
i=1

ψi(τ)ψi(τ
′)

)4

,

(A.6)

where in the second line and third lines we must be careful about the fact that we are dealing with

anti-commuting (Grassmann) numbers; however since we do an even number of exchanges we don’t

pick up a sign. In the final line we are again using the fact that we are dealing with Grassmann

numbers and so any term with a repeated factor of ψi(τ) or ψi(τ
′) drops out when we expand the
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bracket. We therefore find

〈Z(β)〉J =

∫
[Dψ] exp


(
−1

2

∫ β

0
dτ ψi∂τψi

)
+
J 2N

4

∫ β

0

∫ β

0
dτdτ ′

(
N∑
i=1

ψi(τ)ψi(τ
′)

N

)4
 .

(A.7)

Now we introduce a bi-local field G(τ1, τ2) into the integral using a delta function,

〈Z(β)〉J =

∫
APB

[Dψ]

∫
[DG(τ, τ ′)] δ

(
NG(τ, τ ′)−

N∑
i=1

ψi(τ)ψi(τ
′)

)

exp

{(
−1

2

∫ β

0
dτ ψi∂τψi

)
+
J 2N

4

∫ β

0

∫ β

0
dτdτ ′G(τ, τ ′)4

}
.

(A.8)

We represent the delta function as an integral over another bi-local field Σ(τ, τ ′),

δ

(
NG(τ, τ ′)−

N∑
i=1

ψi(τ)ψi(τ
′)

)

=

∫
[DΣ(τ, τ ′)] exp

{
−1

2

∫ β

0

∫ β

0
dτdτ ′NΣ(τ, τ ′)

(
G(τ, τ ′)−

N∑
i=1

ψi(τ)ψi(τ
′)

N

)}
,

(A.9)

where we are taking the integration contour for Σ to be parallel to the imaginary axis. We therefore

have

〈Z(β)〉J =

∫
[Dψ][DG(τ, τ ′)][DΣ(τ, τ ′)] exp

{
− 1

2

∫ β

0

∫ β

0
dτdτ ′NΣ(τ, τ ′)

(
G(τ, τ ′)−

N∑
i=1

ψi(τ)ψi(τ
′)

N

)

− 1

2

∫ β

0
dτ ψi∂τψi +

J 2N

4

∫ β

0

∫ β

0
dτdτ ′G(τ, τ ′)4

}
.

(A.10)

We can now integrate out the fermionic fields. We show how to do the integral over one of the

fermionic fields, say ψ1,

∫
Dψ1 exp

{
1

2

∫ β

0

∫ β

0
dτdτ ′ ψ1(τ)Σ(τ, τ ′)ψ1(τ ′)− 1

2

∫ β

0
dτ ψ1(τ)∂τψ1(τ)

}
=

∫
Dψ1 exp

{
−1

2

∫ β

0

∫ β

0
dτdτ ′ ψ1(τ)

[
δ(τ − τ ′)∂τ ′ − Σ(τ, τ ′)

]
ψ1(τ ′)

}
= det

(
δ(τ − τ ′)∂τ ′ − Σ(τ, τ ′)

) 1
2

= exp

{
1

2
log det(δ(τ − τ ′)∂τ ′ − Σ(τ, τ ′)

}
.

(A.11)
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Integrating out all the fermionic fields in this way then gives the result

〈Z(β)〉J =

∫
[DGDΣ]e−NI[G,Σ] , (A.12)

where

I = −1

2
log det

(
δ(τ − τ ′)∂τ ′ − Σ(τ, τ ′)

)
+

1

2

∫ β

0

∫ β

0
dτdτ ′

(
Σ(τ, τ ′)G(τ, τ ′)− J

2

2
G(τ, τ ′)4

)
.

(A.13)

B Numerical computation of α(q) in a single SYK model

In section 2.3, we saw that the entropy of the single SYK model has a small temperature expansion

given by

S

N
=

(
Sfree

0 −
∫ 1/q

0
dx π

(
1

2
− x
)

tanπx

)
+

4π2α(q)

βJ
+ · · · . (B.1)

Here we describe how to compute the coefficient α(q) numerically. The first step is to numerically

compute the large N entropy, S/N , of the model at a single low temperature point. We then

subtract off the temperature independent piece of (B.1) and multiply the answer by βJ /(4π2) to

obtain a value for α(q) up to corrections of order (βJ )−2. To find the entropy, we numerically

solve the Schwinger-Dyson equations with s = 0, as shown in appendix 3.2. In figure 39 we plot

the numerical values of α(q) and compare it with the two-sided Padé approximant, found in [90],

α(q) =
3(3π − 2)q + π2 − 18π + 24

6q2 (2(3π − 2)q + π3 + 8)
. (B.2)

Given the agreement with the numerics, we directly use (B.2) in our numerical computations.
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Fig. 39: The coefficient α(q) as a function of q. The circles are numerical computations while the solid blue
curve is given by the Padé approximation (B.2). We used βJ ∼ 102.3 for the numerical computations.

C Small s expansion for ℵ̄(s, n)

In this appendix, we provide an analytic form for ℵ̄(s, n), when n ≥ 2 and s � 1 by fitting the

numerical data. For n = 2, we know ℵ̄(s, n = 2) analytically and it is given by ℵ̄ in equation (2.58).

It is straightforward to obtain

ℵ̄(s, n = 2)→ 1/2

s
+ · · · , (C.1)

in the small s expansion. Given the shape of the curves from the numerical results, we propose the

following structure for general n in the small s limit,

ℵ̄(s, n)→ a(n)

sb(n)
+ · · · , (C.2)

where a(n), b(n) can depend on n but are independent of s.

To test this proposal and find the form of the functions a(n), b(n), we compute ℵ̄(s, n) for small

values of s such that 0.01 ≤ s2 ≤ 0.02 and different values of n. This is done numerically using

the same methodology as described in section 4.2.1. The results for n = 2, 3, 4, 5 are shown in

logarithmic scale in figure 40. The linear form of the plots supports the ansatz in equation (C.2).
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Fig. 40: Log-log plots of ℵ̄(s, n) as function of s for different values of n. Circles correspond to numerical

computations. Dashed lines are fitted curves for the ansatz ℵ̄(s, n) = a(n)

sb(n) .

For each n, we perform a fit on the data to find a(n) and b(n). For n = 2, we find a(n = 2) = 0.482

and b(n = 2) = 1.02, which are close to the analytic values of 1/2 and 1, respectively. We repeat

the procedure for 2 ≤ n ≤ 10. The results for a(n) and b(n) are shown in figure 41.
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Fig. 41: (a) Fitted values for a(n) in the ansatz ℵ̄(s, n) = a(n)

sb(n) for small s. (b) Fitted values for b(n) in the

ansatz ℵ̄(s, n) = a(n)

sb(n) for small s.

Note that as n→∞, a(n→∞)→ 1 and b(n→∞)→ 0, so ℵ̄(s, n→∞)→ 1, as expected from

the considerations in section 4.2.1. Moreover, a simple fit in figure 41(b), shows that b(n) ≈ 4/n2.

We conclude that

ℵ̄(s, n)→ a(n)

s4/n2
+ · · · as s→ 0 , (C.3)

with 1/2 ≤ a(n) ≤ 1.
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D Schwarzian action and entropy for the q = 2 SYK model

In this appendix we use the methodology to derive the Schwarzian action employed in sections 4.3.1

and 4.3.2 to correctly reproduce the linear-in-temperature entropy of the q = 2 SYK model at large

N , which is known to be integrable.

For q = 2, we can solve the Schwinger-Dyson equations (2.29) exactly to find that at low

temperatures [31]
S

N

∣∣∣∣
q=2

=
π

6

1

βJ
+ · · · . (D.1)

Note that the zero-temperature entropy vanishes for q = 2. We want to derive this formula from a

Schwarzian action perspective. For that, we take Σ→ Σ + ∂τ in (2.27) and write I = ICFT + IUV

[40, 81], where

ICFT = −1

2
log det(−Σ) +

1

2

∫ β

0

∫ β

0
dτ1dτ2

(
ΣG− J 2 2q−1

q2
Gq
)
, (D.2)

IUV =
1

2

∫ β

0

∫ β

0
dτ1dτ2δ(τ1 − τ2)∂τ2G . (D.3)

We then make an expansion of the saddle solution to ICFT in powers of τ12. It can be written

in terms of soft modes f(τ+), see (4.33). We can substitute this expansion into IUV , which now

becomes an integral over τ12 and τ+. Carrying out the τ12 integral with a short time scale cutoff

ε/J , we are left with the following Schwarzian action,

ISch =

[(
b(1− q)ε1−2∆

6q2

)
1

J

] ∫ β

0
dτ+ Sch(f(τ+), τ+) =

[(
− 1

24π

)
1

J

] ∫ β

0
dτ+ Sch(f(τ+), τ+) ,

(D.4)

where for the last equality we used that b = 1/π and ∆ = 1/2, in the q = 2 model. Note that

the cut off dependence drops out. Upon taking this Schwarzian action on-shell, we obtain that the

entropy becomes
SSch

N

∣∣∣∣
q=2

=
π

6

1

βJ
, (D.5)

which correctly reproduces (D.1).
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E Spectra of non-Hermitian deformed SYK models with single

deformation

For models with a single non-Hermitian deformation with purely imaginary s,

Hdef = Hq + sHq̃ , s := iκ , κ ∈ R , (E.1)

we can get an understanding of the structure of the spectrum by studying the action of the particle

hole operator [41,164],

P = K

N/2∏
i

(
χ†i + χi

)
. (E.2)

Here, the operator K takes the complex conjugate, we have restricted to N being even and have

defined

χi ≡
1√
2

(ψ2i − iψ2i+1) , i = 1, . . . , N/2 . (E.3)

The χi obey the anti-commutation relations

{χi, χ†j} = δij , {χi, χj} = 0 , {χ†i , χ
†
j} = 0 . (E.4)

By using these anti-commutation relations one can check that

P 2 = (−1)(N
2

)(N
2
−1)/2 =



+1 N/2 mod 4 = 0 ,

+1 N/2 mod 4 = 1 ,

−1 N/2 mod 4 = 2 ,

−1 N/2 mod 4 = 3 .

(E.5)

Moreover, depending on the number of fermion interactions, q, in the SYK Hamiltonian Hq we

have the following (anti-)commutation relations

[Hq, P ] = 0 for q = 4, 8, 12, . . . ,

{Hq, P} = 0 for q = 2, 6, 10, . . . .
(E.6)
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To see these, note first note that one can check the following relation holds

Pψi = (−1)
N
2
−1ψiP for i = 1, . . . , N . (E.7)

Commuting Hq across P involves commuting an even number of fermions across P , resulting in no

minus sign being picked up. However in the case of q/2 odd, the Hamiltonian (2.24) has a factor

of i which causes a minus sign to be picked up due to the action of K, and (E.6) follows from this.

Using (E.6) one can then verify the following cases:

Case 1: q/2 even q̃/2 odd: For an energy eigenstate |E〉 of Hdef with eigenvalue E we have

that

Hdef(P |E〉) = E∗(P |E〉) , (E.8)

and so the spectrum comes in complex conjugate pairs (a+ bi, a− bi).

Case 2: q/2 odd q̃/2 even: We find that

Hdef(P |E〉) = −E∗(P |E〉) , (E.9)

and the spectrum comes in pairs (a+ bi,−a+ bi).

Case 3: q/2 odd q̃/2 odd: For each (right) eigenvector |ER〉 of Hdef with eigenvalue E we

can define a left eigenvector |EL〉 such that H†def|E
L〉 = E∗|EL〉. Then we find

Hdef(P |EL〉) = −E(P |EL〉) . (E.10)

We therefore find that the spectrum comes in pairs (a+ bi,−a− bi).

Case 4: q/2 even q̃/2 even: We find that

Hdef(P |EL〉) = E(P |EL〉) . (E.11)
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In this case whether or not we get degenerate eigenstates depends on whether P |EL〉 equals |ER〉

up to a phase, and this is found to depend on the value of N . In particular, for N/2 odd we must

get a degeneracy. To see this we first note that the SYK Hamiltonian and the Hamiltonian of the

deformed model preserve the parity of the Dirac fermion number operator

Q =
∑
i

(
χ†iχi

)
. (E.12)

Since for N/2 odd P must map a state with even parity to odd and vice versa, P |EL〉 and P |ER〉

must be distinct eigenstates. For the case N/2 even we cannot use this argument. Numerics confirm

that only in the case N = 0 mod 8 is there no degeneracy. For all other cases, since P 2 = ±1, we

find that the eigenstates come in degenerate pairs.

F Geodesics in dilaton gravity theories

In this appendix we present more details concerning the calculations of geodesics in a deformed

dilaton gravity background, as described in section 5.5.2. Recall that the thermodynamic features

of the deformed SYK models are captured by a dilaton gravity theory with Euclidean action given

by (5.17) and general black hole solutions of the form (5.18). When parameterised by their distance,

geodesics are found by varying the following length functional,

L =

∫
ds

(
f(r)ṫ2 +

ṙ2

f(r)

)
, (F.1)

where the dot indicates a derivative with respect to the distance, s. Since the action does not

explicitly depend on t we have a conserved quantity

f(r)ṫ = E . (F.2)

We also have that our geodesics satisfy the constraint

1 = f(r)ṫ2 +
ṙ2

f(r)
. (F.3)
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Putting (F.2) into (F.3) we find

ṙ = ±
√
f(r)− E2 , (F.4)

where the sign determines whether the radial coordinate, r, is increasing or decreasing with in-

creasing s. As in section 5.5.2, we consider a dilaton potential of the form

U(φ) = 2φ+ δU(φ) , (F.5)

where δU(φ) is a smooth function of φ. For our argument we take δU(φ) to have compact support

in some region [r∗1, r
∗
2] for some r∗2 > r∗1 > φ̃rh, where rh denotes the position of the horizon. The

metric resulting from such a dilaton potential is given by

f(r) = r2 − r2
h + g(r) , g(r) =

1

φ̃

∫ r

rh

dr′ δU(φ̃r′) . (F.6)

The geodesic described in the main text has E = 0. In this case, ṫ = 0 and so the length of such a

geodesic is given by

L =

∫
ds = 2

∫ Rb

rh

1√
r2 − r2

h + g(r)
dr , (F.7)

from which the conclusions in the main text follow.

G Boundary two-point function of the deformed AdS2 black hole

In this appendix we provide some more details for the comparison of the two-point function between

the AdS2 black hole and the deformed AdS2 geometries that is described in section 5.5.3. In

particular we derive the inequality (5.29).

AdS2 black hole

We start by reviewing the form of the boundary two-point function for the AdS2 black hole, whose

metric is given by

ds2 = f(r)dt2 +
dr2

f(r)
, (G.1)
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where t ∼ t + β, r > 1 and f(r) = r2 − r2
h. Without loss of generality we will set rh = 1 in what

follows. Making the transformation r = coth z we bring the metric into the conformal frame

ds2 =
1

sinh2 z

(
dt2 + dz2

)
. (G.2)

From [53] we have that the two-point function for light fields (as a perturbative expansion in the

mass of the field) is given by

GAdS2(ωn) = −
(
|ωn|+m2

∫ ∞
zc

dy
1

sinh2 y
e−2|ωn|(y−zc) + · · ·

)
, (G.3)

where ωn = 2πn for n ∈ Z and we have set the boundary of the spacetime at some small value

z = zc > 0. Our conventions for the Fourier transform are

G(τ) =
∑
n∈Z

G(ωn)eiωnt/β, G(ωn) =
1

β

∫ β

0
dτ G(τ)e−iωnτ/β . (G.4)

Deformed AdS2 black hole

We now add a deformation

f(r) = r2 − 1 +
1

φ̃

∫ r

1
dr′ δU(φ̃r′) = r2 − 1 + g(r), (G.5)

where we have defined

g(r) :
1

φ̃

∫ r

1
dr′ δU(φ̃r′) . (G.6)

If we make the coordinate transformation r = coth z, we find that

f(r(z)) =
1

sinh2 z
+ g(coth z) =

1

sinh2 z
+ h(z) , (G.7)

where we have defined

h(z) := g(coth z) . (G.8)
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Our metric then takes the form

ds2 =

(
1

sinh2 z
+ h(z)

)
dt2 +

1

sinh2 z
(
1 + h(z) sinh2 z

)dz2 . (G.9)

We now perform a further coordinate transformation to put the metric into its conformal frame.

First we factor out the coefficient of dt2 to give

ds2 =

(
1

sinh2 z
+ h(z)

)(
dt2 +

1(
1 + h(z) sinh2 z

)2dz2

)
. (G.10)

We then make the transformation
dx = 1

1+h(z) sinh2 z
dz ,

x(z) =
∫ z
zc
dz′ 1

1+h(z′) sinh2 z′
,

(G.11)

so that our metric now takes the form

ds2 =

(
1

sinh2(z(x))
+ h(z(x))

)(
dt2 + dx2

)
. (G.12)

From this we find that the two-point function in Fourier space is given by

G(ωn) = −
(
|ωn|+m2

∫ ∞
0

dy

(
1

sinh2(z(y))
+ h(z(y))

)
e−2|ωn|y + · · ·

)
, (G.13)

where we have used that x = 0 at the boundary z = zc. We now change the variable of integration

in (G.13) back to our variable z. That is, we substitute y for z where


dy = 1

1+h(z) sinh2 z
dz ,

y(z) =
∫ z
zc
dz′ 1

1+h(z′) sinh2 z′
.

(G.14)

We then find that the two-point function is given by

G(ωn) = −
(
|ωn|+m2

∫ ∞
zc

dz

(
1

sinh2 z

)
e−2|ωn|y(z) + · · ·

)
. (G.15)
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We can re-write this as

G(ωn) = −
(
|ωn|+m2

∫ ∞
zc

dz

(
1

sinh2 z

)
e−2|ωn|(z−zc)e2|ωn|((z−zc)−y(z)) + · · ·

)
. (G.16)

Noting that

δU(φ) ≥ 0⇒ g(r) ≥ 0⇒ h(z) ≥ 0 , (G.17)

we then find

δU(φ) ≥ 0⇒ 1

1 + h(z) sinh2 z
≤ 1

⇒ y(z) ≤ (z − zc)

⇒ 1 ≤ e2|ωn|((z−zc)−y(z)) .

(G.18)

This gives us the following inequality valid for δU(φ) ≥ 0

|G(ωn)| ≥ |ωn|+m2

∫ ∞
zc

dz

(
1

sinh2(z)

)
e−2|ωn|(z−zc) + · · ·

= |GAdS2(ωn)| .
(G.19)

H Krylov exponent from moments in the deformed SYK

In section 6.4.1.1 we computed the Krylov exponent at large q for the deformed SYK with q = 2q̃.

This was done both by computing Lanczos coefficients as described in section 6.2.1, and from the

pole of the autocorrelation function as described in section 6.2.2. In this case, with the moments

method we are limited by numerical errors from the algorithm (6.3) to computing a maximum of

17 Lanczos coefficients and λK is computed from the slope of the last 3.

In the results shown in figure 31 we observe that for the first method there is a small deviation

from λK(β/2π) = 1 during the transition between the two regions of near-maximal chaos which

is not seen from the pole of the autocorrelation function. This happens, for instance, around

βJ ∼ 107.5 for s = 0.001.

We believe the deviation observed to be an artefact of not computing enough Lanczos coefficients

before taking the slope. To demonstrate this in figure 42(a) we plot the Krylov exponent for the

flow with s = 0.001 and different values of the number of Lanczos coefficients computed, nmax.

In each case λK is computed from the last 3 coefficients. We observe that as we increase nmax
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the deviation decreases. This is also shown in figure 42(b) which plots the maximum value of

λK(β/2π). We expect this trend to continue and that if enough coefficients were computed one

would no longer observe a significant deviation from λK(β/2π) = 1 in this region, in agreement

with the result from the pole of the autocorrelation function.
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Fig. 42: (a) The Krylov exponent, computed from the slope of the Lanczos coefficients, in the large q deformed
model with q/q̃ = 2 and s = 0.001. Each curve corresponds to a different number of coefficients computed,
nmax, before taking the slope of the last 3. (b) The maximum value of λK(β/2π) in plot (a) for each value of
nmax.

I The slope of the first Lanczos coefficients in the deformed SYK

In section 6.4.1.1 it is shown that for the deformed SYK model at large q with q = 2q̃, the Krylov

exponent does not detect the non-monotonic behaviour and sub-maximal chaos that the Lyapunov

exponent shows between the two regimes of maximal chaos, see figure 31. If however, instead of

looking at the asymptotic growth of the Lanczos coefficients at large n, we focus on the first few

coefficients, we do observe a non-monotonic behaviour in this region. Surprisingly, up to an overall

shift, the slope of just the first two Lanczos coefficients can be used to define a quantity that closely

resembles the behaviour of the Lyapunov exponent. This is shown in figure 43, where we compute

λ̃K = b2 − b1 −
(

max
βJ
{b2 − b1} −

2π

β

)
, (I.1)

and compare to the Lyapunov exponent for the same set of deformed SYK models as shown in

figure 31. Though the match is not exact, it would be interesting to understand why this crude

measure seems to be able to probe the region of sub-maximal chaos while λK is not.
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Fig. 43: λ̃K and Lyapunov exponent as a function of βJ for the deformed model (2.47) in the large q limit
with q = 2q̃. The blue dots are computed from the first two Lanczos coefficients which are found by the
moments method described in section 6.2.1. The black dashed lines show the Lyapunov exponent, which is
computed numerically. Plots are shown for different values of s.

J Open quantum systems and the Lindbladian

In the outlook of this thesis we speculate on the on open nature of a microscopic model of de Sitter

space which leads us to consider the SYK model in the Lindbladian formalism. In this section

we will review the basic concepts of open quantum systems and introduce the Lindblad master

equation. For a more detailed introduction to open quantum systems we refer the reader to [165].

A system is said to be open if it can exchange energy and information with its environment. To

describe such a system we will need to depart from the usual unitary time evolution that governs

closed quantum systems. The basic idea will be to imagine the open system as a subsystem of

a larger closed system that includes the environment. At any instance in time we can describe

the state of the open system without reference to the environment by tracing out the environment

degrees of freedom and leaving the system in a mixed state. The system is then described by a
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reduced density matrix, ρ(t). We would now like to derive the time evolution of ρ(t) from general

principles. We first note that the time evolution should be described by a map that takes density

matrices to density matrices. This map should be Hemiticity preserving, trace preserving, and

completely positive 17. The most general such map is called a quantum channel and in general can

be written in the so called Krauss representation

E(ρ(t)) =
∑
i

Mi(t)ρ(t)M †i (t) , (J.1)

where the operators Mi(t) are called the Krauss operators and satisfy the completeness relation

∑
i

M †i (t)Mi(t) = I. (J.2)

The time evolution of our open system simplifies considerably if we make the further assumption

of memorylessness of the environment called the Markovian assumption. Here we assume that the

timescale of the environment is much shorter than the timescale of the evolution of the open system

we are interested in. This means that the environment effectively “forgets” its correlations with

the open system. Thus, under the Markovian assumption, the state of the open system after an

infinitesmial time step at time t+ ∆t, only depends on the density matrix at time t and not on the

entire history of the system. We can thus describe each time step by a quantum channel,

ρ(t+ ∆t) = Edt(ρ(t)) . (J.3)

Writing the LHS of (J.3) to linear order in ∆t and writing the quantum channel in terms of its

Krauss operators we find

ρ(t) + L(ρ(t))∆t+O(∆t2) =
∑
i

Mi(t)ρ(t)M †i (t) , (J.4)

where we have defined the superoperator L(ρ) ≡ ρ̇, called the Lindbladian. Now keeping to linear

17If a map EA maps positive linear operators acting on some Hilbert space HA to other positive linear operators,
we call it called positive. If additionally, upon extending the Hilbert space to HA ⊗ HB for any HB , the operator
EA ⊗ I remains positive, then we say EA is completely positive. This stronger condition ensures density operators of
the open system remain positive when entangled with the environment
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order we can, without loss of generality, re-write the Krauss operator as

M1(t) = I + (−iH(t) +K(t)) ∆t ,

Mi(t) = Li(t)
√

∆t for i > 1 ,
(J.5)

where H and K are Hermitian operators and Li(t) are called jump operators. Upon fixing K in

terms of the jump operators by using the completeness relation (J.2), we find that the Lindbladian

can be written as

L(ρ) = −i[H(t), ρ] +
N∑
i=1

(
Li(t)ρL

†
i (t)−

1

2

{
L†i (t)Li(t), ρ

})
. (J.6)

Here we can view H(t) as the system Hamiltonian and the first term as the usual Hamiltonian term

describing unitary evolution. The additional terms involving the jump operators Li(t) capture the

interactions between the system and the environment.
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Transition in the Sachdev-Ye-Kitaev Model, Phys. Rev. Lett. 120 (2018) 241603

[1707.02197].

[47] J. Kim and X. Cao, Comment on ”Chaotic-Integrable Transition in the Sachdev-Ye-Kitaev

Model”, Phys. Rev. Lett. 126 (2021) 109101 [2004.05313].
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