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Abstract: We review supersymmetry (SUSY) in nonrelativistic quantum
mechanics emphasizing algebraic aspects. We discuss the Hamiltonian subgroup
implementing supersymmetry as well as the corresponding algebra of the SUSY
generators. In the SUSYQM framework, the two distinct partner potentials are
connected by a superpotential satisfying a Riccati differential equation. A full
Hamiltonian operator in an extended Hilbert space is defined in order to render
the supersymmetry manifest. As a result, the eigenfunctions of the original
potentials are connected by generalized ladder operators. We provide an explicit
realization of the abstract supersymmetry group for SUSYQM depending on
one real and two Grassmann parameters.
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1. Introduction

In a seminal paper analyzing the dynamical breaking of supersymmetry, pub-
lished in 1981, Witten has proposed a simple model for supersymmetric quan-
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tum mechanics (SUSYQM) [1]. In recent years, the role of supersymmetry
(SUSY) in nonrelativistic quantum mechanics has been extensively analyzed,
leading to a consistent classification of interacting potentials [2, 3, 4, 5]. Firstly
considered as an essential ingredient for any fundamental interactions unify-
ing theory, SUSY has firmly established itself as an important mathematical
technique for approaching problems, both in quantum mechanics and in quan-
tum field theory, in its own right. Particularly, SUSYQM has been successfully
used as a powerful method for analytically solving the Schrödinger equation for
some potentials, as well as for constructing approximation methods for han-
dling more involved not exactly solvable ones, establishing thus the eigenvalues
and eigenvectors properties of the corresponding Schrödinger operators. Also
in the relativistic case, SUSYQM has proved to be a suitable framework provid-
ing important insights to classical problems [2, 6, 7]. However, when it comes
to realize the supersymmetry in terms of the action of an abstract group in
the Hilbert space one faces some subtleties having to deal with supergroups
and Grassmannian manifolds [8, 9]. Although the SUSYQM algebra has been
largely studied in the literature, little has been said about the symmetry group.
We address this issue here obtaining explicitly the group law for one dimensional
quantum mechanics implementing SUSYQM.

The main idea in SUSYQM is to relate the original Hamiltonian H− for
a certain problem to another one, H+, known as the former’s SUSY partner.
This relation is achieved by means of introducing a superpotential W (x) in
the theory. SUSY connects the eigenfunctions of the two partner Hamiltoni-
ans in a simple way – the knowledge of one set of eigenfunctions permits one
to directly calculate the other. Particularly, the SUSY partner potentials are
isospectral. This leads to a symmetry (the supersymmetry) relating eigenfunc-
tions of the distinct Hamiltonians H− and H+ with the same energy. We shall
show in the following that it is possible to define a new Hamiltonian operator
comprising both H− and H+ and realize the supersymmetry in a concrete way
via the action of two nilpotent operators Q±. The invariance of this complete
Hamiltonian under supersymmetry determines a realization of the correspond-
ing supersymmetric group parametrized by real and Grassmann variables acting
on the Hilbert space of quantum states.

Our work is organized as follows. In Section 2 below we review SUSYQM
introducing the partner potentials V± and Hamiltonians H±, and establish their
isospectrality. In Section 3 we construct the SUSYQM algebra acting in the
full Hilbert space connecting the two original problems. The supercharge oper-
ators, together with the full Hamiltonian are shown to be the generators of a Lie
superalgebra. Finally in Section 4 we construct the SUSYQM group of super-



BRIEFLY REVISITING THE QUANTUM MECHANICS... 101

symmetry and calculate explicitly the group law in terms of three parameters.
We conclude in Section 5 with some remarks.

2. Supersymmetry in Quantum Mechanics

Consider a spinless nonrelativistic particle subjected to a one dimensional time-
independent real potential V (x). We are interested in the quantum mechanical
description of bound states governed by the Schrödinger equation and assume
V (x) to be a confining potential. The well-known separation of variables tech-
nique can be applied leading to the time-independent Schrödinger equation

− ~
2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) . (1)

This is an ordinary second order differential equation for the stationary wave
function ψ(x) which may also be interpreted as an eigenvalue problem for E.
In order to build up the notation for the supersymmetry analysis, we redefine
the potential to V−(x) ≡ V (x) − E0 where E0 is the minimal eigenvalue of
(1). In this way all the energy levels get downshifted by E0. Associated to the
potential V− we define the corresponding Hamiltonian operator

H− ≡ −~
2

2m

d2

dx2
+ V− , (2)

for which we may write explicitly

H−ψ
−
n (x) = − ~

2

2m

d2

dx2
ψ−
n (x) + V−(x)ψ

−
n (x) = E−

n ψ
−
n (x) , (3)

and where we labeled the eigenfunctions ψn and eigenvalues En by the index n.
Inspired by the well-known creation and annihilation operator technique of the
harmonic oscillator we assume the second order operator H− can be factorized
into

H− = A+A− , (4)

with

A− ≡ ~√
2m

d

dx
+W (x) ,

A+ ≡ −~√
2m

d

dx
+W (x) , (5)
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where W (x) is some real function. By substituting (5) into (4) we see this task
can be accomplished if and only if W (x) is a solution of the Riccati nonlinear
first order differential equation

V− =W 2(x)− ~√
2m

W ′(x) . (6)

The quantity W (x) is called the superpotential associated to the original po-
tential V (x) in (1) and satisfies the commutation relation

[

A−, A+
]

=
2~√
2m

W ′(x) . (7)

Now switching the order between A− and A+ in (5) we define the new operator

H+ ≡ A−A+ = − ~
2

2m

d2

dx2
+ V+ , (8)

with

V+ ≡W 2(x) +
~√
2m

W ′(x) . (9)

Naturally, H+ may be interpreted as a new Hamiltonian related to the potential
V+. As can be easily checked, A+ and A− are the adjoint of each other, while
both Hamiltonians H+ and H− are Hermitian semi-positive-definite operators.
Denoting the eigenfunctions of H+ by ψ+

n , similarly to (3) we write

H+ψ
+
n (x) = E+

n ψ
+
n (x) . (10)

For simplicity, we assume ψ−
0 (x) is normalizable and satisfies A−ψ−

0 = 0,
which is consistent with H−ψ

−
0 = 0 and leads to

ψ−
0 ∼ exp

[

−
√
2m

~

∫

W (x)dx

]

, (11)

with
∫

dx |ψ−
0 |2 = 1 . (12)

On the other hand, if the ground state for H+ were to satisfy A+ψ+
0 = 0,

it would be proportional to (ψ−
0 )

−1 which cannot be normalized. Therefore,
considering the eigenvalues in (10) ordered by increasing value of energies, we
have E−

0 = 0 and E+
0 > 0. This piece of assumption comprises the case con-

ventionally known by unbroken supersymmetry [1, 2].
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Observing that
H+(A

−ψ−
n ) = E−

n (A
−ψ−

n ) , (13)

and comparing with the eigenvalue equation (10) we see that (i) the spectrum
of H+ coincides with that of H− with the sole exception of E−

0 = 0 and (ii)
the eigenfunctions of H+ are proportional to A−ψ−

n . Namely, the nonzero
eigenvalues of H± are related by

E+
n = E−

n+1 > 0 , n ≥ 0 . (14)

Imposing normalization to unity on all ψ±
n (x) and choosing a real proportion-

ality constant, we may write

ψ+
n =

1
√

E−
n+1

A−ψ−
n+1 , n ≥ 0 . (15)

By applying A+ to both sides of the last equation it can be inverted to

ψ−
n+1 =

1
√

E+
n

A+ψ+
n , n ≥ 0 . (16)

Note that with this notation convention we have

A+ψ+
0 =

√

E+
0 ψ

−
1 6= 0 . (17)

We see that the A− and A+ operators connect H− and H+ eigenstates with
the same energy. Knowledge of the eigenstates and eigenvalues of one of the
Hamiltonians H± leads to the knowledge of the corresponding solution for its
partner.

3. The Supersymmetry Algebra

In the previous section, we considered H− and H+ as two Hamiltonians govern-
ing independent problems, namely the first one characterized by the potential
V− and the second by the potential V+. Now we construct a more general prob-
lem by absorbing these two Hamiltonians into a two-dimensional structure and
where the previous solutions ψ±

n become related by a symmetry transformation.
We begin by defining the 2× 2 matrix operators

Q+ =

(

0 A+

0 0

)

,
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Q− =

(

0 0
A− 0

)

, (18)

as well as the full Hamiltonian operator

H ≡ {Q−, Q+} ≡ Q−Q+ +Q+Q− , (19)

which may be written explicitly as

H =

(

A+A− 0
0 A−A+

)

=

(

H− 0
0 H+

)

. (20)

Furthermore, we promptly note that Q± is nilpotent in the sense that

(Q±)2 = 0 , (21)

and commutes with the Hamiltonian

[

Q±,H
]

≡ Q±H −HQ± = 0 . (22)

Thus we see that the three operators H and Q± constitute a basis for a faithful
representation of a Lie superalgebra. To be more specific, the (anti)commutator
relations (19) and (22) can be seen as a generalized graded commutator in the
vector space generated by Q± and H. By assigning grades 0̄ to H and 1̄ to Q±

we have a Lie superalgebra endowed with a Z2-graded structure.
From the physical point of view, the property [Q±,H] = 0 clearly signals

an underlying symmetry. Namely, the operators Q± do not change the energy
of an H eigenstate. This is precisely what is meant by the term supersymmetry.
Let us elaborate a bit further on this point. The operators H and Q± act on a
Hilbert space of physical states formed by column vectors of the form

Ψ(x) =

(

φ1(x)
φ2(x)

)

, (23)

and the time-independent Schrödinger equation may be written as

H Ψ = EΨ , (24)

with H as in (20). Note that the two components of (24) correspond to the
Schrödinger equations for the potentials V− and V+, and the set

B =

{(

ψ−
n (x)
0

)

,

(

0
ψ+
n (x)

)}

, n = 0, 1, . . . , (25)
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constitutes a basis for the complete Hilbert space. By defining En ≡ E−
n =

E+
n−1, n ≥ 1 and E0 ≡ E−

0 = 0, we see the nonzero eigenvalues of (24) are
doubly degenerated. Namely, we may write

HΨn = EnΨn , (26)

with

Ψn =

(

c−ψ
−
n

c+ψ
+
n−1

)

, n ≥ 1 , (27)

for c± arbitrary complex numbers satisfying |c−|2+ |c+|2 = 1. The ground state
is nondegenerate and given by

Ψ0 =

(

ψ−
0

0

)

, (28)

satisfying
HΨ0 = 0 . (29)

Notice that Q± are generalized ladder operators in the sense that

Q−

(

ψ−
n (x)
0

)

=
√

E−
n

(

0
ψ+
n−1(x)

)

, (30)

and

Q+

(

0
ψ+
n (x)

)

=
√

E+
n

(

ψ−
n+1(x)
0

)

. (31)

More generally, for Ψn as in (27), we have

Q+Ψn = c+
√

En

(

ψ−
n

0

)

, (32)

and

Q−Ψn = c−
√

En

(

0
ψ+
n−1

)

, (33)

which is consistent with (26) by {Q+, Q−}Ψn = EnΨn. Note also that the
assumption of unbroken supersymmetry implies, by A−ψ−

0 = 0, that the ground
state, or vacuum, of the theory satisfies both

Q±Ψ0 = 0 . (34)

Since Q± are not Hermitian, but rather one the Hermitian conjugate of the
other, equations (32) and (33) lack a direct physical interpretation. However,
we may define the Hermitian operators

Q1 = (Q+ +Q−) , (35)
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Q2 = i(Q+ −Q−) , (36)

which may be interpreted as supersymmetric charges, and then we have

Q1Ψn =
√

En

(

c+ψ
−
n

c−ψ
+
n−1

)

, (37)

and

Q2Ψn = i
√

En

(

c+ψ
−
n

−c−ψ+
n−1

)

. (38)

We see the eigenvectors of Q1 satisfy c+ = ±c− while those of Q2 satisfy
c+ = ±ic−, for n ≥ 1. Now the corresponding real eigenvalues of Q1 and Q2

are ±
√
En. For n = 0 we have still the one dimensional eigenspace generated

by (28) with null eigenvalue for both Q1 and Q2. In terms of the Hermitian
operators, the supersymmetric algebra reads

[H,Qi] = 0 , (39)

and

{Qi, Qj} = 2δijH , (40)

for i, j = 1, 2.

4. The Supersymmetry Group

In the previous section we have identified the algebra of SUSYQM as a Lie
superalgebra generated by H and Qi. Now we show that the supersymmetry
implied by relations (19) and (22), or equivalently by (39) and (40), can be
realized by the action of a corresponding supergroup in the full Hilbert space
of the theory. We begin by observing that the total Hamiltonian H defines a
symmetry group by the action of

eiβH = exp

[

iβ

(

H− 0
0 H+

)]

(41)

in the Hilbert space of states. Here β is a real parameter. By introducing two
real Grassmannian parameters θ1 and θ2 we write a general element of the full
supersymmetry group as

g = exp [iβH + iθ1Q1 + iθ2Q2] . (42)
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In order to obtain the explicit group composition law, we define

θ± ≡ θ1 ± iθ2 (43)

and note that if

g(k) = exp
[

iβ(k)H + iθ
(k)
1 Q1 + iθ

(k)
2 Q2

]

, (44)

then we have

g(1)g(2) = exp
[

i(β(1) + β(2))H
]

exp
[

iθ
(1)
+ Q+ + iθ

(1)
− Q−

]

× exp
[

iθ
(2)
+ Q+ + iθ

(2)
− Q−

]

.
(45)

In obtaining (45) from (44), with k = 1, 2, we have used the fact that H
commutes with Qi to split out the exponentials and reorder terms. By us-
ing elementary properties of Grassmann variables and the operator identity
[Q+, Q−]

2
= H2, the product of the last two exponentials in the RHS of (45)

can be written as

1 + i(θ
(1)
+ + θ

(2)
+ )Q+ + i(θ

(1)
− + θ

(2)
− )Q− +M(2) +M(3) +M(4) , (46)

with

M(2) = −1

2
(θ

(1)
+ θ

(2)
− + θ

(1)
− θ

(2)
+ )(Q+Q− +Q−Q+) +

−1

2
(θ

(1)
+ + θ

(2)
+ )(θ

(1)
− + θ

(2)
− )

[

Q+, Q−
]

, (47)

M(3) = − i

2
(θ

(1)
+ θ

(2)
− θ

(2)
+ + θ

(1)
− θ

(2)
+ θ

(1)
+ )Q+Q−Q+ +

− i

2
(θ

(1)
+ θ

(2)
− θ

(1)
− + θ

(1)
− θ

(2)
+ θ

(2)
− )Q−Q+Q− , (48)

and

M(4) =
1

4
θ
(1)
+ θ

(1)
− θ

(2)
+ θ

(2)
− H2 , (49)

which then in its turn factorizes as a product

exp
[

iθ
(1)
+ Q+ + iθ

(1)
− Q−

]

exp
[

iθ
(2)
+ Q+ + iθ

(2)
− Q−

]

= RS (50)

with

R ≡ 1− 1

2
(θ

(1)
+ θ

(2)
− + θ

(1)
− θ

(2)
+ )H +

1

4
θ
(1)
+ θ

(1)
− θ

(2)
+ θ

(2)
− H2 (51)
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and
S ≡ 1 + i(θ

(1)
+ + θ

(2)
+ )Q+ + i(θ

(1)
− + θ

(2)
− )Q−

−1
2(θ

(1)
+ + θ

(2)
+ )(θ

(1)
− + θ

(2)
− )[Q+, Q−] .

(52)

Since Q± commutes with H, the factorization (50) substituted back in (45)
leads to the closed form

g(1)g(2) = exp
{

i
[

β(1) + β(2) + i
2(θ

(1)
+ θ

(2)
− + θ

(1)
− θ

(2)
+ )

]

H
}

× exp
[

i(θ
(1)
+ + θ

(2)
+ )Q+ + i(θ

(1)
− + θ

(2)
− )Q−

]

.
(53)

Finally, back to the original variables θi, we see we can write

g(1)g(2) = g(3) , (54)

as defined in (44) with

β(3) = β(1) + β(2) + i(θ
(1)
1 θ

(2)
1 + θ

(1)
2 θ

(2)
2 ) , (55)

θ
(3)
1 = θ

(1)
1 + θ

(2)
1 , (56)

and
θ
(3)
2 = θ

(1)
2 + θ

(2)
2 , (57)

which determines the group composition law. Therefore, the group defined
by (42) implements the supersymmetry of SUSYQM acting in the full Hilbert
space of the theory.

5. Conclusion

We have reviewed supersymmetry in nonrelativistic quantum mechanics by
joining two partner one dimensional potentials into a full Hamiltonian enjoy-
ing supersymmetry. We have seen that the supersymmetry can be described
as a transformation connecting the solutions to the two partner potentials.
By assuming unbroken supersymmetry, we have identified the supersymmetric
algebra of the generators as a Lie superalgebra, writing down the structure
constants for the graded commutator. We have constructed explicitly the cor-
responding group implementing the supersymmetry in the Hilbert space. The
group composition law has been obtained in terms of the exponential of either
the generators Q± or Qi, using the corresponding real Grassmann parameters
θ± or θi. The group composition law has been explicitly obtained.
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