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Abstract

A search for the decay of a charged B meson to a charged K meson and a neutral

K∗(892) meson is presented. The K∗(892) resonance is detected through its decay

to a charged pion and a charged kaon. The final state is therefore K±K∓π±. The

analysis uses a data sample with an integrated luminosity of 210.6 fb−1, recorded by

the BABAR detector at the PEP-II asymmetricB factory. This sample corresponds to

232.3 million charged B mesons. The branching ratio averaged over charge conjugate

states, B, is found to be

• B(B+ → K
∗
(892)0K+) = (0.6 ± 0.3 ± 0.2) × 10−6.

The first uncertainty is statistical, the second is systematic. The significance of this

measurement, 1.6σ, falls below the required significance for experimental evidence.

As such an upper limit, at 90% confidence level (CL), is placed on the branching

ratio:

• B(B+ → K
∗
(892)0K+) < 1.1 × 10−6.

The mode B+ → K
∗
0(1430)

0K+ shares the same final state as the channel under

investigation. The following 90% CL upper limit is placed on the branching ratio

for this mode:

• B(B+ → K
∗
0(1430)

0K+) < 2.2 × 10−6.
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Introduction

The Big Bang theory has been widely accepted as a description of the birth of the

Universe. In this theory matter particles and antimatter antiparticles are created in

equal amounts. When a particle meets its antiparticle the two annihilate to produce

radiation. In today’s Universe all of the antimatter has annihilated with matter1.

However, rather than a Universe consisting purely of radiation, there is a surplus

of matter. This can only be explained by a matter-antimatter asymmetry. The

asymmetry is very small and subtle, but nevertheless responsible for the Universe

as we know it and our very existence.

Turning our attention now from physics on the largest possible scale, the cosmos,

to physics on the smallest scale. The Standard Model of particle physics (SM) is a

relativistic quantum field theory that describes the fundamental particles that make

up all matter (and antimatter) and the interactions that occur between these par-

ticles. The SM is a mathematical gauge theory, the conceptual results of which can

be described as follows. All observed matter is hypothesised to consist of various

combinations of 12 elementary, spin 1
2

fermions (6 quarks and 6 leptons). Funda-

mental interactions are explained by the exchange of spin 1 bosons, whilst a further

boson, with spin 0, accounts for particles’ mass. The theory is incomplete as it

1Antimatter continues to be produced in small quantities in certain nuclear reactions and in

physics experiments on Earth, but these quantities are negligible in comparison to the amount of

matter present in the Universe.
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does not incorporate the very weak (relatively speaking) gravitational interaction.

Furthermore, the SM is unable to address numerous fundamental questions. For

example, why are there three generations of fermions? Why do fermions have the

masses they do and why are they so varied? Why does the Higgs bare mass in the

SM Lagrangian have to be so unnaturally fine-tuned to one part in 1017? These is-

sues point toward more fundamental physics at higher energies (for further reading

see [2]). Nonetheless, rigorous and precise experimental measurements demonstrate

that the SM is an extremely successful model at currently probed energies.

CP violation – in which the rates of various processes differ if particles are exchanged

with antiparticles and spatial directions are reversed – is one of three conditions

identified by Sakharov [3] that must be satisfied in order for the Universe to evolve

from a system in which the amount of matter and antimatter is equal to one in which

it is not. (The other two conditions are baryon number violation and a withdrawal

from thermal equilibrium for some period.) CP violation is accommodated in the

SM, but the amount predicted by the SM mechanism is too small by several orders

of magnitude to account for the observed imbalance between matter and antimatter

in the Universe. The sector is therefore an interesting area to look for new physics

beyond the SM.

To establish experimentally the effect that allowed matter to dominate is a central

theme in high energy physics research, and one which the BABAR experiment [4]

at the Stanford Linear Accelerator Center (SLAC) [5] in California addresses. The

BABAR collaboration consists of approximately 600 physicists and engineers from

around the world.

The analysis presented in this thesis sets out to determine the branching ratio of

the decay B+ → K
∗
(892)0K+. The author conducted a cut and count analysis in

2004 in which an upper limit, at 90% CL, was placed on this branching ratio [6]:

BExp(B+ → K
∗
(892)0K+) < 2.2 × 10−6

2



(reduced from 5.3× 10−6 [7]). In 2005 Fleischer and Recksiegel placed a theoretical

lower limit on this mode [8]:

BThry(B+ → K
∗
(892)0K+) >

(

0.76+0.10
−0.12

)

× 10−6.

This window and the use of a larger data sample and a more sensitive technique

(maximum likelihood rather than cut and count) indicate that a measurement is

within present experimental sensitivity at BABAR.

B+ → K
∗
(892)0K+ occurs at the quark level as a b→ d transition. These transitions

are suppressed, and there is currently little experimental information available on

them. Studying these processes provides important tests of the quark flavour sector

of the SM. This is discussed in [9]. The study presented in this thesis can also be

used to help clarify issues concerning a possible difference between determinations

of a particular CP violation parameter, namely sin2β using the modes B0 → J/ψK0
S

and B0 → φ(1020)K0
S

[10]. Such a difference would require physics beyond the SM

to explain it.

Chapter 1 describes the portions of the SM relevant to the BABAR experiment and to

the decay mode under investigation. The physics requirements, design and perfor-

mance of the BABAR detector and the PEP-II B factory are discussed in Chapter 2,

whilst the online flow of data from the detector is described in Chapter 3. In Chap-

ter 4, details are given for the reconstruction of the raw detector data into a form

that can be used for physics analyses. Chapter 5 presents the analysis method,

including event selection, treatment of background, the fit procedure and valida-

tion of this procedure. The results are presented in Chapter 6 and summarised in

Chapter 7.

3



4



1
Theoretical overview

1.1 Introduction

In this chapter relevant aspects of the underlying theory are presented. The main

goal of BABAR is to conduct high precision studies of CP violation in the B meson

system. As such, the CKM sector of the SM – in which CP violation occurs – is

examined in some detail. The role of the mode under investigation in this thesis is

then discussed in relation to the CP violation parameter sin2β. The discussion then

turns to the kinematics of B decays to 3-body final states. Finally, the effects of the

strong interaction on the decay under study are very briefly discussed.

5



6 Chapter 1. Theoretical overview

1.2 The CKM description of flavour changing pro-

cesses

This section describes how CP violation arises in the SM. Mixing in neutral mesons

is described as a precursor to discussing the three types of CP violation. Current

knowledge of the CKM parameters, accumulated experimentally, is then presented.

Lastly, an explanation of how the parameter sin2β is extracted using BABAR’s golden

channel is given.

1.2.1 An introduction to CP violation

C is the charge conjugation operator; it is discrete and transforms a particle into

its antiparticle by reversing the sign of its internal quantum numbers. P is the

parity operator – also discrete – which inverts three-dimensional space: ~x → −~x.
In contrast to the strong and electromagnetic interactions, the symmetries of both

the C and P transformations are violated by the weak force. That is, only particles

with left-handed chirality and antiparticles with right-handed chirality participate

in weak interactions in the SM1. Parity violation was first proposed by Lee and

Yang in 1956 [11], and experimentally verified (using β decay of cobalt-60) in 1957

by Wu et al. [12]. In the same year Ioffe et al. showed that P violation meant that C

invariance must also be violated in weak decays [13]. At this stage, however, there

was no evidence to suggest that the combined transformation of C and P, CP, was

1Chirality is a Lorentz invariant quantity, which for massless particles, is the same as helicity

(the projection of a particle’s spin onto the direction of its motion). The introduction of mass

terms renders helicity non-absolute and makes possible weak interactions that otherwise would not

be. For example – assuming massless neutrinos for the sake of this argument – if electrons were

massless, the decay π− → e−νe would be forbidden. The electron is not massless and the process

therefore occurs. However, the electron is much closer to being massless than the muon and as

such π− → e−νe is heavily suppressed compared to π− → µ−νµ – despite the available phase

spaces suggesting the opposite.



1.2. The CKM description of flavour changing processes 7

not conserved. In 1964 Christenson et al. presented experimental evidence for the

violation of symmetry under the CP transformation – CP violation – in the K0

meson system [14]. The K0
L

particle was observed to decay to two pions, rather than

three, at the 10−3 level.

A further exclusive property of the weak interaction is that it is able to change

flavour. The mechanism that allows this in quarks, introduced by Cabibbo in

1963 [15], is quark mixing. Cabibbo proposed that the weak eigenstate d′ is a linear

superposition of the flavour eigenstates d and s. This can be extended as follows:

(

d′

s′

)

=

(

cos θC sin θC
− sin θC cos θC

)(

d
s

)

. (1.1)

The matrix in Eq. (1.1) can be parameterised using the single Cabibbo angle, θC ,

measured experimentally to be 12.3◦ [16]. In 1973 Kobayashi and Maskawa proposed

a third generation of quarks and leptons [17] with the 2×2 Cabibbo matrix becoming

the 3 × 3 CKM matrix, VCKM. Three real angles and one complex phase are now

required to parameterise the matrix. It is the complex phase that is the only source

of CP violation in the SM2. The first experimental evidence for the existence of third

generation fermions followed shortly after (the b quark [19] and the τ lepton [20]

were discovered in 1977).

1.2.2 The CKM matrix and the Unitarity Triangle

With a third generation of quarks Eq. (1.1) becomes





d′

s′

b′



 = VCKM





d
s
b



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









d
s
b



 . (1.2)

2In fact, there are natural terms in the QCD Lagrangian that are also able to break CP sym-

metry. However, it turns out that the relevant phase is fine-tuned such that this contribution can

effectively be ignored. This is known as the Strong CP Problem [18].
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Each VCKM matrix element, Vij, represents the weak coupling between quarks i and

j. The standard parameterisation of the CKM matrix is shown in Eq. (1.3):

VCKM =





c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13
s12 s23 − c12 c23 s13 e

iδ −c12 s23 − s12 c23 s13 e
iδ c23 c13



 , (1.3)

where sij = sin θij, cij = cos θij and δ represents the phase. θij is the mixing angle

between the ith and jth generations. Experimental results show a hierarchy in the

magnitudes of the matrix elements: |Vii| ≈ 1, |V12| ≈ |V21| ≈ λ, |V23| ≈ |V32| ≈ λ2

and |V13| ≈ |V31| ≈ λ3, where λ = s12 ≈ 0.22 is the sine of the Cabibbo angle.

This leads to an alternative (approximate) parameterisation of the CKM matrix,

developed by Wolfenstein [21]:

VCKM ≈





1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



+ O(λ4). (1.4)

To conserve the number of quarks and be self-contained the CKM matrix must be

unitary. Two relevant types of relation arise from V†
CKMVCKM = I = VCKMV†

CKM:

∑

j

|Vij|2 = 1, and (1.5)

∑

i

VidV
∗
is = 0,

∑

i

VisV
∗
ib = 0,

∑

i

VidV
∗
ib = 0,

∑

j

VujV
∗
cj = 0,

∑

j

VcjV
∗
tj = 0,

∑

j

VujV
∗
tj = 0, (1.6)

where i = u, c, t and j = d, s, b. Eq. (1.5) describes weak universality, which implies

that the sum of all the couplings of any up-type quark to the down-type quarks is

generation independent. Of the relations of the type described by Eq. (1.6), the one

of particular interest to us is

Vud V
∗
ub + Vcd V

∗
cb + Vtd V

∗
tb = 0. (1.7)

This can be depicted as a triangle – the Unitarity Triangle – in the complex plane,

as illustrated in Figure 1.1. Here, a phase convention is chosen such that Vcd V
∗
cb is
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real and the triangle has been scaled such that two of the three corners lie at (0, 0)

and (1, 0), thus leaving only the apex to find, (ρ, η).

ρ = ρ
(

1 − λ2/2
)

, η = η
(

1 − λ2/2
)

, (1.8)

where λ, ρ and η are quantities used in the Wolfenstein parameterisation of the

CKM matrix (Eq. (1.4)). The internal angles of the triangle are given by

α ≡ arg

[

− Vtd V
∗
tb

Vud V ∗
ub

]

, β ≡ arg

[

−Vcd V
∗
cb

Vtd V ∗
tb

]

, γ ≡ arg

[

−Vud V
∗
ub

Vcd V ∗
cb

]

. (1.9)

The five remaining relations of the type described by Eq. (1.6) can also be repre-

sented as triangles, but these triangles are much thinner (one side much shorter than

the other two) and are therefore less useful for experimental probing.

Im

Re0
0 1

)η, ρ(

|*
cbVcd|V

*
ubVudV

|*
cbVcd|V

*
tbVtdVη

ρ

α

βγ

Figure 1.1: The Unitarity Triangle (not drawn to scale).

It is the aim of the BABAR collaboration to measure the sides and angles of the

Unitarity Triangle, using as many independent decay modes as possible. The area

of the Unitarity triangle is equal to J/2 where J is the Jarlskog invariant [22] and

is a model independent measure of the amount of CP violation in the SM:

J = c12c23c
2
13s12s23s13 sin δ ≈ A2ηλ6. (1.10)
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1.2.3 The charged current weak interaction Lagrangian

The charged current weak interaction is mediated by massive, charged gauge bosons

W± and is described, in the weak basis, by the following Lagrangian:

LCC
Int = − g√

2

(

u′L, c
′
L, t

′
L

)

γµ





d′L
s′L
b′L



W †
µ + h.c., (1.11)

where g is the weak coupling constant, γµ are the Dirac matrices, W †
µ are the weak

gauge bosons and h.c. indicates the hermitian conjugate of the first term. Left-

handed projections of the weak eigenstates of the quark fields are represented by the

q′L.

The quarks have mass in the SM due to their Yukawa couplings to the Higgs doublet.

It is therefore useful to rewrite Eq. (1.11) in terms of left-handed projections of the

mass eigenstates of the quark fields (qL) by substituting in Eq. (1.2):

LCC
Int = − g√

2

(

uL, cL, tL
)

γµVCKM





dL
sL
bL



W †
µ + h.c. (1.12)

Let us now rewrite Eq. (1.12) in terms of the full quark fields, (ui, dj), on which the

left-handed projection operator 1
2
(1 − γ5) acts:

LCC
Int = − g

2
√

2
(uiγ

µW+
µ (1 − γ5)Vijdj + djγ

µW−
µ (1 − γ5)V

∗
ijui). (1.13)

Applying the CP operator to the field terms in Eq. (1.13) transforms them as:

uiγ
µW+

µ (1 − γ5) dj → djγ
µW−

µ (1 − γ5)ui. (1.14)

It can be seen that the field terms are interchanged. The VCKM couplings however

(Vij and V ∗
ij) are unchanged, and since Vij 6= V ∗

ij is possible with a complex element

in VCKM, CP violation can occur in the SM.

1.2.4 Mixing in neutral mesons

The box diagrams shown in Figure 1.2 are an example of mixing in the SM, in which

particle and antiparticle states can oscillate. For the majority of particle-antiparticle
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systems this is not possible because various quantum numbers must be conserved

regardless of whether the interaction is strong, electromagnetic or weak. However,

for a small number of systems, including the neutral K, D and B systems, there are

no quantum numbers to conserve when taking into account the weak interaction.

When this is the case, the observed physical particles correspond not to the flavour

eigenstates themselves (|P 0〉 and
∣

∣P 0
〉

, with definite quark content), but to linear

combinations of them.

b

d

d

b

W W

u, c, t

u, c, t

0
B 0B

b

d

d

b

u, c, t u, c, t

W

W

0
B 0B

Figure 1.2: Feynman diagrams representing the second order weak inter-

actions that give rise to B0 − B0 mixing. The top quark dominates these

transitions due to its large mass and because Vtb ≈ 1.

The time evolution of an arbitrary state consisting of a linear superposition of the

flavour eigenstates,

|P (t)〉 = a(t)
∣

∣P 0
〉

+ b(t)
∣

∣P 0
〉

, (1.15)

is governed by the time dependent Schrödinger equation (TDSE)

i
∂

∂t

(

a(t)
b(t)

)

= H

(

a(t)
b(t)

)

=

(

H11 H12

H21 H22

)(

a(t)
b(t)

)

=

(

M − i

2
Γ

)(

a(t)
b(t)

)

.

(1.16)

H is the Hamiltonian matrix, whilst M and Γ are 2 × 2 Hermitian matrices that

describe mixing and decay respectively.

Invariance under the CPT transformation (a prerequisite of quantum field theory

and assumed to be true) – where T is the time reversal operator – requires that H11
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and H22 are equal. The off-diagonal elements, H12 and H21 are the amplitudes for

mixing. If these elements are zero, there is no mixing.

1.2.4.1 Mixing without CP violation

For CP symmetry to hold, we require thatH∗
12 = H21. In the absence of CP violation

Eq. (1.16) thus becomes

i
∂

∂t

(

a(t)
b(t)

)

=

(

A B
B∗ A

)(

a(t)
b(t)

)

=

(

M11 − i
2
Γ11 M12 − i

2
Γ12

(

M12 − i
2
Γ12

)∗
M22 − i

2
Γ22

)(

a(t)
b(t)

)

.

(1.17)

By diagonalising H we can move into the mass basis. X is defined to be the matrix

whose columns contain the eigenvectors of H such that

H = X

(

A+ |B| 0
0 A− |B|

)

X−1, (1.18)

where A+ |B| and A− |B| are eigenvalues of H. The resulting mass eigenstates are

given by

|P1,2〉 =
1√
2

(∣

∣P 0
〉

±
∣

∣P 0
〉)

, (1.19)

The masses and widths of the mass eigenstates are given by the real and imaginary

parts of the eigenvalues respectively:

M1,2 = <(A± |B|), −Γ1,2

2
= =(A± |B|). (1.20)

With exact CP invariance, the mass eigenstates are also CP eigenstates with eigen-

values ±1:

CP |P1〉 = CP

(

1√
2

(∣

∣P 0
〉

+
∣

∣P 0
〉)

)

(1.21)

=
1√
2

(

CP
∣

∣P 0
〉

+ CP
∣

∣P 0
〉)

(1.22)

=
1√
2

(

eiδ
∣

∣P 0
〉

+ e−iδ
∣

∣P 0
〉)

(1.23)

=
1√
2

(∣

∣P 0
〉

+
∣

∣P 0
〉)

, choosing the convention δ = 0 (1.24)

= (+1) |P1〉 , (1.25)
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CP |P2〉 = CP

(

1√
2

(∣

∣P 0
〉

−
∣

∣P 0
〉)

)

(1.26)

=
1√
2

(

CP
∣

∣P 0
〉

− CP
∣

∣P 0
〉)

(1.27)

=
1√
2

(

eiδ
∣

∣P 0
〉

− e−iδ
∣

∣P 0
〉)

(1.28)

= − 1√
2

(∣

∣P 0
〉

−
∣

∣P 0
〉)

, choosing the convention δ = 0 (1.29)

= (−1) |P2〉 . (1.30)

1.2.4.2 Mixing with CP violation

With CP invariance no longer exact, the off-diagonal elements of H are no longer

required to be of equal magnitude, and H can be rewritten as

H =

(

A B/r
rB∗ A

)

. (1.31)

The mass eigenstates are now

∣

∣P ′
1,2

〉

=
1

√

1 + |r|2
(∣

∣P 0
〉

± r
∣

∣P 0
〉)

. (1.32)

The masses and widths of the two states come from the real and imaginary parts of

A± |B| as before. The mass eigenstates are no longer CP eigenstates.

1.2.4.3 B0 −B0 mixing

The neutral B meson mass eigenstates, |BL〉 and |BH〉, are linear superpositions of

the flavour eigenstates, |B0〉 and
∣

∣B0
〉

, as described by Eq. (1.33):

|BL〉 = p
∣

∣B0
〉

+ q
∣

∣B0
〉

,

|BH〉 = p
∣

∣B0
〉

− q
∣

∣B0
〉

, (1.33)

where p and q are complex coefficients (to allow for a phase difference between the

two states) that satisfy the normalisation condition

|p|2 + |q|2 = 1. (1.34)
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The mass, M , mass difference, ∆mB, and lifetime difference, ∆ΓB, are useful quan-

tities to define:

M =
1

2
(MH +ML) ,

∆mB = MH −ML,

∆ΓB = ΓH − ΓL; (1.35)

MH,L and ΓH,L are specific cases of the general quantities described by Eq. (1.20).

It has been shown experimentally [23] that

∆mB � ∆ΓB ≈ O(1%) (1.36)

(this is in contrast to the K system in which ∆ΓK ≈ −2∆mK , with the mass

eigenstates therefore dubbed short (S) and long (L) rather than light (L) and heavy

(H)).

A general B state |ψ(t)〉 propagating through space is an admixture of the mass

eigenstates, and evolves with time like:

|ψ(t)〉 = aL(t) |BL〉 + aH(t) |BH〉 , (1.37)

where time dependent amplitudes aL(t) and aH(t) are solutions of the TDSE and

are given by:

aL(t) = aL(0)e−iMLte−
1

2
ΓLt,

aH(t) = aH(0)e−iMH te−
1

2
ΓH t. (1.38)

It can be seen from Eq.s (1.33), (1.37) and (1.38) that for a pure |B0〉 state at time

t = 0, we require

aL(0) = aH(0) =
1

2p
, (1.39)

and for a pure
∣

∣B0
〉

state at time t = 0,

aL(0) = −aH(0) =
1

2q
. (1.40)
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Substituting Eq.s (1.33) and (1.38) into (1.37) and using Eq.s (1.35), (1.39) and

(1.40), we are now able to show how a state that is initially pure |B0〉 evolves to

become pure
∣

∣B0
〉

(and vice versa) and oscillates between the two states (taking

ΓL = ΓH = Γ as implied by Eq. (1.36)):

∣

∣B0(t)
〉

= g+(t)
∣

∣B0
〉

+
q

p
g−(t)

∣

∣B0
〉

,

∣

∣B0(t)
〉

=
p

q
g−(t)

∣

∣B0
〉

+ g+(t)
∣

∣B0
〉

, (1.41)

with

g+(t) = e−iMte−
1

2
Γt cos

(

∆mBt

2

)

,

g−(t) = e−iMte−
1

2
Γt sin

(

∆mBt

2

)

. (1.42)

Thus the probability that a state that starts off as a pure |B0〉 will decay as a
∣

∣B0
〉

oscillates sinusoidally with a frequency that depends on ∆mB.

1.2.4.4 Flavour tagging

The BABAR experiment produces BB pairs in a coherent L = 1 state. The two

B mesons therefore have a common wavefunction that evolves in time such that

there is always exactly one B0 and one B0. At this stage however the flavour of

each meson is indeterminate. This is an example of the Einstein-Podolski-Rosen

effect [24]. At the instant one B decays, let us say as a B0 and at time t = ttag, the

wavefunction collapses. Knowledge of one meson has an instantaneous influence on

the other, namely that in our example its flavour must be B0 at time t = ttag. This

B0 will continue to evolve with time until it itself decays at time t = tdecay.

The flavour of the first B to decay can be tagged by studying its decay products.

The flavour of the other B can then be established at time t = ttag. The amount of

time that it has to mix before decaying is simply given by tdecay − ttag.

The method of flavour tagging has been used by BABAR collaborators to measure

the B0 −B0 oscillation frequency, ∆mB. See, for example, [25]. The world average
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value is ∆mB = 0.502 ± 0.007 ps−1 [23].

1.2.5 Three types of CP violation

CP violation can manifest itself in the SM in three distinct ways. Each of these are

now discussed.

1.2.5.1 CP violation in decay

CP violation in decay, also called direct CP violation, occurs when the amplitude

for a particular decay is different to that of the CP conjugate decay.

The amplitude for the decay B → f , where f is any final state, can be written

Af = 〈f |H|B〉 =
∑

j

Aje
i(δj+φj), (1.43)

where Aj, δj, and φj are the amplitude, strong phase and weak phase respectively of

a contributing process. Likewise, for the process B → f̄ , we can write

Āf̄ =
〈

f̄ |H|B
〉

=
∑

j

Aje
i(δj−φj). (1.44)

The weak phase comes from the electroweak interaction terms of the SM Lagrangian.

It is this phase that is able to violate CP symmetry; it appears in Af and Āf̄ with

opposite signs. The strong phase is CP conserving and appears in Af and Āf̄ with

the same sign. For any particular term in Aj, both the weak and strong phases are

convention dependent such that an overall phase rotation of the entire amplitude

would have no overall observable impact. The relative phase differences however are

phase convention independent and are therefore physically meaningful.

For CP violation we require that

Af 6= Āf̄ . (1.45)

In order for this condition to be met there must be contributions from at least two

processes with different strong and weak phases, as can be seen from Eq. (1.46)
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where we have two contributing processes:

|Af |2 − |Āf̄ |2 = −2
∑

ij

AiAj sin (φi − φj) sin (δi − δj). (1.46)

It is helpful when attempting to measure this effect if the processes have amplitudes

with similar magnitudes.

Figure 1.3 illustrates (as an example) different processes for a neutral B meson

decaying to a charged kaon and a charged pion. The tree diagram is a purely weak

interaction, whilst the higher order penguin diagram also involves gluon exchange.

(As an aside it is worthwhile ensuring that the reader is acquainted with so-called

penguin diagrams. A penguin diagram is defined to be one with an internal quark

loop that radiates a gluon, photon or Z0. They are suppressed with respect to the

tree-level diagrams due to the additional vertices in the diagram. They can also

be CKM suppressed or enhanced with respect to the tree depending on the CKM

elements at the vertices). Direct CP violation can also occur where only penguin

diagrams occur (for example B+ → K
∗
(892)0(→ K−π+)K+, the channel under

investigation in this thesis, for which a tree level diagram does not exist). This is

because the quark in the loop in the penguin diagram can be any one of three.

b

d

u

d

s

u+W

0B -π

+K b

d

s
u

u
d

+W
t, c, u

0B

+K

-π

(a) Tree (b) Penguin

Figure 1.3: Feynman diagrams for the decay B0 → K+π−.

Direct CP violation can occur in both charged and neutral decays. It is the only

type that can occur in charged decays, where it is most cleanly observed as it cannot

be confused with other types of CP violation. An observed asymmetry AD
CP can be
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written using the decay rates (Γ) as:

AD
CP =

Γ(B → f̄) − Γ(B → f)

Γ(B → f̄) + Γ(B → f)
=

∣

∣Āf̄/Af
∣

∣

2 − 1
∣

∣Āf̄/Af
∣

∣

2
+ 1

. (1.47)

Direct CP violation has been observed in K decays [26,27] and, more recently, in B

decays in which Γ(B0→K−π+)−Γ(B0→K+π−)
Γ(B0→K−π+)+Γ(B0→K+π−)

was measured to be −0.133± 0.031 by the

BABAR collaboration [28].

1.2.5.2 CP violation in mixing

CP violation in mixing is observed as a difference in the rates for the P 0 → P 0

and P 0 → P 0 transitions. This difference arises due to interference between the box

diagrams (for example in Figure 1.2) proceeding via the t quark and those proceeding

via other flavours. It occurs when the mass eigenstates are not CP eigenstates:

CP |P1,2〉 6= ± |P1,2〉 (1.48)

(i.e. the mass eigenstates are described by Eq. (1.32) rather than Eq. (1.19)).

Following the steps described in Eq.s (1.21)-(1.30), it is easily shown for the B

system – as described by Eq. (1.33) – that for |BL,H〉 to be CP eigenstates and CP

thus conserved, (q/p) must equal 1. However, for a physically meaningful result, we

require a phase convention-independent approach (i.e. δ can take on any value, not

necessarily zero):

CP |BL,H〉 = CP
(

p
∣

∣B0
〉

± q
∣

∣B0
〉)

= CP
(

|p| ei arg(p)
∣

∣B0
〉

± |q| ei arg(q)
∣

∣B0
〉)

= |p| ei arg(p) eiδ
∣

∣B0
〉

± |q| ei arg(q) e−iδ
∣

∣B0
〉

= ±
(

|p|
∣

∣

∣

∣

q

p

∣

∣

∣

∣

ei(arg(q)−δ) ∣
∣B0
〉

± |q|
∣

∣

∣

∣

p

q

∣

∣

∣

∣

ei(arg(p)+δ)
∣

∣B0
〉

)

= ± |BL,H〉 , if (1.49)
∣

∣

∣

∣

q

p

∣

∣

∣

∣

ei(arg(q)−δ) = ei arg(p), and (1.50)

∣

∣

∣

∣

p

q

∣

∣

∣

∣

ei(arg(p)+δ) = ei arg(q). (1.51)
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It can be seen that there is always a value of δ that satisfies Eq. (1.49), provided

|q/p| = 1.

For CP violation then we require that:

∣

∣

∣

∣

q

p

∣

∣

∣

∣

(

=

∣

∣

∣

∣

√

〈

B0 |H|B0
〉

〈

B0 |H|B0
〉

∣

∣

∣

∣

)

6= 1. (1.52)

CP violation in mixing is also known as indirect CP violation, and was the first type

to be shown to exist experimentally using the K system. The level of indirect CP

violation in the B system is expected to be small (O(10−4)) [29]. This is because

Eq. (1.36) ⇒ |q/p| ≈ 1. (1.53)

1.2.5.3 CP violation in interference between decays with and without

mixing

Interference between mixing and decay processes leads to a third type of CP violation

in the SM. This is observed in the decays of neutral mesons to the same final state.

For the discussion here we take the final state to be a CP eigenstate, i.e. f = f̄ = fCP .

If AfCP
is the amplitude of B0 → fCP and ĀfCP

is the amplitude of B0 → fCP then

we can define the following phase convention independent quantity λfCP
:

λfCP
=
q

p

ĀfCP

AfCP

. (1.54)

CP violation occurs when λfCP
deviates from unity. This can occur due to either

direct (| ĀfCP

AfCP

| 6= 1) or indirect (| q
p
| 6= 1) CP violation. However, it can also occur

where there is no CP violation in mixing or decay. For this to happen we require

that the imaginary part of λfCP
take on a non-zero value:

= (λfCP
) 6= 0; |λfCP

| = 1. (1.55)

In the case of Eq. (1.55) being satisfied, λfCP
is a pure phase that can be calculated

without hadronic uncertainties.
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Eq. (1.41) can be used to write the time dependent amplitudes for B0, B0 → fCP :

〈

fCP |H|B0(t)
〉

= AfCP
(g+(t) + λfCP

g−(t)) ,

〈

fCP |H|B0(t)
〉

= AfCP

p

q
(g−(t) + λfCP

g+(t)) . (1.56)

The rates of the processes are obtained by taking the modulus squared of the am-

plitudes,

Γ(t)(B0 → fCP ) =
∣

∣

∣

〈

fCP |H|B0(t)
〉

∣

∣

∣

2

= |AfCP
|2e−Γt

(

1 + |λfCP
|2

2
+

1 − |λfCP
|2

2
cos (∆mBt)

−= (λfCP
) sin (∆mBt)

)

,

Γ(t)(B0 → fCP ) =
∣

∣

∣

〈

fCP |H|B0(t)
〉

∣

∣

∣

2

= |AfCP
|2e−Γt

(

1 + |λfCP
|2

2
− 1 − |λfCP

|2
2

cos (∆mBt)

+= (λfCP
) sin (∆mBt)

)

, (1.57)

where the definitions of g± from Eq. (1.42) have been used and |q/p| = 1 (Eq. (1.53))

is taken to be true.

The time dependent asymmetry, AI
CP (t), is constructed as the difference between

the two rates in Eq. (1.57) divided by their sum:

AI
CP (t) =

Γ(t)(B0 → fCP ) − Γ(t)(B0 → fCP )

Γ(t)(B0 → fCP ) + Γ(t)(B0 → fCP )

=
− (1 − |λfCP

|2) cos (∆mBt) + 2= (λfCP
) sin (∆mBt)

1 + |λfCP
|2

= −CfCP
cos (∆mBt) + SfCP

sin (∆mBt) , (1.58)

where

CfCP
=

1 − |λfCP
|2

1 + |λfCP
|2 and SfCP

=
2= (λfCP

)

1 + |λfCP
|2 . (1.59)

With |λfCP
| = 1 it can be seen that Eq. (1.58) reduces to

AI
CP (t) = = (λfCP

) sin (∆mBt) . (1.60)
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For the majority of B decays, the level of direct and indirect CP violation is negligi-

ble. CP violation in interference between decays with and without mixing occurs at

a much greater level and, with |λfCP
| ≈ 1, is the easiest type to measure at BABAR.

1.2.6 Current knowledge of CKM parameters

The B meson system is an ideal environment in which to measure numerous VCKM

parameters. Generally speaking, angles in the Unitarity Triangle can be measured

using time dependent CP studies, whilst branching ratios are used to determine the

lengths of the sides.

The Unitarity Triangle angle β has been measured to high precision by both the

BABAR and Belle [30] collaborations in the form of sin2β using the so-called golden

channel B0 → J/ψK0
S

(see Section 1.2.7):

• BABAR: sin2β = 0.72 ± 0.05 ± 0.02 [31].

• Belle: sin2β = 0.67 ± 0.05 ± 0.02 [32].

These measurements rule out the possibility of the area of the Unitarity Triangle

being zero, thus providing solid experimental evidence of CP violation in the SM.

To measure the angles α and γ at such a precision requires considerably larger

datasets. α is best measured using interference of b → u decay amplitudes with

B0 − B0 mixing. However, b → u is CKM suppressed, and non-negligible penguin

contributions (and therefore possible significant direct CP violation) further compli-

cate matters. The measurement of γ is even more challenging as it suffers, depending

on the method employed, from either experimental (e.g. suppressed rates) or the-

oretical (e.g. large hadronic uncertainties) difficulties. Methods using Bs mesons

are promising but these shall be best utilised using LHC data, and, at the time of

writing, the LHC [33] experiments have not yet commenced data-taking. A more de-

tailed discussion of methods used to extract Unitarity Triangle angles can be found
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in [34–36].

Let us now summarise the current experimental knowledge of the CKM sector using

the four parameters λ, A, ρ and η as defined in the Wolfenstein parameterisation

(Eq.s (1.4) and (1.8)). The parameter λ (= |Vus|) is known to be 0.22 from K+ →
π0`+ν` decays, with an accuracy of ≈ 2% [37]. The parameter A (= |Vcd|) is also

fairly well known from B decays to charm states. Its value is quoted as (40.2+2.1
−1.8)×

10−3 [37]. The parameters ρ and η are less well known. It is useful to plot the

various constraints on the (ρ, η) plane that are obtained from the measurements of

numerous parameters including:

• Unitarity Triangle angles.

• B mixing parameters (∆ms for B0
s − B

0

s mixing, ∆md for B0
d − B

0

d mixing

(B0
d ≡ B0, ∆md ≡ ∆mB – as defined in Eq. (1.35))).

• The neutral kaon mixing parameter εK (defined as q
p

= 1−εK
1+εK

, where p and q

are the values in the K system analogous to p and q in Eq. (1.33)).

• The two side lengths, which can be written as Ru = (1 − λ2/2) |Vub/Vcb|/λ
and Rt = |Vtb/Vcb|/λ. Inclusive semileptonic B decays to charmless states can

be used to measure |Vub| [38], allowing Ru to be calculated to a precision of

≈ 20%. Rt is primarily constrained by mixing analyses since ∆md ∝ |VtdV ∗
tb|;

theoretical hadronic uncertainties lead to an uncertainty in the measurement

of |Vtd| of the order of 20%.

The resulting plot is shown in Figure 1.4. It is generated using the CKMfitter

package [37]. The non-shaded areas are excluded at 95% CL. For sin2β, 68% CLs

are also shown.

CP violation has now been observed in numerous channels; the current values

obtained experimentally (at 90% CLs) for the magnitudes of the VCKM elements



1.2. The CKM description of flavour changing processes 23

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

sin 2β

sol. w/ cos 2β < 0
(excl. at CL > 0.95)

excluded at C
L  >  0.95

γ

γ

α

α

∆md

∆ms
 & ∆md

εK

εK

|Vub/Vcb|

sin 2β

sol. w/ cos 2β < 0
(excl. at CL > 0.95)

excluded at C
L  >  0.95

α

βγ

ρ

η
excluded area has CL > 0.95

C K M
f i t t e r

FPCP 06

Figure 1.4: Constraints on the CKM matrix depicted in the (ρ, η) plane. The

apex of the Unitarity Triangle is constrained to the pale yellow area with the

red outline.

are [23]

|VCKM| =





0.9739 − 0.9751 0.221 − 0.227 0.0029 − 0.0045
0.221 − 0.227 0.9730 − 0.9744 0.039 − 0.044
0.0048 − 0.014 0.037 − 0.043 0.9990 − 0.9992



 . (1.61)

Although the constraints depicted in Figure 1.4 are impressive and represent millions

of man hours, it is necessary to overconstrain the system and thereby be sensitive

to deviations from the SM description of flavour changing processes. Any observed

discrepancies between measured parameters using independent decay modes would

provide a strong indication for physics beyond the SM. This is discussed in Sec-

tion 1.3.
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1.2.7 Measuring sin2β using B0 → J/ψK0
S

B0 → J/ψK0
S

is dubbed the golden channel at BABAR and is the mode responsible

for BABAR’s most notable result, namely the precision measurement of sin2β (as

presented in Section 1.2.6). Decays of B0 and B0 mesons to the CP eigenstate

J/ψK0
S

occur as b̄ → c̄cs̄ transitions that can proceed via the Feynman diagrams

shown in Figure 1.5. The amplitudes for the tree-level diagram and two of the

penguin diagrams are of order λ2 (this is the Wolfenstein parameter (Section 1.2.2)

and is not to be confused with λfCP
defined in Eq. (1.54)). The penguin with the u

quark and the virtual D0 exchange diagram involving long distance rescattering are

suppressed by an additional factor of λ2. The total amplitude of B0 → J/ψK0
S

is

given by the sum of the individual amplitudes of each of the contributing diagrams

and can be written as:

AfCP
= AJ/ψK0

S
= (V ∗

cbVcs)T + (V ∗
tbVts)Pt + (V ∗

cbVcs)Pc + (V ∗
ubVus)Pu. (1.62)

The virtual D0 exchange diagram has been absorbed into the u quark penguin

diagram since it contains the same V ∗
ubVus term. Rearranging the relevant relation

from Eq. (1.6) and substituting into Eq. (1.62) we can write

AfCP
= AJ/ψK0

S
= (V ∗

cbVcs) (T + Pc − Pt) + (V ∗
ubVus) (Pu − Pt) . (1.63)

It follows that for B0 → J/ψK0
S
,

ĀfCP
= ηfCP

Āf̄CP
= −ĀJ/ψK0

S
= − (VcbV

∗
cs) (T + Pc − Pt) − (VubV

∗
us) (Pu − Pt) ,

(1.64)

where the CP eigenvalue ηJ/ψK0
S

= −1.

Working up to and including order λ3 in the Wolfenstein parameterisation (in which

Vtb and Vub are complex and the remaining elements are real) we can write

ĀJ/ψK0
S

AJ/ψK0
S

= −(VcbV
∗
cs) (T + Pc − Pt) + (VubV

∗
us) (Pu − Pt)

(V ∗
cbVcs) (T + Pc − Pt) + (V ∗

ubVus) (Pu − Pt)

= −

(

VcbV
∗
cs

VcbV ∗
cs

)

A1 +
(

VubV
∗
us

VcbV ∗
cs

)

A2
(

V ∗
cb
Vcs

VcbV ∗
cs

)

A1 +
(

V ∗
ub
Vus

VcbV ∗
cs

)

A2
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= −A1 + κ e−iγ A2

A1 + κ e+iγ A2

, (1.65)

where Vub = |Vub|e−iγ , Vus = |Vus|, Vcb = |Vcb|, Vcs = |Vcs|, κ = |(VubVus)/(VcbVcs)|,
A1 = T + Pc − Pt and A2 = Pu − Pt; γ is the Unitarity Triangle angle defined in

Eq. (1.9).
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Figure 1.5: (a) Tree-level diagram, (b) penguin diagrams, and (c) virtual D0

exchange diagram for the B0 → J/ψK0
S

decay mode.

For B0, B0 → J/ψK0
S
, Eq. (1.54) can be written as

λJ/ψK0
S

=

(

q

p

)

B

(

ĀJ/ψK0
S

AJ/ψK0
S

)

(

q

p

)

K

. (1.66)

The first term represents B0 −B0 mixing. Although the ratio |q/p| is very close to

unity (Eq. (1.53)) the relative phase from the box diagram (Figure 1.2 – in which

we take the t quark to dominate) must be taken into account when quoting λJ/ψK0
S
:

(

q

p

)

B

=
V ∗
tbVtd
VtbV ∗

td

=

∣

∣

∣

∣

VtbVtd
VtbVtd

∣

∣

∣

∣

e−iβ

e+iβ
= e−i2β (1.67)

where Vtd = |Vtd|e−iβ and Vtb = |Vtb| (still working up to and including order λ3

in the Wolfenstein parameterisation). β is the Unitarity Triangle angle defined in
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Eq. (1.9). It is also necessary to take into account mixing in the final state, hence

the need for the additional multiplicative phase
(

q
p

)

K
in Eq. (1.66). This phase, for

K0 −K0 mixing, is given by
(

q

p

)

K

=
V ∗
cdVcs
VcdV ∗

cs

= 1 up to and including O
(

λ3
)

. (1.68)

Substituting Eq.s (1.65), (1.67) and (1.68) into (1.66) gives

λJ/ψK0
S

= −e−i2βA1 + κ e−iγ A2

A1 + κ e+iγ A2

. (1.69)

The tree diagram in Figure 1.5 (a) and the dominant penguin diagrams (those

containing the c and t quarks) in Figure 1.5 (b) share the same weak phase to a very

good approximation [39]. Direct CP violation in this mode is therefore expected to

be negligible. A1 � A2 and κ < 1 and so, from Eq. (1.69),

λJ/ψK0
S

= −e−i2β (1.70)

is true to within 1% [23,40].

Substituting Eq. (1.70) into Eq. (1.60) yields

AI
CP (t) = sin (2β) sin (∆mBt) . (1.71)

This result, together with the relatively high branching ratio of B0 → J/ψK0
S

and

its clean reconstruction, allows for a clean, unpolluted measurement of the angle β

at BABAR.

1.3 Motivation for studying B+ → K
∗
(892)0K+

The channel B+ → K
∗
(892)0K+ can be used, together with other modes, to place

a SM upper bound on a possible discrepancy between determinations of sin2β using

different decay channels of neutral B mesons, namely B0 → J/ψK0
S

and B0 →
φ(1020)K0

S
. An observed discrepancy in excess of such a bound would be a strong

indication of new physics beyond the SM.
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1.3.1 Measuring sin2β using B0 → φ(1020)K0
S

Decays of neutral B mesons to the CP eigenstate φ(1020)K0
S

occur as a b̄ → s̄ss̄

transition that proceed via penguin diagrams or through a virtual kaon exchange

diagram with long distance rescattering. These diagrams are shown in Figure 1.6.

The amplitudes for the two dominant penguins are of order λ2 whilst the third pen-

guin (with the u quark) and the virtual kaon exchange diagram are suppressed by an

additional factor of λ2. Following the same recipe as that presented in Section 1.2.7

we can write an equation for B0 → φ(1020)K0
S

analogous to Eq. (1.69):

λφ(1020)K0
S

= e−2iβA3 + κ e−iγA4

A3 + κ e+iγA4

, (1.72)

where

A3 = pc − pt,

A4 = pu − pt (1.73)

(pt, pc and pu are analogous to Pt, Pc and Pu in Section 1.2.7) and the total amplitude

is given by

Aφ(1020)K0
S

= V ∗
cbVcsA3 + V ∗

ubVusA4. (1.74)

In contrast to B0 → J/ψK0
S

in which A1 � A2, for B0 → φ(1020)K0
S

it is expected

that A3 ∼ A4 [40]. This is because the leading terms begin at the one-loop order

rather than at the tree-level order. Setting A3 = A4 in Eq. (1.72) results in an

additional factor of O (λ2) ∼ 5% in the determination of λφ(1020)K0
S
, leading to so-

called SM pollution in the sin2β measurement using the B0 → φ(1020)K0
S

channel.

The parameter ξfCP
is often used to evaluate the level of SM pollution. For B0 →

φ(1020)K0
S
, this parameter is given by

ξφ(1020)K0
S

=
V ∗
ubVusA4

V ∗
cbVcsA3

. (1.75)

Eq. (1.74) can now be rewritten

Aφ(1020)K0
S

= V ∗
cbVcsA3

(

1 + ξφ(1020)K0
S

)

. (1.76)
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Figure 1.6: Penguin diagrams (a) (dominant) (b) (suppressed) and (c) vir-

tual kaon exchange diagram for the B0 → φ(1020)K0
S

decay mode.

It is shown in [10] that, to first order in ξfCP
, the deviation from sin2β due to SM

pollution is given by:

−ηfCP
SfCP

− sin 2β = 2 cos 2β sin γ cos δfCP
|ξfCP

|. (1.77)

We can therefore define the parameter ∆Sφ(1020)K0
S

as the difference between sin2β

as measured by the J/ψK0
S

mode (in which sin 2β = −ηJ/ψK0
S
SJ/ψK0

S
is taken to be

true) and that measured by the φ(1020)K0
S

mode:

∆Sφ(1020)K0
S

= 2 cos 2β sin γ cos δφ(1020)K0
S
|ξφ(1020)K0

S
|, (1.78)

where δφ(1020)K0
S

= arg
(

A4

A3

)

is unknown, β is known to high precision (Section 1.2.6)

and γ is taken to lie in the interval 38◦ to 79◦ at the 95% CL [37].
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1.3.2 Using B+ → K
∗
(892)0K+ to bound ∆Sφ(1020)K0

S

Grossman et al. introduce a method to bound ∆Sφ(1020)K0
S

using SU(3) relations [10].

SU(3) flavour symmetry is used to relate the SM pollution terms for the channel3

B+ → φ(1020)K+ to penguin dominated, strangeness conserving processes, such as

those shown in Figure 1.7 for B+ → K
∗
(892)0K+.
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Figure 1.7: Feynman diagrams for B+ → K
∗
(892)0K+. The penguin di-

agram is shown in (a); the long distance final state rescattering diagram is

shown in (b).

We can write general equations for total amplitudes that are dominated by penguin

diagrams (analogous to the specific case of Eq. (1.74)) for final states, f and f ′, with

and without non-zero strangeness respectively:

Af = V ∗
cbVcsA

f
i + V ∗

ubVusA
f
j , (1.79)

Bf ′ = V ∗
cbVcdB

f ′

i + V ∗
ubVudB

f ′

j , (1.80)

where the sub-i and sub-j terms come from the charm penguin minus top penguin

and up penguin minus top penguin contributions respectively, as in Eq. (1.73). SU(3)

relations provide an upper bound on |V ∗
cbVcdAi+V ∗

ubVudAj| in terms of the measured

branching ratios (or upper limits on them) of zero strangeness final states [10]. We

3Feynman diagrams for this channel are as Figure 1.6 (b) and (c), but with the spectator d

quarks replaced with u quarks.
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can therefore bound the quantity

ξ̂f =

∣

∣

∣

∣

Vus
Vud

× V ∗
cbVcdAi + V ∗

ubVudAj
V ∗
cbVcsAi + V ∗

ubVusAj

∣

∣

∣

∣

=

∣

∣

∣

∣

ξf + VusVcd

VudVcs

1 + ξf

∣

∣

∣

∣

, (1.81)

where

ξf =
V ∗
ubVusAj
V ∗
cbVcsAi

(1.82)

is the general case of Eq. (1.75). With λ2 � ξ̂f < 1 (appropriate since we want to

contain the possibility |Aj/Ai| � 1), we can take

|ξf | = ξ̂f (1.83)

to be a good approximation [10].

SU(3) relations lead to the following relations between physical states [10]:

A
φ(1020)K+

i,j = B
φ(1020)π+

i,j +B
K

∗
(892)0K+

i,j . (1.84)

Using Eq.s (1.79)-(1.81) and (1.83)-(1.84), and taking branching ratios (B) to be

the square of the absolute value of the total amplitude, we can write

|ξφ(1020)K+ | < λ

1 − λ2

2

(

(B(B+ → K
∗
(892)0K+)

B(B+ → φ(1020)K+)

)
1

2

+

( B(B+ → φ(1020)π+)

B(B+ → φ(1020)K+)

)
1

2

)

,

(1.85)

where B(B+ → K
∗
(892)0K+) and B(B+ → φ(1020)π+) can be either measurements

or upper limits. The average measurement for B(B+ → φ(1020)K+) using results

presented by the BABAR, Belle, CLEO and CDF collaborations is (8.30 ± 0.65) ×
10−6 [41–44]. The current upper limit on B(B+ → φ(1020)π+) is 0.24 × 10−6 as

determined by the BABAR collaboration at 90% CL [45].

Under the assumption that the up penguin minus top penguin contribution for

B0 → φ(1020)K0
S
, A3, is not much larger than the corresponding contribution for

B+ → φ(1020)K+, the bound for the charged mode also applies for the neutral

mode. The resulting bound on ξφ(1020)K0
S

can then be used to bound ∆Sφ(1020)K0
S

using Eq. (1.78).

For further details please see [10].
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1.4 Kinematics of 3-body decays

Consider the decay of a spin 0 B meson, at rest and with mass mB, to three particles.

The three daughter particles have masses mi, momenta ~pi, energies Ei and four

momenta pi, where i = 1, 2, 3 and p2
i ≡ E2

i − |~pi|2 = m2
i . Defining pij = pi + pj, it

follows that

m2
12 +m2

23 +m2
13 = m2

B +m2
1 +m2

2 +m2
3, (1.86)

m2
ij = (pB − pk)

2 = m2
B +m2

k − 2mBEk, (1.87)

with (i, j, k) = (1, 2, 3), (2, 3, 1) or (1, 3, 2). The momenta of the three daughter

particles lie in a plane in the B rest frame. Their energies provide information

about their orientation with respect to each other.

It is shown in [46] that the decay rate for a scalar particle decaying to a 3-body final

state depends not only on the matrix element of the decay M (where iM is the

Lorentz invariant amplitude), but also on the kinematic constraints of such a decay

in the form of available phase space:

dΓ =
1

(2π)3

1

32m3
B

|M|2 dm2
ijdm

2
jk. (1.88)

The Dalitz plot [47] is defined as a scatter plot in the variables represented in

Eq. (1.88), m2
ij versus m2

jk. As such, it represents the kinematically allowed available

phase space. The boundaries of the Dalitz plot for a given value of m2
ij occur when

~pj is parallel or anti-parallel to ~pk, yielding [46]

(m2
jk)min = (Ej + Ek)

2 − (pj + pk)
2,

(m2
jk)max = (Ej + Ek)

2 − (pj − pk)
2. (1.89)

Decays that proceed only according to phase space are uniformly distributed over

the Dalitz plot, whilst non-uniformity in the plot indicates a kinematics dependent

matrix element.
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1.4.1 Resonance variables

For B+ → K+K−π+, it is most useful to construct the Dalitz plot in the variables

m2
K+K− and m2

K−π+ . B+ → K
∗
(892)0(→ K−π+)K+ then appears as a band around

mK−π+ = mK∗(892)0 where mK∗(892)0 is the mass of the K∗(892)0. This is demon-

strated in Figure 1.8 in which it can be seen that a suitable window in mK−π+ can

be defined to study the B+ → K
∗
(892)0K+ contribution. It can also be seen that

for some resonant bands, there are non-uniform distributions in both dimensions of

the Dalitz plot. This is the case for the B+ → K
∗
(892)0K+ contribution in which

events are more concentrated towards the minimum and maximum kinematically

allowed values of mK+K− and less concentrated towards the centre.

The structure in m2
jk, where the intermediate resonance appears as a band in m2

ij, is

determined by the helicity angle of the resonance. The helicity of particle i is given

by

λi =
~pi · ~si
|~pi|

, (1.90)

where ~pi is the particle’s momentum and ~si is its spin. The helicities of the B,

K and π mesons in B+ → K
∗
(892)0(→ K−π+)K+ are zero since they are spin 0

particles. By conservation of angular momentum the helicity of the intermediate

resonance, K∗(892)0, must therefore be zero. The angular distribution of the decay

of the intermediate resonance (with spin sR) into two scalar daughters is given by a

matrix element with the value |PsR
(cos θH)|2. PsR

is a Legendre polynomial of order

sR [48]; θH is the helicity angle of the resonance. The helicity angle is the angle

between the momentum vector of the intermediate resonance in the B rest frame

and the momentum vector of one of the resonance daughters in the resonance rest

frame. The daughters of spin 0 scalar resonances are thus expected to be uniform in

cos θH , whilst the daughters of spin 2 tensor resonances will be distributed according

to |3 cos2 θH − 1|2. For spin 1 vector resonances, such as K∗(892)0, the daughters

will be distributed as cos2 θH .
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The helicity angle of a resonance in m2
ij can be written in terms of m2

jk as

cos θH =
(m2

jk)max + (m2
jk)min − 2m2

jk

(m2
jk)max − (m2

jk)min
. (1.91)
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Figure 1.8: Example B+ → K+K−π+ Dalitz plot showing simulated events

for the contributions listed in the legend. The solid, red vertical lines represent

a suitable window in which to study B+ → K
∗
(892)0(→ K−π+)K+.

1.4.2 Interference

Modes in the Dalitz plot that decay to the same final state interfere with each other

quantum mechanically. For two modes with matrix elements M1 and M2, the |M|2

term in Eq. (1.88) can be written as

|M|2 =
∣

∣M1 + M2 e
iδ
∣

∣

2

= |M1|2 + |M2|2 + 2<
(

M1M∗
2 e

iδ
)

. (1.92)

The effect of the interference terms is proportional to the area of overlap between

resonances in the Dalitz plot.
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The resonant matrix elements are the product of two parts, a dynamical amplitude

and an angular amplitude. The angular amplitude is described by PsR
(cos θH) as

defined in Section 1.4.1. The orthogonality property of Legendre polynomials,

∫ +1

−1

Pm(cos θH)Pn(cos θH) d cos θH =
2

2n+ 1
δnm, (1.93)

ensures that the decay rate (Eq. (1.88)) is unaffected by interference between reso-

nances with different spins when taken over the full cos θH range4.

1.4.3 Invariant mass lineshapes

The time dependent wave function for a particle with mass m0 and decay rate Γ is

given by

ψ(t) = ψ(0)e−t(im0+Γ/2). (1.94)

The amplitude of this state as a function of E is obtained by performing a Fourier

transform:

A(E) =

∫

ψ(t)eiEt dt =
N

(m0 − E) − iΓ/2
, (1.95)

where N is an arbitrary constant. The probability of finding the state with energy

E is then

|A(E)|2 =
N2

(m0 − E)2 + Γ2/4
. (1.96)

This function is the Breit-Wigner curve, and is the expected shape for resonances

with Γ � E. For broad resonances (Γ ∼ E) the effect of changes in phase space

must also be considered. The K∗(892)0 is described by the Breit-Wigner lineshape

with m0 = (896.1 ± 0.3) MeV/c2 and Γ = (50.7 ± 0.6) MeV/c2.

For the K∗
0 (1430)0 resonance, the situation is more complicated. The observed

lineshape is distorted with respect to the Breit-Wigner shape. The exact mechanism

is unknown, but it is believed that the observed lineshape is a superposition of the

4This is true from a theoretical viewpoint. Experimental issues however may render this state-

ment unusable, for example a reconstruction efficiency that is not constant as a function of cos θH .
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K∗
0 (1430)0 and a further spin 0 contribution. A generally accepted description of

this Kπ S-wave is as yet undetermined. The LASS parameterisation [49] is used for

the analysis presented in this thesis. This parameterisation has been successfully

utilised in several recent BABAR analyses (e.g. [50,51]). It originates from the LASS

experiment [52] in which Kπ scattering in the reaction K−p → K−π+n is studied.

Dunwoodie [49] postulates a generalisation of the LASS parameterisation in order

to extend it to the context of the E791 analysis of D+ → K−π+π+ [52]. The

parameterisation takes the form

M = B
mKπ

q cot(δB + φB) − iq
+ReiφRe2i(δB+φB)

m0Γ0
m0

q0

(m2
0 −m2

Kπ) − im0Γ0
q

mKπ

m0

q0

, (1.97)

where the first term describes a non-resonant contribution with an effective range

(rather than being uniform over the available phase space) and the second term

describes the resonant contribution. B, R, φB and φR are constants, whilst

q =

√

√

√

√

(

m2
Kπ − (mK +mπ)2

)(

m2
Kπ − (mK −mπ)2

)

4m2
Kπ

, (1.98)

q0 = q (mKπ = m0) , (1.99)

cot δB =
1

aq
+
rq

2
, (1.100)

where r is the effective range and a is the scattering length. m0 and Γ0 are the mass

and width of the resonant contribution respectively.

Figure 1.9 illustrates the Breit-Wigner and LASS lineshapes. It can be seen that

the lineshape has a large impact in the region of mKπ in which B+ → K
∗
(892)0(→

K−π+)K+ is studied.

1.5 The strong interaction

Although the work presented in this thesis focuses on the weak interaction, it is

worthwhile pointing out that the channel under investigation is also subject to QCD

effects since the initial and final states are hadronic. Radiative corrections, stem-

ming from gluons with a range of momenta being emitted and absorbed, greatly
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Figure 1.9: Breit-Wigner (blue, dashed line) and LASS (red, solid line) line-

shapes. The integral of each shape over the displayed range is equal. The mKπ

range to the left of the black, dotted line is used to study B+ → K
∗
(892)0(→

K−π+)K+.

complicate the calculations of cross-sections and CP asymmetries for decays of this

nature. Experimental results for such decays play an important role in the ongoing

theoretical work5 being undertaken aimed at estimating these QCD effects.

5See for example [53] and [54].



2
The BABAR detector

2.1 Introduction

The main motivation behind the construction of the BABAR experiment was to

provide an environment ideal for carrying out extensive studies of time dependent CP

violation in the decays of neutral Bd mesons. Further B physics goals are precision

measurements of the rates of rare decays of both neutral and charged B mesons.

Other objectives include being able to conduct detailed studies of τ , charm and

two-photon physics. With these aims in mind, the PEP-II B factory and the BABAR

detector were constructed. Construction was completed, and data acquisition began,

in the summer of 1999. This chapter describes PEP-II and BABAR; the physics

37



38 Chapter 2. The BABAR detector

requirements, design and performance are discussed.

2.2 The PEP-II accelerator

2.2.1 Overview

The PEP-II B factory is an asymmetric-energy electron positron collider operating

at a centre of mass (CM) energy of 10.58 GeV. This energy corresponds to the Υ (4S)

resonance, which decays almost exclusively to BB pairs (≈ 50% B+B−, ≈ 50%

B0B0 [55]). The cross-sections for the production of fermion pairs at 10.58 GeV CM

energy are shown in Table 2.1.

Production Rate (Hz)

e+e− → Cross-section ( nb) At Design Luminosity

( 3.0 × 1033 cm−2s−1)

bb 1.05 3.2

cc 1.30 3.9

ss 0.35 1.1

uu 1.39 4.2

dd 0.35 1.1

τ+τ− 0.94 2.8

µ+µ− 1.16 3.5

e+e− ∼ 40 ∼ 120

Table 2.1: e+e− production cross-sections at CM energy 10.58 GeV [34]. For

e+e− scattering, the cross-section given applies only within detector coverage.

Use of an asymmetric collider (9.0 GeV e−, 3.1 GeV e+) results in a Lorentz boost to

the Υ (4S) of βzγ = 0.56 with respect to the laboratory frame. Because the Υ (4S)

energy is just above theBB production threshold, theB mesons are produced almost
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at rest in the CM frame, and therefore inherit the relativistic boost of the Υ (4S).

This boost allows the distance between the vertices of the B0 and the B0 decays

to be large enough to measure at the required precision. This is essential for time

dependent studies of CP violation. The fact that the Υ (4S) decays to a coherent

BB pair means that flavour tagging can be used – as discussed in Section 1.2.4.4 –

without the uncertainty of whether the tagged B mixed before assuming the role of

tagger. Flavour tagging is also essential for time dependent studies.

PEP-II is a high luminosity machine with a design luminosity of 3.0× 1033 cm−2s−1.

Such a luminosity, together with very clean events (compared to a hadronic envi-

ronment), facilitate the studies of many rare B meson decays.

PEP-II can also operate at an energy 40 MeV below the Υ (4S). This is below

the threshold of BB production. Approximately 10% of data are taken in this

off-resonance mode. These data are used to study continuum (qq) background

(e+e− → cc, ss, uu, dd). Data taken at a CM energy of 10.58 GeV shall be referred

to as on-resonance throughout this thesis.

A complete description of the PEP-II machine can be found in [56].

2.2.2 The injection system

Figure 2.1 shows the two mile long linear accelerator (linac), which acts as the

source of electrons and positrons injected into PEP-II. Electron bunches, created by

an electron gun at one end of the linac, are stored in the north damping ring, before

being accelerated by the linac to the required 9.0 GeV and injected into PEP-II’s

High Energy Ring (HER) at the other end. Separate electron bunches are produced

by the electron gun, which are accelerated to an energy of ∼ 30 GeV and collided

with a stationary Beryllium target. This produces positron bunches, which are

stored in the south damping ring before being accelerated by the linac to 3.1 GeV

and injected into PEP-II’s Low Energy Ring (LER).
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Figure 2.1: The linac injection system and the PEP-II storage rings.

Until recently, PEP-II operated by filling up the HER and LER to some maximum

value, at which point injection stopped and data taking began. Data taking would

continue until the instantaneous luminosity reached a lower limit. It then stopped

whilst the injection system topped up the two beams. This cycle was repeated as

illustrated by Figure 2.2. This method worked well because machine background is

high during injection and for a short time after whilst the beams become stable. The

high voltages of the various subdetectors could be ramped down during this period,

and the detector was protected from high machine backgrounds, which bring about

radiation damage. However, this method is not optimal when considering integrated

luminosity delivered.

An alternative approach is to continuously inject into the two rings, whilst simulta-
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neously taking data. This is known as trickle injection. Trickle injection increases

the integrated luminosity, as illustrated by Figure 2.2, but is technically challenging

(to both the accelerator and detector teams) and increases machine backgrounds. In

November 2003, tests were carried out that successfully demonstrated that, for the

LER, these technical challenges could be met, and the machine backgrounds could

be managed. In March 2004, these tests were repeated, again successfully for the

HER, and for both the LER and HER together. Default injection mode has been

trickle injection since March 2004. Injection occurs at a very low rate (∼ 10 Hz).

A short inhibit window is employed immediately after a bunch is injected – whilst

background is high – that prevents events for that bunch being accepted by the

Level-1 Trigger.

For full details of the trickle injection method, see [57,58].
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Figure 2.2: Trickle injection enhances integrated luminosity.
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2.2.3 The interaction region

The high luminosities necessary to meet the requirements of the physics program

demand that the distance between bunches in the HER and LER are small (of the

order of the length of the BABAR detector). As such it is necessary to keep the two

beams separated – until just before the interaction point (IP) – in order to prevent

secondary collisions occurring, the products of which would be detected by BABAR.

To allow the HER and LER beams to meet head on, and to ensure that they do not

meet until just before the IP, the beams are subjected to magnetic fields generated

by strong dipole magnets, which are located inside the BABAR detector, very close

to the IP.

Figure 2.3 illustrates how the incoming beams are diverted by the dipole magnets

labelled B1. The same magnets are used to separate the beams after they are

collided to prevent further, secondary collisions. Focusing of the beams is achieved

using sets of quadrupole magnets. Q4 and Q5 (in Figure 2.3) focus the HER beam,

Q2 focuses the LER beam. Q4, Q5 and Q2 are iron magnets located outside of the

detector. Q1, a permanent magnet that partially enters the detector volume, is a

final focus and affects both beams.

The presence of the dipole magnets in the BABAR detector, and the synchrotron

radiation emitted by the beams as a result of being diverted by these magnets

causes obvious problems. Background conditions are adversely effected, and detector

components are prone to radiation damage. An alternative approach is employed by

the Belle experiment [30], based in Japan, in which the beams are collided at a cross-

over angle, rather than head on. This eliminates the need for the dipole magnets

and the associated synchrotron radiation. However, during the construction of the

BABAR experiment, this method was untried and risky. A tried and tested, and

more conservative approach was decided upon.
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Figure 2.3: The PEP-II interaction region, with exaggerated vertical scale.

2.2.4 Machine backgrounds

Machine backgrounds increase occupancy in the BABAR detector, causing physics

measurements to be degraded. Backgrounds also increase the trigger rate with the

adverse effect that deadtime increases (more interesting physics events are lost).

Furthermore, machine backgrounds contribute to radiation damage.

There are several sources of machine background. One source is synchrotron radi-

ation, which is due to the complicated optics near the IP – as discussed in Sec-

tion 2.2.3. The geometry of the interaction region was designed such that the

majority of the synchrotron radiation passes through the detector with minimal

interaction. Copper masks are also used in an attempt to prevent interaction with

the beam pipe.
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Gas molecules in the beam pipe bring about another source of machine background.

Beam particles undergo bremsstrahlung and Coulomb interactions with these gas

molecules, and also with the beam pipe resulting in electromagnetic showers. This

background is minimised by keeping a very good vacuum in the beam pipe near the

IP.

Beam-beam interactions are also a source of machine background. The electric field

generated by one beam can perturb particles in the other beam, some of which

may be knocked out of orbit. These particles are then likely to interact with gas

molecules or the beam pipe.

A further source of background is due to bhabha scattering. Bhabha scattering is the

scattering of an electron and a positron, and so is inevitable in an electron-positron

collider. When an electron or positron hits material a short distance from the IP,

an electromagnetic shower enters the detector.

Machine background due to bhabha scattering worsens, approximately proportion-

ally, as luminosity is increased. The level of improvement in the luminosity of the

PEP-II machine since data taking began (see Section 2.2.5) is reflected by the fact

that radiative bhabha debris – minimal when BABAR first started running – is now

the largest source of machine background. Beam-beam and beam-gas interactions

are more dependent on the current carried by each beam rather than the luminosity

(beam-beam interactions in a non-trivial way, beam-gas interactions approximately

linearly). The overall machine background, therefore, deviates slightly from being

linearly related to the luminosity.

2.2.5 Performance

To date PEP-II has performed exceptionally well. During the first year of operation,

both instantaneous and integrated design luminosities were achieved, and the collider

has gone from strength to strength since. Records for the integrated luminosities
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delivered over eight hour, daily, weekly and monthly periods have been broken with

impressive regularity. The most recent records are shown in Table 2.2. Recent trickle

injection developments have seen a striking increase in performance. Figure 2.4

shows integrated luminosity delivered by month in the period since first collisions

in May 1999 up to the end of July 2004.

Parameter Design
Best Date

Achieved Achieved

HER Current ( A) 0.75 1.68 October 3, 2005

LER Current ( A) 2.14 2.66 October 3, 2005

Luminosity (1033 cm−2s−1) 3.000 9.378 October 3, 2005

Luminosity ( pb−1/8 hour shift) — 246.3 May 21, 2004

Luminosity ( pb−1/day) 130.0 710.5 May 24, 2004

Luminosity ( fb−1/week) — 4.464 July 25-31, 2004

Luminosity ( fb−1/month) — 17.036 July 2004

Total Delivered Luminosity 312 fb−1

Table 2.2: PEP-II machine performance records, as of October 4, 2005. Total

delivered luminosity is on- and off-resonance data.

2.3 The BABAR detector

To maximise the physics potential of the asymmetric PEP-II machine, the BABAR

detector is offset from the IP by 37 cm in the HER direction and is also asymmetric

in design. This allows the maximum possible coverage of the Υ (4S) CM frame.

BABAR is designed as a general purpose detector optimised for its primary physics

goals, namely precision measurements of CP violation parameters and of beauty, tau

and charm physics. To achieve these goals, the detector must satisfy the following:

• High reconstruction efficiency for both charged and neutral particles.
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Figure 2.4: PEP-II integrated luminosity per month.

• Good position and momentum resolution for charged particles over the range

60 MeV/c−4 GeV/c (the range of momenta of the decay products for the analy-

sis described in this thesis are illustrated in Figure 2.6). In particular, excellent

vertex resolution in the z direction is required to allow accurate measurements

of the time difference between the neutral B mesons’ decays. Excellent vertex

resolution in the x and y directions is also required – to allow reconstruction

of secondary charm and tau vertices.

• Good energy and angular resolutions for neutrals in the range 20 MeV−4 GeV

– especially important for π0 and η detection.

• Excellent particle identification for e, µ, π, K and p over a wide range of
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momenta. This is essential for flavour tagging of the non-CP B in CP violation

measurements and for separating important final states such as K±π∓ and

π±π∓.

• A reliable and efficient data acquisition system that can handle the huge vol-

ume of data produced at high luminosities.

• An efficient and flexible trigger that can reduce the event rate to a level that the

data acquisition system can handle, without losing interesting physics events.

• The detector must be able to operate in the presence of the high machine

backgrounds expected at high luminosities.

To achieve the criteria set out above, whilst also taking into account considerations

including financial cost and reliability, the final design is one that consists of a system

of five subdetectors and a superconducting solenoidal electromagnet (with a 1.5 T

magnetic field). This is illustrated in Figure 2.5. Each of the subdetectors shall be

discussed in more detail in the following sections. They are, starting with the inner-

most, the Silicon Vertex Tracker (SVT), the Drift Chamber (DCH), the Detector of

Internally Reflected Cherenkov Radiation (DRC), the Electromagnetic Calorimeter

(EMC) and the Instrumented Flux Return (IFR). These are labelled the Vertex

Detector, the Tracking Chamber, the Cherenkov Detector, the Electron/Photon

Detector and the Muon/Hadron Detector respectively in Figure 2.5. The first four

of these systems are enclosed in the 1.5 T magnetic field of the superconducting

magnetic coil, also marked in Figure 2.5.

A complete description of the BABAR detector can be found in [59].

2.3.1 The BABAR co-ordinate system

BABAR uses a right-handed co-ordinate system, with the origin at the IP. The z-axis

corresponds to the principle axis of the Drift Chamber in the direction of the HER.
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Figure 2.5: The BABAR detector.
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Figure 2.6: Momentum, |~p|, and transverse momentum, pT , distributions

– in the laboratory frame – for reconstructed B+ → K
∗
(892)0(→ K−π+)K+

Monte Carlo events.

The x-axis points horizontally outwards from the centre of the PEP-II ring; the

y-axis points vertically upwards. The polar (θ) and azimuthal (φ) angles are defined
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as in the standard spherical co-ordinate system. This is illustrated in Figure 2.7.
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Figure 2.7: The BABAR co-ordinate system.

2.4 The Silicon Vertex Tracker (SVT)

2.4.1 SVT physics requirements

For all time dependent CP asymmetry measurements the difference between the

vertices of the two B mesons must be measured to high precision. To satisfy this

primary physics goal, the SVT is required to measure this difference with an accuracy

of ≈ 135µm. Monte Carlo simulation studies show that this corresponds to a single

vertex resolution of ≈ 80µm [60]. Other physics goals place further requirements

on the SVT: a resolution of 100µm in the x-y plane is required in order to make

precise measurements of secondary decay vertices, such as D mesons and τ leptons.
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The primary tracking system in the BABAR detector, the DCH, will not reliably

detect tracks with low transverse momentum1, pT , since its coverage for such tracks

is limited (indeed some low-pT particles exit the BABAR detector without ever making

it to the DCH). The SVT must therefore provide excellent efficiency for such tracks.

These include slow pions from decays of D∗ particles, which are very common B-

decay products. Furthermore, the track angle measured by the SVT for high pT

tracks is used to achieve maximum resolution on measurements of the Cherenkov

angle in the DRC. Finally, the SVT is used for particle identification, measuring the

energy loss (dE/dx) of particles with momenta less than 700 MeV/c.

2.4.2 SVT design

The SVT is an asymmetric p-n junction semi-conductor detector. Semi-conductor

detectors provide excellent resolution due to their fine granularity. Additionally, the

energy required to produce an electron-hole pair in a semi-conductor is ∼ 10 times

less than the energy required to create a electron-ion pair in a gas-based detector,

such as the DCH. A further benefit is their size. Semi-conductor detectors are very

small and compact.

The principle of operation of a semi-conductor detector is as follows: if an ionising

particle penetrates the detector it produces electron-hole pairs along its track, the

number being proportional to the energy loss of the charged particle. An externally

applied electric field collects the pairs; electrons drift towards the anode, holes to

the cathode. The collected charge produces a current pulse on the electrode, whose

integral equals the total charge generated by the incident particle.

In addition to the physics requirements described in Section 2.4.1, there are other

factors that affect the design of the SVT. The design is influenced by the presence of

magnets needed for the PEP-II machine close to the IP (discussed in Section 2.2.3).

This places (manageable) constraints on the acceptance of the SVT, with 10% of

1Momentum in the x-y plane.
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the solid angle in the CM frame not covered. The acceptance in the polar angle (θ)

is 20.1◦ to 150.2◦. The SVT design must also take into account the high levels of

radiation that it will experience during its lifetime. The budget used in the design

was 2 MRad and an instantaneous limit of up to 1 Rad/ms. The design must limit

the amount of material through which the tracks pass in order to reduce multiple

scattering and bremsstrahlung.

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 2.8: End on view of the SVT showing the five layer structure.

The SVT consists of five layers of silicon strip sensors, divided azimuthally into

modules, as shown in Figure 2.8. Layers 1−3 have 6 modules each, which are rotated

by 5◦ in φ so that they overlap slightly, both to provide complete coverage and to aid

with alignment. They have radii 32, 40 and 54 mm respectively. Layers 4 and 5 have

16 and 18 modules respectively. These are arch shaped in the longitudinal plane

to increase angular coverage whilst minimising the amount of material that tracks

pass through. This is illustrated in Figure 2.9. For arch shaped strips overlapping is

achieved by splitting the modules between two sub-layers at slightly different radii

(124 and 127 mm for layer 4, 140 and 144 mm for layer 5). The silicon strip sensors
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are double-sided, the sensors on the two sides being orthogonal. That is, the inner

side gives z measurements and the outer side provides φ measurements. Modules

are split into wafers in the z direction, as it is impractical to produce silicon strips

that are as long as the length of the SVT. For layer 1, there are 4 such wafers; for

layer 2 there are also 4, 6 for layer 3, 7 for layer 4 and 8 for layer 5.

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support

        cone

Bkwd.

support

cone

Front end 

electronics

Figure 2.9: Side on view of the SVT showing the five layer structure, and

the arch design of the outer two layers.

The main purpose of the inner two layers is to precisely measure vertex positions.

These layers are also used for angular measurements (since multiple scattering is

minimal). The outer layers (4 and 5) are mainly used for alignment with the DCH.

Layer 3 provides momentum information used for low pT tracks that do not make

it to the DCH.

Each module is split into a front and backward section (in z), which are electrically

isolated. Each half module is read out by electronics that are fixed to the module,

but which are outside the coverage of the detector acceptance. These electronics

use custom made radiation-hard chips that rely on a time-over-threshold (TOT)

technique to determine the deposited charge in a strip. The signal is amplified

and shaped before being compared with a threshold that depends on background

conditions. The TOT method uses a scale that is approximately logarithmically

related to the deposited charge. This allows a large range to be covered with a small

number of bits.
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To achieve optimal resolution for position and momentum measurements, precise

knowledge of the alignment of the SVT is essential. This includes the alignment of

the SVT modules with respect to each other (local alignment) and alignment of the

whole SVT system with respect to the rest of the detector (global alignment).

2.4.3 SVT performance

The spatial resolution and efficiency of hits in SVT layers are calculated by com-

paring the hit position in the layer under study with the trajectory of the track as

fitted using all other hits. The uncertainty on the track trajectory is subtracted

from the width of the residual distribution to give the hit resolution. It is found,

at all angles, to be better than 40µm in each of the first three layers. This means

that the B vertex resolution is well within design specifications. The SVT tracking

efficiency as measured in data is 97%, excluding defective read out sections, which

account for fewer than 5% of the total (a section is one side of a half module, there

being 208 in total). Tracking efficiency calculations are described in Section 2.5.3.

The dE/dx resolution for minimum ionising particles is found to be 14%, which

makes possible a 2σ separation of pions and kaons up to a momentum of 500 MeV/c

and of kaons and protons up to 1 GeV/c.

The SVT is still within its radiation budget of 2 MRad. However, this budget did

not take into account the impressive improvements in luminosity delivered by the

PEP-II machine, and the corresponding increase in the radiation dose received by

the SVT. Replacement modules for the SVT have been constructed, should they be

required. However, replacing SVT modules is a particularly intrusive operation that

will be avoided if possible.
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2.5 The Drift Chamber (DCH)

2.5.1 DCH physics requirements

The main tracking system of the BABAR detector is the DCH. It is required to make

precision measurements of particle momenta and angular positions for charged parti-

cles with momenta greater than 120 MeV/c and in the range 0.1 < pT/( GeV/c) < 5.0.

To perform exclusive reconstruction of B and D decays, the momentum resolution

(σpT /pT ) must be less than 0.3% and the spatial hit resolution must be better than

140µm. The DCH is also the main source of reconstruction information for K0
S

(→ π+π−) particles, which feature in many time dependent CP asymmetry studies

(e.g. B0 → J/ψK0
S
). This places the further requirement of measuring longitudinal

position with a resolution better than 1 mm.

The DCH is also used for dE/dx information needed for particle identification –

particularly at low momenta where the DRC is ineffective, as well as for areas

that fall outside the DRC acceptance. This requires dE/dx measurements with a

minimum resolution of around 7%.

The DCH must cover as large a solid angle as possible whilst keeping at a minimum

the amount of material that particles must pass through. It must be able to operate

under the harsh background conditions generated by the PEP-II machine.

Finally, the DCH passes information to the Level-1 Trigger every 269 ns.

2.5.2 DCH design

The DCH is a 2.8 m long cylindrical chamber with an inner radius of 23.6 cm and

an outer radius of 80.9 cm. This chamber envelops a support tube, which contains

the beam pipe and the SVT (see Figure 2.5). Its centre (in z) is offset from the IP

in order to increase coverage in the forward direction, as illustrated in Figure 2.10.
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Figure 2.10: Side on view of the DCH.

The chamber is filled with a low mass gas mixture consisting of helium and isobutane

in a ratio of 4:1. A small amount (0.3%) of water vapour is added to prolong the life

of the chamber. This mixture provides good spatial and dE/dx resolution, a short

drift time, and low multiple scattering. Field wires and sense wires extend between

the two ends of the DCH. Together, these create hexagonal drift cells in the x-y

plane, as illustrated in Figure 2.11.

There are 7,104 of these cells, each typically 1.2 × 1.8 cm2 in size, arranged into

40 radial layers. The 40 layers are arranged as 10 4-layer superlayers. Each cell

consists of a gold plated tungsten-rhenium sense wire 20µm in diameter, surrounded

by six gold plated aluminium field wires 120µm or 80µm in diameter, as shown in

Figure 2.11. The sense wires are held at a high, positive voltage (design voltage:

1960 V); the field wires are grounded. This creates an electric field that has an

almost circular symmetry near the sense wires, becoming more irregular near the

field wires.

The wires in six out of the ten superlayers are orientated at a small angle to the

z-axis. This allows positional information in the z direction to be extracted. The su-

perlayers alternate between axial (A) and positive and negative stereo (U, V) from

the innermost superlayer outwards according to the following pattern: AUVAU-



56 Chapter 2. The BABAR detector

     0
Stereo

 1    
Layer

     0
Stereo

 1    
Layer

     0 2         0 2         0 2    

     0 3    

     0 4         0 4    

    45 5        45 5    

    47 6        47 6        47 6    

    48 7        48 7    

    50 8    

   -52 9    

   -5410    

   -5511    

   -5712    

     013         013    

     014         014    

     015    

     016    

4 cm

Sense Field Guard Clearing

1-2001

8583A14

Figure 2.11: DCH cell layout for the first four superlayers. The stereo angle

of the layers in mrad is shown in the right hand column.

VAUVA. The angle of each stereo layer increases from 45 mrad for the innermost

stereo layer to 76 mrad for the outermost.

Apart from the IFR, the outermost component of the BABAR detector is a supercon-

ducting coil (see Figure 2.5) that generates a 1.5 T magnetic field in the z direction,

~B. This field causes the curvature of the paths of charged particles in the x-y plane

due to the force q~v × ~B, where q is the particle’s charge and ~v is its velocity. This

centripetal force can also be written as (m~v2/r)r̂ where m is the particle’s mass and

r is the radius of curvature; r̂ represents the unit vector along r. Using momentum,

~p = m~v, and rearranging slightly, this can be rewritten pT = qBr, where now only

magnitudes are shown, and momentum is the transverse momentum.
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The main purpose of the DCH is to measure the curvature of the paths of charged

tracks, which in turn provides a momentum measurement. This is achieved by

fitting to a number of hits in the DCH, which combined make up a track. A hit

occurs when a charged particle passing through a drift cell ionises the gas mixture.

The liberated electrons are accelerated in the electric field towards the sense wire.

These electrons further ionise the gas causing a charge avalanche (a gain of 5 × 104

for an operating voltage of 1960 V) that descends on the sense wire. The leading

edge of the signal is used to determine an accurate drift time with a 1 ns resolution,

and hence positional information. The total charge deposited is also determined

for use in dE/dx measurements. The signals are digitised and corrected on a per

channel basis for time offsets, pedestals and gain constants and read out by the DCH

electronics.

2.5.3 DCH performance

High momentum two-prong events (e.g. di-muon events and bhabhas) are used to

calibrate the drift time to track distance relation. The calibration is performed for

each cell, the drift distance being estimated by calculating the distance of closest

approach of the best fit to the track in question, where the fit is performed omitting

the cell being calibrated. dE/dx measurements are also calibrated to remove biases

from several sources including changes in gas pressure and temperature.

Track reconstruction efficiency, for both the SVT and the DCH, is calculated by

reconstructing tracks in the SVT and DCH independently, and then extrapolating

into the other subdetector. The efficiency is then, for the DCH, the number of tracks

in both subdetectors as a fraction of the number of tracks found in the SVT.

Figure 2.12 shows this efficiency as a function of both transverse momentum and

polar angle for both the design voltage of 1960 V and for 1900 V. A small section

of the DCH was damaged during commissioning and so as a safety precaution an

operating voltage of 1900 V was initially used. This has since been increased to
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1930 V. The average tracking efficiency of the DCH at both design voltage and at

1930 V is (96 ± 1)%.
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Figure 2.12: Tracking efficiency for the DCH shown as a function of pT

(top) and of polar angle (bottom).

Figure 2.13 illustrates the distribution of dE/dx measurements as a function of track

momentum; the expected Bethe-Bloch [23] curve for the five stable charged particle

types is superimposed. This shows that a good π/K separation can be achieved up

to 0.6 GeV/c. The dE/dx resolution for e+e− events is 7.5%, which is near to the

design value of 7.0%.

The transverse momentum resolution determined from cosmic ray muons is found
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Figure 2.13: dE/dx measurements in the DCH shown as a function of track

momentum, with superimposed Bethe-Bloch predictions.

to be well described by the function

σpT /pT =
(0.13 ± 0.01)%

GeV/c
· pT + (0.45 ± 0.03)% (2.1)

where pT is the transverse momentum in units of GeV/c. Furthermore this is in

good agreement with Monte Carlo simulations and close to the design resolution.

The complete gas and wire system of the DCH is 0.28% of a radiation length for

tracks with normal incidence. The DCH is well within its radiation budget of

20 kRad.

2.6 The Detector of Internally Reflected Cherenkov

Radiation (DRC)

2.6.1 DRC physics requirements

The DRC is BABAR’s primary charged hadron particle identification system. It plays

a vital role in distinguishing between pions and kaons. This is essential for B flavour
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tagging in CP violation measurements, in which pions and kaons from the tagged

event can have momenta up to 2 GeV/c. π/K separation is also crucial for rare B

decays of the type investigated in this thesis. For such decays, the final state pions

and kaons have a wide range of momenta up to around 4.2 GeV/c (see Figure 2.6).

The DCH is only able to provide effective π/K separation up to 0.6 GeV/c, as dis-

cussed in Section 2.5.3. The DRC is therefore required to provide acceptable π/K

separation over the momentum range 0.6 GeV/c− 4.2 GeV/c.

Further requirements placed on the DRC are that it must be small both in terms of

radiation lengths – so as not to impact the resolution of the EMC – and physical size

in the radial direction. The EMC is the most expensive component of the BABAR

detector. As such, it is desirable for the EMC’s inner (and therefore outer) radius

to be as small as possible. This in turn is determined by the size of more internal

subdetectors.

Finally, as with all BABAR subdetectors, in order to operate in the high luminosity

environment of PEP-II the DRC must have a fast signal response time and be able

to operate in high backgrounds.

Combining momentum measurements made by the DCH and velocity measurements

made by the DRC allows determination of the charged particle’s mass.

2.6.2 DRC design

Cherenkov radiation occurs when a charged particle travels through a medium faster

than the speed of light in that medium. The angle at which the photon is emitted

(the Cherenkov angle) depends on the particle’s velocity. The DRC takes advantage

of this phenomenon using a new and innovative design. This design relies on the

principle that the magnitude of the Cherenkov angle is preserved when undergoing

reflection from a plane surface.

Figure 2.14 illustrates a schematic of the DRC principle. 144 synthetic quartz bars
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Figure 2.14: Structure and concept of the DRC. A charged particle traversing

the quartz bars with adequate velocity produces Cherenkov photons. Photons

that are internally reflected within the quartz bars retain information about the

initial Cherenkov angle. At the backward end the photons enter a standoff box

where they are detected by an array of PMTs.

are arranged into a 12-sided barrel. When a charged particle travels through a

quartz bar, it emits Cherenkov radiation provided β > 1/n, where β is the speed of

the charged particle as a fraction of the speed of light in a vacuum and n = 1.473 is

the refractive index of the quartz. Photons are emitted at an angle θC = cos−1( 1
nβ

).

Some of these photons are trapped by total internal reflection in the quartz bar.

Those that travel forwards are reflected by a mirror at the front end, so that only

the backward end of the DRC is instrumented. This allows room for the EMC endcap

and reduces the background levels that the DRC instrumentation is subjected to.

On arriving at the backward end of the quartz bar, photons retain information about
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their Cherenkov angle. Here, they enter the standoff box, a 6 m3 expansion region

filled with purified water. Water is chosen as it has a refractive index close to that

of quartz, minimising total internal reflection at the quartz-water junction. The

standoff box is lined with an array of 10,752 Photo-Multiplier Tubes (PMTs), each

2.82 cm in diameter. Magnetic shielding is placed around the standoff box to reduce

the effect of the magnetic field on the PMTs.

The measured Cherenkov angle has a certain number of ambiguities attached to it

due to the numerous possible paths that could have been taken by a photon to give

a signal in a particular PMT. These ambiguities are treated by reconstruction code.

The arrival time of the signal is used to resolve many of these ambiguities, and also

to suppress hits from beam background and other tracks in the event. The angle

measured also depends on the angle at which the charged particle enters the DRC.

SVT and DCH information is used to determine this angle.

The DRC contributes just 17% of a radiation length for tracks at normal incidence,

and takes up only 8 cm of radial space. It is designed to have a coverage of 94% in

the azimuthal angle, 83% in the polar angle.

2.6.3 DRC performance

The Cherenkov angle and time resolutions can be determined from di-muon events.

The angular resolution of a single DRC photon is 10.2 mrad; the timing resolution

is 1.7 ns. The Cherenkov angle resolution for a track is 2.5 mrad. This gives a

π/K separation of just over 4σ at 3 GeV/c. Figure 2.15 shows π/K separation as a

function of momentum.

Figure 2.16 illustrates the discriminating power provided by the DRC. The peak in

the Kπ invariant mass spectrum corresponds to the decay D0 → K+π−. It can be

seen that using DRC information greatly reduces combinatorial background without

having an adverse effect on the signal.
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Figure 2.15: Cherenkov angle and π/K separation in the DRC as functions

of track momentum.

2.7 The Electromagnetic Calorimeter (EMC)

2.7.1 EMC physics requirements

The EMC must provide efficient photon detection – with excellent energy and an-

gular resolution – over a wide range of energies. For example, there are numerous

important B decays that include neutral pions and η particles. These often decay

into low energy photons (less than 200 MeV). On the other hand, photons produced

in processes such as e+e− → e+e−γ and e+e− → γγ – important for calibration and

luminosity monitoring – are highly energetic (as high as 9 GeV in the laboratory

frame). The EMC is also required to provide electron identification for B flavour

tagging, and to make measurements of semi-leptonic decays. The EMC passes clus-

ter and timing information to the Level-1 Trigger every 269 ns.
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Figure 2.16: Reconstructed Kπ mass with and without the use of DRC (la-

belled DIRC in the plot) information for kaon identification. The peak corre-

sponds to the decay D0 → K+π−. The products of this decay can be identified

using kinematics and so this process provides an excellent tool with which to

test particle identification efficiencies and mis-identification rates.

2.7.2 EMC design

The EMC consists of 6,580 thallium doped caesium iodide (CsI) crystals arranged in

a barrel and a forward endcap. The crystals are arranged into 56 rings in θ: 8 rings

in the endcap, 48 in the barrel. Each barrel ring contains 120 crystals in φ, as do the

outer three rings of the endcap. The inner two endcap rings contain 80 crystals in φ,

the remaining three consist of 100. In φ, all crystals are angled such that they point

in the direction of the IP. In θ however, the crystals are aligned such that they point
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in the general direction of the IP – but not in its exact direction, as this would allow

particles to travel straight through the gaps between individual crystals. Crystals in

the backward direction are 29.6 cm in length, corresponding to 16 radiation lengths.

Those that are subjected to more energetic Lorentz boosted particles in the forward

direction have a length of 32.4 cm (equivalent to 17.5 radiation lengths), the excep-

tion being the crystals in the innermost ring of the endcap, which are shorter by 1

radiation length due to space constraints. Inside this innermost ring (at smaller θ)

lead shielding is installed to reduce the effect of machine background on the endcap

crystals. The face size of the crystals is ∼ 5 cm2. Figure 2.17 illustrates the layout

of the EMC.
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Figure 2.17: Side on view of the EMC showing only the top half. The detector

is rotationally symmetric about the z-axis.

Particles entering the EMC are subjected to large electric fields due to the nuclei of

the material from which the EMC is constructed. This causes incident particles to

interact: electrons predominantly by bremsstrahlung, photons by pair production.

Secondary electrons, positrons and photons also interact, as do further generations,

until the energies of the electrons and positrons fall below a critical energy. At

this point ionisation losses equal those from bremsstrahlung. The resulting electro-

magnetic shower is spread over numerous adjacent crystals, forming a cluster. In
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addition to acting as an absorber, the EMC crystals also play the role of scintillator.

Each crystal has two 1 cm2 silicon PIN diodes glued to the back face for photon

detection.

Despite their financial cost, CsI crystals are used because of their high light yield,

and their small Molière radius. These characteristics provide excellent energy and

angular resolution respectively. The light yield is the number of photons emitted

per unit of energy lost when an ionising particle passes through the medium. The

Molière radius describes the transverse dimension of electromagnetic showers. Ad-

ditionally, a small radiation length allows for the crystals to be small in physical

size, desirable for such expensive material. The wavelength of the scintillated light

makes it relatively easy to detect. Finally, and importantly, the signal response is

fast. Table 2.3 shows some of the properties of CsI when used as a scintillator.

Parameter Value Parameter Value

Radiation length 1.85 cm Peak† λ 565 nm

Molière radius 3.8 cm Signal decay time 940 ns

Light yield 50, 000γ/MeV Radiation hardness 103 − 104 rad

†: The scintillator emits a spectrum of light, the peak of which lies at 565 nm.

Table 2.3: CsI scintillator parameters.

The EMC provides full coverage of the azimuthal angle and covers the polar angle

range 15.8◦ − 141.8◦. This corresponds to a solid angle coverage of 90%.

2.7.3 EMC performance

The total energy in scintillation photons detected by the PIN diodes is not equal

to the amount of energy deposited in the crystal. Each crystal must therefore

be calibrated in order to determine the relationship between the physical energy

deposited and the light yield detected. This is carried out by using photons or
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electrons of known energies. A radioactive source (16N) to which the crystals are

exposed produces low energy (6.1 MeV) photons, whilst bhabha events – in which

e± energies can be calculated from their polar angle – provide a tool for calibration

at high energies (≈ 7.5 GeV). In addition to individual crystal calibrations, it is

also necessary to conduct cluster calibrations. This is because the energy deposited

in one crystal is unlikely to account for the total energy of the incident particle.

Corrections must be applied for crystal leakage, absorption in material in front of

the EMC and between crystals, as well as energy in the crystals that is not associated

with the incident particle. π0 → γγ processes are used for cluster calibrations.

The energy and angular resolutions of the EMC can be parameterised in the following

way (“⊕” represents adding the terms in quadrature):

σE
E

=
a

4
√

E( GeV)
⊕ b, σθ = σφ =

c
√

E( GeV)
⊕ d (2.2)

where, using the procedures described above, the parameters have been determined

as a = (2.3±0.4)%, b = (1.9±0.1)%, c = (3.9±0.1) mrad and d = (0.00±0.04) mrad.

This gives an angular resolution that is consistent with the design value, whilst a

and b are slightly worse than design goals. The energy dependent terms arise mainly

from fluctuations in photon statistics, and to a lesser extent from electronics noise.

The constant term results from crystal leakage, absorption, non-uniformities and

uncertainties in the calibration methods. Good angular resolution is important in,

for example, the measurement of the mass of π0 candidates for the decay π0 → γγ.

For electron identification, EMC energy measurements are combined with DCH

measurements of momentum. Electrons and photons typically deposit all of their

energy in the EMC. For an electron, this energy should be approximately equal to

its momentum, since its mass is very small in comparison. Muons on the other hand

travel straight through the EMC depositing very little of their energy. Such particles

are known as minimum ionising particles (MIPs). Hadrons such as kaons and pions

can pass through the EMC as MIPs or can interact, depositing a fraction of their

energy. Hadronic showers and electromagnetic showers have different longitudinal
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and lateral shapes, allowing for further discrimination.

2.8 The Instrumented Flux Return (IFR)

2.8.1 IFR physics requirements

Muon identification is essential for precise CP measurements. Many of the most

important CP modes contain a J/ψ , which is reconstructed in its decay to e+e− or

µ+µ−. Muons are also used in the flavour tagging of the non-CP B meson through

semi-leptonic decays. The IFR is required to identify muons, with good efficiency

and high background rejection, with a minimum momentum of 1 GeV/c. It must also

be able to detect neutral hadrons with high efficiency and good angular resolution.

K0
L

identification is especially important for the CP mode B0 → J/ψK0
L
, which can

be used to measure sin2β.

In addition to the physics requirements placed on the IFR, it also fulfills two impor-

tant mechanical demands. It provides a support structure for the rest of the BABAR

detector, and it acts as a flux return for the 1.5 T magnetic field.

The IFR passes hit information to the Level-1 Trigger every 269 ns.

2.8.2 IFR design

The IFR consists of alternating layers of iron and Resistive Plate Chambers (RPCs).

The iron layers have two roles. They act as the flux return for the 1.5 T magnetic

field. They also provide discrimination between muons, which, as MIPs, generally

travel straight through the iron layers, and hadrons, which are more readily absorbed

due to hadronic showers. The RPCs are the detecting components. Figure 2.18

shows the mechanical structure of the IFR. It consists of a hexagonal barrel and

forward and backward endcaps. The barrel is segmented into 19 layers of RPCs with
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the thickness of iron between each layer increasing from 2 cm for the innermost layer,

to 10 cm for the outermost layer. This layout was determined by detailed Monte

Carlo studies to optimise muon filtering and hadron absorption. The endcaps each

have 18 layers of RPCs arranged in a similar way to the barrel. In addition to the

barrel and endcaps, there are two cylindrical RPC layers between the EMC and the

magnet. These are used to detect particles exiting the EMC and link tracks and/or

EMC clusters to IFR clusters.
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Figure 2.18: IFR geometry, showing the hexagonal barrel (left) and forward

(FW) and backward (BW) endcaps.

A cross-section of an RPC is shown in Figure 2.19. The gas used is a non-flammable

mixture of 57% argon, 39% freon-134a and 4% isobutane. A charged particle trav-

elling through this mixture causes ionisation of the gas molecules, leaving a trail of

ions and electrons. A high voltage is applied between the graphite coated bakelite

electrodes. As in the gaseous mixture in the DCH, this causes an avalanche, in which

ionised electrons cause further ionisation. In the DCH, the amount of ionised elec-

trons collected at the sensor wires is proportional to the energy loss of the incident,

ionising-causing particle. RPCs, on the other hand, operate in streamer mode. Here,
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the avalanche effect becomes saturated causing vast ionisation that goes beyond the

proportional mode.

The principle of the RPC is that it acts in limited streamer mode. That is, the

gas is chosen so that the streamer is contained locally (it absorbs photons and

electrons, preventing a lateral spread). High resistance electrodes are used for the

applied voltage. The combined quenching effect of the gas and electrode material

used prevents a complete breakdown of the medium where the resulting widespread

plasma would prevent any further detection. The sudden movement of charged

streamers onto the bakelite induces a charge on the capacitive read out strips. These

are labelled “X Strips” and “Y Strips” in Figure 2.19, and are orthogonally arranged

to give, together with the known radial position of the RPC, positional information

in three dimensions.

The signals from the read out strips are passed to a front end readout card. Here,

signals are compared to a threshold to determine whether the channel is active.

Signals from active channels are digitised.

2.8.3 IFR performance

For data taken in 1999 and the first half of 2000, a mean muon efficiency of ∼ 90%

with a pion mis-identification rate of less than 8% was achieved for the momentum

range 1.5 − 3.0 GeV/c. These values were determined using clean control samples

from the data. K0
L

particles, and other neutral hadrons, are detected as IFR clusters

with no associated charged track. The detection efficiency of these particles varies

from 20% to 40% over the momentum range 1.0 − 4.0 GeV/c.

Unfortunately, RPC efficiencies have deteriorated with time at an alarming and

unforeseen rate. Reasons for this are not entirely clear. One likely contributor

is the linseed oil with which the bakelite electrodes are treated to increase their

longevity. It has been observed in some cases that the linseed oil has improperly
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Figure 2.19: RPC cross-section.

cured, pooling into droplets and leaving other areas thinly covered. This can lead

to field reduction to a level that is below streamer mode, or even outright shorting

between plates. Despite numerous and lengthy efforts, remedies have not been

found for this problem. As such, it was decided to replace all barrel RPCs with

an alternative technology: Limited Streamer Tubes (LSTs). LSTs use a different

gas, applied voltage and geometry, but the “limited streamer mode” physics is very

similar. LSTs are described in more detail in [61]. In the summer shutdown of 2004,

two of the six barrel sextants had their RPCs replaced by LSTs. In the summer

shutdown of 2006, the remaining four barrel sextants had their RPCs replaced by

LSTs. These sextants see significant improvements in detection efficiency.
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3
The Trigger and data acquisition

system

3.1 Introduction

The previous chapter describes the equipment used to produce B mesons and detect

their decay products. In this chapter we discuss how the data representing particle

interactions with the detector are recorded.

73
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3.2 The Trigger (TRG)

3.2.1 Overview

The purpose of the BABAR trigger system is to accept interesting physics events

whilst rejecting background events, thereby reducing the flow of data to a rate that

is acceptable for processing and storage by the BABAR data acquisition system. The

trigger efficiency1 must be high, stable and well understood. CP violation studies

require that the trigger efficiency for BB (qq) events be greater than 99% (95%).

Secondary physics goals require that the efficiency for τ+τ− events be greater than

95%. Processes such as bhabha scattering – important for luminosity measurements

– must have a trigger efficiency that is known to within 0.5%.

The trigger consists of a Level-1 hardware trigger (L1T), designed to retain nearly all

physics events whilst rejecting background, and a Level-3 software trigger (L3T) that

then selects the physics events of interest. The design accommodates the possibility

of adding a Level-2 trigger, should it become necessary with increasing luminosities.

The L1T receives information from the detector every 269 ns – giving it an input

rate of 3.72 MHz. There are approximately 30 bunch crossings in a typical 269 ns

window, the majority of which do not result in an interesting physics event. The

L1T is designed to accept events with an output rate of around ∼ 2 kHz. The L3T

reduces this further to around the ∼ 200 Hz level. Compare this to the rates given

in Table 2.1. The L1T rate has a direct impact on the level of deadtime in the data

acquisition system. For an L1T rate less than approximately 3 kHz, deadtime rises

steadily (approximately linearly) with L1T rate. For higher L1T rates, deadtime

starts to rise significantly (up to 20% for high occupancy – i.e. 20% of interesting

1For the processX → Y , the trigger efficiency is given by the number of X → Y events triggered

divided by the product of the collected luminosity and the X → Y cross-section. The collected

luminosity is given by the PEP-II luminosity multiplied by the difference between unity and the

deadtime.
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physics events are lost).

Further information regarding the BABAR trigger system can be found in [62].

3.2.2 Level-1 Trigger (L1T)

There is no event identification at Level-1; rather, trigger lines are defined to capture

minimal event topologies.

The L1T consists of a DCH Trigger (DCT), an EMC Trigger (EMT), an IFR Trigger

(IFT) and a Global Trigger (GLT), as illustrated in Figure 3.1. The DCT, EMT

and IFT constantly receive data from their parent systems, which are used to pro-

duce trigger primitives. Combined, the trigger primitives provide a 269 ns snapshot

summary of the detector in terms of position and energy or momentum. The prim-

itives are then passed to the GLT where they are used to form trigger lines, which

are indicators of certain topologies. If certain criteria are met, based on the trigger

primitives, then a line is said to fire, or to be active. There are 24 L1T trigger lines

in total, arranged to give priority to high multiplicity multi-hadronic events. If one

or more line fires (this decision is made every 67 ns), at a time that corresponds

to a bunch crossing, the trigger lines are passed from the GLT to the Fast Control

and Timing System (FCT). Here, trigger lines can be masked and prescaled. Lines

corresponding to processes that occur very frequently, and that are used more for

calibration and efficiency studies rather than physics analyses (bhabhas, for exam-

ple), are prescaled. If any lines remain active after prescaling/masking, a Level-1

Accept (L1A) is issued, causing all detector subsystems – including the trigger itself

– to read out their event buffers to the data acquisition system. L1T lines and FCT

prescales and masks are configurable on a run-by-run basis.

The IFT is used to collect events with muon particles, which are used for calibration

and diagnostic purposes. It is not designed primarily to be efficient for B mesons.

The IFT primitives simply correspond to single clusters or pairs of back to back
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clusters with the further information of whether they are located in the barrel or

endcap.

The BABAR L1T system is designed to be redundant. That is, the DCT and EMT

each nearly satisfy the trigger requirements independently, each having an efficiency

for BB events of over 99%. This allows their efficiencies to be studied in detail by

using events triggered by the other system. Together they have an efficiency of over

99.9%.

Despite receiving signals (ticks) from the detector every 269 ns (Clock4), the L1T

is able to pinpoint the start-time of a L1A to within 67 ns (output is Clock16).

The better the time resolution of the L1A, the narrower the DAQ window, which

means less data volume and deadtime associated with the DAQ data transfer for

some of the subdetectors. For example, for the SVT, if there is a large time window

before the real event, there is a large possibility of any background hits killing the

interesting hit since single-hit electronics are employed. The DRC too has excellent

time resolution and so a shorter time window eliminates much of the background

photons detected by the PMTs making it easier to form ring segments out of the

remaining hits and associate them with tracks in the DCH. The DCT and EMT

receive Clock4 inputs from the DCH and EMC respectively. They then carry out

algorithms that convert their Clock4 inputs into Clock8 (134 ns) outputs to be passed

on to the GLT. The DCT achieves this by using information from previous ticks and

look-up tables created using calibrations. The EMT uses zero-crossing interpolation.

The GLT is then able to carry out a further (Clock8 → Clock16) conversion using

the combined information from the EMT and the DCT.

3.2.3 The Drift Chamber Trigger (DCT)

The DCT consists of the Track Segment Finder (TSF), the Binary Link Tracker

(BLT) and the z0 pT Discriminator (ZPD), which has recently replaced the pT Dis-

criminator (PTD). z0 is the distance between the IP and the point on the z-axis to
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Figure 3.1: The BABAR Level-1 Trigger.

which the track can be extrapolated; pT is the transverse momentum (the momen-

tum in the x-y plane).

The DCH consists of 7,104 small hexagonal drift cells, organised into 40 layers, and

grouped further into 10 radial superlayers (as discussed in Section 2.5.2). Each indi-

vidual layer contains between 96 and 256 cells, which are grouped into 32 supercells

per superlayer – 3-8 cells/supercell (the DCH has a 16-fold symmetry). The TSF

looks for sets of adjacent DCH hits in a group of eight cells in a superlayer known as

a pivot group. A 2-bit counter is associated with each cell in a pivot group. Depend-
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ing on the path of the track, the resulting ions will take between one and four 269 ns

ticks to reach each of the eight cells in the pivot group (assuming they are reached

at all). This is reflected in the value of the two-bit counter. It is this time delay, or

drift time, that the TSF uses in order to establish the accurate position (in φ) and

time of the track segment. The 16-bit address (8 cells, each with a 2-bit counter) re-

turned by a pivot group has corresponding spatial and temporal co-ordinates, which

are obtained from a look-up table containing the 65,536 possible addresses for each

pivot group. Each address also holds an uncertainty on the position and time of

the track segment. The TSF receives and processes DCH Clock4 data continuously

to determine which of the 32 supercells in each superlayer (320 supercells in total)

contain track segments of interest. It reports the results to the BLT and ZPD in

Clock8. The TSF consists of 24 TSF boards.

The BLT tries to link track segments to form tracks. If a track can be formed that

reaches the outermost superlayer (A10) it is called a long track (type A), whilst

one that reaches at least half way through the chamber (superlayer U5) is called

a short track (type B). Output to the GLT is at Clock8 and is in the form of two

16-bit words corresponding to a type A track and a type B track. Each bit in a word

represents the azimuthal supercell position of a linked track in either superlayer A10

(A tracks) or U5 (B tracks). The BLT consists of 1 BLT board.

When in operation, the PTD examined segments found in axial superlayers to de-

termine whether they are consistent with being part of a track with pT greater than

a threshold value, typically 800 MeV/c. Many background events that passed dur-

ing this PTD era were due to beam particle interactions with beamline components

that are located 20 cm either side of the IP along the z-axis. This is illustrated

in Figure 3.2. Information in z was not available using the 2D track reconstruc-

tion offered by the old-style DCT. These background events, therefore, could not be

distinguished from those that derived from e+e− collisions.

With luminosities provided by PEP-II continuing to improve, it became necessary
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for the L1T to accommodate the increasing data rates. The ZPD, which replaced

the PTD permanently in the spring of 2005, having ran in parallel with it during

testing in 2004, provides 3D tracking capabilities. The z0 resolution of the ZPD is

4.1 cm. The majority of background tracks come from |z0| > 20 cm. In addition to

providing discrimination in z, the ZPD boasts more sophisticated algorithms than

its comparatively crude predecessor. It performs algorithms that attempt to find and

fit tracks originating from the IP that pass through seed segments (track segments

located in axial superlayers A7 or A10). The ZPD consists of 8 ZPD boards. To

accommodate the ZPD, TSF algorithms had to be modified. ZPD primitives use

information on z0, the error on z0, the angle made by the track with the z-axis, λ,

pT and the number of segments for each track.

The primitive definitions for the DCT are listed in Table 3.1 along with those for

the EMT.

For further information on the DCT, see [63] and [64].

3.2.4 The Electromagnetic Calorimeter Trigger (EMT)

Like the DCT, the EMT does not make a decision on whether to issue an L1A. It

simply processes data from its parent subsystem, to be used by the GLT.

The EMC has 6,580 crystals in total, arranged in 56 rings in θ (8 endcap, 48 barrel),

with between 80 and 120 crystals in φ in each ring (Section 2.7.2). The eight rings

in the endcap are numbered θcrystal = 1 → 8. The rings in the barrel are numbered

θcrystal = 9 → 56. For EMT purposes, the crystals are grouped into 280 towers. In

the barrel, the towers all correspond to a 8× 3 crystal array in θ× φ. Towers in the

barrel are numbered:

θtower = (θcrystal − 1)/8

φtower = φcrystal/3

– using integer division, i.e. rounding down when the division is not exact. For the
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Figure 3.2: Origin along the z-axis of DCH tracks that passed the old-style

DCT (PTD era, pre-ZPD). The peak at z0 = 0 is from e+e− collisions; the

remaining tracks are primarily background tracks from beam particle collisions

with beamline components.

endcap, towers are numbered θtower = 0 and:

φtower =















φcrystal/2 θ = 1 → 2
2φcrystal/5 θ = 3 → 4
2(φcrystal + 1)/5 θ = 5
φcrystal/3 θ = 6 → 8.

This gives us 7 towers in θ by 40 towers in φ.

The probability of multiple particles arriving close together in the same region of

the calorimeter at the same time is low. It is also true that the energy deposited by

a passing particle is not necessarily confined to one tower. The EMT uses these two

facts to simplify its logic. Towers are clustered by summing the 40 towers in φ over

the 7 towers in θ, yielding 40 φ strips. The EMT performs calculations using ten

Trigger Processor Boards (TPBs). The TPBs receive energy samples from the 280
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EMC towers. These are summed over the polar angle to form the 40 φ strips. The

TPBs then perform algorithms to determine peak energy deposited and the time

at which this peak energy occurs. Each TPB processes 4 φ strips independently,

and reports the results directly to the GLT in the form of 4 (previously 5) trigger

primitives: M, G, E (, X) and Y. These primitives indicate whether the peak energy

exceeds a certain threshold, which corresponds to a physics process as described in

Table 3.1. M, G and E have complete coverage in θ; X and Y provide discrimination

in the polar angle. Specifically they single out MIP hits in the forward endcap

(θtower = 0) and high energy hits in the backward barrel (θtower = 5 → 6). Before

information is shipped out to the GLT, neighbouring φ strips are OR’ed in pairs to

give a 20-fold φ map for M, G and E (and previously X). Again, this is to ensure

that the reconstructed energy accurately represents the physical deposit, since the

deposit may occupy space in two φ strips. It also means that the amount of data to

be shipped to and processed by the GLT is halved. For Y, groups of four φ strips

are OR’ed to give a 10-fold map. The X primitive has recently been retired due to

an upgrade of the DCT.

Further information regarding the EMT can be found in [65] and [66].

3.2.5 Level-3 Trigger (L3T)

The software based L3T uses all available information from the detector. It receives

information every time an L1A is issued by the L1T. The Level-3 code runs on

the Online Event Processing (OEP) computing farm, consisting of several hundred

nodes. Events are distributed one per node at any given time.

The data received by the L3T contain superior positional information and increased

energy and momentum resolution compared to the data received by the L1T. The

L3T is therefore able to employ more sophisticated algorithms to event data. Timing

information, as well as simple track finding and calorimeter clustering is used to

accept or reject events. Those that are accepted are classified into various physics
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φ pT , z0

Primitive Origin Description (SL = superlayer) Segmen- Energy Cut

tation Threshold ( cm)

B DCT Short track reaching SL U5 16 120 MeV/c —

A DCT Long track reaching SL A10 16 180 MeV/c —

Z DCT Track reaching SL A7 16 220 MeV/c 12

Zt DCT Track reaching SL A7, tighter z0 cut 8 220 MeV/c 10

Z′ DCT High pT track reaching SL A7 8 800 MeV/c 15

Zk DCT Moderate pT track reaching SL A7 4 350 MeV/c 10

M EMT All-θ MIP energy 20 120 MeV —

G EMT All-θ intermediate energy 20 307 MeV —

E EMT All-θ high energy 20 768 MeV —

X (retired) EMT Forward endcap MIP energy 20 100 MeV —

Y EMT Backward barrel high energy 10 922 MeV —

U IFT Muon IFR sextant hit pattern — — —

Table 3.1: Definition of L1T primitives. The threshold values are config-

urable and those shown here are typical (preliminary) values for the BLT/EMT

(ZPD). These primitives are used by the GLT to form trigger lines. An exam-

ple of a trigger line is “3B&2A&2M” in which 3 or more B primitives plus 2 or

more A primitives plus 2 or more M primitives are required for this line to be

active. The U primitive is a 3-bit pattern allowing for seven combinations of

muon topologies in the detector.

categories as well as cosmic ray, bhabha and other types used for calibration and

monitoring. The L3T forms trigger lines, which are logical combinations of the

algorithm outputs, much as the GLT forms trigger lines from the Level-1 primitives.

Level-3 output lines can be prescaled to reduce the rate at which certain processes

are recorded, for example bhabha events, which are required for calibration and

luminosity measurements, but not at the huge rate at which they occur.

To allow efficiencies to be calculated, some events that do not pass Level-3 are

accepted regardless at a certain prescaled rate. These events are known as “Level-1
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Pass-through” events.

All events that are accepted by Level-3 are logged to disk.

3.3 The data acquisition system (DAQ)

Detector

To SVT/DCH/
DRC/EMC/IFR/
TSF/BLT/ZPD/
EMT/IFT/GLT

IFR FEE

EMC FEE

SVT FEE

DRC FEE

DCH FEE
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ZPD

DCT

TSF

EMC

UPC

IFT

EMT

VME Dataflow Crates

ROMs

12.9 microsecond pipeline buffers

DAQ event buffers

IFR

EMC

DRC

DCH

SVT

FCT

GLT

Figure 3.3: The continuous flow of data from the BABAR detector.

Figures 3.3 and 3.4 show schematics of the BABAR data acquisition system (DAQ).

The L1T operates in continuous sampling mode, generating trigger information at

regular, fixed time intervals. The DCT and EMT receive data from the DCH and

EMC respectively approximately 2µs after the e+e− collision. The DCT and EMT

event processing times are 4 − 5µs, followed by another ∼ 3µs of processing in the

GLT.

First, this continuous flow of data from the BABAR detector, as illustrated by Figure

3.3, shall be examined. Second, as shown in Figure 3.4, the movement and processing

of data when an L1A is issued shall be discussed. The time taken for an L1A to
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Figure 3.4: The flow of data when an L1A is issued. Although not shown

here, subsystem ROMs also talk to the conditions and configuration databases.

propagate through the FCT and for subsystems to initiate event read out is ∼ 1µs.

The steps described above – from the DCH and EMC shipping out their data, to

an L1A being issued, to subsystems initiating event read out – are all accomplished

within the 12.9µs capacity of the subsystems’ circular trigger latency buffers.
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3.3.1 BABAR online: the continuous flow of data

Raw, analogue signals from each of the sub-detectors are processed by Front End

Electronics (FEE), which lie within the detector. FEE processing is subsystem

dependent, but in all cases the raw detector output is amplified and digitised. The

digital signals are stored in 12.9µs circular trigger latency buffers, located on the

FEE.

Data from the DCH, EMC and IFR are shipped out of the detector, via optical fibre

links, to be used by the BABAR L1T, as discussed in Section 3.2.2 and illustrated in

Figure 3.3. These data are processed by the DCT, EMT (via EMC UPC boards)

and IFT into trigger primitives, which are 269 ns snapshots of the detector, and are

used by the GLT to form 24 trigger lines. These lines are passed to the FCT, which

then uses the information to decide whether to issue an L1A.

Like the subdetectors’ FEE, the subtrigger systems have 12.9µs pipeline trigger

latency buffers, which store the continuous flow of data that they receive.

3.3.2 BABAR online: the flow of data when an L1A is issued

Each subsystem is linked to a Read Out Module (ROM): the subdetectors by fibre

optics between the FEE and the dataflow crates, the trigger subsystems by connec-

tions within the dataflow crates. Each of these ROMs contain Triggered Personality

Cards (TPCs). This means that signals are only collected from the subsystem buffers

on receipt of an L1A from the FCT. The only exception to this is the EMC. EMC

ROMs contain Untriggered Personality Cards (UPCs). As such, signals are contin-

uously received by the ROM (i.e. every 269 ns, rather than every time an L1A is

issued), where they are processed and on receipt of an L1A are passed to a TPC

ROM. As briefly mentioned in Section 3.3.1, these UPCs create the tower sums that

are continuously sent to the EMT.

On receipt of an L1A, the subsystem ROMs collect data from the subsystem circular
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trigger latency buffers. The L1T outputs at Clock16. That is, the exact time of

an L1A is correct to within 67 ns. The amount of data extracted from the latency

buffers is subsystem dependent. Naturally, the amount of data must correspond to

an amount of time that is sufficient to be able to observe the whole event. A small

amount of time before and after the event is also extracted to enable background

studies and to allow for the uncertainty in the exact L1A start-time and other jitters.

The data taken from the FEE is then subjected to algorithms, which perform feature

extraction (FEX). Subsystem specific FEX attempts to isolate signals and suppress

background and noise.

A master crate ensures that subsystems are synchronised with one another.

BABAR accumulates data on a run to run basis. Generally, the time taken for one

run of data taking does not exceed one hour. On completion of one run, a new

run is started. Runs are used to enhance the convenience of bookkeeping. Exact

detector conditions, such as temperature, voltage, gas supply and humidity are

known for each run. These conditions are extracted from the ROMs and stored

in the conditions database (they can be modified using Online Detector Control,

ODC). The output of each run is stored in an individual, offline file.

The ROMs, and other boards in the dataflow crates, are configurable for each run of

data taking using Online Run Control (ORC). This is achieved by using the config-

uration database in which system-wide and subsystem specific configuration objects

are stored. System-wide configurations include “physics”, which is the normal mode

of data taking for physics analyses, “cosmics” – in which the detector detects nat-

urally occurring particles rather than particles created as a result of the PEP-II

collider, and “calibration”.

Both the conditions and configuration databases use ObjectivityTM [67] technology.

They are used in Monte Carlo production to ensure that simulated events are gen-

erated using the same detector conditions and configurations as those for which real

data were collected.
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FEX processed data are passed to the Online Event Processing (OEP) platform (a

computer farm consisting of several hundred nodes), where event building software

is implemented before the L3T is employed. Online monitoring also takes place here.

This is known as fast monitoring. BABAR collaborators continuously monitor the

data being acquired in real time using the Java Analysis Studio (JAS) interface.

Events that pass the L3T are written to temporary files, which are then picked up

by the Prompt Reconstruction (PR) farms.

Once offline, data are not only used for physics analyses, but also for thorough offline

monitoring to ensure that the detector and DAQ are functioning correctly.

3.3.3 BABAR online: deadtime

Online Dataflow (ODF) and OEP, described in Section 3.3.2 (and illustrated in

Figure 3.4), takes a finite amount of time from start to finish – despite the numerous

and ingenious techniques aimed at minimising this time. Deadtime occurs when an

L1A is issued, but the path is blocked by the movement of data triggered by a

preceding L1A. The L1T fires at intervals of 67 ns (using 269 ns snapshots of the

DCH and EMC). To counter deadtime each 12.9µs circular trigger latency buffer

(discussed in Section 3.3.1) is accompanied by four parallel DAQ event buffers.

When an L1A is issued, but the ODF/OEP path is busy, the relevant data from

the 12.9µs buffer are stored in one of the four DAQ event buffers until the path is

freed up, preventing it from being permanently overwritten when the 12.9µs cycle

has elapsed. Of course, deadtime still occurs when the four DAQ event buffers are

full.

For normal beam backgrounds, BABAR deadtime generally occurs at the 2 − 5%

level.
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Figure 3.5: The BLT, ZPD and EMT transmit information to the GLT. To

check these transmissions, DAQ data from each of the subsystems are used.

3.3.4 BABAR online: an example of online monitoring

Figure 3.5 illustrates that the BLT, ZPD and EMT pass data to the GLT, and that

all 4 subsystems ship out data to DAQ on L1A. It is not possible to look directly

at the data being transmitted between the EMT and the GLT, and the DCT (BLT

and ZPD) and the GLT, whilst BABAR is online. To check whether the data received

by the GLT are the same as that sent out by the EMT/DCT, DAQ data must be

used. This involves bit manipulation software that formats the DAQ outputs before

making tick by tick comparisons. A tick is the finite amount of time that elapses

between successive, discrete, digitised signals read out by the detector subsystems.

The period of one tick depends on the clock speed of the subsystem, and varies from

16.8 ns (Clock64) to 269 ns (Clock4).
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Numerous other checks of cable transmission and of board algorithms are carried

out throughout the DAQ system.

Physics events are also studied to ensure that what comes out of the detector is

what one would expect.



90 Chapter 3. The Trigger and data acquisition system



4
BABAR software and data

4.1 Introduction

The previous chapter describes how the BABAR online system is deployed to select

and record information from events produced by the PEP-II machine. This chapter

describes how the data are further manipulated offline, facilitating physics analyses

such as the one described in this thesis.

Large numbers of simulated Monte Carlo (MC) events are required for an interpre-

tation of the data. Furthermore, for branching ratio analyses, the total number of

B events must be established. These items are also discussed in this chapter.

Discriminating variables, devised to distinguish between signal and background

91
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events, are also presented.

4.2 Reconstruction and data distribution

Data outputted by the BABAR online system are written to flat files called extended

tagged container (XTC) files. These files are stored in a mass storage (HPSS) system

shortly after production. XTC files contain raw detector hits for events that have

passed the L3T. An average file contains O(105 − 106) events, corresponding to

one online run. Figure 4.1 illustrates how XTC files are inputted into the Prompt

Reconstruction (PR) system. PR consists of Prompt Calibration (PC) and Event

Reconstruction (ER). PC is run over small subsets of the total number of events

– enough to adequately perform data quality monitoring and calculate calibration

constants – typically within a few hours of the event being logged to disk. ER

is run over all events and is usually completed within a few days of the events

being logged. Reconstruction routines are executed in which charged tracks and

calorimeter clusters are reconstructed using the raw detector hits (as discussed in

Sections 4.2.1 and 4.2.2). The PR code (Elf) runs on a large computing farm, on

which numerous events can be processed in parallel.

PR output is in the form of collections, which are written to an event store as

ROOT [68] files. Collections can be written to the event store in numerous formats

from low level “raw” to high level “tag”. Intermediate formats include “reco”, “mini”

and “micro”. Data in the raw format provide raw hit information from the detector.

Reco data contains track and cluster information. At this point there is no physics

information about any possible particle candidates. This comes in the mini format

where various hypotheses are applied to the reconstructed hits and hypothetical

particle C++ objects called BtaCandidates are formed. The micro format is a higher

level subset of the mini. Data in the tag format contains only tagbits in the form

of booleans, integers and floating points. These tagbits are indications of various

physics events.
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The volume of data recorded by the BABAR online system is colossal (the event store

database once boasting to be the largest in the world [69]). It is completely infeasible

that a single analysis could make practical use of such an extensive dataset. Hence

the need for a centrally managed processing system. The various levels of collection

formats are used to accomplish acceptable compromises between processing time

and level of detail.

A further technique to enhance the usability of datasets – and one that makes use

of the collection formats discussed above – is skimming. Output from PR is for

all events (collection name: AllEvents). The majority of analyses are interested

only in a small fraction of AllEvents, and so processing all of them would be a

waste of effort and resources. Skimming code, which makes use of tagbits and

BtaCandidates, applies various filters to AllEvents and outputs skims. Skimmed

collections share the same formats as AllEvents collections. An example of a skim

is BCCC03a3body, in which events that resemble inclusive B decays to final states

with three “stable” charged particles have been selected. The filter algorithm that

produces this skim is briefly discussed in Section 5.3.1.

Physics analysis code is based on a common BABAR framework that makes use

of BtaCandidates. Information from PR is combined not only to form particle

candidates that are directly detected, but also, using vertexing, composite particle

candidates that are inferred from their decay products. Particle identification (PID)

selectors are employed at this stage. PID selectors are discussed in Section 4.2.3.

Physics analysis code is generally run over skimmed collections in the micro for-

mat. This is the case for NonCharm3BodyUser [70], the package used in the analysis

described in this thesis.
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Figure 4.1: The BABAR offline reconstruction and data distribution system.
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4.2.1 Track finding

Charged, helix-shaped tracks are described using five quantities:

• d0 – the distance in the x-y plane from the origin to the point of closest

approach (POCA) of the track trajectory (illustrated in Figure 4.2 (a)).

• φ0 – the azimuthal angle as determined by the direction of the track at the

POCA (illustrated in Figure 4.2 (a)).

• ω – equal to 1/r, where r is the radius of curvature in the x-y plane (illustrated

in Figure 4.2 (a)).

• z0 – the distance in the z direction from the origin to the z co-ordinate of the

POCA in the x-y plane (illustrated in Figure 4.2 (b)).

• tanλ – the tangent of the dip angle (equivalent to the cotangent of the polar

angle, θ), which defines the slope of the track. If θ = 0, the track is unaffected

by the magnetic field in the z direction and continues in a straight line; if

θ = 90◦, the particle’s path is described by a flat circle (assuming no energy

loss or Coulomb scattering). These are both special cases of a helix.

Each of these quantities can take on positive or negative values, as defined by the

following equations:

φ = φ0 + ω L, (4.1)

x = r sinφ− (r + d0) sinφ0, (4.2)

y = −r cosφ+ (r + d0) cosφ0, (4.3)

z = z0 + L tanλ. (4.4)

Eq. (4.1) gives the track angle, whilst Eq.s (4.2)-(4.4) give the track position; L is the

path length along the track in the x-y plane. The sign of r depends on the direction

in which the track proceeds in the x-y plane (clockwise or counter-clockwise). This

in turn depends on the particle’s charge.
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For further details please see [71].

in     plane
POCA, as defined

Origin

Hits

Origin

POCA

x−y

y

x

B

B

r = 1 / ω

 0d

φ 0

y

z

 0z

(b)

(a)

Figure 4.2: Plot (a) illustrates the magnitudes of the track parameters d0,

φ0 and ω; the x-y plane is shown with the positive z-axis and magnetic field

perpendicular to and going into the page. Plot (b) illustrates the magnitude of

the track parameter z0; the positive x-axis is perpendicularly into the page.
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PR track reconstruction algorithms use, as their starting point, tracks found by the

L3T. A Kalman fitting technique [72] is applied to the hits associated with these

tracks. This technique accounts for detector material distribution and magnetic

field variations. Additional DCH hits consistent with the tracks (but not used by

the cruder, more time-conscious algorithms of the L3T) are added at this stage,

and the Kalman fit is performed again. The resulting tracks are used to estimate

a refined value of the collision time, t0. Further track finding code is applied to

remaining DCH hits to search for tracks that do not span the whole chamber, or

that do not originate from the IP.

All tracks found in the DCH are extrapolated into the SVT and, where consistent,

SVT hits are added in (again taking into account material and field variation in the

detector). SVT hits that are not consistent with projected DCH tracks are subjected

to a further track finding algorithm in order to identify SVT-only tracks (tracks that

don’t reach the DCH due to either low pT or scattering by the support structure of

the SVT).

The performance and efficiency of the track finding algorithms presented here are

discussed in Section 2.5.3.

The tracks are placed into lists in the event store depending on the quality of the

track. The track list used in the analysis described in this thesis is the GoodTracks

Loose list. The requirements of this list are presented in Table 4.1.

pT ≥ 0.1 GeV/c

|~p| ≤ 10.0 GeV/c

Number of hits in DCH ≥ 12

|d0| < 1.5 cm

|z0| < 10.0 cm

Table 4.1: Requirements of the GoodTracksLoose list. |~p| is the magnitude

of the particle’s momentum; pT is its transverse momentum.
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4.2.2 EMC cluster finding

Clusters are identified by first looking for individual crystals that have detected

an energy greater than 10 MeV. For crystals that pass this criterion, neighbouring

crystals are examined. Those that detect an energy greater than 1 MeV, and those

that neighbour a crystal with an energy greater than 3 MeV and already included

in the cluster, are taken to be a component of the cluster and their neighbours in

turn are examined. This process is iterated until all crystals outside of the cluster

fail the energy threshold cut.

On establishing a cluster, a bump-finding algorithm is run over all contributing

crystals. This algorithm searches for local maxima (in energy) within the cluster.

This is necessary to determine whether a cluster is the result of one or more showers.

A further algorithm attempts to associate cluster bumps with reconstructed tracks.

Where this is possible, the association is accounted for in subsequent reconstruction

code. Where an association is not possible, the shower is assumed to derive from

a neutral particle and is placed in a list analogous to the GoodTracksLoose list for

charged tracks.

4.2.3 Particle identification (PID)

After track and cluster finding has been carried out, particle identification (PID)

selectors are executed. PID selectors use information from a combination of BABAR

subdetectors, potentially all of them. Each selector uses probability density func-

tions (PDFs) to form a per-track likelihood for the particle type that it’s designed

to select. The five charged particle types that can give rise to tracks in the SVT and

the DCH are, by increasing mass: electron, muon, pion, kaon and proton. PDFs

and likelihoods are discussed in more detail in Section 5.6. The selectors operate in

various modes that allow the user to strike the required balance between efficiency

and purity.
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Control samples are of paramount importance both in the design of PID selectors

and in determining their performance. These samples are not selected using PID

information. Instead, highly pure samples are selected using known physics processes

and kinematics. For the selectors discussed here, the following channels are utilised:

• For pions: K0
S
→ π+π− and D∗(2010)+ → D0(→ K−π+)π+. The lifetime of

the K0
S

is such that there is an appreciable distance between the B vertex and

the K0
S

vertex, making K0
S
→ π+π− easy to identify.

• For kaons: D∗(2010)+ → D0(→ K−π+)π+, which can be identified using

kinematical cuts only.

• For electrons: radiative bhabha events.

The analysis described in this thesis is concerned with identifying kaons and pi-

ons. To achieve this, a kaon selector SMSKaonSelector and an electron selector

LHSelector are employed. Despite pions being responsible for the vast majority of

tracks in multi-hadronic events, there is no specific pion selector. Instead, tracks

that fail the kaon and electron selectors are generally assumed to be pions.

Tables 4.2 and 4.3 present an outline of the information used by the kaon and

electron selectors.

For the analysis described in Chapter 5, SMSKaonSelector is employed in Tight

mode: DRC information is used for tracks with momenta greater than 0.6 GeV/c;

dE/dx information from the SVT and DCH is used for tracks with momenta less

than 0.7 GeV/c. If no PID information exists for a track within the valid ranges

(i.e. if the track has momentum greater than 0.7 GeV/c and lies outside the DRC

acceptance), the candidate fails the selection. Likelihoods for kaon, pion and proton

(lK , lπ and lp) are formed for each candidate. The candidate is accepted if

lK > rπlπ and lK > lp, (4.5)
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where

rπ =















1 if momentum < 0.5 GeV/c,
15 if 0.5 < momentum/( GeV/c) < 0.7,
1 if 0.7 < momentum/( GeV/c) < 2.7,
80 if momentum > 2.7 GeV/c.

(4.6)

These values of rπ represent the fact that π/K separation is superior for the momen-

tum ranges < 0.5 GeV/c – using dE/dx in the SVT and DCH – and 0.7− 2.7 GeV/c

– using the DRC. Between these two ranges, neither system is as effective. As mo-

mentum increases above 2.7 GeV/c, π/K separation deteriorates despite the angle

resolution in the DRC improving. This is because the difference of the mean value

of the expected angles for kaons and pions becomes smaller.

Likelihoods le, lK , lπ and lp are formed in a similar manner by LHSelector, where le

is electron likelihood. The mode being used for the analysis described in this thesis

is such that candidates pass the electron selector when

le
le + 5.0lπ + lK + 0.1lp

> 0.95. (4.7)

Figure 4.3 illustrates the efficiencies of the kaon and electron selectors for kaons

and electrons respectively. The rates at which pions are mis-identified as kaons and

electrons are also shown. Figure 4.4 demonstrates how PID eliminates vast amounts

of combinatoric background, in which random tracks are combined to form signal

candidates. The performance of π/K separation for the SVT, DCH and DRC are

discussed in Sections 2.4.3, 2.5.3 and 2.6.3 respectively.

The PID selectors discussed here have been developed by and are maintained by the

BABAR PID group. Further details can be found in [73,74].

4.2.4 Vertexing

TheB meson decay studied in this thesis is that with the 3-body final stateK±K∓π±.

Intermediate resonances (e.g. K∗(892)0, K∗
0 (1430)0) are so short lived that their ver-

tices are indistinguishable from that of the B. It follows that the three charged tracks
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Infor- Sub- Prob. Density Func.

mation detec-
Shape

Parameters Further Details

Used tor From

Control Expected value obtained

dE/dx SVT,
Gaussian

sample from Bethe-Bloch

pull† DCH pull functions (as illustrated

distribution in Figure 2.13)

Cherenkov Control Expected value depends

angle
DRC Gaussian

sample on particle type and

(θC) pull momentum, cos θC =

pull distribution (nβ)−1 (Section 2.6.1)

Number of Poissonian mean depends on particle

Cherenkov
DRC Poissonian

type, momentum and polar angle

photons (expected means as functions of these

detected parameters stored in look-up table)

Table 4.2: Information used by the BABAR kaon selector, SMSKaonSelector.

PDFs from these sources are assumed to be uncorrelated. The overall likeli-

hood can therefore be formed by taking their product. Likelihoods for various

particle hypotheses are formed. Tracks then pass or fail the selector depending

on whether the ratios of likelihoods for various particle hypotheses pass cuts.

The values of these cuts depend on the mode that the selector is running in:

NotAPion, VLoose, Loose, Tight or VeryTight.

†: Pull is defined to be the difference between the measured value and the ex-

pected value, divided by the experimental error. Pulls are discussed in more

detail in Section 5.10.1.

should originate from the B decay vertex position, and their invariant mass should

peak at the B mass.
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Infor- Sub- Prob. Density Func.

mation detec-
Shape

Parameters Further Details

Used tor From

Gaussian For electrons, E/|p| ≈ 1; muons

E/p EMC
with Control sample are MIPs, whilst hadrons

exponential distribution generally deposit a fraction of

tail their energy (Section 2.7.3)

EMC For hadrons, correlations

shower
EMC

Double Control sample between variables need

shape Gaussian distribution accounting for (can take as

variables uncorrelated for electrons)

dE/dx DCH Gaussian
Control sample

As kaon selector
distribution

Additional electron/hadron separation from θC for momentum < 1.5 GeV/c:

Cherenkov
DRC Gaussian

Control sample For kaons and protons:

angle, θC distribution as kaon selector

For electrons (pions): to

Cherenkov
DRC

Double (Triple) Control sample account for bremsstrahlung

angle, θC Gaussian distribution scattering (decay to muons/

electron emission in quartz)

Table 4.3: Information used by the BABAR electron selector, LHSelector.

Loose selections are first applied to separate muons. PDFs for the variables

shown here are then created using control samples for the four remaining

charged track types: electron, pion, kaon and proton.

Geometric and kinematic fits are carried out to find the B decay vertex position.

The geometric fit requires that the three tracks combined to form the B candidate

originate from the same point in space; the kinematic fit requires that momentum
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Figure 4.3: Efficiencies of the kaon and electron selectors in Tight mode,

as a function of momentum. Left plot: SMSKaonSelector efficiency on kaons

(red circles) and pions (black squares). Right plot: LHSelector efficiency (left

scale) on electrons and mis-identification probability (right scale) for pions.
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Figure 4.4: Reconstructed K∗(892)0 mass peak for MC data simulating the

decay B+ → K
∗
(892)0(→ K−π+)K+ (left) and for on-resonance data (right).

Solid lines are for events that have been subjected to PID selection criteria;

PID has not been applied to events represented by the dashed lines.

is conserved at the vertex. GeoKin, the fitting routine, carries out an iterative

procedure – aimed at minimising χ2 – in which track positions and momenta are

adjusted within their measured errors.
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A second fit is performed, this time with the further constraint that the set of three

tracks must have an invariant mass equal to that of the B mass. The advantage

gained by applying this third constraint is that all reconstructed events lie within

the kinematic boundaries as defined by the Dalitz plot. This avoids unwelcome com-

plications in subsequent analyses – especially amplitude-level analyses. A further

benefit, and one applicable to the intensity-level analysis described in this thesis,

is the improvement of the mass resolution of intermediate resonances. An adverse

effect is that background events are forced to appear more signal-like, making dis-

crimination a little more difficult.

4.3 Monte Carlo (MC) simulation

Simulated MC data play a vital role in many areas of particle physics. Without

them, interpretation of real data would not be possible. In the analysis described

in this thesis, MC data are used to determine reconstruction and selection criteria

efficiencies, to construct PDFs and to determine sources and amounts of background

originating from B decays.

The first stage in producing MC data is event generation in which decays of B

mesons and other particles and resonances are simulated. Each event is generated

given an e+e− IP, and e+ and e− three momenta. These co-ordinate and three

momentum values are randomly selected from distributions that reflect what occurs

in the PEP-II machine. Output of this first stage is in the form of four-vectors (E,~p)

and vertex positions. EvtGen [75] and JETSET [76] are the packages used for event

generation.

The second step is detector simulation. The GEANT4 [77] package is used to model the

geometry of the BABAR detector and the interaction of its material with traversing

particles. GEANT4 output is in the form of gHits, each gHit representing an individual

interaction of a detector subsystem with a passing particle.
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The third stage simulates the response of the BABAR electronics to gHits. This

includes the complete path of electronic signals from the FEE, through the dataflow

crates, the trigger system, and – for events that are triggered – to DAQ.

The events generated by EvtGen and JETSET, and “detected” by GEANT4 are inter-

esting physics events. That is, events that involve the interaction of an electron from

the HER beam and a positron from the LER beam (usually an e+e− annihilation

event, but bhabhas are also useful). For the MC to accurately represent real data, it

is necessary to account also for machine backgrounds (as discussed in Section 2.2.4).

To do this, background events are overlaid with the simulated physics events. These

background events are taken during acquisition of real data. The trigger system

issues cyclic triggers at regular intervals (typically 1 Hz) at which point the digital

signals stored in the subsystem buffers are read out to DAQ. It is improbable that

a physics event is in progress during these randomly selected windows. As such the

data accumulated using this approach provide a sample that accurately represents

background conditions in the detector.

The simulated MC data are then subjected to the same reconstruction routines as the

real data. The conditions and configuration databases, as discussed in Section 3.3,

are used to ensure that MC provides as accurate a representation of real data as

possible. The reconstructed MC collections are written to the event store as ROOT

files. They share the same formats as those of the real data collections, the only

difference being that MC contains truth information. Truth information allows the

user to determine the particles – produced at the event generator level – responsible

for each gHit. This is very useful for calculating mis-reconstruction efficiencies.

Control samples for MC and for real data are used to check whether MC accurately

represents true data. For example, for B+ → K
∗
(892)0(→ K−π+)K+, the number

of data events is inadequate for a comparison to be made with MC, so the control

channel B+ → D
0
(→ K+π−)π+ is used. B+ → D

0
(→ K+π−)π+ is kinematically

and topologically very similar to B+ → K
∗
(892)0(→ K−π+)K+, and the same
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reconstruction tools can be employed for the two modes. However, the branching

ratio of B+ → D
0
(→ K+π−)π+ is large enough for a comparison to be made between

MC and real data events. Another example of a control channel is D∗+ → D0(→
K−π+)π+, which is used to test both the performance of the kaon PID selector, and

the agreement between MC and data. Where discrepancies are observed between

MC and real data, control samples can also be used to apply corrections to the

results obtained from MC.

4.4 B counting

All B meson branching ratios measured at BABAR must be normalised such that

the B meson’s total branching ratio is unity. To achieve this it is necessary to

accurately determine the number of BB pairs (NBB) present in the dataset under

investigation, and – for the analysis described in this thesis – the fraction that are

charged (i.e. B+B−, rather than B0B0). The B counting technique is employed to

find NBB. This method allows a greater level of precision compared to using the

cross-section of e+e− → Υ (4S) and beam luminosity. The fractions of charged and

neutral B mesons from Υ (4S) decays are determined by measuring the rates at

which B+ → J/ψK+ and B0 → J/ψK0
S

occur [55].

B counting uses the number of multi-hadronic events1, NOn
MH and NOff

MH , recorded

on- and off-resonance respectively (see Section 2.2.1). Since off-resonance data is

acquired at energies beneath the Υ (4S) production threshold, and the branching

ratio of Υ (4S) → BB is taken to be 100%, the weighted difference can be attributed

entirely to BB production:

NBB =
1

εBB

(

NOn
MH −NOff

MH κ
NOn
µµ

NOff
µµ

)

. (4.8)

1Multi-hadronic events are those in which the e+ and e− annihilate, and from the resulting

energy a quark pair is formed. Subsequent decays result in numerous hadrons being formed, which

interact with the detector material.
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εBB = 0.96 is the efficiency with which BB events pass the multi-hadronic selection

cuts (determined from MC simulation); κ is a constant close to unity that accounts

for the energy dependence of the continuum cross-section and selection efficiency.

The ratio of the numbers of µ+µ− pairs, NOn
µµ /N

Off
µµ , accounts for the different

integrated luminosities of the on- and off-resonance samples.

The on-resonance data sample used in the analysis described in this thesis corre-

sponds to

NBB = (231.58 ± 0.08 ± 2.55) × 106. (4.9)

The first error is statistical, the second is systematic. The main source of systematic

uncertainty is the time variation in the number of multi-hadronic and muon pair

events recorded off-resonance. The quantity NOff
MH /N

Off
µµ is expected to be constant

in time, but variations are observed for different off-resonance running periods. An-

other contribution is the uncertainty in the tracking efficiency, leading to variations

in εBB. This is because the multi-hadronic filter uses inferior tracking (since it is

applied before full reconstruction).

A further discussion on B counting, including error calculations, can be found in [78].

It is found that the ratio of charged and neutral B mesons from Υ (4S) decays,

R+/0 = Γ(Υ (4S) → B+B−)/Γ(Υ (4S) → B0B0), is 1.006 ± 0.036Stat ± 0.031Syst [55].

Systematic uncertainties are those on the efficiencies (tracking, PID, K0
S

reconstruc-

tion, selection criteria) and those attributed to the modelling and subtraction of

background. The number of B+B− pairs present in the dataset under investigation,

NB+B− , is therefore given by:

NB+B− =
R+/0

1 +R+/0
NBB

= (116.14 ± 2.07 ± 2.19) × 106, (4.10)

and the number of charged B mesons, NB± , by:

NB± = 2 ×NB+B−

= (232.28 ± 4.14 ± 4.39) × 106. (4.11)
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4.5 Discriminating variables

The analysis described in this thesis involves extracting a very small number of signal

events (100 − 102) from vast backgrounds (104 − 105 events). In order to be able to

achieve this, powerful discriminating variables are developed. These variables are

used to cut – where signal and background distributions share different densities in

different ranges, and to fit – when distributions differ in shape. The fitting techniques

employed for the analysis presented in this thesis are discussed in Section 5.6.

4.5.1 Topological variables

The mass difference between the Υ (4S) and the BB pair is very small. As such

the BB pair is produced almost at rest in the CM frame – resulting in a spherical

distribution of its decay products, i.e. no preferred direction. This fact can be used

to develop powerful discriminating variables against continuum events – by far the

dominant source of background in the analysis described in this thesis. This is

because, by contrast, continuum event decay products form highly collimated jets

due to the large kinetic energy of the qq pair produced in the e+e− collision.

4.5.1.1 Thrust

The thrust axis of a collection of final state particles is the direction, in the CM

frame, in which their combined longitudinal momentum is maximised. The thrust

angle, θT , is defined here as the angle between the thrust axis of the reconstructed B

candidate, and the thrust axis of particles constituting the rest of the event (ROE).

The distribution of cos θT is approximately flat for signal events, whilst peaking

strongly at ±1 for continuum events. This is illustrated in Figure 4.5.
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4.5.1.2 The Fisher discriminant

The Fisher discriminant, F , is a linear combination of discriminating variables, xi,

which individually may not provide a large amount of discrimination. Combined

however, using optimised coefficients ai, F provides appreciable levels of signal-

background separation:

F =
∑

i

aixi. (4.12)

The Fisher discriminant used in the analysis described in this thesis uses the follow-

ing five variables:

• The zero and second order Legendre polynomials:

L0 =

NROE
∑

i

pi, (4.13)

L2 =

NROE
∑

i

pi ×
1

2
(3 cos2 θi − 1). (4.14)

pi and θi are the momentum and polar angle respectively of each track and

neutral cluster in the ROE (of which there are NROE in total).

• θBmom, the angle between the momentum of the reconstructed B candidate

and the beam direction. For true B events, in which a spin 1 Υ (4S) decays to

two spin 0 B mesons, the θBmom distribution is proportional to sin2 θBmom; it

is approximately flat for continuum.

• θBthr, the angle between the thrust axis of the reconstructed B candidate and

the beam direction. For true B events the distribution should be uniform

due to the isotropic nature of B decays, whilst for continuum it will show

a distribution proportional to 1 + cos2 θBthr consistent with spin 1
2

particles

coupling to a spin 1 boson. The quantities θBthr and θBmom rely on the principle

of the conservation of angular momentum.

• TFlv, the output of the flavour tagging algorithm [79]. This algorithm is

designed to look for processes specific to B decays. As such, many continuum
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events will have failed or weak tags, whilst a larger proportion of correctly

reconstructed B events will have strong tags.

Studies were carried out in which F was constructed using other sets of variables to

determine whether F(L0, L2, θBmom, θBthr, TFlv) was superior in terms of discrimina-

tory power. For each F , coefficients were calculated using signal-like and continuum-

like data samples. Separation power was then tested using a second sample of each

of these data types. For a given background rejection, F(L0, L2, θBmom, θBthr, TFlv)

was seen to give the greatest signal efficiency. This is illustrated in Figure 4.6 and

is in agreement with other studies [80, 81]. Further details can be found in Ap-

pendix A. F(L0, L2, θBmom, θBthr, TFlv) will simply be referred to as F throughout

the remainder of this thesis.

The distribution of F is approximately Gaussian for both signal and continuum

events – but with different means. This is illustrated in Figure 4.5.

For a further discussion of the Fisher discriminant method, see [82].
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Figure 4.5: | cos θT | (left) and F (right) distributions for MC simulating the

signal mode B+ → K
∗
(892)0(→ K−π+)K+ (red, solid line) and off-resonance

data consisting entirely of continuum background (blue, solid line). These dis-

tributions are normalised to unity. MC self-cross-feed distributions are also

shown, normalised to the fraction of signal events that are self-cross-feed (red,

dotted line) (self-cross-feed is discussed in Sections 5.5.2.4 and 5.7.1).
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Figure 4.6: Signal efficiency versus continuum background efficiency for

various Fisher discriminants. It can be seen that the 5-variable fisher,

F(L0, L2, θBmom, θBthr, TFlv), provides the greatest discrimination (background

efficiency is smallest for a given signal efficiency). A description of the vari-

ables used for each of these Fisher discriminants can be found in Appendix A.

4.5.2 Resonance variables

The resonance variables m2
K−π+ , m2

K+K− and cos θH are described in Section 1.4.1.

For the remainder of this thesis, the invariant mass variables shall be written mKπ

and mKK (+/−’s dropped). mKπ and cos θH distributions for reconstructed signal

and continuum background events are shown in Figure 4.7.

4.5.3 Kinematic variables

When choosing suitable kinematic event variables, there are numerous issues to

consider. These include:

• Optimising resolution.

• Avoiding correlations.
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Figure 4.7: mKπ (top left) and cos θH (top right) distributions for B+ →
K

∗
(892)0(→ K−π+)K+ MC (red, solid line) and off-resonance data (blue,

solid line). The fraction of reconstructed B+ → K
∗
(892)0(→ K−π+)K+ MC

events that are self-cross-feed is depicted by the red, dotted line. The bottom

plot shows mKπ distributions for off-resonance data (blue, solid line) and for

MC simulating the mode B+ → K
∗
0(1430)0(→ K−π+)K+. The red, solid line

(green, dotted line) represents a MC sample in which mKπ is modelled with a

LASS (BW) lineshape.

• Taking full advantage of the available information.

• The asymmetric nature of the PEP-II collider.

• Using variables that are free of non-essential information and which do not

depend on parameters that may vary (for example the boost of the e+e− CM

frame with respect to the laboratory frame), thus avoiding potential confusion

and resolution degradation.
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For pair production, e+e− → XX, the initial state has four momentum (Ei, ~pi),

where Ei = Ee+ + Ee− and ~pi = ~pe+ + ~pe− . Let ~pf be the resultant momentum for

the group of final state particles originating from X, and EX (EX) be X’s (X’s)

energy; mX (mX) is the rest mass of X (X) and mX = mX . All quantities defined

above in this section are in the laboratory frame.

Conserving energy and momentum, and using the energy-momentum relation (with

c = 1), we have

Ei = EX + EX , (4.15)

~pX = ~pi − ~pf , (4.16)

EX =
√

m2
X + ~p 2

f , (4.17)

EX =

√

m2
X + (~pi − ~pf )

2. (4.18)

Substituting Eq. (4.18) into Eq. (4.15) and rearranging,

EX =
E2
i − ~p 2

i + 2 (~pi · ~pf )
2Ei

(4.19)

=
s+ 2 (~pi · ~pf )

2Ei
, (4.20)

where

s = E2
i − ~p 2

i . (4.21)

For a symmetric collider, ~pi = 0, and Eq. (4.19) reduces to

EX =
Ei
2

=

√
s

2
, (4.22)

i.e. the energy of one of the beams.

For an asymmetric collider, let us boost into the e+e− CM frame:

EX −→ E ′
X =

1
√

1 − ~β 2

(

EX − ~β · ~pf
)

. (4.23)
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|~β| is the speed of the e+e− CM frame with respect to the laboratory frame as a

fraction of the speed of light in a vacuum, c. ~β can be written as

~β =
~pi
Ei
. (4.24)

Substituting Eq. (4.24) into Eq. (4.23),

E ′
X =

1
√

1 − (~pi/Ei)
2

(

EX − ~pi
Ei

· ~pf
)

=
Ei

√

E2
i − ~p 2

i

E2
i − ~p 2

i + 2 (~pi · ~pf )
2Ei

− Ei
√

E2
i − ~p 2

i

~pi · ~pf
Ei

=
E2
i − ~p 2

i + 2 (~pi · ~pf )
2
√

E2
i − ~p 2

i

− 2 (~pi · ~pf )
2
√

E2
i − ~p 2

i

=

√

E2
i − ~p 2

i

2

=

√
s

2
. (4.25)

This is the same result as that presented in Eq. (4.22), as expected.

The variable EX describes the expected energy of the reconstructed X candidate, in

the laboratory frame, using the beam parameters Ei and ~pi and the three momenta of

the detected decay products. It has been shown to be a valid quantity for asymmetric

collisions (Eq. (4.25)). We are now able to use EX to introduce two kinematic event

variables for ourX = B system2: mES and ∆E. These two variables make maximum

use of the available information whilst being largely uncorrelated.

∆E is the frame-independent difference between the expected energy of the recon-

structed B candidate, EX , and the energy of the candidate as obtained using decay

product masses as measured by the detector’s PID systems in the laboratory frame,

Ef :

∆E = Ef − EX . (4.26)

mES is the beam-energy substituted mass and is given by

mES =
√

E2
X − ~p 2

f . (4.27)

2For a collider operating just above the BB threshold, such as PEP-II, B’s result only from

pair production.
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It can be seen that mES is evaluated using the reconstructed candidates’ three

(rather than four – as with ∆E) momenta, avoiding the need to assign mass hy-

potheses to the B daughters. Instead, the beam energy is used. This is allowed

because, operating at the Υ (4S) energy, the four momenta of the B mesons are very

well constrained by the beam energy. The approach is advantageous because the

beam energy is known to a greater precision compared to the combined effect of the

detector mass resolutions for each of the B decay products.

∆E, on the other hand, does use reconstructed masses of the B candidate de-

cay products (as such, its resolution is considerably larger, typically – for B+ →
K+K−π+ – ∼ 20 MeV versus ∼ 2.5 MeV for mES). This is useful when mass hy-

potheses aid discrimination (see Section 5.5.2.1).

For a correctly reconstructed B meson, mES is expected to peak at the B mass,

5.279 GeV/c2 [23]. ∆E should peak at zero. For continuum background events,

the distributions are slowly varying over the allowed kinematic ranges. Figure 4.8

illustrates the distributions in mES and ∆E of reconstructed events for signal and

continuum background samples.
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Figure 4.8: mES (left) and ∆E (right) distributions for reconstructed sig-

nal and continuum background samples. The red, solid line represents B+ →
K

∗
(892)0(→ K−π+)K+ MC; the blue, solid line is for off-resonance data. The

fraction of reconstructed B+ → K
∗
(892)0(→ K−π+)K+ MC events that are

self-cross-feed is depicted by the red, dotted line.
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For further information regarding mES and ∆E, please see [83–85].



5
Analysis method

5.1 Introduction

The analysis method described in this chapter is for the measurement of the branch-

ing ratio of the charmless, hadronic decay

B+ → K
∗
(892)0(→ K−π+)K+.

Charge conjugate states are assumed throughout. The final state is the 3-body state

K+K−π+.

In keeping with BABAR collaboration policy, the analysis described here is performed

blind [86]. That is, the signal yield is not observed (i.e., unblinded) until all aspects

117



118 Chapter 5. Analysis method

of the analysis are complete.

Statistics permitting, an amplitude-level analysis of the full B+ → K+K−π+ Dalitz

plot is preferred. For such an analysis, the relative magnitudes and phases of the

contributing resonant and non-resonant components are extracted using the maxi-

mum likelihood (ML) technique. The amplitude-level approach thus makes possible

measurements of interference between intermediate states, in addition to the mea-

surements of rates. The ML method is discussed in Section 5.6.

However, despite PEP-II’s impressive luminosities, the amount of on-resonance data

acquired by the BABAR experiment at the time of writing are not sufficient to carry

out an analysis at the amplitude level. Instead an intensity-level analysis is con-

ducted. For such an analysis it is not possible to quantify the amount of interfer-

ence between intermediate states (e.g. K
∗
(892)0K+ and K

∗
0(1430)

0K+). It must

therefore be treated as a source of systematic error.

The analysis presented is a quasi-two-body analysis in that K
∗
(892)0K+ is inferred

from the structure observed in 3-body phase space. A ML fit is applied to extract a

signal yield in a particular region of the Dalitz plot where the K∗(892)0 is expected

to dominate. This yield, NS, is used to calculate the branching ratio, B:

B =
NS

εNB±

. (5.1)

ε is the efficiency of reconstruction and the selection criteria applied. It is esti-

mated using MC data. NB± is the number charged B mesons used, as discussed in

Section 4.4.

The main issue faced in this analysis is due to the possible presence of the channel

B+ → K
∗
0(1430)0(→ K−π+)K+ for which the following are unknown:

• Branching ratio.

• mKπ lineshape (as discussed in Section 1.4.3).

• Amount of interference with B+ → K
∗
(892)0(→ K−π+)K+.
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Using the current 90% CL upper limit of 6.3 × 10−6 on B(B+ → K
∗
0(1430)

0K+,

K
∗
0(1430)

0 → K−π+) [23] leads to a fractional systematic uncertainty on the mea-

surement of the rate of the 892 mode that is in excess of 100%. To decrease this

uncertainty it is necessary to obtain a more sensitive measurement than the one

quoted above for the rate at which B+ → K
∗
0(1430)

0(→ K−π+)K+ occurs.

The following strategy is therefore employed:

• Two independent fits are conducted in a region of the Dalitz plot where the

K∗(892)0 is expected to dominate. The two fit models are designed to extract:

– K+K−π+ final state events that occur via the K∗(892)0 resonance.

– All final state K+K−π+ events.

These fits will be referred to as the “5-variable fit in the 892 window” and the

“3-variable fit in the 892 window” respectively throughout the remainder of

this thesis.

• A fit is conducted in a region of the Dalitz plot where theK∗
0 (1430)0 is expected

to dominate. This fit will be referred to as the “3-variable fit in the 1430

window” throughout the remainder of this thesis.

If final state B+ → K+K−π+ events are present in the 892 window, which do not

proceed via the K∗(892)0 resonance, we would expect the signal yield extracted

from the 3-variable fit in the 892 window to be larger than the signal yield obtained

using the 5-variable fit. The most likely sources for such events are, as discussed

above, B+ → K
∗
0(1430)

0(→ K−π+)K+, and also non-resonant B+ → K+K−π+.

Upper limits on the numbers of B+ → K
∗
0(1430)

0(→ K−π+)K+ and non-resonant

B+ → K+K−π+ events present in the data sample can be estimated using the yield

extracted from the 3-variable fit in the 1430 window1. If the 3-variable fits indicate

1Ideally, a non-resonant window – a region of the B+ → K+K−π+ Dalitz plot free of any

intermediate resonances – would be used to estimate the number of non-resonant B+ → K+K−π+

events present in the dataset (see Figure 5.3). However, time did not permit such a study here.
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that there are no B+ → K
∗
0(1430)

0(→ K−π+)K+ or non-resonant B+ → K+K−π+

events present, the yield obtained for the 5-variable fit can be taken to be due only

to B+ → K
∗
(892)0(→ K−π+)K+ (and should be consistent with the yield from

the 3-variable fit in the 892 window). Otherwise – since the 5-variable fit doesn’t

discriminate 100% between final states that do and do not occur via the K∗(892)0

resonance – it is necessary to estimate the bias on the 5-variable fitted yield due to

B+ → K+K−π+ events that occur via an alternative – or no – intermediate state.

Only then can a measurement of the B+ → K
∗
(892)0(→ K−π+)K+ rate be made.

In the next section, an overview of the analysis method is given before describing

the analysis in detail in the rest of the chapter. The results obtained are presented

in Chapter 6.

5.2 Overview

The specifics of the independent 5- and 3-variable fits introduced in the previous

section are presented in Table 5.1.

The general procedure used for each fit is now outlined:

• Events are reconstructed and skimmed as described in Section 4.2.

• Selection criteria are applied to greatly enhance the signal to continuum back-

ground ratio. This is achieved using the PID selectors and discriminating

variables discussed in Sections 4.2.3 and 4.5 respectively.

• Sources of B related background are identified using MC.

• Signal and background events are modelled in the form of Probability Density

Functions (PDFs).

• A fit model is built using these PDFs.



5.3. Event selection 121

• This model is validated using toy and real MC. Real MC is MC of the type

described in Section 4.3; toy MC is discussed in Section 5.10.1.

• The model is applied to the on-resonance data sample.

5.3 Event selection

The selection of the reconstructed events that are outputted by PR (as discussed in

Section 4.2) occurs in three stages. These are now described.

5.3.1 Preselection

Preselection is where AllEvents are subjected to a filter algorithm, which outputs

the skimmed collection BCCC03a3body. Each track in the GoodTracksLoose list (see

Table 4.1) is kinematically fitted as a kaon or as a pion. For each triplet of tracks

with overall charge ±1 the algorithm forms all possible distinct combinations (eight

in total, e.g. track 1 = K+, track 2 = π−, track 3 = π+). If any of the combinations

pass the criteria in Table 5.2, the event makes it into the BCCC03a3body skim.

5.3.2 Batch level pre-analysis

The NonCharm3BodyUser package, briefly discussed in Section 4.2, is used to further

refine the BCCC03a3body collection. More demanding criteria are placed on the

skimmed events, and variables specific to subsequent analyses are calculated using

more general, fundamental quantities.

Vertexing of B candidates is carried out, with geometric and kinematic constraints

applied (vertexing is discussed in Section 4.2.4). mES and ∆E are then recalculated

using the track momenta obtained from the vertex fit. Next, a further vertex fit is

performed, identical except that this time the B mass constraint is applied. PID
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Fit
Variables Fit Dalitz Plot Selection Signal

Used In Fit Components Window Criteria Split?

5-variable S, qq, 892 window : Summarised Yes, into

fit in mES, ∆E, F , (BB)1, 0.744 < in STRU

the 892 mKπ, cos θH (BB)2, mKπ/( GeV/c2) Column 1, and

window (BB)3 < 1.048 Table 5.3 SSXF

3-variable S, qq, Summarised

fit in
mES, ∆E, F

(BB)1,
As above

in
No

the 892 (BB)2, Column 2,

window (BB)3 Table 5.3

1430 window :

3-variable S, qq, 1.048 < mKπ/ Summarised

fit in
mES, ∆E, F

(BB)2, ( GeV/c2) < 1.800, in
No

the 1430 (BB)3, mKK > 2.500 GeV/c2; Column 3,

window (BB)4 veto: 3.284 < mKK/ Table 5.3

( GeV/c2) < 3.618

Table 5.1: Summary of fits performed and Dalitz plot windows used. The

892 window and the 1430 window are illustrated in Figure 5.3. The fit method

is described in Section 5.6. Hypotheses for which fit components are used are:

S: signal hypothesis.

qq: continuum background hypothesis.

(BB)1−4: B related background hypotheses.

Splitting the signal component into truth matched and self-cross-feed (SXF)

sub-components is discussed in Section 5.7.1.

selectors are then run, and the topological and resonance discriminating variables

(described in Sections 4.5.1 and 4.5.2 respectively) are calculated (using the B mass
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Requirement
Further

Comments

Total charge of
= ±1

Charged B

B candidate meson decay

Total number of
≥ 4

At least one

tracks in event track from ROE

Total energy
< 20 GeV

Basic sanity

of event check

|mES −
√
s

2
| ≤ 0.1 GeV/c2

√
s

2
= 5.29 GeV/c2

|∆E| < 0.45 GeV
∆E and mES are

defined in Section 4.5.3

Table 5.2: Preselection criteria.

constrained vertex fit). Finally, a loose cut of |∆E| < 0.35 GeV is applied.

NonCharm3BodyUser processed events are outputted to Root [68] ntuples, and are

general to any three-charged-track mode.

5.3.3 B+ → K+K−π+ selection

Further selection (using the CharmlessFitter package) is performed on the three-

charged-track combinations to single out the K+K−π+ final state and further sup-

press backgrounds (in the order shown):

• The B candidate is required to have a valid kinematic vertex fit for a KKπ

track hypothesis.

• Kaon candidate tracks must pass the kaon selector, SMSKaonSelector, in Tight

mode; the pion candidate track must fail SMSKaonSelector in Tight mode.
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• All tracks must fail the electron selector, LHSelector, in the mode defined by

Eq. (4.7).

• Kaon candidate tracks must have opposite charges.

• | cos θT | < 0.9.

• |F| < 3.0.

• Cuts are applied to the invariant masses, mKπ and, for the 1430 window, mKK .

Dalitz plot windows are discussed in the next section.

• For the 5-variable fit in the 892 window, cos θH < 0.9. This cut is applied not

to enhance the signal to continuum background ratio (in fact it is detrimental

to this ratio), but to make possible a fit to the cos θH signal distribution.

Figure 5.1 illustrates that, for signal events, there is a sharp drop off as cos θH

approaches +1. This is because the momentum of the resonance’s daughter

pion is low at high cos θH , and difficult to reconstruct.

When used as a fit variable, cos θH provides excellent discrimination between

states that occur via the spin 1 K∗(892)0 resonance and states that do not.

For constant reconstruction and selection criteria efficiency as a function of

cos θH , a symmetric cos θH cut ensures that interference between the interme-

diate resonances K∗(892)0 and K∗
0 (1430)0 cancels. However, | cos θH | < 0.9 is

not used despite the asymmetric cut introducing a source of systematic error

due to the unknown amount of interference. This is because the analysis is

statistics dominated with the extra source of systematic error deemed a worth-

while trade-off for the enhanced sensitivity. A more detailed discussion can be

found in Section 4.6 of [87].

• 5.22 GeV/c2 < mES < 5.29 GeV/c2.

• |∆E| < 0.1 GeV.
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• For the 1430 window, the potential BB background B+ → χc0(→ K+K−)K+

is vetoed (see Section 5.4).

• Finally, the requirement of a single candidate per event is imposed. In the

rare (less than < 5% for signal MC) case of multiple candidates existing, the

single candidate is chosen arbitrarily to avoid introducing bias.
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Figure 5.1: cos θH distribution for reconstructed B+ → K
∗
(892)0(→

K−π+)K+ MC (black points). The blue, solid line represents one of many

failed attempts to successfully fit to this distribution in the range −1 −→ +1.

These unsuccessful fits are due to the sharp drop off toward cos θH = 1.

The requirements listed here are summarised for the 5- and 3-variable fits in the 892

window, and for the 3-variable fit in the 1430 window, in Table 5.3. CharmlessFitter

output is in the form of Root files with ntuples containing a smaller number of vari-

ables and fewer events relative to the input files (the NonCharm3BodyUser output).

The efficiencies of the selection criteria discussed here for relevant data samples are

shown in Table 5.4. For the 5-variable fit in the 892 window, a breakdown of the

efficiencies for individual cuts for B+ → K
∗
(892)0(→ K−π+)K+ MC and for on-

and off-resonance data are given in Tables 5.5-5.6.

At this point it is useful to introduce the following notation:
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C
o
lu

m
n

1

C
o
lu

m
n

2

C
o
lu

m
n

3

Selection
(Cut)

{Veto}

Reconstruction, preselection X X X

KKπ hypothesis X X X

PID – SMSKaonSelector Tight X X X

PID – LHSelector Tight X X X

Oppositely charged kaon cands. X X X

| cos θT | (< 0.9) X X X

|F| (< 3.0) X X X

mKπ/( GeV/c2) (> 0.744, < 1.048) X X

mKπ/( GeV/c2) (> 1.048, < 1.800) X

mKK/( GeV/c2) (> 2.500) X

cos θH (< 0.9) X

mES/( GeV/c2) (> 5.22, < 5.29) X X X

|∆E|/GeV (< 0.1) X X X

mKK/( GeV/c2) {> 3.284, < 3.618} X

One candidate/event imposed X X X

Table 5.3: Summary of selection criteria applied for the 5-variable fit in the

892 window (column 1), the 3-variable fit in the 892 window (column 2), and

the 3-variable fit in the 1430 window (column 3).

• RaSC—reconstruction and the selection criteria summarised in Table 5.3.

• Final on-resonance sample—on-resonance data that have been subjected to

RaSC.
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Signal On-res. Off-res.

MC Data Data

5-variable fit in the 892 window (signal MC simulates the mode

B+ → K
∗
(892)0(→ K−π+)K+):

MC Events Generated 242, 000 — —

Reconstructed/Preselected 174, 951 2.487 × 107 2.487 × 106

Passed Selection Criteria 64, 391 38, 690 4, 077

3-variable fit in the 892 window (signal MC simulates the mode

B+ → K
∗
(892)0(→ K−π+)K+):

MC Events Generated 242, 000 — —

Reconstructed/Preselected 174, 951 2.487 × 107 2.487 × 106

Passed Selection Criteria 68, 747 40, 156 4, 239

3-variable fit in the 1430 window (signal MC simulates the mode

B+ → K
∗
0(1430)

0(→ K−π+)K+):

MC Events Generated
117, 000 β,

— —
128, 150 λ

Reconstructed/Preselected
82, 838 β,

2.487 × 107 2.487 × 106

91, 620 λ

Passed Selection Criteria
26, 055 β,

46, 657 4, 792
24, 143 λ

β: Breit-Wigner mKπ lineshape; λ: LASS mKπ lineshape.

Table 5.4: Efficiencies of reconstruction and selection criteria. The num-

ber of reconstructed/preselected events is the number remaining after PR, the

skimming algorithm and NonCharm3BodyUser code have been run (described in

Sections 4.2, 5.3.1 and 5.3.2 respectively). The number of events to pass the se-

lection criteria is the number remaining after CharmlessFitter code has been

applied. CharmlessFitter implements the cuts described in Section 5.3.3, and

summarised in Table 5.3.
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Selection (Cut)
Truth

SXF
MC

Match Total

Reconstruction, preselection 0.563 0.723 0.723

KKπ hypothesis 0.999 0.984 0.986

PID – SMSKaonSelector Tight 0.565 0.316 0.575

PID – LHSelector Tight 1.000 1.000 1.000

Oppositely charged kaon cands. 1.000 0.939 0.967

| cos θT | (< 0.9) 0.926 0.909 0.931

|F| (< 3.0) 0.998 0.998 0.998

mKπ/( GeV/c2) (> 0.744, < 1.048) 0.940 0.326 0.821

cos θH (< 0.9) 0.945 0.811 0.946

mES/( GeV/c2) (> 5.22, < 5.29) 0.999 0.932 0.996

|∆E|/GeV (< 0.1) 0.979 0.455 0.934

One candidate/event imposed at this stage . . .

Overall Efficiency
0.2499 0.0162 0.2661

± 0.0009 ± 0.0003 ± 0.0009

Table 5.5: Breakdown of reconstruction and selection criteria efficiencies

for B+ → K
∗
(892)0(→ K−π+)K+ signal MC. The cuts are hierarchical –

performed in the order shown in the table. Each line refers to the efficiency

of that cut after all previous cuts have been applied. The efficiencies shown

here are calculated by counting the number of events that have at least one

candidate, which passes the relevant cut. Self-cross-feed (SXF) is discussed in

Section 5.5.2.4. This table is relevant to the 5-variable fit in the 892 window.
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Selection (Cut)
On-res. Off-res.

Data Data

Reconstruction, preselection
(2.487 × 107 (2.487 × 106

events) events)

KKπ hypothesis 0.889 0.890

PID – SMSKaonSelector Tight 0.087 0.087

PID – LHSelector Tight 0.960 0.963

Oppositely charged kaon cands. 0.834 0.837

| cos θT | (< 0.9) 0.621 0.613

|F| (< 3.0) 1.000 1.000

mKπ/( GeV/c2) (> 0.744, < 1.048) 0.210 0.222

cos θH (< 0.9) 0.968 0.966

mES/( GeV/c2) (> 5.22, < 5.29) 0.685 0.682

|∆E|/GeV (< 0.1) 0.291 0.292

One candidate/event imposed at this stage . . .

Efficiency, relative to preselection
(1.556 ± (1.639 ±

0.008) × 10−3 0.026) × 10−3

Table 5.6: Breakdown of selection criteria efficiencies for on- and off-

resonance data. The cuts are hierarchical – performed in the order shown

in the table. Each line refers to the efficiency of that cut after all previous cuts

have been applied. The efficiencies shown here are calculated by counting the

number of events that have at least one candidate, which passes the relevant

cut. This table is relevant to the 5-variable fit in the 892 window.
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5.4 Dalitz plot windows

The regions of the B+ → K+K−π+ Dalitz plot to be used are chosen such that:

• The region contains a large proportion of the decays of the dominant resonance

of interest.

• Interference from neighbouring modes is minimised.

• Contamination by B related background is minimised (an in-depth discussion

of B related background is presented in Section 5.5.2).

The channels shown in Table 5.7 are identified as modes that could cause contami-

nation, if care is not taken in choosing suitable m2
Kπ vs. m2

KK windows. Figure 5.2

illustrates where simulated events for these modes lie in the Dalitz plot. These

events have been subjected to RaSC (except that no cuts are applied to mKπ, mKK

and cos θH).

Where a mode forms a clear band in the Dalitz plot, and when the number of

events expected in the final on-resonance sample for this mode is not insignificant,

a veto can be applied (should the band intersect a window to be used to study

signal events). A Breit-Wigner is fitted to the invariant mass distribution (mKπ or

mKK) from the relevant MC distribution. The veto is then centered at the fitted

Breit-Wigner’s mean, with a width of ten times the Breit-Wigner’s width.

The dimensions of the Dalitz plot windows used are presented in Table 5.1. The

windows are illustrated in Figure 5.3.

There are further sources of B related background for which the use of vetoes is

not appropriate. These sources must be modelled in the fit. This is discussed in

Section 5.5.2.
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Channel, Number Of Events Expected In

B+ → Final On-resonance Sample

J/ψ(→ l+l−)K+ 138.2 ± 4.7 ± 6.0

χc0(→ K+K−)K+ 98.9 ± 0.8 ± 42.3

χc0(→ π+π−)K+ 9.0 ± 0.3 ± 3.7

ψ(2S)(→ l+l−)K+ 11.6 ± 0.8 ± 1.0

D
0
(→ K+K−)π+ 1371.2 ± 14.6 ± 97.0

D
0
(→ K+π−)π+ 565.6 ± 10.7 ± 36.1

D
0
(→ K+π−π0)π+ 837.8 ± 22.4 ± 71.6

D
0
(→ K+π−)K+ 51.6 ± 0.7 ± 8.5

φ(1020)(→ K+K−)π+ 17.5 ± 0.1 ± 17.5

J/ψ(→ K+K−)K+ 6.4 ± 0.1 ± 0.9

D
0
(→ K−π+)K+ 3.9 ± 0.1 ± 0.7

Table 5.7: Background modes expected to be present in the B+ → K+K−π+

Dalitz plot, and the number of events expected in the final on-resonance sample.

This number is calculated using RaSC efficiencies obtained from exclusive MC,

and from PDG [23] branching ratios. The first error is statistical (from the

statistical errors on the MC efficiency and NB±); the second is systematic

(from the uncertainty on the branching ratios, and the systematic uncertainty

on NB±).

5.5 Background

The two types of background to be accounted for in this analysis have been touched

upon in previous chapters, namely continuum (qq) background and B related (BB)

background. Here, they are discussed in a little more detail. Self-cross-feed (SXF)

is also discussed.
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Figure 5.2: Distributions of the events of the background modes listed in

Table 5.7 in the B+ → K+K−π+ Dalitz plot. The number of events plotted for

each mode depends only on the number of MC events available and is irrelevant.

It is the positions of the events shown and the number of events expected in the

final on-resonance sample (shown in the legend and in Table 5.7) that must be

considered when choosing appropriate regions of the Dalitz plot. The solid, red

lines illustrate the window where K∗(892)0 is expected to dominate; the blue,

dashed lines depict the region expected to be dominated by K∗
0 (1430)0(avoiding

the bottom left corner of the Dalitz plot where B related background is more

abundant). Additionally, vetoes will be applied where deemed necessary. (The

black, solid lines represent an area suitable for measuring the non-resonant

contribution after vetoes have been applied).
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Figure 5.3: Blue: the 892 window; yellow: the 1430 window. Also shown

is the available Dalitz plot phase space (green) and an appropriate window to

measure the non-resonant contribution (red).

5.5.1 Continuum (qq) background

qq background is the dominant source of background in this analysis. It is the result

of incorrectly reconstructing random tracks that originate from di-jet quark sources

(e+e− → cc, ss, uu, dd) as a signal B meson. e+e− → τ+τ− also contributes.

The selection criteria presented in Section 5.3.3 eliminate the vast majority of qq

background. However, the events that remain greatly outnumber the signal events.

qq background is modelled using off-resonance data, which consist purely of contin-

uum events. Modelling the background involves choosing PDFs that accurately rep-

resent the distributions of the fit variables, as shown in Sections 5.7-5.9. A sideband
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in on-resonance data is also used as a cross-check. RaSC are applied to these data

samples before modelling takes place. The exception is that for the on-resonance

sideband, 0.10 < ∆E/GeV < 0.35.

5.5.2 B related (BB) background

BB background is the result of B decays to modes that are not the signal mode

(e+e− → BB → X 6= K
∗
(892)0(→ K−π+)K+), but that are mis-reconstructed as

such. It is potentially more dangerous, as it can be more difficult to distinguish

from signal, and it must be ensured that no modes that are a potential source of

BB background are ignored.

Sources of BB background fall into several categories. These are now discussed

(Sections 5.5.2.1-5.5.2.4). A discussion of how BB background is identified and

treated is then presented (Section 5.5.2.5).

5.5.2.1 Particle mis-identification

The inclusive (charmless) intensities for the channels B+ → K+K−K+ and B+ →
K+π−π+ are ≈ 1 − 2 orders of magnitude larger than that for B+ → K+K−π+.

Therefore, although the rate at which pions are incorrectly identified as kaons (and

vice versa) is low, the number of BB background events occurring as a result of

particle mis-identification is appreciable and cannot be ignored. Due to the tight

PID cut applied to kaon track candidates, and the relatively looser PID cut applied

to pion track candidates, the rate at which kaons are mis-identified as pions is

approximately one order of magnitude larger than the rate at which pions are mis-

identified as kaons. For the same reason, B+ → π+π−π+ has very little impact.

The ∆E variable assists in discriminating against BB background of this type. As

discussed in Section 4.5.3, for correctly reconstructed signal events, ∆E is expected

to peak at zero. For reconstructed candidates where particle mis-identification has
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occurred, the peak is expected to be shifted from zero due to the difference between

the mass of the actual particle and the hypothesised mass of the reconstructed

candidate (see, for example, the second row plots in Figure 5.16). This is useful

when the difference in masses between the reconstructed and actual particle types is

appreciable, such as for pion versus kaon – and also for muon/electron versus kaon

and electron versus pion.

5.5.2.2 Combinatorics

Combinatoric BB background occurs where a BB event has three random, unrelated

tracks incorrectly reconstructed as a signal event. These events have discriminating

variable distributions very similar to those of qq background. This is useful because

although there are a considerable number of events of this type present, the fit will

assign a background hypothesis to the majority and the impact on the signal yield

extracted from the fit will be small.

5.5.2.3 4- and 2-body decays

B decays to final state 4- and 2-body modes are a source of BB background when a

particle is lost in reconstruction (usually a low momentum neutral), or where a track

from the other B in the event is incorrectly attributed to the reconstructed signal

B. Decays of neutral B mesons, where combinations of a lost neutral daughter and

the attribution of a track from the other B occur, are also a possible source of BB

background.

5.5.2.4 Self-cross-feed (SXF)

SXF is where signal events have been mis-reconstructed by switching one or more

tracks from the decay of the true signal B with tracks from the decay of the other B

in the event. The amount of SXF present is estimated from MC studies. For the 5-
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variable fit in the 892 window, of the 242, 000 B+ → K
∗
(892)0(→ K−π+)K+ signal

MC events generated, a total of 64, 391 pass RaSC of which 3, 918 lack a MC truth

match (see Section 4.3) and so are considered to be SXF. Despite being described

in this section, SXF is taken to belong to the signal hypothesis in this analysis.

5.5.2.5 Identification and treatment of BB background

To identify sources of BB background RaSC are applied to MC samples contain-

ing generic B+B− and B0B0 decays (535.9 and 541.3 million events respectively).

MC truth information is then used to determine the channels that significantly con-

tribute. These channels are treated individually using exclusive MC samples. World

average branching ratios and the efficiencies of applying RaSC to the exclusive MC

samples are used to calculate the number of events expected in the final on-resonance

sample for each source, nBB Bkgd. If this number – plus its error, ∆nBB Bkgd – is

in excess of 0.5 events, toy tests are conducted. These toy tests are described in

Section 5.10.4. Their purpose is to determine whether the presence of the BB back-

ground source induces a bias on the signal yield extracted from the fit, and if so how

large.

The events remaining in the generic MC samples – after the modes to be treated

individually have been removed – provide ideal combinatoric samples. As with

the exclusive samples, events from these samples are embedded into the toy tests

described in Section 5.10.4 to establish the impact on the signal yield.

Whilst generic MC provides an excellent tool to identify sources of BB background,

it does not necessarily provide 100% coverage of every possible mode. In addition to

those identified using the generic samples, further channels are considered as being

possible sources of BB background. All modes considered as possible sources of

BB background for the BABAR B+ → K+K−K+ [88] and B+ → K+π−π+ [50]

analyses are also considered for the analysis described here. Modes with higher K∗

resonances (e.g. K∗
0 (1430)0) are investigated, as are charm and charmonium modes.
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Charm and charmonium modes are a potential problem due to their relatively much

larger branching ratios. These large branching ratios do mean, however, that such

modes are very likely to be accurately represented in the generic samples.

Recent analyses of the B+ → K+K−K+ Dalitz plot strongly suggest the presence

of a resonant structure at mKK ≈ 1500 MeV/c2 [42, 88]. Furthermore, the non-

resonant B+ → K+K−K+ contribution is modelled for these analyses as being

non-uniform across the Dalitz plot. B+ → K+K−K+ is a major source of BB

background for the analysis described in this chapter. As such it is important that

it is modelled correctly. For the BABAR non-resonant B+ → K+K−K+ MC sample,

the events are distributed evenly over the available 3-body phase space. There is

no available MC for the aforementioned ≈ 1500 MeV/c2 structure. It has therefore

been decided to generate MC that simulates B+ → K+K−K+ events that occur

via numerous resonances, plus the non-resonant contribution, with both relative

magnitudes and phases modelled. The model used is Belle’s published model B0,

solution 1 [42], minus the B+ → φ(1020)K+ contribution2. This model accounts

for the ≈ 1500 MeV/c2 structure and for the non-uniform non-resonant distribution

across the Dalitz plot. Further models are used as a cross-check, and to quantify

the model dependent systematic error.

Table 5.8 (Table 5.9) lists the sources of BB background that contribute nBB Bkgd+

∆nBB Bkgd > 0.5 events to the final on-resonance sample for the 5-(3-)variable fit

in the 892 (1430) window. The modes listed in Table 5.8 are also the modes that

contribute nBB Bkgd + ∆nBB Bkgd > 0.5 events for the 3-variable fit in the 892

window, though values of nBB Bkgd are slightly different.

2Ideally, MC simulating both the B+ → K+π−π+ and B+ → K+K−K+ Dalitz plots in

their entirety is preferred, since interference between intermediate resonances is accounted for.

However, the process used to generate the Dalitz plot modelled MC is too inefficient for the

B+ → K+π−π+ plot. Due to φ(1020)’s narrow width, the process also becomes too inefficient for

the B+ → K+K−K+ plot when the B+ → φ(1020)K+ contribution is included. B+ → φ(1020)(→
K+K−)K+ is treated individually, as are the contributions that make up the B+ → K+π−π+

plot. This is adequate in the context of the analysis described in this chapter.
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Modes listed in Table 5.10 are also identified as possible sources of BB background

for the 5-variable fit in the 892 window. These modes share the same final state as

the mode under investigation. Interference is therefore an issue.

A full list of MC samples that are subjected to RaSC can be found in Appendix B.

Also shown in Appendix B is a list of the most abundant modes present in the

combinatoric generic samples, after the modes that are treated exclusively have

been removed.

5.6 The maximum likelihood (ML) method

The analysis described in this chapter is a multivariate analysis. That is, numerous

variables are used to form a model that discriminates between various hypotheses –

signal and background being examples of such hypotheses. Fitting a model to data

can be done in many ways, for example the χ2 method. Perhaps one of the most

elegant, however, is that of the maximum likelihood (ML) approach. The advantages

of using the ML method include:

• Its robustness for low statistics fits.

• It can be performed on unbinned data eliminating the need to choose bin sizes,

which can lead to bias and inaccuracy.

The ML method is discussed in detail in [91]. The basic principle is now described.

Consider numerous independent measurements of some experimental variable x.

The probability of observing x in the infinitesimal interval [x, x + dx] is given by

P(x; ~Θ) dx, where P(x; ~Θ) is the Probability Density Function (PDF) with parame-

ters ~Θ. The PDF is normalised such that the probability of measuring a value of x

that lies within the complete sample range [xmin, xmax] is unity:

∫ xmax

xmin

P(x; ~Θ) dx = 1. (5.2)
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Number # MC Branching # Events

BB Background Source
Of Events Events Ratio Expected

To Pass Run (× In Final

RaSC Over 10−6) On-res. Sample

Combinatoric charged generics 316 5 × 108 (5.0 ± 2.5) × 105 68.3 ± 3.8 ± 34.2

Combinatoric neutral generics 118 5 × 108 (5.0 ± 2.5) × 105 25.2 ± 2.3 ± 12.6

B+ → K+K−K+ Dalitz plot model, minus the B+ →
φ(1020)K+ contribution

Belle model B0, sol. 1, minus φK [42] 402 85, 190 21.1 ± 2.0 [89] 23.0 ± 1.1 ± 2.2

(Belle model B0, sol. 2, minus φK [42] 188 47, 464 21.1 ± 2.0 [89] 19.3 ± 1.4 ± 1.9)

(BABAR solution A, minus φK [88] 306 49, 568 21.1 ± 2.0 [89] 30.1 ± 1.7 ± 2.9)

(BABAR solution B, minus φK [88] 295 48, 172 21.1 ± 2.0 [89] 29.9 ± 1.7 ± 2.9)

B+ → φ(1020)(→ K+K−)K+ 3, 266 163, 000 4.4 ± 0.3 [23] [89] 20.6 ± 0.4 ± 1.5

B0 → K∗(892)0(→ K+π−)K
∗
(892)0(→ K−π+) (L) 740 122, 000 < 9.8 [89] 6.9 ± 0.3 ± 6.9

B+ → η′(958)(→ γρ(770)0(→ π+π−))K+ 175 145, 000 20.5 ± 1.1 [23] [89] 5.7 ± 0.4 ± 0.3

B0 → K+K−π0 (NR) 299 126, 000 < 19.0 [23] 5.2 ± 0.3 ± 5.2

B+ → ρ(770)0(→ π+π−)K+ 742 206, 000 5.1 ± 0.9 [89] 4.3 ± 0.2 ± 0.7

B0 → K+K−K0
S (NR) 178 220, 000 12.4 ± 1.2 [89] 2.3 ± 0.2 ± 0.2

B+ → f0(980)(→ π+π−)K+ 128 148, 000 9.1 ± 1.1 [89] 1.8 ± 0.2 ± 0.2

B0 → K+ρ(770)−(→ π−π0) 398 647, 000 9.9 ± 1.6 [89] 1.4 ± 0.1 ± 0.2

B+ → K∗(892)+(→ K+π0)K
∗
(892)0(→ K−π+) (L) 657 126, 000 < 1.6 [89] [90] 1.0 ± 0.0 ± 1.0

B+ → D
0
(→ K+K−)K+ 638 250, 000 1.4 ± 0.2 [23] 0.9 ± 0.0 ± 0.1

B0 → K+π−π0 (NR) 236 2, 307, 000 35.6 ± 3.4 [89] 0.8 ± 0.1 ± 0.1

B+ → K1(1270)
0(→ ρ(770)+(→ π+π0)K−)K+ 138 117, 000 < 5.0† 0.7 ± 0.1 ± 0.7

B0 → K1(1270)
+(→ ρ(770)0(→ π+π−)K+)K− 125 117, 000 < 5.0† 0.6 ± 0.1 ± 0.6

B0 → K∗(892)0(→ X)γ 16 392, 000 43.0 ± 4.0 [23] 0.4 ± 0.1 ± 0.0

B+ → K∗(892)+(→ K+π0)K
∗
(892)0(→ K−π+) (T) 28 126, 000 < 15.8 [89] 0.4 ± 0.1 ± 0.4

L(T): Longitudinally (transversely) polarised; †: Conservative upper limit.

Table 5.8: Potential sources of BB background for the 5-variable fit in the

892 window. MC efficiencies are calculated by applying RaSC to the relevant

samples. For the number of events expected in the final on-resonance sample,

the first error is statistical – from the statistical error on the MC efficiency

and on NB±. The second error is systematic – from the systematic uncertainty

on NB± and on the branching ratio (BR). Where only an upper limit (UL) is

available, BR = UL/2 ± UL/2 is used.

The ML method requires that N measurements of x have been made, {x1, x2, . . . xn},
and that the form of the PDF, P(x; ~Θ), is known. It sets out to determine ~Θ. It
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Number # MC Branching # Events

BB Background Source
Of Events Events Ratio Expected

To Pass Run (× In Final

RaSC Over 10−6) On-res. Sample

Combinatoric charged generics 2, 234 5 × 108 (5.0 ± 2.5) × 105 477.9 ± 10.1 ± 239.0

Combinatoric neutral generics 710 5 × 108 (5.0 ± 2.5) × 105 153.4 ± 5.8 ± 76.7

B+ → K+K−K+ Dalitz plot model, minus the B+ →
φ(1020)K+ contribution

Belle model B0, sol. 1, minus φK [42] 1, 561 85, 190 21.1 ± 2.0 [89] 89.4 ± 2.2 ± 8.6

(Belle model B0, sol. 2, minus φK [42] 879 47, 464 21.1 ± 2.0 [89] 90.4 ± 3.0 ± 8.7)

(BABAR solution A, minus φK [88] 864 49, 568 21.1 ± 2.0 [89] 85.1 ± 2.9 ± 8.2)

(BABAR solution B, minus φK [88] 834 48, 172 21.1 ± 2.0 [89] 84.5 ± 2.9 ± 8.1)

B0 → K+K−π0 (NR) 1, 070 126, 000 < 19.0 [23] 18.7 ± 0.6 ± 18.7

B0 → K∗(892)0(→ K+π−)K
∗
(892)0(→ K−π+) (L) 2, 005 122, 000 < 9.8 [89] 18.6 ± 0.4 ± 18.6

B+ → f0(980)(→ π+π−)K+ 848 148, 000 9.1 ± 1.1 [89] 12.0 ± 0.4 ± 1.4

B+ → D
0
(→ K+K−)K+ 8, 608 250, 000 1.4 ± 0.2 [23] 11.5 ± 0.1 ± 1.9

B+ → D
0
(→ K+π−)π+ 64 302, 000 189.3 ± 11.9 [23] 9.3 ± 1.2 ± 0.6

B+ → D
0
(→ K+K−)π+ ? 42 20, 000 19.4 ± 1.4 [23] 9.4 ± 1.5 ± 0.7

B0 → K+K−K0
S (NR) 687 220, 000 12.4 ± 1.2 [89] 8.9 ± 0.3 ± 0.8

B+ → η′(958)(→ γρ(770)0(→ π+π−))K+ 270 145, 000 20.5 ± 1.1 [23] [89] 8.8 ± 0.5 ± 0.5

B0 → K+ρ(770)−(→ π−π0) 1, 308 647, 000 9.9 ± 1.6 [89] 4.6 ± 0.1 ± 0.8

B+ → ρ(770)0(→ π+π−)K+ 614 206, 000 5.1 ± 0.9 [89] 3.5 ± 0.1 ± 0.6

B+ → K∗(892)+(→ K+π0)K
∗
(892)0(→ K−π+) (L) 1, 988 126, 000 < 1.6 [89] [90] 2.9 ± 0.1 ± 2.9

B0 → K+π−π0 (NR) 747 2, 307, 000 35.6 ± 3.4 [89] 2.7 ± 0.1 ± 0.3

B+ → D
0
(→ K+π−)K+ 290 362, 000 14.1 ± 2.3 [23] 2.6 ± 0.2 ± 0.4

B+ → K∗(892)+(→ K+π0)K
∗
(892)0(→ K−π+) (T) 138 126, 000 < 15.8 [89] 2.0 ± 0.2 ± 2.0

B+ → ρ(770)0(→ π+π−)K∗(892)+(→ K+π0) (L) 222 201, 000 3.4 ± 1.3 [23] [89] 0.9 ± 0.1 ± 0.3

B+ → J/ψ(→ K+K−)K+ 4, 392 280, 000 0.2 ± 0.0 [23] 0.9 ± 0.0 ± 0.1

B+ → K+π+π− (NR) 1, 621 1, 298, 985 2.9 ± 1.1 [89] 0.8 ± 0.0 ± 0.3

B+ → K1(1270)0(→ ρ(770)+(→ π+π0)K−)K+ 160 117, 000 < 5.0† 0.8 ± 0.1 ± 0.8

B0 → K1(1270)+(→ ρ(770)0(→ π+π−)K+)K− 154 117, 000 < 5.0† 0.8 ± 0.1 ± 0.8

B0 → K+π− 323 1, 873, 500 18.9 ± 0.7 [89] 0.8 ± 0.0 ± 0.0

B+ → φ(1020)(→ K+K−)K+ 111 163, 000 4.4 ± 0.3 [23] [89] 0.7 ± 0.1 ± 0.1

L(T): Longitudinally (transversely) polarised; †: Conservative upper limit.

?: Final state K+K−π+, but zero interference assumed here.

Table 5.9: Potential sources of BB background for the 3-variable fit in the

1430 window.

does so by choosing values of ~Θ such as to maximise the probability of obtaining

the observed measurements, according to P(x; ~Θ). This probability is given by the
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Number # MC Branching # Events

BB Background Source
Of Events Events Ratio Expected

To Pass Run (× In Final

RaSC Over 10−6) On-res. Sample

B+ → K
∗
0(1430)

0(→ K−π+)K+

mKπ modelled as LASS 9, 624 128, 150 < 3.8‡ 32.9 ± 0.3 ± 32.9

mKπ modelled as Breit-Wigner 3, 771 117, 000 < 3.8‡ 14.1 ± 0.2 ± 14.1

B+ → K+K−π+ (NR) 15, 211 1, 323, 000 < 6.3 [23] 8.4 ± 0.1 ± 8.4

‡: Estimated using Eq. (C.1).

Table 5.10: Final state K+K−π+ channels that are a potential source of BB

background for the 5-variable fit in the 892 window.

Number # MC Branching # Events

BB Background Source
Of Events Events Ratio Expected

To Pass Run (× In Final

RaSC Over 10−7) On-res. Sample

B+ → K+K−π+(NR) 55, 203 1, 323, 000 < 63.0 [23] 30.4 ± 0.1 ± 30.4

B+ → K
∗
(892)0(→ K−π+)K+ 17, 845 242, 000 < 14.5§ 12.4 ± 0.1 ± 12.4

B+ → K
∗
2(1430)

0(→ K−π+)K+ 19, 428 97, 000 < 1.2‡ 2.6 ± 0.0 ± 2.6

B+ → K
∗
(1680)0(→ K−π+)K+ 19, 422 117, 000 < 1.1‡ 2.4 ± 0.0 ± 2.4

§: From unpublished cut and count analysis [6].

‡: Estimated using Eq. (C.1).

Table 5.11: Final state K+K−π+ channels that are expected to be present in

the 1430 window.
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likelihood function:

L(~Θ) = P(x1; ~Θ)P(x2; ~Θ) . . .P(xn; ~Θ) dxN . (5.3)

It is convenient to write L(~Θ) as

L(~Θ) =
N
∏

i=1

P(xi; ~Θ), (5.4)

where the proportionality constant dxN has been omitted.

More generally, P can be a combination of a number of normalised PDFs, e.g. Q,

R and S, which are functions of uncorrelated variables x, y and z, say. Then P
becomes

P(~x; ~Θ) = P(x, y, z; ~Θ) = Q(x; ~θQ)R(y; ~θR)S(z; ~θS), (5.5)

where ~θQ,R,S are subsets of ~Θ. For a fit to M hypotheses the weighted sum is taken:

P(~x; ~Θ) =
M
∑

j=1

fj Qj(x; ~θQ)Rj(y; ~θR)Sj(z; ~θS); (5.6)

fj is the fraction of events in the sample belonging to hypothesis j, and

M
∑

j=1

fj = 1. (5.7)

The likelihood function is now written

L(~Θ) =
N
∏

i=1

(

M
∑

j=1

fj Qj(xi; ~θQ)Rj(yi; ~θR)Sj(zi; ~θS)

)

. (5.8)

One of the most common data analysis scenarios (and the one faced in this chapter)

is where yields are the required output of a ML fit (the number of events in each of

the M hypotheses). The ML method can be used to achieve this, but Poissonian

fluctuations in the number of events are not taken into account.

5.6.1 The extended maximum likelihood formalism

The extended likelihood function is given by

L(ν, ~Θ) =
νN

N !
e−ν

N
∏

i=1

P(~xi; ~Θ) =
e−ν

N !

N
∏

i=1

νP(~xi; ~Θ), (5.9)
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where

P(~xi; ~Θ) =
M
∑

j=1

(

V
∏

l=1

P l
j(x

l
i; ~Θ)

)

. (5.10)

V is the number of discriminating variables used. Eq. (5.9) is the product of Eq. (5.4)

(the normal likelihood function) and the total event yield. This yield is in the form

of a pseudo-constant factor that represents a Poissonian distribution with mean ν.

The sample size, N , is now defined to be part of the result of the experiment, as are

the yields, nj, for each of the hypotheses.

Assuming no functional relation between ν and ~Θ, it can easily be shown that the

estimator

ν̂ = N

(

=
M
∑

j=1

nj

)

, (5.11)

as one would expect, and that the function to maximise (dropping constant factors)

is

L(~n, ~Θ) = exp

(

−
M
∑

k=1

nk

)

N
∏

i=1

(

M
∑

j=1

nj

(

V
∏

l=1

P l
j(x

l
i;
~Θ)

))

. (5.12)

With L now a function of ~n, in addition to ~Θ, and with components of ~n considered

to be random variables, the additional source of statistical fluctuation that was not

accounted for by the normal ML is now considered.

It is sometimes necessary (as with the analysis described in this chapter) to fix

certain components of ~Θ and ~n. The values to which they are fixed are obtained

from separate data samples, MC for example.

5.6.2 Fitting tools

The dedicated fitting package used to maximise user-defined likelihood functions for

the analysis described in this chapter is Minuit [92,93]. Minuit’s MIGRAD routine is

used to find the function maximum3 and return the parameter values. MIGRAD also

3
Minuit actually finds the minimum value of the negative loge of the likelihood function. This

is computationally more convenient since the product over N events becomes a summation.
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makes a first attempt at calculating parameter errors. The HESSE and MINOS routines

perform more precise calculations of parameter errors, as discussed in Section 6.2.1.

The modelling package RooFit [94] provides a high-level user interface to Minuit

via the Root class TMinuit. Likelihood function normalisation is carried out auto-

matically by RooFit before the function is passed to Minuit. Normalisation can be

to unity for the normal ML or to the Poisonially modelled total number of events

for the extended version. Numerous PDF shapes are available in the RooFit pack-

age. These can be combined by addition, multiplication and convolution to form

the desired fit model. PDF shapes can also be added by the user. RooFit makes

use of further Root classes for histogram plotting and data manipulation.

CharmlessFitter, in addition to being used to implement the selection cuts de-

scribed in Section 5.3.3, is also used to provide a further level of simplification

between the user and various common fitting tasks. It builds upon the RooFit

framework and is the most heavily used package in the analysis described in this

chapter.

5.7 Signal and qq bkgd. PDFs for the 5-var. fit in

the 892 window

We first construct a fit model with two fit components (hypotheses) for which PDFs

are constructed: signal, S, and continuum background, qq. Toy tests – referred to in

Section 5.5.2.5, and described in Section 5.10.4 – are then conducted to determine

whether BB background PDFs are required.

5.7.1 Splitting the signal component

For the way in which we implement the ML method, it is assumed that components

of ~x (see Eq. (5.12)) are uncorrelated. Correlations may bring about biases to the
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fit results.

For the 5-variable fit in which the variable cos θH is employed, the decision is taken

to split S into truth matched and SXF sub-components, STRU and SSXF . This

approach is chosen because of a large correlation for un-split S between the dis-

criminating variables mES and cos θH in signal MC. This is illustrated in Figure 5.4.

The correlation is brought about due to SXF events being concentrated towards

cos θH = 1 (also shown in Figure 5.4), and having, on average, lower mES values

than their truth matched counterparts.
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Figure 5.4: Left: cos θH distributions for B+ → K
∗
(892)0(→ K−π+)K+

signal MC (with RaSC applied). The blue (red) histogram represents truth

matched (SXF) events. It can be seen that SXF events tend towards high

cos θH . Right: for an un-split signal component this brings about a large and

undesired correlation between cos θH and another fit variable, mES.

Table 5.12 shows the correlations between the five fit variables for STRU , SSXF and

qq. Correlations, ρx,y, are calculated using

ρx,y =
cov(x, y)

σxσy
, (5.13)

where x and y are fit variables, cov(x, y) is their covariance, and σx and σy are their

respective variances. The values obtained are shown to be at an acceptable level (toy

tests, described in Section 5.10.3, are conducted to determine whether any biases
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are present due to these small correlations, and if so how large). Correlation plots

are presented in Appendix E.

mES ∆E F mKπ cos θH

mES 1
−0.010, 0.010, 0.000, −0.008,

0.006 0.014 −0.001 −0.007

∆E
−0.114,

1
−0.017, 0.000, −0.025,

0.024 −0.015 −0.000 −0.013

F
0.003, 0.001,

1
0.007, 0.000,

−0.063 −0.041 −0.003 −0.024

mKπ

0.005, 0.004, −0.005,
1

0.044,

−0.054 0.009 0.000 0.042

cos θH
−0.012, 0.018, −0.021, 0.004,

1
0.016 0.104 −0.044 0.006

Table 5.12: Correlations (calculated using Eq. (5.13)) between variables used

in the 5-variable fit in the 892 window. The values in the bottom left section

of the table are for signal MC. For each cell, the first value is for STRU , the

second value is for SSXF . The values in the top right section of the table are for

qq background. For each cell, the first value is obtained using the off-resonance

sample, the second value is obtained using the on-resonance sideband sample

(these samples are discussed in the main text (Section 5.7.2)).

The functional forms of P l
j (from Eq. (5.12)), where l = mES, ∆E, F , mKπ, cos θH

and j = S, qq are presented in the remainder of this section. Splitting the S

component gives

PS = (1 − fSXF )PSTRU
+ fSXFPSSXF

, (5.14)

where fSXF is the SXF fraction.

For the 3-variable fits cos θH is not used and as such the signal component is not

split.
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5.7.2 Data samples

The functional forms and parameters of P l=mES ,∆E,F ,mKπ ,cos θH

Si=TRU,SXF
are determined by

performing unbinned, one-dimensional fits to a MC sample in which B+ → K
∗
(892)0

(→ K−π+)K+ events are simulated. The fits are to 60, 473 truth matched events

and 3, 918 SXF events – the number of events remaining after RaSC have been

applied to an original sample containing 242, 000 generated events (fSXF = 6.08%).

qq PDFs are constructed by performing fits to an off-resonance data sample that has

been subjected to RaSC. This sample contains 4, 077 events. The PDF functional

forms are checked using an on-resonance sideband data sample, containing 30, 781

events after RaSC.

In the fit to the final on-resonance sample, the functional forms of all PDFs are fixed.

Ideally, all PDF parameters would be floated, as would fSXF . However, due to the

very small number of signal events expected, to ensure a stable fit it is necessary to

fix PDF parameters for the signal component. fSXF must also be fixed.

Fit parameter values, and their errors, are presented in Appendix D.

5.7.3 mES PDFs

The Crystal Ball function (CB) [95] – a Gaussian modified by a power law tail:

CB(mES;µ, σ, α, n) =
1

N
×























































exp
(

−1
2
(mES − µ)2/σ2

)

, if (mES − µ)/σ ≥ −|α| and α ≥ 0

(n/|α|)n exp(−|α|2/2) ×
(−(mES − µ)/σ + n/|α| − |α|)−n , if (mES − µ)/σ < −|α| and α ≥ 0

exp
(

−1
2
(µ−mES)

2/σ2
)

, if (µ−mES)/σ ≥ −|α| and α < 0

(n/|α|)n exp(−|α|2/2) ×
(−(µ−mES)/σ + n/|α| − |α|)−n , if (µ−mES)/σ < −|α| and α < 0

(5.15)
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– is fitted to both the truth matched and SXF signal distributions. The Argus

function (AF) [96],

AF(mES;m0, ξ) =
1

N
mES

√

1 − (mES/m0)2 exp
(

ξ − ξ(mES/m0)
2
)

, (5.16)

is fitted to the qq background distribution. The Argus endpoint, m0, is fixed at half

the Υ (4S) mass (5.29 GeV/c2). These fits are illustrated in Figure 5.5.
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Figure 5.5: mES distributions after the application of RaSC (black points

with error bars) with fitted PDFs superimposed (blue, solid line). The PDF

functional forms and the data samples used are described in the main text

(Section 5.7). Signal PDF parameter values are given in Tables D.1 and D.2;

qq background PDF parameter values are given in Table D.3. Top left: truth

matched signal; top right: SXF; bottom: qq background (bottom left: using off-

resonance sample; bottom right: using on-resonance sideband sample). These

PDFs are used for the 5-variable fit in the 892 window.
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5.7.4 ∆E PDFs

Truth matched signal events are fitted with a double Gaussian (DG):

DG(∆E;µ1, σ1, µ2, σ2, f2) =
1

N

(

(1 − f2) exp

(

−(∆E − µ1)
2

2σ2
1

)

+

f2 exp

(

−(∆E − µ2)
2

2σ2
2

))

. (5.17)

SXF events are fitted with a first order polynomial, as are qq background events.

These fits are illustrated in Figure 5.6.

5.7.5 F PDFs

Double Gaussians are fitted to signal (truth matched and SXF) and qq background

distributions, as illustrated in Figure 5.7.

5.7.6 mKπ PDFs

A Breit-Wigner is fitted to the truth matched signal distribution. SXF is fitted with

a Gaussian (centred at approximately the K∗(892)0 mass) plus a first order polyno-

mial. A Breit-Wigner and a Voigtian (a Breit-Wigner convolved with a Gaussian) –

both plus a first order polynomial – are also tried, but the Gaussian gives the best

fit. The K∗(892)0 is also present in continuum events. As such, a Breit-Wigner plus

a first order polynomial is fitted to the qq background distribution. These fits are

illustrated in Figure 5.8.

5.7.7 cos θH PDFs

For constant RaSC efficiency as a function of cos θH , a second order polynomial is

expected to describe the cos θH distribution for truth matched signal events. How-

ever, this efficiency is not constant, as illustrated in Figure 5.9. Attempts are made
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Figure 5.6: ∆E distributions after the application of RaSC (black points

with error bars) with fitted PDFs superimposed (blue, solid line). The PDF

functional forms and the data samples used are described in the main text

(Section 5.7). Signal PDF parameter values are given in Tables D.1 and D.2;

qq background PDF parameter values are given in Table D.3. Top left: truth

matched signal; top right: SXF; bottom: qq background (using off-resonance

sample). These PDFs are used for the 5-variable fit in the 892 window.

at fitting numerous PDF shapes to the truth matched signal distribution, the most

successful by far being the function ePoly8(cos θH) +C. Poly8(cos θH) is an eighth or-

der polynomial in cos θH and C is a real scalar. ePoly5(cos θH) +C is fitted to the SXF

distribution, where Poly5(cos θH) is a fifth order polynomial. Continuum events

are fitted with a second order polynomial. Fitted PDFs to cos θH distributions are

illustrated in Figure 5.10.
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Figure 5.7: F distributions after the application of RaSC (black points with

error bars) with fitted PDFs superimposed (blue, solid line). The PDF func-

tional forms and the data samples used are described in the main text (Sec-

tion 5.7). Signal PDF parameter values are given in Tables D.1 and D.2; qq

background PDF parameter values are given in Table D.3. Top left: truth

matched signal; top right: SXF; bottom: qq background (bottom left: using off-

resonance sample; bottom right: using on-resonance sideband sample). These

PDFs are used for the 5-variable fit in the 892 window.

5.8 Signal and qq bkgd. PDFs for the 3-var. fit in

the 892 window

Signal PDFs are constructed by fitting to 68, 747 B+ → K
∗
(892)0(→ K−π+)K+ sig-

nal MC events – the number remaining after RaSC have been applied to an original

sample containing 242, 000 generated events. An off-resonance sample containing
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Figure 5.8: mKπ distributions after the application of RaSC (black points

with error bars) with fitted PDFs superimposed (blue, solid line). The PDF

functional forms and the data samples used are described in the main text

(Section 5.7). Signal PDF parameter values are given in Tables D.1 and D.2;

qq background PDF parameter values are given in Table D.3. Top left: truth

matched signal; top right: SXF; bottom: qq background (bottom left: using off-

resonance sample; bottom right: using on-resonance sideband sample). These

PDFs are used for the 5-variable fit in the 892 window.

4, 239 events and an on-resonance sideband sample (0.10 < ∆E/GeV < 0.35) con-

taining 31, 912 events – both after the application of RaSC – are used to construct

qq PDFs. Table 5.13 lists the functional forms of the PDFs. PDF parameters are

given in Appendix D. Figure 5.11 illustrates fit variable distributions with PDFs

overlaid. Table 5.14 shows correlation values between fit variables; correlation plots

are presented in Appendix E.
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Figure 5.9: Efficiency of RaSC, as a function of cos θH .

S qq

mES Crystal Ball Argus

∆E Double Gaussian Linear

F Double Gaussian Double Gaussian

Table 5.13: PDF shapes for the 3-variable fit in the 892 window.

mES ∆E F

mES 1
−0.013, 0.013,

0.008 0.012

∆E −0.055 1
−0.019,

−0.017

F −0.036 −0.000 1

Table 5.14: Correlations (calculated using Eq. (5.13)) between variables used

in the 3-variable fit in the 892 window. The values in the bottom left section

of the table are for the S component. The values in the top right section of

the table are for the qq component (the first value is obtained using the off-

resonance sample, the second using the on-resonance sideband sample).
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Figure 5.10: cos θH distributions after the application of RaSC (black points

with error bars) with fitted PDFs superimposed (blue, solid line). The PDF

functional forms and the data samples used are described in the main text

(Section 5.7). Signal PDF parameter values are given in Tables D.1 and D.2;

qq background PDF parameter values are given in Table D.3. Top left: truth

matched signal; top right: SXF; bottom: qq background (bottom left: using off-

resonance sample; bottom right: using on-resonance sideband sample). These

PDFs are used for the 5-variable fit in the 892 window.
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Figure 5.11: Fit variable distributions and fitted PDFs for the 3-variable fit

in the 892 window. Left column: mES; middle column: ∆E; right column:

F . Top row: S; second row: qq (off-resonance sample); bottom row: qq (on-

resonance sideband sample). The functional forms of the PDFs are listed in

Table 5.13, whilst the PDF parameter values are listed in Tables D.7 (signal)

and D.8 (qq background). The data samples used are discussed in the main

text (Section 5.8).
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5.9 Signal and qq bkgd. PDFs for the 3-var. fit in

the 1430 window

Figure 5.12 compares fit variable distributions for two separate MC samples – both

containing simulatedB+ → K
∗
0(1430)

0(→ K−π+)K+ events that have passed RaSC.

For one sample the mKπ lineshape is modelled as a Breit-Wigner. For the other, this

lineshape is modelled as the LASS shape (see Appendix F for LASS parameters).

It can be seen that the shapes of the fit variable distributions are very similar,

regardless of mKπ lineshape. The sample in which mKπ is modelled as the LASS

shape is used to construct PDFs for the S component. This sample contains 26, 055

events.

qq PDFs are constructed by performing fits to an off-resonance sample, which con-

tains 4, 792 events after the application of RaSC. An on-resonance sideband sample

(0.10 < ∆E/GeV < 0.35) that has been subjected to RaSC is also used to ensure

that the PDF functional forms are in agreement for on- and off-resonance data. This

sample consists of 37, 773 events.

PDF functional forms and parameters are listed in Table 5.15 and Appendix D

respectively. Figure 5.13 illustrates fit variable distributions with overlaid PDFs.

Table 5.16 and Appendix E present correlation values and plots respectively.

S qq

mES Crystal Ball Argus

∆E Double Gaussian Linear

F Gaussian Double Gaussian

Table 5.15: PDF shapes for the 3-variable fit in the 1430 window.
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Figure 5.12: mES (top left), ∆E (top right), F (bottom left) and mKπ

(bottom right) distributions for MC events simulating the decay B+ →
K

∗
0(1430)0(→ K−π+)K+, after the application of RaSC. The red (blue) points

represent a sample in which the mKπ lineshape is modelled as Breit-Wigner

(LASS).

5.10 Tests and validations for the 5-var. fit in the

892 window

The PDFs constructed in Section 5.7 are combined according to Eq. (5.12) to form a

prototype fit model. Before applying the fit model to the final on-resonance sample,

it must first be verified that it behaves as we would expect and does not return

biased results. The effect of BB background on the behaviour of the fit model is

also studied, with the possibility that further components shall be added to account

for this type of background.
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Figure 5.13: Fit variable distributions and fitted PDFs for the 3-variable fit

in the 1430 window. Left column: mES; middle column: ∆E; right column:

F . Top row: S; second row: qq (off-resonance sample); bottom row: qq (on-

resonance sideband sample). The functional forms of the PDFs are listed in

Table 5.15, whilst the PDF parameter values are listed in Tables D.10 (signal)

and D.11 (qq background). The data samples used are discussed in the main

text (Section 5.9).

5.10.1 Toy MC and toy tests

In addition to being used for fitting, PDFs are also used to generate toy MC. The

Von Neumann accept/reject algorithm [97] is one example of a technique used to

generate toy MC events. N random numbers are thrown determining where in N -

dimensional space the event is to be generated (for the 5-variable fit, N = 5). The

probability that the event will be accepted at this point in variable space, ~x, is

PAccept(~x) =
P(~x)

PMax

. (5.18)
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mES ∆E F

mES 1
0.022, −0.000,

−0.004 0.017

∆E
0.023,

1
−0.022,

−0.007 0.001

F
−0.054, −0.007,

1
−0.030 −0.003

Table 5.16: Correlations (calculated using Eq. (5.13)) between variables used

in the 3-variable fit in the 1430 window. The values in the bottom left section

of the table are for signal MC (the first value is obtained using MC in which the

mKπ lineshape is modelled as LASS, the second value is obtained using MC in

which the mKπ lineshape is modelled as Breit-Wigner). The values in the top

right section of the table are for qq background (the first value is obtained using

the off-resonance sample, the second using the on-resonance sideband sample).

P(~x) is the value of the PDF at position ~x; PMax is the maximum value of the PDF

in the available variable space. A further random number is generated and if it is

less than PAccept then the event is accepted, otherwise it is rejected. The process is

iterated until the requested number of events have been accepted. There are other

techniques, the most efficient of which is chosen automatically within the RooFit

framework. The user simply passes the fit model to RooFit (via CharmlessFitter).

Sampling datasets from PDFs in this way allows us to generate similar but statisti-

cally independent samples on which to exercise the fit.

A poorly constructed fit model or a lack of statistics can bring about fit instabilities

and biases. These must be removed, or at least, in the case of biases, accounted for.

Toy tests are employed to determine whether biases or instabilities are present. A toy

test consists of numerous experiments. One experiment is defined to be the process

of acquiring an independent dataset and applying the multivariate fit to extract



160 Chapter 5. Analysis method

floated PDF parameter values and, in the case of the extended ML, floated yields.

Samples from one experiment to the next differ only due to statistical fluctuations.

For each experiment i, a bias (bi) and a pull (pi) can be calculated for each floated

parameter or yield:

bi = fi − t, (5.19)

pi =
bi

(σf )i
. (5.20)

t is the true value, fi is the value obtained from the fit and (σf )i is the error on

fi. For a stable fit model and a large enough number of experiments, the residual

distribution and the pull distribution that result in histogramming bi and pi respec-

tively are expected to be Gaussian. These Gaussians should be centred at zero for

an unbiased fit. The overall bias, β, for a floated parameter or yield in the fit model

is taken to be the mean of the Gaussian fitted to the residual distribution. The pull

distribution also provides a tool for testing error coverage. For correct error cover-

age the Gaussian width of the pull distribution should be unity. Notable deviations

from unity indicate error undercoverage (width > 1) or error overcoverage (width

< 1).

5.10.2 Pure toy tests

Pure toy tests are used to check for fit instabilities and intrinsic biases. They are

also used for fit error studies.

A single pure toy test consists of numerous experiments (typically 600 here4). For

each of these experiments, signal and qq background datasets are sampled – as

described in Section 5.10.1 – using the PDFs presented in Section 5.7. The number

of events generated for each hypothesis is varied around a mean value according

to the Poisson distribution (termed Poissonian smearing). This mean value (t in

4The number of experiments conducted in a toy test is limited by the amount of available

processing (CPU) time.
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Eq. (5.19)) is set to be equal to the number of events expected in the final on-

resonance sample. The extended ML fit is then applied to extract the floated PDF

parameters and the signal and qq background yields. On completion of the final

experiment, a Gaussian is fitted to the pull distribution. For an unbiased fit model

with correct error coverage, this Gaussian should be centred on zero with unit width.

Several toy tests are carried out, each time varying the Poissonian mean that de-

termines the number of events generated and which reflects the number of events

expected in the final on-resonance sample. Table 5.17 lists the results of these pure

toy tests. No significant biases or error discrepancies are observed. Figure 5.14

illustrates as an example the residual and pull distributions obtained from one of

these toy tests for the signal and qq background yields; Figure 5.15 shows the pull

distributions of the floated PDF parameters.

5.10.3 Toy tests with embedded signal events

The toy tests described in Section 5.10.2 are repeated this time using fully simulated

(rather than toy) MC events for the signal component. This is achieved by randomly

sampling subsets from the available MC, which has been subjected to RaSC. Using

fully simulated signal events provides a test of whether any subtle correlations be-

tween fit variables give rise to biases. Here, we are not concerned with validating

the error coverage of the fit. Poissonian smearing is therefore turned off. For a large

number of experiments per toy test this does not affect the value of the bias β, but

it does enable this value to be established with greater precision. The results of toy

tests with embedded MC signal events are listed in Table 5.18. No significant biases

are observed.
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Number Of Signal Average Yield Bias

And qq Background Extracted Over β;

Events Generated 600 Experiments Mean, Width Of Gaussian

(Poissonially (And Average Error) Fitted To Pull Distribution

Smeared) Signal qq Bkgd. Signal qq Bkgd.

122 signal, 38, 568 qq bkgd. 122.40 ± 0.71 38, 565 ± 8 0.40 ± 0.71; −2.90 ± 7.63;

(17.78) (197) −0.026 ± 0.040, −0.017 ± 0.039,

0.987 ± 0.029 0.949 ± 0.027

61† signal, 38, 629 qq bkgd. 61.27 ± 0.57 38, 632 ± 8 0.27 ± 0.57; 3.39 ± 8.31;

(14.13) (197) −0.055 ± 0.041, 0.015 ± 0.042,

1.015 ± 0.029 1.033 ± 0.030

51 signal, 38, 639 qq bkgd. 50.29 ± 0.55 38, 647 ± 8 −0.71 ± 0.55; 8.25 ± 8.27;

(13.26) (197) −0.141 ± 0.043, 0.039 ± 0.042,

1.046 ± 0.030 1.029 ± 0.030

41 signal, 38, 649 qq bkgd. 41.91 ± 0.52 38, 630 ± 8 0.91 ± 0.52; −19.08 ± 7.94;

(12.52) (197) −0.025 ± 0.043, −0.099 ± 0.040,

1.046 ± 0.030 0.988 ± 0.029

31 signal, 38, 659 qq bkgd. 31.00 ± 0.49 38, 661 ± 8 −0.01 ± 0.49; 2.20 ± 7.92;

(11.43) (197) −0.119 ± 0.044, 0.009 ± 0.040,

1.088 ± 0.031 0.986 ± 0.028

21 signal, 38, 669 qq bkgd. 21.38 ± 0.43 38, 662 ± 8 0.38 ± 0.43; −7.19 ± 8.25;

(10.29) (197) −0.093 ± 0.044, −0.039 ± 0.042,

1.069 ± 0.031 1.027 ± 0.030

11 signal, 38, 679 qq bkgd. 10.79 ± 0.42 38, 672 ± 8 −0.21 ± 0.42; −7.46 ± 7.99;

(8.85) (197) −0.163 ± 0.048, −0.040 ± 0.041,

1.169 ± 0.034 0.996 ± 0.029

†: 61 is the number of signal events expected in the final on-resonance sample for

B(B+ → K
∗
(892)0(→ K−π+)K+) = 1.0 × 10−6.

Table 5.17: Pure toy tests for the 5-variable fit in the 892 window.

5.10.4 Toy tests with embedded BB bkgd. events

Having established that there are no intrinsic biases present in the fit model and

that there are no biases due to the small correlations between the S component fit

variables, the next stage is to study the effect of the presence of BB background
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Figure 5.14: A pure toy test consisting of 600 experiments is conducted.

For each experiment, 61 signal and 38,629 qq background events (Poissonially

smeared) are generated and subjected to the extended ML fit. Top row: residual

distributions with fitted Gaussians for signal (left) and qq background (right)

yields. Bottom row: pull distributions with fitted Gaussians for the same yields.

The parameters of the fitted Gaussians are given in Table 5.17.

events. For each of the modes listed in Table 5.8, a toy test is conducted in which

BB backgrounds are embedded. For example, for the mode B+ → φ(1020)(→
K+K−)K+, nBB Bkgd = 21 events are embedded in addition to the S and qq events

that are sampled as in Section 5.10.3 (recall from Section 5.5.2.5, that for a given

BB background source, nBB Bkgd is the number of expected events in the final

on-resonance sample due to this source). The embedded BB background events

are sampled from MC samples fully simulating the mode under study. These MC

samples are first subjected to RaSC. At this stage the fit model consists only of

an S component and a qq component. It follows then that the presence of the
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Figure 5.15: PDF parameter pull distributions for the pure toy test described

in Figure 5.14.

BB background events will introduce a bias to one or both of the yields extracted

from the fit. It is the bias on the signal yield that is of interest. Where a source

of BB background induces a significant bias on the signal yield, it can be treated

in one of two ways. The estimated bias can be subtracted from the signal yield,
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Number Of β On Number Of β On

MC Signal Signal qq Background qq Bkgd.

Events Sampled Yield Events Generated Yield

122 1.04 ± 0.55 38, 568 −0.85 ± 0.55

61 0.94 ± 0.47 38, 629 −0.76 ± 0.47

51 0.97 ± 0.44 38, 639 −0.80 ± 0.44

41 0.37 ± 0.43 38, 649 −0.21 ± 0.43

31 0.21 ± 0.41 38, 659 −0.08 ± 0.41

21 0.66 ± 0.39 38, 669 −0.57 ± 0.39

11 0.09 ± 0.39 38, 679 −0.05 ± 0.39

Table 5.18: Biases on the signal and qq background yields for the 5-variable

fit in the 892 window. These values are obtained using toy tests with embedded

MC signal events. 600 experiments are run per toy test.

or a component can be added to the fit model to account for the BB background

hypothesis.

Table 5.19 lists the biases obtained from running toy tests with embedded BB back-

ground events. Table 5.20 lists further biases, but here the results are hypothetical,

since zero interference is assumed for modes with the same final state. For modes

that cause a significant bias on the signal yield, in addition to the toy tests in which

nBB Bkgd BB background events are embedded, further toy tests are conducted in

which nBB Bkgd ± ∆nBB Bkgd events are embedded. This is helpful where it is nec-

essary to apply systematic errors (i.e. when subtracting the bias due to a particular

source from the signal yield). Note that for some of the modes listed in Table 5.19,

the number of events sampled per experiment multiplied by the number of exper-

iments per toy test is in excess of the number of MC events available (Table 5.8).

Oversampling in this way means that the subset samples used for each experiment

are pseudo-independent in that some events are used in more than one subset. The
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level of oversampling required to noticeably skew results is avoided here with a large

margin to spare.

The three sources of BB background that induce the largest biases on the signal

yield are:

• B+ → φ(1020)(→ K+K−)K+.

• B+ → K+K−K+ Dalitz plot model, minus the B+ → φ(1020)K+ contribu-

tion.

• B+ → ρ(770)0(→ π+π−)K+.

The numbers of events estimated to be present in the final on-resonance sample

for these sources are n1
BB Bkgd

= 20.6 ± 0.4 ± 1.5, n2
BB Bkgd

= 23.0 ± 1.1 ± 2.2 and

n3
BB Bkgd

= 4.3± 0.2± 0.7 respectively (n2
BB Bkgd

depends on the Dalitz plot model

used, the value given here is using the Belle model B0 (solution 1) [42], as discussed

in Section 5.5.2.5). The fit model is modified by adding components to account for

these three sources of BB background. This gives five components in total:

• Signal, S (split into STRU and SSXF ).

• qq background, qq.

• BB background, (BB)1 (B+ → φ(1020)(→ K+K−)K+).

• BB background, (BB)2 (B+ → K+K−K+ Dalitz plot model, minus theB+ →
φ(1020)K+ contribution).

• BB background, (BB)3 (B+ → ρ(770)0(→ π+π−)K+).
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Mode And Number Of Events Embedded
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(Signal) (qq Bkgd.) (Signal) (qq Bkgd.)

Combinatoric charged generics 69 0.43 ± 0.47 68.56 ± 0.47 B0 → K∗(892)0(→ K+π−)K
∗
(892)0(→ K−π+) (L) 7 0.14 ± 0.48 6.86 ± 0.48

Combinatoric charged generics 107 0.82 ± 0.48 106.21 ± 0.48 B0 → K∗(892)0(→ K+π−)K
∗
(892)0(→ K−π+) (L) 14 0.45 ± 0.48 13.56 ± 0.47

Combinatoric charged generics 31 0.45 ± 0.45 30.57 ± 0.45 B0 → K∗(892)0(→ K+π−)K
∗
(892)0(→ K−π+) (L) 1 −0.04 ± 0.47 1.03 ± 0.47

Combinatoric neutral generics 26 0.75 ± 0.48 25.25 ± 0.48 B+ → η′(958)(→ γρ(770)0(→ π+π−))K+ 6 0.57 ± 0.48 5.44 ± 0.48

Combinatoric neutral generics 41 1.01 ± 0.47 39.98 ± 0.47 B+ → η′(958)(→ γρ(770)0(→ π+π−))K+ 7 0.84 ± 0.48 6.17 ± 0.48

Combinatoric neutral generics 11 0.52 ± 0.48 10.48 ± 0.48 B+ → η′(958)(→ γρ(770)0(→ π+π−))K+ 5 0.41 ± 0.47 4.60 ± 0.47

B+ → K+K−K+ Dalitz plot model, minus the B+ → B0 → K+K−π0 (NR) 6 0.26 ± 0.48 5.77 ± 0.48

φ(1020)K+ contribution B0 → K+K−π0 (NR) 11 0.71 ± 0.48 10.31 ± 0.48

Belle model B0, sol. 1, minus φK 24 1.97 ± 0.47 22.04 ± 0.47 B0 → K+K−π0 (NR) 1 −0.02 ± 0.47 1.04 ± 0.47

Belle model B0, sol. 1, minus φK 27 2.54 ± 0.46 24.48 ± 0.46 B+ → ρ(770)0(→ π+π−)K+ 5 1.35 ± 0.47 3.64 ± 0.47

Belle model B0, sol. 1, minus φK 20 1.92 ± 0.46 18.08 ± 0.46 B+ → ρ(770)0(→ π+π−)K+ 6 1.83 ± 0.49 4.18 ± 0.49

(Belle model B0, sol. 2, minus φK 20 1.73 ± 0.46 18.27 ± 0.46) B+ → ρ(770)0(→ π+π−)K+ 4 1.17 ± 0.45 2.83 ± 0.45

(Belle model B0, sol. 2, minus φK 23 1.61 ± 0.46 21.40 ± 0.46) B0 → K+K−K0
S (NR) 3 −0.08 ± 0.47 3.09 ± 0.47

(Belle model B0, sol. 2, minus φK 17 1.26 ± 0.50 15.76 ± 0.50) B+ → f0(980)(→ π+π−)K+ 2 0.02 ± 0.48 1.97 ± 0.48

(BABAR solution A, minus φK 31 2.51 ± 0.47 28.49 ± 0.47) B+ → f0(980)(→ π+π−)K+ 3 0.13 ± 0.48 2.88 ± 0.48

(BABAR solution A, minus φK 35 2.86 ± 0.47 32.15 ± 0.47) B0 → K+ρ(770)−(→ π−π0) 2 0.16 ± 0.47 1.83 ± 0.47

(BABAR solution A, minus φK 26 2.29 ± 0.46 23.71 ± 0.46) B+ → K∗(892)+(→ K+π0)K
∗
(892)0(→ K−π+) (L) 2 0.04 ± 0.47 1.97 ± 0.47

(BABAR solution B, minus φK 30 2.03 ± 0.46 27.99 ± 0.46) B+ → D
0
(→ K+K−)K+ 2 −0.08 ± 0.47 2.09 ± 0.47

(BABAR solution B, minus φK 35 2.43 ± 0.47 32.61 ± 0.47) B0 → K+π−π0 (NR) 1 −0.01 ± 0.46 1.04 ± 0.46

(BABAR solution B, minus φK 26 2.11 ± 0.46 23.91 ± 0.46) B+ → K1(1270)
0(→ ρ(770)+(→ π+π0)K−)K+ 2 −0.03 ± 0.47 2.02 ± 0.47

B+ → φ(1020)(→ K+K−)K+ 21 3.41 ± 0.46 17.59 ± 0.46 B0 → K1(1270)
+(→ ρ(770)0(→ π+π−)K+)K− 2 −0.05 ± 0.47 2.05 ± 0.47

B+ → φ(1020)(→ K+K−)K+ 23 3.93 ± 0.47 19.08 ± 0.48 B0 → K∗(892)0(→ X)γ 1 0.11 ± 0.46 0.91 ± 0.46

B+ → φ(1020)(→ K+K−)K+ 19 3.62 ± 0.49 15.39 ± 0.49 B+ → K∗(892)+(→ K+π0)K
∗
(892)0(→ K−π+) (T) 1 −0.05 ± 0.46 1.08 ± 0.46

Table 5.19: Biases obtained from toy tests with embedded BB background

events (5-variable fit in the 892 window). Fit model components are S and

qq; no BB components. 600 experiments are run per toy test. Poissonian

smearing is turned off.
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Mode And Number Of Events Embedded
β β

(Signal) (qq Bkgd.)

B+ → K
∗
0(1430)0(→ K−π+)K+

mKπ modelled as LASS 33 14.13 ± 0.49 18.86 ± 0.50

mKπ modelled as LASS 67 30.10 ± 0.55 36.89 ± 0.56

mKπ modelled as LASS 1 0.35 ± 0.46 0.68 ± 0.46

mKπ modelled as Breit-Wigner 15 5.71 ± 0.48 9.29 ± 0.48

mKπ modelled as Breit-Wigner 29 10.85 ± 0.49 18.17 ± 0.49

mKπ modelled as Breit-Wigner 1 0.30 ± 0.46 0.71 ± 0.46

B+ → K+K−π+ (NR) 9 3.41 ± 0.50 5.62 ± 0.50

B+ → K+K−π+ (NR) 17 6.68 ± 0.50 10.34 ± 0.50

B+ → K+K−π+ (NR) 1 0.34 ± 0.46 0.69 ± 0.46

Table 5.20: As Table 5.19, except the BB background modes share the same

final state as signal events. Biases shown are hypothetical in that the assump-

tion of zero interference is made.
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5.10.5 BB background PDFs

Table 5.21 lists the PDF functional forms used for the (BB)i (i = 1, 2, 3) compo-

nents. These PDFs are illustrated in Figure 5.16. They are generated by performing

one-dimensional fits to the appropriate MC samples5. A keys PDF (used to fit to

cos θH for the (BB)2 component) is a continuous, non-parametric PDF. See [98] for

further details. PDF parameters are presented in Appendix D.

Correlation values are given in Table 5.22. These numbers are large. Correlation

plots are presented in Appendix E. Viewing these plots, the correlations do not

look at all severe – suggesting that the large values obtained using Eq. (5.13) are,

in part, due to low statistics. One solution to a large correlation between two

fit variables is to use a two-dimensional PDF, in which PDF parameters of one

variable are functions of the other variable. However, two-dimensional PDFs are

not employed here since to do so would be to model one correlation (between, for

example, mES and ∆E) but then ignore another one (e.g. mES and cos θH). This

is deemed arbitrary and without gain. One-dimensional PDFs are therefore used

throughout. It is shown in the following section that the biases brought about by

these correlations are small.

5The number of available MC events used to construct the PDFs for the (BB)2 component

is smaller than desired. However, the resulting large uncertainties on the PDF parameters are

propagated as described in Section 6.4.1.2. Also, NMC � n2

BB Bkgd
, where NMC is the number of

available MC events and n2

BB Bkgd
is the number of actual events expected in the final on-resonance

sample.
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(BB)1 (BB)2 (BB)3

mES

Crystal Gaussian Crystal

Ball + Argus Ball

∆E
Gaussian Gaussian Gaussian

+ Linear + Linear + Linear

F
Double Double

Gaussian
Gaussian Gaussian

mKπ

Voigtian +
Quadratic

Gaussian

Exponential + Linear

cos θH Exponential Keys Exponential

Table 5.21: BB background PDF types used for the 5-variable fit in the 892

window.

∆E
−0.248,−0.406,

0.210

F −0.080, 0.007, 0.025,−0.017,

−0.107 −0.053

mKπ
−0.386, 0.122, 0.207,−0.046, 0.069, 0.006,

−0.069 −0.003 0.011

cos θH
−0.520,−0.448, 0.202, 0.318, 0.067,−0.053, 0.176,−0.043,

0.136 −0.017 −0.033 −0.231

mES ∆E F mKπ

Table 5.22: Correlations (calculated using Eq. (5.13)) between variables used

in the 5-variable fit in the 892 window. For each cell, the first value is for the

(BB)1 component, the second is for the (BB)2 component and the third is for

the (BB)3 component.
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Figure 5.16: (BB)i (i = 1, 2, 3) PDFs (blue, solid lines) for the 5-variable fit

in the 892 window, obtained by fitting to appropriate MC distributions (black

points with error bars). PDF types are presented in Table 5.21; PDF parameter

values are given in Tables D.4, D.5 and D.6 (for components (BB)1, (BB)2

and (BB)3, respectively). Left column: (BB)1 component; middle column:

(BB)2 component; right column: (BB)3 component. Top row: mES; second

row: ∆E; third row: F ; fourth row: mKπ; bottom row: cos θH .



172 Chapter 5. Analysis method

5.10.6 Toy tests with BB background components

The toy tests described in Sections 5.10.2 and 5.10.3 are repeated, this time with

five components (S, qq, (BB)1, (BB)2, (BB)3) rather than two (S and qq). Toy

tests are conducted for:

• Floated (BB)i (i = 1, 2, 3) yields.

• Fixed (BB)i (i = 1, 2, 3) yields.

As with the signal component, and for the same reason, (BB)i (i = 1, 2, 3) PDF

parameters are fixed (to the values obtained in Section 5.10.5).

Tables 5.23 and 5.24 show, as an example, the yield biases obtained from two pure

toy tests – one in which the BB background yields are floated, and one in which they

are fixed. For fixed-yield (BB)i (i = 1, 2, 3) components, no significant6 biases are

observed. For floated-yield (BB)i (i = 1, 2, 3) components, the model is arguably a

little less stable with a bias and error miscoverage present for the (BB)3 component.

Tables 5.25 and 5.26 list the biases obtained for floated yields when running toy

tests in which embedded S and (BB)i (i = 1, 2, 3) events are fully simulated MC

events. For Table 5.25, the (BB)i (i = 1, 2, 3) yields are fixed. They are fixed to

the central values of n1
BB Bkgd

, n2
BB Bkgd

and n3
BB Bkgd

respectively (as defined in

the final paragraph of Section 5.10.4). In fixing the yields of the BB background

components, a systematic error is introduced due to the uncertainties on the values

to which the yields are fixed. It is ensured that this error is not excessively large by

embedding nEmbd (BB)i events (where nEmbd 6= ni
BB Bkgd

), fixing the (BB)i yield

to ni
BB Bkgd

, and observing the resulting bias on the floated signal yield. To avoid

this source of systematic error, the (BB)i (i = 1, 2, 3) yields can be floated. This is

the case for the embedded toy tests whose yield biases are listed in Table 5.26. The

downside to floating these yields is that the fit model may become unstable due to

the lack of statistics for these components.

6When compared with the statistical uncertainty on the yield and other systematic effects.
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BB background events that originate from sources for which there is no component

in the fit do not have a large impact on the signal yield extracted. However, the

effect is not negligible. Non-K+K−π+-final-state sources of BB background that

are expected to contribute nBB Bkgd + ∆nBB Bkgd > 0.5 events to the final on-

resonance sample, excluding those sources for which a fit component is included,

are now defined collectively as “(BB)Other” (all sources listed in Table 5.8 excluding

B+ → φ(1020)(→ K+K−)K+, B+ → K+K−K+ Dalitz plot model (minus the

B+ → φ(1020)K+ contribution) and B+ → ρ(770)0(→ π+π−)K+). nOther
BB Bkgd

is

defined to be the value obtained when rounding the central values of nBB Bkgd for

each of the (BB)Other sources to the nearest non-zero integer, and taking the sum.

nOtherMax
BB Bkgd

is defined to be the value obtained when rounding the values of (nBB Bkgd+

∆nBB Bkgd) for each of the (BB)Other sources to the nearest non-zero integer, and

taking the sum. To estimate the number of events that should be subtracted from

the signal yield due to the presence of (BB)Other events, a toy test is carried out.

The bias on the signal yield is estimated when we have nOther
BB Bkgd

(BB)Other real MC

events embedded. To help evaluate the uncertainty on the subtraction, a further toy

test is carried out in which nOtherMax
BB Bkgd

(BB)Other events are embedded. The second

section of Table 5.25 and the last two rows of Table 5.26 show that the vast majority

of (BB)Other events are assigned to the background hypotheses.

It can be seen, from Table 5.24 and Table 5.26, that the fit remains reasonably

stable with floated-yield (BB)i (i = 1, 2, 3) components. For embedded toy tests,

there are small biases on the background hypotheses, but, with no (BB)Other events

embedded, the bias on the signal yield is consistent with zero. However, it is decided

that the more conservative approach of fixing the (BB)i (i = 1, 2, 3) component

yields shall be taken. This provides the most stable fit model, and the cost in fixing

these yields – in terms of introducing an additional source of systematic error – is

small.
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Gaussian Fitted To

Pull Distribution β

Mean Width

S −0.089 ± 0.060 1.119 ± 0.042 0.54 ± 0.65

qq −0.015 ± 0.053 0.990 ± 0.037 −2.42 ± 10.48

(BB)1 −0.170 ± 0.056 1.045 ± 0.039 −0.33 ± 0.34

(BB)2 −0.103 ± 0.061 1.133 ± 0.043 0.46 ± 1.21

(BB)3 −0.335 ± 0.068 1.274 ± 0.049 −2.81 ± 0.84

Table 5.23: Example of a pure toy test for the 5-variable fit in the 892 win-

dow, with floated-yield components S, qq, (BB)1, (BB)2 and (BB)3.

Gaussian Fitted To

Pull Distribution β

Mean Width

S −0.180 ± 0.050 1.117 ± 0.035 −0.66 ± 0.54

qq −0.026 ± 0.048 1.064 ± 0.034 −4.50 ± 9.36

Table 5.24: Example of a pure toy test for the 5-variable fit in the 892

window, with floated-yield components S and qq, and fixed-yield components

(BB)1, (BB)2 and (BB)3.
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# (BB)1 # (BB)2 # (BB)3 β β

Embedded † Embedded † Embedded † (Signal) (qq Bkgd.)

— — — 0.24 ± 0.42 −0.11 ± 0.41

n1
BB Bkgd

— — 0.66 ± 0.45 −1.23 ± 0.46

n1
BB Bkgd

− ∆n1
BB Bkgd

— — 0.45 ± 0.45 −1.96 ± 0.46

n1
BB Bkgd

+ ∆n1
BB Bkgd

— — 0.75 ± 0.44 −0.27 ± 0.45

— n2
BB Bkgd

♣ — 1.00 ± 0.46 −1.10 ± 0.46

— n2
BB Bkgd

− ∆n2
BB Bkgd

♣ — 0.62 ± 0.47 −3.54 ± 0.47

— n2
BB Bkgd

+ ∆n2
BB Bkgd

♣ — 0.85 ± 0.45 1.81 ± 0.44

— n2
BB Bkgd

♦ — 0.52 ± 0.44 −4.16 ± 0.45

— n2
BB Bkgd

− ∆n2
BB Bkgd

♦ — −0.35 ± 0.46 −6.11 ± 0.46

— n2
BB Bkgd

+ ∆n2
BB Bkgd

♦ — 0.56 ± 0.47 −1.35 ± 0.47

— n2
BB Bkgd

♠ — 1.66 ± 0.46 4.19 ± 0.45

— n2
BB Bkgd

− ∆n2
BB Bkgd

♠ — 1.09 ± 0.45 1.06 ± 0.45

— n2
BB Bkgd

+ ∆n2
BB Bkgd

♠ — 1.18 ± 0.47 8.35 ± 0.47

— n2
BB Bkgd

♥ — 1.46 ± 0.47 4.34 ± 0.47

— n2
BB Bkgd

− ∆n2
BB Bkgd

♥ — 1.51 ± 0.44 0.68 ± 0.43

— n2
BB Bkgd

+ ∆n2
BB Bkgd

♥ — 1.41 ± 0.46 8.10 ± 0.47

— — n3
BB Bkgd

0.51 ± 0.44 −0.67 ± 0.44

— — n3
BB Bkgd

− ∆n3
BB Bkgd

−0.18 ± 0.45 −0.97 ± 0.45

— — n3
BB Bkgd

+ ∆n3
BB Bkgd

0.68 ± 0.46 1.07 ± 0.46

n1
BB Bkgd

n2
BB Bkgd

♣ n3
BB Bkgd

0.57 ± 0.46 −1.85 ± 0.46

n1
BB Bkgd

− ∆n1
BB Bkgd

n2
BB Bkgd

− ∆n2
BB Bkgd

♦ n3
BB Bkgd

− ∆n3
BB Bkgd

−0.20 ± 0.45 −9.04 ± 0.46

n1
BB Bkgd

+ ∆n1
BB Bkgd

n2
BB Bkgd

+ ∆n2
BB Bkgd

♠ n3
BB Bkgd

+ ∆n3
BB Bkgd

1.18 ± 0.44 8.71 ± 0.46

n1
BB Bkgd

n2
BB Bkgd

♣ n3
BB Bkgd

3.25 ± 0.46 123.96 ± 0.46
+ nOther

BB Bkgd
(BB)Other events

n1
BB Bkgd

n2
BB Bkgd

♣ n3
BB Bkgd

4.07 ± 0.51 192.67 ± 0.51
+ nOtherMax

BB Bkgd
(BB)Other events

Extreme cases:

n1
BB Bkgd

/2 — — −0.26 ± 0.45 −5.34 ± 0.45

2n1
BB Bkgd

— — 1.68 ± 0.44 7.54 ± 0.45

— n2
BB Bkgd

/2 ♣ — −0.88 ± 0.44 −10.50 ± 0.44

— 2n2
BB Bkgd

♣ — 1.97 ± 0.46 19.42 ± 0.47

— — n3
BB Bkgd

/2 0.23 ± 0.45 −2.35 ± 0.45

— — 2n3
BB Bkgd

1.16 ± 0.45 3.52 ± 0.45

n1
BB Bkgd

/2 n2
BB Bkgd

/2 ♣ n3
BB Bkgd

/2 −1.32 ± 0.44 −17.88 ± 0.44

2n1
BB Bkgd

2n2
BB Bkgd

♣ 2n3
BB Bkgd

3.78 ± 0.48 30.39 ± 0.49

†: rounded to nearest integer

n1
BB Bkgd

= 20.6 ± 0.4 ± 1.5, n3
BB Bkgd

= 4.3 ± 0.2 ± 0.7

♣: Belle model B0, solution 1 (minus φK) — n2
BB Bkgd

= 23.0 ± 1.1 ± 2.2; ♦: Belle model B0, solution 2

(minus φK) — n2
BB Bkgd

= 19.3 ± 1.4 ± 1.9; ♠: BABAR solution A (minus φK) — n2
BB Bkgd

= 30.1 ± 1.7 ± 2.9;

♥: BABAR solution B (minus φK) — n2
BB Bkgd

= 29.9 ± 1.7 ± 2.9

Table 5.25: Embedded toy tests for the 5-variable fit in the 892 window with

fixed-yield BB background components. Where events are embedded for com-

ponent (BB)i (i = 1, 2, 3), the yield for this component is fixed at the central

value of ni
BB Bkgd

(i = 1, 2, 3).
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β β β β β

((BB)1) ((BB)2) ((BB)3) (S) (qq)

— — — — 0.72 ± 0.40 −0.60 ± 0.40

21, 23, 4 2.30 ± 0.24 4.21 ± 1.03 −0.36 ± 0.74 −0.27 ± 0.59 −5.79 ± 1.20

21, 23, 4, nOther
BB Bkgd

2.28 ± 0.25 11.34 ± 1.05 5.67 ± 0.73 −0.12 ± 0.57 110.12 ± 1.20

21, 23, 4, nOtherMax
BB Bkgd

2.65 ± 0.26 15.89 ± 1.10 6.67 ± 0.63 2.35 ± 0.54 171.68 ± 1.26

Table 5.26: Embedded toy tests for the 5-variable fit in the 892 window with

floated-yield BB background components. Values given in the left column are

the number of (BB)1, number of (BB)2, number of (BB)3 and number of

(BB)Other events embedded respectively.
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5.10.7 Likelihood value comparisons

Two further tests are performed to ensure that our fit model is behaving as it should.

These tests involve applying the fit model to the final on-resonance sample. The

object is to test whether the likelihood values obtained from fitting to the data are

sensible (i.e. in agreement with toy tests, in which the stability of the fit has been

rigourously tested).

The values of the yields extracted from the fit to data are used at this point, but they

are not observed and so the analysis remains blind. Toy MC events are generated

using the PDFs presented in Sections 5.7 and 5.10.5. The number of events generated

for the S and qq hypotheses is Poissonially smeared about mean values that are equal

to the yield values obtained in the fit to the final on-resonance sample.

The first test is a pure toy test of the type described in Section 5.10.2. 500 experi-

ments are performed. For each experiment, events are generated as described above

(that is, using the yields obtained from the fit to the final on-resonance sample).

The minimum value of the negative log likelihood function obtained in each of the

500 fits is plotted. The resulting distribution – as with the residual and pull distri-

butions – is expected to be Gaussian. The value of the likelihood function obtained

when applying the fit model to the final on-resonance sample is then compared with

the values obtained for the 500 pure toy tests. Figure 5.17 demonstrates that these

values are in excellent agreement. This is clearly an encouraging sign, but it should

be noted that the success of this test is a necessary but insufficient condition. The

same is true of the second test, which is now described.

Toy MC events are again generated in quantities determined by the yields obtained

from the fit to the final on-resonance sample, but this time scaled to give a high-

statistics toy sample (since this time we are generating one toy sample rather than

500). Here, rather than comparing the overall likelihood function values obtained

from the extended fit, individual event likelihoods are compared. The distributions

of the likelihood ratio “Likelihood (Signal) / Likelihood (Total)” for each event are
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plotted for the final on-resonance sample and for the high-statistics toy MC sample.

Likelihood (Signal) = PS, whilst Likelihood (Total) = PS +Pqq +P(BB)1
+P(BB)2

+

P(BB)3
(see Section 5.6). The two distributions should be very similar and this is

shown to be the case in Figure 5.17.

For the first test, it is feasible that the positive result is a “lucky” coincidence, that

event-by-event likelihoods – which individually would indicate discrepancies, “cancel

out” to give what appears to be an encouraging result. The findings of the second

test imply that this is not the case.

5.11 Tests and validations for the 3-var. fits

The procedure described in Section 5.10 is repeated for the 3-variable fits in the 892

and 1430 windows. For the sake of brevity, the results of the toy tests conducted are

summarised in this section with the results in full being reserved for Appendix G.

For pure toy tests of the type described in Sections 5.10.2 and 5.10.6, biases are

not found to be present and correct error coverage is observed. This is true for the

3-variable fits in both windows (892 and 1430).

Since the 3-variable fits are a measure of all B+ → K+K−π+ final state modes,

separate toy tests are conducted in which embedded signal events are sampled from

datasets fully simulating decays for the three modes that are expected to give the

largest contributions:

• B+ → K
∗
(892)0(→ K−π+)K+.

• B+ → K
∗
0(1430)

0(→ K−π+)K+ (Breit-Wigner mKπ lineshape).

• B+ → K
∗
0(1430)

0(→ K−π+)K+ (LASS mKπ lineshape).

• Non-resonant B+ → K+K−π+.
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Figure 5.17: Both plots are relevant to the 5-variable fit in the 892 window,

with floated-yield components S and qq, and fixed-yield components (BB)1,

(BB)2 and (BB)3. Top: the distribution of (− lnLMax) values for 500 pure

toy experiments, with a superimposed fitted Gaussian. The red arrow indicates

the value of (− lnLMax) obtained when applying the fit model to the final on-

resonance sample. Bottom: event likelihood ratio distributions for toy MC and

the final on-resonance sample.
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One mode is embedded per toy test. For each toy test, the fixed PDF functional

forms and parameters for the signal component are those obtained in Sections 5.8

and 5.9 for the 892 and 1430 windows respectively. Table 5.27 (892 window) and

Table 5.28 (1430 window) list the biases on the floated yields obtained from such

toy tests. It can be seen, for the 3-variable fit in the 892 window, that the embedded

signal events introduce biases. Although smaller than the average error on the yield,

these biases are nevertheless significant. The same is true of the 1430 window. It

is necessary to apply a systematic error to account for these observed biases (see

Section 6.3.1).

The BB background modes that cause significant biases to the fitted signal yield

for the 5-variable fit in the 892 window are, as expected, also the modes that give

rise to significant biases for the 3-variable fit in the 892 window. For the 3-variable

fit however, the biases are larger due to the decreased discriminatory power of 3

variables versus 5. As with the 5-variable fit, fit components shall be included for

the following BB background modes:

• B+ → φ(1020)(→ K+K−)K+: component (BB)1.

• B+ → K+K−K+ Dalitz plot model, minus the B+ → φ(1020)K+ contribu-

tion: component (BB)2.

• B+ → ρ(770)0(→ π+π−)K+: component (BB)3.

The PDF functional forms are the same as those used for the 5-variable fit (Ta-

ble 5.21); PDF parameters are presented in Appendix D.

For the 1430 window, the following BB background sources are to be accounted for

in the form of including components in the fit model:

• B+ → K+K−K+ Dalitz plot model, minus the B+ → φ(1020)K+ contribu-

tion: component (BB)2.

• B+ → ρ(770)0(→ π+π−)K+: component (BB)3.
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• B+ → f0(980)(→ π+π−)K+: component (BB)4.

B+ → φ(1020)(→ K+K−)K+ is not an issue in this window, but B+ → f0(980)(→
π+π−)K+ causes a significant bias on the signal yield and a component for this mode

is therefore included. The functional forms of the PDFs used for the (BB)i (i =

2, 3, 4) components are listed in Table 5.29; PDF parameters are given in Ap-

pendix D.

As with the 5-variable fit, the yields of the BB background components are fixed,

as are all PDF parameters for the signal and BB background components. This is

to ensure a stable fit model. The mES Argus endpoint for the qq background is also

fixed. All remaining parameters are floated when the fit model is applied to the final

on-resonance sample.

Table 5.30 shows the estimated biases on the floated yields due to the presence

of events originating from BB background sources for which components are not

included in the fit model. For the 1430 window, these estimated biases do not

account for the modes B+ → D
0
(→ K+π−)π+ and B+ → D

0
(→ K+K−)π+. For

these modes, there are an inadequate number of MC events remaining after RaSC

to be able to model them in the form of fit components, or to estimate the bias they

induce on the signal yield using toy tests. They are therefore treated separately

from the remaining (BB)Other
7 sources. B+ → D

0
(→ K+π−)π+ shall be taken to

induce a bias on the signal yield of (9.3+
√

1.22 + 0.62)/2 events. A 100% systematic

uncertainty is applied to this value. The final state of B+ → D
0
(→ K+K−)π+ is

K+K−π+. It is therefore expected to be signal-like in mES, ∆E and F . As such

the bias that it induces on the signal yield shall be taken to be 9.4 events, with

an uncertainty of
√

1.52 + 0.72. The choice of these values becomes clear when

considering the relevant entries in Table 5.9.

Two-dimensional fit variable scatter plots are presented in Appendix E, as are fit

variable correlation values for the BB background components.

7(BB)Other is defined in Section 5.10.6.
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The likelihood value comparisons that are described in Section 5.10.7 for the 5-

variable fit are repeated for the 3-variable fits. The results are shown in Figure G.3.

Toy MC is found to be in excellent agreement with the final on-resonance sample.
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Number Of Average β On Number Of Average β On

MC Signal Error On Signal qq Background Error On qq qq Bkgd.

Events Sampled Signal Yield Yield Events Generated Bkgd. Yield Yield

Embedded signal events sampled from B+ → K
∗
(892)0(→ K−π+)K+ MC:

200 25.23 6.62 ± 0.66 39, 956 201 −6.45 ± 0.66

150 23.05 4.82 ± 0.63 40, 006 201 −4.65 ± 0.63

100 20.56 4.65 ± 0.58 40, 056 201 −4.49 ± 0.58

80 19.34 4.45 ± 0.55 40, 076 201 −4.27 ± 0.55

60 17.96 3.63 ± 0.53 40, 096 201 −3.46 ± 0.53

50 17.19 3.41 ± 0.50 40, 106 201 −3.28 ± 0.50

40 16.23 2.44 ± 0.47 40, 116 201 −2.30 ± 0.46

30 15.15 1.89 ± 0.48 40, 126 201 −1.79 ± 0.48

20 14.11 1.76 ± 0.45 40, 136 201 −1.65 ± 0.45

10 12.85 0.80 ± 0.44 40, 146 201 −0.71 ± 0.44

Embedded signal events sampled from B+ → K
∗
0(1430)0(→ K−π+)K+ MC (LASS mKπ lineshape):

150 22.60 −5.10 ± 0.62 40, 006 201 5.28 ± 0.62

100 20.16 −2.57 ± 0.56 40, 056 201 2.74 ± 0.56

80 18.98 −1.24 ± 0.53 40, 076 201 1.42 ± 0.53

60 17.67 −0.21 ± 0.50 40, 096 201 0.35 ± 0.50

50 16.90 0.01 ± 0.50 40, 106 201 0.14 ± 0.49

40 15.99 −0.26 ± 0.48 40, 116 201 0.39 ± 0.48

30 14.97 −0.24 ± 0.47 40, 126 201 0.35 ± 0.47

20 13.91 −0.01 ± 0.44 40, 136 201 0.12 ± 0.43

10 12.70 0.15 ± 0.43 40, 146 201 −0.07 ± 0.43

Embedded signal events sampled from B+ → K
∗
0(1430)0(→ K−π+)K+ MC (Breit-Wigner mKπ lineshape):

60 16.80 −10.99 ± 0.51 40, 096 201 11.12 ± 0.51

50 16.11 −9.15 ± 0.48 40, 106 201 9.30 ± 0.48

40 15.28 −7.33 ± 0.45 40, 116 201 7.45 ± 0.45

30 14.39 −5.50 ± 0.45 40, 126 201 5.60 ± 0.45

20 13.49 −3.49 ± 0.45 40, 136 201 3.60 ± 0.44

10 12.49 −1.79 ± 0.43 40, 146 201 1.88 ± 0.43

Embedded signal events sampled from non-resonant B+ → K+K−π+ MC:

60 17.26 −5.71 ± 0.52 40, 096 201 5.87 ± 0.52

50 16.53 −4.42 ± 0.50 40, 106 201 4.57 ± 0.50

40 15.68 −3.57 ± 0.46 40, 116 201 3.70 ± 0.46

30 14.69 −2.62 ± 0.46 40, 126 201 2.72 ± 0.46

20 13.73 −1.35 ± 0.44 40, 136 201 1.45 ± 0.44

10 12.73 −0.69 ± 0.43 40, 146 201 0.78 ± 0.43

Table 5.27: Biases on the signal and qq background yields for the 3-variable

fit in the 892 window. These values are obtained using toy tests with embedded

MC signal events. 1,000 experiments are run per toy test. Poissonian smearing

is turned off.



184 Chapter 5. Analysis method

Number Of Average β On Number Of Average β On

MC Signal Error On Signal qq Background Error On qq qq Bkgd.

Events Sampled Signal Yield Yield Events Generated Bkgd. Yield Yield

Embedded signal events sampled from B+ → K
∗
0(1430)0(→ K−π+)K+ MC (LASS mKπ lineshape):

200 30.71 11.88 ± 0.91 46, 352 217 −11.76 ± 0.85

150 28.63 9.95 ± 0.83 46, 402 217 −9.35 ± 0.79

100 26.14 5.99 ± 0.77 46, 452 217 −6.81 ± 0.76

80 24.87 3.23 ± 0.76 46, 472 217 −4.19 ± 0.76

60 23.58 2.46 ± 0.69 46, 492 217 −3.39 ± 0.71

40 21.95 0.25 ± 0.68 46, 512 217 −0.89 ± 0.68

30 21.10 −1.12 ± 0.64 46, 522 217 0.11 ± 0.64

20 20.29 −1.44 ± 0.64 46, 532 217 0.35 ± 0.64

10 18.81 −4.48 ± 0.67 46, 542 217 3.37 ± 0.67

5 18.44 −5.30 ± 0.66 46, 547 217 4.17 ± 0.66

Embedded signal events sampled from B+ → K
∗
0(1430)0(→ K−π+)K+ MC (Breit-Wigner mKπ lineshape):

200 30.93 18.27 ± 1.10 46, 352 217 −17.54 ± 0.96

150 28.78 12.46 ± 0.95 46, 402 217 −12.83 ± 0.91

100 26.30 9.18 ± 0.83 46, 452 217 −9.82 ± 0.83

80 25.01 5.87 ± 0.87 46, 472 217 −6.16 ± 0.85

60 23.75 4.17 ± 0.76 46, 492 217 −5.10 ± 0.78

40 22.12 1.76 ± 0.71 46, 512 217 −2.62 ± 0.72

30 21.17 −0.67 ± 0.73 46, 522 217 −0.45 ± 0.72

20 20.11 −1.19 ± 0.73 46, 532 217 0.19 ± 0.74

10 18.97 −4.29 ± 0.74 46, 542 217 3.14 ± 0.73

5 18.36 −4.79 ± 0.70 46, 547 217 3.69 ± 0.71

Embedded signal events sampled from non-resonant B+ → K+K−π+ MC:

80 24.74 0.16 ± 0.85 46, 472 217 −0.84 ± 0.83

60 23.50 −0.62 ± 0.77 46, 492 217 −0.28 ± 0.77

40 21.88 −1.61 ± 0.68 46, 512 217 0.71 ± 0.68

30 21.04 −2.31 ± 0.73 46, 522 217 1.38 ± 0.73

20 20.11 −2.82 ± 0.73 46, 532 217 1.76 ± 0.72

10 18.80 −4.25 ± 0.72 46, 542 217 3.13 ± 0.73

5 18.51 −4.96 ± 0.71 46, 547 217 3.88 ± 0.72

Table 5.28: Biases on the signal and qq background yields for the 3-variable fit

in the 1430 window. These values are obtained using toy tests with embedded

MC signal events. For the first section, 1,000 experiments are run per toy

test. For the remaining two sections, 800 experiments are run per toy test.

Poissonian smearing is turned off.
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(BB)2 (BB)3 (BB)4

mES

Gaussian Gaussian Double Gaussian

+ Argus + Argus + Argus

∆E
Gaussian Gaussian Gaussian

+ Linear + Linear + Linear

F
Double

Gaussian Gaussian
Gaussian

Table 5.29: BB background PDF types used for the 3-variable fit in the 1430

window.

Number Of (BB)Other β β

Events Embedded (Signal) (qq Bkgd.)

3-variable fit in the 892 window (fit model components: S, qq, (BB)1, (BB)2, (BB)3):

nOther
BB Bkgd

4.83 ± 0.51 146.86 ± 0.51

nOtherMax
BB Bkgd

7.14 ± 0.52 209.33 ± 0.52

3-variable fit in the 1430 window (fit model components: S, qq, (BB)2, (BB)3, (BB)4):

nOther
BB Bkgd

6.16 ± 0.71 713.63 ± 0.71

nOtherMax
BB Bkgd

10.20 ± 0.70 1, 081.80 ± 0.70

Table 5.30: Toy tests are conducted to determine the biases brought about on

the floated yields due to the presence of events originating from BB background

sources for which there are no components in the fit model (“(BB)Other”,

“nOther
BB Bkgd

” and “nOtherMax
BB Bkgd

” are defined in Section 5.10.6). Events due to the

modes B+ → D
0
(→ K+π−)π+ and B+ → D

0
(→ K+K−)π+ are not embedded

in the toy tests for the 1430 window, despite contributing nBB Bkgd+∆nBB Bkgd

> 0.5 events (see main text, Section 5.11). 1,000 experiments are run per toy

test. Poissonian smearing is turned off.
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6
Analysis results

6.1 Introduction

This chapter presents the results of the analysis described in the previous chapter.

The raw yields obtained from the fits to the final on-resonance samples are first

presented. These yields are then amended to account for non-K+K−π+-final-state

BB background. Sources of systematic uncertainties are examined and their values

determined from various studies. The statistical errors on the yields extracted from

the fits are also discussed. Finally the branching ratio values are presented, and

B(B+ → K
∗
(892)0K+) is used to calculate an improved bound on ∆Sφ(1020)K0

S
.

187
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6.2 Yields

Table 6.1 presents the values obtained for the floated yields for each of the fits

conducted. The values obtained for the floated PDF parameters are presented in

Appendix D. Correlations between floated PDF parameters and yields are presented

in Appendix H. The statistical significance is calculated using
√

−2 ln(LMax/LS=0
Max)

where LS=0
Max is the maximum value of the likelihood function obtained when carrying

out the standard extended ML fit, with the exception that the signal yield is fixed

to zero.

# Events Stat. qq

Fit In Final On- Signal Yield Sig. Background Fixed Yields

res. Sample (σ) Yield

5-variable (BB)1: 20.6

fit in the 38, 690 30.1+13.0
−11.8 3.09 38, 609 ± 197 (BB)2: 23.0

892 window (BB)3: 4.3

3-variable (BB)1: 20.6

fit in the 40, 156 45.9+18.8
−17.5 2.95 40, 058 ± 201 (BB)2: 23.0

892 window (BB)3: 4.8

3-variable (BB)2: 89.4

fit in the 46, 657 34.7+23.8
−21.6 1.69 46, 503 ± 217 (BB)3: 3.5

1430 window (BB)4: 12.0

Table 6.1: Yields obtained from the extended ML fits. Systematic errors are

not shown, and corrections due to BB background have not yet been applied.

Projection plots of the fit onto the fit variables are shown in Figures 6.1-6.3. For
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illustrative purposes the signal component is enhanced. For each variable, only

events which pass a cut on a signal likelihood to background likelihood ratio are

plotted. The per event likelihoods used to calculate this ratio are functions of all

fit variables except the projected variable that is plotted (to avoid bias). The blue,

superimposed curves are a projection onto the variable of the fit model. Fit model

components are also projected.

Figure 6.4 shows the contributions from each component for the toy sample created

for the second test described in Section 5.10.7. It can be seen that signal events are

concentrated at high values of the ratio “Likelihood (Signal) / Likelihood (Total)”,

as expected.

Scans of the negative log likelihood (NLL) values as a function of the number of

fitted signal events are shown in Figure 6.5. Each curve is obtained by conducting

400 extended ML fits to the final on-resonance sample, with the signal yield fixed to

values between 0 and 100. The fits are otherwise standard (i.e. as those conducted

to give the results shown in Table 6.1). A polynomial is fitted to the signal yield

versus minimum NLL points to give the curves.

6.2.1 Statistical errors

The errors associated with the PDF parameters and yields that are floated in the

fits are now briefly discussed. There are two different ways that these errors can be

calculated during the fitting procedure.

Minuit’s HESSE routine, introduced in Section 5.6.2, uses the covariance matrix of

the floated parameters, H, the elements of which are given by

Hij =
∂2(lnL)

∂θi ∂θj
. (6.1)

The vector of parameter errors is then given by

~σθ = H−1~Θ. (6.2)
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The error for a given parameter calculated by Minuit’s MINOS routine – also in-

troduced in Section 5.6.2 – is defined as the change in the value of that parameter

that causes the minimum value of the negative log likelihood function to increase

by an amount `. ` is set such that the probability of the true parameter value ly-

ing between the negative and positive errors is 68.3%. For example, for the floated

signal yields, the MINOS algorithm follows the curves shown in Figure 6.5 from their

minima, in both directions, until it reaches the two signal yield values that give

minimum negative log likelihood function values that are larger than the original

minima by `.

Both HESSE and MINOS take into account the correlations between floated parame-

ters. Where they differ is that HESSE simply calculates the covariance matrix (from

which the errors are obtained) at (− lnLMax) and assumes that the negative log

likelihood curve is parabolic about the minimum. MINOS on the other hand iterates

over the path of the negative log likelihood curve. For a fit model that is a linear

function of all of its floated parameters, and with an infinite amount of data, HESSE

and MINOS would yield identical values for parameter errors. In reality, the difference

between the three error values (the two asymmetric MINOS errors and the symmetric

HESSE error) are a reasonable measure of the non-linearity of the problem.

Where symmetric errors are presented in the results of fits in this thesis, the HESSE

routine has been employed. This is usually the case, as MINOS errors are considerably

more expensive – computationally – to calculate, and HESSE and MINOS errors are

generally in good agreement. For the signal yields, however, MINOS errors are used

as these values are used to calculate the main results of the analysis (see Table 6.1;

for comparison, the HESSE errors are 30.1 ± 12.4, 45.9 ± 18.2 and 34.7 ± 22.6).

For further details, please refer to [92] and [93].



6.2. Yields 191

)2 (GeV/cESm
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
E

ve
n

ts
 / 

( 
0.

00
35

 G
eV

/c

0

5

10

15

20

25

30

35

)2 (GeV/cESm
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )2
E

ve
n

ts
 / 

( 
0.

00
35

 G
eV

/c

0

5

10

15

20

25

30

35

E (GeV)∆
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

E
ve

n
ts

 / 
( 

0.
01

 G
eV

 )

0

5

10

15

20

25

E (GeV)∆
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

E
ve

n
ts

 / 
( 

0.
01

 G
eV

 )

0

5

10

15

20

25

Fisher
-3 -2 -1 0 1 2 3

E
ve

n
ts

 / 
( 

0.
3 

)

0

20

40

60

80

100

120

Fisher
-3 -2 -1 0 1 2 3

E
ve

n
ts

 / 
( 

0.
3 

)

0

20

40

60

80

100

120

)2 (GeV/cπKm
0.75 0.8 0.85 0.9 0.95 1

 )2
E

ve
n

ts
 / 

( 
0.

01
52

1 
G

eV
/c

0

10

20

30

40

50

)2 (GeV/cπKm
0.75 0.8 0.85 0.9 0.95 1

 )2
E

ve
n

ts
 / 

( 
0.

01
52

1 
G

eV
/c

0

10

20

30

40

50

Hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

E
ve

n
ts

 / 
( 

0.
09

5 
)

0

5

10

15

20

25

30

Hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

E
ve

n
ts

 / 
( 

0.
09

5 
)

0

5

10

15

20

25

30

Figure 6.1: Projection plots for the 5-variable fit in the 892 window. Fit

variable distributions are shown (black points with error bars) for final on-

resonance sample candidates that pass a likelihood ratio, which favours signal-

like events. The solid, blue line represents the fit model. The solid, red line

represents the signal component, whilst the dashed, blue line represents the qq

background component. Also superimposed, though not clearly visible due to

their low integrated values, are lines representing the BB background compo-

nents.
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Figure 6.2: Projection plots for the 3-variable fit in the 892 window.

Marker/line colours/styles are as Figure 6.1, with (BB)1: dotted, cyan line;

(BB)2: dotted, magenta line; (BB)3: dotted, green line.
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Figure 6.3: Projection plots for the 3-variable fit in the 1430 window.

Marker/line colours/styles are as Figure 6.1 and Figure 6.2 with the exception

that the dotted, cyan line (barely visible) represents the (BB)4 component.
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Figure 6.4: Top left: 5-variable fit in the 892 window. The event likelihood

ratio distribution for toy MC as shown in Figure 5.17 (bottom plot), this time

split into components. The parameters and yields used to generate the toy

MC are those obtained from applying the fit model to the final on-resonance

sample. Top right and bottom: 3-variable fits in the 892 window and 1430

window respectively (see also Figure G.3).
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Figure 6.5: Negative log likelihood scans. Top left: 5-variable fit in the 892

window; top right and bottom: 3-variable fits in the 892 window and 1430

window respectively.
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6.3 BB background subtraction

The discussion presented in this section (Section 6.3) applies to BB background

modes that do not share the same final state as the signal mode. BB background

with the final state K+K−π+ is discussed in Section 6.6.

It is estimated that the signal yields presented in Table 6.1 are biased due to the

presence of BB background events originating from sources for which components

are not included in the fit model. The magnitudes of these biases are estimated using

toy tests as described in Sections 5.10.6 and 5.11 (in which the numbers of events

sampled/generated for each hypothesis correspond to the yields obtained/fixed in the

fits to the final on-resonance samples). For the 1430 window, the modesB+ → D
0
(→

K+π−)π+ and B+ → D
0
(→ K+K−)π+ must also be accounted for as discussed in

Section 5.11.

Table 6.2 lists the signal yields extracted from the extended ML fits. It also lists the

number of these events that are estimated to be BB background, and the corrected

signal yields. Excluding the modes B+ → D
0
(→ K+π−)π+ and B+ → D

0
(→

K+K−)π+ (the uncertainties for which are discussed in Section 5.11), it can be seen

that a 100% systematic uncertainty has been applied to the number of estimated

BB background events for each of the fits. This highly conservative error accounts

for the following possible sources of uncertainty1:

• The number of (BB)Other MC events embedded in the toy tests described in

Section 5.10.6 is not exactly equal to nOther
BB Bkgd

, rather it is rounded to the

nearest non-zero integer.

• Where the number of MC events remaining after the application of RaSC is

small for a given BB background mode, oversampling occurs. MC events may

be embedded more than once for a single toy test (but not more than once for

a single experiment). Oversampling is kept to a minimum, and the effect, if

1nBB Bkgd is defined in Section 5.5.2.5; (BB)Other and nOther

BB Bkgd
are defined in Section 5.10.6.
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any, is expected to be very small to negligible.

• The uncertainties on the values of nBB Bkgd, as listed in Tables 5.8 and 5.9.

For the toy tests in which nBB Bkgd ± ∆nBB Bkgd are embedded rather than

nBB Bkgd, the difference between the corresponding signal yield biases is well

within the assigned 100% systematic.

• BB background modes that contribute less than 0.5−∆nBB Bkgd events to the

final on-resonance sample are not studied using toy tests. It is possible that,

combined, some of these modes may induce a very small – but not negligible

– bias on the signal yield.

6.3.1 Further corrections

For the 3-variable fits, biases were observed for toy tests conducted with embedded

signal MC events, as described in Section 5.11. It can be seen from Tables 5.27 and

5.28 that for both the 892 and the 1430 windows the biases on the signal yield are

both positive and negative. A correction will therefore not be applied. However, a

systematic uncertainty of ±5 events will be applied (to both windows) to account

for these biases.

6.4 Systematic uncertainty estimation

In this section sources of systematic uncertainty are considered, and techniques for

estimating their values are described.

6.4.1 Systematics on the yields

Systematic uncertainties on the signal yields are listed in Table 6.4 and detailed

below.
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Fit
Initial BB Amended

Signal Yield Background Signal Yield

5-variable

fit in the 30.1+13.0
−11.8 3.2 ± 3.2 4 26.8+13.0

−11.8 ± 3.2

892 window

3-variable

fit in the 45.9+18.8
−17.5 4.8 ± 4.8 4 41.1+18.8

−17.5 ± 4.8

892 window

3-variable (6.2 ± 6.2) 4

fit in
34.7+23.8

−21.6

+(5.3 ± 5.3) �

13.8+23.8
−21.6 ± 8.3

the 1430 +(9.4 ± 1.6) ♦

window = 20.9 ± 8.3

4: Source is (BB)Other – discussed in Sections

5.10.6 and 5.11. See Tables 5.25 and 5.30.

�: Source is B+ → D
0
(→ K+π−)π+ –

discussed in Section 5.11.

♦: Source is B+ → D
0
(→ K+K−)π+ –

discussed in Section 5.11.

Table 6.2: Corrections to signal yields due to non-K+K−π+-final-state BB

background. Only systematic errors due to these corrections are shown.
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6.4.1.1 BB background

The yields of the BB background components included in the fit models are fixed.

There is an uncertainty on the values to which they are fixed (see Table 5.8). To

estimate the resulting signal yield uncertainties, each BB background yield, one

at a time, is shifted by plus and minus its error, and the otherwise standard fit is

reperformed. The total uncertainties on the signal yields are estimated to be:

• 5-variable fit in the 892 window: +0.4
−0.6 events.

• 3-variable fit in the 892 window: +0.9
−1.5 events.

• 3-variable fit in the 1430 window: +2.8
−1.5 events.

We arrive at these values by adding in quadrature the differences between the signal

yield obtained in the standard fit and the signal yields obtained for each of the fits

in which the BB background yields are varied.

The PDF parameters of the BB background components are also fixed. This is

discussed in the next section. The systematic uncertainties brought about by sources

of BB background for which components are not included in the fit are discussed

in Section 6.3.

6.4.1.2 Fixed PDF parameters

Whilst the qq background PDF parameterisations are determined from the fit to

data, the PDF shapes and parameter values for the signal and BB background

contributions are determined from simulation. It is necessary to fix these parameter

values in the fit to data to avoid an unstable fit in which too much information

is requested from too little data. In doing so however, we introduce systematic

uncertainty. To estimate this uncertainty each fixed PDF parameter in the fit model

is varied by plus and minus its error (one standard deviation). Correlated parameters
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in the PDF are adjusted accordingly. The otherwise standard fit is then repeated

with these new PDF parameter values. The resulting shift in the signal yield is

taken to be the systematic error. This is repeated for all fixed PDF parameters.

The positive and negative shifts are added separately in quadrature to give the total

systematic uncertainty.

Previous analyses indicate that there is a small discrepancy between the mean value

of the ∆E distribution for data and for MC. The analysis of B+ → K+K−K+

described in [88] – kinematically similar to the channel in this analysis, and with

similar selection criteria – report a shift of 8.3 MeV. In addition to varying PDF

parameters according to their errors, fits are also reperformed with parameter values

reflecting this data-MC discrepancy.

The overall estimated uncertainties due to fixing the signal and BB background

PDF parameters are:

• 5-variable fit in the 892 window: +1.7
−0.6 events.

• 3-variable fit in the 892 window: +1.6
−0.8 events.

• 3-variable fit in the 1430 window: +2.6
−2.2 events.

6.4.1.3 Fixed SXF fraction

The SXF fraction, used in the 5-variable fit in the 892 window, is also fixed. As with

the PDF parameters, its value is obtained from MC. To date, no studies have been

performed that estimate the efficiency of the truth matching algorithm. A deviation

from 100% will result in an overestimation of the SXF fraction. An underestimation

could result if, for example, candidate multiplicity is underestimated by the MC.

In such a case the likelihood of choosing the true B would be overestimated. We

choose to vary the SXF fraction by a highly conservative ±20% (compare this with,

for example, [81]). The shift in the fitted number of signal events is then found to

be:
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• 5-variable fit in the 892 window: ±0.7 events.

6.4.2 Systematics on the reconstruction efficiency

The efficiency of RaSC on the number of signal events is obtained from MC (see

Tables 5.4 and 5.5). MC does not perfectly model real data and so it is necessary

to conduct studies to determine whether corrections need to be made to account for

discrepancies. There are uncertainties associated with such corrections. There are

also uncertainties where a correction is not deemed necessary as we cannot be 100%

confident that a correction is not required.

6.4.2.1 Tracking and PID

A small difference in efficiency is observed when applying the track finding and

PID algorithms – discussed in Sections 4.2.1 and 4.2.3 – to samples of MC and to

samples of data. To correct for these differences control samples are studied and the

efficiency of reconstruction is tabulated for both the data and MC samples in bins

of momentum, polar and azimuthal angles and track multiplicity. When MC events

are reconstructed these tables are retrieved from a database and used to correct the

efficiency for the event. As such the efficiencies shown in Tables 5.4-5.5, 5.8-5.11,

and those in Appendix B, have been subjected to tracking and PID corrections.

Each correction has an associated systematic error. For tracking, the value of this

error for B+ → K+K−π+ is given as

• ±2.4%,

which is a linear addition of 0.8% per track [99]. For PID we use the variables

εData and εMC , which are defined to be the efficiencies for candidates passing the

PID selector for the two samples. If εData < εMC , an MC track accepted before the

correction has a probability 1 − εData

εMC
of being rejected. If εData > εMC , a rejected
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MC track has a probability 1 − 1−εData

1−εMC
of being accepted. The systematic error for

the PID correction is calculated from control sample studies and is found to be 1.4%

per corrected track [100], which, for B+ → K+K−π+, add linearly to give a total of

• ±4.2%.

6.4.2.2 Selection criteria

The efficiencies of the cuts on our discriminating variables are also contenders for

possible corrections. The cuts on the variables mES, ∆E and cos θT for the BABAR

analysis B+ → K+K−K+ [88] are very similar to those in this analysis. In the

B+ → K+K−K+ analysis the authors perform a study using the calibration channel

B+ → D
0
(→ K+π−)π+. This mode is kinematically very similar to both B+ →

K+K−π+ and B+ → K+K−K+, and the same tools that are used to study these

modes can also be used to analyse B+ → D
0
(→ K+π−)π+. Its branching ratio

however is much larger at (189±12)×10−6 [23]. This allows accurate measurements

of the efficiencies of the applied cuts on signal events from both data and MC, and

corrections can be obtained. The correction factors obtained in [88] are consistent

with unity when taking into account errors (of less than 5%). In a previous (cut

and count) analysis of B+ → K
∗
(892)0K+, the author found that the correction

factor on the efficiency of cos θH was also consistent with unity within errors [6]. To

estimate a correction factor for the cut on mKπ, Eq. (6.3) is used:

Correction factor =

∫ 1.048 GeV/c2

0.744 GeV/c2

(

(µPDG −mKπ)
2 +

Γ2
PDG

4

)−1

dmKπ

∫ 1.048 GeV/c2

0.744 GeV/c2

(

(µPDF −mKπ)2 +
Γ2

PDF

4

)−1

dmKπ

, (6.3)

where µPDG and ΓPDG are the world average values for the mass and width of

the K∗(892)0 [23], and µPDF and ΓPDF are the values for the mass and width

obtained from fitting a Breit-Wigner shape to B+ → K
∗
(892)0K+ MC (as discussed

in Section 5.7.6) – in which detector resolution is taken into account. A value of

0.998 ± 0.002 is obtained. The cut on F of < |3.0| is very loose as can be seen in

Figure 4.5. A correction is therefore not deemed necessary.
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It is decided that it is not necessary to apply a correction to the efficiencies of the

selection criteria to which our discriminating variables are subjected. Furthermore,

we can be conservative when assigning a systematic error to cover the uncertainty of

this non-action, since the errors on the fit yields are considerably larger (Table 6.1).

A highly conservative2 value of

• ±8.8%

is chosen. Adding in quadrature with the uncertainties for tracking and PID gives

a total systematic uncertainty on the efficiency (ε in Eq. (5.1)) of ±10%.

6.4.3 Systematics on the number of B events

From Eq. (4.11) it can be seen that the systematic uncertainty on NB± is

• ±1.9%.

6.5 Upper limits on B(B+ → K
∗
0(1430)0(→ K−π+)

K+) and B(B+ → K+K−π+ non-resonant)

The signal yield for the 3-variable fit in the 1430 window can be used to place an up-

per limit on the branching ratio of the process B+ → K
∗
0(1430)

0(→ K−π+)K+. In

assigning an upper limit to this branching ratio, we assume that all events that con-

stitute the signal yield are B+ → K
∗
0(1430)

0(→ K−π+)K+ events. We also assume

that B+ → K
∗
0(1430)

0(→ K−π+)K+ does not interfere with other B+ → K+K−π+

events. The latter assumption, although unlikely to be true, is an acceptable ap-

proximation for the situation described.

2The systematic uncertainties on the selection criteria efficiencies for the BABAR B+ →
K+K−K+ [88] and B+ → K+π−π+ [50] analyses are ≈ 5%.
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Since the fit does not use information on intermediate states, the signal yield can

also be used to place an upper limit on the branching ratio of the non-resonant

channel B+ → K+K−π+. The same assumptions are made for non-resonant B+ →
K+K−π+ as those described above for B+ → K

∗
0(1430)

0(→ K−π+)K+.

The method used to produce the NLL scans (Figure 6.5) described in Section 6.2 is

again employed. This time the normalised maximum likelihood values (e−NLL+C) are

plotted as a function of the branching ratio (given by Eq. (5.1)), and the curves are

broadened to account for systematic errors using the method described in Appendix

G.1 of [101]. The resultant likelihood scans are presented in Figure 6.6.
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Figure 6.6: For each plot, the black crosses represent 20 of 400 likelihood

values obtained from varying the branching ratio. The red curve is a bifurcated

Gaussian fitted to all 400 of these points. The black markers/red curve take

into account systematic uncertainties (including the uncertainty on the mKπ

lineshape). The blue points are the 400 likelihood values before systematic un-

certainties are considered. For the left (right) plot, the signal yield obtained

for the 3-variable fit in the 1430 window is taken to be solely due to the process

B+ → K
∗
0(1430)0(→ K−π+)K+ (non-resonant B+ → K+K−π+). Zero in-

terference with other B+ → K+K−π+ contributions is assumed. The vertical,

black lines indicate 90% CL upper limits on B(B+ → K
∗
0(1430)0(→ K−π+)

K+) and on B(B+ → K+K−π+ non-resonant), obtained by integrating the red

curves.
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The 90% CL upper limit for the branching ratio is defined as that point on the

likelihood curve where the integral from zero to that point equals 90% of the total

area under the curve between B = 0 and B = ∞. The 90% CL upper limits are

found to be:

• B(B+ → K
∗
0(1430)

0(→ K−π+)K+) < 1.2 × 10−6.

• B(B+ → K+K−π+ non-resonant) < 7.3 × 10−6.

The upper limit on B(B+ → K+K−π+ non-resonant) obtained using the above

method offers no improvement on the current upper limit of 6.3×10−6 [89,102]. This

is unsurprising. The technique used here is far from optimal for such a measurement.

6.6 B(B+ → K
∗
(892)0(→ K−π+)K+)

Before converting the signal yield from the 5-variable fit in the 892 window into

a branching ratio for B+ → K
∗
(892)0(→ K−π+)K+, BB background with the

same final state, namely B+ → K
∗
0(1430)

0(→ K−π+)K+ and non-resonant B+ →
K+K−π+, must be taken into account.

Embedded toy tests are conducted using the same components as in the standard

fit. The number of events embedded (generated for the qq component) is consistent

with the yields obtained from the standard fit. Also added to the mixture are

MC events simulating B+ → K
∗
0(1430)

0(→ K−π+)K+ and non-resonant B+ →
K+K−π+ in quantities determined by the branching ratio central values and upper

limits obtained for the 3-variable fit in the 1430 window (see Section 6.5). The

biases induced on the signal yield due to the presence of these same-final-state BB

background events are shown in Table 6.3 and are used to make an appropriate

subtraction from the signal yield obtained from the standard fit. This correction,

and the associated systematic uncertainty is set at:

• (−5.3+5.3
−6.6) events.
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Mode And Number Of Events Embedded
Bias β Bias β

(Signal) (qq Bkgd.)

B+ → K
∗
0(1430)0(→ K−π+)K+ β 2† 0.71 ± 0.55 1.32 ± 0.56

B+ → K
∗
0(1430)0(→ K−π+)K+ β 9‡ 3.11 ± 0.54 5.92 ± 0.51

B+ → K
∗
0(1430)0(→ K−π+)K+ λ 5† 1.96 ± 0.53 2.98 ± 0.52

B+ → K
∗
0(1430)0(→ K−π+)K+ λ 19‡ 7.75 ± 0.55 11.22 ± 0.54

B+ → K+K−π+ (non-resonant) 9† 3.33 ± 0.54 5.64 ± 0.54

B+ → K+K−π+ (non-resonant) 17‡ 6.48 ± 0.56 10.44 ± 0.53

Table 6.3: Biases obtained from toy tests with embedded same-final-state BB

background events for the 5-variable fit in the 892 window. Fit model compo-

nents are S, qq and (BB)i (i = 1, 2, 3). 500 experiments are run per toy test.

Poissonian smearing is turned off.

β: mKπ lineshape modelled as Breit-Wigner; λ: mKπ lineshape modelled as

LASS.

‡: Branching ratio value used to calculate expected number of events is up-

per limit presented in Section 6.5; †: branching ratio value used to calculate

expected number of events is central value obtained for 3-variable fit in 1430

window.

It is also necessary to consider the possible effect of interference (discussed in Sec-

tion 1.4.2). A study is performed in which toy MC events are generated using the

Laura++ Dalitz plot package [103]. Several hundred thousand datasets are gener-

ated. The total number of events generated is the same for each dataset, and is equal

to the total number of observed signal events in our two windows (the 892 window

and the 1430 window) from the final on-resonance samples. Events are generated

only in the area of the Dalitz plot that corresponds to the 892 and 1430 windows.

B+ → K
∗
(892)0(→ K−π+)K+ events are generated according to the Breit-Wigner

distribution (Eq. (1.96)), whilst B+ → K
∗
0(1430)

0(→ K−π+)K+ events are gener-

ated according to the LASS distribution (Eq. (1.97)). The relative magnitudes and
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phases of the two amplitudes are varied randomly between datasets. If the num-

ber of events observed in the 892 and 1430 windows in the resultant dataset is not

consistent with our signal yields from the final on-resonance samples, the dataset

is discarded. This accounts for the majority of datasets generated. For those that

remain we are interested in the values of the fraction

f892 =

∫ ∫

DP
| c892 a892 (m2

Kπ,m
2
KK) |2 d (m2

Kπ) d (m2
KK)

∫ ∫

DP
| c892 a892 (m2

Kπ,m
2
KK) + c1430 a1430 (m2

Kπ,m
2
KK) |2 d (m2

Kπ) d (m2
KK)

(6.4)

(plotted in Figure 6.7), which cause us to observe the yields that we do in our

two windows. a892 and a1430 are the dynamical amplitudes for B+ → K
∗
(892)0(→

K−π+)K+ and B+ → K
∗
0(1430)

0(→ K−π+)K+ respectively (as determined by the

invariant mass lineshapes and cos θH distributions), and c892 and c1430 are complex

coefficients (the magnitudes and phases of which are varied randomly). “DP” indi-

cates that we are integrating over the B+ → K+K−π+ Dalitz plot.

The fractional systematic uncertainty due to possible interference is then taken to

be the standard deviation of the random variable f892 divided by its mean value.

The procedure is repeated for the non-resonant contribution, and the uncertainty is

found to be smaller than for the 1430 contribution. The uncertainty obtained from

the 1430 study described above,

• ±8.3%,

is therefore used as the systematic uncertainty for interference.

The signal yield to be used in the calculation of B(B+ → K
∗
(892)0(→ K−π+)K+)

can now be quoted:

• NS = 21.6+13.0+6.7
−11.8−7.6.

This value is plugged into Eq. (5.1) together with

• ε = 0.266 ± 0.001 ± 0.027, and
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Figure 6.7: Interference study: distribution of the variable f892 (Eq. (6.4))

for datasets in which the phases and magnitudes of the B+ → K
∗
(892)0(→

K−π+)K+ and B+ → K
∗
0(1430)

0(→ K−π+)K+ amplitudes are such that the

number of events observed in the 892 and 1430 windows are equal to the signal

yields obtained from the final on-resonance samples.

• NB± = (232.28 ± 4.14 ± 4.39) × 106,

to give a central value on the branching ratio of B+ → K
∗
(892)0(→ K−π+)K+ of

• B(B+ → K
∗
(892)0(→ K−π+)K+) = (0.35+0.21+0.11

−0.19−0.13) × 10−6.

The first uncertainty is statistical whilst the second is systematic. The significance

of this result is taken to be χ(B = 0) where

χ2(B) =
χ2
stat(B)χ2

syst(B)

χ2
stat(B) + χ2

syst(B)
, (6.5)

χ2
stat(B) = −2 ln

(LMax(BNom)

LMax(B)

)

, and (6.6)

χ2
syst(B) =

B − BNom
σsyst

. (6.7)

BNom is the branching ratio that gives the maximum value of LMax, i.e. the central

value quoted above. σsyst is the systematic uncertainty and L, recall, is the likelihood
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function defined in Eq. (5.12). See Section 6.1.3 of [104] for further information

regarding Eq. (6.6). The significance obtained using Eq.s (6.5)-(6.7) is

• 1.61σ.

A likelihood curve analogous to those in Figure 6.6 is constructed forB+ → K
∗
(892)0(→

K−π+)K+, and is used to place an upper limit on B(B+ → K
∗
(892)0(→ K−π+)K+):

• B(B+ → K
∗
(892)0(→ K−π+)K+) < 0.7 × 10−6.

This curve is shown in Figure 6.8.
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Figure 6.8: Maximum likelihood values as a function of branching ratio for

the 5-variable fit in the 892 window. The black crosses/red curve take into ac-

count systematic uncertainties whilst the blue points do not. The vertical, black

line represents the 90% CL upper limit on B(B+ → K
∗
(892)0(→ K−π+)K+).
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Systematic Uncertainty On Signal Yield

Source
(Number Of Events)

5-var. Fit In 3-var. Fit In 3-var. Fit In

892 Window 892 Window 1430 Window

Fit procedure
— ±5.0 ±5.0

(Section 6.3.1)

Fixed PDF parameters +1.7 +1.6 +2.6

(Section 6.4.1.2) −0.6 −0.8 −2.2

Fixed BB background yields +0.4 +0.9 +2.8

(Section 6.4.1.1) −0.6 −1.5 −1.5

Subtraction of BB background ±3.2
events for which components are ±4.8 ±8.3
not included in fit model

†
+5.3 ‡
−6.6(Section 6.3)

Fixed SXF fraction ±0.7 — —
(Section 6.4.1.3)

Interference ±1.8 — —
(Section 6.6)

Total
+6.7 +7.2 +10.4

−7.6 −7.1 −10.0

†
: Final state BB background is not K+K−π+, unless otherwise stated.

‡
: Final state BB background is K+K−π+ (Section 6.6).

Table 6.4: Sources of systematic errors on the signal yields. The total system-

atic errors are obtained by adding the individual contributions in quadrature.
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6.7 ∆Sφ(1020)K0
S

bound

Taking B(K
∗
(892)0 → K−π+) = 2

3
, and using the result presented in Section 6.5,

we can quote the following:

B(B+ → K
∗
(892)0K+) central value = (0.6 ± 0.3 ± 0.2) × 10−6.

B(B+ → K
∗
(892)0K+) upper limit = 1.1 × 10−6.

For the central value, the first uncertainty is statistical, the second is systematic.

The upper limit is at the 90% CL.

This information can be used to evaluate an improved bound on ∆Sφ(1020)K0
S

(as

defined in Section 1.3). Using

• Eq. (1.85),

|ξφ(1020)K+ | < λ

1 − λ2

2

(

(B(B+ → K
∗
(892)0K+)

B(B+ → φ(1020)K+)

)
1

2

+

( B(B+ → φ(1020)π+)

B(B+ → φ(1020)K+)

)
1

2

)

,

• The assumption that the up penguin minus top penguin contribution for B0 →
φ(1020)K0

S
is not much larger than the corresponding contribution for B+ →

φ(1020)K+ (see Section IV.B of [10]),

• Eq. (1.78),

∆Sφ(1020)K0
S

= 2 cos 2β sin γ cos δφ(1020)K0
S
|ξφ(1020)K0

S
|,

• The technique described in Section VI of [1] (the branching ratio and phase

values generated, and the resulting ∆Sφ(1020)K0
S

values, are illustrated in Fig-

ure 6.9),

• The likelihood curve (analogous to Figure 6.8) obtained in the BABAR B+ →
φ(1020)π+ analysis [45],

• B(B+ → φ(1020)K+) = (8.3 ± 0.7) × 10−6 [41–44] and
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• B(B+ → K
∗
(892)0K+) = (0.6 ± 0.4)3 ×10−6,

we are able to place the following SM bound (at 90% CL) on ∆Sφ(1020)K0
S
:

|∆Sφ(1020)K0
S
| < 0.11.

The most recent sin2β measurements are, from BABAR,

• sin2β (B0 → J/ψK0
S
) = 0.697 ± 0.041Stat [105],

• sin2β eff (B0 → φ(1020)K0
S
) = 0.12 ± 0.31Stat ± 0.10Syst [106],

and from Belle,

• sin2β (B0 → J/ψK0
S
) = 0.643 ± 0.038Stat

4 [107],

• sin2β eff (B0 → φ(1020)K0
S
) = 0.50 ± 0.21Stat ± 0.06Syst [107].

The B0 → φ(1020)K0
S

measurements are illustrated in Figure 6.10.

3The statistical and systematic uncertainties have been added in quadrature.
4The systematic errors presented in [105] and [107] are for several charmonium modes combined,

rather than just for B0 → J/ψK0
S
. The systematic uncertainties on sin2β (B0 → J/ψK0

S
) are

smaller than the statistical uncertainties (∼ 50%).
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values, using the technique described in Section VI of [1].
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Figure 6.10: Current status of sin2β eff from penguin dominated modes. The

entries relevant to this thesis are the first two entries (not including the b̄→ c̄cs̄

world average). The b̄ → c̄cs̄ world average is heavily influenced by B0 →
J/ψK0

S
.



7
Conclusion

The optimal technique to measure the rates of B meson decays to the final state

K+K−π+ is an amplitude-level study of the full Dalitz plot. The results of the

analysis described in this thesis indicate that we may have to wait for the next

generation of B factories before such a study is feasible.

With the currently available data, which correspond to 232.3 million charged B

mesons recorded by the BABAR detector, the most sensitive measurements possible

are those that make use of an intensity-level unbinned extended maximum likelihood

approach, as described in this thesis.

The 90% CL upper limit on the branching ratio of the channel B+ → K
∗
0(1430)

0K+

has been reduced here, significantly, from 10.2× 10−6 [89,102] to 2.2× 10−6 (where
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we use B(K
∗
0(1430)

0 → K−π+) = 2
3
× (0.93 ± 0.10) [23]).

We are unable to comment on whether the difference between the fitted signal yields

for the 5- and 3-variable fits in the 892 window is due to a statistical fluctuation or the

presence of a further final state K+K−π+ contribution (in addition to K
∗
(892)0K+).

The uncertainties are such that both scenarios are feasible.

The branching ratio of the decay B+ → K
∗
(892)0K+ has been measured to be

(0.6±0.3Stat±0.2Syst)×10−6. The significance of this measurement, when taking into

account systematic uncertainties, is 1.6σ. This falls short of the significance required

to represent evidence for the process. As such, an upper limit of 1.1 × 10−6 (90%

CL) is placed on the aforementioned branching ratio. This has been considerably

reduced from 5.3 × 10−6 as presented by the CLEO collaboration in 2000 [7].

Our result can be used to evaluate an improved SM bound on ∆Sφ(1020)K0
S
, the

deviation from sin2β of the time dependent CP asymmetry for the mode B0 →
φ(1020)K0

S
(as discussed in Section 1.3). We find that |∆Sφ(1020)K0

S
| < 0.11. This

represents a significant reduction on the bound given in [1] of |∆Sφ(1020)K0
S
| < 0.42,

which is evaluated using neutral B decays1. A deviation exceeding this SM bound

would provide a strong indication for physics beyond the SM.

1It should be noted that the assumption described in Section 6.7 (second bullet point) is not

necessary when using neutral processes.



A
Fisher Discriminants

Eight Fisher discriminants are devised using the following discriminating variables:

• 2-variable Fisher, F(L0, L2).

• 3-variable Fisher, F(L0, L2, TFlv).

• 4-variable Fisher, F(L0, L2, θBmom, θBthr).

• 5-variable Fisher, F(L0, L2, θBmom, θBthr, TFlv).

• 9-variable Fisher, F(Nine CLEO cones).

• 10-variable Fisher, F(Nine CLEO cones, TFlv).

• 11-variable Fisher, F(Nine CLEO cones, θBmom, θBthr).
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• 12-variable Fisher, F(Nine CLEO cones, θBmom, θBthr, TFlv).

The variables L0, L2, θBmom, θBthr and TFlv are described in Section 4.5.1.2.

The CLEO cone variables [108] are constructed as follows: a 90◦ cone around the

thrust axis of the reconstructed B is defined and split into nine independent concen-

tric 10◦ cones. The energy flow of all charged tracks and neutral candidates in the

ROE into these cones (in both the forward and backward hemispheres) is summed.

The nine CLEO cone variables are an alternative to L0 and L2 as a measure of the

energy flow. They can be used instead of – rather than in addition to – L0 and L2.

L0 and L2 are shown to give superior separation compared to the CLEO cones.

The 2-, 3-, 4- and 5-variable Fisher discriminants therefore give superior separation

compared to their 9-, 10-, 11- and 12-variable Fisher discriminant counterparts,

respectively.

For every added variable there is a certain amount of noise, which adversely affects

the overall discrimination. It is only worth adding variables therefore when their

discriminating power exceeds the effect of this noise. This is true for the variable

TFlv and, used together, for the variables θBmom and θBthr.

Optimal Fisher coefficients (ai in Eq. (4.12)) are presented in Tables A.1-A.3; signal

versus qq background distributions are illustrated in Figure A.1 for the eight Fisher

discriminant variables considered for the 5-variable fit in the 892 window.
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L0 −0.049 −0.012 −0.017 −0.006 — — — —

L2 0.951 0.322 0.359 0.210 — — — —

10◦ CLEO cone — — — — 0.206 0.143 0.149 0.113

20◦ CLEO cone — — — — 0.231 0.162 0.169 0.130

30◦ CLEO cone — — — — 0.116 0.083 0.085 0.067

40◦ CLEO cone — — — — 0.149 0.108 0.112 0.089

50◦ CLEO cone — — — — 0.028 0.023 0.023 0.020

60◦ CLEO cone — — — — −0.024 −0.014 −0.014 −0.008

70◦ CLEO cone — — — — −0.065 −0.042 −0.046 −0.033

80◦ CLEO cone — — — — −0.074 −0.050 −0.054 −0.040

90◦ CLEO cone — — — — −0.105 −0.069 −0.078 −0.056

θBmom — — 0.326 0.183 — — 0.142 0.104

θBthr — — 0.298 0.168 — — 0.127 0.093

TFlv — −0.668 — −0.433 — −0.307 — −0.246

Table A.1: Fisher coefficients for the 5-variable fit in the 892 window.
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L0 −0.044 −0.009 −0.015 −0.005 — — — —

L2 0.956 0.323 0.355 0.209 — — — —

10◦ CLEO cone — — — — 0.210 0.145 0.151 0.115

20◦ CLEO cone — — — — 0.233 0.164 0.170 0.131

30◦ CLEO cone — — — — 0.117 0.084 0.086 0.068

40◦ CLEO cone — — — — 0.149 0.108 0.111 0.088

50◦ CLEO cone — — — — 0.029 0.023 0.023 0.019

60◦ CLEO cone — — — — −0.021 −0.011 −0.012 −0.006

70◦ CLEO cone — — — — −0.064 −0.042 −0.045 −0.032

80◦ CLEO cone — — — — −0.075 −0.050 −0.054 −0.040

90◦ CLEO cone — — — — −0.102 −0.068 −0.076 −0.055

θBmom — — 0.332 0.186 — — 0.146 0.106

θBthr — — 0.298 0.171 — — 0.127 0.095

TFlv — −0.668 — −0.429 — −0.306 — −0.245

Table A.2: Fisher coefficients for the 3-variable fit in the 892 window.
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L0 0.100 0.024 0.027 0.015 — — — —

L2 0.900 0.216 0.240 0.132 — — — —

10◦ CLEO cone — — — — 0.243 0.159 0.161 0.121

20◦ CLEO cone — — — — 0.064 0.040 0.042 0.030

30◦ CLEO cone — — — — 0.240 0.155 0.161 0.119

40◦ CLEO cone — — — — 0.159 0.110 0.109 0.086

50◦ CLEO cone — — — — 0.053 0.038 0.039 0.032

60◦ CLEO cone — — — — −0.000 −0.000 −0.000 −0.000

70◦ CLEO cone — — — — −0.022 −0.014 −0.015 −0.010

80◦ CLEO cone — — — — −0.119 −0.075 −0.082 −0.059

90◦ CLEO cone — — — — −0.101 −0.065 −0.069 −0.050

θBmom — — 0.392 0.212 — — 0.163 0.119

θBthr — — 0.341 0.179 — — 0.158 0.113

TFlv — −0.760 — −0.463 — −0.344 — −0.263

Table A.3: Fisher coefficients for the 3-variable fit in the 1430 window.
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Figure A.1: Signal (red) versus qq background (blue) distributions for eight

Fisher discriminants.
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B
BB background MC studies

The following is for the 5-variable fit in the 892 window. The procedure is repeated

for the 3-variable fits.

Tables B.1-B.2 and B.3-B.4 list all exclusive MC samples that are subjected to recon-

struction and the selection criteria summarised in Table 5.3 (RaSC). Tables B.1-B.2

list modes that occur in the generic MC samples after the application of RaSC.

Tables B.3-B.4 list further possible sources of BB background that are considered

for the analysis.

Table B.5 lists the modes that are removed from the generic sample to be treated

separately or simply ignored. Tables B.6-B.9 list the most abundant modes present

in the resulting combinatoric soups, after the application of RaSC. Figure B.1 illus-
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trates the fit variable distribution shapes for these combinatoric samples, compared

to corresponding signal shapes.
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Table B.1: Modes that are a possible source of BB background, identified by

running RaSC over generic MC samples. The number of events expected in the

final on-resonance sample, for each mode, is estimated using the efficiency of

applying RaSC to appropriate MC samples and world average branching ratio

(BR) values. The first error is statistical – from the statistical uncertainty on

the MC efficiency; the second is systematic – due to the error on the branching

ratio. Statistical and systematic errors on NB± are also accounted for (see

Eq. (4.11)). Where only an upper limit (UL) is available, value used = UL/2±
UL/2. Some of the modes shown here are treated exclusively, whilst others are

left in the generic samples to be treated as a combinatoric soup. Continued in

Table B.2 . . .

Exclusive Number # MC Branching # Events

MC Of Events Events Ratio Expected

Mode, To Pass Run (× In Final

B+ → {B0 →} RaSC Over 10−6) On-res. Sample

φ(→ K+K−)K+ 3, 266 163, 000 4.4 ± 0.3 [23] [89] 20.6 ± 0.4 ± 1.5

K+K−π+ (NR) 15, 211 1, 323, 000 < 6.3 [23] 8.4 ± 0.1 ± 8.4

K+K+K− (NR) 3, 755 1, 314, 000 < 23.1 [89] 7.6 ± 0.1 ± 7.6

D
0
(→ K+π−)ρ+(→ π+π0) 16 415, 000 509.2 ± 69.5 [23] 4.5 ± 1.1 ± 0.6

ρ0(→ π+π−)K+ 742 206, 000 5.1 ± 0.9 [89] 4.3 ± 0.2 ± 0.7

D
0
(→ K+π−π0)ρ+(→ π+π0) 3 294, 000 1, 742.0 ± 257.4 [23] 4.1 ± 2.4 ± 0.6

D
0
(→ K+π−)µ+νµ 3 294, 000 817.0 ± 85.8 [23] 1.9 ± 1.1 ± 0.2

D
0
(→ K+π−π0)µ+νµ 1 292, 000 2, 795.0 ± 333.7 [23] 2.2 ± 2.2 ± 0.3

f0(980)(→ π+π−)K+ 128 148, 000 9.1 ± 1.1 [89] 1.8 ± 0.2 ± 0.2

χc0(→ K+K−)K+ 177 114, 000 3.6 ± 1.5 [23] 1.3 ± 0.1 ± 0.6

D
∗0

(→ D
0
(→ K+π−)γ)µ+νµ 2 288, 000 311.3 ± 40.4 [23] 0.5 ± 0.4 ± 0.1

D
∗0

(→ D
0
(→ K+π−π0)γ)µ+νµ 0 (⇒ 0.1 UL @ 90% CL) 294, 000 1, 064.9 ± 150.8 [23] 0.04 ± 0.04 ± 0.01

D
∗0

(→ D
0
(→ K+π−)π0)µ+νµ 0 (⇒ 0.1 UL @ 90% CL) 294, 000 505.7 ± 58.2 [23] 0.020 ± 0.020 ± 0.002

D
∗0

(→ D
0
(→ K+π−π0)π0)µ+νµ 0 (⇒ 0.1 UL @ 90% CL) 294, 000 1, 730.1 ± 221.9 [23] 0.07 ± 0.07 ± 0.01

...
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...

D
∗0

(→ D
0
(→ K+K−)γ)π+ 15 147, 000 6.8 ± 0.8 [23] 0.16 ± 0.04 ± 0.02

D
∗0

(→ D
0
(→ K+K−)π0)π+ 11 147, 000 11.1 ± 1.2 [23] 0.19 ± 0.06 ± 0.02

D
∗0

(→ D
0
(→ K+π−)γ)π+ 8 192, 500 66.6 ± 7.9 [23] 0.6 ± 0.2 ± 0.1

D
∗0

(→ D
0
(→ K+π−π0)π0)π+ 6 350, 000 370.2 ± 43.1 [23] 1.5 ± 0.6 ± 0.2

D
∗0

(→ D
0
(→ K+π−)π0)π+ 4 232, 000 108.2 ± 11.0 [23] 0.43 ± 0.22 ± 0.04

D
∗0

(→ D
0
(→ K+π−π0)γ)π+ 2 239, 000 227.8 ± 29.8 [23] 0.4 ± 0.3 ± 0.1

η′(→ γρ0(→ π+π−))K+ 175 145, 000 20.5 ± 1.1 [23] [89] 5.7 ± 0.4 ± 0.3

D
∗0

(→ D
0
(→ K+π−)π0)e+νe 2 294, 000 505.7 ± 58.2 [23] 0.8 ± 0.6 ± 0.1

D
∗0

(→ D
0
(→ K+π−)γ)e+νe 1 289, 000 311.3 ± 40.4 [23] 0.25 ± 0.25 ± 0.03

D
∗0

(→ D
0
(→ K+π−π0)γ)e+νe 0 (⇒ 0.1 UL @ 90% CL) 283, 000 1, 064.9 ± 150.8 [23] 0.04 ± 0.04 ± 0.01

D
∗0

(→ D
0
(→ K+π−π0)π0)e+νe 0 (⇒ 0.1 UL @ 90% CL) 292, 000 1, 730.1 ± 221.9 [23] 0.07 ± 0.07 ± 0.01

D
0
(→ K+π−)e+νe 3 294, 000 817.0 ± 85.8 [23] 1.9 ± 1.1 ± 0.2

D
0
(→ K+π−π0)e+νe 1 294, 000 2, 795.0 ± 333.7 [23] 2.2 ± 2.2 ± 0.3

D
0
(→ K−π+)K+ 61 10, 000 0.05 ± 0.01 [23] 0.07 ± 0.01 ± 0.01

D
0
(→ K+π−)K+ 32 362, 000 14.1 ± 2.3 [23] 0.29 ± 0.05 ± 0.05

D
0
(→ K+K−)π+ 5 20, 000 19.4 ± 1.4 [23] 1.1 ± 0.5 ± 0.1

D
0
(→ K+π−)π+ 3 216, 000 189.2 ± 11.9 [23] 0.61 ± 0.35 ± 0.04

D
0
(→ K+π−π0)π+ 3 249, 000 647.4 ± 54.8 [23] 1.8 ± 1.0 ± 0.2

χc0(→ π+π−)K+ 2 111, 000 4.4 ± 1.8 [23] 0.02 ± 0.01 ± 0.01

J/ψ (→ e+e−, µ+µ−)K+ 1 169, 000 118.1 ± 4.9 [23] 0.16 ± 0.16 ± 0.01

D
0
(→ K+K−)K+ 638 250, 000 1.4 ± 0.2 [23] 0.83 ± 0.03 ± 0.12

{K+ρ−(→ π−π0)} 398 647, 000 9.9 ± 1.6 [89] 1.4 ± 0.1 ± 0.2

{D∗−(→ D
0
(→ X)π−)π+} 15 4, 226, 000 1, 868.5 ± 142.8 [23] 1.5 ± 0.4 ± 0.1

{D∗−(→ D
0
(→ X)π−)ρ+(→ π+π0)} 3 1, 052, 000 4, 603.6 ± 610.2 [23] 3.0 ± 1.8 ± 0.4

{D−(→ X)ρ+(→ π+π0)} 0 (⇒ 0.1 UL @ 90% CL) 112, 000 7, 700.0 ± 1, 300.0 [23] 0.8 ± 0.8 ± 0.1

{D−(→ π−π0)K+} 66 295, 000 0.5 ± 0.2 [23] 0.026 ± 0.003 ± 0.010

{D−(→ X)K+} 7 246, 000 200.0 ± 60.0 [23] 1.3 ± 0.5 ± 0.4

{K+K−π0 (NR)} 299 126, 000 < 19.0 [23] 5.2 ± 0.3 ± 5.2

K
∗
2(1430)

0(→ K−π+)K+ 1, 045 97, 000 < 0.2‡ 0.24 ± 0.01 ± 0.24

K+π+π− (NR) 467 1, 298, 985 2.9 ± 1.1 [89] 0.24 ± 0.01 ± 0.09

φ(→ K+K−)π+ 111 121, 000 < 0.2 [23] [89] 0.021 ± 0.002 ± 0.021

‡: Estimated using Eq. (C.1).

Table B.2: Continued from Table B.1.
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Table B.3: Further modes that are considered as possible sources of BB

background, including all modes taken into account for the BABAR analyses

B+ → K+K−K+ [88] and B+ → K+π−π+ [50]. Continued in Table B.4 . . .

Exclusive Number # MC Branching # Events

MC Of Events Events Ratio Expected

Mode, To Pass Run (× In Final

B+ → {B0 →} RaSC Over 10−6) On-res. Sample

K
∗
0(1430)0(→ K−π+)K+ (LASS) 9, 624 128, 150 < 3.8‡ 32.9 ± 0.3 ± 32.9

K
∗
0(1430)0(→ K−π+)K+ (BW) 3, 771 117, 000 < 3.8‡ 14.1 ± 0.2 ± 14.1

{K∗0(→ K+π−)K
∗0

(→ K−π+) (L)} 740 122, 000 < 9.8 [89] 6.9 ± 0.3 ± 6.9

{K+K−K0
S (NR)} 178 220, 000 12.4 ± 1.2 [89] 2.3 ± 0.2 ± 0.2

K∗+(→ K+π0)K
∗0

(→ K−π+) (L) 657 126, 000 < 1.6 [89] [90] 0.97 ± 0.04 ± 0.97

{K+π−π0 (NR)} 236 2, 307, 000 35.6 ± 3.4 [89] 0.8 ± 0.1 ± 0.1

{D∗−(→ X)K+} 4 247, 000 200.0 ± 50.0 [23] 0.8 ± 0.4 ± 0.2

K1(1270)0(→ ρ+(→ π+π0)K−)K+ 138 117, 000 < 5.0† 0.7 ± 0.1 ± 0.7

{K1(1270)−(→ ρ0(→ π+π−)K−)K+} 125 117, 000 < 5.0† 0.6 ± 0.1 ± 0.6

D
0
(→ K+π−π0)K+ 6 134, 000 48.1 ± 8.3 [23] 0.5 ± 0.2 ± 0.1

{π+π−π0 (NR)} 10 2, 130, 000 < 720.0 [23] 0.4 ± 0.1 ± 0.4

K∗+(→ K+π0)K
∗0

(→ K−π+) (T) 28 126, 000 < 15.8 [89] 0.4 ± 0.1 ± 0.4

{K∗0(→ X)γ} 16 392, 000 43.0 ± 4.0 [23] 0.41 ± 0.10 ± 0.04

ρ0(→ π+π−)K∗+(→ K+π0) (L) 69 201, 000 3.4 ± 1.3 [89] [90] 0.27 ± 0.03 ± 0.10

{K∗+(→ K+π0)ρ−(→ π−π0)} 3 12, 000 < 8.0 [89] 0.2 ± 0.1 ± 0.2

K
∗
(1680)0(→ K−π+)K+ 1, 211 117, 000 < 0.2‡ 0.24 ± 0.01 ± 0.24

D
∗0

(→ D
0
(→ K+π−π0)π0)K+ 3 120, 000 29.0 ± 8.4 [23] 0.17 ± 0.10 ± 0.05

{K+π−} 101 1, 873, 500 18.9 ± 0.7 [89] 0.24 ± 0.02 ± 0.01

J/ψ (→ K+K−)K+ 956 280, 000 0.24 ± 0.03 [23] 0.19 ± 0.01 ± 0.02

K0
S(→ π+π−)K+ 222 182, 000 0.3 ± 0.3 [23] 0.09 ± 0.01 ± 0.09

{ρ0(→ π+π−)K∗0(→ K+π−) (L)} 96 202, 000 < 1.8 [89] 0.10 ± 0.01 ± 0.10

K∗+(→ K0
S(→ π+π−)π+)K

∗0
(→ K−π+) (L) 7 122, 000 < 10.9 [23] [89] 0.07 ± 0.03 ± 0.07

K∗
0 (1430)0(→ K+π−)π+ (LASS) 3 116, 497 23.7 ± 3.8 [23] [89] 0.14 ± 0.08 ± 0.02

K∗
0 (1430)0(→ K+π−)π+ (BW) 4 177, 000 23.7 ± 3.8 [23] [89] 0.12 ± 0.06 ± 0.02

{D0
(→ K+π−)ρ0(→ π+π−)} 3 70, 000 11.0 ± 4.2 [23] 0.11 ± 0.06 ± 0.04

D
∗0

(→ D
0
(→ K+K−)γ)K+ 180 265, 000 0.5 ± 0.2 [23] 0.08 ± 0.01 ± 0.03

D
∗0

(→ D
0
(→ K+K−)π0)K+ 20 30, 000 0.9 ± 0.2 [23] 0.14 ± 0.03 ± 0.03

...
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D
∗0

(→ D
0
(→ K+π−)π0)K+ 16 285, 000 8.5 ± 2.4 [23] 0.11 ± 0.11 ± 0.03

D
∗0

(→ D
0
(→ K+π−)γ)K+ 14 259, 500 5.2 ± 1.5 [23] 0.06 ± 0.06 ± 0.02

ρ+(→ π+π0)K∗0(→ K+π−) (L) 52 800, 000 4.6 ± 0.9 [89] [90] 0.07 ± 0.07 ± 0.01

K0
S(→ π+π−)π+ 9 219, 000 8.3 ± 0.4 [23] [89] 0.079 ± 0.079 ± 0.004

{π+π−} 2 2, 595, 000 5.0 ± 0.4 [89] (8.9 ± 8.9 ± 0.7) × 10−4

η′(→ γρ0(→ π+π−))π+ 4 146, 000 2.5 ± 0.6 [23] [89] 0.016 ± 0.016 ± 0.004

η(→ π+π−π0)K∗+(→ K+π0) 4 121, 000 1.8 ± 0.2 [23] [89] 0.014 ± 0.014 ± 0.002

{K∗
2 (1430)0(→ X)γ} 3 184, 000 13.0 ± 5.0 [23] 0.05 ± 0.05 ± 0.02

{D∗0
(→ D

0
π0, D

0
γ)ρ0(→ π+π−), D

0 → K+π−} 1 140, 000 < 19.8 [23] 0.02 ± 0.02 ± 0.02

ρ+(→ π+π0)K∗0(→ K+π−) (T) 2 180, 000 2.4 ± 0.6 [89] [90] 0.006 ± 0.006 ± 0.002

ρ0(→ π+π−)K∗+(→ K+π0) (T) 4 178, 000 0.1 ± 0.5 [89] [90] (0.5 ± 0.5 ± 2.0) × 10−3

{ρ0(→ π+π−)K∗0(→ K+π−) (T)} 10 182, 000 < 1.8 [89] 0.01 ± 0.01 ± 0.01

ρ+(→ π+π0)ρ0(→ π+π−) (L) 2 352, 000 25.6 ± 6.5 [89] [90] 0.03 ± 0.03 ± 0.01

{ρ0(→ π+π−)ρ0(→ π+π−) (L)} 6 203, 000 < 1.1 [89] 0.004 ± 0.004 ± 0.004

{ρ+(→ π+π0)ρ−(→ π−π0) (L)} 29 4, 383, 000 25.4 ± 3.7 [89] [90] 0.04 ± 0.04 ± 0.01

{D0
(→ K+π−)π0(→ γγ)} 1 154, 000 10.1 ± 3.0 [23] 0.015 ± 0.015 ± 0.004

K∗+(→ X)γ 2 436, 000 38.0 ± 5.0 [23] 0.04 ± 0.04 ± 0.01

π+π+π− (NR) 32 2, 220, 000 < 4.6 [89] 0.01 ± 0.01 ± 0.01

K∗0(892)(→ K+π−)π+ 5 185, 000 7.6 ± 0.7 [89] 0.048 ± 0.048 ± 0.004

D
∗0

(→ D
0
(→ K+π−γ)π0)K+ 0 (⇒ 0.1 UL @ 90% CL) 42, 000 17.8 ± 5.3 [23] 0.005 ± 0.005 ± 0.001

ψ(2S)(→ e+e−, µ+µ−)K+ 0 (⇒ 0.1 UL @ 90% CL) 50, 100 10.1 ± 0.8 [23] (2.3 ± 2.3 ± 0.2) × 10−3

K∗(1410)+(→ X)γ 0 (⇒ 0.1 UL @ 90% CL) 290, 000 < 8, 000.0† 0.16 ± 0.16 ± 0.16

{K∗(1410)0(→ X)γ} 0 (⇒ 0.1 UL @ 90% CL) 288, 000 < 8, 000.0† 0.16 ± 0.16 ± 0.16

K∗(1680)+(→ X)γ 0 (⇒ 0.1 UL @ 90% CL) 290, 000 < 1, 900.0 [23] 0.04 ± 0.04 ± 0.04

{D∗0
(→ D

0
(→ K+π−)γ)γ} 0 (⇒ 0.1 UL @ 90% CL) 183, 000 < 0.8 [23] (2.5 ± 2.5 ± 2.5) × 10−5

K∗+(→ K0
S(→ π+π−)π+)K

∗0
(→ K−π+) (T) 0 (⇒ 0.1 UL @ 90% CL) 121, 000 < 10.9 [23] [89] 0.001 ± 0.001 ± 0.001

{K∗0(→ K+π−)K
∗0

(→ K−π+) (T)} 0 (⇒ 0.1 UL @ 90% CL) 121, 000 < 9.8 [89] (4.7 ± 4.7 ± 4.7) × 10−4

{D0
(→ K+π−π0)π0(→ γγ)} 0 (⇒ 0.1 UL @ 90% CL) 70, 000 34.7 ± 10.5 [23] 0.006 ± 0.006 ± 0.002

{D∗0
(→ D

0
(→ K+π−)π0/γ)π0} 0 (⇒ 0.1 UL @ 90% CL) 140, 000 10.1 ± 1.9 [23] (8.4 ± 8.4 ± 1.6) × 10−4

{D∗0
(→ D

0
(→ K+π−π0)π0/γ)π0} 0 (⇒ 0.1 UL @ 90% CL) 140, 000 34.7 ± 6.8 [23] 0.003 ± 0.003 ± 0.001

L(T): Longitudinally (transversely) polarised.

†: Conservative upper limit.

‡: Estimated using Eq. (C.1).

Table B.4: Continued from Table B.3.
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B+ → K
∗
(892)0(→ K−π+)K+ B+ → η′(958)(→ ρ(770)0(→ π+π−)γ)K+ B+ → D

0
(→ K+K−)K+

B+ → K
∗
(892)0(→ K−π+γ)K+ B+ → K

∗
2(1430)

0(→ K−π+)K+ B+ → D
0
(→ π+π−)π+

B+ → K
∗
(892)0(→ K−π+)K+γ B+ → K

∗
2(1430)

0(→ K−π+)K+γ B+ → φ(1020)(→ K+K−)π+

B+ → K
∗
(892)0(→ K−π+γγ)K+ B+ → K+K−π+ (NR) B+ → K∗

2 (1430)0(→ K+π−)π+

B+ → φ(1020)(→ K+K−)K+ B0 → ρ−(→ π0π−)K+ B0 → D−(→ π0π−)K+

B+ → φ(1020)(→ K+K−)K+γ B0 → ρ−(→ π0π−)K+γ B0 → K∗0(→ K+π−)K
∗0

(→ K−π+)

B+ → K+K+K− (NR) B+ → K+π+π− (NR) B0 → K0
SK

+K−

B+ → K+K+K−γ (NR) B+ → D
0
(→ K+K−)π+ B+ → ηc(1S)(→ K+K−)K+�

B+ → f0(980)(→ K+K−)K+ B+ → J/ψ (→ K+K−)K+ B+ → χc1(1P )(→ K+K−)K+�

B+ → f0(980)(→ K+K−)K+γ B0 → π0K+K− B+ → a0(980)0(→ K+K−)K+♦

B+ → ρ(770)0(→ π+π−)K+ B+ → χc0(1P )(→ K+K−)K+ B+ → J/ψ (→ K+K−)π+4

B+ → ρ(770)0(→ π+π−γ)K+ B+ → f0(980)(→ π+π−)K+

�: Standard Model forbidden. ♦: Very small branching ratio – ignored by BABAR [88] and Belle [42] B+ →
K+K−K+ Dalitz plot teams. 4: Tiny branching ratio (∼ 10−9 [23]).

Table B.5: Modes removed from the charged and neutral generic MC sam-

ples. These modes are treated separately, or, in the case of �, ♦ and 4, ignored.

The resulting generic MC samples are combinatoric, with no single mode dom-

inating (see Tables B.6-B.9).
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Table B.6: Modes remaining in the B+B− → X generic MC sample after

the application of RaSC and the modes listed in Table B.5 have been removed.

B daughters only are shown. Granddaughters and great granddaughters for

the most popular modes are shown in Table B.8. In total, 316 events remain.

Modes not shown contribute less than any of those shown. The purpose of

listing these modes is to demonstrate that no single mode is responsible for

making a major contribution. Rather, what remains is a combinatoric mixture

of (mainly charm) B meson decays. Continued in Table B.7 . . .

Number Of Events Present After # Events Expected In Final

RaSC Are Applied To Generic On-res. Sample (231.8

B+ → MC Sample Containing 535.9 Million BB Events) By

Million B+B− → X Events
†

Extrapolating Numbers

B+ B− Total From Generics Study
‡

ρ+D
0

36 29 65 14.0 ± 1.7

D
∗0
ρ+ 14 22 36 7.8 ± 1.3

D
0
µ+νµ 14 14 28 6.1 ± 1.1

D
∗0
π+ 10 16 26 5.6 ± 1.1

D
∗0
µ+νµ 14 10 24 5.2 ± 1.1

D
∗0
e+νe 13 10 23 5.0 ± 1.0

D
0
e+νe 11 8 19 4.1 ± 0.9

a+
1 D

0
11 8 19 4.1 ± 0.9

D
0
K+ 7 11 18 3.9 ± 0.9

D
0
π+ 6 7 13 2.8 ± 0.8

D∗+
s D

∗0
5 6 11 2.4 ± 0.7

D
∗0
a+

1 5 4 9 1.9 ± 0.6

D
∗0
D∗0K+ 3 4 7 1.5 ± 0.6
...
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D
0
D+
s 5 1 6 1.3 ± 0.5

D
∗0
K

0
K+ 2 3 5 1.1 ± 0.5

D
∗0
2 π

+ 3 2 5 1.1 ± 0.5

D∗−π0π+π+ 3 2 5 1.1 ± 0.5

D
0
γe+νe 2 3 5 1.1 ± 0.5

D
0

1µ
+νµ 3 2 5 1.1 ± 0.5

string 1 3 4 0.9 ± 0.4

D
∗0
τ+ντ 1 3 4 0.9 ± 0.4

D∗+
s D

0
2 2 4 0.9 ± 0.4

D
∗0
γe+νe 0 4 4 0.9 ± 0.4

D
0
τ+ντ 2 2 4 0.9 ± 0.4

J/ψK+ 1 2 3 0.6 ± 0.4

D
∗0
2 D

∗+
s 2 1 3 0.6 ± 0.4

D
0
γµ+νµ 3 0 3 0.6 ± 0.4

D+
s D

0
π0π0 3 0 3 0.6 ± 0.4

D
∗0
1 π

+ 0 3 3 0.6 ± 0.4

D
0
ρ+π−π+ 0 3 3 0.6 ± 0.4

†: It is not necessarily the case that all of the events shown here pass

RaSC. It may be that it is the other B in the event that passes.

‡: Estimated from a somewhat crude extrapolation using the scale

(231.8/535.9)/2. Uncertainty on the values of the branching ratios

used in the generation of the generics are not accounted for in the

errors shown.

Table B.7: Continued from Table B.6.
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# Generic MC Events Number Of Events

B+ → Present After RaSC Extrapolated In To

B+ B− Total Final On-res. Sample

ρ+D
0
: 36 29 65 14.0 ± 1.7

ρ+ → π+π0, D
0 → K+π− 17 12 29 6.3 ± 1.2

ρ+ → π+π0, D
0 → µ−νµK

+ 6 7 13 2.8 ± 0.8

ρ+ → π+π0, D
0 → e−νeK

+ 3 5 8 1.7 ± 0.6

ρ+ → π+π0, D
0 → K+π−π0 3 4 7 1.5 ± 0.6

ρ+ → π+π0, D
0 → K+K− 3 1 4 0.9 ± 0.4

D
∗0

ρ+: 14 22 36 7.8 ± 1.3

D
∗0 → D

0
(→ K+π−)γ, ρ+ → π+π0 5 9 14 3.0 ± 0.8

D
∗0 → D

0
(→ K+π−)π0, ρ+ → π+π0 3 5 8 1.7 ± 0.6

D
∗0 → D

0
(→ µ−νµK

+)π0, ρ+ → π+π0 2 2 4 0.9 ± 0.4

D
∗0 → D

0
(→ K+π−π0)π0, ρ+ → π+π0 1 2 3 0.6 ± 0.4

D
0
µ+νµ: 16 14 30 6.5 ± 1.2

D
0 → K+π− 7 4 11 2.4 ± 0.7

D
0 → K+π−π0 1 6 7 1.5 ± 0.6

D
0 → µ−νµK

+ 1 3 4 0.9 ± 0.4

D
∗0

µ+νµ: 16 10 26 5.6 ± 1.1

D
∗0 → D

0
(→ K+π−π0)π0 1 7 8 1.7 ± 0.6

D
∗0 → D

0
(→ K+π−π0)γ 2 3 5 1.1 ± 0.5

D
∗0 → D

0
(→ K+π−)π0 2 1 3 0.6 ± 0.4

D
∗0 → D

0
(→ a+

1 K
−)π0 1 2 3 0.6 ± 0.4

D
∗0

π+: 10 16 26 5.6 ± 1.1

D
∗0 → D

0
(→ K+π−π0)γ 2 3 5 1.1 ± 0.5

D
∗0 → D

0
(→ K+π−π0)π0 1 2 3 0.6 ± 0.4

D
∗0 → D

0
(→ e−νeK

+)π0 3 0 3 0.6 ± 0.4

D
∗0

e+νe: 13 10 23 5.0 ± 1.0

D
∗0 → D

0
(→ a+

1 K
−)π0 2 3 5 1.1 ± 0.5

D
∗0 → D

0
(→ K+π−)γ 0 3 3 0.6 ± 0.4

D
0
e+νe: 11 8 19 4.1 ± 0.9

D
0 → K+π− 4 3 7 1.5 ± 0.6

D
0 → µ−νµK

+ 3 1 4 0.9 ± 0.4

D
0 → K+π−π0 2 1 3 0.6 ± 0.4

a
+

1 D
0
: 11 8 19 4.1 ± 0.9

a+
1 → ρ0(→ π−π+)π+, D

0 → K+π− 6 3 9 1.9 ± 0.6

D
0
K+: 7 11 18 3.9 ± 0.9

Table B.8: Breakdown of the most populous modes shown in Tables B.6-B.7.
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Number Of Events Present After # Events Expected In Final

RaSC Are Applied To Generic On-res. Sample (231.8

B
0 → MC Sample Containing 541.3 Million BB Events) By

Million B0B
0 → X Events

†
Extrapolating Numbers

B+ B− Total From Generics Study
‡

D∗+µ−νµ 5 5 10 2.2 ± 0.7

D∗+π− 4 3 7 1.5 ± 0.6

string 3 3 6 1.3 ± 0.5

K∗+π− 1 5 6 1.3 ± 0.5

ρ−D∗+ 1 5 6 1.3 ± 0.5

D+π− 0 6 6 1.3 ± 0.5

K∗−
2 π+ 5 0 5 1.1 ± 0.5

ρ+D− 5 0 5 1.1 ± 0.5

K∗+K− 0 5 5 1.1 ± 0.5

K∗+
2 π− 0 5 5 1.1 ± 0.5

D∗−e+νe 0 5 5 1.1 ± 0.5

D∗+e−νe 4 0 4 0.9 ± 0.4

D∗+D
∗0
K− 1 3 4 0.9 ± 0.4

D∗−a+
1 4 0 4 0.9 ± 0.4

K∗−K+ 3 0 3 0.6 ± 0.4

D+µ−νµ 3 0 3 0.6 ± 0.4

D∗+D
0
K− 2 1 3 0.6 ± 0.4

K
∗0
K0
S 0 3 3 0.6 ± 0.4

D−µ+νµ 0 3 3 0.6 ± 0.4

D∗−γµ+νµ 2 1 3 0.6 ± 0.4

Table B.9: As Tables B.6-B.7, except generated generic MC sample used is

for 541.3 million B0B
0 → X events. For † and ‡, see foot of Table B.7.
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Figure B.1: Distributions of fit variables for signal (red), charged combina-

toric generic MC (green) and neutral combinatoric generic MC (purple), nor-

malised w.r.t. each other to reflect the number of expected events in the final

on-resonance sample (with B(B+ → K
∗
(892)0(→ K−π+)K+) = 1.0 × 10−6).

RaSC have been applied, and modes listed in Table B.5 have been removed from

the generic samples.
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C
Branching ratio upper limit

estimates for K∗∗ modes

Let “K∗∗” represent any K∗ resonance that is greater in mass than the K∗(892)

resonance (for example K∗
0 (1430), K∗

2(1430), K∗(1680), etc.).

Penguins are much more important in pseudoscalar-pseudoscalar decays (B(B →
ππ)/B(B → πK) ∼ 1/4) than in vector-pseudoscalar ones (B(B → ρπ)/B(B →
ρK) ∼ 2) – a result also found in QCD factorisation. Using

B(B+ → K
∗∗
K+) <

B(B+ → K∗∗π+)

B(B+ → K∗(892)0π+)
B(B+ → K

0
K+) (C.1)

therefore, should be entirely conservative. We have as a safety range the unused

expectation of small penguins in vector-pseudoscalar decays.

235



236



D
PDF parameters

PDF parameters are presented in Tables D.1-D.12. Mass units are GeV/c2; energy

units are GeV.
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STRU mES µ 5.2792 ± 0.0000 Fixed STRU mKπ µ (8.9558 ± 0.0014) × 10−1 Fixed

σ (2.5344 ± 0.0102) × 10−3 Fixed Γ (5.003 ± 0.031) × 10−2 Fixed

α 1.8670 ± 0.0459 Fixed cos θH c1 (0.008 ± 1.567) × 10−2 Fixed

n 5.9244 ± 0.5219 Fixed c2 3.602 ± 0.465 Fixed

∆E µ1 (4.42 ± 1.12) × 10−4 Fixed c3 (−0.299 ± 1.554) × 10−1 Fixed

σ1 (2.083 ± 0.016) × 10−2 Fixed c4 −5.217 ± 0.964 Fixed

µ2 (−6.913 ± 1.095) × 10−3 Fixed c5 (0.672 ± 4.194) × 10−1 Fixed

σ2 (4.703 ± 0.197) × 10−2 Fixed c6 4.926 ± 1.071 Fixed

f2 1.0 − (0.8807 ± 0.0111) Fixed c7 (−2.769 ± 3.211) × 10−1 Fixed

F µ1 (−1.147 ± 0.010) × 10−1 Fixed c8 −2.075 ± 0.513 Fixed

σ1 (2.368 ± 0.007) × 10−1 Fixed C −2.716 ± 0.003 Fixed

µ2 (−1.993 ± 0.794) × 10−1 Fixed

σ2 1.346 ± 0.091 Fixed

f2 1.0 − (0.9937 ± 0.0005) Fixed

Table D.1: PDF parameter values for the STRU component for the 5-variable

fit in the 892 window. For further information, see Section 5.7.
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SSXF mES µ 5.2804 ± 0.0004 Fixed SSXF mKπ µ (8.8745 ± 0.0493) × 10−1 Fixed

σ (4.3385 ± 0.2735) × 10−3 Fixed σ (3.868 ± 0.579) × 10−2 Fixed

α 0.3262 ± 0.0432 Fixed c1 −3.196 ± 0.773 Fixed

n 3.0615 ± 0.7204 Fixed fGaus 0.1370 ± 0.0230 Fixed

∆E c1 3.622 ± 0.268 Fixed cos θH c1 (1.121 ± 1.568) × 10−1 Fixed

F µ1 (−5.267 ± 0.381) × 10−2 Fixed c2 5.115 ± 0.623 Fixed

σ1 (2.351 ± 0.028) × 10−1 Fixed c3 4.447 ± 0.502 Fixed

µ2 (−3.914 ± 2.652) × 10−1 Fixed c4 −1.640 ± 0.506 Fixed

σ2 1.245 ± 0.262 Fixed c5 −2.451 ± 0.449 Fixed

f2 1.0 − (0.9914 ± 0.0026) Fixed C −2.718 ± 0.034 Fixed

fSXF 0.0608 ± 0.0122 Fixed

Table D.2: PDF parameter values for the SSXF component for the 5-variable

fit in the 892 window. For further information, see Section 5.7.
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qq mES ξ −25.962 ± 2.226 −24.028 ± 0.727 qq mKπ µ (8.997 ± 0.019) × 10−1 (8.951 ± 0.006) × 10−1

m0 Fixed, to 5.29 Fixed Γ (5.241 ± 0.677) × 10−2 (4.811 ± 0.211) × 10−2

∆E c1 −1.186 ± 0.267 −1.166 ± 0.088 c1 (−1.370 ± 1.710) × 10−1 (2.247 ± 1.000) × 10−1

F µ1 (2.506 ± 0.032) × 10−1 (2.485 ± 0.001) × 10−1 fBW 0.2503 ± 0.0243 0.2183 ± 0.0072

σ1 (1.972 ± 0.025) × 10−1 (1.952 ± 0.001) × 10−1 cos θH c1 (2.194 ± 0.329) × 10−1 (2.163 ± 0.109) × 10−1

µ2 (4.022 ± 1.453) × 10−1 (2.772 ± 0.221) × 10−1 c2 (2.226 ± 0.666) × 10−1 (2.697 ± 0.221) × 10−1

σ2 (5.690 ± 1.249) × 10−1 (4.625 ± 0.252) × 10−1

f2 1.0 − (0.9926 ± 0.0048) 0.0267 ± 0.0051

qq mES ξ −24.381 ± 0.811 qq mKπ µ (8.895 ± 0.007) × 10−1

m0 Fixed, to 5.29 Γ (4.906 ± 0.245) × 10−2

∆E c1 — c1 (1.235 ± 0.969) × 10−1

F µ1 (2.433 ± 0.012) × 10−1 As fBW 0.2218 ± 0.0083 As

σ1 (1.938 ± 0.012) × 10−1 above cos θH c1 (1.547 ± 0.117) × 10−1 above

µ2 (2.784 ± 0.250) × 10−1 c2 (1.913 ± 0.238) × 10−1

σ2 (4.438 ± 0.270) × 10−1

f2 1.0 − (0.9751 ± 0.0056)

†: Top section: qq background sample used is off-resonance sample; bottom section: qq background sample used is on-resonance sideband sample.

Table D.3: PDF parameter values for the qq component for the 5-variable fit

in the 892 window. For further information, see Section 5.7.
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(BB)1 mES µ 5.2791 ± 0.0000 Fixed (BB)1 mKπ µ (8.129 ± 0.003) × 10−1 Fixed

σ (2.5774 ± 0.0393) × 10−3 Fixed Γ (1.113 ± 0.115) × 10−2 Fixed

α 2.1393 ± 0.0998 Fixed σ (8.144 ± 0.562) × 10−3 Fixed

n 1.1752 ± 0.1513 Fixed c1 (6.597 ± 1.649) × 101 Fixed

∆E µ (−6.787 ± 0.066) × 10−2 Fixed c2 (−8.603 ± 1.221) × 101 Fixed

σ (2.400 ± 0.063) × 10−2 Fixed C 0.205 ± 2.898 Fixed

c1 −8.843 ± 0.820 Fixed fV oig 0.9344 ± 0.0127 Fixed

fGaus 0.9005 ± 0.0135 Fixed cos θH c1 −5.896 ± 0.819 Fixed

F µ1 (−9.017 ± 0.428) × 10−2 Fixed c2 (−2.595 ± 0.240) × 101 Fixed

σ1 (2.408 ± 0.031) × 10−1 Fixed c3 (−2.144 ± 0.294) × 101 Fixed

µ2 (−0.654 ± 2.968) × 10−1 Fixed c4 (3.243 ± 0.334) × 101 Fixed

σ2 1.447 ± 0.368 Fixed c5 (2.867 ± 0.220) × 101 Fixed

f2 1.0 − (0.9903 ± 0.0028) Fixed C (−0.826 ± 4.355) × 10−2 Fixed

Table D.4: PDF parameter values for the (BB)1 component for the 5-variable

fit in the 892 window. For further information, see Section 5.10.5.
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(BB)2 mES µ 5.2790 ± 0.0000 Fixed (BB)2 F µ1 (−8.015 ± 0.377) × 10−2 Fixed

σ (2.7098 ± 0.0763) × 10−3 Fixed σ1 (2.243 ± 0.099) × 10−1 Fixed

ξ −48.508 ± 4.396 Fixed µ2 (−0.801 ± 2.042) × 10−1 Fixed

m0 Fixed, to 5.29 Fixed σ2 (7.473 ± 2.300) × 10−1 Fixed

fArgus 0.3146 ± 0.0272 Fixed f2 1.0 − (0.9695 ± 0.0212) Fixed

∆E µ (−8.598 ± 0.369) × 10−2 Fixed mKπ c1 (−4.982 ± 6.945) × 101 Fixed

σ (3.363 ± 0.300) × 10−2 Fixed c2 (0.973 ± 1.216) × 102 Fixed

c1 −4.771 ± 0.800 Fixed cos θH Keys — Fixed

fGaus 0.6252 ± 0.0415 Fixed [98]

Table D.5: PDF parameter values for the (BB)2 component for the 5-variable

fit in the 892 window. For further information, see Section 5.10.5.
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(BB)3 mES µ 5.2792 ± 0.0001 Fixed (BB)3 mKπ µ (9.082 ± 0.049) × 10−1 Fixed

σ (2.7625 ± 0.0926) × 10−3 Fixed σ (5.107 ± 0.580) × 10−2 Fixed

α 1.8895 ± 0.1521 Fixed c1 −1.948 ± 0.458 Fixed

n (9.312 ± 1.921) × 10−1 Fixed fGaus 0.5532 ± 0.0749 Fixed

∆E µ (4.822 ± 0.172) × 10−2 Fixed cos θH c1 (1.987 ± 3.261) × 10−1 Fixed

σ (2.612 ± 0.230) × 10−2 Fixed c2 (2.859 ± 4.039) × 10−1 Fixed

c1 3.768 ± 3.877 Fixed c3 (6.911 ± 4.480) × 10−2 Fixed

fGaus 0.7733 ± 0.0825 Fixed C −2.623 ± 0.163 Fixed

F µ (−7.267 ± 0.882) × 10−2 Fixed

σ (2.402 ± 0.062) × 10−1 Fixed

Table D.6: PDF parameter values for the (BB)3 component for the 5-variable

fit in the 892 window. For further information, see Section 5.10.5.
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S mES µ 5.2793 ± 0.0000 Fixed S F µ1 (−1.015 ± 0.009) × 10−1 Fixed

σ (2.6450 ± 0.0092) × 10−3 Fixed σ1 (2.357 ± 0.007) × 10−1 Fixed

α 2.0219 ± 0.0223 Fixed µ2 (−1.738 ± 0.708) × 10−1 Fixed

n 1.3348 ± 0.0370 Fixed σ2 1.303 ± 0.079 Fixed

∆E µ1 (1.89 ± 1.08) × 10−4 Fixed f2 1.0 − (0.9936 ± 0.0005) Fixed

σ1 (2.103 ± 0.015) × 10−2 Fixed

µ2 (−0.986 ± 1.035) × 10−3 Fixed

σ2 (6.849 ± 0.344) × 10−2 Fixed

f2 1.0 − (0.8284 ± 0.0080) Fixed

Table D.7: PDF parameter values for the S component for the 3-variable fit

in the 892 window. For further information, see Section 5.8.
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S
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qq mES ξ −25.825 ± 2.183 −23.745 ± 0.717 qq F µ1 (2.495 ± 0.031) × 10−1 (2.560 ± 0.011) × 10−1

m0 Fixed, to 5.29 Fixed σ1 (1.976 ± 0.025) × 10−1 (1.948 ± 0.011) × 10−1

∆E c1 −1.116 ± 0.262 −1.103 ± 0.086 µ2 (4.033 ± 1.513) × 10−1 (2.857 ± 0.212) × 10−1

σ2 (5.745 ± 1.275) × 10−1 (4.569 ± 0.241) × 10−1

f2 1.0 − (0.9931 ± 0.0045) 1.0 − (0.9735 ± 0.0049)

qq mES ξ −24.100 ± 0.797 qq F µ1 (2.507 ± 0.012) × 10−1

m0 Fixed, to 5.29 σ1 (1.934 ± 0.012) × 10−1

∆E c1 — As above µ2 (2.955 ± 0.253) × 10−1 As above

σ2 (4.444 ± 0.264) × 10−1

f2 1.0 − (0.9762 ± 0.0052)

†: Top section: qq background sample used is off-resonance sample; bottom section: qq background sample used is on-resonance sideband

sample.

Table D.8: PDF parameter values for the qq component for the 3-variable fit

in the 892 window. For further information, see Section 5.8.
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(BB)1 mES µ 5.2791 ± 0.0000 Fixed (BB)2 ∆E µ (−8.646 ± 0.364) × 10−2 Fixed

σ (2.5774 ± 0.0393) × 10−3 Fixed σ (3.403 ± 0.287) × 10−2 Fixed

α 2.1393 ± 0.0998 Fixed c1 −4.784 ± 0.777 Fixed

n 1.1752 ± 0.1513 Fixed fGaus 0.6285 ± 0.0416 Fixed

∆E µ (−6.787 ± 0.066) × 10−2 Fixed F µ1 (−5.619 ± 0.369) × 10−2 Fixed

σ (2.400 ± 0.063) × 10−2 Fixed σ1 (2.239 ± 0.086) × 10−1 Fixed

c1 −8.843 ± 0.820 Fixed µ2 (3.877 ± 2.031) × 10−1 Fixed

fGaus 0.9005 ± 0.0135 Fixed σ2 (8.657 ± 2.271) × 10−1 Fixed

F µ1 (−8.048 ± 0.425) × 10−2 Fixed f2 1.0 − (0.9788 ± 0.0108) Fixed

σ1 (2.392 ± 0.031) × 10−1 Fixed (BB)3 mES µ 5.2793 ± 0.0001 Fixed

µ2 (−0.226 ± 2.738) × 10−1 Fixed σ (2.8916 ± 0.0873) × 10−3 Fixed

σ2 1.383 ± 0.326 Fixed α 1.9240 ± 0.1248 Fixed

f2 1.0 − (0.9900 ± 0.0028) Fixed n (8.372 ± 1.533) × 10−1 Fixed

(BB)2 mES µ 5.2790 ± 0.0001 Fixed ∆E µ (4.816 ± 0.163) × 10−2 Fixed

σ (2.7063 ± 0.0749) × 10−3 Fixed σ (2.665 ± 0.233) × 10−2 Fixed

ξ −48.562 ± 4.332 Fixed c1 2.727 ± 3.956 Fixed

m0 Fixed, to 5.29 Fixed fGaus 0.7604 ± 0.0814 Fixed

fArgus 0.3165 ± 0.0272 Fixed F µ (−6.597 ± 0.831) × 10−2 Fixed

σ (2.397 ± 0.059) × 10−1 Fixed

Table D.9: PDF parameter values for the BB background components for the

3-variable fit in the 892 window. For further information, see Section 5.11.
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S mES µ 5.2793 ± 0.0000 Fixed S F µ (−1.188 ± 0.138) × 10−2 Fixed

σ (2.7187 ± 0.0157) × 10−3 Fixed σ (2.142 ± 0.010) × 10−1 Fixed

α 2.1511 ± 0.0304 Fixed

n (5.998 ± 0.304) × 10−1 Fixed

∆E µ1 (−1.57 ± 1.84) × 10−4 Fixed

σ1 (2.016 ± 0.024) × 10−2 Fixed

µ2 (−2.051 ± 0.456) × 10−2 Fixed

σ2 (8.907 ± 0.872) × 10−2 Fixed

f2 1.0 − (0.7735 ± 0.0110) Fixed

Table D.10: PDF parameter values for the S component for the 3-variable

fit in the 1430 window. For further information, see Section 5.9.
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qq mES ξ −22.425 ± 2.057 −21.493 ± 0.668 qq F µ1 (2.451 ± 0.082) × 10−1 (2.385 ± 0.021) × 10−1

m0 Fixed, to 5.29 Fixed σ1 (1.873 ± 0.058) × 10−1 (1.863 ± 0.013) × 10−1

∆E c1 (−8.146 ± 2.468) × 10−1 −1.030 ± 0.080 µ2 (3.234 ± 0.132) × 10−1 (3.355 ± 0.039) × 10−1

σ2 (1.211 ± 0.106) × 10−1 (1.114 ± 0.029) × 10−1

f2 1.0 − (0.6437 ± 0.0996) 1.0 − (0.7237 ± 0.0194)

qq mES ξ −21.017 ± 0.733 qq F µ1 (2.355 ± 0.023) × 10−1

m0 Fixed, to 5.29 σ1 (1.857 ± 0.014) × 10−1

∆E c1 — As above µ2 (3.300 ± 0.043) × 10−1 As above

σ2 (1.067 ± 0.036) × 10−1

f2 1.0 − (0.7341 ± 0.0221)

†: Top section: qq background sample used is off-resonance sample; bottom section: qq background sample used is on-resonance sideband

sample.

Table D.11: PDF parameter values for the qq component for the 3-variable

fit in the 1430 window. For further information, see Section 5.9.
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(BB)2 mES µ 5.2791 ± 0.0001 Fixed (BB)3 ∆E µ (6.311 ± 1.129) × 10−2 Fixed

σ (2.5313 ± 0.0768) × 10−3 Fixed σ (3.975 ± 1.375) × 10−2 Fixed

ξ −54.538 ± 8.516 Fixed c1 1.501 ± 3.906 Fixed

m0 Fixed, to 5.29 Fixed fGaus 0.3248 ± 0.2052 Fixed

fArgus 0.3245 ± 0.0158 Fixed F µ (5.268 ± 0.879) × 10−2 Fixed

∆E µ (−7.223 ± 0.236) × 10−2 Fixed σ (2.179 ± 0.062) × 10−1 Fixed

σ (3.344 ± 0.248) × 10−2 Fixed (BB)4 mES µ 5.2793 ± 0.0001 Fixed

c1 −0.078 ± 4.247 Fixed σ1 (2.8534 ± 0.1744) × 10−3 Fixed

fGaus 0.7983 ± 0.0567 Fixed σ2 (8.819 ± 5.592) × 10−4 Fixed

F µ1 (1.950 ± 0.507) × 10−2 Fixed f2 0.0586 ± 0.0620 Fixed

σ1 (1.974 ± 0.037) × 10−1 Fixed ξ −84.353 ± 12.976 Fixed

µ2 1.012 ± 0.521 Fixed m0 Fixed, to 5.29 Fixed

σ2 (3.474 ± 3.095) × 10−1 Fixed fArgus 0.3141 ± 0.0245 Fixed

f2 1.0 − (0.9981 ± 0.0020) Fixed ∆E µ (5.776 ± 0.192) × 10−2 Fixed

(BB)3 mES µ 5.2795 ± 0.0004 Fixed σ (1.902 ± 0.281) × 10−2 Fixed

σ (2.9029 ± 0.5180) × 10−3 Fixed c1 7.434 ± 1.017 Fixed

ξ −104.560 ± 9.657 Fixed fGaus 0.3997 ± 0.0656 Fixed

m0 Fixed, to 5.29 Fixed F µ (2.575 ± 0.764) × 10−2 Fixed

fArgus 0.7772 ± 0.0408 Fixed σ (2.225 ± 0.054) × 10−1 Fixed

Table D.12: PDF parameter values for the BB background components

for the 3-variable fit in the 1430 window. For further information, see Sec-

tion 5.11.
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E
Fit variable correlations

Correlation values between fit variables for the BB background components in the

3-variable fits are presented in Tables E.1 and E.2 (for the 892 and 1430 windows

respectively). All other relevant correlation values are given in the main text.

Figures E.1-E.17 illustrate correlations between fit variables in the form of two-

dimensional scatter plots.
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∆E
−0.248,−0.413,

0.220

F
−0.081, 0.007, 0.026,−0.018,

−0.096 −0.022

mES ∆E

Table E.1: Correlations (calculated using Eq. (5.13)) between variables used

in the 3-variable fit in the 892 window. For each cell, the first value is for the

(BB)1 component, the second is for the (BB)2 component and the third is for

the (BB)3 component.

∆E
−0.399, 0.156,

0.329

F
−0.014,−0.124, 0.025,−0.050,

−0.123 −0.081

mES ∆E

Table E.2: Correlations (calculated using Eq. (5.13)) between variables used

in the 3-variable fit in the 1430 window. For each cell, the first value is for the

(BB)2 component, the second is for the (BB)3 component and the third is for

the (BB)4 component.
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Figure E.1: Scatter plots illustrating correlations between fit variables for the

STRU component for the 5-variable fit in the 892 window. The sample used is

the MC sample discussed in Section 5.7.2. Correlation values, calculated using

Eq. (5.13), are presented in Table 5.12 (Section 5.7.1).
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Figure E.2: Scatter plots illustrating correlations between fit variables for the

SSXF component for the 5-variable fit in the 892 window. The sample used is

the MC sample discussed in Section 5.7.2. Correlation values, calculated using

Eq. (5.13), are presented in Table 5.12 (Section 5.7.1).
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Figure E.3: Scatter plots illustrating correlations between fit variables for the

qq component for the 5-variable fit in the 892 window. The sample used is the

off-resonance sample discussed in Section 5.7.2. Correlation values, calculated

using Eq. (5.13), are presented in Table 5.12 (Section 5.7.1).
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Figure E.4: Scatter plots illustrating correlations between fit variables for the

qq component for the 5-variable fit in the 892 window. The sample used is the

on-resonance sideband sample discussed in Section 5.7.2. Correlation values,

calculated using Eq. (5.13), are presented in Table 5.12 (Section 5.7.1).
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Figure E.5: Scatter plots illustrating correlations between fit variables for the

(BB)1 component for the 5-variable fit in the 892 window. The sample used is

a MC sample in which the decay B+ → φ(1020)(→ K+K−)K+ is simulated.

Correlation values, calculated using Eq. (5.13), are presented in Table 5.22

(Section 5.10.5).
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Figure E.6: Scatter plots illustrating correlations between fit variables for the

(BB)2 component for the 5-variable fit in the 892 window. The sample used

is a MC sample in which the decay B+ → K+K−K+ (Belle Dalitz plot model

B0, solution 1 [42], minus the B+ → φ(1020)K+ contribution) is simulated.

Correlation values, calculated using Eq. (5.13), are presented in Table 5.22

(Section 5.10.5).
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Figure E.7: Scatter plots illustrating correlations between fit variables for the

(BB)3 component for the 5-variable fit in the 892 window. The sample used

is a MC sample in which the decay B+ → ρ(770)0(→ π+π−)K+ is simulated.

Correlation values, calculated using Eq. (5.13), are presented in Table 5.22

(Section 5.10.5).
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Figure E.8: Scatter plots illustrating correlations between fit variables for

the S component for the 3-variable fit in the 892 window. The sample used is

the MC sample discussed in Section 5.8. Correlation values, calculated using

Eq. (5.13), are presented in Table 5.14 (Section 5.8).
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Figure E.9: Scatter plots illustrating correlations between fit variables for

the qq component for the 3-variable fit in the 892 window. Top three plots:

the sample used is the off-resonance sample discussed in Section 5.8; bottom

three plots: the sample used is the on-resonance sideband sample discussed in

Section 5.8; Correlation values, calculated using Eq. (5.13), are presented in

Table 5.14 (Section 5.8).
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Figure E.10: Scatter plots illustrating correlations between fit variables for

the (BB)1 component for the 3-variable fit in the 892 window. The sample used

is a MC sample in which the decay B+ → φ(1020)(→ K+K−)K+ is simulated.

Correlation values, calculated using Eq. (5.13), are presented in Table E.1.
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Figure E.11: Scatter plots illustrating correlations between fit variables for

the (BB)3 component for the 3-variable fit in the 892 window. The sample used

is a MC sample in which the decay B+ → ρ(770)0(→ π+π−)K+ is simulated.

Correlation values, calculated using Eq. (5.13), are presented in Table E.1.
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Figure E.12: Scatter plots illustrating correlations between fit variables for

the (BB)2 component for the 3-variable fit in the 892 window. The sample used

is a MC sample in which the decay B+ → K+K−K+ (Belle Dalitz plot model

B0, solution 1 [42], minus the B+ → φ(1020)K+ contribution) is simulated.

Correlation values, calculated using Eq. (5.13), are presented in Table E.1.
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Figure E.13: Scatter plots illustrating correlations between fit variables for

the S component for the 3-variable fit in the 1430 window. The samples used

are the MC samples discussed in Section 5.9. For the top three plots, the mKπ

lineshape is modelled as LASS; for the bottom three plots, the mKπ lineshape

is modelled as Breit-Wigner. Correlation values, calculated using Eq. (5.13),

are presented in Table 5.16 (Section 5.9).
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Figure E.14: Scatter plots illustrating correlations between fit variables for

the qq component for the 3-variable fit in the 1430 window. Top three plots:

the sample used is the off-resonance sample discussed in Section 5.9; bottom

three plots: the sample used is the on-resonance sideband sample discussed in

Section 5.9; Correlation values, calculated using Eq. (5.13), are presented in

Table 5.16 (Section 5.9).
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Figure E.15: Scatter plots illustrating correlations between fit variables for

the (BB)2 component for the 3-variable fit in the 1430 window. The sam-

ple used is a MC sample in which the decay B+ → K+K−K+ (Belle Dalitz

plot model B0, solution 1 [42], minus the B+ → φ(1020)K+ contribution) is

simulated. Correlation values, calculated using Eq. (5.13), are presented in

Table E.2.
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Figure E.16: Scatter plots illustrating correlations between fit variables for

the (BB)3 component for the 3-var. fit in the 1430 window. The sample used

is a MC sample in which the decay B+ → ρ(770)0(→ π+π−)K+ is simulated.

Correlation values, calculated using Eq. (5.13), are presented in Table E.2.
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Figure E.17: Scatter plots illustrating correlations between fit variables for

the (BB)4 component for the 3-var. fit in the 1430 window. The sample used

is a MC sample in which the decay B+ → f0(980)(→ π+π−)K+ is simulated.

Correlation values, calculated using Eq. (5.13), are presented in Table E.2.
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F
LASS parameters

Where the lineshape of mKπ is modelled as the LASS shape for the decay B+ →
K

∗
0(1430)

0(→ K−π+)K+, the parameters listed in Table F.1 are used. These values

are taken from [49].
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LASS
Value

Parameter

m0 (1.415 ± 0.003) GeV/c2

Γ0 (0.300 ± 0.006) GeV/c2

a (2.07 ± 0.10)( GeV/c)−1

r (3.32 ± 0.34)( GeV/c)−1

B 1.0

φB 0.0

R 1.0

φR 0.0

Table F.1: 37 pts LASS parameters [49]. See Eq.s (1.97) and (1.100) and

Section 1.4.3 for a definition of these variables.
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G
Tests and validations for the

3-var. fits

The toy tests, fit model validations and studies of the effects of BB background

on the fit model, which are described for the 5-variable fit in Section 5.10, are

repeated for the 3-variable fits. The findings are summarised in Section 5.11. For

completeness, the tables and figures not shown in Section 5.11 are presented here.

Tables G.1 and G.2 list the results of pure toy tests (of the type described in Sec-

tion 5.10.2) conducted for the 892 and 1430 windows respectively.

Figures G.1 and G.2 illustrate the BB background PDFs used for the 892 and 1430

windows respectively.
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Tables G.3 and G.4 show the results of toy tests in which signal and BB background

events are embedded real1 MC events (that have passed RaSC), and in which the

BB background yields are fixed.

Figure G.3 shows the plots obtained from the likelihood value comparison tests (see

final paragraph, Section 5.11). The absence of events with a likelihood ratio above

∼ 0.6 (top right and bottom right plots, Figure G.3) can be explained as follows.

Events with a high signal likelihood also have high (BB)i likelihoods (i = 1, 2, 3, 4),

since their PDFs in mES and F are very similar, with only ∆E providing any

significant discrimination. A large amount of discrimination between the signal and

BB background components is lost when the variables mKπ and cos θH are removed

from the fit model. Binning events by PS/(PS +Pqq), bins are filled up to PS/(PS +

Pqq) = 1.0. However, it is highly probable – due to the aforementioned lack of

discrimination – that events with large PS also have large P(BB)i
(i = 1, 2, 3, 4). For

a given event therefore, it is most likely that PS/(PS+Pqq+P(BB)1
+P(BB)2

+P(BB)3
)

< PS/(PS + Pqq).

1By “real” MC, we mean MC that is generated as described in Section 4.3, rather than toy MC

as discussed in Section 5.10.1.
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Number Of Signal Average Yield Bias

And qq Background Extracted Over β;

Events Generated 1,000 † Experiments Mean, Width Of Gaussian

(Poissonially (And Average Error) Fitted To Pull Distribution

Smeared) Signal qq Bkgd. Signal qq Bkgd.

200 signal, 39,956 qq bkgd. 200.34 ± 0.78 39, 959 ± 6 0.33 ± 0.80; 2.68 ± 6.32;

(25.18) (201) −0.023 ± 0.031, 0.011 ± 0.031,

0.982 ± 0.022 0.995 ± 0.022

150 signal, 40,006 qq bkgd. 151.30 ± 0.70 40, 008 ± 6 1.30 ± 0.70; 1.69 ± 6.34;

(23.08) (201) 0.015 ± 0.031, 0.006 ± 0.032,

0.967 ± 0.022 0.998 ± 0.022

100 signal, 40,056 qq bkgd. 100.89 ± 0.63 40, 058 ± 6 0.90 ± 0.63; 2.07 ± 6.34;

(20.52) (201) −0.009 ± 0.031, 0.008 ± 0.032,

0.982 ± 0.022 0.998 ± 0.022

80 signal, 40,076 qq bkgd. 79.28 ± 0.62 40, 077 ± 6 −0.72 ± 0.62; 1.23 ± 6.15;

(19.21) (201) −0.107 ± 0.033, 0.004 ± 0.031,

1.046 ± 0.023 0.969 ± 0.022

60 signal, 40,096 qq bkgd. 60.18 ± 0.56 40, 104 ± 6 0.19 ± 0.56; 8.05 ± 6.29;

(17.84) (201) −0.071 ± 0.033, 0.038 ± 0.031,

1.035 ± 0.023 0.990 ± 0.022

50 signal, 40,106 qq bkgd. 50.39 ± 0.55 40, 112 ± 6 0.39 ± 0.55; 5.61 ± 6.36;

(17.06) (201) −0.067 ± 0.033, 0.026 ± 0.032,

1.047 ± 0.023 1.001 ± 0.022

40 signal, 40,116 qq bkgd. 39.97 ± 0.53 40, 114 ± 6 −0.04 ± 0.53; −2.29 ± 6.32;

(16.10) (201) −0.092 ± 0.034, −0.014 ± 0.031,

1.069 ± 0.024 0.995 ± 0.022

30 signal, 40,126 qq bkgd. 30.54 ± 0.49 40, 136 ± 6 0.54 ± 0.49; 9.59 ± 6.47;

(15.14) (201) −0.074 ± 0.034, 0.045 ± 0.032,

1.069 ± 0.024 1.018 ± 0.023

20 signal, 40,136 qq bkgd. 19.29 ± 0.45 40, 137 ± 6 −0.72 ± 0.45; 0.66 ± 6.39;

(13.93) (201) −0.168 ± 0.034, 0.001 ± 0.032,

1.079 ± 0.024 1.006 ± 0.022

10 signal, 40,146 qq bkgd. 9.98 ± 0.45 40, 144 ± 6 −0.02 ± 0.45; −1.99 ± 6.45;

(12.81) (201) −0.111 ± 0.036, −0.012 ± 0.032,

1.123 ± 0.025 1.016 ± 0.023

0 signal (not Poissonially −1.82 ± 0.82 40, 147 ± 10 −1.82 ± 0.82; −8.78 ± 10.73;

smeared), 40,156 qq bkgd. (11.20) (201) −0.262 ± 0.072, −0.046 ± 0.053,

(300 experiments, not 1,000) 1.239 ± 0.051 0.924 ± 0.038

†: Unless stated otherwise.

Table G.1: Pure toy tests for the 3-variable fit in the 892 window.
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Number Of Signal Average Yield Bias

And qq Background Extracted Over β;

Events Generated 1,000 Experiments Mean, Width Of Gaussian

(Poissonially (And Average Error) Fitted To Pull Distribution

Smeared) Signal qq Bkgd. Signal qq Bkgd.

200 signal, 46, 352 qq bkgd. 200.59 ± 1.05 46, 348 ± 7 0.57 ± 1.05; −4.28 ± 6.62;

(30.46) (217) −0.013 ± 0.032, −0.022 ± 0.030,

0.998 ± 0.022 0.964 ± 0.022

150 signal, 46, 402 qq bkgd. 150.13 ± 0.93 46, 398 ± 7 0.13 ± 0.93; −3.84 ± 6.61;

(28.35) (217) −0.030 ± 0.031, −0.020 ± 0.030,

0.991 ± 0.022 0.962 ± 0.022

100 signal, 46, 452 qq bkgd. 99.24 ± 0.85 46, 449 ± 7 −0.76 ± 0.85; −2.72 ± 6.59;

(25.80) (217) −0.084 ± 0.032, −0.015 ± 0.030,

1.024 ± 0.023 0.960 ± 0.021

80 signal, 46, 472 qq bkgd. 80.04 ± 0.82 46, 461 ± 7 0.04 ± 0.82; −10.53 ± 6.89;

(24.66) (217) −0.052 ± 0.034, −0.051 ± 0.032,

1.061 ± 0.024 1.005 ± 0.022

60 signal, 46, 492 qq bkgd. 60.61 ± 0.76 46, 493 ± 7 0.60 ± 0.76; 0.62 ± 6.91;

(23.35) (217) −0.057 ± 0.033, 0.001 ± 0.032,

1.041 ± 0.023 1.007 ± 0.023

40 signal, 46, 512 qq bkgd. 40.19 ± 0.73 46, 496 ± 7 0.18 ± 0.73; −16.01 ± 7.07;

(21.78) (217) −0.078 ± 0.034, −0.076 ± 0.033,

1.088 ± 0.024 1.032 ± 0.023

30 signal, 46, 522 qq bkgd. 29.11 ± 0.68 46, 514 ± 7 −0.89 ± 0.68; −7.65 ± 7.04;

(20.80) (217) −0.143 ± 0.034, −0.038 ± 0.032,

1.064 ± 0.024 1.028 ± 0.023

20 signal, 46, 532 qq bkgd. 20.55 ± 0.65 46, 526 ± 7 0.54 ± 0.65; −5.97 ± 7.00;

(19.89) (217) −0.078 ± 0.034, −0.030 ± 0.032,

1.073 ± 0.024 1.022 ± 0.023

10 signal, 46, 542 qq bkgd. 8.98 ± 0.61 46, 527 ± 7 −1.02 ± 0.61; −15.07 ± 7.09;

(18.79) (217) −0.139 ± 0.033, −0.072 ± 0.033,

1.048 ± 0.023 1.036 ± 0.023

5 signal, 46, 547 qq bkgd. 2.79 ± 0.65 46, 542 ± 7 −2.20 ± 0.65; −4.68 ± 6.83;

(18.48) (217) −0.228 ± 0.037, −0.024 ± 0.031,

1.177 ± 0.026 0.996 ± 0.022

0 signal (not Poissonially −1.98 ± 0.65 46, 558 ± 7 −1.98 ± 0.65; 5.67 ± 6.75;

smeared), 46, 552 qq bkgd. (17.78) (217) −0.207 ± 0.038, 0.024 ± 0.031,

1.185 ± 0.027 0.984 ± 0.022

Table G.2: Pure toy tests for the 3-variable fit in the 1430 window.
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# (BB)1 # (BB)2 # (BB)3 β β

Embedded † Embedded † Embedded † (Signal) (qq Bkgd.)

n1
BB Bkgd

— — −0.00 ± 0.49 21.47 ± 0.49

n1
BB Bkgd

− ∆n1
BB Bkgd

— — 0.78 ± 0.51 18.79 ± 0.51

n1
BB Bkgd

+ ∆n1
BB Bkgd

— — 1.08 ± 0.51 22.04 ± 0.51

— n2
BB Bkgd

♣ — 0.05 ± 0.51 20.85 ± 0.51

— n2
BB Bkgd

− ∆n2
BB Bkgd

♣ — −0.01 ± 0.49 17.99 ± 0.49

— n2
BB Bkgd

+ ∆n2
BB Bkgd

♣ — 0.82 ± 0.48 22.90 ± 0.48

— n2
BB Bkgd

♦ — −0.64 ± 0.50 17.77 ± 0.50

— n2
BB Bkgd

− ∆n2
BB Bkgd

♦ — −1.10 ± 0.48 15.30 ± 0.48

— n2
BB Bkgd

+ ∆n2
BB Bkgd

♦ — −0.04 ± 0.49 20.08 ± 0.49

— n2
BB Bkgd

♠ — 1.93 ± 0.51 25.28 ± 0.51

— n2
BB Bkgd

− ∆n2
BB Bkgd

♠ — 1.17 ± 0.48 22.21 ± 0.48

— n2
BB Bkgd

+ ∆n2
BB Bkgd

♠ — 2.65 ± 0.50 28.31 ± 0.50

— n2
BB Bkgd

♥ — 1.85 ± 0.51 25.29 ± 0.51

— n2
BB Bkgd

− ∆n2
BB Bkgd

♥ — 1.43 ± 0.49 21.93 ± 0.49

— n2
BB Bkgd

+ ∆n2
BB Bkgd

♥ — 3.07 ± 0.49 27.82 ± 0.49

— — n3
BB Bkgd

1.17 ± 0.49 19.16 ± 0.49

— — n3
BB Bkgd

− ∆n3
BB Bkgd

0.81 ± 0.48 18.56 ± 0.48

— — n3
BB Bkgd

+ ∆n3
BB Bkgd

1.06 ± 0.50 21.22 ± 0.50

n1
BB Bkgd

n2
BB Bkgd

♣ n3
BB Bkgd

−0.05 ± 0.53 20.25 ± 0.54

n1
BB Bkgd

− ∆n1
BB Bkgd

n2
BB Bkgd

− ∆n2
BB Bkgd

♦ n3
BB Bkgd

− ∆n3
BB Bkgd

−1.53 ± 0.50 12.63 ± 0.51

n1
BB Bkgd

+ ∆n1
BB Bkgd

n2
BB Bkgd

+ ∆n2
BB Bkgd

♠ n3
BB Bkgd

+ ∆n3
BB Bkgd

2.59 ± 0.52 30.51 ± 0.52

n1
BB Bkgd

n2
BB Bkgd

♣ n3
BB Bkgd

4.83 ± 0.51 146.86 ± 0.51
+ nOther

BB Bkgd
(BB)Other events

n1
BB Bkgd

n2
BB Bkgd

♣ n3
BB Bkgd

7.14 ± 0.52 209.33 ± 0.52
+ nOtherMax

BB Bkgd
(BB)Other events

Extreme cases:

n1
BB Bkgd

/2 — — −0.88 ± 0.48 12.29 ± 0.48

2n1
BB Bkgd

— — 4.40 ± 0.51 36.02 ± 0.51

— n2
BB Bkgd

/2 ♣ — −1.17 ± 0.49 10.54 ± 0.49

— 2n2
BB Bkgd

♣ — 3.22 ± 0.50 39.80 ± 0.51

— — n3
BB Bkgd

/2 0.20 ± 0.49 18.16 ± 0.49

— — 2n3
BB Bkgd

2.57 ± 0.49 22.71 ± 0.49

n1
BB Bkgd

/2 n2
BB Bkgd

/2 ♣ n3
BB Bkgd

/2 −3.93 ± 0.50 1.39 ± 0.50

2n1
BB Bkgd

2n2
BB Bkgd

♣ 2n3
BB Bkgd

7.44 ± 0.53 57.34 ± 0.55

†: rounded to nearest integer

n1
BB Bkgd

= 20.6 ± 0.4 ± 1.5, n3
BB Bkgd

= 4.8 ± 0.2 ± 0.8

♣: Belle model B0, solution 1 (minus φK) — n2
BB Bkgd

= 23.0 ± 1.1 ± 2.2; ♦: Belle model B0, solution 2

(minus φK) — n2
BB Bkgd

= 19.3 ± 1.4 ± 1.9; ♠: BABAR solution A (minus φK) — n2
BB Bkgd

= 30.1 ± 1.7 ± 2.9;

♥: BABAR solution B (minus φK) — n2
BB Bkgd

= 29.9 ± 1.7 ± 2.9

Table G.3: Embedded toy tests for the 3-variable fit in the 892 window with

fixed-yield BB background components. Where events are embedded for com-

ponent (BB)i (i = 1, 2, 3), the yield for this component is fixed at the central

value of ni
BB Bkgd

(i = 1, 2, 3).
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# (BB)2 # (BB)3 # (BB)4 β β

Embedded † Embedded † Embedded † (Signal) (qq Bkgd.)

n2
BB Bkgd

♣ — — 0.07 ± 0.78 −0.80 ± 0.78

n2
BB Bkgd

− ∆n2
BB Bkgd

♣ — — −1.55 ± 0.79 −7.45 ± 0.78

n2
BB Bkgd

+ ∆n2
BB Bkgd

♣ — — 0.60 ± 0.77 7.92 ± 0.76

n2
BB Bkgd

♦ — — 0.62 ± 0.76 −1.02 ± 0.75

n2
BB Bkgd

− ∆n2
BB Bkgd

♦ — — −1.34 ± 0.77 −7.27 ± 0.77

n2
BB Bkgd

+ ∆n2
BB Bkgd

♦ — — 1.74 ± 0.79 6.95 ± 0.79

n2
BB Bkgd

♠ — — 0.49 ± 0.79 −5.19 ± 0.77

n2
BB Bkgd

− ∆n2
BB Bkgd

♠ — — −1.05 ± 0.78 −11.89 ± 0.78

n2
BB Bkgd

+ ∆n2
BB Bkgd

♠ — — 2.56 ± 0.79 1.11 ± 0.78

n2
BB Bkgd

♥ — — 0.05 ± 0.77 −5.60 ± 0.77

n2
BB Bkgd

− ∆n2
BB Bkgd

♥ — — −0.57 ± 0.74 −13.15 ± 0.74

n2
BB Bkgd

+ ∆n2
BB Bkgd

♥ — — 1.09 ± 0.80 2.60 ± 0.79

— n3
BB Bkgd

— 3.38 ± 0.75 −1.90 ± 0.75

— n3
BB Bkgd

− ∆n3
BB Bkgd

— 2.93 ± 0.76 −3.53 ± 0.76

— n3
BB Bkgd

+ ∆n3
BB Bkgd

— 3.51 ± 0.76 −1.07 ± 0.76

— — n4
BB Bkgd

2.84 ± 0.78 −1.87 ± 0.77

— — n4
BB Bkgd

− ∆n4
BB Bkgd

2.55 ± 0.73 −3.54 ± 0.72

— — n4
BB Bkgd

+ ∆n4
BB Bkgd

3.41 ± 0.76 −0.51 ± 0.75

n2
BB Bkgd

♣ n3
BB Bkgd

n4
BB Bkgd

−0.64 ± 0.79 0.56 ± 0.78

n2
BB Bkgd

− ∆n2
BB Bkgd

♦ n3
BB Bkgd

− ∆n3
BB Bkgd

n4
BB Bkgd

− ∆n4
BB Bkgd

−1.49 ± 0.76 −15.69 ± 0.75

n2
BB Bkgd

+ ∆n2
BB Bkgd

♠ n3
BB Bkgd

+ ∆n3
BB Bkgd

n4
BB Bkgd

+ ∆n4
BB Bkgd

2.15 ± 0.77 10.22 ± 0.79

n2
BB Bkgd

♣ n3
BB Bkgd

n4
BB Bkgd

6.35 ± 0.71 712.63 ± 0.71
+ nOther

BB Bkgd
(BB)Other events

n2
BB Bkgd

♣ n3
BB Bkgd

n4
BB Bkgd

10.40 ± 0.70 1, 080.80 ± 0.70
+ nOtherMax

BB Bkgd
(BB)Other events

Extreme cases:

n2
BB Bkgd

/2 ♣ — — −5.55 ± 0.74 −35.61 ± 0.73

2n2
BB Bkgd

♣ — — 11.91 ± 0.82 70.36 ± 0.81

— n3
BB Bkgd

/2 — 2.93 ± 0.76 −3.53 ± 0.76

— 2n3
BB Bkgd

— 3.56 ± 0.77 0.92 ± 0.76

— — n4
BB Bkgd

/2 1.41 ± 0.75 −6.32 ± 0.74

— — 2n4
BB Bkgd

6.05 ± 0.78 6.77 ± 0.77

n2
BB Bkgd

/2 ♣ n3
BB Bkgd

/2 n4
BB Bkgd

/2 −6.37 ± 0.75 −42.02 ± 0.74

2n2
BB Bkgd

♣ 2n3
BB Bkgd

2n4
BB Bkgd

16.47 ± 0.90 81.18 ± 0.86

†: rounded to nearest integer

♣: Belle model B0, solution 1 (minus φK) — n2
BB Bkgd

= 89.4 ± 2.2 ± 8.6; ♦: Belle model B0, solution 2

(minus φK) — n2
BB Bkgd

= 90.4 ± 3.0 ± 8.7; ♠: BABAR solution A (minus φK) — n2
BB Bkgd

= 85.1 ± 2.9 ± 8.2;

♥: BABAR solution B (minus φK) — n2
BB Bkgd

= 84.5 ± 2.9 ± 8.1;

n3
BB Bkgd

= 3.5 ± 0.1 ± 0.6, n4
BB Bkgd

= 12.0 ± 0.4 ± 1.4

Table G.4: Embedded toy tests for the 3-variable fit in the 1430 window

with fixed-yield BB background components. Where events are embedded for

component (BB)i (i = 2, 3, 4), the yield for this component is fixed at the

central value of ni
BB Bkgd

(i = 2, 3, 4).
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Figure G.1: Fit variable distributions and fitted PDFs for the 3-variable fit

in the 892 window. Left column: mES; middle column: ∆E; right column:

F . Top row: (BB)1; second row: (BB)2; bottom row: (BB)3. The functional

forms of the PDFs are listed in Table 5.21. PDF parameters are given in

Table D.9.
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Figure G.2: Fit variable distributions and fitted PDFs for the 3-variable fit

in the 1430 window. Left column: mES; middle column: ∆E; right column:

F . Top row: (BB)2; second row: (BB)3; bottom row: (BB)4. The functional

forms of the PDFs are listed in Table 5.29. PDF parameters are given in

Table D.12.
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Figure G.3: Top row: 3-variable fit in the 892 window; bottom row: 3-

variable fit in the 1430 window. Left: the distribution of (− lnLMax) values

for 1,000 pure toy experiments, with a superimposed fitted Gaussian. The red

arrow indicates the value of (− lnLMax) obtained when applying the fit model

to the final on-resonance sample; right: event likelihood ratio distributions for

toy MC and the final on-resonance sample.
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H
Floated parameter correlations

Tables H.1-H.3 present the correlation values between the floated PDF parameters

and yields for the extended ML fits to the final on-resonance samples.
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nS −0.087

c
(qq)
1(∆E) −0.001 −0.000

f
(qq)
2(F) −0.042 −0.080 −0.000

µ
(qq)
1(F) 0.048 0.123 −0.001 −0.291

µ
(qq)
2(F) −0.001 0.045 0.001 0.071 −0.260

σ
(qq)
1(F) 0.034 0.060 0.000 −0.855 0.227 −0.048

σ
(qq)
2(F) 0.057 0.015 −0.002 −0.686 0.191 −0.058 0.556

c
(qq)
1(cos θH) −0.012 0.012 −0.002 0.012 −0.021 0.004 −0.006 −0.016

c
(qq)
2(cos θH) 0.004 −0.053 −0.003 0.011 −0.009 −0.011 −0.017 −0.008 0.195

f
(qq)
BW (mKπ) 0.020 −0.055 0.000 −0.011 0.004 −0.013 −0.002 0.010 0.003 0.008

c
(qq)
1(mKπ) 0.020 −0.034 −0.000 −0.103 0.095 0.018 0.093 0.073 −0.026 −0.023 −0.026

µ
(qq)
(mKπ) −0.005 0.017 −0.001 0.021 −0.035 0.000 −0.018 −0.025 0.006 0.001 0.103 −0.231

Γ
(qq)
(mKπ) 0.009 −0.038 0.000 −0.019 0.015 −0.007 0.008 0.019 0.002 −0.000 0.759 −0.028 0.127

ξ
(qq)
(mES) −0.011 0.078 0.003 −0.001 0.004 0.006 0.003 −0.002 0.026 0.012 −0.004 −0.007 0.000 0.012

nqq nS c
(qq)
1(∆E) f

(qq)
2(F) µ

(qq)
1(F) µ

(qq)
2(F) σ

(qq)
1(F) σ

(qq)
2(F) c

(qq)
1(cos θH) c

(qq)
2(cos θH) f

(qq)
BW (mKπ) c

(qq)
1(mKπ) µ

(qq)
(mKπ) Γ

(qq)
(mKπ)

Table H.1: Correlation matrix for fitted PDF parameters and yields for the

5-variable extended ML fit to the final on-resonance sample in the 892 window.
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nS −0.076

c
(qq)
1(∆E) −0.001 −0.001

f
(qq)
2(F) −0.004 0.037 0.001

µ
(qq)
1(F) −0.009 0.084 0.001 −0.064

µ
(qq)
2(F) −0.006 0.061 0.001 0.403 −0.229

σ
(qq)
1(F) 0.005 −0.044 −0.000 0.720 −0.063 0.303

σ
(qq)
2(F) −0.001 0.015 0.001 0.874 −0.042 0.332 0.600

ξ
(qq)
(mES) −0.011 0.109 0.001 0.005 0.012 0.008 −0.007 0.002

nqq nS c
(qq)
1(∆E) f

(qq)
2(F) µ

(qq)
1(F) µ

(qq)
2(F) σ

(qq)
1(F) σ

(qq)
2(F)

Table H.2: Correlation matrix for fitted PDF parameters and yields for the

3-variable extended ML fit to the final on-resonance sample in the 892 window.

nS −0.093

c
(qq)
1(∆E) −0.002 0.003

f
(qq)
2(F) −0.023 0.126 0.000

µ
(qq)
1(F) −0.022 0.160 0.002 0.760

µ
(qq)
2(F) −0.016 0.088 0.000 0.712 0.250

σ
(qq)
1(F) 0.021 −0.157 −0.002 −0.726 −0.397 −0.750

σ
(qq)
2(F) 0.024 −0.110 0.000 −0.857 −0.621 −0.676 0.558

ξ
(qq)
(mES) −0.011 0.129 0.002 0.029 0.029 0.020 −0.025 −0.030

nqq nS c
(qq)
1(∆E) f

(qq)
2(F) µ

(qq)
1(F) µ

(qq)
2(F) σ

(qq)
1(F) σ

(qq)
2(F)

Table H.3: Correlation matrix for fitted PDF parameters and yields for the

3-variable extended ML fit to the final on-resonance sample in the 1430 window.
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Glossary

AF Argus function

AWG Analysis working group

BLT Binary Link Tracker

BR Branching ratio

BW Breit-Wigner

CB Crystal Ball

CKM Cabibbo Kobayashi Maskawa

CL Confidence level

CM Centre of mass

CP Charge Parity

CPT Charge Parity Time

DAQ Data acquisition system

DCH Drift Chamber

DCT Drift Chamber Trigger

DG Double Gaussian

DRC Detector of Internally Reflected Cherenkov Radiation

EMC Electromagnetic Calorimeter

EMT Electromagnetic Calorimeter Trigger

ER Event Reconstruction

FCT Fast Control and Timing System
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FEC Front End readout Card

FEE Front End Electronics

FEX Feature extraction

GLT Global Trigger

HER High Energy Ring

IFR Instrumented Flux Return

IFT Instrumented Flux Return Trigger

IP Interaction point

JAS Java Analysis Studio

L1A Level-1 Accept

L1T Level-1 Trigger

L3T Level-3 Trigger

LER Low Energy Ring

LHC Large Hadron Collider

LST Limited Streamer Tube

MC Monte Carlo

MIP Minimum ionising particle

ML Maximum likelihood

NLL Negative log likelihood

NR Non-resonant

ODC Online Detector Control

ODF Online Dataflow

OEP Online Event Processing

ORC Online Run Control

PC Prompt Calibration

PDF Probability Density Function

PDG Particle Data Group

PEP-II Positron Electron Project II

PID Particle identification
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PIN Positive Intrinsic Negative (semiconductor)

PMT Photo-Multiplier Tube

POCA Point of closest approach

PPARC Particle Physics and Astronomy Research Council

PR Prompt Reconstruction

PTD pT Discriminator

QCD Quantum chromodynamics

RaSC Reconstruction and the selection criteria summarised in Table 5.3

ROE Rest of the event

ROM Read Out Module

RPC Resistive Plate Chamber

SLAC Stanford Linear Accelerator Center

SM Standard Model of particle physics

SVT Silicon Vertex Tracker

SXF Self-cross-feed

TDSE Time dependent Schrödinger equation

TOT Time-over-threshold

TPB Trigger Processor Board

TPC Triggered Personality Card

TRG Trigger

TSF Track Segment Finder

UL Upper limit

UPC Untriggered Personality Card

XTC Extended tagged container (binary files)

ZPD z0 pT Discriminator
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