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Recently, Cai [3] showed that Shor’s quantum factoring algorithm fails to factor large integers when algo-
rithm’s quantum Fourier transform (QFT) is corrupted by a vanishing level of random noise on the QFT’s
precise controlled rotation gates. We show that under the same error model, Shor’s quantum discrete log al-
gorithm, and its various modifications, fail to compute discrete logs modulo P for a positive density of primes
P and a similarly vanishing level of noise. We also show that the same noise level causes Shor’s algorithm to
fail with probability 1 − o(1) to compute discrete logs modulo P for randomly selected primes P .
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1 Introduction

The discrete log problem and the QFT. The discrete log problem (DLP) over Z∗P (the multiplica-
tive group of integers mod P ) is defined as follows: given prime number P , nonzero natural number
д < P such that д0,д1,д2, . . . ,дP−2 generate all nonzero integers mod P , and an integer y that is
nonzero mod P , find the unique value 0 ≤ d ≤ P − 2 such that дd ≡ y mod P . This d is called the
discrete log value of y mod P . The assumed hardness of this problem underlies the Diffie–Hellman
key exchange [6], a widely-used cryptographic protocol. The importance of the DLP, and the prob-
lem of factoring integers, to modern cryptography (and the lack of any polynomial-time classical
algorithm for these problems) make Shor’s polynomial time quantum algorithms for these two
problems [30, 31] two of the most famous results in quantum computing.

Shor’s algorithms for the DLP and the factoring problem consist of classical pre- and post-
processing and a quantum Fourier transform (QFT) exploiting the problems’ underlying
periodicity. The QFT is a central tool in quantum computing, forming the basis of a wide variety
of quantum algorithms promising (if implemented exactly) an exponential speedup over their best
known classical counterparts. The n-qubit QFT, or quantum fast Fourier transform (QFFT)
[28]—the version used by Shor and analyzed in this work—is easily expressible as a quantum
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circuit composed mostly of controlled-Rk gates for k = 2, . . . ,n, where Rk = [ 1 0

0 e2π i/2k ] is the

single-qubit rotation about the Z -axis by angle 2π/2k .

Noisy rotation gates. The precision required to exactly implement the controlled-Rk gates of the
smallest angles 2π/2k increases exponentially with the size of the input to the quantum algorithms
presented in References [30, 31] using the QFT. We are far from the first to raise concern over this
exponential dependency. In Reference [5], Coppersmith introduced an approximate version of the
QFFT that simply omits the controlled-Rk gates from the circuit for every k ≥ b, where b is a
parameter much smaller than (but still increasing with)n. Coppersmith shows that Shor’s factoring
algorithm loses very little efficacy when its exact QFT is replaced by an approximate QFT, even
for b approximately on the order of logn. Fowler and Hollenberg [12, 13] and Nam and Blümel
[23] support this conclusion with numerical simulation for small n and heuristic approximations
for large n, showing that moderate sized values of b may suffice to factor integers on the scale of
those used in some current RSA schemes.

However, while these analyses offer practical support for the robustness of Shor’s factoring
algorithm on small inputs, they both suggest that, for fixed b, the success probability of Shor’s
algorithm decays exponentially in the number of bits of the integer to be factored. From a theo-

retical perspective, this suggests that, without arbitrarily precise quantum error correction, Shor’s
factoring algorithm will fail on sufficiently large inputs.

In Reference [24] (see also References [25, 26]), Nam and Blümel study the performance of the
QFFT circuit when, instead of being removed entirely, the small controlled-Rk gates are subject
to four types of random noise. Again, their analysis suggests that the QFFT could remain effec-
tive on practical scales when subject to noise, but, for a fixed noise level, its performance decays
exponentially with the size of the input.

In Reference [3], the first author gave, to our knowledge, the first rigorous proof under any error
model that Shor’s factoring algorithm fails when a vanishing level of noise is present on sufficiently
large inputs. The particular error model applied in Reference [3] is as follows: for k ≥ b, we replace
each controlled-Rk gate, which rotates about Z by angle 2π/2k , with a noisy rotation about Z by
angle 2π (1 + ϵr )/2k , where ϵ is a global fixed noise level and r is a Gaussian random variable.
The noise variables r on each gate are independent, and the same random perturbation on a gate
applies to every state in a superposition to which the gate is applied. Under this error model, it is
proved in [3] that, if b + log2(1/ϵ) < 1

3 log2(n) − c for some constant c > 0, then Shor’s factoring
algorithm fails to factorn-bit integerspq, both for random fixed-length primesp,q with probability
1 − o(1), and for p,q taken from a specifically defined set of primes of positive density.

Noise model. This work studies the effectiveness of Shor’s discrete log algorithm under the error
model of Cai [3] described in the previous paragraph. The origins of this error model in the con-
text of the QFT go back to works of Coppersmith [5], Barenco, Ekert, Suominen, and Törmä [1],
and Fowler and Hollenberg [12]. Coppersmith’s banded QFFT, as discussed above, assumed exact
implementations of all controlled-Rk gates for k < b. Barenco et al. perform an empirical study of
Coppersmith’s banded QFFT when each remaining controlled-Rk gate is not implemented exactly,
but, similarly to our noise model, is subject to an additional rotation by a normally-distributed
random angle. This noise models the effect of decoherence, where unwanted interactions with
the surrounding environment induce random phase fluctuations. Since controlled-Rk gates apply
to two qubits and have more complex, time-consuming implementations in terms of potentially
many basis gates, they are especially susceptible to decoherence. Fowler and Hollenberg analyze
the performance of Shor’s algorithm under the noise model of Barenco et al., and provide another
justification for this model: any realization of the QFT that admits quantum error correction must
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use only a finite set of gates with fault-tolerant implementations (e.g., the Hadamard and π/8 gates
suffice to approximate any single-qubit rotation). Even with no noise present, arbitrary rotations
cannot be constructed exactly from the finite fault-tolerant gate set; Fowler and Hollenberg use
the noise model of Barenco et al. to simulate this discrepancy between exact and approximate ro-
tations. Wei, Li, Hu, and Nori [32] study the effect of dynamical phases, coherent errors caused by
operational delays between successive gates in a quantum circuit, on the performance of Shor’s fac-
toring algorithm. Their error model, like ours and those discussed above, considers noise affecting
a qubit’s phase, but does not apply noise to or between individual gates in the QFT. Nevertheless,
the net effect is similar to (8) below: the expression for the probability of measuring a desired
state is corrupted by a random phase angle added to each point in an otherwise carefully aligned
sequence of points on the unit circle.

The error models of Barenco et al. and Fowler and Hollenberg are absolute, meaning the noise
magnitude is independent of the angle of the controlled-rotation gate to which the noise is applied.
Hence, for a fixed noise magnitude, sufficiently small angles will be completely overwhelmed by
noise at the level of each individual gate. Nam and Blümel [24] introduced the relative error model,
adopted in this work, in which the noise magnitude scales with the magnitude of the angle of
rotation – that is, a noisy rotation applies an angle of 2π/2k + 2πϵr/2k (cf. the description of our
noise model above) instead of an angle with an expression of the form 2π/2k + ϵr . A negative
result on the effectiveness of Shor’s algorithm in the presence of noise is stronger in this relative
error model, compared with the absolute model, because, in the relative model, individual gates
retain some of their effectiveness even for arbitrarily small rotations. Our noise model is identical
to the relative, uncorrelated (i.e., noise on distinct gates is modeled by distinct independent random
variables) model of Nam and Blümel, but with the additional banding effect, in which noise only
applies to gates Rk with k ≥ b. Again, our negative result is stronger under the banded error model,
in which possibly less, but never more, noise is present (by setting b = 0, we recover Nam and
Blümel’s model). Nam and Blümel use relative, uncorrelated noise (and absolute and/or correlated
noise) to model coherent errors in the QFT—-called static defects—arising from manufacturing
errors such as improperly calibrated magnetic fields in an NMR quantum computer, or unwanted
static electric fields in a trapped-ion quantum computer (see also Reference [25]).

Other discrete log algorithms. Many modifications to and extensions of Shor’s original discrete
log algorithm have been proposed. These modifications and extensions differ in classical pre- and
post-processing, the algebraic structures over which the DLP is solved, and in certain details of the
quantum part of the algorithm, but all apply some form of QFT for the purpose of period-finding.
Indeed, since our error model and analysis are specific to the structure of the QFT, not the context
in which the QFT is used, they apply to any quantum algorithm built on top of the QFT. The DLP
over any cyclic group is an instance of the more general Abelian Hidden Subgroup Problem

(AHSP), so efficient quantum algorithms for the AHSP also solve the DLP. In particular, the AHSP
admits a QFT-based phase estimation algorithm [21], which was modified in Reference [18] to
solve the DLP by computing the discrete log value one bit at a time. Quantum AHSP algorithms
apply the QFT over general cyclic groups [20], which is not as easily implemented as the QFFT
used by Shor, but has efficient quantum approximations [16, 19, 22]. However, at their cores, these
approximations, like the QFFT, use circuits composed of controlled Z-rotation gates. Hence these
approximate QFTs, and the algorithms relying on them, are similarly susceptible to noise.

The QFT has also been applied to solve the DLP over general groups (as long as the group
operation can be computed efficiently) [2] and over other algebraic structures such as semigroups
[4], and to give specialized algorithms for the DLP over elliptic curve groups [28], hyperelliptic
curve groups [17], and for short discrete logs (in which the discrete log value is much smaller
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than the group order) [9]. Additional algorithms have been proposed in which the size of the
quantum circuit or number of quantum operations performed is reduced by a constant factor [7]
or is asymptotically smaller [8] than in Shor’s original algorithm, but more runs of the quantum
circuit and more complex classical postprocessing are required.

Any quantum DLP algorithm using the QFFT can instead use the semiclassical Fourier trans-

form [15] in which the QFFT’s two-qubit controlled-Rk gates are replaced by one-qubit classically-
controlled Rk gates; this can reduce the total number of qubits used by the algorithm [28]. See
also [29]. We reiterate that all these extensions and modifications use a QFT circuit composed of
(controlled) quantum Z -rotation gates (whether classically controlled or otherwise) to exploit the
same periodicity of the DLP, hence are all susceptible to the same noise affecting Shor’s original
algorithm, and our analysis in this article applies.

Noisy QFTs and the discrete log problem. In this work, we show that there exists a constant 0 <
c < 1 such that, if the controlled rotation gates in the QFFT are subject to the error model from
[3] with

b + log2(1/ϵ) ≤
1 − c

2
log2(n) − Θ(1), (1)

then Shor’s algorithm [30, 31] for the DLP fails to find the discrete log modulo P , a prime of binary
length n, of all but an exponentially small fraction of inputs y ∈ Z∗P , where P is taken from a
positive density of primes (Theorem 3.2), or P is chosen uniformly at random with probability
1−o(1) (Theorem 3.3). Although our main conclusions in Theorems 3.2 and 3.3 are similar to those
of Reference [3], the proof is different at a technical level.

A key component of our proof is a technical lemma upper bounding the expected value of a sum
of terms with factors of the form e(2π i/a)Σk , where Σk is, with high probability, a sum of Θ(n) (where
n is the binary length of the input) independent random noise variables r . Our model explicitly
assumes each noise variable is normally distributed, and uses the fact that Σk is then normally
distributed. This is for the convenience of proof presentation (as is the case in Reference [3]). Our
proof can be easily adapted if the noise is drawn from any distribution of bounded variance, by
applying the central limit theorem.

Both analyses—for the DLP algorithm in this article and for Shor’s factoring algorithm in Ref-
erence [3]—come down to arguing about the distribution of bits in the binary representations of
certain integers to show that a sufficient number of random noise variables are included in the
expression for the probability of measuring desired states. The theorems in Reference [3] use a
bound on the power of 2 in the prime factorizations of certain integers appearing in the algorithm,
but we employ a different technique featuring a counting argument instead.

The proofs of Theorems 3.2 and 3.3 show that when the algorithm measures the state after
applying a noisy QFT, the probability that the measurement produces a state in some set of directly
useful states is exponentially small. However, Shor notes in Reference [31] that an algorithm could
still feasibly extract the discrete log value from states in a slightly larger set. Hence, we extend
the specified sets of states in the proofs of Theorems 3.2, 3.3 to naturally enlarged sets of states
that are “polynomially close” to states from which Shor’s DLP algorithm explicity specifies it can
extract the solution. This makes our results more robust, since they also preclude the success of
any more flexible or slightly modified algorithms capable of extracting the solution from states
that are close enough to the original algorithms’ desired states. We give a natural definition of
“polynomially close” in Section 4 and show that there is an exponentially small probability that
the post-noisy-QFT measurement produces a state polynomially close to any state Shor defines in
Reference [31] to be useful.
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For fixed b and ϵ , once n exceeds the product of some exponential expression in b and polyno-
mial expression in 1/ϵ , (1) is satisfied, hence Shor’s algorithm for DLP fails on sufficiently large n
when noise exceeds this level. Section 5.2 presents the results of numerical simulations estimating
the exact noise threshold after which this failure occurs. To place this threshold in the context of
current quantum computers, Section 5.1 presents the results of quantum hardware experiments
studying the efficacy of precise rotations such as Rk . We emphasize that it is still plausible that
quantum computers can be built that can efficiently solve the DLP modulo integers on the scale
of those used in current cryptosystems. However, our proof shows that Shor’s algorithm for the
DLP must apply arbitrarily precise controlled rotations to handle arbitrarily large inputs. In partic-
ular, the algorithm will fail for sufficiently large inputs on quantum computers lacking arbitrarily
precise quantum error correction.

2 Preliminaries

For integers a < b, let [a,b] = {a,a + 1, . . . ,b} and [a,b) = [a,b] \ {b}.
We will use the following technical lemma (essentially a restatement of [3, Lemma 2]) bounding

the squared norm of sums of unit norm random variables. It will be used to upper bound the
probability of a quantum algorithm measuring a desired state.

Lemma 2.1. For a ∈ R+, let ωa = e2π i/a . Let {ri | i ∈ [n]} be i.i.d. Gaussian random variables

drawn from N (0, 1), and let {Jk ⊂ [n] | k ∈ [K]} be a finite collection of sets. Assume all except at

most a fraction ζ of pairwise symmetric differences Jk ΔJk ′ have cardinality at least a2t for k � k ′.
Let Σk =

∑
i ∈Jk

ri and φk ∈ [0, 2π ). Then

E

[���ωφ1+Σ1
a + ω

φ2+Σ2
a + . . . + ω

φK+ΣK
a

���2] ≤ K + 2ζ

(
K

2

)
+ 2

(
K

2

)
e−2π 2t .

3 The Discrete Log Algorithm with Noise

3.1 Shor’s Quantum Discrete Log Algorithm and the Quantum Fourier Transform

The setup of the DLP is as follows: given prime P , base д ∈ Z∗P of order P − 1, and y ∈ Z∗P ,
find the 0 ≤ d ≤ P − 2 such that дd ≡ y mod P . Since д is a generator of Z∗P , there is a one-
to-one correspondence between d values and input y values. Suppose P is an n-bit integer, so
2n−1 ≤ P < 2n . We encode integers 0 ≤ x < 2n as n-qubit quantum states |x〉 =

��x [0]x [1] . . . x [n−1]〉,

where x [j] is the value of the jth bit in the n-bit binary representation of x . In this section, we give
an overview of Shor’s quantum algorithm [31] to find d . We begin by preparing the state

1

P − 1

P−2∑
u=0

P−2∑
k=0

|u〉 |k〉
���дuy−k mod P

〉
=

1

P − 1

P−2∑
u=0

P−2∑
k=0

|u〉 |k〉
���дu−dk mod P

〉
, (2)

in three n-qubit registers. Now the algorithm applies n-qubit QFTs to the first and second registers.
The n-qubit QFT F2n sends |x〉 to

F2n |x〉 = 1

2n/2

2n−1∑
v=0

exp
(
2πi

xv

2n

)
|v〉 . (3)

Hence the state becomes

1

2n(P − 1)

P−2∑
u,k=0

2n−1∑
v,w=0

exp

(
2πi

uv + kw

2n

)
|v〉 |w〉

���дu−dk mod P
〉
. (4)

Now, we measure the three registers. Let 0 ≤ u∗ ≤ P − 2. For each 0 ≤ k ≤ P − 2, u = dk +
u∗ mod (P − 1) is the unique integer in the range [0, P − 2] satisfying u − dk ≡ u∗ mod (P − 1). So,
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letting uk = dk + u∗ mod (P − 1), the probability of obtaining |v〉 |w〉
��дu∗〉

upon measuring the
three registers is

1

22n(P − 1)2

�����
P−2∑
k=0

exp

(
2πi

ukv + kw

2n

)�����
2

. (5)

Certain useful Fourier peaks have a high probability of being measured. Let {z}2n be the residue
of z mod 2n in the range −2n−1 < {z}2n ≤ 2n−1. Shor [31] shows that the probability of measuring
some |v〉 |w〉 in the first two registers with v and w satisfying����{vd +w − d

P − 1
{v(P − 1)}2n

}
2n

���� ≤ 1

2
, (6)

and

|{v(P − 1)}2n | <
2n

12
, (7)

is at least a positive constant, and that we can extract the discrete log value d from such a pair
(v,w) with high probability.

3.2 The Noisy Quantum Fourier Transform

The exact n-qubit QFT F2n is implemented using a quantum circuit composed of Hadamard gates
and controlled-Rk gates for 2 ≤ k ≤ n, where Rk is the single-qubit rotation about Z by angle
2π/2k :

Rk =

[
1 0

0 e2π i/2k

]
.

See [27, Section 5.1] for an explicit description of the circuit implementing F2n . We consider the
scenario where there is some b < n such that every controlled-Rk gate for k ≥ b is accompanied
by a small relative additive error. More precisely, we replace each controlled-Rk gate in the circuit
implementing F2n by a controlled-R̃k gate, where

R̃k =

[
1 0

0 e2π i(1+ϵr )/2k

]
is a Z -rotation of angle 2π (1+ϵr )/2k , where r is an independent Gaussian random variable drawn
from N (0, 1) and ϵ is a global parameter controlling the magnitude of the noise. With the exact
rotations Rk , the F2n circuit directly realizes the transformation

|x〉 �→ 1

2n/2

(
|0〉 + exp

(
2πi0.x [n−1]x [n−2] . . . x [0]

)
|1〉

)
(
|0〉 + exp

(
2πi0.x [n−2] . . . x [0]

)
|1〉

)
...(
|0〉 + exp

(
2πi0.x [0]

)
|1〉

)
.

After using swaps to reverse the order of the qubits, one can check that this operation is equivalent
to the original expression for F2n in (3) (see [27, Section 5.1]). When each controlled-Rk gate is
replaced by a controlled- R̃k gate for k ≥ b, the noisy circuit implements a transformation we call
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F̃2n , where

F̃2n |x〉 =
(
|0〉 + exp

(
2πi

(
0.x [n−1]x [n−2] . . . x [0] +

ϵ

2b

[
r (0)0 x [n−b]

20
+ . . . +

r (0)
n−b

x [0]

2n−b

]))
|1〉

)
(
|0〉 + exp

(
2πi

(
0.x [n−2] . . . x [0] +

ϵ

2b

[
r (1)0 x [n−b−1]

20
+ . . . +

r (1)
n−b−1x

[0]

2n−b−1

]))
|1〉

)
...(
|0〉 + exp

(
2πi

(
0.x [b−1] . . . x [0] +

ϵ

2b
r (n−b)

0 x [0]
))

|1〉
)

(
|0〉 + exp

(
2πi0.x [b−2] . . . x [0]

)
|1〉

)
...(
|0〉 + exp

(
2πi0.x [0]

)
|1〉

)
and r (0)0 , . . . , r

(0)
n−b
, r (1)0 , . . . , r

(1)
n−b−1, . . . , r

(n−b)
0 are i.i.d. random variables drawn from N (0, 1).

3.3 Analysis Over a Positive Density of Primes

In this section, we show that there are a positive density of primes P for which Shor’s discrete log
algorithm, as described in Section 3.1, has an exponentially small probability of solving the DLP
over Z∗P when forced to use the noisy QFT F̃2n in place of the exact transform F2n .

We begin with a result from number theory. For integer x , let P+(x) be the largest prime dividing
x .

Theorem 3.1 (Fouvry [11]). There exist constants c > 0 and n0 > 0 such that for all x > n0,

|{prime p < x | P+(p − 1) > p2/3}| ≥ c
x

logx
.

Since the number of primes at most x is asymptotically x
log x

, Fouvry’s theorem states that the

set of primes p satisfying P+(p−1) > p2/3 has positive density in the set of all primes. Throughout,
we assume that there is a 1/2 < c1 < 1 such that P − 1 has a prime factor P+(P − 1) > Pc1 . By
Theorem 3.1, there is a set of primes P of a positive density with c1 = 2/3. However, we carry out
the proof with a generic value c1.

Recall that applying F2n to the first two registers took the state in (2) to the state in (4). Suppose
we instead apply F̃2n to the first two registers of the state in (2). Each noisy QFT comes with its
own set of independent r.v.s, labeled as r (·)· and ρ(·)· , respectively. We obtain the state

1

2n(P − 1) ·

P−2∑
u=0

P−2∑
k=0

(
|0〉 + exp

(
2πi

(
0.u[n−1]u[n−2] . . .u[0] +

ϵ

2b

[
r (0)0 u[n−b]

20
+ . . . +

r (0)
n−b

u[0]

2n−b

]))
|1〉

)
(
|0〉 + exp

(
2πi

(
0.u[n−2] . . .u[0] +

ϵ

2b

[
r (1)0 u[n−b−1]

20
+ . . . +

r (1)
n−b−1u

[0]

2n−b−1

]))
|1〉

)
...
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21:8 J.-Y. Cai and B. Young

(
|0〉 + exp

(
2πi

(
0.u[b−1] . . .u[0] +

ϵ

2b
r (n−b)

0 u[0]
))

|1〉
)
. . .

(
|0〉 + exp

(
2πi0.u[0]

)
|1〉

)
(
|0〉 + exp

(
2πi

(
0.k [n−1]k [n−2] . . .k [0] +

ϵ

2b

[
ρ(0)0 k [n−b]

20
+ . . . +

ρ(0)
n−b

k [0]

2n−b

]))
|1〉

)
(
|0〉 + exp

(
2πi

(
0.k [n−2] . . .k [0] +

ϵ

2b

[
ρ(1)0 k [n−b−1]

20
+ . . . +

ρ(1)
n−b−1

k [0]

2n−b−1

]))
|1〉

)
...(
|0〉 + exp

(
2πi

(
0.k [b−1] . . .k [0] +

ϵ

2b
ρ(n−b)

0 k [0]
))

|1〉
)
. . .

(
|0〉 + exp

(
2πi0.k [0]

)
|1〉

)
���дu−dk mod P

〉
.

Now, we measure the three registers. Instead of the probability expression in (5), the probability
of measuring |v〉 |w〉

��дu∗〉
after the noisy transform is

p(v,w,дu∗ ) = 1

22n(P − 1)2

�����
P−2∑
k=0

exp

(
2πi

[
n−1∑
t=0

v[t ]
(
0.u[n−t−1]

k
. . .u[0]

k

)
+

n−1∑
τ=0

w [τ ]
(
0.k [n−τ−1] . . .k [0]

)
+

ϵ

2b

{
v[0]

(
r (0)0 u[n−b]

k

20
+ . . . +

r (0)
n−b

u[0]
k

2n−b

)
+v[1]

(
r (1)0 u[n−b−1]

k

20
+ . . . +

r (1)
n−b−1u

[0]
k

2n−b−1

)
+ . . .

+v[n−b] r
(n−b)
0 u[0]

k

20

}

+
ϵ

2b

{
w [0]

(
ρ(0)0 k [n−b]

20
+ . . . +

ρ(0)
n−b

k [0]

2n−b

)
+w [1]

(
ρ(1)0 k [n−b−1]

20
+ . . . +

ρ(1)
n−b−1k

[0]

2n−b−1

)
+ . . .

+w [n−b] ρ
(n−b)
0 k [0]

20

}
])�����

2

. (8)

We will show that the probability of measuring a state satisfying (6) and (7) (states from which
Shor’s algorithm extracts the discrete log value), which was at least a positive constant in the
noise-free case, is exponentially small, providedn is sufficiently large compared withb and 1/ϵ . Let

G = {(v,w) | 0 ≤ v,w < 2n ,v and w satisfy (6) and (7)}
and let π1 : Z × Z→ Z be the projection onto the first coordinate. So for X ⊂ Z × Z we have

π1(X ) = {a | (a,b) ∈ X }.
As Shor notes, for any v , there is exactly one 0 ≤ w < 2n satisfying (6), so

|G | = |π1(G)| ≤ 2n . (9)

Shor also notes that |π1(G)| ≥ 2n/12.
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We will ignore the ρ(·)· terms in (8) entirely. When we apply Lemma 2.1, these ρ(·)· are incorpo-
rated into the terms φk (here and below, reintroducing such terms only increases the noise the
algorithm must overcome). In fact, for k ∈ [0, P − 2], we consider only the error terms

ϵ

2b

(
v[0]r (0)0 u[n−b]

k
+v[1]r (1)0 u[n−b−1]

k
+ . . . +v[n−b]r (n−b)

0 u[0]
k

)
=

ϵ

2b

n−b∑
j=0

v[j]u[n−b−j]
k

r (j)0 =
ϵ

2b

∑
j ∈Jk

r (j)0 (10)

where

Jk = {0 ≤ j ≤ n − b | v[j]u[n−b−j]
k

= 1}.
For any 0 < δ < 1/2 and � ≥ 1, we have [10, Lemma 16.19]

�δ �
∑
i=0

(
�

i

)
≤ 2H2(δ )�,

where H2 is the binary entropy function H2(δ ) = −δ log2(δ ) − (1 − δ ) log2(1 − δ ). Therefore the
number of 0-1 sequences of length � with at most δ� one bits is at most 2H2(δ )� . For v ∈ π1(G),
consider the sequence of bits (v[0],v[1], . . . ,v[n−b]) of length � = n − b + 1. Fix some 0 < δ1 < 1/2;
there are no more than 2H2(δ1)(n−b+1) 0-1 sequences of length n −b + 1 with fewer than δ1(n −b) <
δ1(n − b + 1) one bits. Then, there are at most 2b−1 · 2H2(δ1)(n−b+1) 0-1 sequences of length n with
fewer than δ1(n − b) one bits in positions 0, 1, . . . ,n − b. Let

Sv = {s : 0 ≤ s ≤ n − b,v[s] = 1} and G ′ = {(v,w) ∈ G | |Sv | ≥ δ1(n − b)}.

The above argument shows that |π1(G) \ π1(G ′)| ≤ 2b−1 · 2H2(δ1)(n−b+1). Therefore, since |π1(G)| ≥
2n/12, the proportion of v ∈ π1(G) that are not in π1(G ′) is

|π1(G) \ π1(G ′)|
|π1(G)|

≤ O(2(1−H2(δ1))b · 2−(1−H2(δ1))n) = nO (1) · 2−(1−H2(δ1))n (11)

for b = O(logn), which is exponentially small in n, as 0 < H2(δ1) < 1. Thus, the proportion of
v ∈ π1(G) that are in π1(G ′) is exponentially close to 1.

We next use Lemma 2.1 to upper bound the probability of measuring any fixedv ∈ π1(G ′). First,
define

S ′v = {n − b − j | j ∈ Sv }.
Then, for k,k ′ ∈ [0, P − 2],

Jk ΔJk ′ = {s ∈ S ′v | u[s]
k

⊕ u[s]
k ′ = 1}. (12)

Fix k ′ ∈ [0, P − 2]. To apply Lemma 2.1, we aim at showing that, for most k ∈ [0, P − 2], |Jk ΔJk ′ | is
linear in n. Recall that uk = u

∗ +dk mod (P − 1), for k ∈ {0, . . . , P − 2}, and recall our assumption
that P − 1 has an exponentially large prime factor Q = P+(P − 1) > Pc1 . Then all but at most an
exponentially small fraction 1/Q ofd ∈ {0, . . . , P−2} have (additive) order (P−1)/gcd(d, P−1) ≥ Q
in ZP−1. For such P and d , there are at least Pc1 = Ω(2c1n) distinct values uk . Since inputs y are in
one-to-one correspondence with values d , for a positive density of primes P , we have

Pr[d has order at least Q in ZP−1] ≥ 1 − 1

Q
, (13)

a probability exponentially close to 1, where the probability is over uniformly sampled input y ∈
{0, . . . , P − 2}. Until further notice, we assume d has order at least Q in ZP−1, hence that there are
at least Pc1 = Ω(2c1n) distinct values uk .
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In light of (12), define integeruk ⊕uk ′ so that (uk ⊕uk ′ )[s] = u[s]
k

⊕u[s]
k ′ . Consider the sequence of

bits of uk ⊕ uk ′ at bit positions corresponding to indices in S ′v . Again applying the entropy bound,
the number of 0-1 sequences of length � = |Sv | with fewer thanδ2 |Sv | one bits, for any 0 < δ2 < 1/2,
isO(2H2(δ2) |Sv | ), so the total number of 0-1 sequences of length n with fewer than δ2 |Sv | one bits at
positions indexed by S ′v isO(2n−(1−H2(δ2)) |Sv | ). For distinctuk1 ,uk2 , we haveuk1 ⊕uk ′ � uk2 ⊕uk ′ . As
k ranges in [0, P−2],uk cycles through all distinct values (P−1)/gcd(d, P−1) times, achieving each
distinct value exactly gcd(d, P − 1) times. Thus, the proportion of k ∈ [0, P − 2] for which uk ⊕ uk ′

(viewed as a bit sequence of length n) has fewer than δ2 |Sv | = Ω(n) one bits among those bits
indexed by S ′v equals the proportion of the Ω(2c1n) distinct values uk for which uk ⊕ uk ′ satisfies
this property. By the discussion earlier in this paragraph, this proportion is

O
(
2n−(1−H2(δ2)) |Sv |/2c1n

)
= O

(
2(1−c1)n−(1−H2(δ2)) |Sv |

)
. (14)

For v ∈ π1(G ′), we have |Sv | ≥ δ1(n − b), so the expression (14) is, up to constant factors, at most

ζ := 2(1−c1)n−(1−H2(δ2))δ1(n−b) = 2δ1(1−H2(δ2))b · 2(1−c1−(1−H2(δ2))δ1)n .

Since 1/2 < c1 < 1, we may choose δ1 such that 0 < 1−c1 < δ1 < 1/2, ensuring that 0 < 1− 1−c1
δ1
< 1,

then choose δ2 < 1/2 satisfying H2(δ2) < 1 − 1−c1
δ1

to obtain (1 − c1 − (1 − H2(δ2))δ1) < 0. Then,
assuming b = O(logn), ζ is exponentially small. In particular, for the constant c1 = 2/3 given

by Theorem 3.1, we may choose δ1 = 0.4 and δ2 = 1/64 so that H2(δ2) < 1 − 1/3
0.4 and obtain

(1 − c1 − (1 − H2(δ2))δ1) < −0.0202 < −1/50.
The above reasoning applies for any fixed k ′, so by (12), we conclude that the proportion of pairs

(k,k ′) for which |Jk ΔJk ′ | ≥ δ2 |Sv | is 1 − O(ζ ). With this bound on |Jk ΔJk ′ |, we aim at applying

Lemma 2.1 with a := 2b

ϵ
and t := nc for some 0 < c < 1. For v ∈ π1(G ′) and n > b, we have

δ2 |Sv | ≥ δ2δ1(n − b) ≥ c∗n for some constant 0 < c∗ < 1. So, choosing n large enough to also
satisfy

b + log2(1/ϵ) ≤
1 − c

2
log2 n − 1

2
log2(1/c∗), (15)

we have δ2 |Sv | ≥ c∗n ≥ ( 2b

ϵ
)2nc , so |Jk ΔJk ′ | ≥ ( 2b

ϵ
)2nc for all but a O(ζ ) fraction of pairs (k,k ′).

Now, for v ∈ π1(G ′), Lemma 2.1 asserts that the expectation over the random noise bits r (·)· of
the squared norm of the sum of exponentials in (8) is at most

(P − 1) + 2ζ

(
P − 1

2

)
+ 2

(
P − 1

2

)
e−2π 2nc

= O(max{ζ , e−2π 2nc }(P − 1)2),

since c < 1. Thus, for (v,w) ∈ G ′ and any u∗, the expectation over the random noise bits of the
whole expression in (8) is E[p(v,w,дu∗ )] = O(max{ζ , e−2π 2nc }/22n). For any (v,w) ∈ G, let

p(v,w) :=
P−2∑
u∗=0

p(v,w,дu∗ ), (16)

be the probability of measuring |v〉 |w〉 in the first two registers. For each of the P − 1 possible
states

��дu∗〉
in the third register, |G ′ | = |π1(G ′)| ≤ 2n , so∑
(v,w )∈G′

E[p(v,w)] = O
(
max{ζ , e−2π 2nc } (P − 1)2n

22n

)
= O(max{ζ , e−2π 2nc }). (17)

Finally, recall the bound in (11) on the proportion of v ∈ π1(G) not in π1(G ′). Since π1 is injective
on G (see (9)), we have, with (11),

|G \G ′|
|G | =

|π1(G) \ π1(G ′)|
|π1(G)|

≤ nO (1) · 2−(1−H2(δ1))n . (18)
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Now (18) and (9) give

|G \G ′ | ≤ nO (1) · 2H2(δ1)n .

For each (v,w) ∈ G \ G ′, the largest possible value of the expression for p(v,w,дu∗ ) in (8) is 1
22n ,

so p(v,w) ≤ P−1
22n = Θ

( 1
2n

)
. Thus∑
(v,w )∈G\G′

E[p(v,w)] ≤ nO (1) · 2−(1−H2(δ1))n . (19)

With δ1 = 0.4 as above, this quantity is at most nO (1)2−n/35. Now, adding the quantities in (17) and
(19) gives ∑

(v,w )∈G

E[p(v,w)] =
∑

(v,w )∈G′

E[p(v,w)] +
∑

(v,w )∈G\G′

E[p(v,w)]

= O(max{ζ , e−2π 2nc }) + nO (1)2−(1−H2(δ1))n ,

which is exponentially small in n. The success of Shor’s algorithm for the DLP [31] is based on the
nontrivial probability that we measure some |v〉 |w〉 with (v,w) ∈ G. However, we have shown that
this approach succeeds with exponentially small probability, when noise is present at the specified
level. With (13) and (15), we summarize this result in the following theorem.

Theorem 3.2. There exists a constant 0 < c < 1 such that, for a positive density of primes P , if

each controlled-Rk -gate in the quantum Fourier transform circuit is replaced by a controlled-R̃k -gate

for all k ≥ b, where b + log2(1/ϵ) ≤ 1−c
2 log2 n − Θ(1) and n is the binary length of P , then for

all but an exponentially small fraction of inputs y ∈ Z∗P , for the discrete log problem with respect

to any generator д ∈ Z∗P , Shor’s algorithm has an exponentially small probability, over quantum

measurement and random noise, to find the discrete log value d satisfying дd = y mod P .

3.4 Analysis Over a Random Prime

In this section, we study the performance of the noisy discrete log algorithm for random prime P .
We will prove a result similar to that of the previous section: for probability 1 − o(1) over random
choice of P and y ∈ Z ∗

P , the algorithm has an exponentially small probability of success. We will
follow the analysis in Section 4 of Reference [3] regarding the performance of Shor’s algorithm
to factor integers N = pq for random primes p and q. Consider primes P with binary length n:
Y ≤ P ≤ X , where X = 2n − 1, Y = 2n−1. Let ωP (d) be the order of d in ZP−1. The proof of
Theorem 3.2 uses Theorem 3.1 to assume that P − 1 has a prime factor of size at least Pc1 for some
1/2 < c1 < 1, from which it concludes that P has the property that Pr[ωP (d) ≥ Pc1 ] is exponentially
close to 1, where the probability is over uniformly random d ∈ {0, . . . , P −2}. We show below that
a random prime P has this property with probability exponentially close to 1.

Since Z∗P � ZP−1, it follows from [3, Lemma 6] that there is a constant C > 0 such that, for any
B > 1,

Pr

[
ωP (d) <

P − 1

B

]
≤ C

(
n

B logB

)1/2

,

and the probability is over the choice of Y ≤ P ≤ X and d ∈ Z ∗
P . Setting B = (P − 1)/Pc1 ≈ P1−c1 ,

we have

Pr [ωP (d) < Pc1 ] ≤ O

(
n

(1 − c1)P1−c1 log P

)1/2

= O
(
2−(1−c1)n/2

)
,

which is exponentially small in n, giving the desired property.
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Recall that, for generator д, inputs y ∈ Z∗P are in one-to-one correspondence with discrete log
values d ∈ {0, . . . , P − 2}. Combining the results of this section with the proof of Theorem 3.2, we
have the following theorem.

Theorem 3.3. There exists a constant 0 < c < 1 such that, if each controlled-Rk -gate in

the quantum Fourier transform circuit is replaced by a controlled-R̃k -gate for all k ≥ b, where

b + log2(1/ϵ) ≤ 1−c
2 log2 n − Θ(1), then with probability 1 − o(1) for a random prime P chosen

uniformly from all primes of binary length n and a random y chosen uniformly from Z∗P , for the dis-

crete log problem with respect to any generator д ∈ Z∗P , Shor’s algorithm has an exponentially small

probability, over quantum measurement and random noise, to find the discrete log value d satisfying

дd = y mod P .

4 Polynomial Relaxation

Recall that in Section 3.3, as part of the proof of Theorem 3.2, we showed that the probability that
the measured state |v〉 |w〉 satisfies (6) and (7) is exponentially small. However, it is conceivable
that an algorithm could recover the discrete log value d from a measured pair (v,w) “polynomially
close” to satisfying (6) and (7). In this section, we show that, upon measuring, the probability that
the measured state |v〉 |w〉 is such a pair (v,w) is exponentially small, for a natural definition of
“polynomially close”.

To give a natural definition of polynomially close, we first define the QFT over more general
cyclic groups. For any integer N , let ωN = e2π i/N be the basic N -th root of unity. Define the QFT
FN over the cyclic group ZN by, for x ∈ ZN ,

FN |x〉 = 1
√
N

N−1∑
y=0

ω
xy

N
|y〉 .

The QFFT F2n in (3) is the QFT over Z2n . In (4), we apply F2n to both the first and second registers,
or equivalently apply F2n ⊗F2n , the QFT over the product group Z2n ⊕Z2n (a group of order 22n ). In
[30], Shor presents an algorithm for the DLP using a QFT overZP−1⊕ZP−1 for smooth (with no large
prime factors) P−1. The QFT overZP−1⊕ZP−1 leads to an exact 1 algorithm for DLP [22], but is diffi-
cult to implement for general P−1. Hence, in Reference [31], which is the formulation in Section 3.1,
Shor instead uses a QFT over Z2n ⊕Z2n , where 2n ≈ P−1. This introduces the residue mod 2n oper-
ations {·}2n in (6) and (7). If we instead applied the QFT over ZP−1 ⊕ZP−1, these {·}2n operators be-
come {·}P−1, which causes (7) to become trivial, and reduces (6) to {vd+w}P−1 = 0. In other words,
(7) only captures the discrepancy between the QFT over ZP−1⊕ZP−1, the true group underlying the
DLP, and the QFT over Z2n ⊕ Z2n , the approximation used by Shor’s algorithm in Reference [31].
Furthermore, this algorithm extracts the discrete log valued only from the relationship (6) between
d and the known values v and w . So to relax the set of desired states |v〉 |w〉, we replace (6) with����{vd +w − d

P − 1
{v(P − 1)}2n

}
2n

���� < γ (20)

for γ = poly(n) and simply replace (7) with

|{v(P − 1)}2n | <
2n

C
, (21)

for constant C .

1“exact” means the algorithm succeeds (returns the correct discrete log value) with probability 1. However, this exactness
assumes exactly precise quantum gates and uses amplitude amplification, which fundamentally assumes that the algorithm
has a high success probability before amplitude amplification takes place, and we show that, under our noise model, it
does not.
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We now trace through how these changes affect the analysis of Shor’s algorithm. Regarding the
change from (6) to (20), we replace G with

Gγ = {(v,w) | 0 ≤ v,w < 2n ,v and w satisfy (20) and (21)},
and hence replace π1(G) with π1(Gγ ) = {v | (v,w) ∈ Gγ }, and replace G ′ with an analogously
defined (Gγ )′. Observe that, for fixed v , the number of w satisfying (20) is exactly 2γ regardless
of the choice of v (assuming γ is chosen so that (P − 1)γ � Z). Hence, where before we had
|G | = |π1(G)|, we now have |G | = γ |π1(G)|. Furthermore, π1(G) is still defined only by (21), and
the change from 12 in (7) to an arbitrary constant C in (21) makes only superficial difference;
before we had |π1(G)| ≥ 2n/12, and now we have |π1(G)| ≥ 2n/C . Thus the analysis until (16)
is unchanged, up to replacing any constant 12 with C , as it is concerned only with π1(G) and
|π1(G)|. The first difference comes immediately before (17), where we first consider |G ′ | in the
inequality |G ′ | = |π1(G ′)| ≤ 2n . We replace this inequality with |(Gγ )′| = γ |π1((Gγ )′)| ≤ γ2n ,
which necessitates multiplying the RHS of (17) by γ . Then, since the number of w satisfying (20)
is still independent of v , we have

|Gγ \ (Gγ )′|
|Gγ | =

|π1(Gγ ) \ π1((Gγ )′)|
|π1(Gγ )| , (22)

matching the equality in (18). Finally, we must also replace |G | = |π1(G)| ≤ 2n before (19) with
|Gγ | = γ |π1(Gγ )| ≤ γ2n . Then, by (11) and (22), we have |G \G ′| ≤ γ ·nO (1) · 2H2(δ1)n , so, following
Section 3.3, we obtain an analogue of (19) with the RHS multiplied by γ as well.

To recap, we obtain analogues of (17) and (19) with Gγ in place of G and (Gγ )′ in place of G ′,
with an extra factor of γ on the RHS of both. Combining these two bounds as in Section 3.3, we
obtain ∑

(v,w )∈Gγ

E[p(v,w)] ≤ γ
[
O(max{ζ , e−2π 2nc }) + nO (1)2−(1−H2(δ1))n

]
,

which, since γ = poly(n), is still exponentially small.

5 Experimental Results

5.1 Quantum Hardware Experiments

The experiments were performed on version 1.20.21 of ibm_kyiv, an IBM Eagle r3 quantum

processor (QPU) on the IBM Quantum Platform. Version 1.20.21 of ibm_kyiv has median error
rates of 1.197 · 10−2 and 2.424 · 10−4 for its basis gates ECR and

√
X , respectively, and median

readout error rate of 9.300 · 10−3. All reported experimental percentages are out of 500 trials (500
shots of the respective circuit).

Figure 1(a) shows the results of the following experiment, a simple test of the effectiveness
of the (supposedly precise, IBM Quantum Platform built-in) controlled-Rk gates used in the QFT.
First, we prepare the two-qubit state |1〉 |0〉. Then we apply H to the second qubit, and apply 2�−1

consecutive R� gates controlled by the first qubit and acting on the second qubit. Since the first
qubit is always in state |1〉, each of these gates acts as R� on the second qubit, so, if no noise is
present and the rotations are exact, these gates in aggregate effect a Z = R1 transformation on
the second qubit. Thus, applying another Hadamard to and then measuring the second qubit, we
should always obtain state |1〉. In other words, writingCR� for the controlled-R� operator, we have
an operator X� such that

X� |1〉 |0〉 := (I ⊗ H )(CR�)2
�−1 (I ⊗ H ) |1〉 |0〉 = |1〉 |1〉 .

However, Figure 1(a) shows that the experimental probability of measuring |1〉 after applying the
circuit implementing X� to state |1〉 |0〉 (in black/solid) for all 2� = 4, 8, 16, 32, 64, 128, 256 decays
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Fig. 1. Results of the three experiments discussed in Section 5.1, with the probability of measuring state |1〉
on the vertical axis and the respective experiment parameters on the horizontal axis.

to 1
2 as � increases. In the dashed line, the theoretical probability Pr[|1〉] = 1 for all � is shown. The

experimental result confirms that as the angle 2π/2� of rotation decreases, the precise rotations
are overwhelmed by the noise and cannot accumulate to an overall rotation of angle π .

The above experiment uses the built-in quantum gates CR� . We also try to perform an experi-
ment using built-in quantum gates that are as basic as possible with the property that the subgroup
generated by them includes arbitrarily small rotations. We report our result using the Hadamard
gate and the π/8 gateT . More precisely, in order to express them in SU (2), letH = i√

2
[ 1 1

1 −1 ] and

T = [ e−i π /8 0
0 e i π /8 ] (up to an unimportant global phase, H and T are the familiar Hadamard and

π/8 gates, respectively). Let A = HT . In the Bloch sphere representation, A is a rotation around
axis (nx ,ny ,nz ) by angle w , that is,

A = cos
(w

2

)
I − i · sin

(w
2

)
(nxX + nyY + nzZ ),

where

w ≈ 2.593564246,

nx = nz ≈ −0.6785983445,

ny ≈ 0.2810846377.
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Table 1. Angles of Rotation

of Ajn for Continued

Fraction Convergents
jn

dn

of 2π
w

jn jnw mod 2π
5 0.4014506155
12 −0.2931555843
17 0.1082950312
46 −0.07656552182
63 0.03172950941
172 −0.01310650300
407 0.005516503408

It can be shown that w is not a rational multiple of π , and 2π/w ≈ 2.42260638682. We look for
continued fraction expansions2 of 2π/w and let jn/dn be the nth continued fraction convergent of
2π/w . By Dirichlet’s Theorem, |jn/dn − 2π/w | < 1/d2

n , and dn → ∞ as 2π/w is irrational. Hence
|jnw − 2dnπ | < w/dn → 0. Ajn is a rotation of the Bloch sphere about the same axis (nx ,ny ,nz ) by
angle jnw mod 2π ≈ 0, that is,

Ajn = cos

(
jnw

2

)
I − i sin

(
jnw

2

)
(nxX +nyY +nzZ ) ≈ cos(dnπ )I − i sin(dnπ )(nxX +nyY +nzZ ) = ±I .

(23)
For increasingn, the rotationAjn is an increasingly accurate approximation of the identity rotation,
and thus (ignoring a phase factor) AjnT ≈ T . Equivalently, Ajn−1H ≈ T −1. The angles of rotation
of Ajn for the first seven values of jn are shown in Table 1.

Note that T 4 = T −4 = Z is a rotation of π about (0, 0, 1) transforming H |0〉 = 1√
2
(|0〉 + |1〉) to

H |1〉 = 1√
2
(|0〉 − |1〉). Thus

Fn := H (Ajn−1H )4H ≈ X .

Figure 1(b) shows the theoretical probability Pr[|1〉] of measuring |1〉 after applying a circuit
implementing Fn to initial state |0〉 (dashed line) and the actual experimental outcomes (solid line).
If we measure Fn |0〉 in the standard basis {|0〉 , |1〉} we should get back |1〉 with probability ap-
proaching 1 in theory. However, Figure 1(b) shows that in reality it does not approach 1. Rather,
initially as Ajn becomes a better approximation of ±I , the probability of measuring |1〉 increases
according to theory. But as the (theoretical) angle of each rotation Ajn gets smaller, the actual per-
centage of measuring |1〉 decreases and getting a measurement of |0〉 or |1〉 becomes quite random,
more in line with the general analysis of this article.

Figure 1(c) shows a variation of the previous experiment. Similarly to above, let kn

en
be the nth

continued fraction convergent of π
w

. Then, as in (23), Akn is a rotation around the axis through
(nx ,ny ,nz ) by angle knw equivalent to ϵn or π + ϵn modulo 2π (depending on en is even or odd,
respectively), for small ϵn . See Table 2.

Define angles ϕ and θ such that

(nx ,ny ,nz ) = (cos(ϕ) sin(θ ), sin(ϕ) sin(θ ), cos(θ )) =: B(ϕ,θ ).
Then define a unitary operator U that maps |0〉 (the point (0, 0, 1) on the Bloch sphere) to B (ϕ,θ ),
and maps |1〉 to the antipodal point on the sphere. Then, letting RZ (θ ) = [ 1 0

0 e iθ ] be the rotation

2This idea is due to Kurt Girstmair [14] and we are grateful to Kurt for permission to use it for our experiment.
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Table 2. Angles of Rotation of Akn for

Continued Fraction Convergents
kn
en

of π
w

kn knw mod 2π |ϵn |
5 0.401450616 0.401450616
6 2.995014861 0.146577793
17 0.108295031 0.108295031
23 3.103309893 0.038282761
63 0.031729509 0.031729509
86 3.135039402 0.006553252

of the Bloch sphere around the Z -axis (the axis through the point (0, 0, 1)) by angle θ , Akn is equiv-
alent to RZ (ϵn) or RZ (π + ϵn) under basisU . Let tn be the closest even integer to π

ϵn
. Then Akn tn is

a rotation by angle close to π mod 2π , so

Gn := H †U †Akn tnUH ≈ H †ZH = X .

Hence Gn |0〉 ≈ |1〉. Figure 1(c) shows the theoretical and experimental probabilities of measur-
ing |1〉 after applying a circuit implementing Gn to state |0〉 for increasingly accurate convergent
numerators kn . Again, the experimental Pr(|1〉) decays to around 1

2 as n increases and noise over-

whelms the precise Akn tn rotations, which no longer accumulate to an angle of π mod 2π .

5.2 Numerical Simulation

Figure 2 shows the results of some numerical experiments aimed at estimating the probability
Pr[(v,w) ∈ G] that the state |v〉 |w〉 measured by Shor’s algorithm satisfies (v,w) ∈ G. This is the
probability that the quantum algorithm likely reveals useful information for the discrete logarithm
computation. For a given n, we sample a random n-bit prime P , a random 2 ≤ d ≤ P − 2, a random
0 ≤ u∗ ≤ P − 2, and a random (v,w) ∈ G, then approximately compute the probability p(v,w,дu∗ )
given in (8). We then use this to estimate Pr[(v,w) ∈ G], which is∑

0≤u∗ ≤P−2, (v,w )∈G

p(v,w,дu∗ ) ≈ (P − 1) · 2n

6
· E(v,w )∼G,u∗∼[0,P−2][p(v,w,дu∗ )], (24)

as |G | ≈ 2n

6 , and the value p(v,w,дu∗ ) in (8) is approximately the same for all 0 ≤ u∗ ≤ P − 2. Each

run of the computation of p(v,w,дu∗ ) in (8), for a chosen P ,d,u∗,v,w , is an exponential computa-

tion inn. To ease the computation slightly, we use only the noise random variables r (·)0 , r
(·)
1 , ρ

(·)
0 , ρ

(·)
1 ,

leading to a slight underestimate of the amount of noise present. (This is similar to what was done
in the proof, see (10).) Each point in Figure 2 shows the average value of 1000 evaluations of
p(v,w,дu∗ ) split into 20 samples of P and d , then 10 samples of (v,w) ∈ G and u∗, and then 5

samples of the noise variables r (·)0 , r
(·)
1 , ρ

(·)
0 , ρ

(·)
1 , multiplied by (P − 1) 2n

6 ≈ (P − 1)|G |.
The points marked by a black x in Figure 2 show that Pr[(v,w) ∈ G] ≈ 0.1 for all n in the noise-

free case. We then consider noise level ϵ
2b = n

−γ for γ = 2
3 ,

1
2 ,

1
3 . For γ = 2

3 (the lowest level of noise

among the three cases), Pr[(v,w) ∈ G] appears to stabilize around 0.02. For γ = 1
2 , Pr[(v,w) ∈ G]

appears to decrease inverse polynomially in n, with best fit 2.961n−2.350. For γ = 1
3 , Pr[(v,w) ∈ G]

decreases exponentially in n, roughly as 2−1.083n0.789
. In this case, with noise level still vanishing as

a function in n, extrapolating to n = 500 gives Pr[(v,w) ∈ G] on the order of 10−44. Asymptotically,
ϵ
2b ≈ n−1/3 is the noise level proved in the main theorems of this article, Theorems 3.2 and 3.3.
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Fig. 2. Numerical simulation results: estimating the probability Pr[(v,w) ∈ G] for noise levels of ϵ
2b = n−γ

by computing (8).
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