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the quintessence. It is shown that depending on the compactness of the star u = GM/c?R
the constant of proportionality p between the density of the ordinary matter and the
radial pressure, P, = uc?(p — pp), has an interval of values which is consistent with the
possibility that the matter is formed by a mixture of particles like quarks, neutrons and
electrons and not only by one type of them. The geometry is described by the Durga-
pal metric for n = 5 and each one of the pressures and densities is positive, finite and

monotonic decreasing, as well as satisfying the condition of causality and of stability

vf —v2 < 0, which makes our model physically acceptable. The maximum compactness

that we have is u < 0.28551, so we can apply our solution considering the observational
data of mass and radii M = (2.01 +0.04) My, R € [12.062,12.957] km which generate
a compactness 0.22448 < u < 0.25448 associated to the star PSR J0348 + 0432. In this
case, the interval of p € [0.78055,1] and its maximum central density p. and in the
surface py, of the star are p. = 7.0387 x 10'7 kg/m? and p;, = 4.6807 x 10'7 kg/m?3, re-
spectively, meanwhile the central density of the quintessence pge = 3.4792 x 1016 kg/m3.

Keywords: Compact stars; exact solutions; quintessence anisotropic fluid.

1. Introduction

The internal composition of the stars is still an unresolved question, although there
are considerable advancements on what type of matter composes stars and their
behavior. For example, it is known that when the internal density is greater than
the nuclear density, there is the possibility that the radial and tangential pressures
are different from each other, which would indicate that its interior is not necessar-
ily formed by a perfect fluid, but instead by an anisotropic fluid.! The description
of the stars formed by anisotropic fluids has been studied since the last century? '8
and one of the consequences is that it would allow to describe stars with a compact-
ness value greater than the Buchdahl limit u < 4/9,1%22 this presents itself even
in the case of the anisotropic model with constant density.?® The generalization of
the Buchdahl limit for the anisotropic case only requires conditions on the behavior
of the function of density, the pressure and its coupling with the exterior geometry
described by the Schwarzschild solution2® and not on a specific form of the state
equation. In different works, the possible behavior of the interior of some stars
has been described through models with anisotropic pressures and this has shown
that the observational results match those expected and obtained by a theoretical
models, it has also been shown the importance that the anisotropy has in the de-
scription of physically acceptable models.” The type of matter that could conform
the stars with density greater than the nuclear density is expected to contain neu-
trons, quarks as well as electrons, although not only one of these components. The
stars where their matter is mainly formed by quarks may be more compact than the
stars constituted mainly by neutrons, in addition to this, it has been speculated on
the possibility that the quintessence matter is also part of the star’s interior, this
type of matter could counteract the effect of the gravitational attraction because, as
it is known, it generates negative pressures. In cosmology, the quintessence fields are
associated to matter described by a perfect fluid with positive density and negative
pressure and its state equation is given by P, = wc?p, with —1 < w < —1/3.24 This
has been presented to give an explanation to the observations on the accelerated
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expansion of the universe, since it requires the existence of fields or matter with
negative pressure.?>26 Some works about compact stars have already approached
the possibility of quintessence and ordinary matter, the quintessence is described
mainly by a fluid with radial and tangential pressures linked to the quintessence
described by P,, = —c?p, and Py = (1 4 3w)c?p,/2 with —1 < w < —1/3 where
pq Tepresents the density of the quintessence matter, these equations were proposed
initially for the case of black holes with quintessence,?”
matter, there have been different proposed sources.?®2? Within the variety of com-
pact stars with quintessence,? 32 one of the most approached is that associated to
the MIT Bag model, 3334 for this case, starting from a state equation associated
to the ordinary matter and considering the effect of the quintessence, it has been

meanwhile for the ordinary

shown that the geometry of the solutions for Einstein’s equations with perfect fluid
works for describing compact stars with quintessence.?®> However, it is to be ex-
pected that the ordinary matter that conforms a star is not only constituted by
quarks and that depending on its mass, radius, density or compactness its state
equation may differ. Taking this into account, and as to generalize from previous
works,3® in this work, we present a compact star constituted by quintessence and
ordinary matter with radial and tangential pressures described by the state equa-
tions P, = uc®(p — pp) and Py = puc?(p — pp) — 3(1 + w)c?/2p,, respectively, where
p» = p(R) is the density of ordinary matter on the surface. The work is organized
as follows: in Sec. 2, we obtain the equations for the quintessence model and we list
the conditions that must be met for the system to be physically acceptable, Sec. 3 is
focused in obtaining the solution, starting from the Durgapal geometry, for n = 5.3
Starting from the solution obtained in Sec. 4, we apply the model for a possible
representation of the star PSR J0348 + 0432 and we finalize with conclusions in
Sec. 5.

2. The Field Equations and Physical Conditions

We assume that the geometry of the interior of the compact star is static and
spherically symmetrical as it can be described by the metric3”

d 2
ds* = —y(r)* dt + % +r%(d6? +sin?0d¢?), r < R. (1)
r
We assume that the source of matter is formed by a quintessence field and normal
matter with anisotropic pressures. So, Einstein’s equations are given by

Gop = k[T(Q) aB T (p+ Puqug + Pigas + (Pr — Py)XaXs]-

These vectors are satisfying where k = Sg—f, G is the universal gravitational con-

stant, ¢ is the speed of light; p is the density, (P, P;) are the radial and tangential
pressures, respectively. Further, u* is the fluid 4-velocity and x* is the unit vec-
tor in the radial direction, which under comoving reference frame are defined as

ut = y(lr) 68 and x* = /B(r)dF. While T(2) «8 Tepresents the energy-momentum
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tensor of the quintessence-like field, with components given by?2”

T@, = 2y PO~ 2y 7@, e, _ ] +23wc2pq, @)

with the quintessences parameter w such that —1 < w < —%. In our case, we
assume state equations P, and P; are linear and are given by

3
Pr=pc*(p=po)s  Pr=pc*(p—po) = 5¢*(w+ 1)pg, (3)

where py, is the density on the surface of the star. The state equation for the radial
pressure is a generalization of the MIT Bag state equation, P = (c?p — 4B,)/3
which describes the interaction of confined quarks in a bag of finite dimension as
result of the balance of the bag pressure B,, which is directed inward, and the
stress arising from the kinetic energy of the quarks.383% In our case, the parameter
@ € (0,1] has an interval of values, which is consistent with the possibility that
the matter is formed by a mixture of particles like quarks, neutrons and electrons
and not only by one type of them. On the other hand, as it has been argued
in a previous investigation report® and following this idea, other investigation
works have been written, 3234 the structure of the state equation for the tangential
pressure is proposed to describe how the quintessence could disturb a perfect fluid.
As it can be observed, in the absence of quintessence, the radial and tangential
pressures would be equal, so our suggestion is that the quintessence density may
cause anisotropy in the pressures. The anisotropy in the pressures is important when
trying to describe compact objects with density greater than the nuclear density, in
which case it is possible to have objects in equilibrium with a greater density and
compactness than in the case of perfect fluid.1'2°22 Considering the metric given
by Eq. (1) and the sources of matter mentioned, Einstein’s equations generate the
following set of equations:

B 1-B

ke (p+ pq) = , + 2 (4)
2By’ 1-B
2 2
kpc™(p — py) — ke pg = TR (5)
r //+ /B r /+ B/
kucz(p—pb)—k02pq:(y y) +(y y) , (6)
Y 2ry

“” denotes the derivative with respect to the coordinate r. It is important to note
that the parameter w in not present on these equations and it is only reflected
on the density of the quintessence. However, it is present in the state equation for
the tangential pressure and as consequence, as we will see ahead, in the tangential
speed of sound v;. It is this characteristic which allows that a geometry associated
to a perfect fluid in absence of quintessence is applicable to the anisotropic case
with quintessence.323435 Systems (4)—(6), after algebra, can be rewritten in the
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equivalent form as follows3?:

ke2p = — B' | _2By ke ppy )
A4+wpr  A+pry  1+p’
B’ 2By’ 1-B  kc?
kc2pq S - Y +— Mpb, (8)
1+wp)r (A+pry r 1+p
2r(ry” —y B +r(ry +y)B' + 2y(1 — B), (9)

that it is a generalization to the case of MIT Bag state equation u = 1/3.3% So,
to build a solution of a star with quintessence field and state equations of ordinary
matter given by (3), it is enough with solving systems (7)—(9), a one way of inte-
grating this system is solving the differential equation (9) which relates the metrical
coefficients and afterwards, by means of substitution, obtains the density functions.
Equation (9) is the same as that in the case of the perfect fluid, and in this work,
we consider the geometry associated to the Durgapal solution with n = 5.

2.1. Physical conditions

The conditions that must be satisfied by the functions (p, P, P, pq, y, B), so a solu-
tion to Eqgs. (4)—(6) is physically acceptable, particularly when there is no presence
of quintessence, have been discussed in different works, we listed these and proposed
the requirements for the quintessence.7735’40’42

(1) There must be a region r = R, identified as the surface of the star in which
the radial pressure is nullified, i.e. P.(R) = 0. The exterior geometry, r > R, is
described by the Schwarzschild metric

-1
ds* = — (1 — 2G2M> dt? + (1 — 2G2M) dr® 4+ r*(d6? +sin* 0 d¢?), (10)
c?r c’r
where M represents the total mass inside the fluid sphere and the interior
geometry, given by the solution of (4)—(6), over the surface must be continuous.
(2) The solution must be regular, which means that the density and pressures must
be bounded for 0 < r < R and the geometry must be non-singular inside the
star, i.e. the Kretschmann scalar:

1— B] 2 N 22 B2 y/2 [B’y' 2"

2
afBod _
R Ra,@g5—4|: 3 3 y + y B:| , (11)

r y2 r2

must be regular Vr < RA

(3) The density p and the pressures (P, P;) must be positive functions. Further-
more, the density and radial pressure must be monotonic decreasing functions
with a maximum value in the center, that is to say

p(0) >0, p(r))r=0=0, p"(r)|r=0 <0, P.(0)>0,
P/(r)|y=0 =0, P!(r)],=0 <0, andfor r>0, p'’ <0 and P, <O0.
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(4) The density of the quintessences matter p, must be a regular function. Although
the positive or negative behavior inside is not entirely determined, we consider
a pg > 0 which implies P, < 0 in concordance with the cosmological case. In
some works discussed, p, has been reported as positive and in some other cases,
it has regions where it is positive and in other regions negative.*3

(5) The conditions of causality must be satisfied, which means that the magnitude
of the radial and tangential speed of sound v, and v, respectively, must not be

greater than the speed of light
0 dP. /dp 0 dP, /dp
0<vi=_—"P(p) = L<? 0<vi==2P((p)=—/LE<E
= Or dp (0) dr /dr = =% dp (p) dr /dr =¢
(6) For the anisotropic fluid configuration, the energy condition like null energy

condition (NEC), weak energy condition (WEC), the dominant energy condi-

tion (DEC), the strong energy condition (SEC) must be satisfied throughout
42

the interior region, i.e.
p>0, p+P.>0, Ep+P, >0, Ep+P.+2P >0. (12)

(7) Additionally, for the solution to be potentially stable, we require that the Her-
rera cracking condition v? — v? < 0 is satisfied.**

These properties allow to set the integration constants and determine when a
model is physically acceptable.

3. The Solution and Its Analysis

The structure of Egs. (7)—(9) does not impose restrictions on the choice of the type
of geometry (y, B) associated to the case with perfect fluid. The choice is based
on the properties which are required to adequately represent a star and these were
mentioned in the previous section, in addition to this, we have the compactness
value. As such, we have chosen one of the solutions analyzed in the frame of the
general theory of relativity.?64? Durgapal analyzes one form for the gravitational
potential y(r)? = (1 +ar?)™ with n = 1,2,3,4,5 known as Durgapal’s solution, our
choice of n = 5 is because in the case of perfect fluid the solution is regular and
its compactness rate is u = 0.265. Furthermore, in previous works, it has already
been shown that the compactness rate of the initial model with perfect fluid and
its respective case for the anisotropic fluid with quintessence has the same function
of the compactness rate and its maximum value is of the same order.32:34:35 The
form of the metric coefficients of the Durgapal metric for n = 5, is

y(r) = (14 ar?)3,
YT 1 6ar?(112 — 309ar2 — 54a%r* — 8ar%) — Aar? (13)
112(1 4 ar2)3/1 + 6ar? '

Starting from these functions by means of substitution in (7) and (8), we obtain
the density of the matter and of the quintessence

B(r) =

2050144-6
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5(241 — 411ar? — 60ar* — 8a®r%)a
56(1 4 p)(1 + ar?)tkc?
Aa(1 — 3ar? — 44a’r?) 4 M
56(1 + p)(1 4 ar2)2(1 + 6ar?)skez  (1+p)

(r) = 53871 — 95 + 3(275 + p)ar® + 30(7 + 3u)a*r + 8(5 + 3u)a’rla
Pa\l) = 112(1 + p)(1 + ar?)*ke?

p(r) =

all +3p+ (17 + Lp)ar? +22(3 — pa®r']A  pupy (15)
112(1 + p) (1 + ar?2)4(1 + 6ar2)4/3kc? (1+p)

The pressures, given by the state equation (3), are a linear combination of the den-
sities. So, we will only give the expressions of the first derivative of these functions
and the values of the second derivative in the center of the star.

pl(r) = Pl(r) _ 5a®r(3 +2lar® +2a*r* —176a°r°) A

puc? 28(1 + 1) (1 + ar?)5(1 + 6ar?)s kc?

5(1375 — 1113ar? — 96a%r* — 8a3r%)ra?

28(1 + p)(1 + ar?)>ke? ’ (16)

5[5(241 — 411ar? — 60a?r* — 8ar®) — 3(515 — 57ar? + S(r))u]a’r
56(1 + p)(1 + ar?)®ke?
n 5[(1 + 6ar?)(1 — 3ar? — 44a®r*) — (5 + 39ar? + 66ar* — 88a3r®)u] Aa’r
56(1 + p)(1 + ar?)®(1 + 6ar?)7/3kc?

Pa(r) =

(17)

where S(r) = 36a?r* + 8a’rS.

From the derivatives, we have that these are nullified in the center, but it is
not clear that these correspond to monotonic decreasing functions. The second
derivatives evaluated in the center are

50°(34 1 1375) _ (0 =

~ 5a*(5Ap — A + 1545 — 1205) <0
28kc2(14+p) — ? ’

17 _
p7(0) = 56kc2(1 + p) =

and these impose restrictions on the constant of integration A. To know the explicit
form of the constants A and py,, we apply the conditions of continuity of the metric,
the second fundamental form and that the pressure at the surface is nullified, these
conditions also imply pq(R) = 0, after solving the system we arrive at

25(19 — 1655 — 4252 — 8s%) /1 + 65

A= 1+11s (18)
10(3 + 11s)s
= 1
P = %R2(1+ 11s5)(1 + 6s) (19)
GM 5s
u(s) = 2R 14 11s’ (20)

2050144-7



Mod. Phys. Lett. A 2020.35. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 06/28/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

G. Estevez-Delgado et al.

where s = aR? > 0 and u(s) represent the compactness ratio. One property that
helps us to determine the interval of y is the condition of stability in the surface of
the star:

W2(0) — e = _ 30+ w)[5(58 — 1S + (309 = 241)(1+11s)] 5 _ 1)
20[351 + 55(1 + 11s)]
with S7 = [19 — 165s — 42s% — 853]{/1 + 6s. In obtaining (21), we have taken into
account the state equation for the radial pressure, which implies that v2 = puc?.
Equation (21) imposes a restriction on the range of values of p, the minimum
value is u = 3/7 and its exact value depends on the compactness. For values lower
that this, we have that v?(0) — v2 > 0 which would imply that the system is not
potentially stable. In a similar manner, it happens that for u < 3/7, vZ(R) —v2 > 0,
although in some cases the expression is more simple, for example for a model with
MIT Bag state equation, u = 1/3 results are as follows:
14 (1 +w) (37452 4+ 139s + 5)c?

2
R _ L2 0 22
vi(R) = 3e 5(25 + 151s 1 28652) (22)

which implies that with this source of matter and Durgapal geometry, the solution
with MIT Bag state equation is not stable. On the other hand, for values of u
slightly greater than 3/7, the validity range of s is a small vicinity surrounding
s = 0 and as such, according to Eq. (20), the compactness also approaches zero.
As we increase the value of p, the interval of s is greater and as such allows us to
represent objects with a greater compactness rate u. The maximum interval of s
occurs for ;4 =1 and we can determine it from the condition of stability

v?(o)_cz:_3(1+w)[5m51—|—17(1+11$)]02<O, (23)
5[3¢/1 + 6551 4+ 55(1 + 115)]
as such the admissible values of s are 0 < s < spax = 0.1535462, which implies that
it is possible to represent stellar objects with a compactness rate v < u(Smax) =
Umax = 0.28551. Objects with a compactness value close to uyax and for them to be
stable they would require a state equation with ¢ — 1. From this analysis, we can
note that although the state equation allows us to represent compact objects, the
value of the compactness obtained starting from the mass and the radius influences
the possible value of p. In the following section, we will show the graphic behavior
with the observational data of the star PSR J0348 4 0432.

4. The PSR J0348 + 0432 Star

The results of the previous section show that the solution is applicable for stars
with a compactness rate u < 0.28551, this being the result of imposing the stability.
According to the observational data, the star PSR J0348 + 0432 has a compactness
0.22448 < u < 0.25448, this is because of its mass M = (2.01 + 0.04) Mg and
its radius 12.062 km < R < 12.957 km.?%46 Inside the possible interval for the
compactness, we consider the combinations of the values of the mass and maximum
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Table 1. Values of the predicted densities for observational mass and radius. In the table, four
columns are reported, each one corresponds with a value of possible mass and radius with their
respective associated values of densities. The central density of the ordinary matter p. and the
one of quintessence pgc depend of the p value, here we only report the ones corresponding to the
extremes. Meanwhile, the density of matter on the surface does not depend on the value of pu.

M (Mg) 2.05 1.97 2.05 1.97

R (km) 12.062 12.062 12.957 12.957
u (s) 0.2509 0.2411 0.2336 0.2245
s 0.1120 0.1027 0.0961 0.0887
p = 0.78055 m(loW%) 7.0387 6.6474 5.5111 5.2206
pqc(1016 %) 0.8905 1.1422 1.1029 1.1865
p=1 pe(1017 X4 6.7800 6.4168 5.3275 5.0561
pge(1016 15 3.4792 3.4549 2.9385 2.8335
0.78055 < < 1 P (1017 18- 4.6807 4.5403 3.8389 3.7198

and minimum radii. The values of the densities in the center and on the surface are
reported in Table 1. The generation of values of Table 1 is as follows: Given the
values of mass and radius, we obtain the compactness u = GM/c*R, for Eq. (20)
determining the corresponding value of s. With the value of s, replacing it in Eq. (21)
for the condition of stability, we find the validity interval of u. For each value of
compactness, the interval p is different, for a greater compactness the interval is
lower, with u = 0.25093 we have p € [0.78055, 1], meanwhile, with u = 0.22448, we
associate p € [0.71519,1]. To be able to realize a comparison between the values
of the densities in the center and on the surface, the values that we take for p
are 0.78055 < p < 1. From Table 1, we can see that, for a fixed mass and radius,
the values of the density of normal matter are greater for u = 0.78055 contrary to
what happens for the quintessence density. Also, as the compactness increases, the
density of ordinary matter also increases, the same happens for the density of the
quintessence on the surface although its value in the center does not behave in such
a manner. As part of the properties that the model has, there is the density of the
quintessence which is zero on the surface and in Eq. (19), we have the density of
the ordinary matter on the surface that does not depend on the value of pu.

The behavior of the model for the values of masses and radii considered in
Table 1 are presented graphically in this part. We identify the graphs by their
compactness value, so u = 0.2509 means that this represents the behavior of the
star with mass 2.05 Mg and radius 12.062 km, while v = 0.2411 means that this
represents the behavior of the star with mass 1.97 My and radius 12.062 km, and
likewise for the other values of mass and radius presented in Table 1. From Figs. 1
and 2, the monotonically decreasing value of the density, as well as the effect of the
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ME T —— u=0.2509
Eerms{ — — u=0.2411
Foso| T~ s g (gA
5625 \\
2 6
5.75
550 |-~ _
525 ..., T
— 5 B N
=475 e e \\\
450 T R
425 ‘\ k
4 N,
3.75 g

01 2 3 4 5 6 7 8 9 1011 12 13
r km

Fig. 1. The density of ordinary matter for the star PSR J0348 + 043 with p = 0.78055 considering
different compactness values.

u=0.2509
— — u=0.2411
== u=0.2336
6.25 R TR, s u=0.2245

01 2 3 4 5 6 7 8 9 10111213
r km

Fig. 2. The density of ordinary matter for the star PSR J0348 4+ 043 with p = 1 considering
different compactness values.

parameter p can be observed. As it can be seen, the difference in the density for
the values of p are reduced as the compactness lowers. The graphs in Figs. 3 and 4
show how the densities of quintessence are positive, monotonically decreasing and
are zero on the surface, we also have that their values are one of the two orders
of magnitude for the ordinary density. Also, for u = 1, the values remain same
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Fig. 3. In this graph, the behavior of the quintessences density for the star PSR J0348 + 043
with p = 0.78055 is represented for different values of compactness.
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Fig. 4. In this graph, the behavior of the quintessences density for the star PSR J0348 + 043
with p =1 is represented for different values of compactness.

for the ordinary density while for the quintessence density, it is greater when the
compactness is greater, meanwhile for p = 0.78055, the opposite occurs.

In the graphs of Figs. 5 and 6, we can observe the monotonically decreasing
behavior of the radial pressure and its similar behavior to the behavior of the
density but with lower values than this one.
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Fig. 5. Radial pressure for possible values of the compactness of the star PSR J0348 + 043 with
w = 0.78055 considering different values of compactness.
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Fig. 6. Radial pressure for possible values of the mass and radius of the star PSR J0348 4+ 043
with g = 1 considering different values of compactness.

As it can be seen from Figs. 7 and 8, the tangential pressure is also nullified in the
surface and its behavior is monotonically decreasing. For w = —0.4 and p = 0.78055,
the values of the radial pressure are very close, meanwhile for w = —0.4 and p =1,
there is a notable difference in their values.
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Fig. 7. Tangential pressure for the observational dates of the star PSR J0348 4 043, considering
w=0.78055 and w = —0.4.
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Fig. 8. Tangential pressure for the observational dates of the star PSR J0348 4 043, considering
w =1 and w = —0.4 considering different values of compactness.

In Figs. 9 and 10, the tangential speed of sound was graphed in dimensionless
units, that is to say vy(r)?/c? — v?(x) and as it can be seen, the tangential speed
of sound is positive and lower than the speed of light, also it is monotonically
decreasing. From this graphs and since p < 1, the radial speed of sound v,.(r)? < ¢?,
then the condition of v} — v2 < 0, so that the model is potentially stable.
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Fig. 9. Tangential speed of sound for possible values of mass and radius of the star with p =1

and w = —0.95 for different values of compactness for different values of compactness.
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Fig. 10. Tangential speed of sound for possible values of the mass and radius of the star with
p=1and w = —0.4 for different values of compactness.

5. Conclusions

In this work, we proposed and discussed a compact star of quintessence for strange
stars with a compactness rate u < 0.28551 in which the state equation for the radial
pressure associated to the normal matter is P,(p) = uc?(p — pp) and the tangential
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state equation P,(p) = puc?(p — py) — 3(1 + w)c?pq in such a way that this last
one considers the quintessence effect. It is shown that for our model, each one of
the functions (p, pq, Pr, P;) is monotonically decreasing that they are regular with
their maximum value in the center of the star and each one of them is nullified on
the surface with the exception of the density of the ordinary matter. The solution
is obtained starting from the application, of a variant, of a theorem presented in
a previous work. The geometry that we have adopted for the interior of the star
is the geometry of Durgapal for n = 5. Through the solution, we have shown that
the compactness of the star is linked to the possible values of the constants of
proportionality wp in the state equation. So, this shows that the internal structure
of the stars is influenced by the compactness of the star, since as we know the state
equations are a consequence of the type of matter and the interaction between them,
and in our case, of the specific value of u, this is a considerable difference of our
work with respect to other.32:35 Ags well as that, in our model, objects with a greater
compactness are characterized because y should be close to 1, due to this, the speed
of sound would be very close to the speed of light. This generates some questions on
the effect of the quintessence when it interacts with the matter. Is it possible to give
some physical conclusions on the properties of the quintessence and matter mixture
inside the star? The presence of the quintessence elevates the speed of propagation
of the sound? How is the propagation of sound modified in the presence of the
quintessence? What is the relevance of the quintessence on the stability of the
stellar solutions? Considering another geometry with the same state equation, is
the parameter p also limited to an interval? Also, the application of our model
for the star J0348 4+ 0432 was obtained with the maximum value of the density of
the matter which matches both at the center and on the surface to the maximum
compactness with the minimum value of p. On the other hand, for the density
of quintessence, with the maximum compactness and minimum of u, we have the
minimum value. Moreover, the values of the density of ordinary matter obtained are
of the expected order for stars with this compactness value, meanwhile, the values
of the density of the quintessence are two orders of magnitude lower, which shows
a possible difficulty for their detection, so it is necessary to propose theoretical
models that will allow to directly or indirectly show its existence or its lack of it
in the interior of the stars. The ease with which the solution was obtained, by the
use of the theorem, gives us the opportunity of being able to build other solutions
with a similar state equation or other state equations and starting from them not
only representing the interior of the known stars, but also show that, according
to the expectations, the parameters of the state equation are determined by the
compactness or equivalently associated to the density of the star.
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