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the quintessence. It is shown that depending on the compactness of the star u = GM/c2R
the constant of proportionality µ between the density of the ordinary matter and the
radial pressure, Pr = µc2(ρ− ρb), has an interval of values which is consistent with the
possibility that the matter is formed by a mixture of particles like quarks, neutrons and
electrons and not only by one type of them. The geometry is described by the Durga-
pal metric for n = 5 and each one of the pressures and densities is positive, finite and
monotonic decreasing, as well as satisfying the condition of causality and of stability
v2t − v2r < 0, which makes our model physically acceptable. The maximum compactness
that we have is u ≤ 0.28551, so we can apply our solution considering the observational
data of mass and radii M = (2.01 ± 0.04) M⊙, R ∈ [12.062, 12.957] km which generate
a compactness 0.22448 ≤ u ≤ 0.25448 associated to the star PSR J0348+ 0432. In this
case, the interval of µ ∈ [0.78055, 1] and its maximum central density ρc and in the

surface ρb of the star are ρc = 7.0387 × 1017 kg/m3 and ρb = 4.6807 × 1017 kg/m3, re-
spectively, meanwhile the central density of the quintessence ρqc = 3.4792×1016 kg/m3.

Keywords: Compact stars; exact solutions; quintessence anisotropic fluid.

1. Introduction

The internal composition of the stars is still an unresolved question, although there

are considerable advancements on what type of matter composes stars and their

behavior. For example, it is known that when the internal density is greater than

the nuclear density, there is the possibility that the radial and tangential pressures

are different from each other, which would indicate that its interior is not necessar-

ily formed by a perfect fluid, but instead by an anisotropic fluid.1 The description

of the stars formed by anisotropic fluids has been studied since the last century2–18

and one of the consequences is that it would allow to describe stars with a compact-

ness value greater than the Buchdahl limit u < 4/9,19–22 this presents itself even

in the case of the anisotropic model with constant density.23 The generalization of

the Buchdahl limit for the anisotropic case only requires conditions on the behavior

of the function of density, the pressure and its coupling with the exterior geometry

described by the Schwarzschild solution20 and not on a specific form of the state

equation. In different works, the possible behavior of the interior of some stars

has been described through models with anisotropic pressures and this has shown

that the observational results match those expected and obtained by a theoretical

models, it has also been shown the importance that the anisotropy has in the de-

scription of physically acceptable models.7 The type of matter that could conform

the stars with density greater than the nuclear density is expected to contain neu-

trons, quarks as well as electrons, although not only one of these components. The

stars where their matter is mainly formed by quarks may be more compact than the

stars constituted mainly by neutrons, in addition to this, it has been speculated on

the possibility that the quintessence matter is also part of the star’s interior, this

type of matter could counteract the effect of the gravitational attraction because, as

it is known, it generates negative pressures. In cosmology, the quintessence fields are

associated to matter described by a perfect fluid with positive density and negative

pressure and its state equation is given by Pq = wc2ρq with −1 < w < −1/3.24 This

has been presented to give an explanation to the observations on the accelerated
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expansion of the universe, since it requires the existence of fields or matter with

negative pressure.25,26 Some works about compact stars have already approached

the possibility of quintessence and ordinary matter, the quintessence is described

mainly by a fluid with radial and tangential pressures linked to the quintessence

described by Prq = −c2ρq and Ptq = (1 + 3w)c2ρq/2 with −1 < w < −1/3 where

ρq represents the density of the quintessence matter, these equations were proposed

initially for the case of black holes with quintessence,27 meanwhile for the ordinary

matter, there have been different proposed sources.28,29 Within the variety of com-

pact stars with quintessence,30–32 one of the most approached is that associated to

the MIT Bag model,33,34 for this case, starting from a state equation associated

to the ordinary matter and considering the effect of the quintessence, it has been

shown that the geometry of the solutions for Einstein’s equations with perfect fluid

works for describing compact stars with quintessence.35 However, it is to be ex-

pected that the ordinary matter that conforms a star is not only constituted by

quarks and that depending on its mass, radius, density or compactness its state

equation may differ. Taking this into account, and as to generalize from previous

works,35 in this work, we present a compact star constituted by quintessence and

ordinary matter with radial and tangential pressures described by the state equa-

tions Pr = µc2(ρ− ρb) and Pt = µc2(ρ− ρb)− 3(1 + w)c2/2ρq, respectively, where

ρb ≡ ρ(R) is the density of ordinary matter on the surface. The work is organized

as follows: in Sec. 2, we obtain the equations for the quintessence model and we list

the conditions that must be met for the system to be physically acceptable, Sec. 3 is

focused in obtaining the solution, starting from the Durgapal geometry, for n = 5.36

Starting from the solution obtained in Sec. 4, we apply the model for a possible

representation of the star PSR J0348+0432 and we finalize with conclusions in

Sec. 5.

2. The Field Equations and Physical Conditions

We assume that the geometry of the interior of the compact star is static and

spherically symmetrical as it can be described by the metric37

ds2 = −y(r)2 dt+
dr2

B(r)
+ r2(dθ2 + sin2 θ dφ2), r ≤ R. (1)

We assume that the source of matter is formed by a quintessence field and normal

matter with anisotropic pressures. So, Einstein’s equations are given by

Gαβ = k[T (q)
αβ + (c2ρ+ Pt)uαuβ + Ptgαβ + (Pr − Pt)χαχβ ].

These vectors are satisfying where k = 8πG
c4 , G is the universal gravitational con-

stant, c is the speed of light; ρ is the density, (Pr , Pt) are the radial and tangential

pressures, respectively. Further, uµ is the fluid 4-velocity and χµ is the unit vec-

tor in the radial direction, which under comoving reference frame are defined as

uµ = 1
y(r)δ

µ
0 and χµ =

√

B(r)δµr . While T (q)
αβ represents the energy–momentum
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tensor of the quintessence-like field, with components given by27

T (q)t
t = −c2ρq, T (q)r

r = −c2ρq, T (q)θ
θ = T (q)φ

φ = −1 + 3w

2
c2ρq, (2)

with the quintessences parameter w such that −1 < w < − 1
3 . In our case, we

assume state equations Pr and Pt are linear and are given by

Pr = µc2(ρ− ρb), Pt = µc2(ρ− ρb)−
3

2
c2(w + 1)ρq, (3)

where ρb is the density on the surface of the star. The state equation for the radial

pressure is a generalization of the MIT Bag state equation, P = (c2ρ − 4Bg)/3

which describes the interaction of confined quarks in a bag of finite dimension as

result of the balance of the bag pressure Bg, which is directed inward, and the

stress arising from the kinetic energy of the quarks.38,39 In our case, the parameter

µ ∈ (0, 1] has an interval of values, which is consistent with the possibility that

the matter is formed by a mixture of particles like quarks, neutrons and electrons

and not only by one type of them. On the other hand, as it has been argued

in a previous investigation report35 and following this idea, other investigation

works have been written,32,34 the structure of the state equation for the tangential

pressure is proposed to describe how the quintessence could disturb a perfect fluid.

As it can be observed, in the absence of quintessence, the radial and tangential

pressures would be equal, so our suggestion is that the quintessence density may

cause anisotropy in the pressures. The anisotropy in the pressures is important when

trying to describe compact objects with density greater than the nuclear density, in

which case it is possible to have objects in equilibrium with a greater density and

compactness than in the case of perfect fluid.1,20–22 Considering the metric given

by Eq. (1) and the sources of matter mentioned, Einstein’s equations generate the

following set of equations:

kc2(ρ+ ρq) = −B′

r
+

1−B

r2
, (4)

kµc2(ρ− ρb)− kc2ρq =
2By′

ry
− 1−B

r2
, (5)

kµc2(ρ− ρb)− kc2ρq =
(ry′′ + y′)B

ry
+

(ry′ + y)B′

2ry
, (6)

“ ′” denotes the derivative with respect to the coordinate r. It is important to note

that the parameter w in not present on these equations and it is only reflected

on the density of the quintessence. However, it is present in the state equation for

the tangential pressure and as consequence, as we will see ahead, in the tangential

speed of sound vt. It is this characteristic which allows that a geometry associated

to a perfect fluid in absence of quintessence is applicable to the anisotropic case

with quintessence.32,34,35 Systems (4)–(6), after algebra, can be rewritten in the
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equivalent form as follows35:

kc2ρ = − B ′

(1 + µ)r
+

2By ′

(1 + µ)ry
+

kc2µρb
1 + µ

, (7)

kc2ρq = − µB ′

(1 + µ)r
− 2By ′

(1 + µ)ry
+

1−B

r2
− kc2µρb

1 + µ
, (8)

2r(ry′′ − y′)B + r(ry′ + y)B′ + 2y(1−B), (9)

that it is a generalization to the case of MIT Bag state equation µ = 1/3.35 So,

to build a solution of a star with quintessence field and state equations of ordinary

matter given by (3), it is enough with solving systems (7)–(9), a one way of inte-

grating this system is solving the differential equation (9) which relates the metrical

coefficients and afterwards, by means of substitution, obtains the density functions.

Equation (9) is the same as that in the case of the perfect fluid, and in this work,

we consider the geometry associated to the Durgapal solution with n = 5.

2.1. Physical conditions

The conditions that must be satisfied by the functions (ρ, Pr , Pt, ρq, y, B), so a solu-

tion to Eqs. (4)–(6) is physically acceptable, particularly when there is no presence

of quintessence, have been discussed in different works, we listed these and proposed

the requirements for the quintessence.7,35,40–42

(1) There must be a region r = R, identified as the surface of the star in which

the radial pressure is nullified, i.e. Pr(R) = 0. The exterior geometry, r ≥ R, is

described by the Schwarzschild metric

ds2 = −
(

1− 2GM

c2r

)

dt2 +

(

1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2), (10)

where M represents the total mass inside the fluid sphere and the interior

geometry, given by the solution of (4)–(6), over the surface must be continuous.

(2) The solution must be regular, which means that the density and pressures must

be bounded for 0 ≤ r ≤ R and the geometry must be non-singular inside the

star, i.e. the Kretschmann scalar:

RαβσδRαβσδ = 4

[

1−B

r2

]2

+
2B′2

r2
+

8B2

y2
y′2

r2
+

[

B′y′

y
+

2y′′

y
B

]2

, (11)

must be regular ∀r ≤ R.41

(3) The density ρ and the pressures (Pr, Pt) must be positive functions. Further-

more, the density and radial pressure must be monotonic decreasing functions

with a maximum value in the center, that is to say

ρ(0) > 0, ρ′(r)|r=0 = 0, ρ′′(r)|r=0 < 0, Pr(0) > 0,

P ′

r(r)|r=0 = 0, P ′′

r (r)|r=0 < 0, and for r > 0, ρ′ < 0 and P ′

r < 0.
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(4) The density of the quintessences matter ρq must be a regular function. Although

the positive or negative behavior inside is not entirely determined, we consider

a ρq ≥ 0 which implies Pq ≤ 0 in concordance with the cosmological case. In

some works discussed, ρq has been reported as positive and in some other cases,

it has regions where it is positive and in other regions negative.43

(5) The conditions of causality must be satisfied, which means that the magnitude

of the radial and tangential speed of sound vr and vt, respectively, must not be

greater than the speed of light

0 ≤ v2r ≡ ∂

∂ρ
Pr(ρ) =

dPr

dr

/

dρ

dr
≤ c2, 0 ≤ v2t ≡ ∂

∂ρ
Pt(ρ) =

dPt

dr

/

dρ

dr
≤ c2.

(6) For the anisotropic fluid configuration, the energy condition like null energy

condition (NEC), weak energy condition (WEC), the dominant energy condi-

tion (DEC), the strong energy condition (SEC) must be satisfied throughout

the interior region, i.e.42

ρ ≥ 0, c2ρ± Pr ≥ 0, c2ρ± Pt ≥ 0, c2ρ+ Pr + 2Pt ≥ 0. (12)

(7) Additionally, for the solution to be potentially stable, we require that the Her-

rera cracking condition v2t − v2r < 0 is satisfied.44

These properties allow to set the integration constants and determine when a

model is physically acceptable.

3. The Solution and Its Analysis

The structure of Eqs. (7)–(9) does not impose restrictions on the choice of the type

of geometry (y,B) associated to the case with perfect fluid. The choice is based

on the properties which are required to adequately represent a star and these were

mentioned in the previous section, in addition to this, we have the compactness

value. As such, we have chosen one of the solutions analyzed in the frame of the

general theory of relativity.36,40 Durgapal analyzes one form for the gravitational

potential y(r)2 = (1+ ar2)n with n = 1, 2, 3, 4, 5 known as Durgapal’s solution, our

choice of n = 5 is because in the case of perfect fluid the solution is regular and

its compactness rate is u = 0.265. Furthermore, in previous works, it has already

been shown that the compactness rate of the initial model with perfect fluid and

its respective case for the anisotropic fluid with quintessence has the same function

of the compactness rate and its maximum value is of the same order.32,34,35 The

form of the metric coefficients of the Durgapal metric for n = 5, is

y(r) = (1 + ar2)
5

2 ,

B(r) =
3
√
1 + 6ar2(112− 309ar2 − 54a2r4 − 8a3r6)−Aar2

112(1 + ar2)3 3
√
1 + 6ar2

.
(13)

Starting from these functions by means of substitution in (7) and (8), we obtain

the density of the matter and of the quintessence
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ρ(r) =
5(241− 411ar2 − 60a2r4 − 8a3r6)a

56(1 + µ)(1 + ar2)4kc2

+
Aa(1 − 3ar2 − 44a2r4)

56(1 + µ)(1 + ar2)4(1 + 6ar2)
4

3 kc2
+

µρb
(1 + µ)

, (14)

ρq(r) =
5[387µ− 95 + 3(275 + µ)ar2 + 30(7 + 3µ)a2r4 + 8(5 + 3µ)a3r6]a

112(1 + µ)(1 + ar2)4kc2

+
a[1 + 3µ+ (17 + 11µ)ar2 + 22(3− µ)a2r4]A

112(1 + µ)(1 + ar2)4(1 + 6ar2)4/3kc2
− µρb

(1 + µ)
. (15)

The pressures, given by the state equation (3), are a linear combination of the den-

sities. So, we will only give the expressions of the first derivative of these functions

and the values of the second derivative in the center of the star.

ρ′(r) =
P ′
r(r)

µc2
= −5a2r(3 + 21ar2 + 2a2r4 − 176a3r6)A

28(1 + µ)(1 + ar2)5(1 + 6ar2)
7

3 kc2

− 5(1375− 1113ar2 − 96a2r4 − 8a3r6)ra2

28(1 + µ)(1 + ar2)5kc2
, (16)

ρ′q(r) =
5[5(241− 411ar2 − 60a2r4 − 8a3r6)− 3(515− 57ar2 + S(r))µ]a2r

56(1 + µ)(1 + ar2)5kc2

+
5[(1 + 6ar2)(1 − 3ar2 − 44a2r4)− (5 + 39ar2 + 66a2r4 − 88a3r6)µ]Aa2r

56(1 + µ)(1 + ar2)5(1 + 6ar2)7/3kc2

(17)

where S(r) = 36a2r4 + 8a3r6.

From the derivatives, we have that these are nullified in the center, but it is

not clear that these correspond to monotonic decreasing functions. The second

derivatives evaluated in the center are

ρ′′(0) = −5a2(3A+ 1375)

28kc2(1 + µ)
≤ 0, ρ′′q (0) = −5a2(5Aµ−A+ 1545µ− 1205)

56kc2(1 + µ)
≤ 0,

and these impose restrictions on the constant of integration A. To know the explicit

form of the constants A and ρb, we apply the conditions of continuity of the metric,

the second fundamental form and that the pressure at the surface is nullified, these

conditions also imply ρq(R) = 0, after solving the system we arrive at

A =
25(19− 165s− 42s2 − 8s3) 3

√
1 + 6s

1 + 11s
, (18)

ρb =
10(3 + 11s)s

kc2R2(1 + 11s)(1 + 6s)
, (19)

u(s) ≡ GM

c2R
=

5s

1 + 11s
, (20)
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where s = aR2 > 0 and u(s) represent the compactness ratio. One property that

helps us to determine the interval of µ is the condition of stability in the surface of

the star:

v2t (0)− µc2 = −3(1 + w)[5(5µ− 1)S1 + (309µ− 241)(1 + 11s)]

20[3S1 + 55(1 + 11s)]
c2 < 0, (21)

with S1 = [19 − 165s− 42s2 − 8s3] 3
√
1 + 6s. In obtaining (21), we have taken into

account the state equation for the radial pressure, which implies that v2r = µc2.

Equation (21) imposes a restriction on the range of values of µ, the minimum

value is µ = 3/7 and its exact value depends on the compactness. For values lower

that this, we have that v2t (0) − v2r > 0 which would imply that the system is not

potentially stable. In a similar manner, it happens that for µ < 3/7, v2t (R)−v2r > 0,

although in some cases the expression is more simple, for example for a model with

MIT Bag state equation, µ = 1/3 results are as follows:

v2t (R)− 1

3
c2 = − (1 + w)(374s2 + 139s+ 5)c2

2(25 + 151s+ 286s2)
> 0, (22)

which implies that with this source of matter and Durgapal geometry, the solution

with MIT Bag state equation is not stable. On the other hand, for values of µ

slightly greater than 3/7, the validity range of s is a small vicinity surrounding

s = 0 and as such, according to Eq. (20), the compactness also approaches zero.

As we increase the value of µ, the interval of s is greater and as such allows us to

represent objects with a greater compactness rate u. The maximum interval of s

occurs for µ = 1 and we can determine it from the condition of stability

v2t (0)− c2 = −3(1 + w)[5 3
√
1 + 6sS1 + 17(1 + 11s)]

5[3 3
√
1 + 6sS1 + 55(1 + 11s)]

c2 < 0, (23)

as such the admissible values of s are 0 < s < smax = 0.1535462, which implies that

it is possible to represent stellar objects with a compactness rate u ≤ u(smax) ≡
umax = 0.28551. Objects with a compactness value close to umax and for them to be

stable they would require a state equation with µ → 1. From this analysis, we can

note that although the state equation allows us to represent compact objects, the

value of the compactness obtained starting from the mass and the radius influences

the possible value of µ. In the following section, we will show the graphic behavior

with the observational data of the star PSR J0348+ 0432.

4. The PSR J0348 + 0432 Star

The results of the previous section show that the solution is applicable for stars

with a compactness rate u ≤ 0.28551, this being the result of imposing the stability.

According to the observational data, the star PSR J0348+ 0432 has a compactness

0.22448 ≤ u ≤ 0.25448, this is because of its mass M = (2.01 ± 0.04) M⊙ and

its radius 12.062 km ≤ R ≤ 12.957 km.45,46 Inside the possible interval for the

compactness, we consider the combinations of the values of the mass and maximum
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Table 1. Values of the predicted densities for observational mass and radius. In the table, four
columns are reported, each one corresponds with a value of possible mass and radius with their
respective associated values of densities. The central density of the ordinary matter ρc and the
one of quintessence ρqc depend of the µ value, here we only report the ones corresponding to the
extremes. Meanwhile, the density of matter on the surface does not depend on the value of µ.

M (M⊙) 2.05 1.97 2.05 1.97

R (km) 12.062 12.062 12.957 12.957

u (s) 0.2509 0.2411 0.2336 0.2245

s 0.1120 0.1027 0.0961 0.0887

µ = 0.78055 ρc(1017
kg

m3
) 7.0387 6.6474 5.5111 5.2206

ρqc(1016
kg

m3
) 0.8905 1.1422 1.1029 1.1865

µ = 1 ρc(1017
kg

m3
) 6.7800 6.4168 5.3275 5.0561

ρqc(1016
kg

m3
) 3.4792 3.4549 2.9385 2.8335

0.78055 ≤ µ ≤ 1 ρb(10
17 kg

m3
) 4.6807 4.5403 3.8389 3.7198

and minimum radii. The values of the densities in the center and on the surface are

reported in Table 1. The generation of values of Table 1 is as follows: Given the

values of mass and radius, we obtain the compactness u = GM/c2R, for Eq. (20)

determining the corresponding value of s. With the value of s, replacing it in Eq. (21)

for the condition of stability, we find the validity interval of µ. For each value of

compactness, the interval µ is different, for a greater compactness the interval is

lower, with u = 0.25093 we have µ ∈ [0.78055, 1], meanwhile, with u = 0.22448, we

associate µ ∈ [0.71519, 1]. To be able to realize a comparison between the values

of the densities in the center and on the surface, the values that we take for µ

are 0.78055 ≤ µ ≤ 1. From Table 1, we can see that, for a fixed mass and radius,

the values of the density of normal matter are greater for µ = 0.78055 contrary to

what happens for the quintessence density. Also, as the compactness increases, the

density of ordinary matter also increases, the same happens for the density of the

quintessence on the surface although its value in the center does not behave in such

a manner. As part of the properties that the model has, there is the density of the

quintessence which is zero on the surface and in Eq. (19), we have the density of

the ordinary matter on the surface that does not depend on the value of µ.

The behavior of the model for the values of masses and radii considered in

Table 1 are presented graphically in this part. We identify the graphs by their

compactness value, so u = 0.2509 means that this represents the behavior of the

star with mass 2.05 M⊙ and radius 12.062 km, while u = 0.2411 means that this

represents the behavior of the star with mass 1.97 M⊙ and radius 12.062 km, and

likewise for the other values of mass and radius presented in Table 1. From Figs. 1

and 2, the monotonically decreasing value of the density, as well as the effect of the
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Fig. 1. The density of ordinary matter for the star PSR J0348+ 043 with µ = 0.78055 considering
different compactness values.

Fig. 2. The density of ordinary matter for the star PSR J0348+ 043 with µ = 1 considering
different compactness values.

parameter µ can be observed. As it can be seen, the difference in the density for

the values of µ are reduced as the compactness lowers. The graphs in Figs. 3 and 4

show how the densities of quintessence are positive, monotonically decreasing and

are zero on the surface, we also have that their values are one of the two orders

of magnitude for the ordinary density. Also, for µ = 1, the values remain same
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Fig. 3. In this graph, the behavior of the quintessences density for the star PSR J0348 +043
with µ = 0.78055 is represented for different values of compactness.

Fig. 4. In this graph, the behavior of the quintessences density for the star PSR J0348 +043
with µ = 1 is represented for different values of compactness.

for the ordinary density while for the quintessence density, it is greater when the

compactness is greater, meanwhile for µ = 0.78055, the opposite occurs.

In the graphs of Figs. 5 and 6, we can observe the monotonically decreasing

behavior of the radial pressure and its similar behavior to the behavior of the

density but with lower values than this one.
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Fig. 5. Radial pressure for possible values of the compactness of the star PSR J0348+ 043 with
µ = 0.78055 considering different values of compactness.

Fig. 6. Radial pressure for possible values of the mass and radius of the star PSR J0348 +043
with µ = 1 considering different values of compactness.

As it can be seen from Figs. 7 and 8, the tangential pressure is also nullified in the

surface and its behavior is monotonically decreasing. For w = −0.4 and µ = 0.78055,

the values of the radial pressure are very close, meanwhile for w = −0.4 and µ = 1,

there is a notable difference in their values.
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Fig. 7. Tangential pressure for the observational dates of the star PSR J0348+ 043, considering
µ = 0.78055 and w = −0.4.

Fig. 8. Tangential pressure for the observational dates of the star PSR J0348+ 043, considering
µ = 1 and w = −0.4 considering different values of compactness.

In Figs. 9 and 10, the tangential speed of sound was graphed in dimensionless

units, that is to say vt(r)
2/c2 → v2t (x) and as it can be seen, the tangential speed

of sound is positive and lower than the speed of light, also it is monotonically

decreasing. From this graphs and since µ ≤ 1, the radial speed of sound vr(r)
2 ≤ c2,

then the condition of v2t − v2r < 0, so that the model is potentially stable.
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Fig. 9. Tangential speed of sound for possible values of mass and radius of the star with µ = 1
and w = −0.95 for different values of compactness for different values of compactness.

Fig. 10. Tangential speed of sound for possible values of the mass and radius of the star with
µ = 1 and w = −0.4 for different values of compactness.

5. Conclusions

In this work, we proposed and discussed a compact star of quintessence for strange

stars with a compactness rate u ≤ 0.28551 in which the state equation for the radial

pressure associated to the normal matter is Pr(ρ) = µc2(ρ− ρb) and the tangential
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state equation Pr(ρ) = µc2(ρ − ρb) − 3
2 (1 + w)c2ρq in such a way that this last

one considers the quintessence effect. It is shown that for our model, each one of

the functions (ρ, ρq, Pr, Pt) is monotonically decreasing that they are regular with

their maximum value in the center of the star and each one of them is nullified on

the surface with the exception of the density of the ordinary matter. The solution

is obtained starting from the application, of a variant, of a theorem presented in

a previous work. The geometry that we have adopted for the interior of the star

is the geometry of Durgapal for n = 5. Through the solution, we have shown that

the compactness of the star is linked to the possible values of the constants of

proportionality µ in the state equation. So, this shows that the internal structure

of the stars is influenced by the compactness of the star, since as we know the state

equations are a consequence of the type of matter and the interaction between them,

and in our case, of the specific value of µ, this is a considerable difference of our

work with respect to other.32,35 As well as that, in our model, objects with a greater

compactness are characterized because µ should be close to 1, due to this, the speed

of sound would be very close to the speed of light. This generates some questions on

the effect of the quintessence when it interacts with the matter. Is it possible to give

some physical conclusions on the properties of the quintessence and matter mixture

inside the star? The presence of the quintessence elevates the speed of propagation

of the sound? How is the propagation of sound modified in the presence of the

quintessence? What is the relevance of the quintessence on the stability of the

stellar solutions? Considering another geometry with the same state equation, is

the parameter µ also limited to an interval? Also, the application of our model

for the star J0348+0432 was obtained with the maximum value of the density of

the matter which matches both at the center and on the surface to the maximum

compactness with the minimum value of µ. On the other hand, for the density

of quintessence, with the maximum compactness and minimum of µ, we have the

minimum value. Moreover, the values of the density of ordinary matter obtained are

of the expected order for stars with this compactness value, meanwhile, the values

of the density of the quintessence are two orders of magnitude lower, which shows

a possible difficulty for their detection, so it is necessary to propose theoretical

models that will allow to directly or indirectly show its existence or its lack of it

in the interior of the stars. The ease with which the solution was obtained, by the

use of the theorem, gives us the opportunity of being able to build other solutions

with a similar state equation or other state equations and starting from them not

only representing the interior of the known stars, but also show that, according

to the expectations, the parameters of the state equation are determined by the

compactness or equivalently associated to the density of the star.
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