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1
Introduction

This chapter offers a non-technical introduction to modern cos-
mology with emphasis on the cosmological milestones of the last
century. We also provide an outline of the thesis and set the
notation.
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2 Introduction

1.1 From ancient times to the era of relativity

Where do we come from? How was the world created? Is the age of the uni-
verse finite or is it infinitely old? Since the dawn of civilization, humankind
has been preoccupied with these questions and several individuals have at-
tempted to answer them in the context of theology and philosophy. As early
as in Mesopotamian, Rigveda and Babylonian scripts, one finds people’s be-
liefs of the universe consisting of a flat earth surrounded by an ocean [1].
Later, with the progression of astronomical observations the Earth started
to be depicted as a sphere with stars and planets revolving around it. The
heliocentric universe of Aristarchus was the first qualitatively correct model
for our solar system, that was abandoned a few centuries later in favour of
a geocentric system by e.g. Aristoteles and Ptolemy, only to be established
again by N. Copernicus, in a more sophisticated version, during the renais-
sance [2–5]. J. Bruno pushed that idea further by postulating that our solar
system is one of infinitely many similar systems in the universe [6]. In a
similar spirit, I. Kant argued that nebulae in the night sky were separated
“island universes” that extended beyond the Milky Way [7].

In the meantime, many different theories have been proposed for the
beginning and evolution of the universe. In the 18th century H. W. Olbers
proposed the “night sky paradox”, an argument that disfavours an infinitely
large and old universe [8,9]. It is formulated as follows: if the universe ex-
tends indefinitely in space, then it will be populated by infinitely many stars
and the total luminosity would be infinite; the night sky should be bright
instead. Though many resolutions have been proposed without requiring
a beginning for the universe, the simplest explanation is that the universe
is finitely old and thus the light from distant stars has not reached us yet,
explaining why the night sky is dark. These arguments became more solid
after the introduction of general relativity by A. Einstein in 1916. Study-
ing the dynamics of the new theory for a universe with only usual forms of
matter and energy (such as atoms and photons) but without any preferred
point or direction A. Friedmann derived the first cosmological model [10].
Using these equations G. Lemaître showed that they yield a universe with
a beginning [11] that comes into existence from a singularity, dubbed the
Big Bang.1

1The presence of the singularity implies that general relativity can not be applied
arbitrarily close to the beginning of time and a complete theory of quantum gravity is
necessary to investigate how the universe came into existence.
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1.2 Expansion of the Universe

Around 1920, a “Great Debate” took place amongst astronomers regarding
the size of the universe [12]. On one side, astronomers such as H. Shap-
ley argued for a small universe of the size of the Milky Way, while the
opposing side represented by H. Curtis claimed that distant nebulae were
distinct galaxies located at large distances from Earth. The debate was
finally settled by E. Hubble in 1927 [13]. Analysing data from stars with
variable luminosity, known as Cepheid stars, of what appeared to be distant
nebula enabled him to perform a cosmic distance calibration, that is a way
to measure distances of distant objects. Those objects were shown to lie
outside of our galaxy and therefore settled the Great Debate. Combining
the previous results with redshift measurements of various galaxies led to
his famous law relating distance to velocity. This relation had already been
proposed by G. Lemaître as a solution of an expanding universe. Distant
galaxies appeared to recede from us with a velocity proportional to their
distance which implied that the universe is expanding.

A few decades later, A. Penzias and R. Wilson accidentally discovered
a mysterious radiation in the microwave part of the spectrum that was
coming from every part of the sky. The existence of this radiation was
already predicted by G. Gamow in 1948 as the afterglow of the Big Bang
and for this reason it became known as the cosmic microwave background
(CMB) radiation [14]. Being one of the key predictions of the expanding
universe, the Big Bang scenario was established in the cosmological com-
munity. Up to the end of the 20th century, the dominant view included a
cold universe whose average density of matter would determine its fate; a
densely enough universe would recollapse in the future leading to the “Big
Crunch”, whereas if its density was lower than a critical value it would ex-
pand forever, leading to the “Big Chill”. In any case, the expansion of the
universe would decelerate because it would be subject only to gravitational
forces of attractive nature.

The situation changed in 1998 due to the first direct evidence for cosmic
acceleration. S. Perlmutter, from the Supernova Cosmology Project, and
B. P. Schmidt and A. G. Riess, from the High-Z Supernova Search Team,
analysed data from supernovae type Ia that enabled them to measure dis-
tances in the universe, in a similar fashion to what E. Hubble had done in
the past [15, 16]. These observations indicated that universe’s expansion
is accelerating and, hence, the universe should be filled with an unknown
form of energy dubbed dark energy. In the simplest scenario, dark energy is
represented by a cosmological constant and is associated with the energy of
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the vacuum. The previous three milestones (the expansion of the universe,
the observation of the CMB and the discovery of cosmic acceleration) set
the foundations of modern cosmology.

1.3 Open questions in cosmology

Even though our understanding of the universe has become more solid over
many years of research, there are still many questions left to be answered.
For instance:

• How did the universe come into existence?

• What was the initial state of the universe?

• Why does the universe look homogeneous and isotropic at large scales?

• What is the driving force of the universe’s acceleration?

• What is the ultimate fate of the universe?

In this thesis we will be concerned with the third question, namely the
underlying physical mechanisms responsible for the observed homogeneity
and isotropy of the universe. To this end, we will use the inflationary
paradigm, which is the hypothetical period of accelerating expansion in the
very early universe.

1.4 Outline of the thesis

The outline of the thesis is as follows:

• Chapters 2-3 contain an overview of modern cosmology and the in-
flationary theory. We discuss the standard cosmological model, the
motivation for inflation and its connection to observations.

• In Chapter 4 we develop the necessary tools that will allow us to
study multi-field dynamics in the subsequent chapters.

• In Chapter 5 we construct a two-field model that generalizes single-
field α-attractors. We explore in detail the dynamics and predictions
of this model and then discuss its viability against the latest Planck
data.
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• Chapter 6 presents two-field scaling solutions for a generic field ge-
ometry. We perform a detailed stability analysis and use several ex-
amples to highlight the stability criteria.

• In Chapter 7 we propose a classification scheme of various models in
the literature based on the number of critical points of an effective
potential. We also discuss the connection between hyperinflation and
sidetracked inflation.

• In Chapter 8 we are interested in the limit of infinite fields. We use
the horizon-crossing approximation to investigate the universality and
prior dependence of predictions.

• Finally, in Chapter 9 we summarize our main findings.

1.5 Notation
• Throughout this thesis we will work in natural units ~ = c = 1. After

Ch. 3 we will also set Mpl = 1.

• Primes (′) and dots (̇) refer to derivatives with respect to the number
of e-folds (N) and the cosmic time (t) respectively.

• The e-folding number will be negative during the inflationary stage
and zero at the end of inflation.

• Greek letters (µ, ν, · · · ) denote spacetime indices and Latin letters
(a, b, · · · ) field-metric indices.

• From Ch. 4 onwards Gij and R will refer to the metric and the Ricci
scalar associated with the field space.

• Partial derivatives with respect to spacetime indices will be repre-
sented by commas (,a ≡ ∂/∂xa) and covariant derivatives with semi-
colons (;a).

• The nabla operator (∇) acts on Euclidean 3-vectors or 3× 3 tensors
(e.g. ~∇f(~x) ≡ ∂if and ~∇ · ~A ≡ ∂iAi) .

• Up to (and including) Ch. 3 Ω will denote the normalized fluid com-
ponents, whereas from Ch. 4 onwards it will refer to the turn rate of
multi-field models.
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2
The standard cosmological model

This chapter offers an elementary course on modern cosmol-
ogy. We start with some remarks on the paradigm shift made by
general relativity, followed by a discussion of observational evi-
dence for isotropy of the universe at large scales. Next, we intro-
duce the Lambda-Cold-Dark-Matter (ΛCDM) model and present
some of its puzzling aspects.

7



8 The standard cosmological model

2.1 Observational evidence for isotropy

The phenomenological successes of general relativity on the relatively small
scales of our solar system (e.g. the calculation of Mercury’s precession) in-
dicated that it could also describe the universe as a whole. In addition
to various formal challenges the theory introduces (see App. A.1) one has
to take into account the non-linearity of differential equations for the met-
ric coefficients. This severely limits the number of problems that can be
treated fully analytically. However, when certain spacetime symmetries
are considered then it is often possible to choose a special coordinate sys-
tem that allows simple derivation of an exact solution by simplifying the
metric. In the cosmological context such solutions were derived shortly
after the introduction of general relativity, by e.g. A. Friedmann [10] and
G. Lemaître [11], describing homogeneous and isotropic universes filled with
some form of matter. These simple solutions turned out to adequately de-
scribe the observable universe.

Historically, the first evidence for cosmic isotropy came from the study
of the galaxies’ distribution (see e.g. [17] and references therein). This was
noticed shortly after the discovery of the universe’s expansion examining
progressively larger catalogues of galaxies against isotropy. All data sets
were consistent with the Friedmann-Lemaître-Robertson-Walker (FLRW)
cosmology [18–20] with only some discrepancy over the scale of observed
isotropy, currently set at around 150 Mpc [21].

Another evidence for isotropy is the existence of the CMB radiation. It
is believed to be the remnant of photons in the early universe that formed a
plasma together with free electrons and protons. As the universe expanded
the temperature of the plasma decreased sufficiently (∼ 3000 K) to allow
hydrogen atoms to form, which, however, did not interact with the back-
ground photons. Photons essentially decoupled from electrons streaming
freely into space until their present-day detection. The moment of this de-
coupling is now seen as a two-dimensional surface around us, called the last
scattering surface. The COBE satellite performed the first accurate mea-
surement of the temperature of the CMB radiation (∼ 2.73 K) revealing at
the same time small temperature fluctuations following a power law distri-
bution [22]. The measurement of these anisotropies became progressively
more accurate with the next two probes, WMAP [23] and Planck [24, 25]
(see Fig. 2.1). The CMB radiation was a key prediction of the simple ho-
mogeneous and isotropic cosmological model, commonly known as the hot
Big-Bang scenario.

Combining together the previous astrophysical observations it is com-
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Figure 2.1
Picture of the infant universe created from the five years of Planck data. Credit: Planck

collaboration.

monly accepted that the large-scale structure of the observable universe
follows an almost isotropic distribution [26].1 This is how far one can
progress based on observations; homogeneity in particular can not be di-
rectly observed because spacetime measurements are restricted on our past
light cone and not on the space-like surfaces of our current time [29]. To
study the universe as a whole one needs to introduce assumptions on how
it is portrayed at other points in space. It is reasonable to assume that
the earth, and by extension our galaxy, is by no means a special point in
space and so the universe should be seen as isotropic for every co-moving
observer (special observers of the theory who will be defined later). In this
way, isotropy around every point implies homogeneity. The previous as-
sumption is called the cosmological principle and constitutes the pillar of
modern cosmology.

2.2 The ΛCDM model

The building blocks of the standard cosmological model are the following
(more details can be found e.g. in the introductory textbooks of B. Ryden
[30] and S. Carroll [31]):

1. A multicomponent perfect fluid with energy-momentum tensor

Tµν = (ρ+ P )uµuν + Pgµν , (2.1)
1Note that there are a few works which claim deviations from isotropy e.g. [27,28].
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whose components are non-interacting and satisfiy the strong en-
ergy condition (

Tµν −
1
2Tgµν

)
uµuν > 0 . (2.2)

Here, uµ is the velocity of the fluid as measured by a co-moving ob-
server (an observer at rest with respect to the fluid), ρ is the total
energy density (ρ =

∑
ρi) and P is the total pressure (P =

∑
Pi).

Further, it is assumed that the two dominant forms of matter/energy
are radiation and dust (or cold dark matter). We know from statisti-
cal mechanics that the equation of state for relativistic gas is Pr = 1

3ρr
and non-relativistic matter satisfies Pm ≈ 0. More generally, any form
of matter with equation of state

Pi = wρi , (2.3)

satisfies the strong-energy condition if

1 + 3w > 0 . (2.4)

2. A spacetime foliated with three-dimensional maximally sym-
metric surfaces orthogonal to a time-like vector ξt = a∂t.2 These
conditions fix the spacetime metric to FLRW form [18–20]

ds2 = −dt2 + a(t)2
(

dχ2 + Sκ(χ) dΩ2
)
, (2.5)

where the function Sκ(χ) takes the values

Sκ(χ) =


sin2 χ, κ = 1
χ2, κ = 0
sinh2 χ, κ = −1

. (2.6)

The radial coordinate χ is called co-moving, because in this coor-
dinate system observers at rest with the fluid perceive the universe
as isotropic. The three-dimensional subspace admits the maximum
number of Killing vectors, associated with the symmetries, and has
constant intrinsic curvature κ. The spacetime symmetries are not in-
dependent from the assumed matter content 1; through the Einstein’s
field equations, properties of the energy-momentum tensor (zero shear
and vorticity) correspond to symmetries (compatible with these re-
quirements) of the spacetime metric.

2ξt is a conformal Killing vector because the Lie derivative of the metric along that
vector satisfies Lξtgµν = 2ȧgµν .
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3. A cosmological constant Λ which is associated with the vacuum
energy. By virtue of the Einstein’s field equations one can view the
cosmological constant as an extra term which has either a purely ge-
ometric origin or it is a component of a perfect fluid with an equation
of state PΛ = −ρΛ. Its particle origin is still a mystery and that is
why it is dubbed dark energy.

With 1, 2 and 3 one can find differential equations for the expansion rate
of the universe (a) in terms of the energy density (ρ) and pressure (P )

3
[(

ȧ

a

)2
+ κ

a2

]
= 8πGNρ+ Λ , (2.7)

3 ä
a

= −4πGN (ρ+ 3P ) + Λ . (2.8)

The first equation, also known as the Friedmann constraint, restricts evo-
lution in the phase space on a hypersurface of three dimensions instead of
four of the original problem. Combining the previous two we can express
the time evolution of ρ in terms of the time derivatives of a

ρ̇ = −3 ȧ
a

(ρ+ P ) . (2.9)

This is known as the continuity equation of the fluid because it is also
a direct consequence of the conservation of the energy-momentum tensor
Tµν;ν = 0.

For single-component universes with zero spatial curvature (κ = 0)
the evolution of the energy density for the equation of state (2.3) can be
calculated analytically by integrating (2.9)

ρ(a) = ρ0a
−3(1+w) . (2.10)

Plugging this into the Friedmann constraint (2.7) yields the differential
equation for the scale factor

ȧ = s

√
8πGNρ0

3 a−(1+3w)/2 , (2.11)

where s refers to the sign of ȧ0 describing an initially expanding (s > 0) or
contracting (s < 0) universe; in the rest of this thesis, we will only consider
the expanding case. When w 6= −1 the solution is

a3(1+w)/2 = a
3(1+w)/2
0 + 3

2s

√
8πGNρ0

3 (1 + w)t , (2.12)
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while for a cosmological constant (w = −1) the scale factor increases expo-
nentially with time

a(t) = a0e
√

Λ/3t . (2.13)

The latter universe is called de Sitter [32, 33]. Models with w > −1 (a
condition known as the weak energy condition in contrast to w > −1/3
of the strong energy condition) have a finite age, i.e. given the solution at
some time t0 the differential equation for the scale factor becomes singular
at finite time in the past, that is a → 0 for t → t0. On the contrary,
models with w < −1 have finite future, meaning the differential equation
becomes singular at finite time, i.e. a → ∞ for t → t0, but they have no
past singularity at finite time, a→ 0 for t→ −∞. These two singularities
of the differential equation (2.7) are also curvature singularities because the
Ricci scalar

R = 6
[
ä

a
+
(
ȧ

a

)2
+ κ

a2

]
= 8πGN(ρ− 3P ) + 4Λ , (2.14)

diverges in the past for models with w > −1 and in the future when w < −1.
The de Sitter universe lies at the border between the two behaviours; it has
neither finite past nor finite future.

In a similar fashion, for multi-component fluids we can define the total
energy density and pressure as ρt ≡

∑
ρi and Pt ≡

∑
Pi, which satisfy

the continuity equation (2.9). The equation of state for such a fluid may
not admit a simple relation of the form Pt = wtρt prompting the necessity
to keep each individual pressure and density as ‘unknowns’ and provide
(by hand) relations between them. Alternatively, one can consider that
the different components do not interact with each other and hence each
component satisfies a separate continuity equation ρ̇i = −3H(ρi + Pi). In
this way the energy density of each fluid component is given as a function
of the scale factor, and subsequently the Friedmann constraint becomes a
separable differential equation for a that can always be solved.3 The latter
assumption is employed in cosmology.

To make contact with observations, it will be useful to define the Hubble
parameter H ≡ d(ln a)/dt and re-express the Friedmann constraint as the
sum of the normalized multi-component fluid densities

1 = Ω− κ

ȧ2 , (2.15)

3However, closed-form expressions can only be found for specific values of the param-
eters.
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Dark energy
Dark matter
Baryonic matter

Figure 2.2
Pie chart illustrating the dominant ingredients of the universe.

where Ω ≡
∑

Ωi = 8πGNρi/(3H2). These parameters are directly related
to observational quantities and thus better connect dynamics to predic-
tions of the model. For the ΛCDM model specifically it is assumed that
the three species of matter are radiation, dust and dark energy resulting to
Ω = Ωr+Ωm+ΩΛ. The current estimates for these parameters are reported
in the review of particle physics [34] and the latest Planck results [35]: the
universe is composed of 31.5% pressureless matter (4.93% baryonic matter
and 26.5% dark matter), 68.5% dark energy, while the densities of radiation
and curvature are negligible (see Fig. 2.2). Light curves from distant type
Ia supernovae provided distance measures and were the first solid evidence
for cosmic acceleration and a cosmological constant [15,16], while the dark
matter hypothesis is supported by the form of galaxy rotation curves, grav-
itational lensing and the dynamics of galaxy clusters (see e.g. [36, 37] and
references therein).

2.3 Objections to the standard picture

2.3.1 Isotropy and homogeneity

As was mentioned in Sec. 2.2, the distribution of galaxies as well as the CMB
radiation appear highly isotropic. More specifically, the CMB radiation
appears isotropic to one part in 105. If we assume that the thermal bath
of photons in the early universe homogenized as a result of interactions
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between them, then all photons of the universe should have overlapping
past light cones. Before we estimate the size of a light cone, it is important
to review the concept of horizons.

First, we introduce the notion of particle horizon [38]. The path of light
follows null geodesics ( ds2 = 0) which for radial motion ( dΩ = 0) yields

dχ = dt
a
≡ dτ , (2.16)

where τ is called the conformal time. The parametric relation χp.h.(t),
found by integrating (2.16), is called the comoving particle horizon and
describes the maximum distance (in co-moving radial coordinates) that
light can travel between two given times, ti and t. The physical distance is
then found by multiplying with the scale factor: dp.h. = a(t)χp.h.(t). For a
single species of matter satisfying the inequality (2.4) the comoving particle
horizon from initial time t = 0 to some final time t is equal to

χp.h.(t) = 2
1 + 3w

[ 1
a(t)H(t) −

1
a(0)H(0)

]
≡ 2

1 + 3w∆(aH)−1 . (2.17)

Therefore, the size of χp.h. depends on the magnitude of the quantity
(aH)−1, called the co-moving Hubble radius. More specifically, points in
space lying outside the Hubble radius are causally disconnected with the
point in consideration.

It is also instructive to investigate the behaviour of the Hubble radius
with time. Its time derivative is given by

d(aH)−1

dt = 1
2a(1 + 3w) , (2.18)

which increases when the strong energy condition is satisfied. For sufficient
time evolution the particle horizon can be dominated by the size of the
Hubble radius at the time of evaluation, χp.h.(t) ≈ 2

1+3w (aH)−1. The above
calculations are valid for single-component universes or during periods in
which one component is dominant. Nevertheless, they approximate fairly
well the size of causally discontinuous patches in the sky if one assumes
radiation domination before the generation of the CMB.

Applying the previous reasoning on a radiation dominated universe we
find that the co-moving particle horizon was around 10−6 of the size of the
universe at the time of last scattering. In terms of what we observe from
the Earth, different points separated by more than one degree of angular
distance would have never been in equilibrium as the result of a thermal
process, unless one assumes isotropic initial conditions for the universe.
This is the horizon problem [26, 39] (depicted in Fig. 2.3).
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Figure 2.3
Diagrammatic view of the horizon problem. The past light cone of a point in space today
contains regions that could have not be able to exchange information at the moment of

last scattering.

2.3.2 Zero spatial curvature

We continue with what is known as the flatness problem, first noted by
R. Dicke and subsequently popularized by him in collaboration with J. Pee-
bles in 1979 [40]. In a nutshell, it is an argument on the improbability of
measuring a vanishingly small curvature density (κ/ȧ2). It is important to
note that at the time it was proposed the large-scale universe was consid-
ered to be composed of radiation, matter and (possibly) curvature. This
means that measuring the energy density Ω for a universe that is succes-
sively dominated by radiation, matter and curvature, one will find at late
times that Ω ≈ Ωm → 0; a measurement with Ωm ∼ O(1) seems highly
improbable.

The argument was later emphasized by A. Guth as one of the primary
shortcomings of the standard Big Bang model [41], providing the grounds
for his new proposal. He argued that if the classical FLRW model can be
used arbitrarily close to the hot Big Bang then for a radiation dominated
universe the scale factor receives contribution from radiation mainly, and
so a ∝

√
t. Hence, Ω− 1 ∝ t which goes to zero as t → 0. The conclusion

does not change if we consider any form of matter that satisfies the strong-
energy condition 1 + 3w > 0. We see that the CDM model necessarily
implies that Ω ≈ 1 at early times so one is in principle allowed to use
this as the initial condition for Ω (or any number that is arbitrarily close
to 1). However, when extrapolating back in time, the classical equations
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Evolution of normalized energy densities (in logarithmic scale) for parameter values
ρr,0 = 150/(8πGN), ρm,0 = 30/(8πGN), Λ = 0.01, a0 = 1 for κ = −1 (left panel) and
κ = 1 (right panel). The used numbers do not match the observed values but are rather
chosen to illustrate what one would expect from ‘order one’ initial conditions prior and

close to radiation-matter equality.

are expected to hold up to some initial time t0, the point when quantum
effects cannot be ignored. Assuming a quantum-to-classical transition at
some t0 ≈ tPl, from this point onwards one can use the classical equations
of motion to calculate the evolution of the universe. Since the Friedmann
equations can not be used arbitrarily close to t = 0, Ω has no reason to be
arbitrarily close to 1.

When a cosmological constant is included the formulation of the flat-
ness argument requires a slight modification. The fate of a universe with
Λ > 0 depends on both the curvature and the magnitude of the cosmo-
logical constant. If the spatial curvature is positive then the cosmological
constant needs to exceed a certain value to avoid possible recollapsing, while
a universe with κ < 0 will expand indefinitely. Excluding the former case,
the rest types of universes will approach de Sitter at late times and hence
Ω → 1. Therefore, Ω = 1 is both the past and future attractor when the
previous assumptions are satisfied. What remains unclear is the relative
size of the curvature density compared to Ωm and ΩΛ. Using Eqs. (2.10)
we can rewrite the Friedmann constraint as(

ȧ

a

)2
= 8πGN

3

(
ρm0
a3 + ρr0

a4

)
+ Λ

3 −
κ

a2 , (2.19)

where ρm0 and ρr0 are the initial energy densities. Because the various fluid
components fall off with a different power of the scale factor it is possible to
have periods dominated by radiation, matter, curvature and cosmological
constant successively (see Fig. 2.4). Under the assumption that the initial
energy densities of radiation, matter and cosmological constant are “of
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order one”, the curvature density should succeed matter domination. The
fact that we do not observe this requires less generic initial conditions for
the fluid components.4 In this way, the flatness problem is related to the
“coincidence problem” [46] (the necessity for an explanation why Ωm ∼
ΩΛ ∼ O(1) holds today).

2.3.3 The Hubble tension

Over the last years there has been another heated debate among cosmol-
ogists regarding the value of the Hubble constant H0 (the current value
of the Hubble parameter) as measured by different methods [47]. More
specifically, late-time (or low-redshift) measurements generically contra-
dict estimates based on early-time cosmology, with a beyond 4σ discrep-
ancy. The reported value of H0 differs based on the probe: 74.03 ± 1.42
km/sec/Mpc from the SH0ES collaboration studying the Large Magellanic
cloud cepheid standards [48]; 72.5 ± 2.3 km/sec/Mpc from the H0LiCOW
collaboration based on cosmographic analysis of the doubly imaged quasar
SDSS 1206+4332 [49]. On the contrary, the Planck collaboration, using the
CMB data, predicts a Hubble constant 67.4±0.5 km/sec/Mpc [35]. Finally,
the Carnegie-Chicago Hubble Program has reported an intermediate value
69.8 ± 0.8 km/sec/Mpc [50], based on the Tip of the Red Giant Branch.
From the above it becomes clear that the universe appears to expand faster
than expected.

The arguments to alleviate the tension can be summarized in two types:
it has been claimed that some systematic errors may have been overlooked
in the analysis of different groups, partly because of the simplified assump-
tions necessary to tackle the problem (e.g. [51]), or new physics is required
to match observations to existing models (see e.g. [52]). To date, the subject
is an ongoing area of research.

4We should also note that the horizon and flatness puzzles are not mathematical
inconsistencies of the theory (i.e. classical relativity) because given these special (or fine-
tuned) initial conditions the theory works fine. Then, the formulation of the problem lies
in providing arguments on why certain initial conditions are not favoured. The answer
to this question usually includes some order one numbers but nevertheless overlooks the
absence of the probability distribution that quantifies the probability of different initial
conditions (see for instance [42–45]). This is most evident when discussing the fine tuning
of the initial value of Ω where one assumes a flat prior on some interval around 1 instead
of e.g. a sharply peaked distribution around one.
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3
The inflationary mechanism

In this chapter we provide an overview of inflation. We start
with a historical motivation of the theory and then discuss its
connection to observations.

19
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3.1 History and motivation
In the late 70s different cosmologists simultaneously and independently
predicted a different expansion history before the hot Big Bang, i.e. the
radiation dominated universe, based on results from high-energy theo-
ries: A. Starobinsky proposed a modified gravity scenario which evades
the singularity by including a Ricci square term in the Einstein-Hilbert ac-
tion [53,54]; K. Sato argued that a first-order phase transition of Grand Uni-
fied Theories would lead to a stretching of the size of CP domain walls [55];
D. Kazanas assumed a phase transition in the early universe in which en-
ergy flows from the vacuum energy to the matter altering the expansion
history and solving the horizon problem [56]; A. Guth assumed a supercool-
ing phase in the early universe that would solve the horizon, flatness and
monopole relics problems [41, 57]. All previous works predicted an expo-
nential expansion a ∝ eHt (de Sitter phase) before the standard Big-Bang
scenario starts, and this phase was coined inflation (by A. Guth). The
different expansion history leaves observational imprints on the structure
of spacetime (such as homogeneity or isotropy).

The basic idea behind inflation is a smoothing process that will erase all
significant inhomogeneities and anisotropies of the universe. By doing so,
inflation solves the horizon and flatness puzzles by providing a dynamical
mechanism that renders the otherwise fine-tuned conditions as the most
probable instead. To better understand how to solve the horizon and flat-
ness problems we will inverse engineer the model and assume another form
of matter that yields the desired expansion history. The root of the two
problems can be traced back in the behaviour of the Hubble radius. If the
universe was only radiation dominated then the particle horizon today is
too small to explain homogeneity. One possibility is to alter the universe’s
history by assuming a period that predates radiation domination and where
the energy density of the universe is dominated by another fluid component.
The particle horizon will then be given as

χp.h.(t) ≈ χr + χm = 2
1 + 3wr

(aH)−1
r −

2
1 + 3wm

(aH)−1
m , (3.1)

where the two parts refer to the radiation and the unknown form of matter
period. One way to substantially increase the particle horizon is to as-
sume that the new form of matter violates the strong energy condition and
hence its contribution in Eq. (3.1) will be positive (see Fig. 3.1). Similarly,
the Hubble radius shrinks during inflation which reverses the behaviour of
the curvature density over time. Assuming an “order one” initial value of
κ/(aH)2 then at the end of this phase its value will be significantly smaller.
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Figure 3.1
Diagrammatic view of the horizon problem with inflation. In contrast to Fig. 2.3,

inflation adds enough conformal time so that the past light-cones of different points at
the moment of last scattering become overlapping.

By tuning the duration of this phase, Ω can evolve arbitrarily close to one
which may explain its present small value.

A shrinking Hubble radius implies that the scale factor increases at an
accelerating pace

d(aH)−1

dt = d(ȧ−1)
dt = − ä

ȧ2 < 0 , (3.2)

or in terms of the Hubble parameter

Ḣ

H2 + 1 > 0 . (3.3)

Defining the quantity

ε ≡ − Ḣ

H2 , (3.4)

dubbed the slow-roll parameter (for reasons that will become clear in the
next section), the condition for accelerating expansion is ε < 1. Because
we will be mainly interested in quasi-exponential expansion it will prove
more useful to use the e-folding number, defined as N ≡ ln a, as a time
variable. Differentiating the latter with respect to time yields the relation
dN = H dt. Non-collapsing models preserve the sign of H and the e-folding
number can be used as an alternative variable.
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Finally, we should mention that the inflationary scenario was highly
promoted by the high-energy community. Various extensions of the stan-
dard model have been proposed that unify electroweak and strong interac-
tions (e.g. SU(3)×SU(2)×U(1)) called Grand Unified Theories (GUT). A
generic prediction of these theories is the existence of magnetic monopoles,
supposed to be created at very high energy scales. These relic particles are
stable, meaning they should have survived up to the present day with a den-
sity orders of magnitude greater than the rest of the matter [58]. These,
however, are not observed in nature and hence GUT are observationally
disfavoured. Inflation then provides an argument against the immediate
discard of these theories by rendering the monopoles undetectable; since
they were created before the ordinary standard model particles, their den-
sity (falling off as ∝ a−3) was dramatically lowered during the exponential
expansion. Note that the realization of inflation rests on a new particle
which violates the strong-energy condition and, therefore, inflation requires
some extension of the standard model of particle physics. This hypotheti-
cal particle, called the inflaton, is supposed to be present at high energies
and then decay to the standard model particles during reheating [59]. To
date, a successful embedding of inflation into high-energy theories remains
an open problem [60].

3.2 Simple single-field models

The simplest model of inflation includes a real scalar field minimally coupled
to gravity:

S =
∫

d4x
√
−g

(1
2M

2
plR−

1
2g

µν∂µφ∂νφ− V (φ)
)
, (3.5)

where we used the definition of the Planck mass Mpl ≡ (8πGN)−1/2 in the
natural units ~ = c = 1. Variation of the action with an FLRW ansatz for
the metric

ds2 = −dt2 + a(t)2 dx · dx , (3.6)

provides the two linearly independent Einstein’s field equations for the un-
known metric function a(t) (one evolution equation and one constraint)
and the generalized Klein-Gordon equation for the scalar field φ(t). Both
equations can be be written in compact form with the introduction of the
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Hubble parameter,

3M2
plH

2 = 1
2 φ̇

2 + V , (3.7)

M2
plḢ = −1

2 φ̇
2 , (3.8)

φ̈+ 3Hφ̇+ dV
dφ = 0 . (3.9)

The latter two equations form a non-linear system for the unknown func-
tions φ(t) and a(t) (or H(t)) which is in general unsolvable for an arbitrary
potential function V (φ).

A useful measure of deviations from de Sitter expansion is the first slow-
roll parameter (3.4), with ε = 0 for de Sitter. When ε < 1 the Hubble radius
shrinks and the universe inflates. Through the Einstein’s field equations we
can relate the slow-roll parameter to the kinetic (K) and potential energy
densities of the scalar field

ε = 3K
K + V

, (3.10)

and the condition ε < 1 translates to 2K < V . The quasi-de Sitter limit
corresponds to ε� 1, which is equivalent to K � V and hence to potential
domination. Furthermore, sustained inflation forces the derivative of ε with
respect to the number of e-folds to be small, ε′ � 1. This can be achieved
if the inflaton slowly descends its potential for a prolonged period of time.
The heuristic picture is the following: Hubble friction causes dissipation
of the excess initial kinetic energy until the inflaton reaches a “terminal”
velocity. The magnitude of this velocity depends on the strength of the
potential gradient. For certain models, soon after the beginning of inflation
the system finds itself at a state with φ̈ ≈ 0 which gives an approximate
terminal velocity [61]

φ̇SR ≈ −
1

3H
dV
dφ . (3.11)

Consistency of this solution requires the smallness of its time derivative

φ̈SR ≈
dV
dφ

(
1

3H2
d2V

dφ2 −
1
3ε
)
. (3.12)

Neglecting the kinetic energy of the inflaton the square of the Hubble pa-
rameter becomes proportional to the potential V ≈ 3M2

plH
2; using (3.11)

in the definition of ε the terms in the parenthesis become functions of the
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Figure 3.2
A potential with a sufficiently flat region that satisfies the potential slow-roll conditions

(3.14).

potential and its derivatives. This motivates us to define the potential slow-
roll parameters

εV ≡
M2

pl
2V 2

( dV
dφ

)2
, ηV ≡

M2
pl
V

d2V

dφ2 , (3.13)

and demand
εV , |ηV | � 1 , (3.14)

(see Fig. 3.2 for a toy model).
To quantify the smallness of ε′ we can define its logarithmic derivative

in terms of the e-folding number as a new parameter

η ≡ ε′

ε
. (3.15)

A prolonged de Sitter phase requires the smallness of η as well. Whenever
the potential slow-roll parameters are small they can be related to ε and η
as

ε ≈ εV , η ≈ −2ηV + 4ε . (3.16)

When the latter conditions are satisfied the system undergoes a quasi-de
Sitter expansion and one can estimate how many e-folds are required before
the system settles down at the slow-roll solution. The estimate depends on
the initial velocity or equivalently the initial value of ε; the lowest amount of



3.3 Cosmological perturbations 25

necessary e-folds corresponds to the de Sitter limit dV/ dφ→ 0, while the
maximum amount depends on the maximum value of the potential gradient
at that interval [62]. When ε0 is far from kinetic domination (ε = 3) then
one finds φ̇ ≈ φ̇SRe

−3N , which explains why the slow-roll solution has been
referred to as attractor in phase space [61,63]. Based on that, inflationary
models achieve a notion of initial conditions independence (we will illustrate
this later in Sec. 3.5 using the quadratic potential as an example). Usually,
we require around 50-60 e-folds of inflation in order to solve the horizon
and flatness problems [63].

3.3 Cosmological perturbations
The previous toy model is supposed to describe our universe on the largest
of scales where homogeneity and isotropy are observed. On smaller scales,
such as clusters of galaxies, solar systems, atoms, etc.., one can parametrize
these inhomogeneities as small fluctuations on the FLRW background and
solve the Einstein’s field equations perturbatively.1 The scalar field is writ-
ten as a perturbative expansion

ϕ = ϕ(0) + hϕ(1) + · · · , (3.17)

where h is a small parameter along with the definitions ϕ(0) ≡ φ(t) and
hϕ(1) ≡ δφ. Through the Einstein’s field equations an expansion over the
field induces a similar expansion on the metric

gµν = g(FLRW )
µν + hg(1)

µν + · · · . (3.18)

From this point one can either expand the action to second order or expand
the equations of motion. Before doing so it is important to properly identify
the physical degrees of freedom.

We will extend the FLRWmetric (κ = 0) to include first order perturba-
tions which are similarly projected along the time-like vector ∂t. Applying
the scalar-vector-tensor decomposition (see App. A.2) we are able to iden-
tify the degrees of freedom that transform as scalars, vectors and tensors
accordingly. The metric can be written as

ds2 = −(1− 2A) dt2 +Bi dt dxi + a2 [(1 + 2ψ) δij + eij ] dxi dxj , (3.19)

where A,ψ are scalars, Bi is a vector, eij is a symmetric traceless tensor
and the previous are defined on the three-dimensional subspace. Equations

1In the effective field theory of large scale structure the expansion is performed over
the wavenumber k instead (see e.g. [64]).
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of motion in Fourier space decouple at linear order in this decomposition
and one can study each mode separately.

However, as explained in App. A.1, the Einstein’s field equations can
not be solved unless the unphysical degrees of freedom are removed (in
cosmology this fact is known as the gauge issue of cosmological perturbation
theory). Extracting the physical content can be achieved by fixing the gauge
(similar to what is done in electromagnetism or the study of gravitational
waves) or by constructing gauge-invariant quantities [65, 66]. Under the
infinitesimal diffeomorphism

xµ → yµ = xµ + hξµ , (3.20)

any tensorial quantity C transform as [67]2

C → C̃ = C − hLξC , (3.22)

where Lξ is the Lie derivative along the vector ξ that generates the diffeo-
morphism. Note that ξ should preserve the slicing of the spacetime and
the background space should not be affected by the diffeomorphism [68].
Decomposing ξµ in its scalar-vector part one can calculate how the differ-
ent modes transform under the previous action. For example, the lapse
function (the coefficient of dt2 in (3.19)) transforms to −1− 2A+ ξ̇0 from
which we can deduce the transformation 2A→ 2A− ξ̇0. The tensor mode
of the three-metric does not receive contributions from the vector ξµ (since
it contains only scalar and vector modes) and therefore does not transform
under these diffeomorphisms. Forming linear combinations of the metric
functions and their derivatives one can construct gauge-invariant quantities.

When only scalar fields are considered, vector perturbations are not ex-
cited during inflation because they satisfy first order (constraint) equations
and thus are non-dynamical. On the contrary, scalar and tensor modes
satisfy second order equations, while perturbations of the inflaton field are
related to scalar metric perturbations via the Einstein’s field equations.
An important scalar gauge-invariant quantity is the co-moving curvature
perturbation defined as

R ≡ ψ + H

φ̇
δφ . (3.23)

2The variation of C satisfies δC = −LξC. This can be easily seen e.g. when C is a
scalar and the Lie derivative becomes the directional derivative. Under the diffeomor-
phism (3.20) the transformation law is

LξC ≡ lim
h→0

1
h

(
C(yk)− C̃(yk)

)
= lim
h→0

1
h

(
C(xk)− C̃(xk)

)
= ξkC,k , (3.21)

and to first order we obtain C̃(xk) = C(xk)− hLξC.
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Its evolution can be determined from the scalar part of the quadratic action
[69]

SR = 1
2

∫
d4x

a3φ̇2

H2

(
Ṙ2 − 1

a2 (∇R)2
)
. (3.24)

Alternatively, one can use the gauge-invariant field perturbation

Q ≡ δφ+ φ̇

H
ψ , (3.25)

which is related to the curvature perturbation asQ = Rφ̇/H, and its second
order action

SQ = 1
2

∫
dtd3xa3

[
Q̇2 − 1

a2 (∇Q)2 − V,φφQ2 − 1
a3

d
dt

(
a3φ̇2

H

)
Q2
]
. (3.26)

Although both descriptions are equivalent, the second quantity is easier to
generalize to the case with more fields (see Ch. 4). Similarly, the action for
the tensor modes is

St =
M2

pl
8

∫
d4xa3

(
γ̇2
ij −

1
a2 (∇γij)2

)
, (3.27)

and we observe that it is analogous to the action of a massless field in a de
Sitter background.

To study solutions of the equations of motion it is more convenient to
switch to conformal time dt = a dτ and rescale fields appropriately.3 In
this coordinate system the actions (3.24), (3.26) and (3.27) resemble the
action of a free field with a time-dependent mass term. The solution of the
quadratic equation of motion

d2vk
dτ2 + ωk(τ)2vk = 0 , (3.28)

is found in Fourier space after the transformation

v(τ, ~x) =
∫

d3kvk(τ)eik·x . (3.29)

In de Sitter space the frequency term is ω2
k = k2 − 2/τ2 and the solution

can be found analytically

vk(τ) = cke
−ikτ

(
1− i

kτ

)
+ dke

ikτ
(

1 + i

kτ

)
. (3.30)

3The proportionality constant of the rescaled fields differs for scalars and tensors.
Tensor modes are rescaled as hij → vij = ahij , while scalars as R→ vR = aφ̇/HR.
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From these two classical plane-wave solutions we choose the positive energy
modes, assuming that for k � (aH) ≈ −τ−1 modes are in the Minkowski
vacuum (Bunch-Davies vacuum [70]) and so dk = 0. For later convenience,
we will fix the other normalization constant using the Wronskian condition

v∗k
dvk
dτ −

dv∗k
dτ vk = −i , (3.31)

which yields ck = 1/
√

2k. This ensures that creation and annihilation
operators satisfy the canonical commutation relations

[ak, a†k′ ] = δ(k + k′) . (3.32)

The mode functions of a free field in de Sitter background with Bunch-
Davies initial conditions evolve as

vk(τ) = e−ikτ√
2k

(
1− i

kτ

)
. (3.33)

Note that these variables are not observables because they diverge for τ →
0. In order to properly account for the asymptotic behaviour of physical
quantities we need to consider the original fields uk = vk/a and calculate
their norm

|uk|2 = H2

2k3

[
1 + (kτ)2

]
, (3.34)

which is well defined for both τ → −∞ and τ → 0. Having found the time-
dependence of the mode functions, we can canonically quantize them and
make the connection to observations. This is the topic of the next section.

3.4 Power spectra
Promoting fields to operators, u → û, where u = R, Q, · · · , we define the
power spectrum Pu(τ,k) from the two-point correlation function as

〈û(τ,k)†û(τ,k′)〉 = (2π)3Pu(τ,k)δ(k + k′) , (3.35)

and the normalized power spectrum

Pu(τ,k)2 ≡ k3

2π2Pu(τ,k) . (3.36)

In de Sitter space the power spectrum of a massless scalar field is found to
be

P2
δφ =

(
H

2π

)2
(1 + (kτ)2) . (3.37)
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The scale dependence of the power spectrum is determined from its loga-
rithmic derivatives with respect to ln k. It can be shown that for modes
outside the horizon, |kτ | � 1, the power spectra of curvature and tensor
perturbation freeze as |τend| < 1 [71]. More precisely, for a given mode k∗
there is insignificant change after horizon crossing and to a good approxi-
mation the power spectrum at the end of inflation will be given by its value
close to horizon crossing k∗τ∗ = −1. Then, Taylor expanding around that
wavenumber ln k∗ yields

lnP2
u = lnP2

u

∣∣
k=k∗ + ∂P2

u

∂ ln k

∣∣∣
k=k∗

∆ ln k + · · · . (3.38)

The first-order derivative is called the spectral index

nu − 1 ≡ ∂P2
u

∂ ln k , (3.39)

and measures deviation from scale invariance. The CMB data [22, 23, 72]
are consistent with an almost scale invariant power spectrum and therefore
we will keep only the first two terms in the expansion on superhorizon scales

P2
u ≈ P2

u

∣∣
k=k∗ ln

(
k

k∗

)nu−1
. (3.40)

For slow-roll single-field inflation (ε, |η| � 1) the power spectra of scalar and
tensor modes are given by [73] (see also the lectures notes of A. Riotto [69]
and the TASI lectures of D. Baumann [74] for more details)

P2
R = 2

M2
plε∗

(
H∗
2π

)2
, P2

t = 8
M2

pl

(
H∗
2π

)2
, (3.41)

where t stands for tensor and every quantity is defined when a given scale
crosses the Hubble horizon.4 From these two expressions we arrive at the
two observable quantities used in inflationary model buildings, namely the
spectral index

ns − 1 ≡ ∂P2
s

∂ ln k ≈ −2ε∗ − η∗ ≈ −6εV ∗ + 2ηV ∗ , (3.42)

4Comparing (3.41) with (3.37) may create some confusion on how to obtain the de
Sitter limit ε→ 0 for the curvature perturbation P2

R. Even though the power spectrum
can be defined for different gauge-invariant quantities, not all of them are equally ap-
propriate to describe a given problem. For instance, to properly take the de Sitter limit
we should have examined limε→0 P2

Q, instead of R, as the former is properly defined for
ε → 0. The reason why we use R in inflationary models is because it is conserved on
superhorizon scales and can thus be related with physical observables, whereas Q is not.
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and the tensor-to-scalar ratio

r ≡ P
2
t

P2
s

≈ 16ε∗ . (3.43)

These fluctuations, once crossed the horizon, become indistinguishable from
classical random variables and seed structure formation. Therefore, infla-
tion provides a mechanism for generation of small inhomogeneities from an
otherwise homogeneous and isotropic background by stretching the initial
quantum fluctuations to large scales. This is considered to be an example
of a quantum-to-classical transition in nature (see for instance [75–77]).

Finally, the bispectrum is defined from

〈R(k1)R(k2)R(k3)〉 = (2π)3B(k1,k2,k3)δ(k1 + k2 + k3) , (3.44)

where the function B is usually given by the shape function S, that provides
information about the various configurations of the three momenta (which
must add up to zero), and the non-linear parameter fNL

B(k1,k2,k3) = 18
5 fNLS(k1,k2,k3) . (3.45)

It is worth mentioning that the squeezed limit of the bispectrum, namely
the limit where one momentum becomes much smaller than the other two,
is determined by the spectral index [78]

lim
k1→0

〈R(k1)R(k2)R(k3)〉 = −(ns − 1)Pv(k2)Pv(k3)(2π)3δ(k1 + k2 + k3) .
(3.46)

This result relies only on the assumption of a single field that drives inflation
and shows that the squeezed bispectrum will be suppressed by ns − 1 for
any single-field model [79,80]. A future detection of large non-Gaussianity
can rule out this class of inflationary models.

The best current estimated values for the previous set of observables
were reported in the latest Planck 2018 results [72]: ns = 0.963, r < 0.1
and f local

NL = −0.9±5.1 (see Fig. 3.3 for constraints of various models based
on the Planck collaboration analysis). These bounds may get tighter with
future observations such as LSS surveys [81] and 21 cm tomography [82].

3.5 Case example: the quadratic potential
We close this chapter by examining the simplest inflationary model consist-
ing of a quadratic self-interacting field V = 1/2m2φ2. The Klein-Gordon
equation is

φ̈+ 3Hφ̇+m2φ = 0 , (3.47)
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Constraints on the tensor-to-scalar ratio and spectral index and the viability of a variety

of single-field models (from the Planck collaboration).

admitting a slow-roll solution

φ̇ ≈ −sgn(φ)
√

2
3m, (3.48)

the validity of which is depicted at Fig. 3.4. The potential slow-roll param-
eters are

εV = ηV = 2
φ2 . (3.49)

It is instructive to express these quantities in terms of the number of e-folds
in the spirit of [83,84]; for this model

N = −1
4
(
φ2 − φ2

end

)
, (3.50)

where the endpoint can be estimated by

εV = 1⇒ φend ≈
√

2 , (3.51)

and so
εV = ηV = 1

1− 2N . (3.52)

The spectral index (3.42) reads

ns − 1 = −4εV ∗ ≈
2
N∗

, (3.53)
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The numerical solution of the parametric relation φ̇(φ) for the quadratic potential.

Dotted lines represent solutions for different initial conditions and the red lines are the
slow-roll expression (3.48). The system always approaches the two solid black lines

before settling at its minimum.

with N∗ = −55, and the tensor-to-scalar ratio is

rt = − 8
N∗

. (3.54)

We should note that this simple model has already been excluded as obser-
vationally viable from the joint analysis of BICEP2/Keck Array and Planck
data [85].



4
Multi-field models

We motivate multi-field inflation and explore in detail the dy-
namics of two-field models in the adiabatic/entropic decomposi-
tion and the superhorizon behaviour of perturbations. Following
the literature, we derive observables for models admitting the
gradient-flow approximation.

33
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4.1 Motivation for multiple fields

Single-field models have been proven very useful in providing a dynami-
cal mechanism to explain structure formation and correlated features in
the power spectrum of the CMB. Despite its phenomenological successes,
embedding inflation into known high-energy theories remains challenging
(see e.g. [60]). In the effective field theory (EFT) approach of inflation,
sensitivity of the inflaton to higher-order corrections 1 and, in particular,
to dimension-six operators of the form

O6
M2

pl
= O4
M2

pl
φ2 , (4.2)

can lead to the so-called η-problem [86]. These higher order terms may
acquire vacuum expectation values comparable to the potential energy,
〈O4〉 ∼ V , and overall increase the energy scale at which inflation is allowed
because larger field displacements are required in order for the slow-roll pa-
rameter to remain small; alternatively this leads to violation of the slow-roll
condition for η at a given energy scale. This increase, especially for models
where inflation takes place at super-planckian field displacements, leads to
further sensitivity to higher-order terms and the theory may lose perturba-
tive control. One way to redeem the problem is to assume a shift-symmetry
that will protect the inflaton from quantum corrections.

Another challenge is the presence of extra fields from models that are
preferred from string theory and its lower-energy limit supergravity. These
theories generally predict more than one, and typically many, light fields
during inflation, where by light we refer to them being dynamical. The
usual way to reduce the multi-field problem to single-field dynamics is to
consider steep gradients that would stabilize the excess fields at their respec-
tive minima. This, however, does not always work for the following reason:
in multi-field models considering a bottom-up approach would yield generic

1In the EFT approach one writes down an expansion over all operators (divided by
a mass scale) and consistent with the symmetries of the problem. The cut-off scale is
assumed to be a few orders of magnitude lower than the Planck mass and one can assume
derivative or non-derivative operators, for instance:∑ cnφ

n

Λn−4 ,
∑ dn(∂µφ∂µφ)n

Λ4n−4 . (4.1)

In what follows, we will focus on non-derivative operators with n = 6. Note that this
operator is important for inflationary models with both subplanckian (small-field) or
superplanckian (large-field) displacements. In contrast, operators of dimension greater
than six are important only for the latter models [74].
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derivative couplings between the fields in the Lagrangian [87] which mani-
fest themselves as generalized centrifugal forces in the equations of motion.
Thus, even if the gradients are steep enough, centrifugal forces can drive
fields away from their minima resulting into pure multi-field dynamics (we
will explore this in detail in Ch. 7). This has profound consequences on
observables and can leave imprints on the CMB (see e.g. [88–90]).

Multi-field models display rich dynamics and phenomenology, and have
been extensively studied in the last 20 years. They introduce several new
features: the (possible) generation of isocurvature (or entropic) perturba-
tions and subsequently the superhorizon evolution of the curvature per-
turbation; the possibility for the power spectrum’s enhancement that can
lead to large non-Gaussianities [91–95] and primordial black holes forma-
tion [96, 97]; and the evasion of swampland conjectures [98–103], to list a
few. Before exploring these endless possibilities one has to understand the
underlying dynamics and the unique features of multi-field inflation. To
this end, the rest of this chapter serves as an introduction on the develop-
ments of multi-field theory, focusing on background dynamics for generic
models and the derivation of observables for certain models following the
gradient-flow approximation.

4.2 The orthonormal basis
For N fields with minimal derivative couplings the general form of the
scalar-field action is

S =
∫

d4x
√
−g

(
−1

2Gij(φ
k)∂µφi∂µφj − V (φk)

)
, (4.3)

where the couplings Gij have been introduced to make the kinetic term
manifestly invariant under reparameterizations of the fields φi → φ̃i. In
this way, Gij can be interpreted as a metric on the field space. The Klein-
Gordon equations become

Dtφ̇
i + 3Hφ̇i + V ,i = 0, (4.4)

where Dt is the covariant total derivative operator with respect to the
parameter t and associated with the field metric G

DtA
i ≡ Ȧi + ΓijkAjφ̇k . (4.5)

Likewise, the Hamiltonian constraint is

3H2 = 1
2Gijφ̇

iφ̇j + V . (4.6)
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In terms of the e-folding number, equations of motion read

DNv
i + (3− ε)

(
vi + (lnV ),i

)
= 0 , (4.7)

where vi ≡ (φi)′ and the slow-roll parameter takes the simple form

ε = 1
2Gijv

ivj . (4.8)

Contracting Eq. (4.7) with vi yields the evolution equation for the slow-roll
parameter ε

ε′ + (3− ε)
(
2ε+ (lnV ),ivi

)
= 0 , (4.9)

from which we observe that the logarithmic gradient terms are the relevant
quantities that determine the evolution of ε.

Working in the field space it is often useful to switch from the coordinate
basis {φi} (with basis vectors ei = ∂i) to a local orthonormal basis. In
general, basis vectors are not orthogonal to each other

G(ei, ej) = Gij 6= 0 , for i 6= j . (4.10)

With a suitable redefinition of the basis vectors, e.g. êi = Eji ej , the coeffi-
cients Eji can be chosen such that

G(êi, êj) = δij . (4.11)

To avoid confusion between indices referring to different bases we will use
lower case letters for components in the coordinate basis and capital letters
for the orthonormal basis. Hence, the orthonormal basis vectors will be
denoted as

êA = EjAej , and ei = EAi êA , (4.12)

with EAi is the inverse matrix defined from EjAE
A
i = δji . Eq. (4.11) implies

that the coefficients EiA satisfy

GijE
i
AE

j
B = δAB . (4.13)

Inversion of the latter yields

Gij = δABE
A
i E

B
j , (4.14)

known as the orthogonal decomposition of the metric.
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A particularly useful orthonormal basis is the Frenet system.2 Working
in 2D for simplicity, the unit tangent vector and the normal (or curvature)
vector provide an orthonormal basis. The unit tangent vector is

ti ≡ φ̇i

|φ̇i|
= φ̇i√

Gijφ̇iφ̇j
= dφi

dσ , (4.15)

where in the last we defined the length of the curve (σ) in the field space
from σ̇ ≡

√
Gijφ̇iφ̇j . Since the previous vector has unit length, its derivative

with respect to some parameter (e.g. σ) should vanish

d
dσ t

iti = 2tiDσt
i = 0⇒ Dσt

i ⊥ ti . (4.16)

This relation provides a way to define the orthogonal (to the unit) vector.
The normal vector will be proportional to the covariant total derivative of
the tangent vector ni ∝ Dσt

i. Dividing with its norm we define the normal
vector as

ni ≡ Dσt
i

|Dσti|
. (4.17)

For these two vectors the E coefficients are found to be

E1
i = ti , E2

i = ni , (4.18)

and Eq. (4.14) yields the following decomposition of the metric

Gij = titj + ninj , (4.19)

valid for two fields.
When the cosmic time is considered the proportionality constant in the

covariant derivative of the tangent vector is called the turn rate

Dtt
i = ωni . (4.20)

This proportionality constant (called curvature of the line in differential
geometry [104]) measures deviation from geodesic motion. Indeed, when it
vanishes we have

Dtφ̇
i = σ̈

σ̇
φ̇i , (4.21)

2In 3D this is known as the tnb system, where the initials stand for tangent, normal
and binormal accordingly (see Fig. 4.1).
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Figure 4.1
Illustration of the local orthonormal basis for a curve in three dimensions.

which is known as the pre-geodesic equation, i.e. geodesic equation up to
a non-affine reparameterization. Switching to the σ parameterization we
obtain

σ̇Dt

(
dφi

dσ

)
+ σ̈

dφi

dσ = σ̈

σ̇
φ̇i ⇒ Dσ

(
dφi

dσ

)
= 0 , (4.22)

that is the geodesic equation.
This base can be utilized to extract some useful information about the

dynamics of the model. Projecting the equations of motion along the tan-
gent direction gives the evolution equation of σ3

tiDtφ̇
i + 3Htiφ̇i + V ,iti ⇒ σ̈ + 3Hσ̇ + dV

dσ = 0 . (4.25)

3With boldface subscript we denote the derivative of a scalar function in the direction
of a vector a

V,a ≡
∂V

∂a
≡ lim
h→0

V (φ0 + ha)− V (φ0)
h

= dV (a) = aiV,i . (4.23)

When ai = dφi/ dσ then the directional derivative becomes a total derivative with respect
to the parameter σ

V,a = dV
dσ ≡ dσV . (4.24)
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In a loose sense, σ can be thought of as a canonically normalized field
subject to the gradient V,t. Similarly, projecting the gradient vector along
ni gives an expression proportional to the turn rate

ω = −n
iV,i
σ̇

. (4.26)

Using Eq. (4.25) we can express the normal vector in terms of dσV

Dtt
i = Dtφ̇

i

σ̇
− σ̈

σ̇
ti = −V

,i − tiV,t
σ̇

, (4.27)

and further obtain an expression for the turn rate

ω2 =
V ,iV,i − V 2

,t

σ̇2 . (4.28)

Alternatively, ω can be expressed in terms of ε and η using Eq. (6.3) as

ω2 = H2(3− ε)2
[
εV
ε
−
(

η

2(3− ε) + 1
)2
]
. (4.29)

When the slow-roll conditions are satisfied we find two limiting cases: in
the slow-turn limit (i.e. η, (ω/H) � 1) the potential and Hubble slow-roll
parameters coincide ε ≈ εV , whereas in the large turn-rate limit (η � 1
and ω/H � 1) the slow-roll parameter satisfies ε� εV . In the latter case,
Eq. (4.29) reduces to the expression first given in [105]. Thus, in multi-field
inflation with ε′ � 1 we have ε ≤ εV .

All we did in this section was to express the equations of motion in
the local orthonormal basis. The advantage of this basis will become clear
when studying slow-roll inflation for multiple fields; this is the topic of the
next section.

4.3 Multi-field slow-roll conditions

At the background level, the single-field slow-roll conditions (3.13) classify
potentials according to their ability to sustain slow-roll behaviour. The
classification of various models with standard kinetic terms is based com-
pletely on two properties of the potential, namely the relative magnitudes
of V,φ and V,φφ with V .

For multiple fields the situation is more complicated because one has to
take into account geometric contributions originating from the field metric.
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A slow-roll approximation becomes more obscure because even if second-
order time derivatives are neglected, one is still left with an algebraic system
for the velocities which in general is second order (through the Christoffel
terms) and not covariant. Therefore, it is not entirely clear which time-
derivative terms should be omitted.

As a first step, we will consider the most trivial requirement for slow-
roll inflation, ε′ � 1, since otherwise ε will grow fast enough and inflation
will not last for a sufficient number of e-folds. Eq. (4.7) implies that the
condition

ε′ � 1 , (4.30)

is equivalent to

2ε ≈ −pivi = −V,iφ̇
i

V H
⇒
√

2ε ≈ −V,t
V
. (4.31)

Comparing the latter with Eq. (4.25) implies that the adiabatic field follows
its potential gradient:

ε ≈ 1
2

(
V,t
V

)2
≡ εad . (4.32)

In addition, the derivative with respect to the e-folding number of Eq. (4.32)
should be small as well

ε′ =V,t
V

(
V;ijt

ivj

V
+ V,iDN t

i

V
− V,t

V

V,iv
i

V

)

=
√

2εV,t
V

(
V;ijt

itj

V
+ ωV,in

i

V H
√

2ε
−
(
V,t
V

)2
)
,

(4.33)

or
1
2η ≈ −

V;ijt
itj − ω2

V
+ 2ε . (4.34)

This motivates us to define a slow-roll parameter in the adiabatic direction
as the second order directional derivative in the direction of the tangent
vector 4 [106,107]

ησσ ≡
1
V

d2V

dσ2 = V;tt
V

= V;ijt
itj − ω2

V
. (4.36)

4Note that the second order directional derivative is not in general equal to the pro-
jection of the Hessian along the vectors

∂2V

∂t2
6= V;ijt

itj . (4.35)

The additional contribution exists whenever the tangent vector varies in space which is
the case for a curved field space.
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The slow-roll conditions ε, |η| � 1 become equivalent to εad, |ησσ| � 1,
which, however, are not very useful in this form as they require knowledge
of the background solutions φ̇i. On the contrary, for a given model it is
desirable to derive conditions on the derivatives of the potential, similar to
the slow-roll conditions (3.14). We will devote the next section as well as
Ch. 7 on methods to derive solutions in terms of the covariant derivatives
of the potential and the metric.

4.4 The gradient flow approximation

The simplest way to satisfy the condition (4.30) is the case of vanishingly
small components of the accelerating vector DNv

i � 1. This defines the
potential gradient flow

vi ≈ −V
,i

V
, (4.37)

because motion is (almost) aligned with the flow of the potential gradient
resulting to negligible turn rate. Substituting this into the slow-roll param-
eter ησσ gives two conditions that restrict the norm of the gradient vector
and the projection of the Hessian V j

;i along the gradient vector [108,109]

GijV,iV,j
2V 2 = εV ≈ ε� 1 ,

∣∣∣∣∣V;ijV
,iV ,j

V V ,kV,k

∣∣∣∣∣� 1 . (4.38)

Both expressions reduce to their single-field counterparts for N = 1. For
gradient flow we can calculate the turn rate to first order in the slow-roll
parameters. First, we will cast Eq. (4.29) into a more convenient form:

Ω2 = 1
2ε DNv

iDNvi −
η2

4 , (4.39)

which gives us the expression for the turn rate

Ω2 ≈
(
Gmn

V;im
V

V;jn
V
− V ,mV ,n

V ,kV,k

V;mn
V

V;ij
V

)
V ,iV ,j

V ,kV,k
. (4.40)

Using the relation ω = −niVi/σ̇, which we rewrite as Ω = −(3 − ε)nipi,
we see that substituting the gradient flow solution pi ≈ −vi gives Ω ≈
0. To get a better estimate we parametrize the error of the gradient-flow
approximation as

Ei = vi + pi , (4.41)
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which obeys the differential equation

DNEi = −(3− ε)Ei + DNp
i . (4.42)

The error is supposed to satisfy |Ei| � |vi|, |pi| and similarly |DNEi| �
|DNv

i|, |DNp
i|. Since DNp

i is assumed to be small, it is reasonable to
expect that the differential equation (4.42) admits a slow-roll solution for
Ei and we get an estimate for the magnitude of the error

Ei ≈ DNp
i

(3− ε) . (4.43)

Using the latter we can estimate the difference of ε to εV as

ε ≈ εV − piEi ⇒ ε− εV ≈ −pi
DNp

i

(3− ε) ≈ −
εη

(3− ε) , (4.44)

and substituting back in Eq. (4.29) we observe that the term linear in η
vanishes. Therefore, the turn rate in Eq. (4.39) is Ω2 ∼ O

(
εη, η2). We

will examine this type of approximation in detail later in Sec. 4.8. Having
thoroughly examined the background motion we turn our attention to linear
perturbations.

4.5 Adiabatic and entropic perturbations

Similar to the one-field case (3.25), we define gauge-invariant perturbations

Qi ≡ δφi + ψ

H
φ̇i , (4.45)

which obey the following equations [110]

D2
tQ

i + 3H DtQ
i +

(
k2

a2 δ
i
j +M i

j

)
Qj = 0 . (4.46)

In the latter expression M , often called ‘mass matrix’, is given by

M i
j = GikV;kj −Rikmjφ̇kφ̇m −

1
a3 Dt

(
a3φ̇iφ̇j
H

)
= 0 . (4.47)

Eq. (4.46) can be obtained from the second order part of the scalar-field
action

S2 = 1
2

∫
dtd3xa3

(
DtQ

iDtQi −
1
a2∇Qi∇Q

i −MijQ
iQj

)
. (4.48)
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Following the covariant formalism of Ref. [111], in the case of N = 2 fields
the metric can be decomposed into the direct sum of two orthogonal spaces
G = V1

⊕
V2. In this decomposition, field-space vectors can be expressed

as
Qi = Qσt

i +Qsn
i , (4.49)

using the standard definitions for the two fields 5

Qσ ≡ Qiti , Qs ≡ Qini . (4.50)

The orthonormal basis defined in the previous section has significant ad-
vantages in the calculation of observables. Perturbations along the motion
correspond to adiabatic perturbations, whereas those along the orthogonal
directions correspond to isocurvature (entropic) perturbations [112, 113].
After some algebra and the definition of the effective mass of isocurvature
perturbations on subhorizon scales 6

m2
s ≡ V;ijn

inj + εRH2 − ω2 , (4.51)

the quadratic part of the action in the adiabatic/entropic decomposition
reads

S2 = 1
2

∫
dtd3xa3

[
Q̇2
s −

1
a2 (∇Qs)2 −m2

sQ
2
s + 4ω

(
σ̈

σ̇
+ σ̇2

2H

)
QsQσ + Q̇2

σ

− 1
a2 (∇Qσ)2 −

(
(3− ε)H2(ησσ + 2ε) + 2σ̇Vσ

H

)
Q2
σ − 4Q̇σωQs

]
. (4.52)

The equations of motion for the two gauge-invariant perturbations are

Q̈σ + 3HQ̇σ −
1
a2∇

2Qσ +
(

(3− ε)H2(ησσ + 2ε) + 2σ̇Vσ
H

)
Qσ =

2 dt(ωQs)− 2ω
(
V,σ
σ̇
− σ̇2

2H

)
Qs ,

(4.53)

Q̈s + 3HQ̇s −
1
a2∇

2Qs +m2
sQs = −2ωQ̇σ + 2ω

(
σ̈

σ̇
+ σ̇2

2H

)
Qσ , (4.54)

where all expressions are exact.
5Recall that the components of Q in the orthonormal basis are raised and lowered

using the Euclidean metric and so QA = QA.
6This term is called a mass because for geodesic motion (ω = 0) Qs decouples from

Qσ and its sign determines the growth or decay of isocurvature perturbations.
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Similar to the one-field case, we define the curvature and entropic per-
turbations as

R ≡ H

σ̇
Qσ , S ≡ H

σ̇
Qs . (4.55)

The derivative of the curvature perturbation can be expressed as

R′ = 1
ε

(
k

aH

)2
Ψ + 2ΩS . (4.56)

The presence of isocurvature perturbations is responsible for the evolution
of the curvature perturbation on superhorizon scales. Using the previous
relation we can cast Eq. (4.54) into the more convenient form

Q̈s + 3HQ̇s +
(
k

a

)2
Qs +

(
m2

s + 4ω2
)
Qs = 4M2

pl
ω

σ̇

(
k

a

)2
Ψ . (4.57)

At large scales the equation of motion becomes

Q̈s + 3HQ̇s + µ2
sQs ≈ 0 , (4.58)

where we defined the effective mass of isocurvature perturbations on super-
horizon scales

µ2
s ≡ m2

s + 4ω2 , (4.59)

valid for two fields.
In order for the curvature perturbation to freeze at some point on super-

horizon scales, orthogonal perturbations must decay and, hence, in general
we demand this effective mass to be positive. Note that Eq. (4.58) is anal-
ogous to the background equation of motion for a quadratic field with a
time-dependent mass. Therefore, if µ2

s > 0 then Qs → 0 and it is reasonable
to expect that the second derivatives will be subdominant.

Similarly, the evolution equation of the entropic perturbation S is found
to be

S ′′ + (3− ε+ η)S ′ +
(

3
2η + µ2

s
H2 −

3
2ηε+ 1

2
ε′′

ε
− 1

4η
2
)
S = 0 . (4.60)

When the slow-roll conditions hold, i.e. ε, |η| � 1, and the term that mul-
tiplies S is positive, then to lowest order S obeys the following slow-roll
equation

S ′ ≈ −
(

1
2η + µ2

s
3H2

)
S ≈ −

(
2ε− ησσ + µ2

s

3H2

)
S , (4.61)
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given that the term in parenthesis, denoted by β, is positive. Integrating
Eq. (4.61) we obtain

S(N) = S∗e
∫ N
N∗

dN ′β
, (4.62)

and the curvature perturbation on superhorizon scales becomes

R(N) ≈ R∗ + S∗
∫ N

N∗
dN ′2Ωe

∫ N′
N∗

dN ′′β
, (4.63)

where N∗ is the reference number of e-folds. Note that at superhorizon
scales there is no transfer from R to S. The N -dependent terms of the
above two equations are known as the transfer functions [114,115]

TSS ≡ e
∫ N
N∗

dN ′β
, TRS ≡

∫ N

N∗
dN ′2ΩTSS , (4.64)

because they evolve the perturbations from a reference time (N∗) to the
end of inflation (N = 0)

S(N) = TSSS∗ , R(N) ≈ R∗ + TRSS∗ . (4.65)

The power spectra are calculated from the correlation functions of these
variables

P2
R ∝ 〈RR〉 = 〈R∗R∗〉+ T 2

RS〈S∗S∗〉+ 2TRS〈R∗S∗〉 , (4.66)
P2
S ∝ 〈SS〉 = T 2

SS〈S∗S∗〉 , (4.67)
C2
RS ∝ 〈RS〉 = TSS〈R∗S∗〉+ TRSTSS〈S∗S∗〉 , (4.68)

where we omitted the delta functions to suppress notation.
The superhorizon evolution calculated above will hold for all models

with ε, |η| � 1 and independently of the field-space geometry. To proceed
we need an expression for the amplitude of perturbations at the reference
time. It is useful to rewrite the action in terms of conformal time dt = adτ

S2 =1
2

∫
dτ d3x

[ (
a

dQσ
dτ

)2
− (a∇Qσ)2 − (a∇Qs)2 −m2

s

(
a2Qs

)2

−
(

(3− ε)H2(ησσ + 2ε) + 2σ̇Vσ
H

)(
a2Qσ

)2
+
(
a

dQs
dτ

)2

− 4a2 dQσ
dτ ωaQs + 4ω

(
σ̈

σ̇
+ σ̇2

2H

)
a4QsQσ

]
.

(4.69)
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Then, we define the Mukhanov-Sasaki variables uI ≡ aQI and using the
following definitions

1
a

d2a

dτ2 = 2a2H2 − a2 1
2 σ̇

2 , (4.70a)

1
z

dz
dτ = a

σ̈

σ̇
+ a

σ̇2

2H + aH , (4.70b)

1
z

d2z

dτ2 = −a2
(
m2

s + (3− ε)σ̇2 + 2σ̇Vσ
H

)
+ 2a2H2 − a2 1

2 σ̇
2 , (4.70c)

the action takes the simpler form

S2 =1
2

∫
dτ d3x

[ ( duσ
dτ

)2
− (∇uσ)2 + 1

z

d2z

dτ2u
2
σ +

( dus
dτ

)2
− (∇us)2

+
[

1
a

d2a

dτ2 − a
2m2

s

]
u2
s − 4a duσ

dτ ωus + 4ω1
z

dz
dτ ausuσ

]
. (4.71)

The equations of motion are

u′′σ −∇2uσ −
1
z

d2z

dτ2uσ − 2(aωus)′ − 2ω1
z

dz
dτ aus = 0 , (4.72)

u′′s −∇2us −
[

1
a

d2a

dτ2 − a
2m2

s

]
uσ + 2aωu′σ − 2ω1

z

dz
dτ auσ = 0 , (4.73)

and describe a system of coupled oscillators with friction. It should be
noted that solving the previous equations is a highly non-trivial task. In
the following section we will show how to derive observables in the simplest
scenario of gradient flow.

4.6 Power spectra for trivial field geometry
For models with standard kinetic terms covariant time derivatives become
ordinary derivatives and the perturbations’ equations simplify to

Q̈i + 3HQ̇i +
[
k2

a2 δ
i
j + δijV,kj −

1
a3 Dt

(
a3φ̇iφ̇j
H

)]
Qj = 0 . (4.74)

This has an important implication: perturbations are coupled only via
AijQ

j terms and not through time derivatives of the fields. If we denote the
term in the parenthesis as Aij , the equations in matrix form can be written
as

Q̈+ 3HQ̇+A ·Q = 0 , (4.75)
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where Q and A are 2× 1 and 2× 2 matrices respectively. Deep inside the
horizon, the k-dependent part of A dominates and equations of motion de-
scribe two uncoupled oscillators; perturbations Qi are in the Bunch-Davies
vacuum. However, perturbations are coupled at horizon crossing due to the
off-diagonal components of A. To find an expression for the amplitude of
these perturbations close to k∗ ≈ a∗H∗ we will consider the k-dependent
part constant, and then perform an orthogonal rotation of Q that diago-
nalizes A [116]. The two equations can be decoupled:

Ü + 3HU̇ +D ·U = 0 , (4.76)

where D is a diagonal matrix and U = LQ. If the slow-roll parameters are
slowly varying then we can treat the elements of the matrix D as constant
and find solutions in terms of the Hankel’s functions.

With Qi known, R and S can be calculated using the linear relations
between them (Eqs. (4.62) and (4.63)), which amounts to an extra rota-
tion in field space. For slow-turn models a close look at Eq. (4.72) shows
that the two perturbations are also (almost) uncorrelated at horizon cross-
ing. Therefore, the lowest order part will be given by the usual single-field
amplitude

|R∗| ∼ |S∗| ∼
√

2
ε

H∗
2π , (4.77)

while the cross-correlations are negligible. The power spectra (at the end
of inflation) are given by

P2
R = H2

∗
2π2ε∗

(
1 + T 2

RS

)
, P2

t = 8
M2

pl

(
H∗
2π

)2
, (4.78)

from which we can calculate the spectral index and the tensor-to-scalar
ratio

ns = ns(N∗) + ∂TRS
∂N∗

2TRS
1 + T 2

RS
, r = 16ε∗

1 + T 2
RS

. (4.79)

Note that for most models the transfer functions have to be computed
numerically.

On the contrary, non-Gaussian signatures are much harder to compute
analytically and the computation becomes problem dependent. One has
to resort to the δN formalism [117] but even in this case the method is
limited to specific potentials (sum- or product-separable) in addition to
the gradient-flow approximation [118, 119]. Nevertheless, certain conclu-
sions can be derived in a model-independent way by studying the EFT
of fluctuations. Regarding multi-field effects, the different possibilities for
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predictions depend on the magnitude of the effective mass on superhorizon
scales, leading to the following three regimes:

• the light regime, µs � H, is realized by the gradient-flow mod-
els studied in this section. They usually produce local-type non-
Gaussianity [120,121].

• the heavy-field regime, µs � H, along with a few other requirments,
allows the derivation of an effective description by integrating out the
heavy field and results in a single-field problem with reduced speed
of sound. These models can have either small [88–90] or large turn
rate [122] and can produce large equilateral non-Gaussianity [123].

• the intermediate regime, µs ≈ H, was extensively studied in the cos-
mological collider paradigm [124]. The squeezed limit of the bispec-
trum offers rich phenomenology and opportunities to test for new
physics, while its non-Gaussianity interpolates from local-type to
equilateral (see also [125] for a recent study in this direction).

4.7 Challenges of multi-field model building
Arguably, the most serious problem one faces when considering more than
one fields is the initial conditions dependence during the inflationary phase.
This becomes apparent for models following the gradient flow approxima-
tion, which fixes only the velocities through the relations

vi ∝ (lnV )i . (4.80)

This system of N equations can be solved in terms of a reference field φ(k)

dφi

dφ(k) = V ,i

V ,(k) , (4.81)

which provides N − 1 parametric relations φi = φi(φ(k), φj0). For sum- or
product-separable potentials analytical expressions for these relations are
guaranteed (see e.g. [126]). The crucial difference with single-field models is
the dependence on extra parameters which results to different background
quantities, all compatible with the slow-roll conditions (4.38). Different
background quantities lead to different predictions and multi-field inflation
becomes non-predictive (we will study initial conditions dependence in more
detail in Ch. 8).

The only way to overcome this issue is to consider models that utilize
an attractor mechanism that stabilizes all fields but one and sufficiently
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fast during the evolution. In general, these models require a hierarchy
between the parameters of the model, such as the fields’ masses (more pre-
cisely the gradients), coupling parameters in non-minimally coupled sce-
narios (e.g. [111,127–130]), or lengths associate with derivatives of the field
metric. In the next chapter we will explicitly demonstrate how a hierarchy
in the strength of the field metric leads to quick stabilization of the extra
field which, nevertheless, leaves significant imprints on observables.

4.8 Case example: the quadratic potential revis-
ited

We conclude this chapter with an explicit demonstration of a number of
novelties that one encounters when going from one to multiple fields during
inflation. We will first illustrate this behaviour in the very simplest multi-
field model consisting of N fields with a quadratic potential and a flat
field-space background

V = 1
2
∑

m2
iφ

2
i . (4.82)

The model admits approximate solutions following the gradient flow (with
negligible acceleration)

φ̇i = − m2
i√

3V
φi , (4.83)

and so one can find the parametric relations between the fields using Eqs. (4.81)

φi = φi,0

(
φ1
φ1,0

)m2
i /m

2
1

, (4.84)

in terms of e.g. the reference field φ1. Using these relations, the number
of e-folds can be calculated as a function of the fields; in fact, for this
particular problem it is simpler to switch to polar coordinates and invert
the radial velocity to solve for N

∆N =
∫

dr dN
dr = −

∫
dr V
V ,r

= −1
4
∑(

r2 − r2
end

)
, (4.85)

where N runs from negative values to zero at the end of inflation and r2 =∑
φ2
i . Note that contrary to the single-field case, the time of generation of

fluctuations (which we consider to be at N = −55) is not uniquely defined,
but rather it is represented by the N − 1 hypersphere r2 = 4 · 55 (where
again the contribution from the endpoints is negligible to first order in
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Figure 4.2
Numerical trajectories projected in the (φ1, φ2) plane with mχ = 3mφ for 120

realizations with random initial conditions satisfying ε0 = 0.9 and V0 = 500. The black
line corresponds to the field values at 55 e-folds before the end of inflation.

the slow-roll parameters). Every trajectory crossing this hypersphere will
provide 55 e-folds and so the notion of initial conditions independence of
single-field models is lost when more fields are considered. We have plotted
several trajectories for two fields in Fig. 4.2.

This initial conditions dependence of the background is inherited to
observables as well. To derive the latter we will make use of the horizon-
crossing approximation [110], which is an alternative method to calculate
the curvature perturbation. This method is restricted to models following
the gradient flow and it also assumes that an adiabatic limit has been
reached before inflation ends [131]; at the level of perturbations this means
that isocurvature perturbations have decayed a few e-folds before the end
of inflation. In the horizon-crossing approximation the power spectra are
given in terms of field derivatives of the e-folding number as

P2
R =

(
H

2π

)2
N ,iN,i

∣∣∣
N=N∗

= −
(
H∗
2π

)2
N∗ , (4.86)

P2
t = 8

N ,iN,i

∣∣∣
N=N∗

= − 8
N∗

. (4.87)

Remarkably, the tensor-to-scalar ratio is uniquely determined (to lowest
order), even though the background evolution is not, and independently of
the number of fields. For two fields, in particular, the scalar spectral index
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becomes a function of the angle [132]:

ns|2f = 1 + 1
N∗

(
1 + cos2 θ∗ +R2

m sin2 θ∗
(cos2 θ∗ +Rm sin2 θ∗)2

)
, (4.88)

where we have defined the ratio between the two masses as Rm ≡ m2
2/m

2
1.

Two values are worth highlighting, in view of the multi-field discussion that
will follow: the first is the diagonal value at θ = π/4; here the spectral index
takes the value

ns|2f−diag = 1 + 1
N∗

[
2 +

(
Rm − 1
Rm + 1

)2
]
, (4.89)

where we have separated off the single-field result (coinciding with m1 =
m2, where one has an SO(2) symmetric potential and hence radial motion).
The second value is θ∗ = arccot(m2/m1) where the spectral index takes the
smallest, most redshifted, value:

ns|2f−equip = 1 + 1
N∗

(
2 + (Rm − 1)2

4Rm

)
. (4.90)

This corresponds to an energy equipartition between both fields, i.e.m2
1φ

2
1 =

m2
2φ

2
2. Note that we have strictly ns|equip < ns|diag < ns|single for all

m1 6= m2, turning into equalities in the case of equal masses.
The above calculations for the spectral index have a natural generaliza-

tion to N fields, with CMB horizon crossing being an (N − 1)-dimensional
hypersphere. The explicit parametrization of the spectral index in terms of
the different angles becomes somewhat cumbersome; however, for the two
specific cases that we highlighted one finds significant simplifications. To
this end, we write the spectral index as

ns|multi − 1 = 1
N∗
− 4

∑
m4
iφ

2
i(∑

m2
iφ

2
i

)2 = 1
N∗

1 +
∑
m4
i φ̃

2
i(∑

m2
i φ̃

2
i

)2

 , (4.91)

where we have rescaled the field values at CMB horizon crossing with∑
φ2
i = 4N to φ̃i with norm 1, which can therefore be interpreted as a

probability distribution and the fraction in brackets is always greater or
equal to one. This shows that the multi-field result is bounded from above
by the single-field result. This was known for a long time [133] but the lower
bound was missing from the literature; we will calculate it in what follows.
For three masses the configuration that makes ε maximum (and hence ns
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minimum) corresponds to the two extrema fields (i.e. the lightest and heav-
iest fields) participate with equal energies. Based on this observation, for
any other configuration with an arbitrary number of fields ε will bounded
by the equipartitioned two-field result and we strictly have

ns|2f−equip < ns|multi < ns|single . (4.92)

Therefore, for a given set of masses, the lowest value for the spectral index
is obtained by storing equal energies in the fields with lowest and highest
masses, and zero energies in all fields in between.



5
Angular inflation

In this chapter we study observational signatures from a two-
field generalization of the usual α-attractor model. We consider
a hyperbolic field space, written in Poincaré coordinates, and
two massive quadratic fields. We explore the dynamics for a
wide range of the model’s parameters, namely the mass ratio of
the two fields (Rm) and the curvature of the field space (8/α).
This chapter is largely based on the publication [106] with the
addition of Sec. 5.3.1.

53
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5.1 Relevance of α-attractor models

While many models have been constructed to date, following the Planck
2013 release [134] a different argumentation has been put forward. This
employs the non-trivial structure of multi-field kinetic terms. At the two-
derivative level, these can be interpreted as a scalar geometry Gij . Inflation
on a curved scalar manifold displays a variety of novel signatures due to
geometric effects, including imprints from heavy fields during turns in field
space [89, 90], curvature fluctuations from ultra-light entropy modes [135],
as well as inflationary destabilization due to curvature [87].

Remarkably, in the specific (and highly symmetric) case of a hyperbolic
scalar geometry, one naturally satisfies the Planck bounds on the spectral
index and tensor-to-scalar ratio. As a result of the kinetic interactions on
the hyperbolic manifold, there is a significant insensitivity to the potential
interactions, leading to robust predictions that take the form [136]

ns ∼ 1 + 2
N∗

, r ∼ 12α
N2
∗
, (5.1)

to leading order in an expansion in the inverse number of e-folds 1/N , where
we consider the CMB-relevant perturbations to have exited the horizon N∗
e-folds before the end of inflation. These depend on a single parameter α
that sets the hyperbolic curvature. The same predictions can be reached
from different perspectives, including Starobinsky’s model with α = 1 [54]
and non-minimal couplings with α = 1 + 1/(6ξ) [137, 138]. At some level,
the unifying feature of all these approaches can be attributed to a singular-
ity in the kinetic sector, whose leading Laurent expansion determines the
inflationary predictions [139].

Importantly, the above predictions were derived under the assumption
of an effectively single-field trajectory. This can be achieved by the inclusion
of higher-order terms that render the orthogonal directions heavy (see e.g.
Ref. [140]). However, it would be interesting to see what genuine multi-field
effects can arise in a more general situation. From a theoretical perspective,
our current understanding of high-energy theories suggests a multitude of
scalar fields, without an a priori reason that only one of these should be
light. Similarly, from an observational perspective, such multi-field effects
might allow for novel signatures, as has been studied in great detail in a wide
variety of models, including N -flation [141], many-field models [142,143] or
inspired by random matrix theories [144,145].

Recently, a study of multi-field effects in a hyperbolic manifold, as sug-
gested by the Planck results, was undertaken in Ref. [146]. Remarkably,
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it was found that under a set of conditions, even multi-field inflationary
trajectories on a hyperbolic manifold adhere to the above universal predic-
tions. For instance, one can consider a scalar potential with a rotationally
symmetric mass term and a symmetry-breaking quartic term, both of which
live on the Poincare disk (and admit a simple supergravity embedding when
α = 1/3). The background dynamics was found to be almost perfectly ra-
dial in a range of parameter values, “rolling on a ridge”, despite the presence
of an angular slope. Moreover, perturbations around this non-trivial back-
ground have a remarkable structure that results in predictions identical to
those in Eq. (5.1) despite the presence of multi-field effects.

This chapter will build on previous work by investigating the multi-
field behaviour of α-attractors in a wide range of parameter space, and
by pointing out multi-field effects that go beyond the universal behaviour.
As the simplest possible case, we will study quadratic potentials on the
Poincaré disk and consider a range of masses and hyperbolic curvatures.
In addition to the above radial dynamics with universal behaviour, we
will display a second regime of inflation that proceeds along the angular
direction. Instead of the radial dynamics, which corresponds to gradient
flow, angular inflation only employs this approximation for the angular
coordinate, while the radial coordinate to a first approximation is frozen.
We will outline when this novel regime appears, why it can be thought of as
an alternative attractor,1 and how it modifies the duration and predictions
of inflation.

5.2 Background evolution

5.2.1 The multi-field α-attractor model

The two fields Φ, X take values on the Poincaré disk with the field-space
metric

Gij = 6α
(1− Φ2 −X2)2 δij , (5.2)

in which the fields are dimensionless, since we are measuring both the
fields and the curvature parameter α in units of Mpl. We use a quadratic
potential, due to its simplicity and as a first step towards a generalization

1One might think that this regime is related to that of hyperinflation [147,148], which
also crucially relies on the hyperbolic manifold. However, hyperinflation is an alternative
to slow-roll inflation in the case of a very steep and rotationally symmetric potential.
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of extensive studies of multi-field effects in inflation [132]:

V = 6α
2
(
m2
φΦ2 +m2

χX
2
)
, Rm ≡

m2
χ

m2
φ

. (5.3)

For concreteness we will always consider Rm > 1. Note that the factor
6α has been inserted to give the potential the correct dimensions and to
recover the usual quadratic potential in the flat limit α → ∞ (after the
appropriate rescaling of the fields).

Due to the spherical symmetry of the field-space manifold, it will be
useful to introduce polar coordinates Φ = r cos θ and X = r sin θ. In this
parametrization of the hyperbolic geometry, the scalar field equations read

r̈ + 3Hṙ + 1
6
(
m2
φ cos2 θ +m2

χ sin2 θ
)

(1− r2)2r + 2rṙ2

1− r2

− r(r2 + 1)
1− r2 θ̇2 = 0 ,

(5.4)

θ̈ + 2(1 + r2)
r(1− r2) ṙθ̇ + 3Hθ̇ + 1

12(m2
χ −m2

φ)
(
1− r2

)2
sin(2θ) = 0 . (5.5)

In some of the following plots we will use the canonical radius ψ =
√

6α tanh−1(r)
to visualize the different regimes of the fields’ evolution, with horizontal and
vertical components φ = ψ cos θ and χ = ψ sin θ.

5.2.2 ‘Radial’ slow-roll inflation

Starting with the radial equation of motion, it was shown in Ref. [146] that
for initial conditions placing the two fields close to the boundary of the
Poincaré disc, a period of radial inflation with θ(t) ' θ0 is supported, where
θ0 is the initial value of the angle in field-space. Provided the initial veloci-
ties are sufficiently small, a phase of slow-roll inflation ensues during which
the gradient term is counterbalanced by the Hubble friction. Intuitively,
this can be understood as the Christoffel terms depend quadratically on
the velocities whereas the accelerations can be viewed as finite differences
of small quantities.

More precisely, the range of validity of the gradient flow approximation
can be measured by the smallness of the multi-field generalization of the
single field slow roll parameters given by Eq. (4.38). If both parameters
remain small up to the last few e-folds, then the evolution equations can
be approximated by slow roll and the end of inflation can be estimated by
εV ≈ 1. Using the slow roll expressions for the velocities

ṙSR

θ̇SR
= V ,r

V ,θ
, (5.6)
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we can obtain the relation r(θ). Since the metric is conformally flat it drops
out from the above expression and the parametric relation r(θ) has exactly
the same form as in the flat case. It is straightforward to calculate the
number of e-folds:2

Nradial = −
∫ r

rend
dr̃ V
V ,r̃

= −3α
2

(
1

1− r2 −
1

1− r2
end

)
. (5.7)

The number of radial e-folds has the same form as in single-field α-attractors
[136] and is controlled by the curvature of field-space and the proximity of
the initial conditions to the boundary of the Poincaré disc. At the end of
inflation, given the fact that the potential has a light direction, the sys-
tem will have to relax in such a way, as to evolve along the light direction.
For the parameter range considered in Ref. [146], where both the angular
gradients and the field space curvature were small (this statement will be
quantified shortly), this relaxation towards the light field direction only
lasts for one or two e-folds (an illustration of this can be found in the left
panel of Fig. 5.1). Before we proceed we must note that, although the
trajectories considered in Ref. [146] are highly radial, the existence of a
non-zero turn rate is important and one cannot neglect multi-field effects.

However, the validity of the slow-roll approximation breaks down earlier
as one considers large hyperbolic curvatures. The first slow-roll parameter
is given by

εcurved =
(
1− r2)2

6α
2(cos4 θ +R2

m sin4 θ)
r2(cos2 θ +Rm sin2 θ)2 =

(
1− r2)2

6α εflat, (5.8)

where we define εflat as the potential slow-roll parameter one would get
without the conformal factor of the metric

εflat ≡
1
2
δijV,iV,j
V 2 . (5.9)

The latter is greater than 1 (inside the Poincaré disc) and diverges when
r → 0. For small α the condition εcurved < 1 implies that the fields must
inflate close to the boundary and at the end of inflation 1− r2

end = O(
√
α)

should hold.3 At the same time, the leading contribution in ησσ contains
2Note that our model, with a product-separable potential (or sum separable when

written in Cartesian coordinates) plus a conformally flat metric, is a third example of
models which admits analytic calculation of the number of e-folds in the slow-roll slow-
turn approximation, along with the sum- or product-separable potentials in flat space
[126,149].

3We say that a quantity y is of order O(x) if the limit limx→0 y/x is a constant number.
On the contrary, for the little-o notation y = O(x) if the limit limx→0 y/x = 0.



58 Angular inflation

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

φ

χ

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.05

0.10

0.15

0.20

φ

χ
Figure 5.1

The evolution of the system in terms of the canonically normalized radius ψ using the
full equations of motion (blue) and using the analytic slow-roll expression

(orange-dashed) for the parameter values R = 9, θ0 = π/4, and α = 1/6, r0 = 0.999 (left
panel) and α = 1/600, r0 = 0.99 (right panel). The red dashed line in the right panel is
the angular inflation approximation. The black dotted line is the diagonal and the black

dots correspond to 55 (CMB point), 2 and zero e-folds before the end of inflation.

terms that scale as
(1− r2)3

α2 , (5.10)

implying that when this term becomes of order one, the scaling between
the two variables is 1− r2

end = O(α2/3). By comparing the two we conclude
that when α is small there will be a region before the end of inflation in
which the potential gradient flow approximation fails. This is the regime
that we will turn to next.

5.2.3 Angular inflation

It follows from the scalar field equations (5.4) and (5.5) that the only terms
which are enhanced by the field-space curvature close to the boundary of
the Poincaré disc are the Christoffel terms. However, they are velocity-
suppressed during radial slow-roll inflation. Towards the end of radial in-
flation, the fields speed up and the increase in ṙ boosts the Christoffel
terms.

This gives rise to two competing effects; the geodesic motion aims to
push both fields to the boundary of the disk following a circular arc, whereas
the gradient of the potential attracts both fields to the origin. Unlike θ̇,
which becomes zero close to the minimum of the potential at θ = 0, π/2,
ṙ can vanish away from the minimum because of the presence of Γrφφ. A
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Figure 5.2

Numerical comparison of various terms in equations (5.4) (left) and (5.5) (right) for
α = 1/600, R = 9, θ0 = π/4 and r0 = 0.99997. We have chosen these conditions to
support both a period of radial as well as a angular inflation. The dominant terms in

each period are indeed those corresponding to the relevant approximations.

solution with ṙ ≈ 0 can be sustained either by sufficiently reducing α (so
that inflation takes place closer to the boundary of the space where the
Christoffel Γrθθ becomes important) or by increasing the mass ratio (and
hence the velocity θ̇2). An illustration of this can be found in the right
panel of Fig. 5.1, which shows the non-monotonic behaviour of the radial
coordinate. Moreover, it highlights that the trajectory proceeds for a sig-
nificant portion along an angular direction, i.e. with ṙ nearly vanishing.

This can be understood by considering the third and last term of Eq. (5.4),
which do not depend on ṙ and have opposite signs. If they almost cancel
each other then the radius will be a slowly varying function and therefore
fields will perform a predominately angular motion. Indeed, one can show
numerically that the dominant terms of the radial and angular equations
of motion are(

2r3 + 2r
)

2r2 − 2 θ̇2 + 1
6
(
m2
φ cos2 θ +m2

χ sin2 θ
)

(1− r2)2r ≈ 0 , (5.11)

3Hθ̇ + 1
12(m2

χ −m2
φ)
(
1− r2

)2
sin(2θ) ≈ 0 . (5.12)

Hence the angular motion is dominated by the usual slow-roll combina-
tion of the potential and Hubble drag terms, while the radial equation
instead is dominated by the potential and the Γrθθ Christoffel term, with
all other terms being subdominant. Fig. 5.2 shows the magnitude of the
various terms for a characteristic choice of parameters, supporting a pro-
longed period of angular motion. We see that our approximations leading
to Eqs. (5.11) and (5.12) are justified.
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Figure 5.3
Plot of the angular attractor for α = 1/600, R = 9 and a wide range of initial data (the
black line is the diagonal). We observe that the angular solution captures very well the

evolution for θ < π/4.

The regime of angular inflation allows for a simple derivation of the
trajectory through field space. One can eliminate θ̇ from the approximate
equations (5.11) and (5.12). Under the additional assumption that the
Hubble function is dominated by the potential H2 ' 1

3V (the neglect of
the kinetic terms can easily be justified as the angular motion is slow-rolling,
while the radial motion is even slower), one obtains a parametric equation
for the field trajectory during angular motion

r(θ) = 1
sin 2θ(Rm − 1)

[
− 9

2α ((1−Rm) cos 2θ +Rm + 1)2 +√
81
4 α

2((1−Rm) cos 2θ +Rm + 1)4 + (1−Rm)4 sin4 2θ
]1/2

,

(5.13)

where Rm is defined in Eq. (5.3). We have verified the attracting nature
of this solution for a wide range of initial conditions in Fig. 5.3. The re-
markable property of this solution is that it only depends on α, the mass
ratio Rm and the initial angle θ0, while all other initial data have dropped
out. In contrast, for the slow roll approximation (or any other approxi-
mation that only fixes the velocities), one obtains a family of trajectories
in the multi-dimensional field space - which is e.g. a one-parameter family
for the two-field case. In a sense, the angular inflation solution is therefore
closer to the notion of single-field attractor as it depends on only one initial
condition.4

4This type of coordinate-dependent approximation, like the case of hyperinflation, is
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While it captures the angular inflation regime very well and has the
remarkable property of a dynamical attractor, the solution r(θ) it is some-
what complicated and difficult to use. Later on we will often use the quan-
tity 1 − r2, which encodes the stretching of the field-space as one nears
the boundary of the Poincaré disk. Expanding in terms of α, this can be
written as

1− r2 ' 9α(cot θ +Rm tan θ)2

2(Rm − 1)2 . (5.14)

This relation breaks down close to the two axes. It is easy to see that
unless the initial angle is close to the heavy field direction θ ≈ π/2, the two
expressions given by Eqs. (5.13) and (5.14) match very well. There is some
disagreement close to the light direction θ = 0, but there we expect the slow-
roll approximation to break either way, so the comparison is meaningless.
From now on, we will always use the approximation of Eq. (5.14), unless
otherwise noted.

We now move to computing the first slow-roll parameter ε. Using the
above approximations, amounting to ṙ ≈ 0, H2 ≈ 1

3V and θ̇ = θ̇SR, one has

ε = − Ḣ

H2 ≈
3
2
(
1− r2

)
, (5.15)

where we expanded this relation close to the boundary r = 1. The minimum
value of ε during the angular motion (in the small α approximation) occurs
at and is given by

θε,min = arctan
( 1√

Rm

)
, εmin = 27αRm

(Rm − 1)2 . (5.16)

This is significantly higher than the value of ε during inflation along the
radial direction.

Using the expression for ε we can compute the angle at which angular
inflation ends. The equation ε = 1 can be solved, using Eq. (5.15), however
the solution is not very insightful. At small α and large Rm it reads

θend = 3
√

3α
2(Rm − 1) , (5.17)

which is indeed close to θ = 0. Since close to ε = 1 our approximations
break down, for small α and / or large mass ratio we can safely take angular
inflation to end for θ = 0, without introducing extra errors.5

more obscure in Cartesian coordinates because the Christoffel terms of the light field are
not balanced by the gradient term. The attractor solution is, of course, independent of
coordinate system but an approximate form would be very hard to find.

5In fact, computing N(θ = θend) and N(θ = 0) gives agreement to within a few
decimal points, so we will set θ = 0 as the end-point of angular inflation.
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Finally, computing the number of e-folds during angular motion is
straightforward using the angular slow-roll approximations for H and θ̇

N =
∫ tend

t0
Hdt =

∫ θend

θ0

H

θ̇
dθ . (5.18)

The integration is performed from the initial angle θ until the final angle
which we take to be θ = 0. The result is

N =− 1
27α(Rm + 2) + 4

27α

(
1−R2

m
)

cos 2θ +R2
m +Rm + 1

((1−Rm) cos(2θ) +Rm + 1)2

+ 9α+ 2
27α log

[1
2((1−Rm) cos 2θ +Rm + 1)

]
.

(5.19)

This relation outlines where in the parameter space there is a significant
number of e-folds during angular inflation. Fig. 5.4 shows the number of
non-radial e-folds for a broad range of parameters. We see that for large
Rm/α, the contours of N give a linear relation between log(Rm) and log(α).
This can also be calculated by expanding the above in α� 1 and Rm � 1:

N ≈ −Rm
27α −

2− 2 csc2 θ − (9α+ 2) log
(
Rm sin2 θ

)
27α + · · · . (5.20)

While it is non-trivial to invert the number of e-folds and get the func-
tion θ(N), some analytical progress can be made towards this goal. Specfi-
cally, we can neglect the logarithms in the function of N(θ) after which we
obtain

θ(N) ' 1
2 cos−1

(
R2

m +Rm(1 + 27αN)− 2
√
−27αRmN + 1 + 27αN

(Rm − 1)(Rm + 27αN + 2)

)
,

(5.21)
where we took θ0 = π/4. One can check that this an increasingly good
approximation for larger Rm.

It is important to note that the number of e-folds quoted above also
includes the final stage of inflation, which is more like single-field inflation
along the horizontal axis (corresponding to the lightest field) than angular
inflation along the boundary. This is illustrated in Fig. 5.5. This feature
is particularly noticeable in the case where the mass ratio is large: in this
situation there is a sizeable number of e-folds produced in this final stage
of inflation. In a somewhat rough sense, the two parameters of our model
trigger the two regimes: smaller values of α increase the number of e-folds
during the angular trajectory, while a larger mass ratio does the same for
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Figure 5.4
The number of e-folds, occurring after the initial period of radial inflation for a wide
range of the field-space curvature, characterized by α and the mass ratio of the two
fields Rm for initial angles θ0 = π/4 (left) and θ0 = π/3 (right). The thick black line
corresponds to 60 e-folds of non-radial inflation and the red to the Planck contours to
the point where the predictions of our model exit the Planck 1σ and 2σ regions, as

computed in Eq. (5.39) and discussed in Section 5.3.2. The two panels are very similar
since small changes in the initial angle do not alter the duration of the angular regime
significantly. This can be seen in the expression for the number of e-folds of angular

inflation in Eq. (5.20), where the θ-dependence is not present in the lowest order term.

the single-field regime along the light axis prior to the end of inflation. For
very large mass ratios, the number of e-folds during this final stage exceeds
that of the CMB window, and as a result the observable part of inflation
will be effectively single-field (with a very heavy orthogonal direction). In
this case the inflationary predictions will coincide with the single-field ones.
In all other cases one needs to evolve the quantum fluctuations during the
angular regime, which is the topic that we turn to next.

5.3 Perturbation analysis

5.3.1 Evolution during gradient flow

As we saw in Sec. 5.2.2, for small curvature (α ∼ O(1)) both εV and ησσ
are small and hence the system follows the potential gradient flow approx-
imately. This results into small turn rate which implies that perturbations
at horizon crossing will have the same amplitude δΦi ∼ H2/(2π). In the fol-
lowing we will calculate the power spectra using both the slow-roll equations
for the two perturbations (4.62)-(4.63) and the horizon-crossing formula.
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Figure 5.5
The evolution of the system in terms of the canonically normalized field ψ with identical
colour-coding and parameters as in Fig. 5.1 but with R = 500, α = 1/60, θ0 = π/4 and
r0 = 0.9999. Note that this plot contains all possible different kinds of evolution and at
the time of generation of fluctuations the evolution of the system can be well described

by a single field.

First, we need the leading order expressions for background quantities.
We write the slow roll parameter as

ε ≈ (1− r2)2

6α (4 + p2) = εr

(
1 + 1

4p
2
)
, (5.22)

where p ≡ V,θ/V , and the turn rate using Eq. (4.40)

Ω ≈ p2(1− r2)
3α . (5.23)

The previous two quantities can be written as a 1/N expansion using the
expression (5.7)

ε ≈ 3α
16N2 (4 + p2) , Ω ≈ p

2N . (5.24)

The highest order terms in the definition of β, which controls the growth
(β > 0) or decay (β < 0) of the isocurvature mode, are

Mσσ −Mss
3H2 ≈ 2

N
, (5.25)

and so the isocurvature mode slowly decreases as inflation proceeds

S ≈ S∗
(
N

N∗

)2
. (5.26)
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The curvature mode is
R ≈ R∗ − S∗

p

2 , (5.27)

from which we read the transfer function as TRS = p/2. The dimensionless
power spectrum at the end of inflation is thus

P2
R = |R†∗R∗|+ |S†∗S∗|

p2

4 = H2

(2π)2ε∗

(
1 + 1

4p
2
)

= H2
∗

(2π)2εr∗
, (5.28)

which matches the single-field result. Here we used the fact that for slow-
turn models the amplitude of curvature and entropy perturbations at hori-
zon crossing is the same |R∗| ∼ |S∗|.

The tensor power spectrum is unaffected by the presence of more scalar
degrees of freedom and is given by its value at horizon crossing P2

t =
2H2
∗/π

2. With both spectra computed the tensor-to-scalar ratio and the
scalar spectral index are given by

r = 16εr∗ ∼
12α
N2
∗
, ns ∼ 1 + 2

N∗
. (5.29)

In contrast, the horizon-crossing formula yields a cleaner expression for
the power spectrum that entails two limits of interest, namely moderate
curvature α ∼ O(1), r → 1 and the flat case α → ∞, r → 0. For generic
curvature it is given as

P2
R =

(
H

2π

)2
N ,iN,i =

(
H

2π

)2
(

4N2

α
−N

)
. (5.30)

The tensor to scalar ratio is similarly defined from

r = 8
N ,iN,i

= 8α
4N2 − αN

. (5.31)

Taking the time derivative of the power spectrum yields the scalar spectral
index

ns − 1 = − 2α
(4N − α)2 εflat + 8N − α

4N2 −Nα
, (5.32)

where we equated the slow-roll parameter ε to εV , which scales as

εV = α

(4N − α)2 εflat . (5.33)

For α ∼ O(1) the spectral index receives the dominant contribution from
the 2/N term, r has quadratic dependence on 1/N and we arrive at Eq. (5.28).
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We observe that these models have predictions that depend weakly on initial
conditions. For moderate values of the mass gap, this dependence becomes
important at second order in the 1/N expansion. The same will be true for
arbitrary number of fields that follow the potential gradient flow. In Ch. 8
we will examine the flat case at the many-field limit, i.e. N →∞.

5.3.2 Evolution during angular inflation

We will focus on the regime of small α and large Rm, where significant
analytical progress can be made. The intuition gained from this regime
will be checked numerically and extended to the region of α ∼ 1. First of
all, using the fact that the motion occurs predominately along the angular
direction, the tangent vector can be approximated by

σ̂ ≈
(
0,
√
G22sgn(θ̇)

)
= êθ .

Hence the normalized turn rate vector will be along the radial direction,

ŝ = sgn(θ̇)êr = (sgn(θ̇)
√
G11, 0) .

It is easy to show that

ω2 = GrrV 2
r

σ̇2 . (5.34)

Normalizing the turn-rate by the Hubble scale, we arrive at the relation

Ω2 = 4
3αε . (5.35)

We see that the turn rate is proportional to the curvature of the field-space
manifold. It is illustrated in Fig. 5.6 that our analytic result agrees very
well with the numerical evolution of the background fields. Moreover, using
the expression for ε in the small α regime, the adiabatic second slow-roll
parameter becomes

ησσ ≈ O
(

1− r2

α

)
= O(ε) , (5.36)

as expected. Finally, using similar approximations the effective mass be-
comes

µ2
s

H2 = 2(1− r2)
α

, (5.37)
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Figure 5.6
The normalized turn-rate |ω|/(H

√
ε), computed numerically in blue for α = 0.016,

Rm = 25 (left) and α = 0.0016, Rm = 9 (right). The red-dashed lines correspond to
8/α, with excellent agreement in the angular regime (the last 40 and 90 e-folds

respectively). Note that the same combination is constant in the radial part (before the
transition occurring halfway), as was found in Ref. [146].

and the isocurvature modes do not grow on super-horizon scales during an-
gular inflation. We now have all the components that go into the parameter
β resulting in

β ≈ −3(cot θ +Rm tan θ)2

(Rm − 1)2 . (5.38)

This shows that the isocurvature modes will decay exponentially during the
angular part of the inflationary trajectory. As seen in Fig. 5.7, Eq. (5.38) is
an excellent approximation to the numerical evaluation of β in the angular
inflation regime and in fact |β| = O(1), hinting at a severe suppression of
isocurvature modes on super-horizon scales. Without an amplification, or
at least a moderate decay, of the isocurvature modes, even a large turn-
rate is insufficient to source any super-horizon evolution of the adiabatic
modes. Hence, all adiabatic perturbation modes that have crossed the
horizon before the onset of the period of angular inflation will be frozen
and so will their spectral index ns and their amplitude that defines r.

With all the ingredients in place, it is a simple exercise to compute the
super-horizon evolution of the adiabatic and isocurvature modes during the
non-radial part of inflation. Since, as we showed, during angular inflation,
β < 0, we expect that the isocurvature modes will be quickly damped and
hence the adiabatic modes will not be sourced. This is exactly what is
shown in Fig. 5.8, which presents a characteristic example from a larger
number of simulated inflationary trajectories. We see a mild decay of the
isocurvature modes during radial inflation, which can -through the non-zero
turn rate- lead to a sourcing of the adiabatic modes [146]. However, once
radial inflation ends and the system transitions into the angular regime, the
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Left: The effective isocurvature mass-squared µ2

s/H
2 (black-dotted), along with the turn

rate contribution 3ω2/H2 (blue) and the mass-squared Mss/H
2 (red) and −Mss/H

2

(red-dashed). All curves are computed numerically for Rm = 25 and α = 0.016, without
using any approximations. We see that during angular inflation, which lasts for the
final 40 e-folds, µ2

s/H
2 ∼ O(1) > 0, while it is small and positive during the initial

quasi-radial evolution.
Right: The isocurvature growth parameter β̃ for the same parameters numerically

(blue-solid) and using the approximations of Eq. (5.38) (red-dashed). We see excellent
agreement in the angular inflation regime.

isocurvature modes quickly decay and the transfer of power to the adiabatic
modes ceases (TRS = const). Looking at ∆TRS ≡ TRS(Nend) − TRS we
can see that TRS grows during the radial part, hence adiabatic modes are
continuously sourced by isocurvature ones. However, this sourcing stops
immediately after the radial part has ended (hence TRS stops increasing),
signalling the fact that the curvature fluctuation has reached its adiabatic
limit. By taking the fiducial scale N∗ close to the end of the initial period
of radial inflation, TSS is quickly forced towards zero and so TRS becomes
constant.

In specific regimes of parameter space, the period of angular inflation
can serve as a second phase of inflation that shifts the effective number of
e-folds during the initial radial phase. This is in particular the case when
the number of e-folds during angular inflation amounts to at most a few
decades, such that the observable CMB window still takes place during the
radial phase. This offset in e-folds due to the angular phase is given by
N(θ0) in Eq. (5.19), where the angle should be taken at the point where
the inflationary trajectory joins the angular phase (which depends on the
initial conditions). Due to the decay of the isocurvature modes and the
lack of significant feeding into the adiabatic modes, the CMB predictions
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Left: The transfer functions TRS (red) and TSS (dashed-blue) along with ε
(dashed-brown) for α = 0.016 and Rm = 25. The vertical line at N ' −40 signals the

onset of the angular inflation period. We see that the transfer of power from the
isocurvature to the adiabatic modes is negligible during angular inflation.

Right: Evolution of the power spectrum for the same parameters. The mode shown
leaves the horizon 55 e-folds before the end of inflation and the vertical line shows the

onset of the angular inflation regime at N ' −40.

are therefore identical to those during the radial phase modulo the offset:6

ns = 1 + 2
N −N(θ0) , r = 12α

(N −N(θ0))2 , (5.39)

where N ∼ 55 − 60 e-folds before the end of inflation and N(θ0) depends
on the initial angle as well as the parameters α and Rm. Fig. 5.9 shows
the evolution of the observables on the ns − r plane for varying field-space
curvature and varying mass asymmetry between the two fields. We can see,
as expected from the analysis of Section 5.2, that smaller α requires less
mass asymmetry to deviate significantly from the single-field observables.
Furthermore, for low values of α, the curves in the left panel of Fig. 5.9
become degenerate (green to blue curves), hence the spectral index depends
only on the combination Rm/α, as is expected from the leading term in the
series expansion of Eq. (5.20). Going back to the contour plots of Fig. 5.4,
for pairs of Rm and α that are below the two red lines, the observables are
within the 1σ and 2σ regions of Planck respectively. We also expect the lo-
cal non-Gaussianity to be similarly affected by the angular inflation regime,
retaining its form fNL ∝ −N−1 given in Ref. [146], with the substitution
N → N −N(θ).

Going to larger curvatures and mass ratios will lead to a number of
angular e-folds N(θ) that exceeds the observable ones, implying that the
CMB horizon crossing point is not during the radial but rather during

6We have also verified numerically these relations using m.transport [150].
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Left: The evolution of the primordial observables on the ns − r plane. Each blue line

corresponds to a fixed value of α and varying R and is of the form r = 3α(ns − 1)2. The
parameters are (from top to bottom) 6α ' 0.8, 0.3, 0.1, 0.03, 0.01. Each red line

corresponds to a fixed value of Rm and varying α. The parameters are (from top to
bottom) Rm ' 25, 16, 10, 6, 4.

Right: The scalar spectral index ns as a function of R/(6α) for various values of α,
ranging from 6α = 0.01 (blue) to 6α ' 0.8 (red) . The horizontal black-dashed and
solid-black lines correspond to the Planck 1σ and 2σ intervals respectively. In both

panels we took the CMB-relevant modes to have crossed the horizon 60 e-folds before the
end of inflation.

the angular phase. This corresponds to the part of parameter space that
lies above the thick black line of Fig. 5.4. The calculation of inflationary
observables during this phase is non-trivial, since the value of the turn-rate
Ω = O(1) makes the adiabatic and isocurvature perturbations coupled at
sub-horizon scales [122].

5.4 Summary and comparison to non-minimally
coupled models

In this chapter, we have investigated multi-field α-attractors in different
regions of the parameter space. For moderate values of the field-space
curvature and the mass ratio, inflation proceeds with a small turn-rate,
which leads to a continuous but mild transfer of power from the isocurvature
to the adiabatic mode. This regime was recently explored in Ref. [146],
where it was found that the final values of the cosmological observables ns
and r do not deviate from their single-field counterparts.

The situation alters drastically when one increases the field-space cur-
vature or potential gradients. In this case, as shown in Fig. 5.4, the system
can show a large number of e-folds along a non-radial direction. This can
be a combination of angular inflation, where the two fields move along
the angular direction close to the boundary of the Poincaré disk, and a
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period of inflation along the direction of the light field. Specifically, we
have identified the attractor solution of Eq. (5.13) corresponding to angu-
lar inflation, which differs from the usual slow-roll one. This leads to the
following sequence of phases:

• Starting with zero velocities the fields will accelerate towards the ori-
gin following an almost radial motion. The duration of this stage in e-
folds is given by the usual single-field α-attractor formula of Eq. (5.7).

• After a quick transient, which is very close to geodesic motion, the sys-
tem is set into angular motion close to the boundary of the Poincaré
disk. There is a very accurate analytical description of the dynamics
in this regime for larger values of the mass ratio and the curvature.

• If the mass ratio is very large, the system can inflate along the direc-
tion of the light field for a significant amount of e-folds. This regime
is well described as single-field or quasi-single-field evolution.

For parameter values that lead to at most a number of decades of angu-
lar e-folds in the last two phases, the predictions for the CMB observables
are altered in a very simple and intuitive way based on the offset with
the additional angular phase (5.39). This follows from our analysis in Sec-
tion 5.3.2: during the angular part of the evolution, the isocurvature modes
are quickly damped on super-horizon scales, leading to the effective freeze-
out of the adiabatic modes. This means that the adiabatic modes retain
their amplitude since the end of the radial part of inflation.

An interesting question regards the analysis of and predictions for infla-
tionary observables for the range of parameter space with all sixty e-folds
of angular inflation, which will be presented separately. Similarly, given the
higher-dimensional moduli spaces of string theory, it would be interesting
to analyse an α-attractor model with more fields and a certain distribu-
tion of masses. Interesting questions include the duration of the angular
phase as a function of the number of fields. Moreover, whether there is an
emergent simplicity in the many-field limit, as has been shown for the flat
geometry case [142], remains to be seen.

It is also interesting to contrast this behaviour to non-minimally cou-
pled models, which together with α-attractors are among the most studied
and well motivated inflationary models involving a non-trivial field space
metric. In that case, it has been shown that for generic initial conditions
and randomly chosen potential parameters (constrained to provide enough
e-folds of inflation and the observed amplitude of density perturbations),
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the cosmological observables, such as ns and r fall within the Planck al-
lowed region, on top of the predictions of the Starobinsky model and the
single field predictions of α-attractors, given in Eq. (5.1). The “lumpy” po-
tential in simple models of quartic non-minimally coupled inflation, leads
to a quick transient period, in which the fields quickly relax into a poten-
tial “valley” and inflate along it, leading to largely parameter-independent
predictions for the CMB observables [138,151]. In order to go beyond this
universal behaviour, one needs to fine-tune the potential parameters and
also fine-tune the initial conditions [152]. Hence, in simple non-minimally
coupled models, deviations from Eq. (5.1) require extreme fine-tuning, or
some other mechanism, like a softly broken symmetry accompanied by an
early phase of inflation ending at a waterfall transition, placing the field
exponentially close to a potential “ridge”.

It is quite remarkable that non-minimally coupled models and α-attractors
(with moderate parameter values) both respect their single-field predic-
tions, even for multiple inflaton fields, however they do so in completely
different ways: in non-minimally coupled models the large angular gradi-
ents force the fields into a single-field trajectory, while for α attractors the
“stretching” of field space along the angular directions allows for a quasi-
single field trajectory with a small turn rate.



6
Scaling attractors

In this chapter we investigate scaling solutions and their sta-
bility properties emphasizing bifurcations between different so-
lutions. We propose a classification scheme depending on the
number of “frozen” solutions and then demonstrate how the hy-
perinflation model, that attracted a lot of attention lately, is a
special case of these solutions. The analysis of this chapter is
an extensive rewriting of publication [153].

73
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6.1 Single-field scaling solutions

The dynamics of the multi-field alpha attractors studied in Ch. 5 is not
a unique feature of the model. A closely related model that appeared in
the literature around the same time, dubbed “sidetracked inflation”, dis-
plays a similar phenomenon [154]. In both models the original gradient-
flow phase is succeeded by a novel one with large turning rate, albeit by
a different dynamical mechanism. These prototype examples included a
sum-separable potential and a hyperbolic field metric written in a differ-
ent parameterization. The similarity between the two models encourages
further investigation of this behaviour.

To better understand how the system departs from gradient flow to
different solutions we will first study scaling solutions instead. The rea-
son is simple: for trivial geometry small potential gradients over short
timescales are approximately constant and the potential may be approxi-
mated by exponentials [62]. The attractor behaviour of slow-roll models can
be understood as being small deformations of models that possess proper
mathematical attractors which can be found analytically. We will therefore
start by classifying scaling solutions for non-trivial geometry and then at-
tempt to link this novel behaviour to the existence of corresponding scaling
solutions with similar properties.

Before discussing two-field scaling solutions we will recap the single-field
case. The dynamics for one field can be written in terms of the number of
e-folds as

φ′ = v , (6.1)

v′ +
(

3− 1
2v

2
)

(v + p) = 0 , (6.2)

where p = (lnV ),φ. When p is constant, and therefore the potential is
an exponential, the second equation decouples from the first and can be
studied separately. Its critical points are called scaling solutions and satisfy
ε′ = 0. We can also use this argument backwards to investigate what kinds
of potentials give rise to scaling solutions. In this way we can make the
transition to more than one fields smoother. Eq. (6.4) can be written as a
differential equation for the potential

ε′ + (3− ε)
(
2ε+ (lnV )′

)
= 0 , (6.3)

with solution
V (N) = (3− ε)e−2

∫
ε dN ′ . (6.4)
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On the scaling solution, ε′ = 0, the potential exhibits exponential depen-
dence on the e-folding number

V (N) ∝ e−2εcrN . (6.5)

If only one field is present then the requirement ε(N) = εcr on the scaling
solution is another trivial differential equation for the field yielding linear
relation between ∆φ and the e-folding number

φ′ =
√

2εcr ⇒ φ = φ0 +
√

2εcrN . (6.6)

The potential is then uniquely determined as V = V0e
√

2εcrφ.
Since scaling solutions are defined from the asymptotic behaviour of the

dynamical system it is possible to construct more generic potentials that
support this behaviour for t → +∞. This can be achieved for potentials
that asymptote to an exponential for φ → ±∞ resulting into a vast and
complex family of potentials with this property. For the purposes of this
thesis, we will restrict our analysis to potentials and metrics for which
the scaling solution can be defined for every t, and then form different
classes compatible with these assumptions. Having thoroughly examined
the single-field case we proceed to investigate scaling solutions for multiple
fields.

6.2 Two-field dynamics

6.2.1 Frozen solutions

The easiest way to make this transition is to retain the exponential depen-
dence of the potential on one of the two fields in order for the single-field
solution to carry over the multi-field model. From Eqs. (6.4) and (6.3),
which remain unchanged in the presence of more fields, requiring a linear
relation between N and φ results into exponential dependence of the poten-
tial in terms of φ and, hence, the second field should be non-dynamical, or
frozen, during the evolution. These two requirements result in a product-
separable potential

V = h(χ)epφ , (6.7)

with φ assumed to be the inflaton. Regarding the metric, the most general
form in two dimensions is

ds2 = f(χ, φ)2 dφ2 + g(χ, φ)2 dχ2 , (6.8)
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with the following non-zero Christoffel symbols

Γχχχ = g,χ
g
, Γχφχ = g,φ

g
, Γχφφ = −gg,φ

f2 ,

Γφφφ = f,φ
f
, Γφχφ = f,χ

f
, Γφχχ = −ff,χ

g2 .
(6.9)

The solution v =const and χ′ = 0 should satisfy the system of Eqs. (4.7).
It is more convenient to consider instead the normalized velocities x = gχ′

and y = fφ′, which represent the two parts in the definition of ε

ε = 1
2Gabv

avb = 1
2x

2 + 1
2y

2 , (6.10)

for which the dynamical system becomes

φ′ = y

f
, (6.11a)

χ′ = x

g
, (6.11b)

y′ = −(3− ε)
(
y + pφ

f

)
− f,χ
fg
xy + g,φ

fg
x2 , (6.11c)

x′ = −(3− ε)
(
x+ pχ

g

)
− g,φ
fg
xy + f,χ

fg
y2 , (6.11d)

where we defined pχ ≡ (lnV ),χ and pφ ≡ (lnV ),φ. We will give the physical
interpretation of these equations later with examples.

Next, we will look for solutions where the individual parts of ε vanish
independently, i.e. x′ = 0 and y′ = 0.1 Since both parts of ε should be
constants, f should not depend on φ and the metric (6.8) is restricted to

ds2 = f(χ)2 dφ2 + g(χ, φ)2 dχ2 . (6.12)

Plugging x = 0 in the y′ = 0 equation gives the following solution for y

y = −pφ
f
, (6.13)

and the inflaton field follows its potential gradient. Similarly, the x′ = 0
equation requires the following relation to be satisfied

1
g

(
(3− ε)pχ −

f,χ
f
y2
)

= 0 . (6.14)

1This is the usual way to derive scaling solutions in the literature (see also [155–160]).
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We observe that the existence of a root requires the metric function f and
the potential to share the same monotonicity in terms of χ. The previous
two equations combined determine all possible values of χ.

When pχ = 0, which implies that χ is at the minimum of its potential,
then (6.14) requires f,χ = 0 as well. In this case the slow-roll parameter
becomes equal to εV describing a gradient-flow (slow-turn) solution. If pχ
is non-zero, it is possible to express the slow-roll parameter in terms of pχ
and f,χ in Eq. (6.14), using y2 = 2ε and obtain

ε = 3pχ
2(ln f),χ + pχ

. (6.15)

This formula for ε will prove advantageous later.

6.2.2 Kinetic domination and de Sitter solutions

Slow-roll inflation takes place at the regime of potential dominance K �
V . The opposite regime, K � V , gives ε / 3 and it is not sustained
for potentials that support a slow-roll phase of inflation. It should be
stressed that kinetic domination may include infinite realizations, all of
which correspond to solutions with ε = 3. However, plugging ε = 3 into
the dynamical system (6.11) the terms involving derivatives of the metric
should be set equal to zero. Therefore, not every realization with ε = 3
is possible; for example, the frozen solution x = 0 requires f,χ = 0, while,
the solution y = 0 requires g,φ = 0. Similarly, for a cosmological constant
contraction with vi in the Klein-Gordon equations provides the evolution
equation of the kinetic energy

K = K(0)e−3N , (6.16)

independently of the field-space geometry, and the de Sitter solution is the
final state of the system. Note that the previous two solutions may describe
the future asymptotic behaviour of the system when no other frozen solution
is possible.

6.3 Stability criteria for frozen solutions

The stability of background solutions is determined by the eigenvalues of the
Jacobian matrix evaluated on the solution (see App. B.1 for more details).
For the potential (6.7) and the metric (6.12) the stability matrix of frozen
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solutions (excluding kinetic domination) becomes
−(3− ε+D) − 6Ω

3−ε
3(ε−1)Ω2g

3−ε + 2εf,χχ
fg − (3−ε)V,χχ

V g 0
Ω ε− 3 (3− ε)Ωg 0
1
g 0 0 0
0 1

f
Ωg
f 0

 , (6.17)

where we defined
D ≡ sgn(y)

√
2εg,φ

fg
, (6.18)

and expressed derivatives of f in terms of the turn rate according to
Eq. (4.28). Since one column is zero then at least one eigenvalue is zero.
This is a reflection of our requirement that the solution can be defined for
every N , and subsequently for every φ, as the two are linearly dependent.
To find the eigenvalues we will calculate the characteristic equation of the
Jacobian matrix

λ4 + λ3(6− 2ε+D) + λ2
[
(3− ε)(3− ε+D) + M2

H2

]
+ λ(3− ε)M

2

H2 = 0 ,

(6.19)
with the additional definition

M2 ≡ V,χχ
g2 + 3Ω2H2 − 2f,χχ

fg2 εH2 . (6.20)

The non-zero eigenvalues are then

λ1 = 3− ε , (6.21)

λ± = −1
2

(
3− ε+D ±

√
(3− ε+D)2 − 4(M/H)2

)
. (6.22)

A sufficient condition for the non-positivity of the eigenvalues is to demand
(see also App. B.2)

3− ε+D ≥ 0 , M2 ≥ 0 . (6.23)

For a frozen solution that describes kinetic domination the stability
matrix becomes 

0 0 1
f 0

0 0 0 1
g

0 0
√

6
(√

6 + s pf

)
0

0 6f,χχ
fg s

√
6pχ
g −s

√
6g,φ
fg

 , (6.24)
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assuming x = 0 which as was explained earlier forces f,χ = 0 as well, and
defining for convenience s ≡ sgn(y). The non-zero eigenvalues are

λ1 =
√

6
(√

6 + s
p

f

)
, (6.25)

λ± = −
√

3
2
sg,φ ±

√
4ff,χχ + g2

,φ

fg
, (6.26)

and the eigenvalues are non-positive when∣∣∣∣ pf
∣∣∣∣ > √6 , pg,φ < 0 , f,χχ < 0 . (6.27)

To better illustrate the stability conditions of this section we will examine
some familiar cases in Sec. 6.4 and provide some more physical insight in
Sec. 6.7.

6.4 Examples

6.4.1 Models with one integral of motion

When the mini-superspace Lagrangian is independent of one coordinate
then the corresponding canonical momentum is a constant (integral) of
motion. The cyclic variable will not affect the dynamics and, hence, the
inflaton can not be identified with the isometric field. Therefore, both the
metric and the potential should depend only on the inflaton

ds2 = dφ2 + g(φ)2 dχ2 , V = epφ , (6.28)

and the dynamical system simplifies to

φ′ = y , (6.29)

χ′ = x

g
, (6.30)

y′ = −(3− ε) (y + p)− g,φ
g
x2 , (6.31)

x′ = −
(

3− ε+ g,φ
g
y

)
x . (6.32)

We discard the second equation and then study the reduced 3× 3 system.
Since inflation proceeds along φ, a frozen solution is (y, x) = (−p, 0),

which exists for every metric function g and is defined for |p| <
√

6. The
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x′ equation takes the simple form x′ = −Ax where A is exactly the term
3 − ε + D derived in Eq. (6.23). Its sign determines the growth or decay
of linear perturbations δx around the x = 0 solution. With ε = εV the
turn rate is zero and the mass term of Eq. (6.20) is identical zero, which is
understood as a consequence of the shift symmetry in χ. The turn rate for
this case is zero and dynamics is essentially single-field.

Similarly, the kinetic solution exists for every p and it is stable when
|p| <

√
6 and pg,φ < 0.

6.4.2 Models with a field space isometry

Excluding the existence of an integral of motion we increase the complex-
ity of the problem by assuming a field-metric isometry and a potential
depending on both fields. In contrast to the previous subsection, inflation
can proceed along either the isometry or the orthogonal (to the isometry)
field.

In the first case, we assume that the metric is shift symmetric in χ2

ds2 = dφ2 + g(φ)2 dχ2 , V = h(χ)epφ , (6.33)

the normalized Killing vector is ki = (0, 1/g), while the vector orthogonal
to ki is bi = (1, 0). The two normalized velocities represent the projections
of the velocity vector along and orthogonal to the Killing vector

x = kivi , y = bivi . (6.34)

Eq. (6.14), which determines the possible values of the orthogonal field,
requires pχ = 0 and so the isometry field should be frozen at a critical point
of h. As a result ε = εV and the turn rate vanishes resulting to single-field
dynamics similar to the previous subsection. The condition M2 > 0 gives
h,χχ > 0 and the critical point should be a minimum, as expected. The
other condition relates the gradient of the potential with the monotonicity
of the metric function through the relation

3− ε+D > 0⇒ p2 + 2pg,φ
g
− 6 < 0 . (6.35)

This condition is satisfied for p belonging to the interval between the two
roots

−

√
6 +

(
g,φ
g

)2
− g,φ

g
< p <

√
6 +

(
g,φ
g

)2
− g,φ

g
. (6.36)

2Eq. (6.33) describes the most general form of a metric with one isometry (see
App. B.3.
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Moreover, the requirements for stable kinetic solutions are the same as in
the previous subsection.

Turning to the second possibility, we identify the inflaton with the isom-
etry field

ds2 = f(χ)2 dφ2 + dχ2 , V = h(χ)epφ . (6.37)

Likewise, the normalized Killing vector is Ki = (1/f, 0), while the vector
orthogonal to it is Bi = (0, 1) and the two normalized velocities are

x = Bivi , y = Kivi . (6.38)

1. When pχ(χ0) = 0 it is also required that f,χ(χ0) = 0 and the or-
thogonal field is stabilized at a minimum of its potential, effectively
describing a single-field model. The condition for stability is then
|p|/f(χ0) <

√
6 and if violated the system departs to kinetic domina-

tion.

2. Now we will examine the case pχ(χ0) 6= 0. Due to the frozen condition
χ′ = 0, the slow-roll parameter ε receives contribution only from φ
and hence ε < εV . This implies that the turn rate will be non zero
and so motion can be strongly non-geodesic. Since g = 1, D is zero
and the first condition of (6.23) is trivially satisfied, while M , after
some algebra, becomes equal to the effective mass on super-Hubble
scales (defined in Eq. (4.59)). The condition for stability is again
p/f(χ0) <

√
6 but with the difference that is always satisfied given

that Eq. (6.14) has a solution. To show this we use Eq. (6.15) and
note that the stability condition yields∣∣∣∣ p

f(χ0)

∣∣∣∣ < √6⇒ pχ
2(ln f),χ + pχ

< 1 , (6.39)

which holds because pχf,χ > 0 ( in order for Eq. (6.15) to be solvable).
Therefore, frozen solutions with non-vanishing turn rate are always
stable when they exist, and subsequently, kinetic domination is always
unstable. We will show later that most novel solutions that were
discovered recently belong to this class.

6.5 Field spaces with enhanced isometries
In the previous sections we imposed the frozen coordinate condition in order
to derive consistent solutions different than de Sitter or kinetic domination.
For generic functions f and g scaling solutions with x, y 6= 0 are in general
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inconsistent because the Christoffel terms are field dependent and vary
during the evolution; however, in two special cases the dynamical system
can be reduced from four to two equations because the Christoffel terms
become constants.3

6.5.1 Euclidean space

When the metric is Euclidean the reduced dynamical system reads

y′ = −(3− ε) (y + pφ) ,
x′ = − (3− ε) (x+ pχ) .

(6.40)

For a product-exponential potential both pφ and pχ are constant, and the
scaling solution is (y, x) = (−pφ,−pχ) which is seemingly different than
the frozen solution assumed at the beginning of the Sec. 6.2.1. Under an
orthogonal rotation of x and y (similar to the various transformations used
in models of assisting inflation [155,161])(

z
w

)
=
( pφ

p −pχ
p

pχ
p

pφ
p

)(
y
x

)
, (6.41)

with p =
√
p2
χ + p2

φ, the dynamical system is transformed to

z′ = −(3− ε) (z + p) ,
w′ = − (3− ε)w ,

(6.42)

which supports a scaling solution (z, w) = (−p, 0). By performing an isom-
etry transformation we achieved to map the original solution into a frozen
type one.

6.5.2 Hyperbolic space

For the hyperbolic space in the parameterization g = eφ/L the ratio g,φ/g
is constant. For a single-field exponential potential the dynamical system
becomes

y′ = −(3− ε) (y + p) + 1
L
x2 ,

x′ = −
(

3− ε+ 1
L
y

)
x ,

(6.43)

admitting three solutions:
3Even though we can not exclude other combinations of potentials and metrics that

yield solutions with x, y 6= 0, the two examples in this section were the only results of
our extensive investigation.
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1. The gradient solution,

(y, x)gr = (−λ, 0) , (6.44)

where motion is aligned with the potential gradient flow. It is stable
provided

−
√

6 + 1
L2 −

1
L
< p <

√
6 + 1

L2 −
1
L
, |p| <

√
6 . (6.45)

2. The kinetic solution, given as

(y, x)kin =
(
±
√

6, 0
)
, (6.46)

and which is stable for |p| >
√

6 and p/L < 0 .

3. The hyperbolic solution has y, x 6= 0

(y, x)hyper =

− 6
2
L + p

,±

√
6
√
p2 + 2

Lp− 6
2
L + p

 , (6.47)

and exists provided one of the following two relations is satisfied

p > pcrit,1 = − 1
L

+
√

6 + 1
L2 , (6.48)

p < pcrit,2 = − 1
L
−
√

6 + 1
L2 , (6.49)

(and so it requires pL > 0). Interestingly, the region of stability co-
incides with the domain of definition for this solution. To show this
we can calculate the eigenvalues as usual but since they lead to com-
plicate expressions we will instead use the Hurwitz-Routh stability
criterion (see App. B.2) to draw conclusions about their real part.
The characteristic polynomial for this problem is

λ2 + 6
2 + Lp

λ+ 6p
2 + 2p/L− 6

2 + Lp
= 0 , (6.50)

and so in order for this to be positive definite we require every coeffi-
cient to be positive. The values of p and L for which both eigenvalues
have non-positive real part coincides with the domain of definition of
the solution (6.47) as well as the values for which the gradient and
kinetic solutions are both unstable.
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Figure 6.1
Left: The bifurcation diagram for the system of Eqs. (6.43) on a hyperbolic space
f = Leρ/L for a shift-symmetric potential with pφ = 0. The red and blue curves

correspond to the values of x and y respectively, as a function of pρ, at the various
critical points. Solid (dashed) lines correspond to stable (unstable) solutions. We see
that for large values of the potential steepness pρ the only stable solution is Eq. (6.47).

Right: The same bifurcation diagram given as a curve on the (x, y) plane.

At the critical value pcrit,1 or pcrit,2 there is a transition between the
gradient flow and the hyperbolic solution. This is depicted at the left
panel of Fig. 6.1. The curve x(p) has the typical form of a pitchfork
bifurcation, with bifurcation parameter the gradient p. When the
gradient exceeds the critical value pcrit, the orthogonal velocity x will
settle at one of the two roots, depending on the sign of initial velocity
χ′.

Remarkably, ε for the hyperbolic solution is given by

ε = 3pL
2 + pL

, (6.51)

which has the same form as the expression for the slow-roll parameter of
frozen solutions given by Eq. (6.15). Prompted by this fact and our earlier
investigation in flat space we will attempt to perform a transformation
related to the isometries of the hyperbolic space and bring this model into
a form that supports a frozen-type solution.

6.5.3 Relation between hyperbolic and frozen solutions

Our guiding principle will be the possible reparametrisations of the hyper-
bolic space, which can be found for example in Refs. [140, 162]. We start
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with
ds2 = L2 dτ dτ̄

(Im τ)2 , (6.52)

where L =
√

3α/2, and then choose τ = φ̃ + iLe−χ̃L in order to describe
the axion-dilaton system. This leads to the field-space line element

ds2 = dχ̃2 + e2χ̃/L dφ̃2 . (6.53)

By choosing an alternative coordinate basis τ = eZ = eX(cosY + i sinY )
we can easily rewrite the metric as

ds2 = L2

sin2 Y

(
dX2 + dY 2

)
. (6.54)

We now canonically normalize one of the two variables, by choosing

χ = L ln
[
tan

(
Y

2

)]
, φ = LX , (6.55)

leading to
ds2 = dχ2 + cosh2

(
χ

L

)
dφ2 , (6.56)

which manifests the isometry explicitly. Note that although both diagonal
metrics define a hyperbolic space with the same Ricci curvature scalar, the
manifest isometry direction (Killing vector) is different for the two parame-
terization. Equating the two expressions for τ provides the transformation
rule between the coordinate systems

φ̃ = − tanh
(
χ

L

)
eφ/L , eχ̃/L = Le−φ/L cosh

(
χ

L

)
. (6.57)

Following the same transformation, we re-write the potential in the new
basis {χ, φ} as

V (χ, φ) = V0

[
cosh

(
χ

L

)]pL
e−pφ . (6.58)

This potential has the form of Eq. (6.7) and, thus, allows for a frozen
solution. It is straightforward to check that the time evolution of the various
coordinates based on the hyperbolic and frozen solutions respectively are
related to each other by the above described coordinate transformations.

In this coordinate system, Eq. (6.14) determines the value at which χ
stabilizes

p

[
cosh

(
χ

L

)]−2
tanh

(
χ

L

)[
p2 + 2 p

L
− 6 cosh2

(
χ

L

)]
= 0 . (6.59)
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The slow-turn solution takes place at χ = 0, the minimum of V in the χ
direction, and hence ε = εV . For χ 6= 0 an extra pair of roots exist provided

cosh2
(
χ

L

)
=
p2 + 2 pL

6 > 1 , (6.60)

recovering the condition (6.35).

6.6 Bifurcations in scaling solutions
When a dynamical system depends continuously on some parameters then
stability of its critical points may depend on the values of those parameters.
More specifically, variation of the parameters may alter the stability prop-
erties of certain critical points or it can lead to the creation (annihilation)
of critical points with different stability properties.

Specializing to one dimension

ẋ = f(x, a) , (6.61)

a necessary (but not sufficient) condition for the existence of a bifurcation
at a critical point located at x = 0 and for the bifurcation parameter acr = 0
is [163,164]

f(0, 0) = 0, ∂f

∂x
(0, 0) = 0 . (6.62)

The next-to-leading terms in the Taylor expansion near the critical point
will determine the type of bifurcation:4

• if ∂xxf(0, 0) 6= 0 and ∂xaf(0, 0) 6= 0 then a transcritical bifurcation
occurs for a = 0. The normal form of equations around the critical
point is

ẋ = c1ax+ c2x
2 . (6.63)

• if ∂xxf(0, 0) = 0 instead, but ∂xaf(0, 0) 6= 0 and ∂xxxf(0, 0) 6= 0, then
a pitchfork bifurcation occurs for a = 0. Similarly, the normal form is

ẋ = c1ax+ c2x
3 . (6.64)

There are two types of pitchfork bifurcations depending on the sign
of c2. In the supercritical case, c2 < 0, a stable critical point becomes
unstable and two new stable points are created. The subcritical case,
c2 > 0, two unstable critical points are annihilated and a stable crit-
ical point becomes unstable.

4With a redefinition of x the constant c2 can be set to ±1, while c1 can be absorbed
in the definition of the bifurcation parameter.



6.6 Bifurcations in scaling solutions 87

An example of the first kind is the exchange of stability between the
solution v = −p and the kinetic solution for one field when p =

√
6. Trans-

lating the critical point at the origin by defining z ≡ v + p and changing
the bifurcation parameter to k ≡ p−

√
6 Eq. (6.4) becomes

z′ =
√

6kz +
√

6z2 +
(1

2k
2z + kz2

)
. (6.65)

Three remarks are in order: there are no first order terms in either k or
z; the second order terms are exactly those mentioned above; the terms in
parenthesis are higher order. Therefore, a transcritical bifurcation happens
at p =

√
6.

An example of the second kind is the bifurcation of the normalized
velocity x in the hyperbolic problem (6.43). After a similar coordinate
translation the reduced two-dimensional system can be transformed to

z′ = x2

L
− 1
L

(√
1
L2 + 6− 1

L

)
z +

(√
1
L2 + 6− 1

L

)
kz (6.66)

+ 1
2
(
k2 + x2

)
z −

(√
1
L2 + 6− 1

L
+ k

)
z2 + z3

2 ,

x′ = x

√
1
L2 + 6 (k − z) + k2x

2 − kxz − x3

2 , (6.67)

k′ = 0 , (6.68)

where the last equation increases the dimension of the system in order to
study the bifurcation with centre manifold techniques. Parametrizing the
stable direction in terms of the centre manifold variables z = z(x, k) the
chain rule yields

z′ = x′
∂z

∂x
, (6.69)

with ∂z
∂x(0, 0) = ∂z

∂k (0, 0) = 0. Thus, the lowest order terms in the Taylor
expansion of z are quadratic

z = c11x
2 + c12xk + c22k

2 + · · · . (6.70)

Since z is at least second order in terms of x,5 centre manifold dynamics
to lowest order is governed by

x′ = xk

√
1
L2 + 6− x3

2 +O(x4) , (6.71)

5Close to the critical point x ∼
√
k, so k is of order x2.
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and a pitchfork bifurcation happens at (x, k) = (0, 0).
For frozen solutions with an isometry, a bifurcation is possible if f,χ

and pχ share a common root which without loss of generality we consider
to be at χ = 0. Diagonalizing the system the zero eigenvalue occurs for the
variable

z = χ+ x

3− εc
, (6.72)

while the other two variables are x/(3 − εc) and w = y − pφ/f(0). The
equation of motion for z is given by

z′ = x

(
1− 3− ε

3− εc

)
− V ,χ

eff , (6.73)

where V ,χ
eff is the effective gradient introduced in [123] and will be exten-

sively studied later in Ch. 7. As usual we consider x and w to be quadratic
functions of z and the bifurcation parameters and the first term of Eq (6.73)
is at least 4th order. Therefore, close to the critical point V ,χ

eff determines
the dynamics of the centre manifold. Expanding around z = 0 we obtain
to lowest order

z′ = −
k +
√

2εc(p(1) −R)
∣∣∣
χ=0

w

3− εc
z+

1
3− εc

(
−R

2εc
4 − 1

6(3− εc)p(3) + 1
3
f (4)

f
εc

) ∣∣∣
χ=0

z3 ,

(6.74)

w′ = −(3− εc)
(
w +

√
2εc
4 R

)
z2 , (6.75)

where we omitted the equation for x as it does not affect the equation of the
centre manifold. Since z′ is at least 3rd order in z the quadratic coefficient of
w(z) should cancel the second term of Eq. (6.75) and so w(z) = −1

4
√

2εcR.
Substituting back to Eq. (6.74) we finally obtain the equation of the centre
manifold

(3−εc)z′ = −kz+
(

2p(1) − 3R2εc
4 − 1

6(3− εc)p(3) + 1
3
f (4)

f
εc

) ∣∣∣
χ=0

z3 , (6.76)

and a supercritical pitchfork bifurcation occurs for k = 0. This equation
is exactly the same as the expansion of V ,χ

eff around χ = 0 up to 3rd order
when we have expressed every variable in terms of χ.
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6.7 Comparison of different stability criteria

In Sec. 6.3 we investigated the stability of frozen solutions and derived
the conditions (6.23) that determine when a solution will be stable. We
observe that the effective mass of the orthogonal perturbation on super-
Hubble scales, given in Eq. (4.59), is not always present in the stability
criteria. Positivity of the effective mass has been considered the standard
criterion of background stability for most recent novel models in non-trivial
field manifolds with an isometry (see the extensive list in the next sec-
tion), as well as in works which claim geometry-independent conclusions,
e.g. [92,100]. As we saw in Sec. 6.4.2, for problems with an isometry in the
inflationary direction the condition µ2

s > 0 becomes necessary and sufficient
for background stability. We can thus trace the potential disagreement in
all other cases to the fact that the orthogonal perturbation is not canon-
ically normalized. Notice that in the derivation of the stability criteria
we calculated how ‘bare’ orthogonal perturbations δχ and δ(gχ′) evolve,
whereas the adiabatic/entropic decomposition uses the ‘normalized’ per-
turbations Qs = gδχ, Q′s = (gδχ)′. In order to understand which method
gives the correct result it is useful to review the notion of stability on a
multi-dimensional curved scalar manifold.

To check the stability of a particular solution (e.g. φisol) one has to study
the eigenvalues of the Jacobian matrix (or the local Lyapunov exponents)
evaluated on that solution

(δxi)′ = J ikδx
k . (6.77)

If every exponent is negative then the system converges to φisol. The case
of zero eigenvalues is more intricate because stability will be determined
by higher order terms. On the contrary, a positive exponent indicates an
unstable direction and an overall unstable solution (with possibly chaotic
behaviour). An important note is that linearised stability gives information
only at a given point where the Jacobian matrix is evaluated. Thus, a small
perturbation will not evolve according to the linearised equation (6.77); the
Jacobian encodes information only for an infinitesimally small deformation,
not defined a priori. The previous consideration implies that an unstable
solution can also manifest an almost oscillating behaviour because higher
order terms can attract the system back to the critical point, in contrast
to the leading order terms.

In order to solve the linearised Eq. (6.77) we diagonalize the stability
matrix by considering J = O−1λO and define z ≡ Oδx. We then obtain
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a set of decoupled equations

z′ = λz ⇒ z = eλNz(0) , (6.78)

and the solution to the original equations is given by

δx = O−1eλNOδx(0) . (6.79)

If all eigenvalues are negative then the initial perturbations δxi(0) will
decay; more precisely, this means that for the particular solution under
consideration φisol there will be convergence (for instance in the L2 sense)
of the coordinates (and their derivatives) towards the assumed values:
{φi, (φi)′} → {φisol, (φi)′sol}. The rate of convergence is given by the magni-
tude of the corresponding eigenvalues. Therefore, every other function of
the phase space variables will converge as well, e.g. slow-roll parameters ε
and η.

Now let’s consider instead some linear combinations of the perturbations
yI ≡ f ikδxk for which the system reads

(yi)′ = J̃ iky
k , (6.80)

where J̃ is the new stability matrix. The solution is similarly found by
diagonalization of the new ‘stability’ matrix

y = Õ−1eλ̃NÕy(0) . (6.81)

Knowledge of the eigenvalues of J̃ provides no information about the eigen-
values of the original matrix as the two are not related via a similarity
transformation. As an example, we assume that y’s are chosen such that
A = (y1)2 + (y2)2 = Gijδx

iδxj . If A is decreasing, due to negative eigen-
values, then we showed that the norm of the perturbations vanishes. This
is what one might expect as the definition of stability for a dynamical sys-
tem involving vector quantities on a manifold. Nevertheless, this type of
stability does not guarantee that other phase space functions converge as
well, which is why studying perturbations in the adiabatic/entropic does
not always give the correct conclusion about the homogeneous equations.

A coincidentally correct application of the effective mass criterion for
background stability happens for the hyperbolic problem. Even though the
‘orthogonal’ field of the gradient-flow solution is not canonically normalized,
the sign of µ2

s is sufficient to prove stability because 3− ε+D ∝ µ2
s. Note

that this is expected because in Sec. 6.5.3 we proved that it is possible to
bring the hyperbolic solution into a frozen-type one for which M = µs,
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and we expect stability conclusions to be independent of the particular
coordinate system in use. For any other choice of the field-metric function
g of (6.28) the quantity 3− ε+D is not related to the effective mass.

Because of the previous considerations, it is possible to find stable so-
lutions with µ2

s < 0 or unstable solutions with µ2
s > 0. We can verify this

using the ‘minimal’ field-space metric that was considered in the original
geometrical destabilization scenario [87] but with an exponential potential

ds2 = dφ2 +
(

1 + 2φ
2

L2

)
dχ2 , V = epφ . (6.82)

The stability criterion (6.23) determines which values of p give rise to stable
solutions

0 < p <

√
6 +

( 2φ
1 + 2φ2

)2
− 2φ

1 + 2φ2 . (6.83)

Note that for negative values of φ the r.h.s. is greater than
√

6 and hence
the gradient flow solution becomes stable for any value of p <

√
6 (see left

panel of Fig. 6.2). For the same values of p, the effective mass is equal to

µ2
s

H2 = p
2
(
6− p2)φ3 − L2 (2p− (6− p2)φ)

(L2 + 2φ2)2 , (6.84)

which is positive for 0 < φ+ < φ and negative for φ < φ− < 0, and
the two values φ± depend on p, L. Considering p = L = 1 the effective
mass becomes negative for φ < 0, while motion is stable (see left panel of
Fig. 6.2).

Finally, it is worth wondering what is the fate of the system when the
frozen solution is unstable. If a stable kinetic solution exists then the system
will depart to kinetic domination. All other cases require examination
of the behaviour of the system at the boundary of the field space. For
example, a de Sitter state (x = y = 0) can be supported as a limiting case
on the boundary of the field space even though the same solution may be
incompatible in the bulk of space, as it requires pχ = pφ = 0. When neither
of the previous is possible the system is doomed to follow a never-ending
oscillatory, possibly chaotic, motion. This is depicted at the right pannel
of Fig. 6.2 for a toy model with

V = (1 + 0.05χ2)epφ , ds2 = dφ2 + e−φ
2/8 dχ2 . (6.85)

The solution is clearly unstable while its effective mass is positive. A com-
plete description of asymptotic states for scaling solutions lies beyond the
scope of this thesis.
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Figure 6.2
Left: Evolution of ε for the model (6.82) for negative (blue line) or positive (dashed

orange line) initial φ′.
Right: Evolution of ε for the model (6.85). The system quickly becomes stiff due to

rapid oscillations.

6.8 Relation to inflationary models
Now, we are able to link scaling solutions to the novel behaviour found in
recent studies. An example that is close to the scaling solutions presented
in Secs. 6.4.1 and 6.5.2 has been coined “hyperinflation” [147] and was
studied in e.g. [99, 148]. The field-space has constant negative curvature,
and is written in global coordinates as

ds2 = dρ2 + L2 sinh2
(
ρ

L

)
dφ2 , (6.86)

where ρ, φ are radial and angular-like variables respectively. Note that the
metric function f asymptotically behaves as an exponential for ρ� L. The
late-time solution of equation (6.47) for this choice of metric can be written
as

ρ̇ ≈ − 3HL
coth

( ρ
L

)
+ 1

2pρL
. (6.87)

For large field-space curvature L � 1 at ρ � L the second term in the
denominator is subdominant and, thus, the ‘radial’ velocity becomes ρ̇ ≈
−3HL which is the expression given for this model in Refs. [147, 148].
Moreover, the steepness condition for the potential pρ > 3L corresponds to
the small L limit of Eq. (6.48).

The stability of the hyperbolic solution with both positive and nega-
tive L was studied in the “ultra-light axion” scenario of [165] based on the
effective mass criterion µ2

s > 0. Although this method gives the correct
result for this particular problem (for reasons explained in Sec. 6.7) it pro-
vides inconclusive arguments when e.g. the metric f = A−e

−φ/L +A+e
φ/L
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is considered. In this case, it was found numerically that the background
solution converges to a geodesic, while the effective mass is strictly nega-
tive. This was an example of a scaling solution displaying the “geometrical
instability of ultra-light fields” that was pointed out in [166] and can be
explained when the correct stability criteria are taken into account.

Models that are close to frozen solutions described in Sec. 6.4.2 include
angular [106], sidetracked [154], hyperinflation [147] (after the coordinate
transformation), orbital [167, 168] and the helix model [101]. Regarding
background evolution these models can be cast in different classes depend-
ing on the number of late-time frozen solutions of Eq. (6.14) and most of
them will asymptote to one frozen solution. Sidetracked-like scaling mod-
els exhibit pitchfork bifurcations when certain parameter values exceed a
critical value. We will discuss bifurcations in more detail in Ch. 7.

To complete the discussion, we mention the case of an isometry and
infinite solutions of (6.14). This set-up was investigated in Refs. [169, 170]
with emphasis on the case of massless isocurvature fluctuations, µ2

s = 0.
It turns out that there is a shift symmetry in the corresponding EFT of
fluctuations and thus this was coined as “shift-symmetric orbital inflation”.
By using a product-separable potential with exponential dependence on the
angle V (φ, ρ) = h(ρ)epφφ and demanding that scaling solutions exist for all
values of the radius ρ and any form of the metric function f(ρ), Eq. (6.14)
can be integrated to give

h(ρ) = 1−
p2
φ

6f2(ρ) . (6.88)

Hence, by choosing the above specific relation between the metric and the
potential, a scaling solution exists for any value of ρ. Trajectories 6 are
related by a shift symmetry ρ→ ρ+ c and by using this form of the poten-
tial, the mass M in Eq. (6.20) is zero. This was derived in Ref. [169] using
the different perspective of the Hamilton-Jacobi formulation with an angle-
dependent Hubble function. The trajectories arising in this context can
thus be seen as frozen solutions with the special property of having mass-
less isocurvature fluctuations (in the superhorizon limit). Note that unlike
other cases with a zero eigenvalue this system leads to a non-diagonalizable
Jacobian matrix and, thus, stability conclusions cannot be drawn since the
usual theorems do not apply.

6The exact construction of the potential relies on a multi-valued function of the angle,
resulting in a “corkscrew” structure.



94 Scaling attractors



7
The effective potential of

multi-field models

In this chapter we continue our investigation on the attractor
behaviour of various models in the literature. We construct a
manifestly covariant expression that describes the late-time so-
lution of every recent proposal. Next, we demonstrate the role of
an effective potential whose critical points determine the num-
ber of different late-time solutions with particular emphasis on
bifurcations between different solutions. This chapter largely
follows the publication [171] with the section 7.1.2 rewritten.

95
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7.1 Single-degree evolution

7.1.1 Late-time dynamics

The ‘typical’ evolution of many multi-field inflationary models that achieve
a notion of initial conditions independence consists of an early period of
multi-field behaviour and a late period of single-clock inflation. More pre-
cisely, we can distinguish between three different phases of evolution:

1. Starting with random initial conditions the accelerations quickly dampen
and the system approximately evolves on a reduced hypersurface of
N dimensions.

2. Fields evolve on that hypersurface towards their minima, but not at
the same rate; in particular, ‘heavier’ fields decay faster.

3. A single degree drives evolution.

An intuitive way to understand the different stages is to make the analogy
with parachute fall. During the fall an observer is subject to accelera-
tion/deceleration until his/her velocity reaches a critical value, due to the
tug of war between the gravitational force and the air resistance. In the
ideal case of a constant gravitational field and a friction force proportional
to the velocity, the terminal velocity is constant and proportional to the
mass of the falling observer. Therefore, more massive observers acquire
larger velocities.

Depending on the duration of each phase, the relevant part of the evolu-
tion (i.e. the last 50− 60 e-folds) is described by anM-dimensional hyper-
surface, whereM is the number of evolving degrees of freedom, or a single
trajectory if all other “orthogonal” fields have relaxed to their minima. The
first stage cannot be treated analytically, as it requires knowledge of the
full solution. For an initial kinetic energy that is not exponentially larger
than the potential energy this phase usually lasts a few e-folds. The second
phase can be treated analytically only for models following the gradient flow
because the coupled system of equations becomes (approximately) linear in
the velocities. For these models, this intermediate phase may account for
a significant part of the evolution and has been extensively studied in the
literature.

In the rest of this chapter we mainly focus on the last phase which can
be treated analytically for generic models not necessarily following the gra-
dient flow. To this end, we decompose the scalar fields Φk = (φ, χi), where
φ is defined as the (light) inflationary direction and χi are the orthogo-
nal fields that are (approximately) constant during inflation. This split is
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manifested in an appropriate coordinate system where (χi)′ ≈ 0 will hold
as an (approximate) solution. Specializing to N = 2 (though this argument
also holds for an arbitrary number of fields), under an appropriate coordi-
nate transformation the components of the velocity vector {(ψ1

sol)′, (ψ2
sol)′}

(which can be non-zero in general) can be mapped to {(φ1
sol)′, 0}.1 Since the

existence of an attractor solution is assumed, velocities are given as func-
tions of the fields, and the partial differential equation for the unknown
function φ2

∂φ2

∂ψ1 (ψ1
sol)′ +

∂φ2

∂ψ2 (ψ2
sol)′ = 0 , (7.1)

has the form of the advection equation with variable coefficients. This can
always be solved (for instance with the method of characteristics) and this
proves the existence of our coordinate construction.

This coordinate choice leads to 2

vk ≈ (v, 0, . . .) , (vk)′ ≈
( dv

dN + Γφφφv
2,Γiφφv2

)
, (7.2)

evaluated on that particular inflationary solution.3 We observe a particu-
larly striking separation of the consequences of prolonged inflation (ε′ � 1).
Along the inflationary direction GφφvDNv � 1, which through the equa-
tions of motion (4.4) yields v ≈ −(lnV ),φ. This implies that the inflationary
direction is subject to the usual slow-roll condition, where Hubble friction
is balanced by the potential gradient. For generic potentials consistency
of this solution requires the smallness of first and second slow-roll parame-
ters in the inflationary direction (presented in Sec. 4.3). In our coordinate
system the two conditions read:

1
2G

φφ
(
V,φ
V

)2
� 1 , Gφφ

V,φφ
V
� 1 . (7.3)

The situation is radically different for the orthogonal field directions.
By adapting our coordinates, we have defined these as stationary that can
have a non-vanishing covariant acceleration only when deviating away from
a geodesic. This introduces a (generalized) centrifugal force that is balanced

1Recall that the components of the velocity transform as (φisol)′ = ∂φi

∂ψk (ψksol)′.
2Note that the present construction differs from the adiabatic/entropic decomposition

discussed in Sec. 4.2 since the latter does not introduce a new coordinate system. Instead,
the adiabatic direction is related to our inflationary direction as σ̇2 = Gφφφ̇

2.
3While field-space manifolds with isometries provide natural choices for this

parametrization (e.g. [169]), we will later show that the presence of an isometry is not
necessary.
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by a potential gradient: for the stationary directions equations of motion
reduce to

V ,i
eff ≡ V

,i + Γiφφv2H2 ≈ 0 . (7.4)

We call this the effective gradient along the i’th direction in field space,
generalizing the two-field construction of Ref. [123]. Note that contrary
to the inflationary direction, consistency of these conditions imposes no
restrictions on V ,i (apart from having different signs with respect to Γiφφ).
As we will see later the magnitude of V ,i is related to the turn-rate ω.

Eqs. (7.4) should be seen as algebraic relations for the stationary fields
χi in terms of the inflaton field φ and its velocity v. The stationary fields
will adapt their values to balance the centrifugal and potential forces acting
on them, as in the gelaton model [123]. Therefore, at a given moment
during inflation, i.e. for a particular value of φ, one can view Eq. (7.4) as
the gradient of an effective potential, whose extrema fix the values of these
fields, akin to moduli stabilisation in string theory. When both terms in the
right hand side of Eq. (7.4) vanish separately, one has potential gradient
flow, which is by no means necessary in the multi-field case. For instance,
negative curvature tends to induce non-geodesic motion.

There is an attractive interpretation of the above condition when formu-
lated in phase space. The effective potential (7.4) coincides with the total
energy (and the Hubble parameter) as a function of the orthogonal field
values χi, for a given value of the inflaton φ and its conjugate momentum
πφ = Gφφφ̇. In other words, the space-time metric and the inflaton field are
assumed as a fixed time-dependent background, and the orthogonal fields
are subject to the energy extremization condition

∂i

(1
2G

φφ(φ, χi)π2
φ + V (φ, χi)

)
= 0 . (7.5)

The orthogonal field dependence of the first term comes in via Gφφ which
for negative curvature manifolds decreases as one moves away from the
geodesic solution with ∂iGφφ = 0. This allows for a competition between
an increase in potential and a decrease in kinetic energies, providing an
intuitive interpretation of geometric destabilization [87, 166, 172, 173] as a
simple competition of energy contributions.

7.1.2 A coordinate invariant form of the attractor solution

We now derive a coordinate independent expression for the attractor so-
lution in the case of two fields consisting of covariant derivatives of the
potential. We find it easier to work in the kinematic basis, so first we need
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to express the components of the gradient and Hessian in that basis. They
are given up to η and η′ terms as follows (the reason why we omit these
terms will become clear in the following)

VA
V

= −
√

2ε
(

1
Ω

3−ε

)
,

VAB
V

=
(

Ω2

3−ε + ε −Ω + 2εΩ
3−ε

−Ω + 2εΩ
3−ε wnn

)
, (7.6)

where we used the notation VA ≡ V,iE
i
A, VAB ≡ V;ijE

i
AE

j
B and wnn ≡

Vnn/V (recall that EiA is the Jacobian matrix of the transformation from the
coordinate to the orthonormal basis). Next, we calculate three curvature
invariants that enable us to express the components of the Hessian in terms
of them:

1. The norm of the potential gradient is

GijV,iV,j
V 2 ≡ 2εV ≈ ε

(
1 + Ω2

(3− ε)2

)
, (7.7)

where the latter expression is (4.29) with η ≈ 0. As a side-note, the
Swampland conjectures constrain the norm of the potential gradient
and thus the above equation shows how one can have slow roll inflation
with ε� 1 on a steep potential with εV ≥ O(1).

2. The second curvature invariant is given by

c1 ≡
V ,iV;ijV

,j

V 3 = 2ε
(

2ε+ wnn − 3 + 5ε
(3− ε)2

)
. (7.8)

3. The third curvature invariant is given by

c2 ≡
V ,iV;ijG

jkV;klV
,l

V 4

≈2ε
(

4ε2 + Ω2 (wnn − 3)2 + 6(wnn − ε)ε+ 17ε2

(3− ε)2 + 4ε2Ω4

(3− ε)4

)
.

(7.9)

Using the previous three quantities we find the following expression for ε

ε ≈ 2c2εV − c2
1

2(c2 − 4c1εV + 8ε3V )
. (7.10)

In case the denominator is zero we need to construct an alternative curva-
ture invariant. Our fourth and final curvature invariant is the trace of the
Hessian

d ≡ GijV;ij
V

≈ wnn + 2ε+ Ω2

3− ε . (7.11)
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Using the condition c2 − 4c1εV + 8ε3V = 0 in combination with the trace of
the Hessian we find two solutions for ε:

ε ≈ εV , ε ≈ 3εV
d− εV

, (7.12)

and we obtain either gradient flow or a solution of a different type.
Note, though, that our task to find an expression for the attractor

solution is not yet complete because the solution is given as a function
of the two fields, φ and χ. As we explained in the previous section, the
true attractor solution should consist of only one dynamical field, while the
second one should be given as a function of the inflaton. In order to obtain
the parametric relation χ(φ) we should construct a different expression for
ε and then equate the two. The only exception is the class of models with a
cyclic variable and in this case one expression for ε should suffice. Using d
and c1 in combination with Eq. (7.7) gives the following quadratic equation
for ε

(d− εV )ε2 − 1
2 (2εV (3 + d+ εV )− c1) ε+ 3ε2V ≈ 0 , (7.13)

with solutions

ε ≈
2εV (3 + d+ εV )− c1 ±

√
[2εV (3 + d+ εV )− c1]2 − 48εV (d− εV )

4(d− εV ) .

(7.14)
From these two roots we find that in most cases the negative root (and
hence the smallest value) accounts for the correct expression when the turn
rate is large (though we do not have a proof for this observation). Equating
the two expressions for ε provides the parametric relation χ(φ).

It is worth mentioning the two sets of assumptions we made to derive
the previous formula. Firstly, we neglected logarithmic prime derivatives
of various quantities (e.g. ε and Ω), as it allows us to neglect second order
time derivatives and subsequently make analytical approximations possi-
ble. The latter was assumed in the early works, such as Ref. [88], as a
definition of slow-roll, as well as in the derivation of the rapid-turn solution
in Ref. [100]. A discussion of the validity of this assumption was presented
earlier in Sec. 6.8, where various two-field models have been shown to be
approximated by scaling solutions with adiabatically changing parameters,
for which logarithmic prime derivatives are identical zero. Secondly, we
assumed that the magnitude of the tangential and orthogonal directions of
the potential (Vσσ/V , or equivalently Ω2, and wnn) are free parameters, but
non-negligible compared to η and (ln Ω)′. If this is not true one obtains the
slow-roll slow-turn approximation. Note that in the different steps to derive
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the solution every operation will be accurate up to corrections O(η, (ln Ω)′).
The solution reduces to the slow-turn limit when the curvature invariants
c1, c2 become of order O(ε, η). Here we need to make an important observa-
tion: the condition on the trace of the Hessian d = O(ε, η) is not mandatory
for the validity of the gradient-flow approximation and therefore, the slow-
turn limit might be different from gradient-flow (we will illustrate this point
later with an example).

We should point out that the turn rate calculated from the previous
solution is identical to the expression first given in Ref. [100]. To make the
comparison we will simplify the expressions (7.10)-(7.14) by considering
ε� 1 (that was assumed in that work) and obtain

ε ≈ εV −
c2

1
2c2

, (7.15)

ε ≈
2εV (3 + d)− c1 ±

√
[2εV (3 + d)− c1]2 − 48εV (d− εV )

4d . (7.16)

The turn rate was expressed in a basis defined from the normalized gradient
vector ui ≡ V ,i/

√
V ,kV,k and the vector orthogonal to it denoted by wi.

This local orthonormal basis yields the following decomposition for the
metric

Gij = uiuj + wiwj . (7.17)

With these definitions we can relate the curvature invariants with projec-
tions of the Hessian matrix along these vectors as

d = Vuu
V

+ Vww
V

, c1 = Vuu
V

, (7.18)

with Vuu ≡ V;iju
iuj and Vww ≡ V;ijw

iwj . The next step is to exchange ε
with the turn rate in Eq. (7.13) and obtain

Vww
V
− 9

Ω2
Vuu
V

= 3 + 1
3Ω2 . (7.19)

which is Eq. (12) of [100].
Now we will use three examples from the literature to demonstrate the

generality of our approach:

• Our first example is the multi-field alpha-attractor model of Ch. 5.
There are effectively three quantities in this model: the distance
from the boundary of the Poincaré disc, parameterized by 1 − r2,
the field-space curvature controlled by α and the mass ratio Rm, or
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equivalently the potential steepness along the angular direction V,θ/V .
Defining

f ≡ cos2 θ +Rm sin2 θ , p ≡ f,θ
f
, x ≡ 1− r2

α
, (7.20)

then expanding Eqs. (7.10) and (7.14) around small α we obtain the
following two expressions for ε

ε ≈ 1
12αp

2x2 and ε ≈ 3αx2(1 + p2)
36 + 8x . (7.21)

Equating both expressions yields

x = 18
p2 , (7.22)

which is identical to the parametric relation (5.14) derived in Sec. 5.2.3.
When p is small then using the first expression we obtain ε � εV
which results to moderate turn rate, while large angular gradient
yields ε ≈ εV and hence small Ω. Specifically for the latter, mo-
tion does not proceed along the potential flow, i.e. (φI)′ ∼ V ,I which
would result into boomerang-like curves (depicted earlier in Fig. 4.2),
but along the angular direction instead.4 Therefore, this slow-turn
solution is qualitatively different than gradient flow.

• Our second example is sidetracked inflation [154], originally formu-
lated on a negatively curved space and a sum separable potential

ds2 =
(

1 + χ2

L2

)
dφ2 + dχ2 , V = U(φ) + 1

2M
2χ2 , (7.23)

where U is a single field potential corresponding to a variety of small-
field inflationary models, including Starobinsky’s model and natural
inflation. The sidetracked phase succeeds the traditional slow-roll
solution, after geometrical destabilization occurs. Setting x = χ/L
and expanding around small L (which is equivalent to considering
large curvature) we obtain the following two expressions for the slow-
roll parameter

ε ≈ p2

2(1 + 2x2) and ε ≈ 3M2L2(1 + 2x2)
4V . (7.24)

4This can be deduced as follows: the requirement of one frozen field and one field in
slow roll combined with the solution ε ≈ εθ (where the latter denotes the θ part in the
definition of εV ), gives θ′ ≈ θ′SR and r′ ≈ 0. Thus, this particular slow-turn solution
belongs to the angular inflation regime.
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Under the additional assumption that the potential energy of the two-
field system is dominated by the energy of the inflaton, i.e. V ≈ U ,
then equating the two previous expressions yields

1 + 2x2 =
√

2
3
|U,φ|

ML
√
U
, (7.25)

which is the parametric relation given in Ref. [154].

• Our final example is hyperinflation [147], formulated on global hy-
perbolic coordinates (6.86) and a “spherically symmetric” potential
V = V (ρ). The Lagrangian of this model is shift-symmetric in θ and
hence we need only one expression for ε. Even though the numerator
of Eq. (7.10) is identically zero, ignoring the denominator does not
yield a consistent solution for ρ � L, because it becomes zero to
first order in the expansion parameters. Therefore, we have to use
Eq (7.12) to find ε (or the more complicated expressions (7.14)). We
obtain

ε ≈ 1
2p

2 or ε ≈ 3
2pL , (7.26)

where in the second equation we expanded around small L, recovering
Eq. (6.51).

7.2 Stability and bifurcations
The stability conditions for a general background solution are determined
by the eigenvalues of the full stability matrix spanned by the fields and
their velocities. In the cases of interest in this chapter, with ε′ � 1 and
χi ' constant, the stability criteria are given by the expansion of the
effective potential at quadratic order, i.e. ∂χV ,χ

eff , and an algebraic restriction
on ε (recall the analysis of Sec. 6.3). Since we substitute an approximate
solution the conditions listed below will be accurate to first order in the
slow-roll parameters.

To retain some analytical control we consider a more restricted version
of the two-field metric (6.12)

ds2 = Gφφ(χ) dφ2 +Gχχ(φ) dχ2 . (7.27)

The expression for the Ricci scalar of this manifold splits in two parts,
R = R(φ) +R(χ), parametrizing the derivative dependence on the two fields
(there are no mixed derivatives ∂φ∂χ). Motion along the φ direction is
stable, as long as

3− ε+
(
log
√
G
)′
> 0 , (7.28)
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where G ≡ det (GIJ). We will provide the physical interpretation later
using hyperinflation as an example. In addition, the effective mass (defined
as the linearization of V ,χ

eff ) reads

M2
eff = V,χ

χ + εH2R(χ) + 3V,χV
,χ

2εH2 . (7.29)

Since multi-field trajectories can deviate from the gradient flow it is impor-
tant to calculate the turn rate which for our choice of coordinates is given
as ω2 = V,χV

,χ/(2εH2).
An example with a single stable attractor is provided by the two-field

α-attractor model we studied earlier (and the closely related model of
Ref. [174]). It is straightforward to check that the effective gradient V ,r

eff
stabilizes the radius near the boundary of the Poincaré disc, leading to a
late-time attractor with non-vanishing turn rate, proceeding along a non-
geodesic direction in field space.

Turning to a second example, it was recently pointed out [135, 169]
that neutral stability can be achieved using the Hamilton-Jacobi formalism,
where the scalar potential is given in terms of the Hubble parameter by

V = 3H2 − 2H,iH
,i . (7.30)

This formalism has an exact first-order solution for the scalar velocities [61]
5

vi = −2H ,i/H . (7.31)

Upon adapting coordinates such that H = H(φ), one has a natural distinc-
tion between the inflationary and the stationary directions. Such trajecto-
ries may be (strongly) turning, however, as the Hubble gradient may differ
from the potential gradient. The latter will be non-vanishing if the metric
along the inflationary direction Gφφ depends on the stationary directions,
resulting in

V ,i = −2∂iGφφ(H ,φ)2 , (7.32)

which is equivalent to the vanishing of the effective gradient of Eq. (7.4).
The latter is therefore identically satisfied, leading to neutrally stable sta-
tionary points and hence flat directions in the effective potential and Hubble
parameter, which are directly related to the choice H = H(φ). This im-
plies that the field space is spanned by adjacent trajectories. One thus has
a convergence of the 2n-dimensional phase space of initial conditions to

5This can be seen as the cosmological analogue of the first-order equation that governs
AdS critical points and BPS domain walls [175,176].
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Figure 7.1
Various possible trajectories of the system evolving along φ at fixed values of χi.
Dynamical bifurcations during inflation correspond to transitions between different

trajectories.

the n-dimensional hypersurface that fixes the fields’ velocity but not their
positions.

For more general scalar potentials, the orthogonal directions will settle
at (one or more) extrema of Veff (see Fig. 7.1). The number and stability
properties of these extrema can change during inflation leading to bifur-
cations (presented in detail in Sec. 6.6). These bifurcations are elegantly
captured by Veff . We will illustrate this using two characteristic examples
from the recent literature.

7.3 Case examples

7.3.1 Sidetracked inflation

Arguably the simplest setting that displays the bifurcation phenomenon is
sidetracked inflation (7.23). In the original set up there is a transition from
the gradient flow solution to a non-geodesic solution. Using a model with
quadratic potentials and ‘minimal geometry’:

V = 1
2m

2φ2 + 1
2M

2χ2 , (7.33)

we will display the opposite phenomenon, i.e. transition from non-geodesic
to geodesic motion. As we will see, inflation takes place along φ and is thus
perfectly suited to the effective potential framework.

Let us first investigate the stability of the geodesic trajectory with
χ = 0. Particularly for quadratic potentials, both contributions to the
isocurvature mass are approximately constant and read

µ2 = M2 − 2m2

3L2 . (7.34)
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Therefore, the curvature destabilizes the geodesic solution for

L <

√
2m√
3M

. (7.35)

However, for
√

3ML .
√

2m, subleading corrections to the isocurvature
mass, consisting of the kinetic term for φ in the Hubble parameter, become
important and lead to bifurcations. In particular µ2

s|χ=0 < 0 at large φ
and it slowly increases as inflation proceeds along the geodesic, becoming
positive at

φ2
cr = 4m2

3(2m2 − 3L2M2) , (7.36)

where we have assumed φ > 1.
The subleading terms also determine the fate of the background trajec-

tory when the geodesic solution is unstable. In addition to a local max-
imum, the subleading terms induce two minima in the effective potential
at

χ2
±
L2 =

( √
2m√

3ML
− 1

)
, (7.37)

for φ� φcr, which is Eq. (7.25). The background trajectory will smoothly
transit from the early non-geodesic trajectory at χ± to the subsequent
geodesic phase at χ = 0. Fig. 7.2 shows the evolution of the effective
gradient V ,χ

eff and its zeroes as φ evolves, resulting in a pitchfork bifurcation.
Moreover, it is clear from the figure that the numerical trajectories converge
to the geodesic solution somewhat later; this can be understood as inertia
in the moduli system, and indeed the different trajectories only become
geodesic when µ2

s ' H2 rather than 0.

7.3.2 Hyperinflation

A second example displaying a similar phenomenon is hyperinflation. For
the simple example with the metric (6.86) and a quadratic potential

V = 1
2m

2ρ2 , (7.38)

the trajectory undergoes such a transition at ρ = 2/(3L). Remarkably,
one can bring both the slow-turn and the non-geodesic solutions to proceed
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Figure 7.2
Left: The effective gradient of sidetracked inflation with L = 0.0034, m = 1 and
M = 240 along the stationary direction χ for different values of φ, signalling the

existence of one or three points of V ,χeff = 0. The stability of each is determined by the
slope of the curve.

Right: The corresponding bifurcation diagram. The black-dotted curve are the
non-geodesic solutions to Eq. (7.4), while the coloured curves correspond to numerical

solutions of the background system.

along a single direction via the field redefinition

cosh
(
ρ

L

)
= cosh

(
χ

L

)
cosh

(
φ

L

)
,

cot θ = coth
(
χ

L

)
sinh

(
φ

L

)
,

(7.39)

leading to
ds2 = cosh2

(
χ

L

)
dφ2 + dχ2 . (7.40)

This maps any spherically symmetric potential V (ρ) onto a particular
V (φ, χ), providing all the necessary ingredients for realizing sidetracked
inflation along φ.6

Close to the geodesic solution (χ = 0), the scalar potential reads (as-
suming φ > L)

V = 1
2m

2φ2 + 1
2m

2 φ

L
χ2 . (7.41)

6By “sidetracked” we refer to models that admit one geodesic solution along the
minimum of the “heavy” field potential and two non-geodesic ones, generalizing the
specific models of Ref. [154].
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Left: The effective gradient for hyperinflation in the coordinates of Eq. (7.40) at
different φ-values with m = 1 and L = 0.01.

Right: The corresponding bifurcation diagram. The black-dotted curves are the
non-geodesic solutions to Eq. (7.4), while the coloured curves correspond to numerical

solutions of the background system.

The effective mass for motion along χ = 0 reads M2
eff = m2

L (φ − 2
3L),

becoming negative for φ < φcrit = 2/3L. At larger field values the geodesic
solution is stable as the orthogonal field is strongly stabilised, while it
becomes unstable at smaller field values. At this point, two new stable
non-geodesic solutions come into existence, thus making up a pitchfork
bifurcation [163] (see Fig. 7.3).

7.4 Comparison with literature

In Ref. [100] a unification scheme was considered for the non-geodesic phase,
based on the large turn rate of studied models. Stability of the solution
was shown using the perturbations’ equations in the adiabatic/entropic
decomposition and requiring µ2

s > 0 (recall that µ2
s is the isocurvature

effective mass defined in Eq. (4.59)). However, as has been pointed out in
the previous chapter and in Ref. [166], it is possible to have both a stable
homogeneous solution and unstable orthogonal perturbations, leading to
an apparent paradox. The resolution of this apparent paradox becomes
clear if we compare µs with the stability criteria we presented earlier, in
particular Meff

µ2
s = M2

eff −GχχΓφχχV,φ + εH2R(φ) . (7.42)
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Using χ′ ≈ 0, D =
(
log
√
G
)′

and

D′ ≈ 1
2
Gχχ,φφ
Gχχ

v2 − 1
2

(
Gχχ,φ
Gχχ

)2

v2 , (7.43)

εR(φ) = −1
2
Gχχ,φφ
Gχχ

v2 + 1
4

(
Gχχ,φ
Gχχv

)2

v2 . (7.44)

we can rewrite the previous in a more geometrical way as 7 :

µ2
s

H2 ≈
M2

eff
H2 − (3− ε+D)D −D′ . (7.45)

The two masses are equal when the metric has an isometry in the infla-
tionary direction, which is the case for the examples in [100]. Otherwise,
µ2
s and M2

eff can differ and even have opposite signs. While this might
sound surprising, the situation is similar to the familiar case of a spher-
ically symmetric quadratic potential in flat target space. In polar coor-
dinates Gχχ = φ2 and V = 1

2m
2φ2, inducing a difference between both

mass notions in (7.45). The effective mass vanishes, indicating a range of
neutrally stable trajectories on the attracting surface, while the isocurva-
ture mass is positive, corresponding to a decrease of the proper distance
between these trajectories, and a corresponding suppression of isocurvature
fluctuations, as one approaches the minimum at φ = 0.

The Hamilton-Jacobi formalism provides a clear illustration between the
two (effective and isocurvature) mass notions in the absence of an isome-
try. The discussion around Eq. (7.32) holds for any metric of the form of
Eq. (7.27) and thus generates an infinite set of adjacent, non-isolated crit-
ical points for the orthogonal fields. One can check that M2

eff = 0 for such
constructions, highlighting the flat directions, while the isocurvature mass
is proportional to the additional terms in (7.45). For example, by choosing

ds2 = ρ2 dθ2 +Gρρ(θ) dρ2 , V = m2

2

(
θ2 − 2

3ρ2

)
, (7.46)

the background trajectories of Ref. [169]

ρ = ρ0 , θ̇ = ±
√

2/3m/ρ2
0 , (7.47)

7An interesting parallel exists between Eq. (7.45) and Eq. (5) of [177] if one makes
the substitution D = −2hi/H. While both relations describe the mass of isocurvature
modes, they were each derived in a different context.
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carry over, while the isometry along θ is broken. One can check this by
examining the background equations of motion

θ̈ + 3Hθ̇ + 2
ρ
ρ̇θ̇ − 1

2
∂θGρρ(θ)

ρ2 ρ̇2 + 1
ρ2V,θ = 0 , (7.48)

ρ̈+ 3Hρ̇+ ∂θGρρ(θ)
Gρρ(θ)

ρ̇θ̇ − ρ

Gρρ(θ)
θ̇2 + 1

Gρρ(θ)
V,ρ = 0 . (7.49)

We can see that Eq. (7.47) satisfies the equations of motion, since on the
attractor ρ̇ = 0 the term Gρρ cancels out. The same holds for the slow-roll
parameter and the Hubble parameter, while the turn rate is affected by the
presence of Gρρ

θ′ = − 2
θρ2

0
, ε = 2

θ2ρ2
0
, H = mθ√

6
, ω2 = 2

3
m2

ρ2
0
Gρρ . (7.50)

While M2
eff = 0, signaling the existence of background trajectories for

any constant value ρ0, as long as Eq. (7.28) is satisfied, the isocurvature
mass µ2

s can be either stabilizing or tachyonic. In the special case of µ2
s =

0, isocurvature modes grow on super-horizon scales at a constant rate.
Combined with a constant turn rate, they continuously seed the adiabatic
modes outside the horizon, leading to predictions that mimic those of single-
field models [169]. To move beyond the case with an isometry, we choose a
negatively curved manifold with

Gρρ ∼ eθ/L , R = − 1
2L2ρ2 . (7.51)

Even though the curvature of this manifold (given in Eq. (7.51)) is singular
in the origin ρ = 0, we can still view it as holding for ρ > 0. For this
model, the potential given in of Eq. (7.46) is also singular at ρ = 0, so the
manifold must be smooth in the region of validity of the potential. The
isocurvature modes in this model exhibit richer phenomenology compared
to the flat metric case [169], where µs = 0. In particular, along the (neutral)
attractor at ρ = ρ0 = const. the isocurvature mass is

µ2
s

H2 = 1
L2θ2ρ4

0

(
3Lθρ2

0 − 1
)
. (7.52)

We see that µ2
s > 0 for θ > 1/Lρ2

0 and is negative otherwise. This means
that the behaviour of the isocurvature modes depends on the field-space
curvature and the initial conditions, since different ρ0 corresponds to dif-
ferent value of µ2

s. Furthermore, the character of the isocurvature modes
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Figure 7.4
Various dynamical quantities for the two models (7.46) with Gρρ = eθ (solid lines),

Gρρ = 1 (dashed lines) and initial conditions given as
{ρ, θ,

√
Gρρρ

′,
√
Gθθθ

′}init = {4, 4, 1.5, 1.5}.
Left: The velocities ρ′ (blue) and θ′ (orange).

Right: The slow-roll parameters ε (blue), ησσ (orange), turn rate Ω (red) and the
isocurvature mass-squared µ2

s (black). The effective mass for the second model reached
the precision accuracy and was omited.

can change during inflation, since θ is a monotonically decreasing function.
The different behaviour is shown in Fig. 7.4. Notice that for this model

ησσ = 6
3θ2ρ2 − 3 , (7.53)

and, hence, ησσ ≈ ε for θ2ρ2 � 1. It is worth relating µ2
s to Eq. (7.28),

which is a criterion for the existence of a stable solution with ρ̇ = 0. This
can be written as

3− ε+ d

dN
log
(√

G
)

= 1
Lθρ2

0

µ2
s

H2 −
2

θ2ρ2
0
> 0 , (7.54)

hence no stable background trajectory exists for µ2
s < 0.

7.5 A note on perturbations

Background trajectories with a non-zero turn rate can also affect the be-
haviour of fluctuations. If µ2

s > 0, then Qs → 0, allowing the co-moving
curvature perturbation R to freeze at some point after horizon crossing.
The moment of freeze-out is mostly determined by the magnitude of µ2

s/H
2.

If after horizon crossing orthogonal fields are still evolving, then the non-
uniqueness of the background trajectory is inherited by observables as well.
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Power spectrum of curvature perturbation for angular inflation with α = 1/600 and

mass ratio (m2/m1)2 equal to 9 (blue), 100 (red) and 225 (orange).

One then finds a range of possible values for {ns, r, ...}.8 Analytical esti-
mates can be constructed in the following way: on sub-Hubble scales one
can identify uncoupled perturbations by an appropriate time-dependent
rotation [122]; close and prior to horizon crossing, if the mass of isocurva-
ture perturbations on sub-Hubble scales m2

s is large enough then S will be
stabilized at a zero of its ‘effective gradient’ given by [89,123]

(
k2

a2 +m2
s

)
S + 2ωṘ = 0 . (7.55)

Substituting this solution into the equation for R provides an equation
similar to the one-field case but with a k-dependent sound speed. Note
that in general solving these equations is a model-dependent problem. For
example, in angular inflation with α � 1 when the ratio of the heavy to
light field is (m2/m1)2 . O(10), the curvature perturbation freezes shortly
after horizon-crossing; when the masses of the two fields differ significantly
then |β| � 1 and there can be substantial super-horizon evolution. Note
that in both cases the background trajectory is unique, given by minimizing
Veff , but perturbations behave differently, as shown in Fig. 7.5.

8Multi-field α-attractors are exceptions to this rule, because the leading order con-
tribution is independent of the specific initial state during gradient flow (see [146] and
Ch. 5.
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7.6 Concluding remarks
Multi-field models often display a strong attracting behaviour; orthogonal
fields are stabilised by their effective potential, consisting of potential en-
ergy and generalized centrifugal forces due to non-geodesic motion. This
can be interpreted as the (partial) minimisation of the total energy den-
sity given by the Hubble parameter as a function of the orthogonal fields
and is the analogue of moduli stabilization, albeit on a time-dependent
background. Moreover, as inflation proceeds, the stabilisation pattern can
undergo pitchfork bifurcations, with a stable minimum becoming unstable
with the simultaneous appearance of two new stable trajectories or vice
versa. The total number of stable minus unstable solutions remains con-
stant, characteristic of pitchfork bifurcations. This structure is reminiscent
of the waterfall transition in hybrid inflation [178].

We presented a unifying perspective on different scenarios of multi-field
inflation in curved geometries, based on the dynamical properties of the
inflationary evolution after the decay of the initial transient regime. While
angular inflation has a unique minimum of Veff , both sidetracked and hy-
perinflation exhibit dynamical pitchfork bifurcations. This instability is
therefore intrinsically of the same nature; analysing hyperinflation after
the coordinate transformation of Eq. (7.39) makes it a special case of side-
tracked inflation. This connects two models that were so far thought to be
distinct, thus underlining the unifying nature of our approach. Moreover, it
demonstrates that the conservation of angular momentum is not essential
to the bifurcation in hyperinflation.

Finally, we showed that the existence of an isometry along the inflation-
ary direction is not a necessary condition for the existence and stability of
inflationary attractors with a non-zero turn-rate. By providing a simple
generalization of shift-symmetric orbital inflation [169], we constructed a
model in which the effective massMeff is identically zero for all members of
a continuous family of trajectories with a constant radius, thus extending
the notion of a neutrally stable attractor. However, the isocurvature mass
on any of these trajectories is not zero but rather positive and depends on
the field-space curvature. Furthermore µ2

s evolves in time, allowing for the
generation of features in the scalar power spectrum. We leave an exten-
sive analysis of the intruiging phenomenology of inflationary models with
broken isometries for future work.
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8
Observables at the many-field

limit

In this chapter we examine observables at the many-field limit,
i.e for infinite number of fields. We revisit claims of universal-
ity of predictions and find that, although computations greatly
simplify as the number of fields increases, the result depends on
the initial configuration. Therefore, the previously found uni-
versality is prior dependent. This chapter is largely based on
publication [179].

115
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8.1 From multi- to many-field N -flation

Following our discussion in Sec. 4.8 we will consider the many-field limit,
i.e. when the number of fields becomes infinite. Moreover, we will use multi-
to refer to N ≈ O(1) number of fields, while many- indicates N > O(10).
As explained the gradient-flow does not lead to a unique dynamics for
the background; the slow-roll equations yield an N -dimensional hypersur-
face in the 2N -dimensional phase space and therefore there is an (N − 1)-
dimensional hypersurface that represents CMB horizon crossing. This re-
sults in an intrinsic dependence of the observables on the initial conditions,
even in the slow-roll limit. Every configuration on this hypersurface will
give exactly 55-60 e-folds of inflation and since there is no agreed measure
on the space of initial conditions one can consider all of them to be equally
probable. Nevertheless, this is not the only possibility: other configura-
tions that provide a larger number of e-folds will in general favour certain
points of the CMB hypersurface more than others. The choice of the ini-
tial (N − 1)-dimensional hypersurface that gives sufficient inflation will be
called the prior.

Turning to perturbations, analytical expressions for an arbitrary num-
ber of fields exist in the horizon-crossing approximation [110,119,126,180].1
This method takes into account the superhorizon evolution of the curva-
ture perturbation but ignores contributions from the fields’ position at the
end of inflation. Moreover, it assumes the gradient-flow approximation and
requires an analytic expression of N in terms of the fields, and thus its
applicability is more limited. On the contrary, the standard numerical ap-
proach is by means of the transport method [145,150,181–184] which solves
the perturbations’ equations of motion equivalent to tree level in the in-in
formalism, and requires no slow-roll or horizon-crossing approximations.

A simple and well-studied multi-field model is N -flation, consisting of a
sum of quadratic potentials [133, 141]. This model has received interest in
the axion landscape community, see e.g. [185–187], because it can approxi-
mate inflation towards a cosine minimum. Early investigations relied on the
horizon-crossing approximation which allows for simple calculation of the
spectral index, tensor to scalar ratio, running and non-Gaussianity. More
specifically, r and the non-Gaussianities are found independent of initial
conditions and the number of fields [180, 188], whereas the spectral index
and its running inherits the dependence on initial conditions [144,189].

In the many-field limit (N → ∞), however, predictions for quadratic
1Despite its name it does not evaluate the power spectra at horizon crossing but rather

expresses observables at the end of inflation using their horizon-crossing values [132].
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fields have been shown to become sharp and universal [142], while similar
predictivity has been found in recent many-field numerical investigations in
other contexts [143,145,184,190].2 This universality stems from the central
limit theorem and in Ref. [142] it was shown that different priors have weak,
and negligible, dependence on observables. It is the goal of this chapter to
investigate to what extend the results found in earlier literature are prior
independent.

8.2 Observables for many-field N -flation
Using the horizon-crossing approximation, the spectral index and other ob-
servable quantities can be expressed in terms of the fields’ values at horizon
crossing. However in order to study these observables’ prior dependence,
we need to express them in terms of the initial field configuration using the
equations of motion. For any sum-separable potential, the slow-roll equa-
tions of motion (4.83) can be solved exactly, e.g. in terms of a reference
field as we did in Eq. (4.84). For the quadratic potential in particular 3

V =
∑
i

1
2m

2
iΦ2

i , (8.1)

we can derive the solution in terms of a different time variable τ

Φi,∗ = Φi,0e
−m2

i τ∗ ,

where Φi,0 and Φi,∗ are the initial and horizon-crossing field displacements
respectively. The time τ is defined by dN ≡ −V dτ and ranges from τ = 0
to τ∗ during N = N0 to N∗. Moreover, since the potential is sum-separable
(V =

∑
Wi(φi)) using the slow roll equations of motion (8.2) the number

of e-folds can be calculated as [126]

N = −
∑
i

∫
dφi

Wi

∂iWi
. (8.2)

Thus, field values happen to satisfy a so-called hypersphere constraint at
all times during the evolution∑

i

Φ2
i = −4N , (8.3)

2In our analysis the fields’ masses are taken constant with N , but some models (e.g.
those based on random matrix theory), have taken the fields’ masses to grow like

√
N .

In these cases, the ns we compute depends on ratios of masses to equal powers, so is
identical in the many-field limit.

3AlthoughN -flation was introduced as a model with sufficiently large number of fields,
here N is arbitrary.
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where the field values are evaluated at |N | e-folds before the end of inflation.
The previous sums can be rewritten in a convenient way by introducing

the sample average. For an arbitrary random variable A we define the
sample average as

〈A〉s ≡
∑
Ai
N

, (8.4)

which is also a random variable. In the limit N → ∞, if the conditions of
the central limit theorem are satisfied, then the sample average converges to
the expectation value 〈A〉. Moreover, we will need joint expectation values
of Φ0 and m2 to arbitrary powers k and l respectively

〈Φk
0(m2)l〉 ≡

∫
dΦ0 d(m2) Φk

0(m2)lP (Φ0,m
2) , (8.5)

where P (Φ0,m
2) is the joint distribution of fields and masses. When the

two random variables are independent, the probability distribution becomes
product-separable and the average value splits into product of averages
〈Φk

0(m2)l〉 = 〈Φk
0〉〈(m2)l〉.

According to the δN formalism, if the gradient-flow approximation is
valid then the power spectrum at the end of inflation is given by [110]

P 2
R = H2

(2π)2∂iN∂
iN
∣∣∣
N=N∗

, (8.6)

and for monomial potentials in general the spectral index is given by

ns = 1− 2ε∗ + 1
N∗

. (8.7)

It will prove convenient to rescale the initial values of the fields Φi,0 =
2
√
N0/Nφi to obtain the normalisation 〈φ2〉s = 1. The spectral index at

horizon crossing in this notation is given by

ns = 1 + 1
N∗

(
1 + 〈e

−2m2τ∗φ2〉s〈m4e−2m2τ∗φ2〉s
〈m2e−2m2τ∗φ2〉2s

)
, (8.8)

where the sample averages are calculated for a specific realization of the
fields and masses, and we used

N0〈e−2m2τ∗φ2〉s = N∗ . (8.9)

For a choice of masses (drawn from a given mass distribution) the numerical
value of the previous equation depends on the fields’ realization, leading
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to an intrinsic initial conditions dependence.4 In the following we will
discuss two physically well-motivated priors that have been considered in
the literature and examine how time evolution affects predictions.5

N0-prior [132]: Every vector ~φ corresponds to a point of theN -dimensional
hypersphere with radius 1. The method to obtain a random point includes
sampling from the multi-variate distribution NGS(0,1) and then dividing
by the norm of the vector. Assuming that the φi’s are uncorrelated with
the masses and employing similar techniques as in Refs. [190,193], one can
show that at the limit of infinite number of fields Eq. (8.8) is normally
distributed with mean

ns −−−−→
N→∞

1 + 1
N∗

(
1 + 〈e

−2m2τ∗〉〈m4e−2m2τ∗〉
〈m2e−2m2τ∗〉2

)
, (8.10)

and standard deviation that scales as 1/
√
N ; thus, we find sharp many-field

predictions. The expectation values are integrals over the mass distribution
that should be evaluated at τ∗, the latter given as a solution of the integral
equation

〈e−2m2τ∗〉 ≡
∫

dm2P (m2)e−2m2τ∗ = N∗
N0

. (8.11)

Thus, this choice of prior results in a spectral index that is given by a specific
time-dependent combination of the moments of the mass distribution: at
τ = 0, i.e. starting at a random point on N∗, this is given by the variance
of the distribution, while starting at a random point at a higher N0 there
will also be higher-order moments that contribute.

E0-prior [194]: Instead, one can start with a fixed initial energy E0,
and assume the energy per field to be uncorrelated with the mass dis-
tribution. Defining initial energies as 2Ei = m2

iφ
2
i its sample average is

〈E〉 = −E0/(4N0). The central limit theorem implies that, at large N ,
(8.8) becomes

ns −−−−→
N→∞

1 + 1
N∗

(
1 + 〈m

−2e−2m2τ∗〉〈m2e−2m2τ∗〉
〈e−2m2τ∗〉2

)
. (8.12)

The initial energy and the number of e-folds are related by E0 = −2N0/〈m−2〉
while τ∗ is calculated by Eq. (8.11). Hence, for this initial conditions prior,

4Recall that ns is strictly bounded ns ∈ [ns,min, 1 + 2/N∗], with the lower bound
corresponding to a configuration where only the heaviest and lightest fields are non-zero
and contribute with equal energies.

5Hartle-Hawking based priors (e.g. [191, 192]) are also a physically well-motivated
choice, and lead to motion in purely the smallest-mass direction and observables identical
to single-field inflation.
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the spectral index is given by a different time-dependent combination6 of
the moments of P (m2).

The asymptotic behaviour (for either prior) can be inferred as follows:
at sufficiently large time τ∗ � 1, the lightest field φ1 (provided its mass is
non-zero) will dominate the numerator and denominator in Eq. (8.8) and
the ratio asymptotes to 〈e−2m2τ∗〉s/(φ2

1e
−2m2

1τ∗). Using Eq. (8.11) this term
is equal to 1 and so ns → 1 + 2/N∗, the single field result. On the contrary,
if the mass distribution is gapless (i.e. the lightest field is massless) the
previous ratio becomes undefined and the asymptotic value only depends
on the behaviour of the mass spectrum around the massless point. Precisely,
for a mass spectrum with lowest order term P (m2) ∝ m2α + O(m2(1+α)),
applying (8.5) and taking the asymptotic limit gives

ns −−−−−→
N0→−∞

1 + 1
N∗

(
2 + 1

γ + α

)
, (8.13)

where γ = 1 for the N0-prior, γ = 0 for the E0-prior and γ + α > 0.
Finally, the above formalism allows for a straightforward calculation

of the running, by differentiating Eq. (8.8) with respect to N∗. This re-
sults again in specific combinations of the time-dependent averages qk ≡
〈e−2m2τ∗mkφ2〉:

αs = 1
N2
∗ q

3
2

(q3
2 + 2q0q2q

2
4 − q2

0q6) , (8.14)

at lowest order in slow-roll.

8.3 Numerical results
The above approximations and trends are confirmed by full numerical sim-
ulations. We use the Inflation.jl transport code,7 which is capable of
solving the perturbations’ equations of motion for N ∼ 100 using the trans-
port method. We take the mass distribution to be Marcenko-Pastur [144]

p(λ) = 1
2πλβσ2

√
(b− λ)(λ− a) , (8.15)

where a = σ2(1−
√
β)2 and b = σ2(1 +

√
β)2. The overall normalization σ2

drops out of the spectral index, and β sets the width of the distribution.
6For quadratic inflation and these two priors (or any prior for the quantity mpφ), the

distribution P (φ) is not necessary for the calculation of 〈ns〉 since the field- or energy-
dependent terms decouple from masses.

7The code Inflation.jl has been developed by Robert Rosati and is publicly available.
There also exist other codes in the literature that are capable of solving the perturbations’
equations for O(100) fields, e.g. [195–197].

https://github.com/rjrosati/Inflation.jl


8.3 Numerical results 121

With these mass distributions and a horizon-crossing surface at N∗ = −55,
we have taken 200 samples per prior and plotted the spectral index in
Figs. 8.1, 8.2 and 8.4.

There are a number of striking results that follow from our general
analysis. First of all, for a given initial hypersphere of the N0-prior, the
probability distribution has a clear peak in the many-field limit. Secondly,
this peak value depends on the radius of the initial hypersphere. The
peaked distribution was already found in [142] but not the dependence on
the initial hypersurface. Instead, we see a clear trend: starting at N0 = −55
the spectral index is set by the variance of the mass distribution, the peak
value first goes down and reaches a minimum around N0 ∼ −160 for the
specific mass distribution 8 of Fig. 8.1. Starting at yet larger radii, the
heavier fields have more time to decay and this will eventually result in the
single-field prediction in the large N0 limit.

Next, we examine the gapless Marcenko-Pastur distribution with β = 1
in Fig. 8.1 for the N0-prior. Instead of converging to the single-field result,
we instead find ns → 1+4/N? ∼ 0.927. This asymptotic value only depends
on the behavior of the mass spectrum around the massless point p(m2) ∼
m−1, in accordance to the discussion in the previous section.

8A minimum in ns as a function of N0 will be present when ns(N∗) is lower than
its asymptotic value and dns/dτ |τ=τ∗ < 0. For a mass distribution with 〈m2〉 = 1 and
an asymptotic relation ns → 1 + c/N∗, these conditions imply a minimum will occur
whenever 〈m4〉 > c − 1 and 〈m6〉 < 2c(c − 1). For Marcenko-Pastur, the expectation
values for the quartic and sextic moments are given by 1+β and 1+3β+β2, respectively.
The gapped case that we consider has β = 1/2 and asymptotes to c = 2 and therefore
satisfies both conditions.



122 Observables at the many-field limit

100 200 300 400
N0

0.948

0.950

0.952

0.954

0.956
n
s

N0 prior

- - - -

-100 -200 -300 -400
N0

0.86

0.88

0.90

0.92

0.94

0.96

n
s

N0 prior

Figure 8.1
Transport method simulations of many-field N -flation with 100 fields and initial

conditions set to a fixed radius (i.e. a fixed number of e-folds) and masses drawn from
the Marcenko-Pastur distribution with β = 1/2 (upper panel) and for β = 1 describing a
gapless spectrum (lower panel). We compare the transport method (orange) and our

analytic result (dashed, red) for initial conditions drawn uniformly over the hypersphere.
At each radius, the numerical data are binned into a box and whiskers marking the 50%

and 95% confidence intervals respectively. Agreement is at the per mil level.
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Figure 8.2
Transport method simulations of many-field N -flation with 100 fields and initial

conditions set to a fixed energy (i.e. constrained to a hyper-ellipse) and masses drawn
from the Marcenko-Pastur distribution with β = 1/2. The data are binned by e-folds,

using the number of e-folds the realization would have if its energy were equipartitioned.
The number of e-folds varies by as much as ±30% from equipartitioned energies. At
each energy, the data are binned into a box similarly to Fig 8.1, or alternatively the

unbinned data are displayed in the inset. The dashed red line marks our corresponding
many-field analytic result. Agreement is at least at the per mil level.

Finally, we examine the E0-prior, which corresponds to selecting ran-
dom field values that have a fixed energy, forming a hyper-ellipse. When
starting at CMB horizon crossing, this will lead to the spectral index deter-
mined by the moments 〈m−2〉 and 〈m2〉. For higher energies the resulting
spectral index at CMB horizon crossing can be easily calculated from the
time-dependent moments, and is illustrated in Fig. 8.2. We provide a sim-
ilar numerical analysis that confirms the trend in this evolution.

8.4 Higher monomials

For higher monomials of degree n with

V =
∑
i

1
n
λiΦn

i , (8.16)
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Gaussian Fit

Random Vector

Figure 8.3
Probability density of the components of a random vector for N = 107 and the

corresponding analytically estimated Gaussian distribution. Agreement is perfect.

the number of e-folds as a function of the fields is given by
∑
i Φ2

i,0 = −2nN0.
Specializing to n > 2, the slow-roll equations imply

Φi,∗ =
(
Φ2−n
i,0 + (n− 2)λiτ∗

) 1
2−n , (8.17)

where τ has mass dimension 2 − n. Using e.g. the N0-prior introduc-
ing normalised fields Φi,0 = 2n

√
−N0/Nφi and the rescaled time ξ =

τ (−2nN0/N )n/2−1, the moment of CMB horizon crossing is given by

〈
(
φ2−n
i + (n− 2)λξ∗

) 2
2−n 〉s = N∗

N0
. (8.18)

The horizon-crossing formula is similarly

ns = 1 + 1
N∗

+ n

2N0

〈λ2
(
φ2−n
i + (n− 2)λξ∗

) 2n−2
2−n 〉s

〈λ
(
φ2−n
i + (n− 2)λξ∗

) n
2−n 〉2s

. (8.19)

For N → ∞ sample averages can be calculated from expectation values if
the distribution of φi is known.

Because of the hypersphere constraint, the distribution P (Φ0) is not a
Gaussian for finite N (for instance, the distribution for one field is a sum of
two delta’s located at ±1). However, when N →∞ the distribution P (Φ0),
which can be seen as the distribution of the components of a random vector
on the N -sphere, asymptotes to a Gaussian distribution with zero mean
and standard deviation 1/

√
N (see Fig. 8.3). For the rescaled fields φ their
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Figure 8.4
Transport method simulations of many-field quartic monomial inflation with 100 fields
and initial conditions set to a fixed radius (i.e. a fixed number of e-folds) and ‘masses’
drawn from the Marcenko-Pastur distribution with β = 1/2. Transport numerics are in
yellow and our horizon-crossing prediction in red. Agreement is at the per mil level.

statistical moments9 for N → ∞ can be reproduced by the expectation
values 〈φn〉 using P (φ) = e−φ

2/2/
√

2π. With the distribution of the fields
known, expectation values correspond to double integrals over fields and
‘masses’ λ.

In Fig. 8.4 we depict numerical simulations for quartic fields using the
N0-prior. In contrast to the quadratic case, there is no minimum, since
the conditions for its existence are not satisfied, and instead we observe
a monotonic increase towards the asymptotic value. The horizon-crossing
formula is again in a good agreement with the numerical results.

8.5 Discussion
In this chapter we have examined inflationary observables of sum-separable
monomial potentials in the horizon-crossing approximation and provided el-
egant analytical expressions. Although for a chosen prior there are in prin-
ciple infinite different field and mass realizations (parameterized as random

9These can be calculated independently as integrals over the N -sphere 〈ψni 〉 =∫
dΩψni /

∫
dΩ, expressing fields in spherical coordinates.
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variables), the computed distribution of the spectral index in the many-field
limit has a sharp peak. This universality can be attributed to the central
limit theorem, since the analytical formulae include sums of random vari-
ables.

While this theorem guarantees that sample averages will converge to
expectation values 〈A〉s →

∫
dφ dλP (φ, λ)A, the latter will depend on the

joint probability distribution P (φ, λ), i.e. the prior. Different priors, as seen
in Figs. 8.1-8.2, can lead to different predictions, both in the spectral index
and its running. Specifically for a gapped mass spectrum, the predictions
range from variance-dominated to the single-field limit. Instead, for gapless
mass distributions, the behaviour of the probability distribution for the
lightest masses determines its asymptotic behaviour at high N0, as seen in
Fig. 8.1.

We have compared our analytical predictions with numerical simula-
tions. The excellent agreement between both approaches also confirms the
validity of the horizon-crossing approximation. Moreover, it shows that 100
fields suffices to reach the universal many-field regime.

In the absence of a non-trivial scalar-field geometry, our results for
quadratic potentials can be seen as generic: the large-N limit pushes the
horizon-crossing point towards the minimum in field space, where more
complicated models can be approximated with a quadratic potential. This
suggests that the universality and prior dependence identified in this paper
should apply to a range of more general models as well. It would be inter-
esting to investigate the scope of our results in this direction, as well as the
effects of scalar geometry in the many-field limit.



9
Summary and conclusions

“We live on an island surrounded by a sea of ignorance. As our
island of knowledge grows, so does the shore of our ignorance”,
J. A. Wheeler, Scientific American (1992), Vol. 267.
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Multi-field models with a non-trivial field metric parameterization have
been under scrutiny over the last years [101, 106, 146–148, 154, 167–169].
They introduce several new features, such as non-trivial dynamics, the
enhancement of the power spectrum due to rapid turns [91–93], while at
the same time these models are phenomenologically viable [94,95,198]. This
thesis was a step towards a better understanding of multi-field dynamics
and the investigation of predictions at the many-field limit.

In Chapters 2 and 3 we introduced the basic elements of modern cosmol-
ogy and the inflationary theory. We discussed the observational evidence
for cosmic isotropy that supports the FLRW universe and the hot Big-Bang
scenario. Our current best understanding of the large-scale observable uni-
verse includes an isotropic and homogeneous universe composed of dust,
radiation and a cosmological constant. Even though this model fits obser-
vations to a great accuracy, several philosophically-based objections have
been posed, leading to extensions of the standard picture and the introduc-
tion of inflation. One of the major phenomenological successes of inflation is
the existence of a mechanism that accounts for structure formation, through
the exponential stretching of primordial quantum fluctuations in an FLRW
background.

Later in Chapter 4 we studied in depth the multi-field dynamics. Fol-
lowing the literature, we started with the adiabatic/entropic split of back-
ground dynamics and calculated sufficient conditions for the existence of
slow-roll solutions (ε, η � 1). Then we discussed the evolution of cur-
vature and isocurvature perturbations at the previous limit arguing that
the superhorizon evolution can be calculated in the same way for all slow-
roll models. Specifically for models following the gradient flow, one can
show that the amplitude of quantum fluctuations at horizon crossing is the
same as in single-field models and therefore the power spectra at the end
of inflation can be calculated analytically. We used the double quadratic
potential as an example where observables can be calculated analytically,
demonstrating the initial conditions dependence of multi-field models.

Having set the basic theory, in Chapter 5 we presented a two-field gen-
eralization of single-field α-attractors. The model consists of two quadratic
fields and the hyperbolic field space in Poincaré coordinates. We showed the
existence of a novel attractor solution that succeeds the previously found
gradient flow phase for appropriate values of the model’s parameters. In
particular, the number of e-folds spent during this phase is proportional
to the curvature of the hyperbolic space and the mass ratio between the
fields. If fluctuations cross the horizon during the ‘radial phase’ then pre-
dictions are altered simply by taking into account the time spent on the
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new (angular) phase.
In Chapter 6 we presented a classification of various two-field scaling

solutions with non-trivial field space parameterization. We explained why
it is natural to search for “frozen” type solutions, i.e. those with one non-
dynamical, in addition to the inflaton, field. Then, we performed a detailed
stability analysis and derived the stability criteria in the general case and
several examples followed to clarify the conditions for stable solutions. We
argued that scaling solutions are relevant in inflationary model building
because they approximate various proposals in the literature that display
non-trivial dynamics. In addition, we explained that studying background
stability with the adiabatic/entropic equations for perturbations does not
always lead to the correct conclusions, but only when there exists a coor-
dinate system in which the orthogonal field is canonically normalized.

In Chapter 7 we proposed a coordinate construction that provides an
intuitive way to understand the late-time attractor solutions. In this pic-
ture, orthogonal fields are stabilized at the minima of an effective potential
which takes into account contributions from the field metric. Performing
calculations in that particular coordinate system and using some reason-
able assumptions allowed us to derive a coordinate-independent solution,
which as we showed, describes all novel solutions that do not follow the
gradient flow. Using the results from the previous chapter, we derived the
stability criteria with emphasis on bifurcations. We used several examples
from the literature to demonstrate the unified perspective of our approach
and, in particular, we found that the hyperinflation model belongs to the
sidetracked family.

Finally, in Chapter 8 we examined predictions at the many-field limit.
We utilized the horizon-crossing approximation to derive analytical formu-
lae and investigate the initial conditions dependence. Assuming a random
initial configuration on a reduced N − 1 hypersurface, we demonstrated
the convergence of observables to specific values due to the central limit
theorem. However, we also found that different initial hypersurfaces result
in different central-limit values for the observables. Therefore, we conclude
that, contrary to various claims in the literature, many-field inflation re-
mains inherently non-predictive.

Future directions

In this thesis we were mostly concerned with the dynamics and observa-
tional signatures of two-field models. A natural step forward, is the exten-
sion of our analysis to N fields in order to quantify the effects of extra fields
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on the curvature perturbation (as for instance in the recent works [199–201])
and to investigate whether the strong attractor behaviour for two fields per-
sists in the presence of more. Furthermore, the scaling solutions presented
in Ch. 6 have the potential to describe late universe as well. It would
be interesting to explore the dynamics and observational viability of these
multi-field models in the presence of matter (e.g. [159,202,203]) and in the
light of the Hubble tension.

The results from the previous chapters will have the potential to be
applied in more general contexts, such as black-hole physics. Although
connections between the inflationary paradigm and the generation of black
holes have been known since the early days of the theory, the recent data
from gravitational waves interferometers have sparked renewed interest on
primordial black holes [204, 205]. Recent works have pointed out that the
steep growth of the power spectrum, necessary to produce regions with
large inhomogeneity, has a natural mechanism in multi-field models with
large or sudden turns in field space [96, 97]. It still remains unanswered
whether there is a limit on the rate of growth of the power spectrum, over
a sustained period of time, for multi-field models with non-canonical kinetic
terms. It would be interesting to explore this idea further, building on the
results of [96, 97] and extend the framework of [205] for non-trivial field
manifolds. In this way, these models can be used as high-energy probes for
new physics, such as dark matter, covering a broader area in theoretical
physics.



A
Cosmological perturbation theory

A.1 Some remarks on general relativity

A fundamental difference between Newtonian (or special relativistic) physics
and general relativity is the a priori existence of inertial observers who are
essential in defining the laws of physics. These observers move at constant
velocity and all agree on the form of Newton’s laws, i.e. they are equivalent.
On the contrary, accelerated observers have to introduce fictitious forces in
order to stay at rest in their reference frame. It should be stressed that the
existence of these observers is a build-in feature of the theory.

From a mathematical point of view, an observer induces a coordinate
system defined on a spacetime manifold. These coordinate systems can
be chosen cleverly to reflect the equivalence class between observers of the
theory, namely isometries of the spacetime. Even though any coordinate
system can be used in principle, the laws of Newtonian physics (or spe-
cial relativity) admit simpler forms when written in Cartesian (or Lorentz)
coordinates. The situation is drastically different for general relativity be-
cause it does not build on a specific isometry structure of a given spacetime
manifold; Einstein’s field equations have the same form in every coordinate
system. One can only generalize the notion of inertial observers, whose
motion lies along the geodesics of the spacetime. Therefore, there are no
intrinsic observers for a generic gravitational problem and in order to do
physics one needs to specify the observers of the theory. The definition
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of an observer is by means of a timelike unit vector that is tangent to its
worldline uµ. Every tensor of the theory can be decomposed into parts
parallel and orthogonal to the vector, yielding the 3+1 decomposition (or
(d − 1) + 1 for a space of d dimensions.1) Then, the energy-momentum
tensor is constructed from the matter content of the spacetime and one can
attempt to calculate the metric tensor.

Even with the energy-momentum tensor fully specified the metric can
not be determined uniquely from the Einstein’s field equations for the fol-
lowing reason. Any metric in d dimensions is defined up to d coordinate
transformations that could simplify its form; stated differently, one is able
to perform d arbitrary coordinate transformations, which manifest as d re-
lations on the components of the metric, to further reduce the independent
components by d. Therefore, the total number of independent components
for the metric is d(d−1)/2 instead. However, this would indicate a problem
with Einstein’s equations. Since the Einstein’s tensor contains d(d + 1)/2
independent components, for the d(d − 1)/2 independent components of
the metric it appears as overdetermined. Nevertheless, Gµν is subject to
the constraint Gµν;ν = 0 (the contracted Bianchi identities) which cuts d
equations and the number of equations becomes the same as the number
of the unknowns.

It becomes clear from the above considerations that in order to solve the
Einstein’s field equations one has to make a coordinate choice that would
remove the four unphysical degrees of freedom. What remains unclear
is whether the remaining six degrees of freedom will all be propagating,
i.e. they satisfy second order differential equations in time. What one finds
in practice is that for every gauge choice (without imposing equations of
motion) the field equations with appropriate boundary conditions remove
another one degree of freedom and in a loose sense the gauge hits twice (we
will demonstrate this in the case of cosmological perturbation theory in
Sec. A.3). Combining the previous together the metric tensor in Einstein’s

1See also [206] for an overview of the 3+1 or 2+1+1 kinematical and dynamical
analysis of general relativity.
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gravity has d(d− 3)/2 true propagating degrees of freedom.2

A.2 Scalar-vector-tensor decomposition
We assume the following form of the perturbed metric

ds2 = −(1 + hA) dt2 + haCi dxi dt+ a2(δij + heij) dxi dxj , (A.3)

where h is the expansion parameter, A is the lapse function, Ci is the shift
(co-)vector and eij is the three-metric of the ADM decomposition [207].
First, we will decompose every component into scalar, vector and tensor
components applying Helmhotz’s theorem: vectors are split into a gradient
(curl-free) part and a divergence-less part as follows

Ci = ∂iB + vi , (A.4)

with bi,i = 0. Tensors are decomposed into tracefull, traceless (scalar),
transverse and the remaining tensor parts

eij = 2ψδij + ∂i∂jχ+ wi,j + wj,i + γij , (A.5)

where wi,i = 0, γii = γij,j = 0. The metric now becomes

ds2 =− (1 + hA) dt2 + ha(∂iB + vi) dxi dt+ a2(δij + 2ψδij) dxi dxj

+ a2(∂i∂jχwi,j + wj,i + γij) dxi dxj .
(A.6)

Note that the 3-vectors and 3× 3 tensors defined above are raised/lowered
with the Euclidean metric to lowest order, so we will not distinguish be-
tween upper/lower indices. Second, we will examine how the different com-
ponents of the metric transform under an infinitesimal diffeomorphism

x̃µ = xµ + hξµ , (A.7)
2An analogous problem exists in electromagnetism. In terms of the four-potential,

Aµ ≡ (A0,A) Maxwell’s equations in vacuum are

(∂µ∂µηνk − ∂ν∂k)Ak = 0 . (A.1)

We observe that A0 does not obey an evolution equation but instead

∇2A0 − ∂t(∇ ·A) = 0 , (A.2)

and therefore A0 is completely fixed fromA. Choosing e.g. the Coulomb gauge ∇·A = 0
(without imposing equations of motion) gives∇2A0 = 0, and with the boundary condition
A0(Ω) = 0 the Laplace equation forces A0 to be zero everywhere in space. Thus, the
off-shell gauge-fixing ∇ ·A = 0 removes one degree and using this in combination to the
equations of motion ∇2A0 = 0 removes another one, leaving the two physical degrees of
freedom of the photon.
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using the transformation properties of rank-two tensors

g̃µν(x̃) = gκλ(x)∂x
κ

∂xµ
∂xλ

∂xν
⇒ g̃µν(x) = gµν(x)− Lξgµν . (A.8)

Decomposing the generator vector ξ as

x̃0 = x0 + hξ0 , (A.9)
x̃i = xi + h∂iξs + bi , (A.10)

we obtain the following transformations

Ã = A+ 2ξ̇0 , (A.11)

B̃ = B + 1
a

(ξ0 − 2Hξs + ξ̇s) , (A.12)

ψ̃ = ψ −Hξs , (A.13)

χ̃ = χ+ 2
α2 ξs , (A.14)

ϕ̃(1) = ϕ(1) − ξ0φ̇ , (A.15)

ṽi = vi + 1
a

(ḃi − 2Hbi) , (A.16)

w̃i = wi + 1
a2 bi , (A.17)

γ̃ij = γij . (A.18)

We observe that the tensor part is invariant under the diffeomorphism,
which is expected as there is no tensor part in Eqs. (A.9)-(A.10). Us-
ing linear combinations of the previous quantities one can construct the
Bardeen’s variables [65]

Ψ = ψ + aHB − 1
2Hχ̇ , (A.19)

Φ = 1
2A− 2 d

dt(aB) + d
dt(a

2χ) , (A.20)

δφ = ϕ(1) + aφ̇

(
B − 1

2aχ̇
)
, (A.21)

Vi = vi − aẇi , (A.22)
γij . (A.23)

Note that we obtain 3 scalar, 1 vector and 1 tensor variables with a total
number of 3+2+2 = 7 independent components, which amounts to four less
components than the original problem. These are exactly the redundant
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degrees of the metric which need to be fixed before we attempt to solve the
Einstein’s equations. To proceed we have two options: either express the
action or the Einstein’s equations in terms of these variables or choose an
appropriate gauge; we will do the latter.

A.3 Evolution of perturbations
We will work in the gauge with B = χ = wi = 0, which is known as the
Newtonian gauge. This can be achieved by choosing the vector ξ to satisfy

ξs = −a
2

2 χ , (A.24)

ξ0 = 2Hξs − ξ̇s , (A.25)
bi = −a2wi , (A.26)

and the off-shell gauge-fixed metric becomes

ds2 = −(1 + 2hΦ) dt2 + haVi dxi dt+ a2 [δij(1 + 2hΨ) + hγij ] dxi dxj .
(A.27)

Now we will expand the gamma-gamma action [208]

S =
∫

d4x
√
−g

[1
2g

µν
(
ΓλµκΓκνλ − ΓλλκΓκµν

)
− 1

2g
µν∂µϕ∂νϕ− V

]
, (A.28)

to second order. The zeroth and first order terms in the Lagrangian are

− 3aȧ2 + a3
(1

2 φ̇
2 − V

)
, (A.29)

h

[
6
(
a2ΨV + Ψ̇ȧ

)
+ a3

(
˙δφφ̇− δφ dV

dφ

)]
. (A.30)

The first order term is a ‘boundary term’ in the sense that its variation with
respect to Ψ and δφ gives terms proportional to the background equations
of motion, and hence zero. The second order part contains four parts:

1. The vector part,

Svector =
∫

d4x
1
4a(∇× V ) · (∇× V ) . (A.31)

After integration by parts, the previous can also be written as

Svector = −
∫

d4x
1
4aVi,kVi,k +

∫
d4x

1
4a(Vi,kVi),k . (A.32)
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With the boundary condition Vi(∂Ω) = 0 application of Stoke’s the-
orem makes the second term zero. Therefore, vector perturbations
satisfy constraint equations

∇2Vi = 0 , (A.33)

which yield Vi = 0, given the boundary conditions of the problem.

2. The scalar part,

Sscalar =
∫

d4xa3
(1

2
˙δφ2 − 1

2a2 δφ,kδφ,k −
1
2V,φφδφ

2 − 3Ψ̇2

+ 1
a2 Ψ,kΨ,k + V (Φ2 − 3Ψ2) + (3Ψ− Φ)V,φδφ

− 6H(Φ + Ψ)Ψ̇− (3Ψ + Φ)φ̇ ˙δφ− 2
a2 Φ,kΨ,k

)
.

(A.34)

3. The tensor part,

Stensor =
∫

d4x

(1
8a

3γ̇ij γ̇
ij + 1

2a
3V γijγ

ij + F (γij,k) + a2ȧγij γ̇
ij
)
,

(A.35)
where F contains only spatial derivatives of the metric. Integrating
by parts the last terms we obtain∫

d4x
1
2

d
dt
(
a2ȧγijγ

ij
)
−
∫

d4x
1
2γijγ

ija3V , (A.36)

where in the latter we used the background equation of motion 2aȧ2+
a2ä = a3V . Similarly, integrating by parts F and discarding all
boundary terms3 we have

Stensor =
∫

d4x
1
8a

3
(
γ̇ij γ̇

ij − 1
a2∇γij ·∇γ

ij
)
. (A.38)

4. Finally, the mixing terms,

Smix =
∫

d4xa2 1
2[Vi,j(γijH + γ̇ij)− V̇ i(3Ψ,i + Φ,i)

+ V i(HΦ,i − 7HΨ,i − 2V iδφiφ̇)] .
(A.39)

3Variation of the first term, denoted by Ȧ, in Eq. (A.36) yields

∂µ

(
∂Ȧ

∂(γij,µ)

)
= ∂

∂t

∂Ȧ

∂γ̇ij
= ∂

∂t

∂A

∂γij
= ∂Ȧ

∂γij
, (A.37)

and so it satisfies the Euler-Lagrange equations identically.
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Integrating by parts and using the divergenceless-transverse proper-
ties of Vi and γij only boundary terms are left which can be set to
zero with Stoke’s theorem. Thus, with appropriate boundary condi-
tions at infinity the mixing terms can be set to zero and the different
modes evolve independently to first order in h.
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B
Dynamical systems, isometries

and stability

B.1 Dynamical systems analysis

In Ch. 6 we derived exact solutions which are valid only for specific initial
conditions. In order to include them in the inflationary framework it is
necessary to demonstrate that solutions for arbitrary initial conditions will
converge towards them and so they will capture the late-time evolution of
the system. We will demonstrate this attracting behaviour using concepts
from the theory of dynamical systems.

B.1.1 Allowed critical points

Even without knowledge of the exact solution general properties of the
solutions can be deduced using the theory of dynamical systems (see also
[209,210] for a review of the theory and techniques applied to cosmology and
[211–213] for more specialized applications to inflation and quintessence).
With the aid of an auxiliary variable u we can transform the system into

139
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first order form

φ̇ = u , (B.1)
u̇ = −3Hu− V,φ , (B.2)

Ḣ = −1
2u

2 , (B.3)

along with the Friedmannian constraint. In order to use the latter to elim-
inate the dependence on H and reduce the problem’s dimensionality we
need to ensure that the root does not change sign (H being a monotoni-
cally decreasing function is not guaranteed to remain non-zero at any time).
Because of the Friedman constraint not all initial data for H are allowed
but only those lying on the hypersurface 6H2− φ̇2−2V = 0. If H starts at
a negative value, H(0) < 0, then it will remain negative describing a con-
tracting universe.Contracting universes lie outside the scope of this work
and in the following we focus only on the case where H(0) > 0.

The asymptotic behaviour of the system can be determined by the form
of its critical points. For a dynamical system of the form

ẋ = f(x) , (B.4)

where x ≡ x(t) : R → Rn and f : Rn → Rn a critical point denoted
by xcr

1 marks steady-state solutions f(xcr) = 0; if the system (B.4) is
non-singular then the initial value problem with x(0) = xcr has a unique
solution x(t) = xcr. The behaviour of the system near its critical points
can provide information about qualitative features of solutions.

A critical point is called stable if trajectories that begin at a small
distance |δx(t0)| away from it remain bounded |δx(t)| ≤ |δx(t0)| for t > t0,
while asymptotically stable if trajectories are bounded and converge to
the critical value |x(t)| → |xcr|. Two methods are widely used to determine
stability: the linearization (or indirect method of stability) and Lyapunov’s
functions (or direct method of stability). In the former a Taylor expansion
around xcr yields

ẋ = Df |x=xcr · (x− xcr) + · · · , (B.5)

where the first term in the expansion f(xcr) vanishes at the critical point
and Df is the Jacobian or derivative matrix. The Hartman-Grobman
theorem (see references above) allows deduction about local stability of the

1When a critical point is the 0 element of Rn it is also called fixed-point because it
satisfies f(x) = x. If xcr is finite it is always possible to perform a linear coordinate
transformation to move the critical point at the origin.
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non-linear dynamical system (B.4) around the critical point by studying
its simplified linearisation (B.5) if the eigenvalues of the derivative matrix
evaluated at that point have non-zero real part.

For the system of equations (B.1)-(B.3) if a critical point exists2 it is
necessary that u = 0 which implies that u̇ can be zero only if V ′ = 0.
Moreover, H is set by the constraint and its critical value is ±

∣∣ 1√
3V (φcr)

∣∣,
depending on the sign of the potential. If Vcr < 0 a critical point makes
the Hamiltonian constraint inconsistent because at that point u satisfies

u2
cr − 2|Vcr| = 6H2

cr ≥ 0 , (B.6)

which in turn requires ucr 6= 0. Thus, if the potential has critical points at
negative values they do not satisfy the Friedman constraint. For Vcr ≥ 0
the linearized matrix evaluated at the critical point (φcr, 0, Hcr) gives 0 1 0

−V,φφ(φcr) −3Hcr 0
0 0 0

 . (B.7)

The eigenvalue equation of this matrix is

− λ2(λ+ 3Hcr)− λV,φφ(φcr) = 0 , (B.8)

with eigenvalues

λ = 0 and λ = −1
2

(
3Hcr ±

√
9H2

cr − 4V,φφ(φcr)
)
. (B.9)

Now it is clear that when Hcr is negative at least one of the eigenvalues
has positive real part and the critical point will be unstable. When Hcr
is non-negative since there exists one eigenvalue with zero real part the
theorem can not be used. However, in the Klein-Gordon equation we can
eliminate the dependence onH by substituting its value using the Friedman
constraint. When Vmin ≥ 0 the Hubble parameter at the critical point will
satisfy Hmin ≥ 0 and so H will be given by the positive root of Eq. (3.7).
The reduced system reads

φ̈+
√

3φ̇
√

1
2 φ̇

2 + V + V,φ = 0 , (B.10)

2Strictly speaking the full problem does not admit critical points, because the Liouville
measure is conserved, but for flat spatial curvature the problem can be reduced to the
study of φ− φ̇ subspace [214].
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or transforming it into first order form

φ̇ = u , (B.11)

u̇ = −
√

3
2u
√
u2 + 2V − V,φ . (B.12)

The derivative matrix becomes(
0 1

−V,φφ(φcr) −
√

3Vcr

)
, (B.13)

with eigenvalues

λ± = −1
2

(√
3Vcr ±

√
3Vcr − 4V,φφ(φcr)

)
. (B.14)

Stability is determined by the sign of the discriminant; potentials with a
maximum result into strictly positive discriminant and one of the eigen-
values will be positive (unstable critical point). In the case of a saddle at
least one eigenvalue will be zero and there is no conclusion about stabil-
ity. However, the u-equation indicates that a small perturbation on the
negative axis will result into negative u that will increase indefinitely; the
critical point is overall unstable. We conclude that only potentials with
a non-negative global minimum admit physically acceptable solutions
with a stable critical point.

In the case of a positive local minimum Vcr, V,φφ(φcr) > 0 and irrespec-
tive of the discriminant’s sign the critical point will be stable; this solution
describes an eternally inflating universe. Usually, we demand a Minkowski
space after inflation and so Vcr = 0. The two eigenvalues become imag-
inary λ = ±i

√
V,φφ(φcr) and linearized analysis fails. It is clear, though,

that oscillations around the minimum will be damped, because Hubble fric-
tion forces the energy of the system to decrease, so one expects that the
system will eventually settle down to its minimum. This physical argument
naturally suggests the use of Lyapunov’s second theorem to determine sta-
bility [215] and it will be the subject of the next subsection.

B.1.2 Lyapunov’s theorem and LaSalle’s principle

If there exists a scalar function L(x) with continuous first partial derivatives
which satisfies the following properties

1. positive definite for x 6= xcr and L(xcr) = 0,
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2. decreasing function of time L̇ ≤ 0,

then xcr is stable. If additionally

3. L̇ < 0 for x 6= xcr and L̇(xcr) = 0,

4. L is radially unbounded: L→ +∞ for |x| → ∞,

then xcr is globally asymptotically stable. For spatially flat scalar field
models 3H2 seems a suitable Lyapunov’s function [216] because it satisfies
properties (1),(2) and (4). Its vanishes when φ̇ = 0, leaving φ unspecified,
and applying Lyapunov’s theorem we can only conclude that the critical
point is stable. To prove global asymptotic stability we need LaSalle’s theo-
rem [217] which states that whenever the time derivative of the Lyapunov’s
function is negative semidefinite, L̇ ≤ 0, then the ω-limit set of every trajec-
tory (the set of accumulation points of x(t) for t → ∞) will be contained
in the set {x : L̇(x) = 0}. In our case by assumption there is only one
critical point and application of the theorem proves asymptotic stability.
Therefore for potentials with a global minimum that take zero value at the
minimum the origin is globally asymptotically stable

lim
t→+∞

(φ(t), φ̇(t)) = (φcr, 0) , (B.15)

and the generalization for multiple fields is straightforward.

B.2 Hurwitz-Routh stability criterion

A polynomial of degree n is called stable if all roots have negative real part.
The relevance to the stability of dynamical systems is clear: the character-
istic equation of the N ×N Jacobian matrix is an nth order polynomial

λn + an−1λ
n−1 + · · ·+ a0 = 0 , (B.16)

and if every root has negative real part the dynamical system is called
(asymptotically) stable. Analytical formulae for the roots of Eq. (B.16) ex-
ist up to 4th order so it is necessary to develop tools to infer stability without
finding the roots. One method is the Hurwitz-Routh theorem [218]: a poly-
nomial will be stable if every coefficient is positive an > 0 and if every prin-
cipal Hurwitz determinant is also positive. The latter is the determinant of
a matrix constructed as follows: the first elements are {an−1, 1} while the
rest are zeros. In the second row the first elements are {an−3, an−2, an−3, 1}
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and the rest zero. Similarly, the i-th row is constructed using the an−i co-
efficient

∆k =


an−1 1 · · · 0
an−3 an−2 · · · 0
· · · · · · · · · 0
an−k · · · ak+1 ak

 . (B.17)

The criterion is formulated as follows: |∆k| > 0, for all k < n.
For a quadratic equation the criterion reduces to positivity of every

coefficient, while for a cubic equation we obtain the additional condition
a2a1 > a0.

B.3 Coordinate transformations and isometries

A metric with an isometry possesses a Killing vector ~ξ = ξI∂I . Under a
coordinate change xI ≡ {χ, ψ} → x̃I ≡ {ρ, φ} the components of the vector
transform according to

ξ̃I = ∂x̃I

∂xK
ξK . (B.18)

Therefore, it is possible to set the first component to zero which is equivalent
to solving the advection equation with variable coefficients

∂ρ

∂χ
ξχ + ∂ρ

∂ψ
ξψ = 0 . (B.19)

With appropriate boundary conditions this can always be solved, e.g. by
the method of characteristics. Thus, in the new coordinate system the
Killing vector points along the second basis vector ~ξ = ξ̃φ∂φ and so the
new metric is independent of that coordinate. Any remaining off-diagonal
terms can be absorbed through a redefinition of the variable φ, whereas
Gρρ can be set to one by an appropriate redefinition of ρ

φ̃ = −
∫
Gρφ
Gφφ

dρ+ c1(φ) ρ̃ =
∫ √

Gρρ dρ+ c2(φ) . (B.20)

As a side note, 2D metrics can have 0, 1 or 3 isometries, where the latter
case describes a maximally symmetric space of constant curvature (flat,
hyperbolic or spherical).
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Samenvatting

Multi-veld modellen met een niet-triviale veldmetrische parametrisering
zijn de afgelopen jaren onder de loep genomen. Ze introduceren verschil-
lende nieuwe eigenschappen, zoals een niet-triviale dynamiek, de verbeter-
ing van het vermogensspectrum door snelle omslagen, terwijl deze modellen
tegelijkertijd fenomenologisch levensvatbaar zijn. Dit proefschrift was een
stap in de richting naar een beter begrip van multi-veld dynamica en het
onderzoek van voorspellingen in het vele-veldenlimiet.

In de hoofdstukken 2 en 3 hebben we de basiselementen van de mod-
erne kosmologie en de inflatoire theorie geïntroduceerd. We bespraken het
observationele bewijs voor kosmische isotropie dat het FLRW-universum
en het hete oerknal-scenario ondersteunt. Ons huidige beste begrip van het
waarneembare universum op grote schaal omvat een isotroop en homogeen
universum dat bestaat uit stof, straling en een kosmologische constante.
Hoewel dit model met grote nauwkeurigheid aan de waarnemingen voldoet,
zijn er verschillende filosofisch onderbouwde bezwaren naar voren gebracht,
deze hebben geleid tot uitbreidingen van het standaardbeeld en de intro-
ductie van inflatie. Een van de belangrijkste fenomenologische successen
van inflatie is het bestaan van een mechanisme dat verantwoordelijk is
voor structuurvorming, door middel van het exponentieel uitrekken van
primordiale kwantumfluctuaties in een FLRW-achtergrond.

Later in Hoofdstuk 4 hebben we de multi-veld dynamica diepgaand
bestudeerd. In navolging van de literatuur zijn we begonnen met de adi-
abatische / entropische splitsing van de achtergronddynamica en hebben we
voldoende voorwaarden berekend voor het bestaan van slow-roll-oplossingen
(ε, η � 1). Vervolgens bespraken we de evolutie van kromming en isocur-
vatuurverstoringen in het eerdergenoemde limiet, met het argument dat
de superhorizon-evolutie op dezelfde manier kan worden berekend voor
alle slow-roll-modellen. Specifiek voor modellen die de gradiëntstroom vol-
gen, kan men aantonen dat de amplitude van kwantumfluctuaties bij hori-
zonovergang dezelfde is als in enkelveldsmodellen en daarom kunnen de
vermogensspectra aan het einde van inflatie analytisch worden berekend.
We gebruikten het standaard vele-veldenmodel met kwadratische poten-
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tiaal als een voorbeeld waarvan de observabelen analytisch kunnen wor-
den berekend, hiermee wordt de afhankelijkheid van de beginvoorwaarden
aangetoond.

Nadat we de basistheorie hadden opgesteld, presenteerden we in Hoofd-
stuk 5 een twee-velds generalisatie van α-attractoren met één veld. Het
model bestaat uit twee kwadratische velden en de hyperbolische veldruimte
in Poincarécoördinaten. We hebben het bestaan aangetoond van een nieuwe
attractoroplossing die volgt na de gradiëntstroomfase voor een bepaald ge-
bied van de parameterruimte. In het bijzonder is het aantal e-vemenigvuldigingen
dat tijdens deze fase wordt doorgebracht evenredig met de kromming van
de hyperbolische ruimte en de massaverhouding tussen de velden. Als fluc-
tuaties de horizon kruisen tijdens de ‘radiale’ fase’ worden voorspellingen
gewijzigd door simpelweg rekening te houden met de tijd die aan de nieuwe
(hoek)fase wordt besteed.

In Hoofdstuk 6 presenteerden we een classificatie van verschillende schaalo-
plossingen met twee velden met niet-triviale veldruimte-parametrisering.
We hebben uitgelegd waarom het natuurlijk is om te zoeken naar oplossin-
gen van het “bevroren” type, d.w.z. die met één niet-dynamisch veld,
naast het inflaton-veld. Vervolgens hebben we een gedetailleerde stabiliteit-
sanalyse uitgevoerd en de stabiliteitscriteria in het algemene geval afgeleid
en verschillende voorbeelden gevolgd om de omstandigheden te verduideli-
jken voor stabiele oplossingen. We voerden aan dat schaaloplossingen rel-
evant zijn bij het bouwen van inflatoire modellen omdat ze verschillende
voorstellen in de literatuur benaderen die een niet-triviale dynamiek ver-
tonen. Bovendien hebben we uitgelegd dat het bestuderen van achter-
grondsstabiliteit met de adiabatische / entropische vergelijkingen voor ver-
storingen niet altijd tot de juiste conclusies leidt, maar alleen als er een
coördinatensysteem bestaat waarin het orthogonale veld kanoniek genor-
maliseerd is.

In hoofdstuk 7 hebben we een coördinatenconstructie voorgesteld die
een intuïtieve manier biedt om de lange-tijd attractoroplossingen te begri-
jpen. Vanuit dit perspectief worden orthogonale velden gestabiliseerd op
de minima van een effectieve potentiaal die rekening houdt met bijdragen
van de veldmetriek. Door berekeningen in het specifieke coördinatensys-
teem uit te voeren en een aantal redelijke aannames te gebruiken, konden
we een coördinaat-onafhankelijke oplossing afleiden, die, zoals we hebben
laten zien, alle nieuwe oplossingen beschrijft die de gradiëntstroom niet
volgen. Aan de hand van de resultaten uit het vorige hoofdstuk leiden we
de stabiliteitscriteria af met de nadruk op vertakkingen. We gebruikten
verschillende voorbeelden uit de literatuur om het uniforme perspectief van
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onze aanpak te demonstreren en in het bijzonder ontdekten we dat het
hyperinflatiemodel tot de zijspoorfamilie behoort.

Ten slotte onderzochten we in Hoofdstuk 8 voorspellingen op de vele-
veldenlimiet. We hebben de horizonovergang-benadering gebruikt om ana-
lytische formules af te leiden en de afhankelijkheid van de beginvoorwaar-
den te onderzoeken. Uitgaande van een willekeurige beginconfiguratie op
een gereduceerd N −1-hyperoppervlak, hebben we de convergentie van ob-
servabelen aangetoond, die voortkomen uit de centrale limietstelling. We
ontdekten echter ook dat verschillende initiële hyperoppervlaktes resulteren
in verschillende centrale grenswaarden voor de waarneembare waarden. We
concluderen daarom dat, in tegenstelling tot verscheidene claims in de lit-
eratuur, inflatie op vele velden inherent niet-voorspellend blijft.
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