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Ratios ms/md and mu/md of the light quark masses have been determined from expressions for squared masses

of pseudoscalar mesons  and  obtained with an accuracy of the second order in chiral symmetry break-
ing. The fit of the theoretical expressions for  and  to their phenomenological values leads to a func-
tional relation between the ratios ms/md and mu/md, which is described by a third-order curve. The application
of the lattice calculation result ms/mud = 27.23(10), where mud = (mu + md)/2, reported by the f lavor lattice
averaging group (FLAG) for the case of four quark f lavors provides an additional constraint, which signifi-
cantly reduces the error (~2%) for the ratio mu/md = 0.455(8). The absolute values of the quark masses have
been then obtained.
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The determination of the current masses of the u,
d, and s quarks is of primary importance for the mod-
ern particle physics because they are the fundamental
parameters of the Standard Model. In quantum chro-
modynamics (QCD), they are responsible for the
explicit SU(3)L × SU(3)R chiral symmetry breaking,
which is described by the Hamiltonian

(1)

The product  is invariant under renormaliza-
tion group transformations (in the leading logarithm
approximation). It is known that the light quark
masses at the energy scale μ ≈ 1 GeV (in the - sub-
traction scheme) are mu ≈ 4.2 MeV, md ≈ 7.5 MeV, and
ms ≈ 150 MeV [1] (see also [2–5]). Since mq/μ  1, Hm
can be considered as a small perturbation near the chi-
ral limit mq = 0.

The ratio of the quark masses  in the
 scheme is independent of the choice of the sub-

traction point μ and can be obtained from the mass
formulas for the pseudoscalar mesons by the standard
current algebra methods [6]:

(2)

Here,  is the parameter proportional to
the  quark condensate, F is the pion decay con-
stant in the chiral limit, mπ and mK are the phenome-
nological values of π and K meson masses, respec-
tively; and γπ and γK are the electromagnetic contribu-
tions to the self-energies of these pseudoscalar
mesons. According to Dashen’s theorem [7], in the
leading order in mq,  and  =

. Due to these relations, the known
Weinberg formulas are valid:

(3)

Systematic calculations of the next-to-leading
(NLO) correction to the Weinberg result [8, 9] showed
that a functional relation between the ratios x = mu/md
and y = ms/md appears beyond the current algebra.
According to the low-energy Gasser–Leutwyler theo-
rem [8], the curve f(x, y) = 0 is an ellipse. On the con-
trary, the fit of the mass formulas obtained with an
accuracy up to the first correction to the current alge-
bra result (2) shows that x and y belong (taking into
account approximations accepted in [9]) to a second-
order curve whose canonical form is a parabola. Since
the function f(x, y) is important for the extraction of
theoretical information on the ratios x and y of quark
masses, it is reasonable to examine both methods in
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more detail in order to understand their advantages
and disadvantages. The aim of this work is to study this
problem.

Our analysis is based on the formulas

(4)

where the NLO contribution to the eigenenergy of the
pseudoscalar mesons is taken into account. These
relations can be obtained in the 1/Nc chiral perturba-
tion theory [10, 11]; in this case, the parameter Δ =
8B0(2L8 – L5)/F2 is expressed in terms of the low-
energy constants of the effective chiral Lagrangian.
Formulas (4) can also be derived in the Nambu–Jona-
Lasinio model using the count rules 1/Nc, p2,

 accepted in the 1/Nc chiral perturbation
theory. In this case,  [12], where  is
the gap in the fermion spectrum and  is the dimen-
sionless constant by the entire set of the parameters of
the model. Further, the value of the parameter Δ is
fixed in terms of the modern lattice QCD estimates. It
is also noteworthy that the values of the Δ and B0 do
not affect the form of the function f(x, y).

It is worth emphasizing that the derivation of
Eqs. (4) involves not only expansions in powers of
quark masses and momenta but also the classification
of the vertices of the effective meson Lagrangian
according to their behavior in the limit of a large num-
ber Nc of color degrees of freedom. This allowed one to
extend the symmetry group of the theory to U(3)L ×
U(3)R, by including the η' meson in the consideration,
thus taking into account the known solution of the
U(1) problem [13–18] and suppressing the processes
violating the Zweig rule. Due to the 1/Nc expansion,
Eqs. (4) do not contain the contribution from chiral
logarithms, which has the next order . This
important circumstance makes it possible to avoid
ambiguity in calculations of x and y, which appears due
to the unphysical symmetry of the Lagrangian of chiral
perturbation theory under the Kaplan–Manohar
transformations [9].

Dashen’s theorem is violated beyond the current
algebra. This primarily concerns the contributions 
and . For the neutral modes,  can still
be accepted in Eqs. (4). The contribution from virtual
photons to the self-energy of the charged pion is given
by the formula

(5)

The pure QCD contribution is small  

 and can be calculated in the chiral pertur-
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 MeV [8]. Consequently,

(6)

For the charged kaon, deviation from Dashen’s theo-
rem ( ) can be characterized by the parameter

 as follows [21]:

(7)

The flavor lattice averaging group (FLAG) in recent
review [22] of the lattice QCD results obtained by var-
ious collaborations presents the averaged values

(8)

(9)

Below, the former estimate is used because it has a
smaller error and corresponds to simulations with four
quark f lavors . This gives

(10)

which indicates a significant violation of Dashen’s
theorem compared to Eq. (6).

The system of three equations (4) has four free
parameters (e.g., mdB0, mdΔ, x, and y). Therefore, its
solution is the relation f(x, y) = 0. To determine the
function f(x, y), the following two ratios are consid-
ered

(11)

(12)

where Eqs. (4) were used in the second step. On the
one hand, the substitution of the experimental masses
of the , , and  mesons and estimates (6) and
(10) into Eqs. (11) and (12) gives rx = 0.498(5) and ry =
19.32(6), respectively. On the other hand, the exclu-
sion of the parameter mdΔ from Eqs. (11) and (12) pro-
vides the relation

(13)

This relation specified a third-order (cubic) curve of
genus g = 1. It has three independent branches includ-
ing two hyperbolic and one straight-line (hyperbolic-
type) branches. The point (x, y) = (rx, ry) belongs to
the last branch.
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Result (13) is independent of the choice of the
ratios rx and ry. After the exclusion of the parameter Δ,
any arbitrarily chosen pair

(14)

where  and  =  +

 leads to the equation

(15)

Here, , where the subscripts (i, j) specify
the quark composition of a particular meson state P:

, , and .
The dependence on the arbitrary parameters ,
, , and  is factorized. To show this factoriza-

tion, it is necessary to express rα and rβ in Eq. (15) in
terms of rx and ry. As a result, the equation takes the
form

If , Eq. (13) is valid. Otherwise, rα and rβ are not
independent variables. Thus, the shape of the curve
specified by Eqs. (14) is independent of the choice of
the pair rα and rβ. Furthermore, when , as,
e.g., in (11) and (12), the ratios lead to Eq. (13) regard-
less of the δ expansion of the ratios given by Eqs. (14).

Indeed, the δ expansion gives

(16)
where the coefficients kα and lα are functions of the
ratios of quark masses x and y and the parameters 
and :

Considering the pair rα and rβ, it is obviously possible
to exclude the parameter mdΔ and thus to arrive at the
following relation between y and x:

(17)

If , Eq. (17) describes the cubic curve
specified by Eq. (13). When , different pairs rα
and rβ gives different curves. Some consequences of
this behavior were studied in [12, 23]. The case lα = lβ
is the most interesting here. Then, according to
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Eq. (17), rα/rβ = kα/kβ; i.e., NLO contributions are
absent in these two ratios. This statement is the
essence of the well-known low-energy Gasser–Leut-
wyler theorem [8]. For example, consider the chiral
expansion of the ratios

(18)

Here,  and, consequently,

(19)

Here, the variables x and y obviously belong to an
ellipse. In this case, there are three parameters mdΔ, x,
and y to fit two phenomenological values r1 and r2. The
dimensionless parameter mdΔ specifies the position of
a point on the curve (unlike a cubic curve, this requires
two parameter mdΔ and mdB0). The equation of
ellipse (19) in the variables rx and ry takes the form

(20)

Both Eqs. (13) and (20) specifying curves plotted in
Fig. 1 include the same parameters rx and ry. The dif-
ference is that these parameters in the case of the
ellipse constitute the parameter

(21)

which determines the major semiaxis of this ellipse.
The error indicated in parentheses in Eq. (21) is due to the
error in  given by Eq. (8). This result is in excellent agree-
ment with the estimate  ≡  =
22.1(7) [19], where mud = (mu + md)/2, obtained from
experimental data on  decays. It is also agree-
ment with the FLAG estimate QGL = 22.5(5) [22]. A
high accuracy of the numerical estimate (21) is due to
modern precise lattice QCD calculations of the
parameter .

In the case of the cubic curve, the parameters rx

and ry are independent. As a result, the ratio of 
quark masses varies along the cubic curve and its
determination requires an additional assumption,
which leads, as shown below, to the result Q1 =
22.24(16) in the case of physical values of quark
masses.
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Fig. 1. (Color online) Ratio y = ms/md versus x = mu/md in
the next-to-leading order under the conditions of (upper
elliptic lines) the low-energy Gasser–Leutwyler theorem
and (lower cubic lines) mass formulas. Since Dashen’s
theorem is violated, two lines covering the interval  =
0.79(6) are plotted for each case. The lines have a common
tangent at the point (rx, ry). The imaginary horizontal
straight line y = ry intersects the cubic line at the points
(rx, ry) and (0, ry).

e

Fig. 2. (Color online) Allowed values for quark mass ratios
x = mu/md and y = ms/md: the dashed elliptic lines corre-
sponding to the region Q1 = 22.24(16) in comparison with
the solid cubic lines corresponding to the region  =
0.79(6). The thin straight lines separate the region S =
27.23(10) obtained in the FLAG processing of the lattice
data for Nf = 2 + 1 + 1 [22]. The intersection of the band
corresponding to the considered S values and the cubic
lines separates the region (filled) of the physical values for
the ratios x = mu/md and y = ms/md.

e

The mentioned assumption concerns the ratio S =
ms/mud = 27.23(10) [22], which is obtained in lattice
QCD calculations and is weakly sensitive to correc-
tions caused by the violation of Dashen’s theorem.
The electromagnetic contribution to this ratio is
≈0.18% [24]; i.e., it is indeed very small. The knowl-
edge of S allows one to significantly limit the region of
allowed values for x and y and thus to increase the
accuracy of theoretical calculations of the ratio mu/md.
This idea was already used in [19], where the ratio
mu/md = 0.44(3) was determined from the parameters
QGL = 22.1(7) and S = 27.23(10). This estimate can
now be improved due to a high accuracy of Eq. (8).

The result of these calculations is presented in
Fig. 2, which demonstrates excellent agreement of
data obtained independently using both the low-
energy Gasser–Leutwyler theorem and the cubic
curve

(22)

As mentioned above, the quark condensate  is
related to the low-energy constant B0(μ) and depends on
the renormalization group scale μ in the  subtraction
scheme. However, the product mq(μ)B0(μ) is invariant
under transformations of the renormalization group.
Since this product is one of the internal parameters of
the cubic curve, the masses of individual quarks can be
estimated if B0 is known, and vice versa. The accuracy
of lattice estimates of B0(μ) is currently low. The
calculations below were performed with the result
B0(2 GeV) = 2.682(36)(39) GeV [26] whose total error
of ~2% is comparatively small.

=
=

( )/ 0.455(8) cubic curve ,
/ 0.456( )8  (ellipse .)

u d

u d

m m
m m

  μ( )qq

MS
To determine the absolute values of the quark
masses, it is necessary to solve the system of three
equations (4). To this end, at a given B0(2 GeV) value,
the parameter Δ is varied so that the solution lies in the
separated filled region in Fig. 2. The corresponding
results are summarized in Table 1.

The first row in Table 1 presents the solutions of the
system of Eqs. (4) with the value B0 = 2.682(53) GeV.
To estimate the error introduced by the parameter B0,
the second row of Table 1 presents the results obtained
with the fixed value B0 = 2.66 GeV, which is the arith-
metic mean of the central values B0 = 2.682(53) GeV
from [26] and B0 = 2.64(20) GeV from [27]. The third
row presents the values proposed by PDG [25]. The
fourth and fifth rows present FLAG estimates [22]
made for the cases of four and three f lavors of quarks,
respectively, by averaging various lattice calculations
according to the FLAG selection criteria.

The comparison of the results presented in the first
two rows in Table 1 shows that the error ≈2% in B0
together with the existing error ≈1.5% in the determi-
nation of e and S values gives the total error ≈3% for
quark masses. This accuracy is sufficient to state that
the results of this work completely agrees with the
PDG values and with average values presented by
FLAG. Moreover, it can be concluded that the δ
expansion, which underlies the initial formulas (4) for
our analysis, is an efficient tool to calculate the light
quark masses.

Since numerous estimates of the quark masses
reported in the literature are referred to the scale μ =
1 GeV, the corresponding our results are presented
here. Weinberg’s results for the quark masses pre-
JETP LETTERS  Vol. 119  No. 12  2024
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Table 1. Masses of the light quarks u, d, and s, isospin-averaged value mud = (mu + md)/2, mu/md, Q1 given by Eq. (21), and
. All parameters correspond to the scale μ = 2 GeV in the  subtraction scheme

Reference Conditions mu, MeV md, MeV mud, MeV ms, MeV mu/md

This work B0 = 2.682(53) GeV

B0 = 2.66 GeV

PDG [25] – – –

FLAG [22] Nf = 2 + 1 + 1 22.5(5)

Nf = 2 + 1 23.3(5)

− −= ( )/( )s ud d uR m m m m MS

1Q R

±2.14 0.07 ±4.70 0.12 3.42(7) ±93.13 2.25 0.455(8) 22.23(16) 35.02(61)

±2.16 0.03 ±4.74 0.03 3.447(2) ±93.85 0.41 0.455(8) 22.23(16) 35.02(61)

+
−

0.49
0.262.16 +

−
0.48
0.174.67 +

−
0.35
0.153.45 +

−
8.6
3.493.4 +

−
0.056
0.0740.474

±2.14 0.08 ±4.70 0.05 3.410(43) ±93.44 0.68 0.465(24) 35.9(1.7)

±2.27 0.09 ±4.67 0.09 3.364(41) ±92.03 0.88 0.485(19) 38.1(1.5)
sented in the beginning of this article allow the esti-
mate B0(1 GeV) ≈ 1.58 GeV. Indeed, the substitution
of this B0 into Eqs. (2) gives mu = 4.1 MeV, md =
7.4 MeV, and ms = 149 MeV. The inclusion of the NLO
correction leas to the estimates (for the allowed region
in Fig. 2) mu =3.63(5) MeV, md = 7.98(4) MeV, and
ms = 158.0(7) MeV. Correspondingly, it can be con-
cluded that the NLO contribution to the light quark
masses varies here from 11 to 6%.

To summarize, the cubic curve is an additional
useful source to extract theoretical information on the
light quark masses. On the one hand, this curve in the
region of physical quark masses is excellently consis-
tent with the low-energy Gasser–Leutwyler theorem;
on the other hand, it allows one to estimate not only
ratios of quark masses but also their absolute values.
The estimates obtained in this work seem reasonable
and their accuracy will increase with decreasing error
in the determination of the low-energy constant B0.

ACKNOWLEDGMENTS

I am grateful to D.I. Kazakov, V.A. Osipov, O.V. Tery-
aev, and B. Hiller for interest in this study and stimulating
discussions.

FUNDING

This work was supported by ongoing institutional fund-
ing. No additional grants to carry out or direct this particu-
lar research were obtained.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts
of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
JETP LETTERS  Vol. 119  No. 12  2024
mons license, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons license, unless indicated other-
wise in a credit line to the material. If material is not included
in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/

REFERENCES
1. S. Weinberg, Trans. (N.Y.) Acad. Sci. 38, 185 (1977).
2. H. Leutwyler, Phys. Lett. B 48, 45 (1974).
3. H. Leutwyler, Nucl. Phys. B 76, 413 (1974).
4. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,

Nucl. Phys. B 147, 385 (1979).
5. B. L. Ioffe, Phys. Usp. 44, 1211 (2001).
6. M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev.

175, 2195 (1968).
7. R. Dashen, Phys. Rev. 183, 1245 (1969).
8. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465

(1985).
9. D. B. Kaplan and A. V. Manohar, Phys. Rev. Lett. 56,

2004 (1986).
10. H. Leutwyler, Phys. Lett. B 374, 163 (1996).
11. H. Leutwyler, Phys. Lett. B 378, 313 (1996).
12. A. A. Osipov, Phys. Rev. D 108, 016014 (2023).
13. E. Witten, Nucl. Phys. B 160, 57 (1979).
14. G. Veneziano, Nucl. Phys. B 159, 213 (1979).
15. C. Rosenzweig, J. Schechter, and G. Trahern, Phys.

Rev. D 21, 3388 (1980).
16. K. Kawarabayashi and N. Ohta, Nucl. Phys. B 175, 477

(1980).
17. P. di Vecchia and G. Veneziano, Nucl. Phys. B 171, 253

(1980).
18. P. di Vecchia, F. Nicodemi, R. Pettorino, and G. Vene-

ziano, Nucl. Phys. B 181, 318 (1981).
19. G. Colangelo, S. Lanz, H. Leutwyler, and E. Passemar,

Phys. Rev. Lett. 118, 022001 (2017).

http://creativecommons.org/licenses/by/4.0/


902 OSIPOV
20. G. Colangelo, S. Lanz, H. Leutwyler, and E. Passemar,
Eur. Phys. J. C 78, 947 (2018).

21. S. Aoki, Y. Aoki, D. Bečirević, et al. (Flavour Lattice
Averaging Group), Eur. Phys. J. C 77, 112 (2017).

22. S. Aoki, T. Blum, G. Colangelo, et al. (Flavour Lattice
Averaging Group), Eur. Phys. J. C 82, 869 (2022).

23. A. A. Osipov, JETP Lett. 115, 305 (2022).
24. A. Bazavov, C. Bernard, N. Brown, et al. (Fermilab

Lattice and MILC Collabs.), Phys. Rev. D 98, 074512
(2018).

25. R. L. Workman, V. D. Burkert, V. Crede, et al. (Particle
Data Group), Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

26. S. Borsanyi, S. Dürr, Z. Fodor, S. Krieg, A. Schäfer,
E. E. Scholz, and K. K. Szabó, Phys. Rev. D 88, 014513
(2013).

27. R. Baron, P. Boucaud, P. Dimopoulos, et al. (ETM
Collab.), J. High Energy Phys. 1008, 097 (2010).

Translated by R. Tyapaev

Publisher’s Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
JETP LETTERS  Vol. 119  No. 12  2024


	REFERENCES

		2024-08-03T12:15:47+0300
	Preflight Ticket Signature




