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Ratios m,/m, and m,/m, of the light quark masses have been determined from expressions for squared masses

of pseudoscalar mesons m,2[ and mf( obtained with an accuracy of the second order in chiral symmetry break-

ing. The fit of the theoretical expressions for m,zt and mi to their phenomenological values leads to a func-
tional relation between the ratios my/m,and m,/m,, which is described by a third-order curve. The application
of the lattice calculation result m,/m,; = 27.23(10), where m,;, = (m, + m,)/2, reported by the flavor lattice
averaging group (FLAG) for the case of four quark flavors provides an additional constraint, which signifi-
cantly reduces the error (~2%) for the ratio m,/m; = 0.455(8). The absolute values of the quark masses have

been then obtained.
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The determination of the current masses of the u,
d, and s quarks is of primary importance for the mod-
ern particle physics because they are the fundamental
parameters of the Standard Model. In quantum chro-
modynamics (QCD), they are responsible for the
explicit SU(3); x SU(3)g chiral symmetry breaking,
which is described by the Hamiltonian

H,= Y miq. (1)

q=u,d,s

The product m,gq is invariant under renormaliza-
tion group transformations (in the leading logarithm
approximation). It is known that the light quark

masses at the energy scale L = 1 GeV (in the M.S - sub-
traction scheme) are m, = 4.2 MeV, m;= 7.5 MeV, and
mg =~ 150 MeV [1] (see also [2—5]). Since m,/u < 1, H,,
can be considered as a small perturbation near the chi-
ral limit m, = 0.

The ratio of the quark masses m,(1)/m, (1) in the

MS scheme is independent of the choice of the sub-
traction point | and can be obtained from the mass
formulas for the pseudoscalar mesons by the standard
current algebra methods [6]:

2
m. = By(m, +my;)+7 .,

mfzro = By(m, + my) + 7o, 2

me. = By(m, +m)+7Y,.,

2

K+
2

Mo = By(m, + m,) + Y o

Here, B, = —(qq)/F ? is the parameter proportional to
the SU(3) quark condensate, Fis the pion decay con-
stant in the chiral limit, m, and m are the phenome-
nological values of © and K meson masses, respec-
tively; and 7y, and Y are the electromagnetic contribu-
tions to the self-energies of these pseudoscalar
mesons. According to Dashen’s theorem [7], in the
leading order in m, Y,0=7,=0 and y. =

Yer = m; - mio. Due to these relations, the known

Weinberg formulas are valid:

2 2
m, oMy — My + 2mn0 M 0.56
my omhe—mi tmh
d K° K" n* (3)
2 2 2
m ]_OmK+ +mKo—mn+
= =20.18
m m2 m2 + m2
d Kl) K+ +

Systematic calculations of the next-to-leading
(NLO) correction to the Weinberg result [8, 9] showed
that a functional relation between the ratios x = m,/m,
and y = m,/m, appears beyond the current algebra.
According to the low-energy Gasser—Leutwyler theo-
rem [8], the curve f{x, y) = 0 is an ellipse. On the con-
trary, the fit of the mass formulas obtained with an
accuracy up to the first correction to the current alge-
bra result (2) shows that x and y belong (taking into
account approximations accepted in [9]) to a second-
order curve whose canonical form is a parabola. Since
the function f{x, y) is important for the extraction of
theoretical information on the ratios x and y of quark
masses, it is reasonable to examine both methods in
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more detail in order to understand their advantages
and disadvantages. The aim of this work is to study this
problem.

Our analysis is based on the formulas

a

- = By(m, + my)[1+ A(m, +my)]+ 7 .,

me. = By(m, + m))[1+ Alm, + m)] + 7, “)

oy N

meo = By(my + m)[1+ Almy + m)]+ ¥,0,

where the NLO contribution to the eigenenergy of the
pseudoscalar mesons is taken into account. These
relations can be obtained in the 1/N, chiral perturba-
tion theory [10, 11]; in this case, the parameter A =
8B,(2Ly — Ls)/F? is expressed in terms of the low-
energy constants of the effective chiral Lagrangian.
Formulas (4) can also be derived in the Nambu—Jona-
Lasinio model using the count rules 1/N,, p?
m, = 0(8) accepted in the 1/N, chiral perturbation
theory. In this case, A = §,,/(2M,) [12], where M|, is
the gap in the fermion spectrum and J,, is the dimen-
sionless constant by the entire set of the parameters of
the model. Further, the value of the parameter A is
fixed in terms of the modern lattice QCD estimates. It
is also noteworthy that the values of the A and B, do
not affect the form of the function f(x, y).

It is worth emphasizing that the derivation of
Egs. (4) involves not only expansions in powers of
quark masses and momenta but also the classification
of the vertices of the effective meson Lagrangian
according to their behavior in the limit of a large num-
ber N, of color degrees of freedom. This allowed one to
extend the symmetry group of the theory to U(3); %
U(3)g, by including the 1)’ meson in the consideration,
thus taking into account the known solution of the
U(1) problem [13—18] and suppressing the processes
violating the Zweig rule. Due to the 1/N, expansion,
Egs. (4) do not contain the contribution from chiral
logarithms, which has the next order O(3’). This
important circumstance makes it possible to avoid
ambiguity in calculations of x and y, which appears due
to the unphysical symmetry of the Lagrangian of chiral
perturbation theory under the Kaplan—Manohar
transformations [9].

Dashen’s theorem is violated beyond the current
algebra. This primarily concerns the contributions Y

and y,.. Forthe neutral modes, y,, = v, = 0 canstill

be accepted in Egs. (4). The contribution from virtual
photons to the self-energy of the charged pion is given
by the formula

Vo = (= ml) — (s — i) (5)

The pure QCD contribution is small (7. — i) ~

(m,; — mu)2 and can be calculated in the chiral pertur-

OSIPOV

bation theory, which gives the estimate
m. —m, = 0.17(3) MeV [8]. Consequently,
y,.=1.211)x 10~ GeV? [19, 20]. (6)

For the charged kaon, deviation from Dashen’s theo-
rem (Y, = Y .) canbe characterized by the parameter
€ as follows [21]:

Voo =V +e€m —mb). (7)

The flavor lattice averaging group (FLAG) in recent
review [22] of the lattice QCD results obtained by var-
ious collaborations presents the averaged values

€=0.796) (N, =2+1+1), ®)
€=0.7317) (N, =2 +1). )
Below, the former estimate is used because it has a

smaller error and corresponds to simulations with four
quark flavors m, = m, # m; # m,. This gives

Voo =2.218)x107° GeV?, (10)

which indicates a significant violation of Dashen’s
theorem compared to Eq. (6).

The system of three equations (4) has four free
parameters (e.g., mB,, m A, x, and y). Therefore, its
solution is the relation f{ix, y) = 0. To determine the
function f{(x, y), the following two ratios are consid-
ered

2 2
+_mK0+ TE+_’YK+_YTE+
2 2
Mo =My + M+ Y =Y -
_ x+mAly(x —1) + x(x +1)]

1+ mAly(1—x)+1+ x]

m

[N

re =

(1)

2 2 2
mK+ +mK0_mn+ _FYK++FYTC+
2

= 2 2
mKU _mK+ +mTC+ + ’YK+ _’YTC+
_y+mAly(y +x)+y—x]

1+ mAly(1=x)+1+x]’

(12)

where Egs. (4) were used in the second step. On the
one hand, the substitution of the experimental masses

of the ", K*, and K” mesons and estimates (6) and
(10) into Egs. (11) and (12) gives r, = 0.498(5) and r,, =
19.32(6), respectively. On the other hand, the exclu-
sion of the parameter m A from Egs. (11) and (12) pro-
vides the relation

O’ =D =xr) = (1-x")yr, - 1). (13)

This relation specified a third-order (cubic) curve of
genus g = 1. It has three independent branches includ-
ing two hyperbolic and one straight-line (hyperbolic-
type) branches. The point (x, y) = (r,, r,) belongs to
the last branch.
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Result (13) is independent of the choice of the
ratios r, and r,. After the exclusion of the parameter A,
any arbitrarily chosen pair

,o= (OCP,’THE)’ (Bpamp)’ (14)
© (@) Bp. 1y
where rﬁi = mf, —vp, and ((xp,rﬁp) = OCK+I1_1;+ +
o Komlz(o + O‘n*"_ﬁﬁ’ leads to the equation
(‘XP,M%)(BP,HP) - (OLP:HP)(BPaMi)
+ @t Brtp) = @p ) Brotn)] (o

+ rﬁ[(BP’ui’)(aPauP) - (BPsuP)(OLPap‘i’)]
= rarﬁ[(BP’“i’)(aP:uP) - (BPaHP)(aPaui)]-

Here, up, = m; + m;, where the subscripts (i, /) specify
the quark composition of a particular meson state P:
u,d) > 1, (u,5) = K*, and (d,s) - K", K°.

The dependence on the arbitrary parameters o.p,

Bp, Op, and B, is factorized. To show this factoriza-
tion, it is necessary to express 7, and rg in Eq. (15) in
terms of r, and r,. As a result, the equation takes the
form

JP(QP’BP’(XP’BP> Vs y
X [(y* =11 = xr) = (1= x*)(yr, 1] = 0.

IfF # 0, Eq. (13) is valid. Otherwise, r, and rg are not
independent variables. Thus, the shape of the curve
specified by Egs. (14) is independent of the choice of

the pair r, and r. Furthermore, when @, = B,, as,
e.g.,in (11) and (12), the ratios lead to Eq. (13) regard-
less of the & expansion of the ratios given by Eqgs. (14).

Indeed, the 8 expansion gives
o = kol 1+ L (my2) + 0@, (16)
where the coefficients k&, and /, are functions of the

ratios of quark masses x and y and the parameters o
and Ol p:

o

_@plp) 1 {(ap,ui) _ (ap,uiq
— > o — N
(Op,p) my| (0p,Wp) (Clp,Up)
Considering the pair r, and rgs it is obviously possible

to exclude the parameter m,A and thus to arrive at the
following relation between y and x:

Kokl — Is) = koot — klgry- (17)

If 8, = Bp, Eq. (17) describes the cubic curve
specified by Eq. (13). When &, # BP, different pairs r,,
and rg gives different curves. Some consequences of
this behavior were studied in [12, 23]. The case /, = /g
is the most interesting here. Then, according to
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Eq. (17), ro/rg = ko/kg; i.e., NLO contributions are
absent in these two ratios. This statement is the
essence of the well-known low-energy Gasser—Leut-
wyler theorem [8]. For example, consider the chiral
expansion of the ratios

— m12<+ — Yy
= -y
= Py A, - my) + 0 ]
my + m,
5 R (18)
_ Mo — M Vg
h=— 2
Mo =M+ 7Y .
= B =Pul )+ AGm, - m,) + 0 |-
mg —m,
Here, /, = [, and, consequently,
LMo o (19)

5] mj - mu
Here, the variables x and y obviously belong to an
ellipse. In this case, there are three parameters m A, x,
and y to fit two phenomenological values 7, and r,. The
dimensionless parameter m A specifies the position of
apoint on the curve (unlike a cubic curve, this requires
two parameter m,A and m,B;). The equation of
ellipse (19) in the variables r, and r, takes the form

O =D =r)=1=x")r -1). (20)

Both Egs. (13) and (20) specifying curves plotted in
Fig. 1 include the same parameters r, and r,. The dif-
ference is that these parameters in the case of the
ellipse constitute the parameter

2 2
0 = ’i = 220805), @1
—r

X

which determines the major semiaxis of this ellipse.
The error indicated in parentheses in Eq. (21) is due to the
error in € given by Eq. (8). This result is in excellent agree-

ment with the estimate Qg = (m, — m_,)/(m; — m_) =
22.1(7) [19], where m,; = (m, + m,)/2, obtained from
experimental data on 1 — 3w decays. It is also agree-
ment with the FLAG estimate Qg = 22.5(5) [22]. A
high accuracy of the numerical estimate (21) is due to
modern precise lattice QCD calculations of the
parameter €.

In the case of the cubic curve, the parameters r,

and r, are independent. As a result, the ratio of le
quark masses varies along the cubic curve and its
determination requires an additional assumption,
which leads, as shown below, to the result Q, =
22.24(16) in the case of physical values of quark
masses.
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Fig. 1. (Color online) Ratio y = my/m versus x = m,/m in
the next-to-leading order under the conditions of (upper
elliptic lines) the low-energy Gasser—Leutwyler theorem
and (lower cubic lines) mass formulas. Since Dashen’s
theorem is violated, two lines covering the interval e =
0.79(6) are plotted for each case. The lines have a common
tangent at the point (ry, r,). The imaginary horizontal

straight line y = ry intersects the cubic line at the points
(ry, ry) and (0, ry).

The mentioned assumption concerns the ratio .S =
my/m,; = 27.23(10) [22], which is obtained in lattice
QCD calculations and is weakly sensitive to correc-
tions caused by the violation of Dashen’s theorem.
The electromagnetic contribution to this ratio is
~0.18% [24]; i.e., it is indeed very small. The knowl-
edge of S allows one to significantly limit the region of
allowed values for x and y and thus to increase the
accuracy of theoretical calculations of the ratio m,/m,.
This idea was already used in [19], where the ratio
m,/m; = 0.44(3) was determined from the parameters
O = 22.1(7) and § = 27.23(10). This estimate can
now be improved due to a high accuracy of Eq. (8).

The result of these calculations is presented in
Fig. 2, which demonstrates excellent agreement of
data obtained independently using both the low-
energy Gasser—Leutwyler theorem and the cubic
curve

m,/m; = 0.455(8) (cubic curve),

. (22)
m,/m,; = 0.456(8) (ellipse).

As mentioned above, the quark condensate (gg)()L) is
related to the low-energy constant By(lL) and depends on

the renormalization group scale |t in the M.S subtraction
scheme. However, the product m,(l1) By(l) is invariant
under transformations of the renormalization group.
Since this product is one of the internal parameters of
the cubic curve, the masses of individual quarks can be
estimated if B, is known, and vice versa. The accuracy
of lattice estimates of By(l) is currently low. The
calculations below were performed with the result
By(2 GeV) =2.682(36)(39) GeV [26] whose total error
of ~2% is comparatively small.

Fig. 2. (Color online) Allowed values for quark mass ratios
x =my/myzand y = my/my: the dashed elliptic lines corre-
sponding to the region Q| = 22.24(16) in comparison with
the solid cubic lines corresponding to the region € =
0.79(6). The thin straight lines separate the region § =
27.23(10) obtained in the FLAG processing of the lattice
data for Ny=2 + 1 + 1 [22]. The intersection of the band

corresponding to the considered S values and the cubic
lines separates the region (filled) of the physical values for
the ratios x = m,/myand y = my/m,.

To determine the absolute values of the quark
masses, it is necessary to solve the system of three
equations (4). To this end, at a given By(2 GeV) value,
the parameter A is varied so that the solution lies in the
separated filled region in Fig. 2. The corresponding
results are summarized in Table 1.

The first row in Table 1 presents the solutions of the
system of Egs. (4) with the value B, = 2.682(53) GeV.
To estimate the error introduced by the parameter B,
the second row of Table 1 presents the results obtained
with the fixed value B, = 2.66 GeV, which is the arith-
metic mean of the central values B, = 2.682(53) GeV
from [26] and B, = 2.64(20) GeV from [27]. The third
row presents the values proposed by PDG [25]. The
fourth and fifth rows present FLAG estimates [22]
made for the cases of four and three flavors of quarks,
respectively, by averaging various lattice calculations
according to the FLAG selection criteria.

The comparison of the results presented in the first
two rows in Table 1 shows that the error =2% in B,
together with the existing error #1.5% in the determi-
nation of € and .S values gives the total error =3% for
quark masses. This accuracy is sufficient to state that
the results of this work completely agrees with the
PDG values and with average values presented by
FLAG. Moreover, it can be concluded that the &
expansion, which underlies the initial formulas (4) for
our analysis, is an efficient tool to calculate the light
quark masses.

Since numerous estimates of the quark masses
reported in the literature are referred to the scale L =
1 GeV, the corresponding our results are presented
here. Weinberg’s results for the quark masses pre-
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Table 1. Masses of the light quarks u, d, and s, isospin-averaged value m,, = (m, + m,)/2, m,/m,, Q, given by Eq. (21), and

R = (mg — m,;)/(my; — m,). All parameters correspond to the scale i = 2 GeV in the MS subtraction scheme

Reference Conditions m,, MeV my, MeV m,g, MeV my, MeV m,/mg o) R
This work | By =2.682(53) GeV|2.14 £ 0.07| 4.70 £ 0.12 3.42(7) 93.13£2.25] 0.455(8) {22.23(16) [35.02(61)
By=2.66 GeV (2.16+0.03| 4.74+0.03 | 3.447(2) |93.85+0.41 | 0.455(8) [22.23(16)|35.02(61)
PDG [25 — . . . 6 .056 — —
125] 2.169% | 467708 | 345703 93.475¢ 10474709
FLAG [22]| N;=2+1+1 (2.14£0.08| 470 £0.05 | 3.410(43) |93.44 +0.68 |0.465(24)| 22.5(5) |35.9(1.7)
Ne=2+1 2.27£0.09| 4.67£0.09 | 3.364(41) [92.03£0.88|0.485(19)| 23.3(5) |38.1(1.5)

sented in the beginning of this article allow the esti-
mate By(1 GeV) = 1.58 GeV. Indeed, the substitution
of this B, into Egs. (2) gives m, = 4.1 MeV, m; =
7.4 MeV, and m; = 149 MeV. The inclusion of the NLO
correction leas to the estimates (for the allowed region
in Fig. 2) m, =3.63(5) MeV, m, = 7.98(4) MeV, and
m, = 158.0(7) MeV. Correspondingly, it can be con-
cluded that the NLO contribution to the light quark
masses varies here from 11 to 6%.

To summarize, the cubic curve is an additional
useful source to extract theoretical information on the
light quark masses. On the one hand, this curve in the
region of physical quark masses is excellently consis-
tent with the low-energy Gasser—Leutwyler theorem;
on the other hand, it allows one to estimate not only
ratios of quark masses but also their absolute values.
The estimates obtained in this work seem reasonable
and their accuracy will increase with decreasing error
in the determination of the low-energy constant B,,.
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